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SUMMARY

The air cargo industry has substantially grown over the past few years, driving

the need of a structured environment with the explicit goal of maximizing revenues.

The air cargo supply chain is composed of shippers, freight forwarders, and airlines.

The shippers send their shipment to freight forwarders, who are responsible for con-

tacting the airlines and procuring space to ship the cargo according to the shippers’

needs. Currently, the process takes more time than needed due to a lack of coordi-

nation between freight forwarders and airlines; it is said that an integrator, a freight

forwarder which owns its own fleet, moves an international shipment two or three

times faster than a traditional freight forwarder/airline team [10].

The scope of this thesis is to propose a structured methodology for improving the

airlines’ and freight forwarders’ actions when confronted with accepting demand and

acquiring capacity respectively. We develop methods to tackle two air cargo revenue

management problems: space allocation and show-up rate estimation.

The space allocation problem is defined as distributing the available capacity for

free sale among incoming cargo bookings over the booking horizon such that the

revenue at the end of the booking period is maximized. We use bid price methods

to accept/reject incoming bookings: if the rate of the booking is lower than the

bid price value then the booking is rejected. We show that a good approach to

deal with the demand lumpiness encountered in the cargo industry is to split the

cargo into two categories: small, which contains small packages and mail, and large,

which contains the bulk of commercial cargo. Whereas the small cargo demand

behavior can be approximated with the passenger demand behavior, and techniques

from the passenger sector could be adapted for the small cargo business, the large
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cargo demand behavior shows similarities to wholesale retail and calls for different

methods. We model the small cargo revenue management problem using a model

from the passenger business and propose a new algorithm to solve it, which had a

superior running time among the few algorithms known to solve the same model in

the passenger business. The large cargo revenue management problem is solved via

dynamic programming. In our simulations, when the demand is extremely lumpy,

i.e., the cargo loads vary widely, the conjugated solutions from the two models result

in up to 60% more revenue than the first come first serve method used in practice.

The second air cargo revenue management problem is estimating the cargo show-

up rate, which is the ratio of cargo handed in at departure over bookings on hand.

The show-up rate is used in the overbooking models to estimate the capacity available

for free sale before the departure date. In the passenger business, the current practice

is to estimate the show-up rate based on a Normal distribution. We show the Normal

distribution is not suitable for the cargo business and propose a discrete distribution

based on wavelet estimation. In a simulation study conducted for a set of real world

demand date, the average yearly savings resulting from using the discrete estimator

for a fleet of 300 flights per day and an average of cargo capacity per departure of

13,000 kilograms was $16,425,000.

Besides the airline’s revenue management problems, we solve the capacity man-

agement problem for the freight forwarder. The freight forwarder bids for cargo space

on flights offered by the airlines several months before the actual departure date of the

aircraft. The committed capacity has to be confirmed a few days before the departure

date. In spite of its importance, there are no known solutions to this problem. We

propose modeling the problem as a perishable inventory problem with backlog and

lead time. The lead time is the time between which the freight forwarder orders the

capacity and the time the aircraft is scheduled to take off. During this time, new de-

mand from shippers can materialize, and the freight forwarder should place the order

x



such that it accounts for the uncertainty related to shippers’ demand. We propose a

stochastic dynamic programming model to illustrate the freight forwarders’ problem

and show that the value function is a convex function in the state variable, which

is either available capacity for the current period if it is positive, or backlog if it is

negative, for a lead time of one and two periods. Furthermore, we show the optimal

policy is a stationary policy, depending only on the value of the state variable and

not on the period in which the order is placed. We also analyze special cases with

subcontracting options when we have orders that have to be shipped immediately,

and show the solution is a critical ratio solution under certain conditions.
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CHAPTER I

INTRODUCTION

Revenue management has become more and more popular among industries of all

sorts; traditionally applied to the airline industry, it extended to all business niches

where the product offered is perishable, limited and price differentiable. One rela-

tively new area, which became more and more important in the recent years, is the

air cargo transportation. The product offered in this case, the cargo capacity, has

all the features for revenue management techniques to be successful: it is lost after

the plane takes off, it is limited, and it can be offered at different rates depending on

the service offered - e.g., critical and speciality cargo, expedited, standard, etc. How-

ever, the transportation of freight by air was considered a premium transportation

service by most companies. Only recently, due to globalization of trade, the rise of

the e-commerce and increasing used of advanced logistics techniques, the air trans-

portation of freight has become more affordable, and hence the airlines have started

to show interest in managing their cargo capacity such that their expected revenue is

maximized.

The air cargo supply chain is composed of three main players: the shippers, the

freight forwarders, and the airlines. The freight forwarders are responsible for ac-

quiring cargo space from airlines in order to satisfy the demand from shippers. The

process of acquiring capacity from the airlines goes over two phases:

1. In phase one, six to twelve months before the actual departure, freight for-

warders bid for cargo space the airlines have to offer; the cargo capacity com-

mitted during the auction process is called allotted capacity ;

2. In phase two, a few days before the actual take off, the freight forwarders have

1



to confirm the allotted space, either returning unwanted space or confirming

the need of the whole allotted capacity.

The remaining capacity available for free sale, which we refer to as cargo capacity

throughout this thesis, is the object of the revenue management techniques developed

in this thesis.

The air transportation supply chain poses several challenges: the freight for-

warders and the airline should be coordinated and respect each others’ needs: the

airline should be able to honor its allotted capacity, and the freight forwarder should

know approximately how much capacity it will actually need and release unwanted

space in a timely matter for the airline, such that the latter is able to add the extra

space to the pool of capacity available for free sale.

Unfortunately, this is not the case. It is said that due to the lack of coordination

between the airlines and the freight forwarders the traditional airline/freight forwarder

team needs two to three times more time than an integrator (like e.g., Fedex) to move

an international shipment [10].

The objective of this thesis is to develop methods to improve both the freight for-

warders’ and the airlines’ actions when dealing with air cargo. We have two problem

categories:

1. Air cargo revenue management - which refers to the airlines’ problem to

manage the capacity available for free sale to generate more revenue. We show

that applying revenue methods blindly from the passengers business to the cargo

sector is not suitable, and we develop solutions for two problems in the area:

(a) Air cargo bid prices - Bid prices are threshold values used to assist

in the process of accepting/rejecting incoming bookings. If the incoming

booking has a rate lower than the sum of the bid prices along the requested

2



itinerary then the booking is rejected, otherwise it is accepted. We argue

the unsuitability of the passengers techniques to determine bid prices for

the cargo sector, and we tackle the problem of demand lumpiness existent

in the air cargo industry. Whereas for passengers there is a clear matching

between the request and the supply, which is exactly one seat, the demand

for air cargo can vary from 0.001 kilograms to 100,000 kilograms. This

disproportion introduces a new factor of difficulty besides two- or more

dimensions of demand (weight, volume, container position), uncertainty of

capacity available for free sale (depending on allotment utilization), and

routing flexibility (cargo has to make its destination on time, no matter

which route it takes), recorded in most of the air cargo papers (see e.g.,

[?]). To solve this problem, we split the cargo loads into two categories,

small and large, based empirically on the demand features. The demand

for small cargo shows similarities with the passenger demand, with a rel-

atively high number of bookings during a quite wide booking window; on

the contrary, the demand for large cargo comes from a relatively low num-

ber of customers, and it is booked during the last few days before the

aircraft departure. We split the two streams of demand: we formulate the

small cargo via a mathematical model from the passenger business, and we

develop a new algorithm to solve it; we show that a dynamic program can

be explicitly solved for large cargo if we decompose the network problem

at the flight leg level.

(b) Air cargo show-up rate estimation - the air cargo show-up rate is the

ratio of demand handed in at departure over the amount of bookings on

hand at any point in time before the departure date; the show-up rate

is used in the overbooking model. Overbooking is the technique used by

airlines to sell more capacity than physically available to hedge against

3



demand variability. In the passenger business the Normal distribution is

used to determine overbooking levels. We show on real cargo data that

this distribution is not suitable for cargo and define a discrete show-up

rate distribution based on wavelet density estimation.

2. Air cargo capacity management - which refers to the freight forwarders’

problem to confirm capacity with airlines a few days before the flight takes

off such that the demand from shippers is satisfied at minimum cost. The

freight forwarders’ problem is modeled as a perishable inventory problem, where

the perishable commodity is the capacity confirmed, which is lost after the

flight departure and cannot be used for subsequent shipments. There is a lead

time between the time the capacity confirmation is placed and the time the

flight departs, which is usually three days. During these days, new demand

materializes, and the freight forwarder has to backlog excess demand at extra

cost if the capacity ordered cannot accommodate all demand. In the current

air cargo industry the airlines do not penalize the freight forwarders for not

using confirmed capacity; i.e., the perishing cost of capacity is the same as the

ordering cost. We find the optimal solution for one and two period lead time,

and for special cases when there are subcontracting options and the demand

has due dates.

As the problems described above are disconnected from each other, we present

them individually in Chapters 2 and 3. Chapter 2 contains the air cargo bid price

problem in Section 2.1, and the air cargo show-up rate estimation in Section 2.2.

Each section contains its own detailed description of the problem, of existing work,

and of numerical experiments. The last chapter concludes the thesis and proposes

directions for future reasearch.
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CHAPTER II

AIR CARGO REVENUE MANAGEMENT

Revenue management focuses on maximizing profits from a limited capacity of a

product by selling it to the right customer for the right price at the right time [40].

The fundamental decision in revenue management is whether to sell capacity when

a request comes in, or to save it for a potential later sale at a higher price. For

example, a seat on an airplane can be sold at different prices, depending on the

capacity already sold and the time remaining until the departure of the aircraft.

While revenue management practices have been widely used in the passenger segment

of the airline industry, they received increased attention only recently in the cargo

segment. Due to the globalization of trade and increased volumes of e-commerce, the

worldwide demand for air cargo has been growing at a faster pace than passenger

demand [38]. Industry forecasts predict a massive growth in cargo demand: world air

cargo traffic will expand at an average annual rate of 6.2% for the next two decades,

tripling over current traffic levels [6]. Hence, many airlines now recognize the revenue

potential from cargo, and aim to make it a “vital component of their business rather

than a sideline operation” [52].

We analyze two problems that arise within the air cargo revenue management area:

space allocation using bid prices and estimation of the show-up rate with impact on

the overbooking levels. In this chapter we present solutions to the two problems, with

simulations and numerical results for each.

2.1 Bid prices for air cargo

The main players in the air cargo supply chain are: airlines, freight forwarders (FF),

and shippers. FF satisfy the shippers’ demand by securing cargo capacity from the
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airlines. Generally, airlines offer cargo space in two stages. In the first stage, a few

months prior to a season, FF bid for cargo space over the next season; the cargo

capacity committed during this bidding process is called allotted capacity. Out of the

remaining cargo space, airlines usually allocate an additional amount to contracts,

which is the space reserved for large customers at a fixed price. The remaining space,

the capacity available for free sale, is open for booking in the second stage, within

four weeks before the flight departs. The allocation of the capacity available for free

sale (which we refer to as “cargo capacity” throughout the thesis) to the demand

that arrives over time constitutes the object of our study. This problem is very

similar to the seat inventory control problem in the passenger revenue management

literature, which is defined as allocating the finite seat inventory to demand that

occurs over time, such that at departure the plane is filled with the most profitable

mix of passengers.

The decision of whether to accept or to reject an incoming booking request (for a

seat on the plane or cargo capacity) can be based on different strategies. The most

important types of control in the passenger segment are: booking limits, protection

levels, and bid prices. Booking limits allocate a fixed amount of capacity to each fare

class. Protection levels specify an amount of capacity to be reserved for a fare class

or a set of fare classes. Bid prices are threshold values used to accept/deny incoming

booking requests, i.e., the decision maker accepts the request if the sum of the bid

prices along the itinerary is lower than the proposed fare. Unlike booking limits and

protection levels, which are capacity based, bid price controls are revenue based and

have the advantages of being simple, having a natural interpretation as the marginal

value of a given resource, and have a very good revenue performance [53].

While the capacity allocation problems from the passenger and cargo segments

have similarities, there are also some significant differences [?]: (i) For the passengers,

the unit capacity is defined by a single dimension, i.e., seat; for cargo, capacity has
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two dimensions (weight and volume). (ii) Cargo capacity is often uncertain due

to allotments, no-shows, and passenger luggage on combination carriers. (iii) Most

passengers demand a specific itinerary whereas for cargo shipments customers often

specify an origin and destination and accept any itinerary as long as the shipment

arrives at the destination by the requested delivery time (itinerary-specific versus

origin-destination-specific demand); hence, in cargo there is flexibility in routing.

(iv) Most passengers demand one unit of capacity (seat) whereas customers request

multiple units of capacity for cargo shipment (specified by weight and volume). Hence,

cargo demand has a wide range of quantities1 and can be “lumpy,” which complicates

matching demand to capacity.

In this thesis, focusing especially on the demand arrival characteristics (lumpiness)

of cargo shipments, we develop efficient methods for determining bid prices for air

cargo capacity allocation. We propose dividing the cargo bookings into two categories:

“small” (packages and mail) and “large” cargo. The two categories exhibit similarities

in booking behavior to retail and wholesale demand, respectively. Small packages are

generated by a large number of independent customers and can be modeled by a a

Poisson process, similar to that for passengers. By contrast, wholesale demand tends

to come from a relatively small number of customers in large quantities and consumes

the available capacity relatively quickly. For small cargo, we adapt existing passenger

seat allocation methods and propose an efficient algorithm to solve the model from

[13], based on a quadratic approximation scheme of the dual problem. To the best of

our knowledge, the approach is novel and it proves superior computational efficiency

as well as a significant increase in revenues over existing algorithms. For large cargo,

we develop a dynamic programming model and decompose the problem into single leg

problems. The main advantage of splitting the cargo bookings into a “small” and a

“large” category is that the dynamic program for the latter becomes computationally

1The cargo weight booked on a single flight can range anywhere from 0.1 kilograms to 10-20 tons.
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manageable due to the low number of bookings and their large sizes.

In Section 2.1.1 we provide an overview of the related literature. In Section 2.1.2

we describe the current air cargo booking process and motivate our approach, followed

by the mathematical formulation of the small cargo problem and the details of the

proposed algorithm in Section 2.1.3. Section 2.1.5 describes the dynamic program

used for calculating the bid prices for large cargo. Numerical results are discussed in

Section 2.1.6.

2.1.1 Literature review

Bid price methods were introduced by Smith and Penn [51], and extended by Simpson

[50], and Williamson [57]. We provide an overview of the traditional mathematical

models from the passenger literature to calculate network bid prices in Section 2.1.3.

Chen et. al. [13] addresses the issue of origin-destination-specific demand, which

is common for low fare passengers and cargo, versus the itinerary-specific demand,

widely used in the passenger models. They extend three popular models to incorpo-

rate origin-destination demand and introduce a routing algorithm tailored towards

the special structure of the flight networks and their objectives. The simulation re-

sults report the superiority of an extended probabilistic model over a first come first

serve (FCFS) policy applied to cargo revenue management. Rao [45] proposes a dual

ascent scheme to solve the Lagrangian of the probabilistic model used in [13].

The air cargo revenue management literature focuses mainly on overbooking mod-

els. In practice, the relationship between airlines and FF is governed by long-term

contracts that do not specify penalties for reserved but unused space. As a result,

overbooking rather than space allocation has been the focus in the air cargo litera-

ture. Kasilingam [24] proposes a model that considers stochastic capacity as opposed

to the passenger business where the capacity is certain. Luo et al. [27] extend

Kasilingam’s one dimensional model to two dimensions (weight and volume) under

8



cost minimization. Moussawi and Cakanyildirim [29] consider profit maximization in-

stead. Amaruchkul et al. [2] formulate the capacity allocation problem with random

weight and volume as a Markov decision process. Arguing that the exact solution of

the formulation is impractical due to its high-dimensional state space, they develop a

few heuristics to approximate the value function. Extensive simulation experiments

suggest that the value function approximation derived from solving separately for

weight and volume for a single-leg model offers the best approach.

Xiao and Yang [58] and Pak and Dekker [39] address theoretical aspects of revenue

management under multi-dimensional capacity. Xiao and Yang [58] model the prob-

lem as a continuous time stochastic control model, and derive structural properties for

the case where the remaining capacities in two dimensions are equal or differ. When

they are equal, they show that the optimal policy is not characterized by a nested

price structure (if a fare class is open, then all classes with higher fares should also

be open) as in the one-dimensional case. Pak and Dekker [39] model the problem as

a multi-dimensional on-line knapsack problem and propose a heuristic to determine

the bid prices based on a greedy algorithm proposed by Rinnooy et. al. [46]. A

test case shows that the bid prices perform better than the traditional deterministic

model used in the passenger business (see section 2.1.3 for details on different models

used to approximate bid prices in the passengers literature).

All the different cargo characteristics mentioned earlier, multi-dimensionality, rout-

ing flexibility, uncertainty in capacity supply, have been addresses in the literature,

but not the lumpiness of demand. To the best of our knowledge, we are the first to

identify this feature, address it by splitting the cargo into two categories, and solve it.

Our solution is shown to be better than two other methods widely used in practice.
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2.1.2 Current air cargo booking process and motivation for our approach

Our motivation for dividing cargo into two categories (small and large) comes from

the practices of the airlines and integrators who usually distinguish mail and packages

from freight based on some threshold weight values. Integrators (such as FedEx) and

carriers (such as Delta Airlines) consider everything under 150 lbs a “package,” and

everything between 151 lbs and 2,200 lbs “freight”, which is attached to a skid (a

forkliftable base used to support/elevate an object, typically made of hardwood or

plastic) [19]. Raja Kasilingam, the Vice President of the Cargo Products at Sabre

Holdings, confirmed that the cut off value between packages and freight is typically

between 100 and 200 kilograms. Furthermore, airlines and integrators dedicate sepa-

rate (non-overlapping) capacities to the two categories.

To further confirm the gap between small and large cargo bookings (and to use

later in our computational study), we collected data (daily bookings by weight) from

4 combination carriers over a horizon of 29 departure dates. In the data, the av-

erage capacity dedicated to large cargo (freight) and small cargo is 5000 kilograms

and 1000 kilograms, respectively. The average number of bookings (over the entire

booking horizon of 30 days before departure) is 10 and 100 for large and small cargo,

respectively. Based on these observations, we decompose the cargo capacity alloca-

tion problem into two, one focusing on large cargo and the other one focusing on

small cargo.

The goal in air cargo capacity allocation is to maximize the expected revenues.

In cargo, unlike in the passenger business, the revenues associated with different

shipment categories are not as well structured.2 They are often driven by customer

relationship to the airline and the specific market, as well as the shipment features

2In the passenger business, the fare classes are well defined based on seat location (business, econ-
omy), and some additional features, such as flexibility of the departure and return dates, refundable
versus non-refundable tickets, etc.
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such as perishability, weight, and the time of booking. We follow [2] and define the

shipment rates as a function of their “dimensional weight” and “class.” Shipments

belong to different classes depending on the types of goods (perishable, electronics)

or arrival time.

We mentioned earlier that cargo has two dimensions, weight (w) and volume (v).

However, in the cargo sector, booking volumes are usually not reported before the

departure date, but very often derived by applying a standard “density” to the booked

weight. The density is the amount of space a package occupies in relation to its actual

weight, which is used in calculating the “dimensional weight” of a shipment.3 The

maximum between the actual weight and the dimensional weight is used as the billable

quantity.

We use a revenue function to map the billable weight, ŵ = max{w(kg.), v(cm3)

6000( cm3

kg.

)}
to revenue according to a schema such as the one in Table 1.

Table 1: Air cargo rates as a function of billable weight and cargo class

Class (in kg.) 1 2 . . .
0 < ŵ ≤ 20 $1.50 $ 1.25 . . .

20 < ŵ ≤ 50 $1.45 $ 1.2 . . .
. . . . . . . . . . . .

The available data we have currently suggests that in practice the decision of

whether to accept or reject a booking is mainly based on weight. Also, Amaruchkul et

al. [2] showed that separate one-dimensional models for weight and volume gave better

revenue performances in a simulation study than an approximate two-dimensional

model; hence, our models focus on weight (i.e., they are one-dimensional). The air

cargo classes defined as in Table 1 together with an itinerary request are used as the

“fare classes” within the mathematical models that follow; although the air cargo

3Calculations of dimensional weight are based on the International Air Transport Association
(IATA) volumetric standards. For the dimensional weight of a package in kilograms, the cubic size
of the package in centimeters is divided by 6000.
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industry is more flexible when the routing is concerned, the current practice is to

book a specific cargo itinerary, as Raja Kasilingam from Sabre Holdings confirmed.

Hence we developed our models with itinerary specific demand.

2.1.3 Small cargo capacity allocation

There are two commonly used mathematical programming models in the Passenger

Revenue Management (PRM) literature for computing bid prices on a flight network:

(i) The deterministic linear programming model (DLP) makes the assumption that

the demand is deterministic and equal to its mean; (ii) the probabilistic nonlinear

programming model (PNLP) maximizes the expected revenue assuming a randomly

distributed demand. Recently, randomized linear programming models (RLP) have

been proposed to incorporate the stochasticity of the demand into the DLP. A com-

prehensive analysis of the DLP and PNLP models can be found in Williamson [57],

and an analysis of the DLP, PNLP, and RLP can be found in Talluri and Van Ryzin

[53].

For PRM, DLP has shown to generate consistently more revenue than PNLP (see

for example [18], [53], [57]). Both DLP and PNLP partition the network capacity into

seat allocations to all possible combinations of itinerary-fare classes. This partitioned

allocation does not reflect the real booking control policy where the seat allocations

are nested, i.e., the highly profitable customers do not have access to less profitable

itinerary-fare classes. PNLP suffers more from ignoring the nesting environment than

its deterministic counterpart (see [18]). It tends to overprotect (i.e., allocates higher

capacity) to high-margin classes than DLP; however, unless these classes are highly

profitable, PNLP results in less expected revenue. On the other hand, in a non-nested

environment PNLP yields higher profits than DLP, as Ciancimino et al. [15] have

demonstrated for the railway industry, where the non-nesting assumption holds.

When applied to the air cargo industry, the bid prices derived from DLP have
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proven to be almost non-restrictive (see [39]), i.e., they reflect a first come first served

(FCFS) capacity allocation policy. Clearly, allocating the capacity in a FCFS basis

is, in general, not very profitable and goes against the fundamental premise of rev-

enue management where some capacity is reserved for high-margin customers. This

motivated our study for a probabilistic model for deriving bid prices for air cargo,

considering the variability in demand. The research on developing efficient solution

methods for PNLP has been very limited. Besides the specialized algorithm proposed

by Ciancimino et al. [15] for the railway yield management problem, and the algo-

rithm proposed by Rao [45] to solve a slightly different formulation, we are not aware

of any other published work on algorithms for solving PNLP. In [15], the original

constrained problem is transformed into an unconstrained minimization of a contin-

uously differentiable merit function. Rao [45] formulates PNLP for cargo by nesting

the objective function according to different costs of the routes, and uses Lagrangian

relaxation schemes to solve it. The major difference between our work and the ex-

isting work is that we explicitly formulate and solve the dual PNLP. Our proposed

method is shown to be highly efficient.

2.1.3.1 The probabilistic nonlinear program (PNLP)

An airline’s flight network for a given departure date can be modelled by a graph

G = (V,E) where V denotes the set of nodes, representing departure/arrival times

and cities, and E = {1, ..., L} denotes the set of arcs, representing flight legs, where

bl is the (remaining) capacity (in kilograms, at a given time) on leg l.

An arriving customer specifies a weight w and an itinerary h for its shipment. Fol-

lowing the approach in Section 2.1.2, a rate r is assigned to the customer’s shipment.

A demand class is uniquely defined by a customer type j = (r, w, h). The information

about demand classes can be summarized in a connectivity matrix A, where each col-

umn Aj represents a demand class and each row a flight leg. An entry aij is equal to
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Table 2: Notation for PNLP
A : m× n connectivity matrix with m number of legs and n demand classes
Aj : jth column of A (incidence vector for demand class j)
Ai : ith row of A (set of demand classes on leg i)
rj : rate associated with demand class j
b : capacity vector for all legs
D : non-negative random variable for demand with known probability

density function (pdf) φ(t) (continuous and differentiable) and
cumulative distribution function (cdf) Φ(t)

1 if leg i is a part of itinerary h associated with demand class j = (r, w, h); otherwise,

aij = 0. Note that identical columns are allowed but they differ in their contribution

to the revenue in the objective function. Our notation is summarized in Table 2.1.3.1.

The goal is to find a partition x = {x1, . . . , xn} of the capacity such that xj units of

capacity is allocated to fare class j, the capacity bl on any leg is not exceeded, and the

expected revenue is maximized. Let E[sales|xj, Dj] and fj(xj) = rj · E[sales|xj, Dj]

denote the expected sales and revenue, respectively, for demand class j under partition

x. We model the cargo capacity allocation problem as follows:

max
n∑

j=1

rj · fj(xj)

(PNLP ) s.t. A · x ≤ b

x ≥ 0

Note that E[sales|xj, Dj] is the minimum of the demand or the capacity allocation

xj for class j. Hence, we have the following expression for fj:

fj(xj) = rj · E[sales|xj, Dj] = rj ·
∫ xj

0
t · φ(t)dt + rj ·

∫∞
xj

xj · φ(t)dt.

It is easy to show that the PNLP has a concave separable objective function (see

for example Ciancimino et al. [15]): f ′j(xj) = rj ·(1−Φ(xj)) and f ′′j (xj) = −rj ·φ(xj) ≤
0 ∀j.

The Lagrangian dual of the PNLP is (we define π as a row vector for exposition

purposes):

(DPNLP ) min
π≥0

q(π)
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where

q(π) = max
x≥0

L(x, π) (1)

and

L(x, π) =
n∑

j=1

fj(xj) + π · (b− A · x) (2)

From Equations (1) and (2), we have:

q(π) = max
x≥0

n∑
j=1

fj(xj) + π · (b− A · x)

=
n∑

j=1

max
x≥0

(fj(xj)− π · Aj · xj) + π · b

We need to find the maximum of each fj(xj)− π ·Aj · xj, xj ≥ 0, to be able to state

the DPNLP explicitly. Let x∗ denote the optimal allocation. By the properties of the

Lagrangian multipliers at optimality, we have:

f ′j(x
∗
j)− π · Aj ≤ 0 (3)

There are two cases to consider for finding x∗j : (1) If f ′j(0) = rj > π · Aj, then (3)

is satisfied as equality, i.e., f ′j(x
∗
j) − π · Aj = 0. (2) If f ′j(0) = rj ≤ π · Aj, then (3)

is satisfied at strict inequality and the corresponding capacity allocation is x∗j = 0.

In other words, if an incoming booking request for class j has the associated fare

(rj) greater than the sum of the bid prices for the corresponding itinerary (π · Aj),

then the capacity allocation is strictly positive, and solves (3); otherwise, the capacity

allocation is zero, i.e., the booking request is rejected (see Figure 1). This follows

exactly the idea behind bid price control. Having the solution of the Lagrangian

function, we can now restate the DPNLP:

min
π≥0

q(π) = π · b +
n∑

j=1

[fj(x
∗
j)− x∗j · f ′j(x∗j)]

(DPNLP ) s.t. f ′j(x
∗
j) = π · Aj if rj > π · Aj

x∗j = 0 if rj ≤ π · Aj

From the DPNLP there is a 1-1 correspondence between the dual and the primal

variables. That is, if we have a set of π’s, we can calculate the corresponding capacity

allocation as follows:
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Figure 1: First derivative of jth term in the objective function

(i) x∗j = 0 if rj ≤ π · Aj.

(ii) x∗j = Φ−1
(
1− π·Aj

rj

)
if rj > π · Aj. (Since f ′j(x

∗
j) = rj · (1− Φ(x∗j)) = π · Aj.)

In the next section we discuss the details of our algorithm to solve the DPNLP.

2.1.3.2 The Newton method applied to DPNLP

DPNLP is a nonlinear programming model, constrained only by the non-negativity

of the bid prices π. The Newton method (for both constrained and unconstrained

problems) has a very high rate of convergence close to the optimal solution. Newton’s

method consists of the iteration:

xk+1 = xk − αk · (∇2f(xk))−1 · ∇f(xk) (4)

assuming the Newton direction dk = −(∇2f(xk))−1 · ∇f(xk) is defined and it is a

direction of descent (i.e., dk ·∇f(xk) < 0). The Newton’s method converges very fast

when near the optimal solution. However, far from such an optimum the Hessian may

be singular or not positive definite. We will show that the DPNLP is convex, hence it

has a positive semidefinite Hessian; our algorithm ensures the non-singularity of the

16



Hessian by maintaining a positive definite submatrix of the Hessian, which is always

invertible.

Theorem 1 The problem DPNLP is a convex problem

Proof: We prove the convexity of the objective function by showing that the

Hessian matrix is positive semidefinite. for calculating the Hessian, we first calculate

the gradient. The gradient of the DPNLP is the constraint violation of the PNLP for

a given solution x∗:

∂q
∂πi

= bi + ∂
∂πi

[
n∑

j=1

(fj(x
∗
j) − x∗j · f ′j(x∗j))] = bi +

n∑
j=1

[f ′j(x
∗
j) ·

∂x∗j
∂πi

− x∗j · ∂
∂πi

f ′j(x
∗
j) −

f ′j(x
∗
j) ·

∂x∗j
∂πi

] = bi −
∑
j∈J

x∗j · ∂
∂πi

f ′j(x
∗
j) , where J = {j : rj > π · Aj}.

By using f ′j(x
∗
j) = π · Aj, j ∈ J , we deduce:

∂q

∂πi

= bi −
∑
j∈J

x∗j · aij (5)

which is the constraint violation of PNLP for a given solution x∗j .

The Hessian of the DPNLP is defined as:

∂2q

∂πi∂πk

= −
n∑

j=1

aij ·
∂x∗j
∂πk

, ∀ i, k = 1..m (6)

For j ∈ J , the following equality holds:

f ′j(x
∗
j) = π · Aj,

and if we take the derivative with respect to πk, we obtain:

f ′′j (x∗j) ·
∂x∗j
∂πk

= akj.

By plugging in the expression for f ′′j (x∗j), we derive:

∂x∗j
∂πk

= − akj

rj · φ(x∗j)
(7)

and we conclude:
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∂2q

∂πi∂πk

=
∑
j∈J

aij · akj

rj · φ(x∗j)
(8)

The objective function in DPNLP is convex, since all terms in the Hessian are

non-negative.

¥

We deal with a convex minimization problem, constrained only by non-negativity

of π, for which the calculation of the gradient and Hessian is straightforward. How-

ever, there are a few difficulties:

• if π ·Aj = 0, j ∈ J , then the formula for calculating the corresponding capacity

allocation x∗j = Φ−1(1 − π·Aj

rj
) would give a very big value. We can avoid this

problem by defining an upper bound for the capacity allocation, as in Figure 2.

Figure 2: Demand distribution for PNLP

The revenue function fj(xj) (see Figure 3) in the PNLP formulation becomes

almost flat after a certain capacity is allocated, and it would not significantly

improve if more capacity is allocated. Bounding the demand distribution will

not significantly interfere with the scope of maximizing the revenue in the PNLP

formulation.

• Once we have a set of π’s, we can easily identify the set J = {j : rj ≤ π ·Aj}; the

corresponding variables x∗j = 0, j ∈ J , the columns Aj, j ∈ J can be deleted,

since they have no contribution in the Hessian calculation.
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Figure 3: Revenue function for the jth term in the PNLP formulation

2.1.4 Solution methodology

The k-th iteration of the algorithm is:

1. For πk calculate x∗
k

j :

• if πk·Aj = 0 then set x∗
k

j on the 99-th percentile of the demand distribution;

• if πk · Aj ≥ rj then set x∗
k

j = 0; delete column j from matrix A, A =

Areduced;

• otherwise set x∗
k

j = Φ−1(1− πk·Aj

rj
).

2. calculate the gradient based on (5);

3. if ||∇DPNLP (πk) ≤ ε|| then STOP; else calculate the Hessian for the reduced

problem based on (8);

4. find the descent direction via Newton dk = −(∇2
DPNLP (πk))−1 · ∇DPNLP (πk);

5. set πk+1 = πk + dk;

6. for all i with πk+1
i < 0, set πk+1

i = 0;

7. set k = k + 1 and go to the next iteration.
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We use as an initial solution a set of 1’s; however, the initial solution may also be

the solution from one of the traditional models, like the deterministic model described

before.

2.1.5 Large cargo capacity allocation

We model the large cargo problem as a dynamic program with state vector S = (b, t),

where b is the vector of available capacity when the remaining number of periods to

departure is t. Let pt
j denote probability of a request for class j and pt

0 = 1 −∑
j

pt
j

be the probability of no arrival at time t when there are t periods remaining to

departure. (We assume that the arrivals across the periods are independent.) We

want to compute the maximum expected revenue TR(b, t) at state (b, t), where

TR(b, t) = pt
0·TR(b, t−1)+

∑
j

pt
j ·max(rj ·wj+TR(b−Aj, t−1), TR(b, t−1)) ∀t, b (9)

and TR(b, 0) = 0 is the boundary condition for the departure day (end of horizon). It

is known that the optimal policy is a threshold policy (see for example [53]), in which

a booking request for wj units of capacity is accepted if and only if its corresponding

fare satisfies rj ·wj > TR(b, t−1)−TR(b−Aj, t−1), where the right hand side is the

marginal value of wj units of capacity. The optimal policy can be explicitly included

in the optimality equation (9), and since pt
0 = 1−∑

j

pt
j, we obtain:

TR(b, t) = (1−
∑

j

pt
j) · TR(b, t− 1) +

∑
j

pt
j ·max(rj · wj + TR(b− Aj, t− 1),

TR(b, t− 1)) = TR(b, t− 1) +
∑

j

pt
j ·max(rj · wj + TR(b− Aj, t− 1)−

− TR(b, t− 1), TR(b, t− 1)− TR(b, t− 1)) = TR(b, t− 1)+

+
∑

j

pt
j ·max(rj · wj + TR(b− Aj, t− 1)− TR(b, t− 1), 0) ∀t, b

(10)
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Given the large number of possible combinations of the remaining capacity on

each leg, the exact solution of equation (10) cannot be found in a reasonable time

(for 3 legs, each with capacity 7000, there are 70003 = 343, 000, 000, 000 possible

combinations). A common approach to tackle this problem in the passenger literature

is dynamic programming decomposition (see for example [53]), which decomposes the

network problem into smaller single-leg problems using fare proration - adjusting the

contribution of each revenue class at the leg level according to the leg’s tightness at

the network level. The leg’s tightness is defined as the remaining capacity on that leg.

For example, if we have a 2-leg itinerary, with capacity 100 and 10 respectively, the

fare prorating mechanism will signal that the second leg is much more constrained

in terms of capacity by assigning a high revenue for that class. We use the following

prorating scheme:

1. Start with the bid price solution πi from the PNLP model applied to big cargo;

2. for each class j and leg i, calculate the prorated cargo rate as: rij = max{0, rj−
∑

k∈ג(j),k 6=i

πk}, where (j)ג is the set of legs on the requested itinerary for class j;

3. For each leg i ∈ ,(j)ג solve the following DP:

TRi(bi, t) = TRi(bi, t−1)+
∑
j

pt
j ·max(0, rij ·wj +TRi(bi−wj, t−1)−TRi(bi, t−

1)) ∀i ∈ ,(j)ג t;

4. For each leg i ∈ ,(j)ג calculate

BPi =
∑

i∈ג(j)
∆TRi(bi, t), where ∆TRi(bi, t) = TRi(bi, t)− TRi(bi − wj, t);

5. The total bid price is approximated as before with the sum of bid prices on the

legs requested on the itinerary: BP =
∑

i∈ג(j)
BPi.

2.1.6 Numerical results

The numerical experiments aim to answer the following questions about our proposed

approach for air cargo capacity allocation:
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1. How long does it take to solve real world instances?

2. What is the potential revenue improvement in comparison with current prac-

tices?

In the first set of experiments, we generated several problem instances of varying

complexity. We assume the airline is servicing L locations out of a single hub, where

L ∈ {2, 5, 10, 20}. This is a basic network structure of revenue management problems

found in literature (see [1]). Each location is connected with two legs, to and out of

the hub, such that the total number of resources is m = 2 · L.

As described in Section 2.1.2, we define the cargo rates as a function of the billable

weight and the shipment category. The total number of rates is the total number of

billable weight breaks and the total number of shipment categories. We experiment

with the following structure for each category, small and big:

Table 3: Air cargo shipment categories and weight breaks for small cargo

Shipment Weight breaks
category 10 20 50

5 Ex1sml Ex4sml Ex7sml
10 Ex2sml Ex5sml Ex8sml
15 Ex3sml Ex6sml Ex9sml

Table 4: Air cargo shipment categories and weight breaks for big cargo

Shipment Weight breaks
category 5 10 20

5 Ex1big Ex3big Ex5big
10 Ex2big Ex4big Ex6big

where Exisml are the different experiments ran for small cargo, and Exibig for big

cargo.
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There are more shipment categories for small cargo, because the small packages

might contain a higher variety of goods, such as fresh spices, fish, or money. Also,

the higher variety of goods for the small cargo is correlated with a higher variety of

billable weights. We generate the rates randomly as uniformly distributed between

0.5 and 20 for the small cargo, and 0.1 and 10 for the large cargo, and are descending

as a function of the billable weight and shipment category. The number of shipment

categories and weight break points influence the number of classes n on the different

legs, the highest being 750 (15 × 50) for the small cargo, and 200 (10 × 20) for the

big cargo. The total number of rate class itinerary combinations for each instance is

n · (2 · L + L · (L− 1)), and we have instance sizes ranging from 4 legs and 150 rate

class itinerary combinations to 40 legs and 315,000 rate class itinerary combinations.

We set the capacity of each leg for small cargo at 200, and for large cargo at 10, 000.

The small cargo demand is approximated with a gamma distribution. We generate

the mean demand such that the load factor, i.e., the percentage of the total expected

demand over available capacity on the network, is 60%, 100% and 160%. For big

cargo, we choose the probability of arrival for each rate class itinerary combination

such that the bigger sizes come closer to the departure date and the probability of

no show is higher at the beginning of the time horizon. We experiment with three

different time horizon (τ) lengths, i.e., τ ∈ {5, 10, 15}. Our choices for the time

horizon are motivated by the fact that there are no more than 13 big bookings per

flight leg, as stated by Raja Kasilingam from Sabre Holdings.

We ran 50 instances for each experiment and averaged the results; the algorithms

are coded in Matlab and run on a Mobile Intel(R) Pentium(R), 4 - M CPU 2 GHz, 1

GB of RAM. We report the average CPU time per instance. (The standard deviation

or run time is less than 0.03 CPU seconds in all experiments, i.e., the average run

time is an excellent representations for the computational performance.)
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The results for small cargo are summarized in Table 5. The running time is

primarily influenced by the number of demand classes in the instance, whereas the

impact of the load factor is minimal. While the number of iterations is small across

all instances (ranging from 4 to 8, indicating rapid convergence), the run time ranges

from 3 seconds to almost 5 hours. We expect that the run time can be drastically

reduced if the algorithm is implemented in a compiled language (such as C or Fortran).

The computational results for big cargo experiments are reported in Table 6. The

running time is again mainly influenced by the number of classes in each instance;

however, the largest instance is solved in under 2 minutes. The results of this first

set of experiments for small and big cargo capacity allocation show that the proposed

algorithms are computationally tractable and robust, hence, they can be used in

practice.

Having shown the efficiency of the algorithms, next we turn to evaluate their effec-

tiveness, i.e., the quality of the solutions. For this purpose, we develop a simulation

of the cargo booking process, separately for small and big cargo.

For modeling small cargo booking quantities, we use a Non-Stationary Compound

Poisson Process (NSCPP) (similar to the one in [22]), widely cited in the passenger

literature (see for example [53]). NSCPP allows for batch arrivals (compound) and

time-dependent arrival rates (non-stationary). In our setting, we have one arrival per

unit time and the batch corresponds to the size of the booking, which varies from 0.1

kg to 200 kg. We model the small cargo booking arrival process for an itinerary h

as a compound Poisson process with arrival rate λh(t), where t denotes the reading

interval. The reading interval is defined as the moment in time when the booking

policy is updated - it can be every few days, every day (usual towards the end of the

booking horizon), or after every booking, depending on each airline’s choice. There is

no widely accepted policy for how often to update bid prices. Therefore, we consider

several alternative strategies in our simulation.
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Table 5: CPU time for solving the small cargo problem with different load
factors (LF)

Number of Avg. CPU time in sec.
classes LF 60 % LF 100 % LF 160 %

2 Locations
Ex 1 300 3.05 4.75 5.5
Ex 2 600 7.34 8.74 10.64
Ex 3 900 10.68 11.6 13.08
Ex 4 600 7.33 8.73 10.63
Ex 5 1200 15.51 17.93 18.99
Ex 6 1800 29.82 31.93 33.04
Ex 7 1500 20.35 22.35 24.05
Ex 8 3000 40.44 42.74 44.78
Ex 9 4500 70.02 73.2 75.02

5 Locations
Ex 1 1500 20.34 22.37 24.07
Ex 2 3000 40.46 42.76 44.76
Ex 3 4500 70.01 73.1 75.91
Ex 4 3000 40.44 42.74 44.74
Ex 5 6000 81.73 84.3 87.92
Ex 6 9000 147.01 149.12 151.2
Ex 7 7500 122.7 125.27 129.7
Ex 8 15000 200.09 206.00 216.01
Ex 9 22500 346.97 350.7 360.07

10 Locations
Ex 1 5500 79.09 81.74 84.4
Ex 2 11000 165.47 171.53 179.3
Ex 3 16500 220.24 226.4 231.04
Ex 4 11000 165.57 171.57 171.57
Ex 5 22000 336.7 341.07 349.7
Ex 6 33000 508.4 515.02 523.2
Ex 7 27500 480.3 488.93 497.3
Ex 8 55000 1130.42 1139.43 1145.27
Ex 9 82500 2155.76 2163.6 2171.86

20 Locations
Ex 1 21000 306.39 312.53 321.3
Ex 2 42000 939.22 946.84 957.4
Ex 3 63000 1756.24 1767.54 1779.63
Ex 4 42000 939.21 946.81 957.1
Ex 5 84000 2528.44 2537.84 2549.73
Ex 6 126000 4632.04 4640.67 4651.74
Ex 7 105000 3454.73 3469.3 3477.13
Ex 8 210000 10089.02 10099.2 10112.01
Ex 9 315000 16110.23 16121.3 16135.23
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Table 6: CPU time for solving the big cargo problem for different time
horizons (TH)

Number of Avg. CPU time in sec.
classes TH=5 TH=10 TH=15

2 Locations
Ex 1 150 2.25 2.44 3.01
Ex 2 300 3.01 3.42 4.01
Ex 3 300 3.01 3.5 4.2
Ex 4 600 3.77 4.01 4.4
Ex 5 600 3.8 4.01 4.8
Ex 6 900 4.01 6.00 7.98

5 Locations
Ex 1 750 3.85 4.05 5.00
Ex 2 1500 4.23 6.92 8.87
Ex 3 1500 4.18 6.98 8.9
Ex 4 3000 4.67 7.55 10.15
Ex 5 3000 4.67 7.55 10.01
Ex 6 6000 7.69 10.33 13.11

10 Locations
Ex 1 2750 4.42 7.32 9.87
Ex 2 5500 7.44 9.78 12.01
Ex 3 5500 7.45 9.87 12.01
Ex 4 11000 10.52 15.22 19.26
Ex 5 11000 10.52 15.23 19.27
Ex 6 22000 20.01 26.13 30.01

20 Locations
Ex 1 10500 9.16 14.88 17.38
Ex 2 21000 15.23 25.01 28.99
Ex 3 21000 15.23 25.01 28.99
Ex 4 42000 30.4 48.24 55.01
Ex 5 42000 30.32 48.12 54.89
Ex 6 84000 55.7 64.03 89.99
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In every reading interval, which are simulated sequentially, the union of all arrival

processes defines a compound process with arrival rate λtotal(t) =
∑
h

λh(t). We use

a random discrete variable with a probability of realization p of λp(t)

λtotal(t)
to assign

types of arrivals (weight and shipment category). For each type of arrival, a size is

assigned. The sizes are assigned according to an exponential distribution with mean

µp(t), which is the mean of the weight category associated with the arrival type. It

is common knowledge (see for example [21]) that a Gamma distribution Γ(α, β) (α

integer) can be approximated by a sum of α Exponential distributions of mean µ = β,

so that the demand of the small cargo is approximated with the traditional passenger

demand distribution.

The modeling of the big cargo booking process is similar to that of the small

cargo, with the main difference being the sizes of the packages. The sizes of big cargo

bookings vary from 200 kilograms to 6,000 kilograms, with the bigger loads more

probable to arrive towards the end of the horizon. We experiment with different

distributions for the big cargo demand: Binomial, Negative Binomial, and Gamma;

each of these distributions can be seen as the result of summing random variables

distributed Bernoulli, Geometric, or Exponential, respectively. As in the case of

small cargo, we simulate reading intervals sequentially; however, given the relatively

sparse arrivals of big cargo, in this case the reading interval is defined by each booking.

In both simulations, during each reading interval we decide whether to accept or

reject the new booking based on the bid prices deduced according to each correspond-

ing algorithm (PNLP for small cargo, dynamic programming for big cargo), and if

accepted, we increment the total revenue by the value of the load, and decrease the

available capacity by its size.

We compare the total revenue obtained from our proposed approach with two

other approaches used in practice (using the same simulated arrivals): (1) First Come

First Served (FCFS) policy, where the capacity is filled with incoming bookings until
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the limit is reached. (2) Obtaining bid prices by solving the deterministic model

mentioned in Section 2.1.3 as an integer program. For each request we solve the

model twice: first assuming the request is accepted, and then assuming the request

is rejected. If the difference in the objective function is below the rate associated

with the incoming booking, then the shipment is accepted. We call this approach the

Deterministic Integer Program (DIP).

The simulations for the small cargo are run for example 8 in Table 4, for 20 loca-

tions and load factors of 60%, 100%, and 160%. The booking horizon for small cargo

spans 30 days, and we define 15 reading intervals following the practice from Sabre

(see [41]). We use three approaches for refreshing the bid prices (re-optimization):

1. calculate at the beginning of the booking horizon, refresh last three days every

day;

2. calculate at the beginning of the booking horizon, refresh last ten days every

day;

3. refresh every day.

For big cargo, in our simulation we use the biggest instances, i.e., example 6 in Table

4, with 20 locations, the same load factors as for small cargo, and three different

demand distributions: Binomial, Negative Binomial, Gamma.

The average revenue and standard deviation over 50 runs for the small and big

cargo problems are reported in Tables 7 and 8, respectively. In Table 7, we take

the revenue resulting from the FCFS policy as the base case. For DIP, we report

the percentage improvement from using DIP over FCFS in parentheses. Similarly,

for DPNLP, we report the percentage improvement from using DPNLP over FCFS

or DIP. Both DIP and DPNLP result in significantly higher revenues than FCFS.

The revenues resulting from DPNLP and DIP are very close, and we see a slight

improvement from using DPNLP versus DIP when we refresh the bid prices every
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day. The bid price refreshing frequency has a bigger impact on the resulting revenue

if we re-optimize every day for the last 10 days, but it does not result in a significant

improvement if we refresh every day. Also, the higher the load factor, the higher

the gain from using DIP or DPNLP over FCFS. Similar behaviors have also been

observed in the passenger literature (see for example [49]).

For the big cargo, the revenue gain from applying the pro-rated dynamic program

(DP) described in Section 2.1.5 over the other two methods is significant (see Table 8).

The revenue gain from using DP versus FCFS ranges from 21% to 59%, depending

on the load factor and the demand distribution. The influence of the load factor

on the revenue gain is not as significant as in the case of the small cargo, but we

observe a similar trend: the higher the load factor, the higher the gain from using

revenue management. The revenue gain from using DP versus DIP ranges from

10% to over 18%, which is again a significant improvement. The highest revenue

gains from using DP or DIP versus FCFS are observed for the Gamma and Negative

Binomial distributions, which suggests that the gains from revenue management are

more significant if the demand is lumpier.
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2.2 Air cargo show-up rate estimation

The second air cargo revenue management problem solved in this thesis deals with

the uncertainty related to tendering cargo at departure. The airlines do not know

how much capacity they have available for free sale until departure. Freight for-

warders intentionally bid on more capacity than they actually need to ensure space

on constrained flights, since most airlines allow them to return unwanted space at no

extra charge. The airlines add the released space to the pool of capacity available for

free sale. They typically do not know how much allotted capacity will be unused in

advance of the flight departure. In addition, for planes carrying cargo and passengers

(combination carriers), the cargo space usually contains both, passengers’ baggage

and cargo in the same compartment. These factors plus weather (which affects the

amount of fuel onboard the aircraft), and mail influence how much capacity is avail-

able for free sale (Figure 4). Finally, the cargo space is constrained by two dimensions,

weight and volume, and the airline typically does not know which dimension is the

most restrictive prior to departure.

Figure 4: The combination passenger/cargo aircraft’s cargo capacity

The booking processes for cargo and passengers are different. The time window

during which the airline offers cargo capacity for free sale is shorter than that for
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passenger capacity; usually no longer than 30 days before departure. Cargo bookings,

varying widely in size and volume, come from a relatively small number of customers.

A booking may be canceled, rebooked to a different flight, canceled again, rebooked

back to the original flight, several times until departure, since airlines typically do

not charge for changing reservations.

To hedge against the variability in the amount of cargo actually handed in at

departure (cargo tendered) and customers’ cancellations, airlines commonly overbook

their capacity. Air-cargo overbooking refers to the airlines’ practices to sell more

capacity than physically available to compensate for cargo that does not show up

at departure. Two important considerations in overbooking are spoilage (demand

turned away because the overbooking level was too low, leaving excess capacity at

departure) and off-loads (booked demand that the airline cannot accommodate at

departure because the overbooking level was too high). Airlines base their decisions

on predictions of the show-up rate, the percentage of the demand booked that shows

up at departure.

In the passenger sector, the common practice is to formulate the overbooking

problem as a newsvendor problem, with the overbooking level selected to minimize

the total expected costs of spoilage and off-loads (see e.g., [44]). Many airlines use the

Normal distribution to model the cargo show-up rate, which is a good approximation

for passengers (see [5]). We show that the Normal distribution is usually not a good

fit for estimating the cargo show-up rate, and it can result in high lost revenue.

2.2.1 The cargo-booking process

The calculation of the overbooking levels is based on show-up rate estimates. The

cargo weight or volume show-up rate is the percentage of cargo weight or volume that

shows up at departure out of the total weight or volume of cargo booked at each

reading day (RD). For cargo, the booking time window has 30 reading days, which
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are numbered backwards in time, from 0 (the departure day) to 30. For example, the

show-up rate (in percentage) on reading day 21 before departure date x is the amount

tendered at departure day x (in kilograms) out of the amount booked on reading day

21 (in kilograms), multiplied by 100.

Following the practice they use for the passenger business, most airlines estimate

the cargo show-up rate separately for weight and volume as a normally distributed

random variable at the flight-leg level (flight number and origin and destination air-

ports). They feed the estimates to the overbooking module, which sets the level of

capacity authorized for sale. In each reading day, the airline accepts demand if ca-

pacity remains after subtracting the current bookings (accepted bookings that have

not been canceled) from the authorized capacity (the capacity available for free sale

multiplied by the overbooking level). The show-up rate changes from reading day to

reading day, and the airlines have to make sure they capture these changes and use

correct levels for overbooking when selling cargo space. Usually, they do not moni-

tor the booking process over the entire booking period, but rather only on specific

reading days, which they consider as significant based on historical booking activity.

The cargo business is a relatively new candidate for providing additional revenue

for the airline industry, and there is still a lot of manual handling involved; the orders

come in through different channels (agencies, internet, freight forwarders), and most

of them are not properly captured in the airlines’ systems. Because of the nature

of the data the airline collected, we focused on estimating the weight show-up rate

only, having no data available for volume. Luo, Cakanyildirim, and Kasilingam ([28])

justified the use of a common distribution for the show-up rate for weight and volume

by conducting statistical tests on real-world data.

We re-evaluate the level of the authorized capacity over the following pre-specified

15 reading days: RD30, RD28, RD21, RD14, RD10, RD9, ..., RD1, and RD0.
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2.2.2 The data

For seven combination passenger and cargo flights, we have show-up-rate data for a

16-month period. For each flight number and departure date, we have 15 show-up

rates, corresponding to each reading day. We used the first 12 months of the data

to estimate the show-up-rate distribution, two months of data to forecast the fitted

distribution, and the last two months to validate and compare our results with the

normal distribution. Hence, we used 80 percent of the data for training and the

remaining 20 percent for testing, a common practice among marketing and neural

networks researchers.

2.2.3 Nonparametric distribution estimation and forecasting

For the flights we analyzed, we observed that the distribution of the show-up rate

follows different shapes and skewness. We fitted the following continuous parametric

distributions to all analyzed flights in the study for all reading days for one year of

historical departures: normal, gamma, beta, weibull, lognormal, and exponential. We

used three goodness-of-fit tests for each distribution: Kolmogorov-Smirnov, Cramer-

von Mises, and Anderson-Darling. The hypothesis that the sample was from any of

the specified distributions was rejected in approximately 90 percent of all cases.

These results motivated us to fit a nonparametric distribution to the show-up

rate. If the probability distribution function were from a known parametric family

(for example, Gaussian), we would have to estimate the finite-dimensional parame-

ters which characterize that particular distribution (for example, the mean and the

variance). Without the parametric assumption, the problem is known in statistics as

the nonparametric estimation problem.

One of the easiest nonparametric estimators is the histogram, which is obtained

by dividing the data range into equal intervals (bins) and counting the number of

observations that fall into each interval (Figure 5). Each bin is represented by the
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Figure 5: Histogram estimator

midpoint of the corresponding interval, with probability equal to the ratio of the

number of observations it contains and the total number of observations. Figure 5

represents the show-up rates on reading day 6 for a period of one year for a given flight

number, that is, the percentage of cargo tendered at departure for approximately 300

departure days out of the cargo booked six days before each departure. For cargo,

the show-up rate can be higher than 100 percent, because of overtendering (handing

in more cargo than booked).

The effectiveness of the histogram estimator depends on the number and the size

of the bins. In general, the higher the number of bins, the higher the probability of
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capturing noise rather than the characteristics of data. On the other hand, a too low

number of bins will represent the data poorly. We first developed an estimator with

equal-size bins. To choose the optimal number of bins to minimize the error of map-

ping the data into the class intervals (bins), we implemented Birge and Rozenholc’s

method ([25]).

2.2.3.1 The histogram estimator with equally sized bins

The procedure proposed by Birge and Rozenholc ([25]) is limited for probability

density functions with support on [0,1]. It is not a restrictive assumption. In our case

we can replace the support by the data range, since there is no information available

of what happens outside the range. The data however has to be normalized.

We use the following notation:

X1, . . . , Xn is the data sample

D the number of bins

I1, . . . , ID the equally sized intervals

f is the unknown underlying probability density

f is the histogram estimator

The histogram estimator of f based on the regular partition with D bins, i.e., the

partition of [0,1] consisting of D intervals I1, . . . , ID of equal length 1/D is given by:

fD = fD(X1, . . . , Xn) =
D

n
·

D∑
j=1

Nj · 1Ij
with Nj =

n∑
i=1

1Ij
(Xi) (11)

where 1Ij
(Xi) is the indicator function having a value of 1 if the data point Xi

belongs to the interval Ij.

In order to measure the quality of such an estimator, a loss function l has to be

chosen to compute its risk:
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Rn(f, f , l) = Ef [l(f, fD(X1, . . . , Xn))] (12)

The optimal value Dopt is given by Rn(f, fDopt , l) = infD≥1Rn(f, fD, l). Unfortu-

nately, Dopt cannot be exactly computed because it depends on the unknown density

f . The risk function is usually asymptotically evaluated.

The loss function l used by the authors is the squared Hellinger distance:

h2(f, g) = 1
2

∫ 1

0

(√
f(y)−

√
g(y)

)2

Their choice is based on the fact that the Hellinger distance is the natural distance

to use in connection with the maximum likelihood estimation and related procedures.

The authors arrive at the following optimization problem from which the number of

bins D can be determined:

maximize Ln(D)− pen(D)

s.t 1 ≤ D ≤ n
log n

where

Ln(D) =
D∑

j=1

Nj · log(
DNj

n
) with Nj defined in (11), is the log-likelihood of the

histogram with D bins

and pen(D) = D − 1 + (log D)2.5 is the penalty function for choosing D bins.

The variable is the number of bins D. The upper bound n
log n

is chosen based on

Castellan’s [11] work. The bound is connected with the asymptotic evaluation of the

risk function given in (12), when the Hellinger loss function is used.

The objective function is derived based on Castellan’s [11] work. She has shown

that a suitably penalized maximum likelihood estimator provides a data-driven method

for selecting the number of bins, which results in an optimal value of the Hellinger

risk. The objective function is such a penalized maximum likelihood estimator. The

penalty function is proposed by the authors that have based their choice on intensive
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simulation studies. They compared their method with a number of existing methods.

They show in their paper [11] that the method proposed by them outperforms all the

other methods.

The show-up rate estimation algorithm that we implemented used the optimal

number of bins D from the optimization problem mentioned above. The input is

defined by the vector containing historical values for the show-up rate for a certain

reading day. The algorithm goes through the following steps:

1. Normalize data

2. for D = 1 to n
log n

do

• divide [0,1] in D equal intervals

• count data points from the normalized data that fall into each interval

=⇒ Nj

• calculate Ln(D) =
D∑

j=1

Nj · log(
DNj

n
)

• calculate pen(D) = D − 1 + (log D)2.5

• calculate Eval(D) = Ln(D)− pen(D)

3. set D as the value for which Eval(D) is minim

4. divide the range of data in D intervals

5. construct bins starting at the minimum data value by successively adding (max-

imum data value - minimum data value)/D

6. construct probability pj =
Nj

n
for each bin j

7. construct mid-points for each bin = (bin edge right - bin edge left)/2

The output of the algorithm is the show-up rate probability density distribution

per reading day, consisting in mid-points for each bin and associated probability.
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This equal-size-bin estimator performed slightly better than the normal estimator

in terms of mean off-loads and spoilage. The main disadvantage was that it used

equal-size bins, which led to bins containing no points for some of the reading days,

where the show-up rates where clustered together around some values.

To capture the data distribution more accurately, we next used a histogram es-

timator with variable size bins, which uses the equal-size-bin estimator as a starting

point.

2.2.3.2 The histogram estimator with varying size bins

Wavelet methods have been applied successfully to density estimation ([4]), because

of their ability to filter out noise. Generally speaking, a wavelet basis is a collection of

functions obtained as translations and dilations (shift and scale) of a scaling function φ

and a mother wavelet ψ. Once the mother wavelet ψ is fixed, dilations and translations

of the function ψ, ψjk(x) = const · ψ(2jx − k), define an orthogonal basis in L2(R)

(space of integrable functions) together with the scaling function φ; that is, any

element of the space can be represented as a linear combination of the basis functions.

Chui ([9]) provides a general exposition of the wavelet theory.

We chose ψ as the simplest of wavelets, the Haar wavelet, which is a step function

taking values 1 and -1 on [0, 1
2
) and [1

2
, 1). The scaling function for the Haar wavelet

is the unity function on the interval [0, 1): φ(x) = 1(0 ≤ x < 1).

In general, for a data vector y = [y0, y1, ..., y2n−1] of length 2n associated with a

piecewise constant function f on [0, 1], the wavelet decomposition of f has the form

f(x) = c00φ(x) +
∑n−1

j=0

∑2j−1
k=0 djkψjk(x)

with c00 and djk being the wavelet coefficients.

We chose the function f to be the observation count associated with the bins

calculated by Birge and Rozenholc ([25]); if the number of bins from the procedure

is not a dyadic (power of two) number, we set it to the closest higher dyadic number.
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We used a quadratic variance-stabilizing transformation of the observation count per

bin to improve the performance of the wavelet estimator ([4]).

We use the following notation:

N number of data points.

X1, . . . , XN data sample.

D number of bins calculated based on Birge and Rozenholc

(2002) and adjusted to the closest higher dyadic number.

ob = [ob1, ..., obD] observation count per bin.

The steps of the procedure are as follows:

(1) Determine D; if D = 2n + c ≤ 2n+1, with c > 0, set D = 2n+1.

(2) Apply the following variance-stabilizing transformation to the bin count: 2 ·
√

obi + 3
8
.

(3) Decompose the transformed observation count ob via forward wavelet transform.

(4) Threshold the wavelet coefficients to filter out noise.

(5) Recover the denoised signal ob via inverse wavelet transform.

(6) Calculate midpoints and probabilities based on ob.

For Step 1, see Birge and Rozenholc ([25]); the method is fairly straightforward

to implement. Step 3 and 5 refer to the Haar wavelet transform; most statistical

packages have it already implemented.

Step 4 is the procedure used for denoising the original signal. The wavelet coeffi-

cients correspond to the details of the signal. The method considers the small details

to be noise and deletes or smoothes them out without substantially affecting the main

features of the original signal. The two types of thresholding are hard and soft. Hard

thresholding is the usual process of setting to zero the elements whose absolute values
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are lower than the threshold. Soft thresholding is an extension of hard thresholding,

first setting to zero the elements whose absolute values are lower than the threshold,

and then shrinking the nonzero coefficients towards 0. In step 4, soft thresholding

gave us better results, and we used it in the simulations.

For the threshold value, we had several choices, among them, the universal thresh-

old, and the cross-validatory threshold. We chose the universal threshold value, that

is, λUNIV =
√

2 · ln(D) ·σ, with σ2 the noise variance estimated from the coefficients’

standard deviation. The universal threshold is useful for obtaining a starting value

when nothing is known of the signal condition.

We assumed a nonwhite noise in our signal (noise not having continuous and

uniform frequency spectrum over a specified frequency band). As a consequence, we

had to rescale thresholds using a level-dependent (within the wavelet decomposition)

estimation of the level noise ([9]).

The denoised signal ob is of the form: [ob1, ob1, ob1, ob2, ob3, ob3, ob3, ..., obt]. We

calculated the new bins by clustering together adjacent bins (in the initial histogram)

of equal observation count in the denoised signal ob.

Because of such factors as seasonality, changes in demand patterns, and compe-

tition, the show-up rate and its underlying distribution may change over time. To

update the show-up rate distribution, we use Murty’s method ([23]), which is an

extension of the exponential smoothing forecasting technique.

2.2.3.3 Updating the fitted distribution

In addition to the previous notation, we use the following:

42



m1, . . . , mt midpoints of the fitted bins.

p1, . . . , pt probability vector associated with the bins.

y1, . . . , yt probability vector for recent observations.

x1, . . . , xt updated probability vector

k number of new observations.

The number of bins (t) remains unchanged throughout the process. We con-

structed the probability vector y1, . . . , yt by counting how many new observations fall

into each bin and dividing this number by the total number of observations, k.

We used the weighted least squares to compute x from p and y. The optimization

problem is

min β ·
t∑

i=1

(pi − xi)
2 + (1− β)

t∑
i=1

(yi − xi)
2

s.t.
t∑

i=1

xi = 1

xi ≥ 0 ∀i = 1 . . . t

(13)

where β is a weight between 0 and 1. The quadratic optimization model minimizes

the weighted sum of the squared forecasted errors over all value intervals, and when

used periodically (every two months in our case), it has the effect of tracking gradual

changes in the probability distribution of the random variable.

The unique optimum of the convex quadratic problem (13) is

x = β · p + (1− β) · y (14)

When the mean value of the random variable changes substantially, we refit the

distribution before updating. Such situations could be encountered during high de-

mand periods, such as Christmas, or when a lot of flights must be cancelled due to

bad weather.
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The method has two parameters that need to be carefully analyzed: β, the smooth-

ing factor, and k, the number of new observations. We chose β = 0.8, based on the

expert knowledge Sabre provided. Murty ([23]) also recommends a value of 0.8 or 0.9

for β: the influence of the second term in (14) should be small, since the vector y is

based on only a small number of observations.

Murty ([23]) argues that one should use at least 50 observations to update the

distribution. We used data for two months, which corresponds to approximately 60

observations.

2.2.4 Comparing the discrete distribution and the normal distribution

Using percentiles, we compared the proposed discrete distribution and the normal

distribution used by the airline. Percentiles are position measures, describing where

a specific data value falls within the data set or the distribution range. We computed

nine percentiles (10, 20, ..., to 90), using the statistical tool SAS. While we could

compute the percentiles directly for continuous distributions (for example, Normal),

for the discrete distribution we used the value of the midpoint of each interval, for

which the cumulative distribution function is closest to the considered percentile.

The mean absolute error for the discrete distribution (MAEdiscrete) is consistently

between 10 and 50 percent lower than the mean absolute error for the normal distri-

bution (MAEnormal) for each reading day (Figure 6). The results encouraged us to

proceed with studying the impact of the new estimator on overbooking.

The overbooking model some major airlines use is a newsvendor problem ([26])

with service level constraints and upper and lower bounds for the authorized capacity.

The service level, or failure rate, is defined as the ratio between the expected value of

the off-loads and the expected value of the show-ups. The airlines impose the failure

rate constraint to discourage too high overbooking levels, so that they can meet the

service levels promised to the customers.
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Figure 6: The discrete and the Normal show-up-rate mean absolute error
for each reading day
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2.2.4.1 The overbooking model

Most airlines do not address the issue of multidimensionality when adapting passenger

models to cargo. Usually, they run the overbooking model for weight and for volume

separately. We followed the same scheme and adapted the existing newsvendor-like

overbooking model to the newly estimated (weight) show-up rate. New approaches

to cargo overbooking are described in Luo and Cakanyildirim ([48])

We use the following notation:

SR discrete random variable for the show-up rate.

fSR(x) = P (SR = x) probability mass function of the show-up rate.

v authorized capacity.

SU = SR · v random variable corresponding to the show-ups.

fSU(u) = P (SU = u) probability mass function of the show-ups.

SP = max{0, c− SU} random variable corresponding to spoilage.

OF = max{0, SU − c} random variable corresponding to off-loads.

The airlines usually define the show-ups as the authorized capacity multiplied by

the show-up rate. This definition is accurate if booking requests exceed the authorized

capacity. When the booking requests are below the authorized capacity, the show-ups

should be equal to the booking requests multiplied by the show-up rate, that is, the

show-ups should be SR ·min{v, B}, where B represents the booking requests.

However, the unavailability of data in practice force airlines to use B → +∞,

that is, to use SU = SR · v. Luo and Cakanyildirim ([48] ) show that the two repre-

sentations of the show-ups result in the same optimal solution for a one-dimensional

model.

The known parameters are
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c physical capacity,

cs, co cost per unit spoilage and off-load,

r admissible service level, and

vl, vu lower and upper bound on the authorized capacity v.

Based on the definition of show-ups, we deduced its probability density function

fSU :

fSU(u) = P (SU = u) = P (SR · v = u) = P (SR = u
v
) = fSR(u

v
).

The expected spoilage can be calculated as

E[SP ] = E[max{0, c− SU}]
=

c∑
u=0

(c− u) · fSU(u) =
c∑

u=0

(c− u) · fSR(u
v
) =

c
v∑

x=0

(c− x · v) · fSR(x).

Similarly, we calculated the expected off-loads as

E[OF ] = E[max{0, SU − c}]
=

+∞∑
u=c

(u− c) · fSU(u) =
+∞∑
u=c

(u− c) · fSR(u
v
) =

+∞∑
x= c

v

(x · v − c) · fSR(x).

We deduced the expression for the expected total cost as a function of the autho-

rized capacity v:

E[TC] = E[CSP ] + E[CSP ] = cs ·
c
v∑

x=0

(c− x · v) · fSR(x) + co ·
+∞∑
x= c

v

(x · v− c) · fSR(x).

We aimed to minimize the expected total cost as a function of the authorized

capacity v under service level and upper and lower bound constraints for v. The

overbooking optimization problem is

min cs ·
c
v∑

x=0

(c− x · v) · fSR(x) + co ·
+∞∑
x= c

v

(x · v − c) · fSR(x)

s.t.

+∞P
x= c

v

(x·v−c)·fSR(x)

v·E[SR]
≤ r

vl ≤ v ≤ vu

(15)

The optimization problem should be solved for each reading day separately.

The optimal overbooking level with respect to the given problem is
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OBopt = vopt

c
· 100

where vopt represents the optimal solution to (15).

2.2.5 Impact of the show-up rate estimation on costs/profits

We compare the tendered amount of cargo at departure with the real capacity avail-

able on reading day zero (departure day). The closer the tendered amount was to the

real capacity, the better the overbooking policy.

Two factors determine the tendered amount of cargo at departure:

(1) The overbooking levels per reading day, which are directly related to the show-

up rate estimators, and

(2) The estimate of the capacity available for free sale.

To compare the influence of the show-up rate estimators on profits, we simulated

the cargo-booking process, which can be summarized as follows. In each reading day,

(1) We calculate current bookings based on previous bookings and the cancellation

rate,

(2) We calculate overbooking levels and hence the authorized capacity,

(3) Demand arrives,

(4) We accept demand according to the space available after subtracting current

bookings from the authorized capacity, and

(5) We update current bookings to take account of the newly accepted demand.

We considered two demand scenarios. In the first scenario, we modeled the de-

mand arrivals as normally distributed random variables. For cancellations, we used
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two random variables: a uniformly distributed random variable to model the proba-

bility of cancellations occurring on a certain day, and a normally distributed random

variable to model the magnitude of cancellations.

In the second scenario, we used real-world demand data. Only truncated demand

data was available, however, since most companies do not recorded lost sales. By

truncated demand we mean the demand the airlines satisfied, not including the de-

mand lost because of insufficient capacity. Hence, the truncated demand is a lower

bound on the actual demand. Although not equal to the real demand, the truncated

demand captures the dynamics of the booking process, that is, cancellations and still

periods.

Truncated, or censored, data is common in the airlines’ passenger business. Weath-

erford and Pölt ([43]) analyzed six methods used to uncensor passenger demand data:

three so-called näıve methods, and three more sophisticated methods. These methods

work on data that contain an indicator as to whether a particular fare class was open

or closed to bookings at the specified time. The three näıve methods are:

- (N1) To use all data and ignore whether bookings were open or closed;

- (N2) To use only open observations and toss out the closed ones;

- (N3) To replace closed observations with the larger of the following, the actual

observations or the average of the open observations.

The method we used to uncensor the data is close to (N3): for the days the

capacity was completely utilized, we added a normally distributed random variable

with a probability of 0.5, since we do not know which observations were open and

which were closed. Although other methods to uncensor data exist, we would have

had to test them empirically. (N3) is a reasonable trade-off between complexity and

performance, as Weatherford and Pölt ([43]) pointed out.
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To calculate the overbooking levels in both scenarios, we used a failure rate of

10 percent, a lower and upper bound of 100 percent and 200 percent of the physical

capacity, respectively, and a ratio of 4 to 1 for spoilage and off-loads costs. In the air-

cargo industry, spoilage is more costly than off-loads. At departure, airlines generally

have a good mix of general and time-sensitive cargo. When they have capacity or

over-show problems, airlines usually reroute the general cargo, for which there is no

significant penalty or loss of goodwill. But when there is less cargo than capacity at

departure, the aircraft flies partially empty, which translates into lost opportunity.

Most airlines have a cost ratio of 1 to 3 or 4 for off-loads versus spoilage.

We implemented the overbooking policy used by several major airlines (see Sec-

tion 2.2.4.1), using the Normal and the discrete show-up rate estimators. This re-

sulted in two different authorized capacity levels and, consequently, in two different

streams of accepted demand, that is, current bookings per RD, for each simulation

run. We called the current bookings resulting from the Normal and discrete estima-

tors CBnormal and CBdiscrete. To obtain the tendered cargo from the Normal and the

discrete estimators, Tnormal and Tdiscrete, we applied the actual show-up rates for the

validation period, SRactual, to the current bookings per RD:

T normalRD = CBnormalRD ∗ SRactualRD, and

T discreteRD = CBdiscreteRD ∗ SRactualRD.

We compared the tendered cargo (T normalRD and T discreteRD) with an ideal solution

and with the real capacity at departure. We obtained an ideal solution from the

deterministic version of the process: if we knew all the demand that would show

up in advance, then we would accept demand per reading day up to the estimated

capacity at departure. The tendered demand in this case, T idealRD, is the accepted

demand per reading day.

For the normally distributed demand scenario, we conducted experiments for all

combinations of low, medium, and high mean demand as a percentage of the capacity
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and coefficient of variation (standard deviation over mean).
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Figure 7: Demand scenarios: the upper right corner is the mean demand
as percentage of capacity, the lower left is the coefficient of variation

We ran 500 simulations for each of the nine experiment settings (Figure 7) and

obtained similar results. For all instances we have the following results:

(1) In a comparison with the ideal solution

- The mean absolute error of Tnormal (compared to Tideal) at departure

was approximately seven percent higher than the mean absolute error of

Tdiscrete;

- The standard deviation of the error was approximately two percent higher

for Tnormal than for Tdiscrete (compared to Tideal).

(2) In a comparison with the real capacity

- The mean absolute error of Tnormal (compared to the real capacity at de-

parture) was approximately four percent higher than the mean absolute

error of Tdiscrete;

- The standard deviation of the error is approximately one percent higher

for Tnormal than for Tdiscrete (compared to the real capacity at departure).

The differences between the comparisons with the real capacity and the ideal

solution at departure result from the inaccuracy of the capacity estimate per reading
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day. Consider a simple example, in which the estimated capacity for any given reading

day j > 0 exceeds the real capacity at departure and the demand is greater than the

estimated capacity in any given reading day. In this case, even if we do not overbook

and accept as much demand as the estimated capacity, we still end up with demand

that cannot be accommodated at departure.

We reran the simulations assuming perfect forecast of cargo capacity at departure

and found that the impact of a poor capacity forecast on the business is consider-

able. The mean absolute error between the tendered cargo and the real capacity at

departure is on average 25 percent higher and the standard deviation of the error 10

percent higher for the Normal estimator for all instances.

The mean off-loads (accepted demand that cannot be accommodated at depar-

ture) are on average significantly higher (45 percent) for the Normal estimator, and

the Normal estimator results in off-loads 10 percent more often than the discrete

estimator. The discrete estimator results in spoilage about 25 percent more often

than the Normal estimator, but the mean spoilage is about 10 percent lower for the

discrete estimator. For cargo, the total quantity of spoilage, and not the frequency,

is the leading factor for costs (or lost profits). Hence, the higher spoilage frequency

does not affect the gain from its considerably lower mean.

When we ran the simulations using the altered real world truncated demand, the

results were consistently better in terms of mean absolute error, mean spoilage, and

frequency. The mean absolute error and spoilage were on average 14 percent and 22

percent higher, respectively, when we used the Normal estimator. The off-loads were

statistically equal when the added normal variable for un-truncating demand had a

high mean and variance, and the discrete estimator resulted in off-loads 5 percent

lower in mean than the Normal estimator when the added normal variable had a low

mean and variance.

For the real-world demand data, if we used a cost of $1.6 for unit spoilage and
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$0.4 for unit off-loads, typical for the South America to the United States market,

the average savings from using the discrete estimator for a combination carrier with

300 flights per day and an average cargo capacity per departure of 13,000 kilograms

was $16,425,000 per year. The estimated savings from the simulation may not be the

same as savings to be realized in an actual implementation; however, the simulations

indicate potentially substantial savings from using the discrete estimator.
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CHAPTER III

AIR CARGO CAPACITY MANAGEMENT

This part of the thesis proposes and solves a model for the freight forwarders’ problem.

The freight forwarder is confronted with confirming the amount of allotted capacity

that they need a few days prior to the flight departure. If they confirmed too much

capacity, they lose it; if they did not confirm enough, they have to backlog the excess

demand. This chapter of the thesis models and solves the problem, such that the

costs of the freight forwarder are minimized.

3.1 Existing work

We model the freight forwarders’ problem as a perishable inventory problem, the per-

ishable commodity being the amount of capacity to confirm. The commodity perishes

after one period, i.e., the flight at the beginning of the current period accommodates

the demand coming in over the current period and it takes off at the end of the current

period. The order for aircraft capacity is placed L periods of time before take off, and

we assume no upper bound on the order capacity, i.e., we do not take into account

the amount of capacity that has been allotted far in advance of the flight departure.

The assumption is not restrictive, as the optimal order quantity can be capped at the

value of the upper bound, in case there is an allotted quantity to take into account.

We assume that the unsatisfied demand is backlogged. We assume linear ordering

and backlogging costs.

Our work builds on the problem studied in Chew et al. [14]. They define a

problem in which the FF has to decide whether to order additional space a few hours

before the plane takes off. The decision is a function of the observed state (backlog

on hand, carried forward from previous stages), the amount of cargo forecasted to
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arrive between the time the order is placed and the time the capacity is available

(characterized by a known demand distribution function), and the allotted cargo

capacity. They use a 6-period planning model with an estimated end of horizon cost.

The problem is formulated as a stochastic dynamic programming model, where the

state variable is the backlog and the decision variable is the additional space to be

acquired. At every stage, the capacity for the next flight may be increased at a

supplementary cost, to counterbalance the future penalty costs for having backlogged

shipments. The authors showed that for a given state (backlog on hand), the return

function is a convex function in the decision variable, and the optimal expected cost

function for the remaining stages is a convex increasing function in the state variable.

The problem is solved by recursively calculating the additional space to order for each

of the 6 periods of the planning model.

We generalize the problem introduced in [14] for finite and infinite horizon, and for

lead times of one and two periods. Unlike Chew et al. [14], who solved the problem

numerically, we provide exact optimal solutions.

We analyze the problem by defining it as a perishable inventory problem with

backlog and lead time. Our decision variable is the order quantity for the next period

not taking into account the allotted capacity; however, this impacts only the model

definition, since we can always subtract the allotted capacity from the optimal order

quantity and decide whether to order additional capacity or not for the next period.

If the optimal capacity is consistently under the amount of the allotted capacity,

the freight forwarder can also draw conclusions on how allotments should be defined

during the next year’s bidding period. We analyze the structure of the optimal order

quantity and we show that the optimal order quantity follows a stationary policy. We

also analyze a few special cases, with subcontracting options for demand with due

dates.

Generally, there has been very limited research done in capacity planning models
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for air cargo, despite its importance in the air cargo supply chain. However, there is a

vast research on optimal perishable inventory policies. Table 9 synthesizes the main

categories treated in the perishable inventory literature. One feature seen in almost

all papers is the assumption that the order is received immediately. When there is

a lead time, the solution is either myopic or numerical for a short planning horizon.

Our work is characterized by a positive lead time, one period shelf life, backorder,

finite and infinite horizon, and variable ordering costs. We assume the perishing cost

is the unit ordering cost, as the freight forwarders are not penalized by the airline for

not using ordered capacity. We find the optimal policy under these assumptions and

show that the optimal expected cost function is a convex function with respect to the

available and future capacity ordered L periods in advance, where L = 1, or L = 2.

We introduce the notation and the optimality equations in the next section. Sec-

tion 3.3 describes our findings when the time lag is one period. Generalization of

these results for two period time lag is given in Section 3.4. Numerical results are

presented in Section 3.5. Section 3.6 presents solutions to a few special cases of the

problem, when there are subcontracting options for demand with due dates.
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The abbreviations in Table 9 refer to the following concepts:

B.O./L.S : Backorder or lost sales

B.C. : Backordering cost

Comp : Comparison

F.H. : Finite Horizon

F.O. : Fixed ordering cost

F.O.Q. : Fixed Order quantity policy

H.C. : Holding cost

I.H. : Infinite Horizon

L.P. : Linear policy (Proposed by [30]

using nonperishable version of the problem)

L.T. : Lead time

M.P. : Multiple period

P.C. : Perishing cost

P.H. : Planning Horizon

Po. : Policy

S.C. : Shortage cost

S.L. : Shelflife

S.P. : Single Period

S.T. : Solution Technique

V.O. : Variable ordering cost
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3.2 Notation and mathematical formulation

We define the FF problem as a periodic review perishable inventory problem with

full backlogging and positive lead time. The perishable commodity is the capacity

of the plane, which cannot be used after the aircraft’s departure. The perishing

cost is therefore equal to the cost paid to order the unused capacity, since there are

no penalties imposed by airlines for not using committed capacity. There is a lag

between the time the aircraft’s capacity is confirmed/ordered and the time that the

associated aircraft departs. If the demand exceeds the capacity at departure, it is

fully backlogged and shipped with the next available opportunity; that is, we assume

the demand is satisfied according to a first-in-first-out (FIFO) policy: ship backlog

first, from oldest to newest, then new demand. The objective is to minimize the total

discounted cost over the planning horizon.

The number of periods in which demands arrive is N and hence, the planning

horizon is N periods, numbered from 1 to N . At any time t, the order is placed before

the demand in the current period is realized, based on current capacity available or

backlog on hand as well as the quantity of the outstanding orders. A snapshot of

the process’ time line for a two period time lag is given in Figure 8. At time t, we

might have backlog from previous periods, denoted by Bt−1. Capacity ordered two

periods before, qt−2, is available to ship current backlog and incoming demand during

period t. The demand materializes after the order qt is placed. Since the time lag

is 2 periods the capacity ordered at time t will only be available at the beginning

of period t + 2. The capacity of size qt−1, which is ordered at time t − 1, becomes

available for shipping any backlog from the previous period and the demand during

period t + 1, Dt+1. We denote by xt = qt−2 − Bt−1 the available capacity at time t,

unrestricted in sign. If it is positive it represents remaining capacity after the backlog

has been accommodated, and if it is negative it represents remaining backlog that
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could not be accommodated by qt−2.

Figure 8: The time line for L=2

At time N +1, the end of the horizon, there is no demand to materialize anymore

and we use a deterministic decision to clear up eventual backlog: if there is available

capacity at N +1, we do not place any order; if there is some backlog at the end of the

horizon, we place an order only if the backlog exceeds the sum of ordered capacities

that have to arrive at N + 2, . . . , N + L.

We assume all costs are linear; Table 10 displays the parameters, variables and

known quantities at time t. The density function of the demand Dt at any time t,

ϕt(y), is assumed continuous, differentiable, and bounded between m and M , with

m > 0, and M sufficiently large; the demands in subsequent periods are assumed to

be independent of each other. The cumulative distribution function for the demand

at period t is defined as Φt(x) =
∫ x

m
ϕt(y)dy.

Table 10: Problem parameters, variables and known quantities at time t
for general lead time L

parameters known at t decision
c - ordering cost per unit capacity ϕt(y),Φt(y) qt

b - backorder cost per unit per period delay xt = Bt−1 − qt−L

L - lead time

The optimal cost is not affected by the FIFO shipping policy. At period t, the

capacity qt−L has to accommodate the demand during period t and eventual backlog

from previous periods. If qt−L ≥ Bt−1 + Dt, then it is obvious that the FIFO rule
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does not affect optimality. If qt−L ≤ Bt−1 +Dt (see Figure 9), the cost for that period

is: costt = c · qt−L + b · (Bt−1 + Dt− qt−L), whether the backlog is shipped first or the

demand, due to same the backlogging costs over the entire horizon. Therefore, the

FIFO shipping policy is optimal with the underlying cost structures.

Figure 9: The capacity cannot accommodate demand and backlog for a
given period

3.2.1 The general infinite horizon optimality equation.

The process is modeled as a discounted Markov Decision Process, with discount factor

0 < α ≤ 1. The process is defined by:

- the state space S ⊂ <L; the state s ∈ S is defined as the vector (xt, qt−L+1, . . . , qt−1) ,

where qt−i, 1 ≤ i ≤ L− 1 denotes the quantity of the order placed at period t− i;

- the action space A ⊂ <; the action a ∈ A is defined as the order quantity qt;

- the objective function is to minimize the total discounted cost over the planning

horizon.

Let vt(xt, q
∗
t−L+1, . . . , q

∗
t−1) be the minimum expected discounted cost from time

t on, following an optimal policy, i.e., the quantities q∗t−i, 1 ≤ i ≤ L − 1 denote the

optimal order quantities placed at period t− i. Then, the optimality equation can be

written as follows:
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vt(xt, q
∗
t−L+1, . . . , q

∗
t−1) = min

qt≥0

{
c · qt + b ·

∫ M

xt

(y − xt) · ϕt(y)dy+

+ α ·
[∫ xt

m

vt+1(q
∗
t−L+1, . . . , q

∗
t−1, qt)ϕt(y)dy+

+

∫ M

xt

vt+1(xt + q∗t−L+1 − y, . . . , q∗t−1, qt)ϕt(y)dy

]
(16)

which can be rewritten as:

vt(xt, q
∗
t−L+1, . . . , q

∗
t−1) = min

qt≥0

{
c · qt + b ·

∫ M

xt

(y − xt) · ϕt(y)dy+

+ α · [Φ(xt) · vt+1(q
∗
t−L+1, . . . , q

∗
t−1, qt)+

+

∫ M

xt

vt+1(xt + q∗t−L+1 − y, . . . , q∗t−1, qt)ϕt(y)dy

]
(17)

The first term is the ordering cost, and the second term is the expected backlogging

cost for the current period. The last term represents the minimum expected cost from

time t + 1 on; depending on the realization of demand in the current period, period

t + 1 starts with some positive available capacity or some excess demand is carried

over so that no capacity exists.

The next section introduces the main results with proofs for L = 1. L = 2 is

analyzed in Section 3.4. Although we present the optimality equations with period

dependent demand, in the next sections we assume identically distributed demand

and for simplicity of exposition, we drop the index t from the probability density and

cumulative distribution function for the demand.

3.3 Main results and discussion for one period time lag

The problem consists of N sequential decisions on how much capacity to reserve on a

plane that is scheduled to take off one period after we make the decision. We assume

the decisions are continuous.
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At time t ∈ {1, . . . , N}, we have available capacity/backlog xt to satisfy incoming

demand, and we place order qt, which arrives one period later. At the end of the hori-

zon, time N + 1, we assume we can clear any leftovers by ordering as much capacity

as necessary. The capacity comes one period later, so we have to pay the backlogging

cost for one period. The end of horizon cost is:

vN+1(xN+1) =





0 if xN+1 ≥ 0

−xN+1 · (b + c) otherwise
(18)

The finite horizon optimality equations are given as follows:

vt(xt) = min
qt≥0

{
c · qt + b ·

∫ M

xt

(y − xt) · ϕ(y)dy + α · Φ(xt) · vt+1(qt)+

+α ·
∫ M

xt

vt+1(xt + qt − y) · ϕ(y)dy

}
, t ∈ {1 . . . N}

vN+1(xN+1) =





0 if xN+1 > 0

−xN+1 · (b + c) otherwise

(19)

For a negative state variable xt ≤ 0, the optimality equation becomes:

vt(xt) = min
qt≥0

{
c · qt + b ·

∫ M

m

(y − xt) · ϕ(y)dy + α ·
∫ M

m

vt+1(xt + qt − y) · ϕ(y)dy

}

(20)

If the state is negative, any optimal policy will order more capacity than backlog

on hand, since all demand has to be shipped by the end of the horizon and the

objective is to minimize total cost. Thus, we can substitute qt = −xt + Qt in (20),

with Qt ≥ 0, and obtain:

vt(xt) = min
Qt≥0

{
−c · xt + c ·Qt + b ·

∫ M

m
(y − xt) · ϕ(y)dy + α ·

∫ M

m
vt+1(Qt − y)ϕ(y)dy

}
=

= −(b + c) · xt + vt(0)

(21)
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We immediately see from Equation (21) that it is necessary to analyze the value

functions only with nonnegative state variables. Moreover, as it will be stated in

the subsequent parts of this section, when the state variable is negative, the optimal

policy states that the optimal order quantity is the sum of the backorder quantity

and the optimal quantity when the state variable is zero.

We assume b ≥ 1−α
α
· c, which is not a tight assumption since α usually takes

values approaching 1. The assumption ensures the existence of a solution at the end

of the horizon. In the inventory literature, such an assumption is often made (e.g.,

see Arrow et. al. [3]).

The Theorem below states the convexity of the value function in the state variable:

Theorem 2

v′′t (xt) > 0 ∀xt > 0, and v′′t (xt) = 0 ∀xt ≤ 0 (22)

Proof:

The statement for negative state variables follows by taking the second derivative

of equation (21) as a function of xt.

The statement for negative state variables follows by taking the second derivative

of equation (21) as a function of xt. For positive state variables, we will use induction

and the following general results presented in Lemmas 1-4:

Lemma 1 The derivative of the value function at any time t is:

v′t(xt) = −b− c + Φ(xt) · (b− α · v′t+1(q
∗
t )) (23)

where q∗t is the solution of the following equation:

dvt

dq∗t
= c + α · v′t+1(q

∗
t ) · Φ(xt) + α ·

∫ M

xt

v′t+1(xt + q∗t − y)ϕ(y)dy = 0 (24)
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Proof of Lemma 1:

v′t(xt) = c · dq∗t
dxt

− b · (1− Φ(xt)) + α · Φ(xt)v
′
t+1(q

∗
t ) ·

dq∗t
dxt

+

+ α · (1 +
dq∗t
dxt

) ·
∫ M

xt

v′t+1(xt + q∗t − y) · ϕ(y)dy

(25)

By factoring out
dq∗t
dxt

in (25), and using (24), we get:

v′t(xt) = −b · (1− Φ(xt)) + α · ∫ M

xt
v′t+1(xt + q∗t − y) · ϕ(y)dy

Using α · ∫ M

xt
v′t+1(xt + q∗t − y) · ϕ(y)dy = −c − α · v′t+1(q

∗
t ) · Φ(xt) from (24), we

deduce (23). (24) is a straightforward derivation of the value function as a function

of q∗t .

¥

The general second derivative of the value function is given in the following

Lemma:

Lemma 2

v′′t (xt) = ϕ(xt) · (b− α · v′t+1(q
∗
t ))− α · v′′t+1(q

∗
t ) · Φ(xt) · dq∗t

dxt

, ∀xt > 0 (26)

which is a straightforward derivation of equation (23).

¥

If we use induction and assume that v′′t+1(xt+1) ≥ 0, ∀xt+1 > 0, then we need two

results for proving Theorem 2: b− α · v′t+1(q
∗
t ) ≥ 0, and

dq∗t
dxt

≤ 0. For the first result,

we use:

Lemma 3 The derivative of the value function has the following property:

v′t(xt) ≥ −b− c for any xt; furthermore, if xt < 0, then v′t(xt) = −b− c (27)

Proof of Lemma 3: Derivating equation (21) as a function of xt gives us the

statement for negative state variables.
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We use induction for positive state variables. Since vN+1(xN+1) = 0 for xN > 0,

we have v′N(xN) = −b− c + b ·Φ(xN) ≥ −b− c and v′N−1(xN−1) = −b− c + Φ(xN−1) ·
(b−α · v′N(q∗N)) = −b− c + Φ(xN−1) · (b + α · (b + c− b ·Φ(q∗N))) = −b− c + Φ(xN−1) ·
(b + α · (b + c)) · (1− α·b

b+α·(b+c)
Φ(q∗N)) ≥ −b− c. where the last inequality comes from

the fact that 1− α·b
b+α·(b+c)

Φ(q∗N) ≥ 0.

For the induction step, we assume v′t+1(xt+1) ≥ −b − c, ∀xt+1, and we need

to show that the same holds for t. The induction assumption can be re-written

as: v′t+1(xt+1) = −b − c + Φ(xt+1) · (b − α · v′t+2(q
∗
t+1)) ≥ −b − c, which implies

b− α · v′t+2(q
∗
t+1) ≥ 0. Also, if the induction hypothesis holds for all periods N + 1 to

t (counted backwards), then b− α · v′t+2(q
∗
t+1) ≤ b + α · (b + c).

From equation (23), we deduce:

v′t(xt) = −b− c + Φ(xt) · (b− α · v′t+1(q
∗
t )) = −b− c + Φ(xt) · (b− α · (−b− c + Φ(q∗t )·

· (b− α · v′t+2(q
∗
t+1)))) = −b− c + Φ(xt) · (b + α · (b + c)) ·

[
1− α · Φ(q∗t )

b + α · (b + c)
·

·(b− α · v′t+2(q
∗
t+1))

]

We have b + α · (b + c) ≥ b − α · v′t+2(q
∗
t+1) ≥ 0 by the induction hypothesis. In

order for (28) to be greater or equal to −b− c, we need b− α · v′t+2(q
∗
t+1) ≤ b+α·(b+c)

α·Φ(q∗t )
,

which is true since α · Φ(q∗t ) ≤ 1.

Observation 1: An immediate consequence of the Lemma above is that b + α ·
(b + c) ≥ b− α · v′t+1(q

∗
t ) ≥ 0, ∀q∗t .

¥

The first result to obtain (26) is proven. The second result is proven in the

following:

Lemma 4

−1 ≤ dq∗t (xt)

dxt

≤ 0 ∀xt (28)
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Proof of Lemma 4: The quantity q∗t is the solution of equation (24), of which we

take the derivative as a function of xt and obtain:

α · ϕ(xt) · v′t+1(q
∗
t ) + α · Φ(xt)v

′′
t+1(q

∗
t )

dq∗t
dxt

+ α ·
∫ M

xt

v′′t+1(xt + q∗t − y)ϕ(y)dy·

·
(

1 +
dq∗t
dxt

)
− α · ϕ(xt) · v′t+1(q

∗
t ) = 0 ⇐⇒ α · Φ(xt)v

′′
t+1(q

∗
t )

dq∗t
dxt

+

+ α ·
∫ M

xt

v′′t+1(xt + q∗t − y)ϕ(y)dy ·
(

1 +
dq∗t
dxt

)
= 0

Under the induction assumption that v′′t+1(xt+1) ≥ 0, ∀xt+1 > 0, the equation does

not hold unless
dq∗t
dxt

≤ 0 and 1 +
dq∗t
dxt

≥ 0, since all other terms are positive or zero for

negative state variables.

¥

To conclude the induction, we calculate:

v′′N+1(xN+1) = 0

v′′N(xN) = b · ϕ(xN) ≥ 0 ∀x
Theorem 2 is proven.

¥

We next present a theorem that contains some structural results on the optimal

ordering policy at any period t.

Theorem 3 The optimal policy q∗t (xt) has the following properties:

1. q∗t (xt) is a continuous function of xt;

2. lim
xt→∞

q∗t (xt) > 0;

3. 0 ≥ dq∗t (xt)

dxt
≥ −1 ∀xt;

4. if xt < 0, then q∗t (xt) = −xt + q∗t (0).

Proof:
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Point 1 immediately follows from Equation (21). To prove Points 2-3, we expand

equation (24) using Lemma 3, which provides the quantity q∗t .

c + α · Φ(xt) ·
(−b− c + Φ(q∗t ) · (b− α · v′t+2(q

∗
t+1))

)
+ α ·

∫ M

xt

(−b− c+

+Φ(q∗t + xt − y) · (b− α · v′t+2(q
∗
t+1))

)
ϕ(y)dy = c− α · (b + c)+

+ α · (b− α · ·v′t+2(q
∗
t+1)) · Φ(xt) · Φ(q∗t ) + α · (b− α · v′t+2(q

∗
t+1))·

·
∫ M

xt

Φ(xt + q∗t − y)ϕ(y)dy = 0

from which we deduce:

Φ(xt) · Φ(q∗t ) +

∫ xt+q∗t

xt

Φ(xt + q∗t − y)ϕ(y)dy =
α · (b + c)− c

α · (b− α · v′t+2(q
∗
t+1)

) ≥

≥ α · (b + c)− c

α · (b + α · (b + c))

(29)

The last inequality follows by the Observation 1 deduced from Lemma 3.

Hence: q∗t solves:

Φ(xt) · Φ(q∗t ) +

∫ xt+q∗t

xt

Φ(xt + q∗t − y)ϕ(y)dy =
α · (b + c)− c

α · (b− α · v′t+2(q
∗
t+1)

) > 0 (30)

and since we assumed a continuous demand distribution, the solution to the equa-

tion above is a continuous function of the state variable xt. Furthermore, if we take

limits of equation (30), we obtain:

lim
xt→∞

(
Φ(xt) · Φ(q∗t ) +

∫ xt+q∗t

xt

Φ(xt + q∗t − y)ϕ(y)dy

)
= lim

xt→∞
Φ(q∗t ) > 0 (31)

and by continuity and monotonicity (non-decreasing) of the cumulative distribu-

tion function, we can conclude that lim
xt→∞

q∗t (xt) > 0.

¥
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This theorem states that the optimal quantity ordered at any stage t is a continu-

ous, nonincreasing function of the current available capacity. Interestingly, it is never

optimal to order no capacity for the next period, no matter how large the current

available capacity is. If at stage t we have no available capacity but backorders only,

then for the next stage it is optimal to order the amount of backlog on hand plus

what quantity we order when the current available capacity is zero. Furthermore, in

Lemma 4, we also showed that a unit increase in the state variable results in less than

a unit decrease in the optimal order quantity. This result is similar to the ones that

are proved in [20] and [31] for zero lead time.

Before we discuss the stationary policy, we summarize the following theorem (see

[42]):

Theorem: Under the assumptions that we have:

• Stationary rewards and transition probabilities - the cost/profits do not change

from period to period; furthermore, the demand is identically distributed;

• Bounded rewards;

• Discounting;

• Discrete state space: the state space is finite or countably infinite

suppose there exists an optimal policy.

Then there exists a deterministic stationary policy that is optimal.

We know that our optimal policy is a deterministic (deterministic in the sense

that once we know the state, the optimal quantity to order is known with certainty)

stationary policy, i.e., the order placed far enough from the end of the horizon (to

clear off the effects of finiteness of horizon on the order quantity) depends on the value
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of the state variable only, and not on the current period. We present the limiting

equation in the following Theorem:

Theorem 4 The optimal policy is a stationary policy when t →∞, and it solves the

following equation:

Φ(x) · Φ(q∗) +

∫ x+q∗

x

Φ(x + q∗ − y)ϕ(y)dy =
α · (b + c)− c

(α2 · (b + c) + α · b) · (1−Ax)
(32)

where x is the available capacity/backlog during the current period, q∗ is the order

to be placed during the current period, and 1 ≥ Ax ≥ 0 is the limit of the alternating

series: SN−t = α ·Φ(q∗t+1)−α2 ·Φ(q∗t+1) ·Φ(q∗t+2)+α3 ·Φ(q∗t+1) ·Φ(q∗t+2) ·Φ(q∗t+3)− ...±
αN−t ·Φ(q∗t+1) · · · · ·Φ(q∗N). Furthermore, the value of the limit Ax can be approximated

within an arbitrary error.

Proof: We have to show that b− α · v′t+2(q
∗
t+1) is a convergent series.

Lemma 5 The series b − α · v′t+2(q
∗
t+1) = (b + α · (b + c)) · (1 − α · Φ(q∗t+1) + α2 ·

Φ(q∗t+1) ·Φ(q∗t+2)− α3 ·Φ(q∗t+1) ·Φ(q∗t+2) ·Φ(q∗t+3) + ...± αN−t ·Φ(q∗t+1) · · · · ·Φ(q∗N)) is

convergent.

Proof of Lemma 5: The series in Lemma 5 is obtained by repeatedly using equation

(23):

b− α · v′t+2(q
∗
t+1) = (b + α · (b + c)) · (1− α · Φ(q∗t+1) · (1− α · Φ(q∗t+2) · (1−

− α · Φ(q∗t+3) · ·(1− . . . )) . . . ) = (b + α · (b + c)) · (1− α · Φ(q∗t+1)+

+ α2 · Φ(q∗t+1) · Φ(q∗t+2)− α3 · Φ(q∗t+1) · Φ(q∗t+2) · Φ(q∗t+3) + ...±

± αN−t · Φ(q∗t+1) · · · · · Φ(q∗N)

(33)

The condition for an alternating series to converge is that the terms are non-

increasing in magnitude, with a limiting value of zero (see e.g., [47]). In the above
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series, the terms decrease by α · Φ(q∗n) < 1 and the series is a multiplication of terms

less than 1, hence the nth term goes to 0 in time. The limit of the terms b−α·v′t+2(q
∗
t+1)

is α·(b+α·(b+c))·(1−Ax), where Ax is the limit of the alternating series α·Φ(q∗t+1)−
α2 ·Φ(q∗t+1) ·Φ(q∗t+2)+α3 ·Φ(q∗t+1) ·Φ(q∗t+2) ·Φ(q∗t+3)− ...±αN−t ·Φ(q∗t+1) · · · · ·Φ(q∗N)).

Furthermore, b + α · (b + c) ≥ b − α · v′t+2(q
∗
t+1) ≥ 0, by Observation deduced from

Lemma 3, which implies 1 ≥ Ax ≥ 0.

¥

The stationary equation is similar to the solution of a newsvendor problem. The

order quantity q∗ is placed such that the probability of ending the next period from

current with no backlog is equal to the righthandside term in (32). The limit Ax in

Theorem 4 above can be approximated by using the following theorem:

Theorem:

Suppose an is a monotone decreasing sequence that converges to 0, then:

S =
n=∞∑
n=0

an

converges and has |Sk − S| < ak+1.

As an example, we have the series:
n=∞∑
n=0

(−1)n

n
, which converges conform Theorem

above. To get the sum to within .001 will take 999 terms.

In our case, assessing the speed of convergence depends on the distribution shape

Φ. Section 3.5 presents convergence rates for several distributions.

¥

3.4 Main results and discussion for two period time lag

In this part, we again assume a planning horizon of N periods with active demand,

and at the end of the horizon (the beginning of period N + 1), we clear possible

eventual backlogs. The order placed in the current period arrives in two periods. At

the beginning of the current period we know the available capacity/backlog for the
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current period and the order placed one period before the current period. Hence,

the state variable is described by the pair (xt, q
∗
t−1). As explained in the sequence of

events above, the demand materializes after we place the order.

The quantity ordered at the end of the horizon N + 1 is a deterministic function

of the available capacity/backlog at N + 1, and the quantity ordered at N , which is

scheduled to arrive at N + 2:

q∗N+1(xN+1, q
∗
N−1) =





0 if xN+1 + q∗N−1 ≥ 0

−(xN+1 + q∗N−1) otherwise
(34)

If there is no backlog at time N + 1 or if the backlog can be honored with the

capacity ordered at N and scheduled to arrive at N + 2, then we do not order any

capacity, otherwise we order capacity to cover the backlog that exceeds the capacity

to arrive at N + 2. Hence, the corresponding cost is:

vN+1(xN+1, q
∗
N−1) =





0 if xN+1 ≥ 0

−b · xN+1 if xN+1 < 0,

and xN+1 + q∗N−1 ≥ 0

−b · xN+1 − (c + α · b) · (xN+1 + q∗N−1) if xN+1 + q∗N−1 < 0
(35)

We pay backlogging costs for one period for any demand left unsatisfied at the end

of the horizon, and if we have to place an additional order for demand that exceeds

the capacity ordered for the next period we have to pay an extra period of backlogging

costs until the placed order arrives.

The finite horizon optimality equation for L = 2 is:
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vt(xt, q
∗
t−1) = min

qt≥0
{c · qt + b ·

∫ M

xt

(y1 − xt)ϕ(y)dy + α · Φ(xt) · vt+1(q∗t−1, qt)+

+ α ·
∫ M

xt

vt+1(xt + q∗t−1 − y1, qt)ϕ(y1)dy1}

vN+1(xN+1, q
∗
N−1) =





0 if xN+1 ≥ 0

−b · xN+1 if xN+1 < 0,

and xN+1 + q∗N−1 ≥ 0

−b · xN+1 − (c + α · b) · (xN+1 + q∗N−1) if xN+1 + q∗N−1 < 0

(36)

The optimal order quantity has to take into account the uncertainty in the incom-

ing demand over the next two periods; we denote the demand to be realized in the

current period with y1, and the demand to be realized next period with y2.

If xt < 0 and |xt| < q∗t−1, then the value function becomes:

vt(xt, q
∗
t−1) = min

qt≥0
{c ·qt +b ·

∫ M

0

(y1−xt)ϕ(y)dy+α ·
∫ M

0

vt+1(xt +q∗t−1−y1, qt)ϕ(y)dy}
(37)

If xt < 0 and |xt| > q∗t−1, i.e., the backlog on hand exceeds even the capacity to

arrive next period, the order placed should be greater than the deficit −(xt + q∗t−1):

vt(xt, q
∗
t−1) = min

qt≥|xt+q∗t−1|
{c·qt+b·

∫ M

0
(y1−xt)ϕ(y)dy+α·

∫ M

0
vt+1(xt+q∗t−1−y1, qt)ϕ(y1)dy1}

(38)

We assume α · b > 1−α
α
· c to ensure the existence of the solution at the end of the

horizon. The next results are a generalization of the results for one period time lead;

for clarity of exposition we denote the state variables of the value function, xt and

q∗t−1, as xt and zt (∀t):
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Theorem 5 The partial derivatives of the value function have the following proper-

ties:

1. ∂vt

∂xt
≥ −b− c− α · b, ∀xt, zt;

2. ∂vt

∂zt
≥ −c− α · b, ∀xt, zt.

Proof: We carry our proofs for positive state variable xt, as the most general case

and use induction as well as the following general results for the partial derivatives

presented in Lemmas 6-7.

Lemma 6 The partial derivative of the value function as a function of zt at any time

t is:

∂vt

∂zt

= −c− α · b +

(
Φ(xt) · Φ(zt) +

∫ xt+zt

xt

Φ(xt + zt − y1)ϕ(y1)dy1

)
·

·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1




(39)

where q∗t is the optimal order quantity and solves the equation:

c + α · Φ(xt) · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t

+ α

∫ M

xt

∂vt+1

∂zt+1
xt+1=xt+zt−y1

zt+1=q∗t

ϕ(y1)dy1 = 0 (40)

Proof of Lemma 6: We calculate:

∂vt

∂zt

= α · Φ(xt) · ∂vt+1

∂xt+1
xt+1=zt

zt+1=q∗t

+ α ·
∫ M

xt

∂vt+1

∂xt+1
xt+1=xt+zt−y1

zt+1=q∗t

ϕ(y1)dy1 (41)
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and

∂vt

∂xt

= −b · (1− Φ(xt)) + α ·
∫ M

xt

∂vt+1

∂xt+1
xt+1=xt+zt−y1

zt+1=q∗t

ϕ(y1)dy1 (42)

and connect the two partial derivatives by their common term:

∂vt

∂zt

=
∂vt

∂xt

+ b · (1− Φ(xt)) + α · Φ(xt) · ∂vt+1

∂xt+1
xt+1=zt

zt+1=q∗t

(43)

and by plugging it in into (40), we obtain:

c + α · Φ(xt) ·




∂vt+1

∂xt+1
xt+1=zt

zt+1=q∗t

+ b · (1− Φ(zt)) + α · Φ(zt) · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=qt+1∗




+

+ α ·
∫ M

xt




∂vt+1

∂xt+1
xt+1=xt+zt−y1

zt+1=q∗t

+ b · (1− Φ(xt + zt − y1))+

+α · Φ(xt + zt − y1) · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1




ϕ(y1)dy1 = c +
∂vt

∂zt
+ α · Φ(xt) · b·

· (1− Φ(zt)) + α2 · Φ(xt) · Φ(zt) · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1

+ α · b · (1− Φ(xt))− α · b·

·
∫ M

xt

Φ(xt + zt − y1)ϕ(y1)dy1 + α2 ·
∫ M

xt

Φ(xt + zt − y1) · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1

ϕ(y1)dy1 = 0
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from which equation (39) follows. The last equality follows by substituting the ex-

pression from (41) as ∂vt

∂zt
. ¥

Lemma 7 The partial derivative of the value function as a function of xt at any time

t is:

∂vt

∂xt

= −b− c− α · b + Φ(xt) ·




b + α · b− α · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t




+

+

∫ xt+zt

xt

Φ(xt + zt − y1)ϕ(y1)dy1 ·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1




(44)

Proof of Lemma 7: We use the general formula (42) to deduce first:
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∂vt

∂xt

= −b · (1− Φ(xt)) + α ·
∫ M

xt

∂vt+1

∂xt+1
xt+1=xt+zt−y1

zt+1=q∗t

ϕ(y1)dy1 = −b · (1− Φ(xt))+

+ α ·
∫ M

xt




−b · (1− Φ(xt + zt − y1)) + α ·
∫ M

xt+zt−y1

∂vt+2

∂xt+2
xt+2=xt+zt−

−y1+q∗t−y2

zt+2=q∗t+1

ϕ(y2)dy2




·

· ϕ(y1)dy1 = −b− α · b + b · Φ(xt) + α · b · Φ(xt) + α · b ·
∫ xt+zt

xt

Φ(xt + zt − y1)·

· ϕ(y1)dy1 + α2 ·
∫ M

xt

∫ M

xt+zt−y1

∂vt+2

∂xt+2
xt+2=xt+zt−

y1+q∗t−y2

zt+2=q∗t+1

ϕ(y2)dy2ϕ(y1)dy1

We deduce the last term from equation (40), in which we plug in expression (41),

and obtain:

α2 ·
∫ M

xt

∫ M

xt+zt−y1

∂vt+2

∂xt+2
xt+2=xt+zt−y1+q∗t−y2

zt+2=q∗t+1

ϕ(y2)dy2ϕ(y1)dy1 =

= −c− α · Φ(xt) · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t

− α2 ·
∫ xt+zt

xt

Φ(xt + zt − y1)
∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1

and by substituting it back, we obtain the desired derivative. ¥

We use induction and the general results from the Lemmas 6 and 7 for proving

Theorem 5. We prove the two results simultaneously.

At the end of the horizon, N + 1, we have:
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∂vN+1

∂xN+1

=





0 if xN+1 ≥ 0

−b if xN+1 < 0, and xN+1 + q∗N−1 ≥ 0

−b− c− α · b if xN+1 + q∗N−1 < 0

(45)

∂vN+1

∂zN+1

=





0 if xN+1 + q∗N−1 ≥ 0

−c− α · b if xN+1 + q∗N−1 < 0
(46)

where zN+1 is q∗N , the quantity to arrive at N + 2.

At N , for xN > 0:

vN(xN , zN) = min
qN≥0

{c · qN + b ·
∫ M

xN

(y1 − xN)φ(y)dy + α · Φ(xN) · vN+1(zN , qN)+

+ α ·
∫ M

xN

vN+1(xN + zN − y1)φ(y1)dy1}

(47)

where zN is q∗N−1. Its derivative as a function of xN is:

∂vN

∂xN

= −b · (1− Φ(xN))− α · b · (1− Φ(xN + q∗N))− α · (c + α · b) · (1−

Φ(xN + zN + q∗N)) = −b · (1− Φ(xN))− α · b · (1− Φ(xN + q∗N))− c ≥ −b− c− α · b
(48)

where the last equality resulted from q∗N being such that c − α · (c + α · b) · (1 −
Φ(xN + zN + q∗N)) = 0.

Similarly, the derivative as a function of zN is found as follows:

∂vN

∂zN

= −α · b · (1− Φ(xN + q∗N))− α · (c + α · b) · (1− Φ(xN + zN + q∗N)) =

= −α · b · (1− Φ(xN + q∗N))− c ≥ −c− α · b
(49)

using again the property of q∗N .
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The induction hypothesis assumes that ∂vt+i

∂xt+i
≥ −b−c−α ·b, and ∂vt+i

∂zt+i
≥ −c−α ·b,

∀i ∈ {1, 2, ..., N +1−t}. The induction hypothesis can be re-written using the general

definition of the partial derivatives of the value function from Lemma 6 and 7:

∂vt+i

∂xt+i

= −b− c− α · b + Φ(xt+i) ·




b + α · b− α · ∂vt+i+1

∂zt+i+1
xt+i+1=zt+i

zt+i+1=q∗t+i




+

+

∫ xt+i+zt+i

xt+i

Φ(xt+i + zt+i − yi)ϕ(yi)dyi ·




α · b− α2 · ∂vt+i+2

∂xt+i+2
xt+i+2=q∗t+i

zt+i+2=q∗t+i+1



≥

≥ −b− c− α · b
(50)

as: b + α · (b + c + α · b) ≥ b + α · b− α · ∂vt+i+1

∂zt+i+1

xt+i+1=zt+i

zt+i+1=q∗t+i

≥ 0

and α·(b+α·(c+α·b)) ≥ α·b−α2· ∂vt+i+2

∂xt+i+2

xt+i+2=q∗t+i

zt+i+2=q∗t+i+1

≥ 0, ∀i ∈ {1, 2, ..., N+1−t}

and we have the same for the other derivative ∂vt

∂zt
≥ −c− α · b.

We need to show that the partial derivatives at t preserve the same properties.

The idea of the proof follows the same steps as for the one period time lag. We

proceed with showing the result for ∂vt

∂zt
first, since it is the most general.

We need to show that the parenthesis in the derivative:
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∂vt

∂zt
= −c− α · b +

(
Φ(xt) · Φ(zt) +

∫ xt+zt

xt

Φ(xt + zt − y1)ϕ(y1)dy1

)
·

·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1




(51)

is positive, using the induction hypothesis. We expand the term as in the following:

α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1

= α · b− α2 · [−b− c− α · b + Φ(q∗t )·




b + α · b− α · ∂vt+3

∂zt+3
xt+3=q∗t+1

zt+3=q∗t+2




+

∫ q∗t +q∗t+1

q∗t

Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3· =




α · b− α2 · ∂vt+4

∂xt+4
xt+4=q∗t+2

zt+4=q∗t+3







= α · b + α2 · (b + c + α · b)− α2 · Φ(q∗t )·

·




b + α · b− α · ∂vt+3

∂zt+3
xt+3=q∗t+1

zt+3=q∗t+2



− α2 ·

∫ q∗t +q∗t+1

q∗t

Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3·

·




α · b− α2 · ∂vt+4

∂xt+4
xt+4=q∗t+2

zt+4=q∗t+3
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By factoring out α · (b + α · (b + c + α · b)) we obtain:

α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1

= α · (b + α · (b + c + α · b)) · (1−

− α2 · Φ(q∗t ) ·

b + α · b− α · ∂vt+3

∂zt+3

xt+3=q∗t+1

zt+3=q∗t+2

α · (b + α · (b + c + α · b)) −

−α2 ·
∫ q∗t +q∗t+1

q∗t
Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3 ·

α · b− α2 · ∂vt+4

∂xt+4

xt+4=q∗t+2

zt+4=q∗t+3

α · (b + α · (b + c + α · b))




To show the parenthesis above is positive, we need to show that

α2 · Φ(q∗t ) ·

b + α · b− α · ∂vt+3

∂zt+3

xt+3=q∗t+1

zt+3=q∗t+2

α · (b + α · (b + c + α · b)) + α2 ·
∫ q∗t +q∗t+1

q∗t
Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3·

·

α · b− α2 · ∂vt+4

∂xt+4

xt+4=q∗t+2

zt+4=q∗t+3

α · (b + α · (b + c + α · b)) ≤ 1

By the induction hypothesis, we have:

b + α · (b + c + α · b) ≥ b + α · b− α · ∂vt+3

∂zt+3

xt+3=q∗t+1

zt+3=q∗t+2

≥ 0 and
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α · (b + α · (b + c + α · b)) ≥ α · b− α2 · ∂vt+4

∂xt+4

xt+4=q∗t+2

zt+4=q∗t+3

≥ 0

so we can write:

α2 · Φ(q∗t ) ·

b + α · b− α · ∂vt+3

∂zt+3

xt+3=q∗t+1

zt+3=q∗t+2

α · (b + α · (b + c + α · b)) + α2 ·
∫ q∗t +q∗t+1

q∗t
Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3·

·

α · b− α2 · ∂vt+4

∂xt+4

xt+4=q∗t+2

zt+4=q∗t+3

α · (b + α · (b + c + α · b)) ≤ α2 · Φ(q∗t ) + α2 ·
∫ q∗t +q∗t+1

q∗t
Φ(q∗t + q∗t+1 − y3)ϕ(y3)dy3 ≤ 1

This inequality follows from the intuitive argument of the mathematical expression

as follows: it represents the sum of the probability that the demand three periods

from the current period is less than the available capacity plus the probability that

the same demand is between the available capacity and the capacity that will be

available next period. This probability should obviously be less than or equal to 1.

Then, the induction is completed for ∂vt

zt
.

Then the induction is completed for ∂vt

zt
. ∂vt

xt
follows the same logic:

∂vt

∂xt

= −b− c− α · b + Φ(xt) ·




b + α · b− α · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t




+

+

∫ xt+zt

xt

Φ(xt + zt − y1)ϕ(y1)dy1 ·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1




(52)
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We have already shown that α · b − α2 · ∂vt+2

∂xt+2

xt+2=q∗t

zt+2=q∗t+1

≥ 0, we need to show

that the remaining parenthesis is positive. As before, we expand the parenthesis as

follows:

b + α · b− α · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t

= b + α · b− α · [−c− α · b + (Φ(zt) · Φ(q∗t )+

+
∫ zt+q∗t

zt

Φ(zt + q∗t − y2)ϕ(y2)dy2

)
·




α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2







and factor out b + α · (b + c + α · b), where we denote by

TERM1 = Φ(zt) · Φ(q∗t ) +
∫ zt+q∗t

zt
Φ(zt + q∗t − y2)ϕ(y2)dy2:

b + α · b− α · ∂vt+1

∂zt+1
xt+1=zt

zt+1=q∗t

= (b + α · (b + c + α · b))·

·




1−

α · TERM1 ·




α · b− α2 · ∂vt+3

∂xt+3

xt+3=q∗t+1

zt+3=q∗t+2




b + α · (b + c + α · b)




TERM1 is the probability of ending period t + 2 with no backlog, if we already
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placed the order zt at t−1, and place the order q∗t at t. Hence, it is less than or equal

to 1. Again:

α · (b + α · (b + c + α · b)) ≥ α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2

≥ 0 (53)

by induction hypothesis. Theorem 5 is proven.

¥

The result from Theorem 5 will be used in proving the positive definiteness of the

Hessian, i.e., convexity of the value function in the two state variables. The following

result prepares the proof of stationarity for the optimal order quantity, which will be

eventually used for proving convexity as well.

Lemma 8 The following equation holds at any time t:

Φ(xt) ·
(

Φ(zt) · Φ(q∗t ) +

∫ zt+q∗t

zt

Φ(zt + q∗t − y2)ϕ(y2)dy2

)
+

∫ M

xt

(
Φ(xt + zt − y1) · Φ(q∗t ) +

∫ xt+zt−y1+q∗t

xt+zt−y1

Φ(xt + zt − y1 + q∗t − y2)ϕ(y2)dy2

)

ϕ(y1)dy1 =
α · (c + α · b)− c

α ·




α · b− α2 · ∂vt+3

∂xt+3

xt+3=q∗t+1

zt+3=q∗t+2




(54)

Proof of Lemma 8: By plugging in equation (39) into (40), we obtain:
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c + α · Φ(xt) ·
[
−c− α · b +

(
Φ(zt) · Φ(q∗t ) +

∫ zt+q∗t

zt

Φ(zt + q∗t − y1)ϕ(y2)dy2

)
·




α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2







+ α ·
∫ M

xt

[−c− α · b + (Φ(xt + zt − y1) · Φ(q∗t )+

+
∫ xt+zt−y1+q∗t

xt+zt−y1

Φ(xt + zt − y1 + q∗t − y2)ϕ(y2)dy2

)
·




α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2







ϕ(y1)dy1 = c− α · (c + α · b) + α ·




α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2



·

[
Φ(xt) ·

(
Φ(zt) · Φ(q∗t ) +

∫ zt+q∗t

zt

Φ(zt + q∗t − y2)ϕ(y2)dy2 ) +
∫ M

xt

(Φ(xt + zt − y1)·

Φ(q∗t ) +
∫ xt+zt−y1+q∗t

xt+zt−y1

Φ(xt + zt − y1 + q∗t − y2)ϕ(y2)dy2

)
ϕ(y1)dy1

]
= 0

from which the equation (54) follows.

¥

We show subsequently that the optimal order quantity is a stationary policy.

Theorem 6 The optimal policy is a stationary policy and solves the following equa-

tion:
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Φ(x) ·
(

Φ(z) · Φ(q∗) +
∫ z+q∗

z
Φ(z + q∗ − y2)ϕ(y2)dy2

)
+

+
∫ M

x

(
Φ(x + z − y1) · Φ(q∗) +

∫ x+z−y1+q∗

x+z−y1

Φ(x + z − y1 + q∗ − y2)ϕ(y2)dy2

)
ϕ(y1)dy1 =

=
α · (c + α · b)− c

(α3 · (b + c + α · b) + α2 · b) · (1−Ax,z)

(55)

where x is the current available capacity/backlog, z is the capacity ordered one

period prior to the current period, q∗ is the capacity ordered during the current period,

and 1−Ax,z) is the limit of the expanded term α · b− α2 · ∂vt+3

∂xt+3

xt+3=q∗t+1

zt+3=q∗t+2

.

We again have an equation similar to the solution of a newsvendor problem. If

the current period is t, the order quantity q∗t is placed such that the probability of

ending the period in which the order arrives (period t + 2) with no backlog is equal

to the righthandside term in (55).

Proof: The proof reduces to showing that the expanded term α·b−α2· ∂vt+3

∂xt+3

xt+3=q∗t+1

zt+3=q∗t+2

is convergent.

We have:
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α · b− α2 · ∂vt+3

∂xt+3
xt+3=q∗t+1

zt+3=q∗t+2

= α · (b + α · (b + c + α · b)) · (1−

−α2 · Φ(qt+1) ·

b + α · b− ∂vt+4

∂zt+4

xt+4=q∗t+2

zt+4=q∗t+3

α · (b + α · (b + c + α · b)) −

−α2 ·
∫ q∗t+1+q∗t+2

q∗t+1

Φ(q∗t+1 + q∗t+2 − y4)ϕ(y4)dy4 ·

α · b− α2 · ∂vt+5

∂xt+5

xt+5=q∗t+3

zt+5=q∗t+4

α · (b + α · (b + c + α · b))




For ease of exposition, we suppress the t index, and denote the constant multipli-

ers by T (when they refer to the cumulative function) or INT (when they refer to

the integral term). The constant multipliers are all between 0 and 1, being probabil-

ities. We denote the terms in the expanded parenthesis by G. The expression above

becomes:
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G(3) = α · (b + α · (b + c + α · b)) ·




1− T 1
1 ·

b + α · b− ∂v4
∂z4

x4=q∗2

z4=q∗3

α · (b + α · (b + c + α · b))−

−INT 1
1 ·

α · b− α2 · ∂v5
∂x5

x5=q∗3

z5=q∗4

α · (b + α · (b + c + α · b))




= α · (b + α · (b + c + α · b)) · [1− T 1
1 ·

·




1−

T2 ·




α · b− α2 · ∂v6
∂x6

x5=q∗4

z5=q∗5




α · (b + α · (b + c + α · b))




− INT 1
1 ·

α · b− α2 · ∂v5
∂x5

x5=q∗3

z5=q∗4

α · (b + α · (b + c + α · b))




=

= α · (b + α · (b + c + α · b)) · (1− T 1
1 + T 1

1 · T2 · G(6)− INT 1
1 · G(5)

)

where we use the following notations (and suppress the index t):

T i
1 = α2 · Φ(q∗t+i)

INT i
1 =

∫ q∗t+i+q∗t+i+1

q∗t+i

Φ(q∗t+i + q∗t+i+1 − yt+i+3)ϕ(yt+i+3)dyt+i+3

Ti = Φ(q∗t+i) · Φ(q∗t+i+1) +
∫ q∗t+i+q∗t+i+1

q∗t+i

Φ(q∗t+i + q∗t+i+1 − yt+i+3)ϕ(yt+i+3)dyt+i+3

G(i) = α · b− α2 · ∂v6

∂x6
xi=q∗i−1

zi=q∗i
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Using the notations above and expanding further, we deduce:

G(3) = α · (b + α · (b + c + α · b)) · (1− T 1
1 + T 1

1 · T2 · (1− T 2
1 + T 2

1 · T3 · G(9)−

− INT 2
1 · G(8))− INT 1

1 · (1− T 3
1 + T 3

1 · T4 · G(8)− INT 3
1 · G(7))) = α · (b + α · (b + c+

+ α · b)) · (1− T 1
1 + T 1

1 · T2 − T 1
1 · T2 · T 2

1 + T 1
1 · T2 · T 2

1 · T3 · G(9)− T 1
1 · T2 · INT 2

1 · G(8)−

− INT 1
1 + INT 1

1 · T 3
1 − INT 1

1 · T 3
1 · T4 · G(8) + INT 1

1 · INT 3
1 · G(7)) = α · (b + α · (b+

+ c + α · b)) · (1− T 1
1 + T 1

1 · T2 − T 1
1 · T2 · T 2

1 + T 1
1 · T2 · T 2

1 · T3 · G(9)− (T 1
1 · T2 · INT 2

1+

+ INT 1
1 · T 3

1 · T4) · G(8)− INT 1
1 + INT 1

1 · T 3
1 + INT 1

1 · INT 3
1 · G(7))

(56)

The terms multiplied to the expanded parenthesis are probabilities and they will

go to zero after a few more periods, depending on the distribution, leaving only

constants, which define the limit of the term. As for L = 1, we know the limit has to

be between 0 and 1, due to the bounds of the expanded parenthesis.

¥

We still need to show that the order quantity that solves the equation (55) is indeed

the optimal quantity by proving convexity of the value function. Before getting to

the convexity proof, we need one more result.

Theorem 7 The optimal policy q∗t (xt, zt) has the following properties:

1. q∗t (xt, zt) is a continuous function of both variables, xt and zt;

2. 0 < lim
xt→∞

q∗t (xt, zt), and 0 < lim
zt→∞

q∗t (xt, zt);

3. −1 ≤ ∂q∗t (xt,zt)

∂xt
≤ 0, and −1 ≤ ∂q∗t (xt,zt)

∂zt
≤ 0, ∀xt, zt.

As for L = 1, the optimal quantity ordered at any stage t is a decreasing function

of the state variables; it is never optimal to order no capacity, no matter how large

the current available capacity or the capacity to arrive in the next period are.
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Proof: The continuity from point 1 results again from the properties of the distri-

bution function and the stationary equation (55), and the limits are deduced in the

exact same manner as for L = 1. The last point can be deduced by taking the partial

derivative of the stationary equation (55) as a function of xt:

ϕ(xt) ·
(

Φ(zt) · Φ(q∗t ) +
∫ zt+q∗t

zt

Φ(zt + q∗t − y2)ϕ(y2)dy2

)
+

+ Φ(xt) ·
(

Φ(zt) · ϕ(q∗t ) ·
∂q∗t
∂xt

+
∫ zt+q∗t

zt

ϕ(zt + q∗t − y2) · ∂q∗t
∂xt

ϕ(y2)dy2

)
+

+
∫ M

xt

[
ϕ(xt + zt − y1) · Φ(q∗t ) + Φ(xt + zt − y1) · ϕ(q∗t ) ·

∂q∗t
∂xt

+

+
∫ xt+zt−y1+q∗t

xt+zt−y1

ϕ(xt + zt − y1 + q∗t − y2) ·
(

1 +
∂q∗t
∂xt

)
ϕ(y2)dy2 − ϕ(xt + zt − y1) · Φ(q∗t )

]

ϕ(y1)dy1 − ϕ(xt) ·
(

Φ(zt) · Φ(q∗t ) +
∫ zt+q∗t

zt

Φ(zt + q∗t − y2)ϕ(y2)dy2

)
=

=

[
Φ(xt) ·

(
Φ(zt) · ϕ(q∗t ) +

∫ zt+q∗t

zt

ϕ(zt + q∗t − y2)ϕ(y2)dy2

)

+
∫ M

xt

Φ(xt + zt − y1) · ϕ(q∗t )ϕ(y1)dy1

]
· ∂q∗t
∂xt

+
∫ M

xt

∫ xt+zt−y1+q∗t

xt+zt−y1

ϕ(xt + zt − y1 + q∗t − y2)·
(

1 +
∂q∗t
∂xt

)
ϕ(y2)dy2ϕ(y1)dy1 = 0

which can be fulfilled only if
∂q∗t
∂xt

< 0, and 1 +
∂q∗t
∂xt

≥ 0, since all other terms are

positive probabilities. Analogously, taking the derivative of (55) as a function of zt,

we obtain:
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Φ(xt) ·
(

ϕ(zt) · Φ(q∗t ) + Φ(zt) · ϕ(q∗t ) ·
∂q∗t
∂zt

+
∫ zt+q∗t

zt

ϕ(zt + q∗t − y2) ·
(

1 +
∂q∗t
∂zt

)
ϕ(y2)dy2−

−ϕ(zt) · Φ(q∗t )) +
∫ M

xt

[
ϕ(xt + zt − y1) · Φ(q∗t ) + Φ(xt + zt − y1) · ϕ(q∗t ) ·

∂q∗t
∂zt

+

+
∫ xt+zt−y1+q∗t

xt+zt−y1

ϕ(xt + zt − y1 + q∗t − y2) ·
(

1 +
∂q∗t
∂zt

)
ϕ(y2)dy2 − ϕ(xt + zt − y1) · Φ(q∗t )

]

ϕ(y1)dy1 =
(

Φ(xt) · Φ(zt) · ϕ(q∗t +
∫ M

xt

Φ(xt + zt − y1) · ϕ(q∗t )ϕ(y1)dy1

)
· ∂q∗t

∂zt
+

+

(
Φ(xt) ·

∫ zt+q∗t

zt

ϕ(zt + q∗t − y2)ϕ(y2)dy2+

+
∫ M

xt

∫ xt+zt−y1+q∗t

xt+zt−y1

ϕ(xt + zt − y1 + q∗t − y2)ϕ(y2)dy2ϕ(y1)dy1

)
·
(

1 +
∂q∗t
∂zt

)
= 0

and by the same argument as above, we have
∂q∗t
∂zt

< 0, and 1 +
∂q∗t
∂zt

≥ 0.

¥

Now we have all the results necessary to show convexity.

Theorem 8 The Hessian of the value function is positive semidefinite.

Proof: The convexity of the value function in the state variables can be shown using

Sylvester’s criterion, which states that a matrix is positive definite iff the determinants

associated with all upper-left submatrices are positive. In our case we need to show

∂2vt

∂x2
t
≥ 0, and det H ≥ 0, where we denote by H the Hessian of the value function.

We note first that the Hessian is symmetric due to continuity of the value function’s

partial derivatives (Taylor theorem). We will use an inductive argument:

Assuming that ∂2vt+1

∂z2
t+1

> ∂2vt+1

∂zt+1∂xt+1
> 0, and ∂2vt+1

∂x2
t+1

> ∂2vt+1

∂zt+1∂xt+1
> 0, we show that

the same holds at t.

We derivate (43) as a function of zt:
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∂2vt

∂z2
t

=
∂2vt

∂xt∂zt

+ α · Φ(xt) ·




∂2vt+1

∂2xt+1
xt+1=zt

zt+1=q∗t

+
∂2vt+1

∂xt+1zt+1
xt+1=zt

zt+1=q∗t

· ∂q∗t
∂zt




(57)

but since ∂2vt+1

∂x2
t+1

> ∂2vt+1

∂zt+1∂xt+1
> 0 by the induction argument, we can deduce

∂2vt+1

∂x2
t+1

xt+1=zt

zt+1=q∗t

+ ∂2vt+1

∂xt+1∂zt+1

xt+1=zt

zt+1=q∗t

·∂q∗t
∂zt

> ∂2vt+1

∂xt+1∂zt+1

xt+1=zt

zt+1=q∗t

+ ∂2vt+1

∂xt+1∂zt+1

xt+1=zt

zt+1=q∗t

·

∂q∗t
∂zt

= ∂2vt+1

∂xt+1∂zt+1

xt+1=zt

zt+1=q∗t

·
(
1 +

∂q∗t
∂zt

)
> 0 by the bounds on the derivatives of the op-

timal order quantity −1 ≤ ∂q∗t
∂zt

≤ 0.

Now, we can show that ∂2vt

∂z2
t
≥ 0 and ∂2vt

∂xt∂zt
≥ 0 by derivating ∂vt

∂zt
from (39) as a

function of zt:

∂2vt

∂z2
t

=
∂P
∂zt

·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1



− P · α2 · ∂2vt+2

∂x2
t+2 xt+2=q∗t

zt+2=q∗t+1

· ∂q∗t
∂zt

and as a function of xt :

∂2vt

∂zt∂xt
=

∂P
∂xt

·




α · b− α2 · ∂vt+2

∂xt+2
xt+2=q∗t

zt+2=q∗t+1



− P · α2 · ∂2vt+2

∂x2
t+2 xt+2=q∗t

zt+2=q∗t+1

· ∂q∗t
∂xt

In both expressions, the first term is positive by Theorem 5, the second by Theo-

rem 7. We put all the results together: ∂2vt

∂2zt
≥ 0, ∂2vt

∂2zt∂xt
≥ 0, ∂2vt

∂2zt
= ∂2vt

∂xt∂zt
+ Λ,
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where Λ = α · Φ(xt) ·




∂2vt+1

∂2xt+1

xt+1=zt

zt+1=q∗t

+ ∂2vt+1

∂xt+1zt+1

xt+1=zt

zt+1=q∗t

· ∂q∗t
∂zt



≥ 0. We can

conclude ∂2vt

∂2zt
≥ ∂2vt

∂xt∂zt
≥ 0.

Similarly, we derivate (43) as a function of xt:

∂2vt

∂x2
t

=
∂2vt

∂xt∂zt

+ b · ϕ(xt)− α · ϕ(xt) · ∂vt+1

∂xt+1

− α · Φ · ∂2vt+1

∂xt+1∂zt+1

· ∂q∗t
∂xt

(58)

and derivate (42) as a function of xt also:

∂2vt

∂x2
t

= b · ϕ(xt) + α ·
∫ M

xt

(
∂2vt+1

∂x2
t+1

+
∂2vt+1

∂xt+1∂zt+1

· ∂q∗t
∂xt

)
ϕ(y)dy (59)

Now, matching the terms in the two equations above, we obtain:

∂2vt

∂xt∂zt
− α · ϕ(xt) · ∂vt+1

∂xt+1
− α · Φ · ∂2vt+1

∂xt+1∂zt+1
· ∂q∗t
∂xt

= α ·
∫ M

xt

(
∂2vt+1

∂x2
t+1

+
∂2vt+1

∂xt+1∂zt+1
·

·∂q∗t
∂xt

)
ϕ(y)dy ≥ 0

where the term on the right can be shown to be positive by the exact same

argument as for equation (57). Since we already know that ∂2vt

∂2zt∂xt
≥ 0, we can

conclude ∂2vt

∂2xt
≥ ∂2vt

∂xt∂zt
≥ 0.

Using the relationships, we can show that det H = ∂2vt

∂2xt
· ∂2vt

∂2zt
−

(
∂2vt

∂xt∂zt

)2

≥ 0.

To complete the proof, we present the derivatives of the value function at the end

of the horizon:

At time N we have:
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∂vN

∂xN

= −b · (1− Φ(xN)) + α · b · Φ(xN + zN)− (c + α · b)
∂vN

∂zN

= −(c + α · b) + α · b · Φ(xN + zN)

∂2vN

∂x2
N

= b · ϕ(xN)) + α · b · ϕ(xN + zN) ≥ 0

∂2vN

∂z2
N

= α · b · ϕ(xN + zN) ≥ 0

∂2vN

∂xN∂zN

=
∂2vN

∂zN∂xN

= α · b · ϕ(xN + zN) ≥ 0

and the induction assumption holds.

At N − 1 we have:

∂vN−1

∂zN−1

= −c− α · b + +α · b · (Φ(xN−1) · Φ(zN−1)+

+

∫ xN−1+zN−1

xN−1

Φ(xN−1 + zN−1 − y1)ϕ(y1)dy1

)

∂vN−1

∂xN−1

= −b− c− α · b + Φ(xN−1) · [α · (b + c + α · b) + b · (1−

−α2 · Φ(zN−1 + qN−1∗))
]
+ α · b ·

∫ xN−1+zN−1

xN−1

Φ(xN−1 + zN−1 − y1)ϕ(y1)dy1

The terms of the Hessian at N − 1 are:

∂2vN−1

∂x2
N−1

= b · ϕ(xN−1) · (1− α · Φ(zN−1)− α2 · Φ(zN−1 + q∗N−1))+

+ α · (b + c + α · b) · ϕ(xN−1) + α · b ·
∫ M

xN−1

Φ(xN−1 + zN−1 − y1)ϕ(y1)dy1−

− α2 · b · Φ(xN−1) · ϕ(zN−1 + q∗N−1) ·
∂q∗N−1

∂xN−1
≥ 0

∂2vN−1

∂z2
N−1

= α · b · Φ(xN−1) · ϕ(zN−1) + α · b ·
∫ M

xN−1

Φ(xN−1 + zN−1 − y1)ϕ(y1)dy1 ≥ 0

∂2vN−1

∂xN−1∂zN−1
= α · b ·

∫ M

xN−1

Φ(xN−1 + zN−1 − y1)ϕ(y1)dy1 ≥ 0

and the induction assumption holds.

¥
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3.5 Numerical experiments for one period time lag

In this section, we analyze the behavior of the optimal order quantity for different

discount factors, cost ratios, support and skewness for two distributions: the uniform

and the triangular distributions, for one period time lag. We are interested in the

speed of convergence of the optimal order quantity and its dependence on the above

mentioned factors.

We use Matlab to implement the dynamic program, using a numerical approxi-

mation for the integrals. In order to keep the running times reasonable, we had to

use a relatively large (discrete) grid for the search space (0.1). This resulted into a

relatively coarse optimal order quantity, as can be seen in the subsequent graphs.

In the first experiment we vary the discount factor, keeping the same support for

both distributions (the interval [1 5]), with the triangular distribution being symmet-

ric (with mode C = 3). The backlogging cost is b = 2, and the ordering cost is c = 3.

When we vary the discount factor between 0.9 and 1, keeping the other variables con-

stant, we observe a lower optimal order quantity for a lower discount factor for both

distributions, with a slightly higher impact of the discount factor variation on the

uniform distribution. The discount factor variation is too small to have an effect on

the convergence speed; both distributions stabilize 4 periods after the end of horizon

(counting backwards from the end of horizon towards period number 1) for each of

the discount factor.

If we keep the discount factor constant (α = 1) and we vary the cost ratio ( b
c
),

keeping all the other factors as in the previous experiment, the optimal order quantity

is higher for a higher backlogging cost, and lower for higher ordering costs, as we can

see in Figure 3.5. The convergence speed does not depend on the cost ratio, as we

would expect from the limiting equation (32). The convergence speed should be

influenced by parameters of the demand distribution and not by cost parameters.
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Figure 10: Dependency of the optimal order quantity on the discount
factor: uniform (left) and triangular symmetric (right) distributions

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

State

O
p

ti
m

a
l 
o

rd
e

r 
q

u
a

n
ti
ty

Optimal order quantity for different cost ratios L=1

b/c=1
b/c=20
b/c=10
b/c=1/10
b/c=1/20

−10 −8 −6 −4 −2 0 2 4 6 8 10
2

4

6

8

10

12

14

16

18
Optimal order quantity for different cost ratios L=1

State

O
p

ti
m

a
l 
o

rd
e

r 
q

u
a

n
ti
ty

b/c=1
b/c=20
b/c=10
b/c=1/10
b/c=1/20
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uniform (left) and triangular symmetric (right) distributions
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In both experiments, the optimal order quantity is higher for the triangular distri-

bution than for the uniform. The distributions have the same mean (equal to 3), but

different variances. The triangular distribution has half the variance of the uniform

distribution on the same support. We can see that the optimal order quantity is more

“abrupt” for the triangular distribution than for the uniform in all settings; this, to-

gether with the higher magnitude, are the effects of the smaller variance. In other

words, the optimal order quantity for the triangular distribution has to address the

same “uncertainty” on a tighter range, and it consequently places a slightly higher

order.

If we vary the skewness of the triangular distribution, keeping the support and the

cost ratio unchanged, between [1 7] and 2
3

respectively, we observe a higher optimal

order quantity the more the distribution is skewed to the right. The more the dis-

tribution is skewed to the right, the higher the probability to receive higher demand

during the period, which translates into a higher optimal order quantity.

The last experiments that we conducted were to assert the dependency of the

convergence speed on the support of the two distributions. We varied the support

for both, the uniform and the triangular distributions, using the following intervals:

[1 1.4], [1 2], [1 5], [1 10], and [1 20], using an increment of 0.1. The optimal order

quantity for the uniform distribution has stabilized 3, 4, 4, 5, and 5 periods, and for the

triangular distribution 3, 3, 4, 4, and 5 periods after the end of the horizon (counting

backwards). The wider the support, the longer it takes for the optimal order quantity

to stabilize, as we would again expect from equation (32). A wider support translates

into higher optimal order values at each period, which is directly connected with

higher values for the cumulative distribution function at each period; the terms in

the limit of the stationary equation (32) diminish after more periods if the support

of the distribution function is wider. It seems again that the uniform distribution is

more impacted by the wideness of the support than the triangular distribution.
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3.6 Special cases

The problem can be extended by adding due dates to demand and subcontracting

options for the excess demand. The demand is assumed to be shipped no later than

l periods, i.e, the demand can be backlogged for at most l periods. The excess

demand can be either backlogged (if it is not yet expired) or additional capacity can

be subcontracted at a price s > c to ship demand that expires soon.

Lemma 9 When the orders are due immediately, l = 0, the capacity lead time is

positive, L ≥ 0, and subcontracting is an option, then the problem becomes a classic

newsboy problem with the following solution:

Φt+L(qt) =
s− c

s
(60)

Proof: The capacity has to be confirmed at time t to satisfy demand at time

t + L. Since the demand has to be shipped at the same time it occurs, there are no

back orders from previous time periods. The problem can be modeled as a classic

newsboy problem.
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The cost incurred when ordering quantity qt is denoted by vt:

vt = c · qt + s · (Dt+n − qt)+

i.e., for the demand up to the level of the confirmed capacity the contract price is

paid; subcontracting is used for the excess demand.

The expected value of the cost at time t is:

E[vt] = c · qt + s · ∫ M

qt (y − qt) · ϕt+n(y)dy

The optimal quantity for which the expected cost is minimized is deduced by

setting dvt

dqt = 0, from which equation (60) follows. The underage cost, cu = s − c, is

the additional cost paid for not having ordered enough capacity. The overage cost,

co = c, is the cost paid per unit unused capacity.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

We addressed two revenue management problems and one capacity management prob-

lem in this thesis. Our work is the basis for a more efficient management of revenues

and capacity for the airlines and for the freight forwarders. For airlines, we provide

solutions for accepting/rejecting incoming cargo bookings based on bid prices, such

that their revenue at the end of the booking horizon is maximized, and for deter-

mining better overbooking levels based on a more accurate estimation of the cargo

show-up rate at departure. For freight forwarders we provide solutions for making an

optimal decision when confirming capacity with airlines. The advantages are mutual.

The airlines can benefit from better capacity management from freight forwarders

by being able to asses the degree of allotment utilization, and hence better forecast

their capacity available for free sale. We have shown that a good forecast of capacity

available for free sale has a crucial impact on overbooking levels, and consequently on

profits. Better revenue management at the airline’s end benefits the freight forwarders

through higher sales and more efficient operations.

In the following sections we present a summary of our work by specific problem,

together with directions for future research.

4.1 Air cargo revenue management

4.1.1 Air cargo bid prices

4.1.1.1 Contribution

In this thesis we propose a new method for determining bid prices for air cargo.

We split the cargo bookings into two categories, namely, small and big cargo, and

treat each category differently. The large bookings tend to be made close to the
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departure date of the airplane, and usually only a few bookings fill up the capacity

dedicated to big cargo, whereas the small bookings are made throughout the booking

period. We propose a probabilistic model to determine bid prices for the small cargo.

Our contribution is the development of a novel algorithm to solve the traditional

probabilistic nonlinear problem from the passenger side, which makes the problem

tractable even for extremely large instances. The big cargo problem is modeled and

solved as a dynamic problem decomposed by leg, with the revenue per leg pro-rated

with the bid prices from the probabilistic network model.

We use extensive simulations (instances ranging from 4 legs and 300 classes to 40

legs and 315, 000 classes) to show that the proposed methods are both efficient and

effective. The algorithm to solve the probabilistic model converges to a solution in

less than 8 iterations even for the largest instances. The big cargo algorithm runs in

less than 2 minutes even for large instances with 40 legs and 84, 000 classes.

We conducted an additional simulation study to asses the quality of our solution.

We used simulated demand for both the small and the large cargo bookings. We sim-

ulated Gamma distributed demand for the small cargo, and used several strategies to

update the bid prices: (1) once at the beginning of the booking period, and then every

day 3 days before the departure; (2) once at the beginning of the booking period, and

then every day 10 days before the departure; and (3) every day. For the large cargo,

we used several demand distributions: (1) Binomial, (2) Negative Binomial, and (3)

Gamma. We compare the total revenue obtained from our proposed approach with

two other approaches used in practice (using the same simulated arrivals): (1) First

Come First Served (FCFS) policy, where the capacity is filled with incoming bookings

until the limit is reached. (2) Obtaining bid prices by solving the deterministic model

mentioned in Section 2.1.3 as an integer program. For each request we solve the

model twice: first assuming the request is accepted, and then assuming the request

is rejected. If the difference in the objective function is below the rate associated
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with the incoming booking, then the shipment is accepted. We call this approach the

Deterministic Integer Program (DIP).

The revenue gain over the FCFS method is substantial, reaching up to 60% de-

pending on the simulated demand. The deterministic integer program from the pas-

sengers side gives almost the same results as our algorithm for the small cargo, slightly

worse when we re-optimize more often. However, the deterministic integer program

results in up to 18% less revenue than the dynamic problem in the big cargo setting.

The deterministic integer program fails to produce better results when confronted

with lumpier demand; our splitting strategy accounts for the lumpiness in the de-

mand and results in higher overall revenue than any method that is currently used in

practice.

4.1.1.2 Future directions

There are several directions of improving the air cargo revenue management problem:

1. Different prorating schemes: The prorating using the bid prices from the PNLP

for big cargo might overestimate the tightness of the legs in the requested

itinerary due to the linear relaxation (the integrality of the solution is relaxed

in the PNLP model). A method to overcome this shortcoming is to prorate

based on the sum of the bid prices along the requested itinerary, i.e., divide the

bid price on the current leg by the sum of the bid prices along the requested

itinerary.

2. Alternative routes: The small cargo model can be embedded with the findings in

Chen et. al. [13] to extend the demand to origin destination specific; however,

considering alternative routes in the DP may grow the space too much. For the

beginning, we could restrict ourselves to a fixed set of preferred routes or to

dynamic generation of a working set of routes.
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3. Shipping Dates: If alternative shipping dates are considered for the big cargo

problem, then the state space has to account for multiple days (potentially with

a wrap-around). If the time frame contains enough days, then the problem

might be stated as a a periodic problem and we could find the infinite time

horizon (steady state) solution.

4. Concurrent capacity: We currently consider that the two problems for small and

big cargo are perfectly separated. An interesting extension is to consider that

the capacity is shared between the two categories. The idea is to dynamically

change the capacity allocation between the two categories to improve revenues.

An idea to tackle the problem would be to develop a master dynamic program to

manage the capacity allocation such that the revenue is maximized; the master

problem would pass different capacity allocations to two subproblems, which

would be the problems solved in this thesis, and choose the allocation that gives

the best revenue. The modeling of the master problem is challenging due the

the high number of capacity allocation possibilities; approximation algorithms

might be needed to solve the model.

4.1.2 Air cargo show-up rate estimation

4.1.2.1 Contribution

The show-up rate estimation is directly related to overbooking levels: better show-

up rate estimation translates into better overbooking control, and hence in higher

profits. We show that the Normal estimator used in the passengers business is not

appropriate for the cargo business, and we develop a new discrete estimator based on

wavelet density estimation. The discrete estimator outperforms the Normal estimator

in various aspects. The overbooking levels using the discrete estimator prove a better

approximation of the capacity at departure in terms of mean absolute error between

the tendered cargo and the real capacity at departure, standard deviation of the
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error, spoilage, and off-loads. For a set of real world demand data, the average yearly

savings from the discrete estimator for a combination carrier with 300 flights per day

and an average cargo capacity per departure of 13,000 kilograms was $16,425,000.

The discrete estimator resulted in significantly lower mean spoilage, that is, better

utilization of capacity, and no increase in off-loads, leading to high savings in costs,

increased profits, and improved customer satisfaction. Lower spoilage translates into

more customers served promptly, and lower off-loads means that the airline turns

down fewer customers. Hence, better utilization of the cargo capacity improves the

service the airline offers to customers, which is important in the competitive market

of air-cargo transportation.

We also found that forecasting capacity at departure plays an important role in

cargo overbooking. If capacity estimates fluctuate over the reading period, spoilage

or off-loads will occur even in the ideal setting when we know all demand in advance.

Misestimation of capacity at departure results in poor utilization, which means un-

avoidable monetary losses because of the lost opportunity to satisfy more demand.

Companies should invest in forecasting cargo capacity at departure, since, without

accurate forecasts, any improved overbooking procedure would fail to improve the

utilization of cargo capacity.

4.1.2.2 Future directions

The simulation used to asses the quality of the discrete estimator over the Normal

estimator did not use any revenue management techniques to accept or reject the

incoming bookings, but used a first come first serve policy. An immediate improve-

ment is to employ the techniques developed in Chapter 2 in the simulation, and asses

the quality of our estimator in an environment closer to the real world. The Normal

estimator might perform better under these conditions than under a first come first

serve acceptance policy.
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Another shortcoming of our estimator is that it is one-dimensional. The discrete

estimator should be generalized for two dimensions, weight and volume, using mul-

tivariate density estimates. The choice for a suitable estimator should be based on

data analysis, and this is challenging due to the nature of the cargo business. In the

current practice, the volume is deduced from the weight using a standard density,

such that the data is correlated and cannot be used in such an analysis.

4.2 Air cargo capacity management

4.2.1 Contribution

To the best of our knowledge, we are the first to tackle the freight forwarders’ capacity

management problem. We defined the problem as an inventory perishable problem

with backlogging options and time lag. We proposed¡ a model to this problem and

solve it to optimality. We have shown that the problem is convex in the state variable

for one and two period time lag, and we have proven that the optimal policy is a

stationary policy. Furthermore, we provided the limiting equations for finding the

stationary policy for one and two period time lag.

4.2.2 Future directions

The immediate future research direction is to extend the proofs for a general number

of periods. We already have preliminary results that sustain the generalization, but

the convexity might not hold for higher lead time periods. However, we could analyze

the quality of several heuristics:

1. Develop a base stock heuristic ignoring perishability and compare with the op-

timal solution for L=1 and L=2, and with the deterministic version (demand is

known with certainty upfront) for L > 2 (for higher lead time periods the nu-

merical solution becomes intractable, so we need a different comparison basis);
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2. Use the stationary equation, where the limit of the converging series is approx-

imated by 0, and compare again with the optimal solution for L=1 and L=2,

and with the deterministic version for higher lead times.

A shortcoming of our model is that we track capacity by flight, but we ignore the

network effect. For example, if a shipment uses flights f1 and f2, then our forecast

will show demand for flights f1 and f2. But if the shipment does not get on flight f1,

then it can’t use free capacity on flight f2. In general, backlog on one flight fj affects

demand for/backlog for other flights fk.
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