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Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature
of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since
they provide qualitative (sometimes quantitative) results while remaining tractable for large systems.
The application of density fitting and Laplace transformation techniques to SAPT0 can significantly
reduce the expense associated with these computations and make even larger systems accessible. We
present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the
first application of Laplace transformations of energy denominators to SAPT. The improved scalabil-
ity of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and
2800 basis functions. The Laplace-transformed energy denominators are compared to analogous par-
tial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0
program to the intercalation of DNA by proflavine has allowed us to determine the nature of the
proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contribu-
tions from both electrostatics and dispersion. The energetics of the intercalator interaction are are
dominated by the stacking interactions (two-thirds of the total), but contain important contributions
from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will
be determined by the interactions of the intercalator with the backbone, because by shifting toward
one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The
long-range interactions between the intercalator and the next-nearest base pairs appear to be negligi-
ble, justifying the use of truncated DNA models in computational studies of intercalation interaction
energies. © 2011 American Institute of Physics. [doi:10.1063/1.3656681]

I. INTRODUCTION

The characterization of noncovalent interactions is vital
for the prediction of crystal structures and energetics,1–4 un-
derstanding the structure of biological macromolecules,5–14

and the study of drug binding to DNA and proteins.15–22 Com-
putationally, it is possible to obtain energetic and geomet-
ric information about noncovalent interactions as well as an
analysis of the interaction in terms of physically meaning-
ful components (i.e., electrostatics, exchange, induction, and
dispersion).23–28 Energy component analysis provides addi-
tional insight that can be used to develop better models of
noncovalent interactions. The most rigorous means of obtain-
ing such an analysis is through symmetry-adapted perturba-
tion theory (SAPT),27 which allows the interaction energy to
be computed directly in terms of its physical components.
Both wavefunction-based and density functional theory
(DFT)-based formulations of SAPT are available; the most
complete wavefunction-based SAPT approaches provide in-
teraction energies of essentially coupled-cluster singles, dou-

a)Electronic mail: sherrill@gatech.edu.

bles, and perturbative triples [CCSD(T)] quality.27, 29–33 In or-
der to provide SAPT-based energy analyses for large, biologi-
cal complexes, here we focus on the SAPT0 approach, which
treats intermolecular interactions through second-order per-
turbation theory, and neglects intramonomer correlation. This
method can provide qualitatively correct (and, at times, quan-
titatively correct) results for large systems (>200 atoms).34

The objective of this paper is to describe several new nu-
merical techniques we have applied to the SAPT0 method
to increase the maximum tractable system size by a factor
of two, compared to our earlier work. Previously, we have
applied density-fitting techniques to reduce the prefactor of
the integral transformation in SAPT0,34 and applied efficient
density-fitting factorizations35 and natural orbitals36 to reduce
the cost of including intramonomer correlation. This follows
from previous work in the literature focused on applying ef-
ficient density-fitting factorizations to coupled Kohn-Sham
DFT-based SAPT [SAPT(DFT)].37–39 New techniques intro-
duced here include efficient factorizations of all SAPT0 terms
with density-fitted intermediates, the use of novel dressed
three-index integrals to obviate the need for explicit forma-
tion of the dressed four-index two-electron integral (TEI)
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Downloaded 29 May 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1063/1.3656681
mailto: sherrill@gatech.edu.


174107-2 Hohenstein et al. J. Chem. Phys. 135, 174107 (2011)

tensor in the exchange terms, and the introduction of a
Laplace transformation approach40, 41 using the quadratures
of Braess and Hackbusch42, 43 to reduce much of the compu-
tational effort in the exchange-dispersion terms. These tech-
niques allow the SAPT0 interaction energy to be evaluated
with reduced O(N3) disk storage and O(N2) core mem-
ory, greatly increasing tractability. Moreover, the prefactor
of the remaining O(N5) steps is greatly diminished in this
new SAPT0 implementation, markedly enhancing through-
put. Finally, it should be noted that all of the techniques
introduced here in the context of SAPT0 are immediately
transferable to uncoupled-SAPT(DFT), and should allow for
similar maximum tractable size improvements in the latter
method. The more robust coupled-SAPT(DFT) method can
also benefit from these factorizations (although separate tech-
niques must be applied to the coupled dispersion term37–39);
most importantly, the rate-limiting exchange-dispersion eval-
uation is identical in SAPT0 and SAPT(DFT) (see Eq. (10) of
Ref. 39).

For a full description of the SAPT0 method, and as a
starting point for the equations presented here, the reader
should consult our previous paper on density fitting in
SAPT0.34 Below, we review the basics of SAPT, as well as
the fundamental numerical techniques of density fitting of
the TEI tensor44–51 and Laplace transformation of the energy
denominator.40, 41 Within the context of SAPT0, we then de-
tail the application of specially dressed three-index integrals
to provide an efficient density-fitted factorization of the induc-
tion term, and the concerted use of density-fitted integrals and
Laplace decomposed energy denominators to significantly re-
duce the prefactor of the exchange-dispersion term. We then
demonstrate the enhanced efficiency of the SAPT0 code by
revisiting the linear acene timings of our first SAPT0 paper.34

We also perform a benchmark study of the Laplace decom-
position procedure over the S22 test set,12 which is used to
provide input parameters for quadrature cutoffs. This study
also demonstrates a slight advantage of Laplace decomposi-
tion over the related pivoted Cholesky decomposition for the
energy denominators.52 Finally, we demonstrate the full util-
ity of the new SAPT0 code by performing a systematic en-
ergy component analysis of the intermolecular interactions
in a proflavine-DNA intercalator complex. These results in-
dicate that the DNA backbone must be included to prop-
erly capture the physics of the intercalation process, due to
hydrogen-bonding type interactions between the proflavine
and the backbone. This conclusion demonstrates the need for
a large-scale SAPT0 implementation. The SAPT0 computa-
tion of the full intercalator complex is the largest performed
to date, with 220 atoms and 2845 basis functions.

The SAPT0 code presented here is implemented in the
developers’ version of the the open-source PSI4 package,53

which is slated for public release at the end of 2011. In par-
ticular, density fitting is accomplished using three-index in-
tegrals from the new LIBMINTS library, written by one of
the authors (J.M.T.). Although SAPT computations require
multiple components (i.e., Hartree-Fock computations on the
dimer and each monomer, plus the subsequent SAPT0 eval-
uation), the process is fully automated in the PSI4 PYTHON

driver.53

II. THEORETICAL METHODS

A. Symmetry-adapted perturbation theory

In SAPT, the dimer Hamiltonian is partitioned into con-
tributions from the Fock operator of each monomer (F), the
interaction between the monomers (V), and the fluctuation po-
tential of each monomer (W),

H = FA + FB + V + WA + WB. (1)

The interaction energy can be written as a perturbation series,

Eint =
∞∑

n=1

∞∑
k=0

∞∑
l=0

(
E

(nkl)
pol + E

(nkl)
exch

)
, (2)

where n denotes the order in V, and k and l denote the or-
der in WA and WB, respectively. Here, the Epol terms origi-
nate from the polarization expansion and Eexch are repulsive
terms resulting from the antisymmetry of the wavefunction
with respect to the exchange of electrons between monomers.
A more complete description of SAPT can be found in
Ref. 27. The advantage of treating the interaction energy in
this manner is that each term in Eq. (2) corresponds to a phys-
ical component of the interaction. This allows an energy com-
ponent analysis of the interaction energy to be obtained sim-
ply by grouping the various SAPT terms. In this work, we will
consider zeroth-order SAPT (SAPT0); terms through second-
order in V and zeroth-order in W are included in the expansion

ESAPT 0 = E
(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp

+ δEHF + E
(20)
disp + E

(20)
exch−disp, (3)

where

δE
(2)
HF = EHF

int − (
E

(10)
elst + E

(10)
exch + E

(20)
ind,resp+E

(20)
exch−ind,resp

)
.

(4)
Note that we compute the true E

(10)
exch term instead of the sim-

pler E
(10)
exch(S2) approximation throughout this work. The δEHF

term contains higher-order induction and exchange-induction
interactions as well as some spurious exchange effects.54, 55

In practice, SAPT0 has been found to provide more accurate
results when this term is included.34

The convention for the grouping of SAPT0 terms used in
this work is as follows:

Eelst = E
(10)
elst , (5)

Eexch = E
(10)
exch, (6)

Eind = E
(20)
ind + E

(20)
exch−ind,resp + δE

(2)
HF , (7)

Edisp = E
(20)
disp + E

(20)
exch−disp. (8)

Note again that the true infinite-order E
(10)
exch term is computed.

All SAPT computations are performed using the
developers’ version of PSI4 (Ref. 53) and use Dunning’s aug-
cc-pVDZ and aug-cc-pVTZ basis sets.56, 57 Additionally, a
truncated version of the aug-cc-pVDZ basis that lacks all dif-
fuse functions on hydrogen atoms and diffuse d functions

Downloaded 29 May 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



174107-3 Large-scale SAPT0 J. Chem. Phys. 135, 174107 (2011)

on non-hydrogen atoms, denoted aug-cc-pVDZ′, is also used.
The SAPT0/aug-cc-pVDZ′ level of theory has been found to
exhibit fortuitous error cancellation between the overestima-
tion of the uncoupled MP2-like dispersion treatment and the
underestimation induced by basis set incompleteness error.34

B. Density fitting

One of the major computational difficulties encountered
throughout quantum chemistry is the storage and manipula-
tion of the four-index two-electron integral (TEI) tensor,

(μν|λσ ) =
∫∫

R6
φμ(�r1)φν(�r1)

1

r12
φλ(�r2)φσ (�r2) dr1 dr2,

(9)
which is seen here in the AO basis. Due to properties of the
1/r operator, this tensor is symmetric positive semidefinite and
has only linear numerical rank, if written as the compound
index matrix Iλσ

μν . This fact is exploited in the related tech-
niques of density fitting (DF)44–51 and Choleksy decomposi-
tion (CD).58–61 In the CD approach, the fully-pivoted partial
Cholesky decomposition of the TEI tensor is directly obtained
via the standard Cholesky decomposition algorithm, resulting
in a factorization of the form,

(μν|λσ ) ≈ LQ
μνL

Q
λσ , (10)

where Q is the Cholesky vector index, which is analogous to
the auxiliary basis dimension of the DF approach. Here and
throughout this paper, the generalized Einstein convention is
used, in which summations are implied over repeated indices
occurring on only one side of the equation. Unfortunately,
practical formation of the Cholesky decomposition requires
that the entire LQ

μν tensor be held in core, significantly limit-
ing the size of system that may be studied. Therefore, we have
elected to pursue the alternative DF approach, which shares
many similarities with CD, but may be efficiently performed
out-of-core.

In the DF approach, also referred to as resolution of the
identity (RI), the one-electron products of the type φμ(�r)φν(�r)
in the bra and ket of the TEI tensor are fitted to a set of aux-
iliary basis functions χA(�r). The fitting is typically performed
by minimizing the sum-of-squares error in the electric field,
though many other metrics have been proposed. If the electric
field metric is used, the TEI tensor is decomposed as

(μν|λσ ) ≈ (μν|A)[JAB]−1(B|λσ ), (11)

where the raw three-index tensor (μν|A) is

(μν|A) =
∫∫

R6
φμ(�r1)φν(�r1)

1

r12
χA(�r2) dr1 dr2, (12)

and the two-index fitting metric JAB is

JAB =
∫ ∫

R6
χA(�r1)

1

r12
χB(�r2) dr1 dr2. (13)

A key feature of using the decomposition of Eq. (11) is the
reduction of integral generation and tensor storage and I/O
costs from O(N4) to O(N3). Moreover, the decomposition of
the four-index TEI tensor into a product of two- and three-
index tensors often allows for serendipitous factorization of
contractions of the TEI tensor, which can provide significant

scaling and/or prefactor reduction. It should be noted that the
most commonly cited disadvantage of the DF approach is that
the auxiliary basis {χA} must be carefully preoptimized to
fit primary basis function pairs. However, for the Dunning
correlation-consistent bases, much work has been performed
by Weigend to provide robust auxiliary basis sets for fitting
Coulomb- and exchange-type integrals (the -JKFIT sets),50

and ov (occupied · virtual) type integrals (the -RI sets).62

These auxiliary bases contain 4–5 N functions for double-zeta
bases, and 2–3 N functions for pentuple-zeta bases, where N
is the number of primary basis functions, implying that the
DF approach should be increasingly efficient for larger basis
sets.

In practice, a symmetric three-index tensor C
Q
λσ is often

used,

(μν|λσ ) ≈ (μν|A)[JAQ]−1/2[JQB]−1/2(B|λσ ) = CQ
μνC

Q
λσ .

(14)
The CQ

μν tensor is analogous to the LQ
μν tensor of CD, im-

plying that DF and CD are practically indistinguishable once
these tensors are built.

In SAPT, the TEI tensor for both monomers must be built
in the molecular orbital basis. This integral transformation
step, which conventionally scales as O(N5), can be reduced
to O(N4) by transforming the DF three-index tensors; for ex-
ample, for the monomer A ov block,

CQ
a1ν

= Cμa1C
Q
μν, (15)

CQ
a1r1

= Cνr1C
Q
a1ν

,

where Cμa1 and Cμr1 are the occupied and virtual portions of
the monomer A SCF coefficient matrix, respectively. In this
work, i, j, k, l are used to index any molecular orbital, a, b
are used to index occupied molecular orbitals of monomer A
and B, respectively, and r, s index virtual molecular orbitals
of monomer A and B, respectively. If only the ov and/or oo
blocks are required, additional prefactor gain can be realized
by performing the contraction with the inverse square root of
the fitting metric after performing the AO to MO transfor-
mation on the raw three-index tensor; this is commonly em-
ployed in DF-MP2. However, the induction term of SAPT0
requires the vv block of the TEI tensor, and, moreover, two
complete sets of MO-basis DF integrals are required. For
these reasons, we perform the symmetric fitting of the raw
three-index tensor immediately, and subsequently perform the
AO to MO transformations for the two monomers. We also re-
tain the permutational symmetry in the large vv integral block
to reduce disk I/O by a factor of two.

A note of caution, echoed here from the SAPT(DFT)
work of Hesselmann et al.,38 is appropriate regarding the
choice of auxiliary basis for various SAPT terms. The -JKFIT
sets are designed to fit the electrostatic and exchange terms
(as in Hartree-Fock), while the -RI sets are more appropriate
for monomer density changes at valence length-scales due to
induction or dispersion. For first-row and (for the most part)
second-row elements, these two fitting bases may be used
interchangeably for all SAPT0 terms with negligible error.
However, for third-row and deeper elements, the -RI sets are
notably lacking in ability to fit core electrons, which manifests
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as large fitting errors in the electrostatic term if an -RI set is
used. However, induction and dispersion terms appear to be
quite robust against this error. For these reasons, it is recom-
mended to use the -JKFIT bases to evaluate the electrostatic
and exchange terms, and use the -RI bases for all others. This
is possible in our PSI4 SAPT implementation, and it leads to
a negligible increase in computation time.

C. Laplace transform techniques

Perturbation theory is plagued with the presence of non-
linear energy denominator tensors, which require explicit and
expensive evaluation of numerator elements prior to sum-
mation into the energy. For the dispersion and exchange-
dispersion terms of SAPT0, the specific denominator tensor
is

�b1s1
a1r1

= 1

εr1 + εs1 − εa1 − εb1

, (16)

where εr1 and εs1 are virtual orbital eigenvalues, and εa1 and
εb1 are occupied orbital eigenvalues, for monomers A and B,
respectively. If the concatenated sets of orbital eigenvalues
{c1} and {d1} are made by combining monomer eigenvalues
as {a1, b1} and {r1, s1}, the SAPT0 energy denominator may
be viewed as an off-diagonal block of the augmented energy
denominator tensor,



c2d2
c1d1

= 1

εd1 + εd2 − εc1 − εc2

. (17)

This tensor is symmetric positive semidefinite, and has
been shown to be of constant numerical rank, regardless of
the system size or nature of the electronic environment.43

This was first recognized and exploited by Almlöf, who
proposed the Laplace decomposition technique for energy
denominators,40, 41 and Koch, who proposed the Cholesky de-
composition procedures for energy denominators.52 In the
more intuitive Cholesky decomposition approach, the fully-
pivoted partial Cholesky decomposition is directly sought,
which typically converges to a maximum Chebyshev error of
1 × 10−6 or less in 6–10 Cholesky vectors, and provides the
factorization,



c2d2
c1d1

≈ σw
c1d1

σw
c2d2

, (18)

where w is the constant-scaling Cholesky vector index. Re-
markably, an analytic, i.e., non-recursive Cholesky decompo-
sition formula is available for the particular functional form
of the energy denominator.52 Alternatively, the Laplace de-
composition of the Heaviside step function 1(t) provides the
serendipitous result,

L{1(t)} =
∫ +∞

0
exp(−xt) dt = 1

x
. (19)

The indefinite integral in the Laplace transformation may be
evaluated by numerical quadrature as

1

x
≈

∑
w

αw exp(−xtw), (20)

which, when applied in the context of energy denominators,
gives



c2d2
c1d1

≈ τw
c1

τw
d1

τw
c2

τw
d2

, (21)

where τ 2
c1

= 4
√

αw exp(εc1 tw) and τd1 = 4
√

αw exp(−εd1 tw),
which requires positive definite quadrature weights. This for-
mula has enhanced flexibility relative to the Cholesky decom-
position; however, this flexibility cannot be exploited when
Laplace decomposition is used in concert with density fitting.
Therefore, we will group pairs of orbital indices, and approx-
imate the denominator tensor as



c2d2
c1d1

≈ πw
c1d1

πw
c2d2

, (22)

where πw
c1d1

= √
αw exp(−(εd1 − εc1 )tw).

The choice of quadrature is critically important for the
efficiency of the Laplace decomposition procedure. Naïve
Chebyshev or Gauss-Laguerre quadratures are unsuitable, of-
ten requiring dozens of quadrature points for μH accuracy.
However, many more advanced quadratures for the particular
problem of energy denominators have been developed over
the past two decades. The first advancement was proposed by
Almlöf and involves directly minimizing the sum-of-squares
error of the quadrature with respect to a metric describing the
frequency and importance of values in the denominator ten-
sor for a particular molecular problem.41 The second advance-
ment was proposed by Hackbusch, who completely abandons
the particulars of the molecular problem, and instead opti-
mizes the Chebyshev norm of the error over the intrinsic range
of the problem by the minimax algorithm.42, 43 The intrinsic
range R is simply stated as

R = εHUMO − εLOMO

εHOMO − εLUMO
, (23)

where HUMO denotes the highest active unoccupied or-
bital, LOMO denotes the lowest active occupied orbital,
LUMO denotes the lowest active unoccupied orbital, and
HOMO denotes the highest active occupied orbital. While
this technique initially appears to be strongly dependent on
the electronic environment (e.g., a low-bandgap system will
necessarily have more quadrature points), the convergence
of the quadrature is exponential regardless of the intrinsic
range, resulting in a constant number of required vectors
for all problems. Moreover, pivoted Cholesky decomposition
shows a similar constant increase in required vectors in low-
bandgap systems. Hackbusch has kindly made his quadra-
tures available to the community (see www.mis.mpg.de/
scicomp/EXP_SUM/1_x/), and we have adopted their use
in the PSI4 program. In our comparisons of Cholesky and
Laplace decomposition techniques, we find that both methods
produce extremely efficient decompositions of the energy de-
nominator, with ∼6–10 points required for μH accuracy in the
denominator, depending on the intrinsic size of the problem.
A more thorough comparison between Laplace and Cholesky
decompositions of SAPT0 energy denominators is presented
in the “Results and Discussion” section.

In the context of SAPT, error need only be mini-
mized in the off-diagonal intermonomer block of the aug-
mented energy denominator tensor. This fact can be trivially
exploited to slightly increase the efficiency of Laplace-
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or Cholesky-decomposed SAPT denominators for heteroge-
neous monomers. In SAPT Laplace decomposition, Eq. (23)
may be modified to give the effective intrinsic range,

R′ = εA
HUMO + εB

HUMO − εA
LOMO − εB

LOMO

εA
LUMO + εB

LUMO − εA
HOMO − εB

HOMO

. (24)

In a supermolecular pivoted Cholesky decomposition ap-
proach, the algorithm is terminated when the maximum el-
ement on the diagonal of the residual matrix D falls below the
desired error criteria δ,

max
√

DkkDkk < δ. (25)

The off-diagonal elements are all guaranteed to be of equal
or smaller magnitude than the maximum diagonal element,
or else a 2 × 2 minor would be able to be extracted with a
negative determinant, in violation of the positive semidefinite-
ness of the tensor. In SAPT, the desired accuracy need only
be guaranteed in the intermonomer block, so the termination
criteria may be relaxed to

max
√

DA
kkD

B
ll < δ. (26)

The utility of a concerted DF and Laplace transform ap-
proach is easily understood in terms of the SAPT0 dispersion
energy, which is completely analogous to the opposite-spin
term in MP2,63

E
(20)
disp = −4

(a1r1|b1s1)(a1r1|b1s1)

εr1 + εs1 − εa1 − εb1

. (27)

The computational cost of this term is determinated by the
O(oN4) integral transformation. Using DF techniques alone,
the prefactor is reduced to O(o2v2Naux), but the scaling is
untouched, as the full TEI tensor in the numerator must
be formed. However, applying DF and Laplace transforms
together results in

E
(20)
disp ≈ −4πw

a1r1
πw

b1s1
CQ

a1r1
C

Q
b1s1

CR
a1r1

CR
b1s1

, (28)

which may be factored to

Yw
QR = πw

a1r1
CQ

a1r1
CR

a1r1
, (29)

Zw
QR = πw

b1s1
C

Q
b1s1

CR
b1s1

,

E20
disp ≈ −4Yw

QRZw
QR,

which scales as O(ovN2
auxNw) ∝ O(N4), because Nw is of

order unity. In practice, the exact (within the DF approxima-
tion) E

(20)
disp term is actually obtained for free as a byproduct of

the few E
(20)
exch−disp terms which cannot be factored to O(N4).

However, these Laplace transform techniques are used to fac-
tor most of the E

(20)
exch−disp terms to O(N4), greatly reducing

the prefactor of this term. The specifics of which terms utili-
tize Laplace transform techniques is discussed below.

D. Generalized two-electron integrals

The exchange terms in SAPT present unique challenges
for the introduction of DF integrals. The exchange interac-
tions can be formulated in terms of second-quantization or in-
teraction density matrices.64, 65 The second-quantization ap-
proach leads to equations which depend only on Coulomb

type two-electron integrals [(AA|BB), where A(B) refers to
any index on monomer A (B)] and are amenable to the in-
troduction of DF integrals.35 The interaction density ma-
trix approach leads to more complex equations that include
Coulomb, exchange [(AB|AB)], and hybrid [(AA|AB)] inte-
grals. This approach involves integrals with fewer virtual in-
dices than the second-quantization approach. Subsequently,
the exchange corrections derived with the interaction density
matrix approach have a lower computational scaling. How-
ever, the interaction density matrix approach uses gener-
alized (dressed) two-electron integrals rather than the bare
two-electron integrals found in the second-quantization ap-
proach. The generalized two-electron integrals are given as66

ν̃
j l

ik=ν
jl

ik+ (i|j )
(k|νA|l)

NA

+ (k|l) (i|νB |j )

NB

+ (i|j ) (k|l) V0

NANB

,

(30)

where ν
jl

ik = (ij |kl), (i|j) are molecular overlap integrals,
(i|ν|j) are nuclear attraction integrals (corresponding to the
nuclei of one monomer), and V0 is the intermolecular nuclear
repulsion energy.

Under the DF approximation, the generalized two-
electron integrals are written as

ν̃
j l

ik ≈ CP
ij C

P
kl + (i|j )

(k|νA|l)
NA

+ (k|l) (i|νB |j )

NB

+ (i|j ) (k|l) V0

NANB

. (31)

Our initial implementation of DF-SAPT evaluated general-
ized two-electron integrals as shown above; the approximate
four-index integrals were formed and then dressed with one-
electron contributions. However, it is possible to define DF
intermediates that include the one-electron contributions by
adding three additional entries to the auxiliary index,

A1
ij = C1

ij ,

...

A
Ndf

ij = C
Ndf

ij ,

A
Ndf +1
ij = (i|j ) ,

A
Ndf +2
ij = (i|νB |j )

NB

,

A
Ndf +3
ij = (i|j )

√
V0

NANB

, (32)

and
B1

ij = C1
ij ,

...

B
Ndf

ij = C
Ndf

ij ,

B
Ndf +1
ij = (i|νA|j )

NA

,

B
Ndf +2
ij = (i|j ) ,

B
Ndf +3
ij = (i|j )

√
V0

NANB

. (33)
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Now, the length of the auxiliary index is equal to the number
of DF basis functions plus three (naux = ndf + 3). This allows
the generalized two-electron integrals to be formed directly as

ν̃
j l

ik ≈ AP
ijB

P
kl . (34)

In practice, the A and B quantities are not explicitly stored;
rather, the C type DF integrals are stored and the three ad-
ditional auxiliary indices are appended as necessary when
these integrals are read into memory. The memory require-
ments for the DF integrals needed to evaluate Eq. (34) for
two-electron integrals with bra-ket symmetry [i.e., (ij|ij) type
integrals] would be, in principle, doubled. However, in prac-
tice, this doubling is only encountered for (ab|ab) integrals,
where the o2naux DF integrals can easily be stored in mem-
ory. The (as|as) and (rb|rb) integrals appear in higher-order
corrections not considered here. Even in those cases, these
integrals appear only once, and the symmetry of the DF in-
tegrals cannot be exploited in the most efficient factorization
of those exchange terms. Finally, the (rs|rs) two-electron inte-
grals do not appear in the SAPT exchange corrections. There-
fore, the potential loss of symmetry in the formation of gen-
eralized two-electron integrals is not a problem.

To illustrate the utility of the three-index representation
of generalized two-electron integrals, we will consider the
E

(10)
exch(S2) term. Note that the use of the S2 approximation is

only for sake of example; the factorization of the true infinite-
order E

(10)
exch term follows immediately from this treatment, and

is used in all computations in this study. The leading exchange
term, under the S2 approximation, is given by66

E
(10)
exch(S2) = −2ν̃

b1a1
a1b1

− 2Sb1
a2

(
2ν̃

a1a2
a1b1

− ν̃
a2a1
a1b1

)
− 2S

a1
b2

(
2ν̃

b2b1
a1b1

− ν̃
b1b2
a1b1

) + 4Sb1
a2

S
a2
b2

ν̃
a1b2
a1b1

+ 4Sb2
a2

S
a1
b2

ν̃
a2b1
a1b1

− 2Sb1
a2

S
a1
b2

ν̃
a2b2
a1b1

, (35)

where S is the matrix of overlap integrals. The E
(10)
exch(S2) term

can be rewritten in terms of generalized DF integrals and a
few simple intermediates,

ãP = AP
a1a1

, (36)

b̃P = BP
b1b1

, (37)

Xb1b2 = Sb1
a2

S
a2
b2

, (38)

Xa1a2 = Sb2
a2

S
a1
b2

, (39)

in a form that can be efficiently implemented without forming
four-index arrays.

E
(10)
exch(S2) = −2AP

a1b1
BP

a1b1
− 2Sb1

a2

(
2ãP BP

a2b1
− AP

a1a2
BP

a1b1

)
− 2S

a1
b2

(
2AP

a1b2
b̃P − AP

a1b1
BP

b1b2

)+4Xb1b2 ã
P BP

b1b2

+ 4Xa1a2A
P
a1a2

b̃P − 2Sb1
a2

S
a1
b2

AP
a1a2

BP
b1b2

. (40)

This formulation of the E
(10)
exch(S2) term allows for a memory

efficient implementation by blocking over the P index.

E. Coupled-perturbed Hartree-Fock equations

The leading induction term contains two contributions:
the changes to the electron density of monomer A induced
by monomer B’s electrostatic potential and the changes to the
electron density of monomer B induced by monomer A’s elec-
trostatic potential. Through second-order in V, these changes
are not coupled to each other,66

E
(20)
ind,r (A ← B) = 2sr1

a1
(ωB)r1

a1
,

E
(20)
ind,r (B ← A) = 2s

s1
b1

(ωA)b1
s1

. (41)

This term can be evaluated with or without orbital response;
the difference is the origin of the s coefficients. Here, we will
discuss only the more rigorous formulation that includes the
effect of orbital response. In this case, sr1

a1
and s

s1
b1

are solutions
to the Coupled-perturbed Hartree-Fock (CPHF) equations for
their corresponding monomer. Obviously, the work associated
with the evaluation of this correction is entirely in the solution
of the CPHF equations,

sr1
a1

= ([
4νa1a2

r1r2
− νa2a1

r1r2
− νa1r1

a2r2

]
sr1
a1

+ (ωB)r1
a1

)
/(εa1 − εr1 ).

(42)
It should be noted that these equations can be solved non-
iteratively as a linear system of equations; however, this
would scale as O(o3v3). The iterative solution of these equa-
tions scales O(o2v2), although the formation of the required
matrix will scale O(N5) [the exact scaling is dependent
on the algorithm; under the DF approximation, the scaling
is O(o2v2Ndf )]. To avoid the O(N5) step and its associ-
ated storage requirements, the DF representation of the two-
electron integrals is introduced and the multiplication by s is
distributed,

sr1
a1

= (
4CP

a1r1
CP

a2r2
sr2
a2

− CP
a2r1

CP
a1r2

sr2
a2

− CP
a1a2

CP
r1r2

sr2
a2

+ (ωB)r1
a1

)
/(εa1 − εr1 ). (43)

This allows contributions from νa1a2
r1r2

sr1
a1

to be evaluated as
O(ovNdf ), νa2a1

r1r2
sr1
a1

as O(o2vNdf ), and νa1r1
a2r2

sr1
a1

as O(ov2Ndf ).
The bottleneck associated with this implementation is the disk
I/O associated with the CP

r1r2
sr2
a2

contraction. To improve effi-
ciency, the two-fold permutational symmetry of the CP

r1r2
DF

integrals is exploited in their storage. A similar algorithm
that has been generalized for the solution of the coupled-
perturbed Kohn-Sham equations (with and without the inclu-
sion of Hartree-Fock exchange) can be found in Ref. 39.

F. Exchange-dispersion evaluation

The E
(20)
exch−disp evaluation is the most computationally

demanding portion of a SAPT0 computation. Under the ap-
proximations considered, it is the only SAPT0 term that un-
avoidably scales O(N5). First, we will consider the canonical
form of this correction:67

E
(20)
exch−disp(S2) = −2ta1b1

r1s1

[
ν̃

s1r1
a1b1

+ Ss1
a1

(
2ν̃

a2r1
a2b1

− ν̃
r1a2
a2b1

)
+ Ss1

a2

(
2ν̃

r1a2
a1b1

− ν̃
a2r1
a1b1

) + S
r1
b1

(
2ν̃

s1b2
a1b2

− ν̃
b2s1
a1b2

)
+ S

r1
b2

(
2ν̃

b2s1
a1b1

− ν̃
s1b2
a1b1

) + S
r1
b1

Sb2
a2

ν̃
a2s1
a1b2

− 2S
r1
b2

Sb2
a2

ν̃
a2s1
a1b1

−2S
r1
b1

Sb2
a1

ν̃
a2s1
a2b2

+4S
r1
b2

Sb2
a1

ν̃
a2s1
a2b1
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+ Ss1
a1

S
a2
b2

ν̃
r1b2
a2b1

− 2Ss1
a2

S
a2
b2

ν̃
r1b2
a1b1

−2Ss1
a1

S
a2
b1

ν̃
r1b2
a2b2

+ 4Ss1
a2

S
a2
b1

ν̃
r1b2
a1b2

+ S
r1
b2

Ss1
a2

ν̃
a2b2
a1b1

−2S
r1
b1

Ss1
a2

ν̃
a2b2
a1b2

− 2S
r1
b2

Ss1
a1

ν̃
a2b2
a2b1

+ S
a2
b1

Sb2
a1

ν̃
r1s1
a2b2

−2S
a2
b1

Sb2
a2

ν̃
r1s1
a1b2

− 2S
a2
b2

Sb2
a1

ν̃
r1s1
a2b1

]
. (44)

As written above, this term can be implemented with O(o3v2)
scaling. Heßelmann et al. propose a O(o2v2Ndf ) factorization
of the ta1b1

r1s1
S

a2
b1

Sb2
a1

ν̃
r1s1
a2b2

term that uses DF integrals.38 It is also
possible to use a O(o4v2) algorithm to evaluate some of these
terms; for small systems, the O(N6) algorithm is competitive
with the others, and for large basis sets, it can be superior to
the DF factorization.

To find the optimal factorization of the E
(20)
exch−disp term,

we will examine each term separately and group similar terms
together. First, we will look at the terms that unavoidably
scale, with DF integrals and Laplace transformed energy de-
nominators, as O(N5),

E
(20)
exch−disp(S2)(N5) = −2ta1b1

r1s1

[
ν̃

s1r1
a1b1

− Ss1
a2

ν̃
a2r1
a1b1

− S
r1
b2

ν̃
s1b2
a1b1

+ S
r1
b2

Ss1
a2

ν̃
a2b2
a1b1

+ S
a2
b1

Sb2
a1

ν̃
r1s1
a2b2

]
. (45)

Due to the exchange integrals that appear in this expression,
the use of Laplace transformed energy denominators does not
lead to any computational savings. The introduction of DF in-
tegrals, however, is helpful. First we will define a few simple
intermediates as follows:

XP
a1s1

= Ss1
a2

AP
a1a2

,

XP
b1r1

= S
r1
b2

BP
b1b2

,

Y P
a1s1

= Sb2
a1

CP
b2s1

,

Y P
b1r1

= S
a2
b1

CP
a2r1

. (46)

This allows us to rewrite these O(N5) terms in a particularly
simple form

E
(20)
exch−disp(S2)(N5) = −2ta1b1

r1s1

(
AP

a1s1
− XP

a1s1

)(
BP

b1r1
− XP

b1r1

)
.

− 2ta1b1
r1s1

YP
a1s1

YP
b1r1

. (47)

With this factorization, the contributions from these five terms
can be evaluated with three O(o2v2Ndf ) multiplications. The
dispersion amplitudes do need to be formed, but they do not
need to be stored. As a byproduct of this procedure, the E

(20)
disp

term can be obtained without any additional work.
While the Laplace transformed energy denominators do

not help with all of the E
(20)
exch−disp terms, they can reduce the

scaling of some of the terms,

E
(20)
exch−disp(S2)(L) = −2ta1b1

r1s1

[
2Ss1

a2
ν̃

r1a2
a1b1

− 2Ss1
a2

S
a2
b2

ν̃
r1b2
a1b1

−2S
a2
b1

Sb2
a2

ν̃
r1s1
a1b2

] − 2ta1b1
r1s1

[
2S

r1
b2

ν̃
b2s1
a1b1

−2S
r1
b2

Sb2
a2

ν̃
a2s1
a1b1

− 2S
a2
b2

Sb2
a1

ν̃
r1s1
a2b1

]
. (48)

To explicitly show the origin of this savings, we first must
recognize two useful intermediates that could be formed,

T P
a1r1

= ta1b1
r1s1

BP
b1s1

≈ −CQ
a1r1

C
Q
b1s1

BP
b1s1

dL
a1r1

dL
b1s1

,

T P
b1s1

= ta1b1
r1s1

AP
a1r1

≈ −CQ
a1r1

C
Q
b1s1

AP
a1r1

dL
a1r1

dL
b1s1

. (49)

This allows us to write

E
(20)
exch−disp(S2)(L) = −2T P

b1s1

[
2Ss1

a2
BP

a2b1
− 2Ss1

a2
S

a2
b2

BP
b1b2

−2S
a2
b1

Sb2
a2

BP
b2s1

] − 2T P
a1r1

[
2S

r1
b2

AP
a1b2

−2S
r1
b2

Sb2
a2

AP
a1a2

− 2S
a2
b2

Sb2
a1

AP
a2r1

]
. (50)

Using canonical energy denominators, the formation of these
intermediates would scale O(o2v2Ndf ); if the Laplace trans-
form is applied to the energy denominator, this scaling can
be reduced to O(ovN2

df ). Once these intermediates are avail-

able, their contribution to E
(20)
exch−disp can be evaluated simply

by contracting the overlap integrals with the DF integrals that
appear in a certain term and then multiplying by the appropri-
ate T type intermediate.

The remaining terms can be reduced to a dispersion am-
plitude and two two-index arrays. Structurally, there are two
types of these terms, ta1b1

r1s1
Xa1r1Yb1s1 and ta1b1

r1s1
Xa1s1Yb1r1 . When

the dispersion amplitudes are written with Laplace trans-
formed energy denominators and DF integrals, the former can
be evaluated with O(ovNdf ) work, whereas the latter can be
evaluated with O(o2vNdf ) work,

E
(20)
exch−disp(S2)(N3, N4)

= −2ta1b1
r1s1

[
Ss1

a1

(
2ν̃

a2r1
a2b1

− ν̃
r1a2
a2b1

) + S
r1
b1

(
2ν̃

s1b2
a1b2

− ν̃
b2s1
a1b2

)
+ S

r1
b1

Sb2
a2

ν̃
a2s1
a1b2

− 2S
r1
b1

Sb2
a1

ν̃
a2s1
a2b2

+ 4S
r1
b2

Sb2
a1

ν̃
a2s1
a2b1

+ Ss1
a1

S
a2
b2

ν̃
r1b2
a2b1

− 2Ss1
a1

S
a2
b1

ν̃
r1b2
a2b2

+ 4Ss1
a2

S
a2
b1

ν̃
r1b2
a1b2

− 2S
r1
b1

Ss1
a2

ν̃
a2b2
a1b2

− 2S
r1
b2

Ss1
a1

ν̃
a2b2
a2b1

]
. (51)

III. RESULTS AND DISCUSSION

A. Timings

Our previous implementation of DF-SAPT0 primarily
used the DF approximation to avoid the two-electron integral
AO to MO transformation.34 Additionally, the DF integrals
were used to factor one contribution to E

(20)
exch−disp in which

the ovov type integrals appear (this approach was described
in Ref. 38). Despite this relatively simple approach, SAPT0
computations with as many as 116 atoms could be routinely
performed with the program developed in Ref. 34. Unfortu-
nately, this approach is not tractable for much larger systems.
We will use the largest intercalator complex studied in this
work as a concrete example of the deficiencies in our previ-
ous implementation. The solution of the CPHF equations in
the MO basis involves iterative matrix-vector multiplies with
a matrix that is ov × ov. For the complex of proflavine with
a CGA stretch of DNA (Pf · CGA), this matrix can become as
large as 9.3 TB. The evaluation of the E

(20)
exch−disp term could

be written as a dot product between the dispersion amplitudes
and a collection of integrals contracted with overlap integrals
(see Eq. (44)). While this was done explicitly in our previ-
ous implementation, many of the contributions were evaluated
as dot products between ov × ov matrices. The dispersion am-
plitudes can also become rather large, 650 GB or 1.3 TB for
the Pf · CGA complex, depending on the use of the frozen core
approximation. For the remaining exchange terms, even o3v
arrays can be as large as 250 GB.
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FIG. 1. Timings of SAPT0/aug-cc-pVDZ′ computations on T-shaped acenes,
benzene through pentacene. The “Old DF-SAPT0” implementation is de-
scribed in Ref. 34; the “New DF-SAPT0” implementation is described in
the present work. These computations were performed on dual quad-core In-
tel Xeon processors clocked at 2.66 GHz. The energy denominators were
approximated using Laplace transformation techniques with a threshold of
10−3; this corresponds to 5 quadrature points for all five of the dimers.

Since our previous implementation was limited by the
size of four-index arrays, the DF-SAPT0 algorithm developed
in the present work minimizes the number of these arrays
that must ever be formed. As a result, the new algorithm al-
lows SAPT0 computations to be performed for much larger
systems. Additionally, the factorization of the generalized
two-electron integrals described above allows for increased
efficiency with regard to memory usage; the evaluation of
exchange terms can now be trivially blocked over the aux-
iliary index. Possibly the greatest advantage of our new im-
plementation of SAPT0 is that the improvements in terms of
tractability and memory efficiency does not come at the cost
of performance. Figure 1 shows the timings for a series of T-
shaped acenes (described in Ref. 34). For the largest system
considered here, pentacene dimer, the new implementation of
SAPT0 is over 12 times faster.

The advances described above have allowed the applica-
tion of SAPT0 to large biological complexes. Here, we will
highlight the Pf · CGA complex, which consists of 220 atoms
and 2845 basis functions. This computation was performed
using only modest computational resources: dual quad-core
Intel Xeon processors clocked at 2.66 GHz, 40 GB of
memory, and just over 4 days of total wall time. The under-
lying dimer and monomer density-fitted Hartree-Fock com-
putations required a total of slightly over 1.5 days, with
three-index integrals shared between the three computations.
The subsequent SAPT0 computation required just over 2.5
days. Based on this performance, we estimate that our current
DF-SAPT0 implementation should be scalable to 4000 basis
functions. The relative expense of various parts of the com-
putation on the Pf · CGA complex is shown in detail in
Figure 2. The dimer and monomer density-fitted Hartree-Fock
computations required approximately 40% of the total wall
time. Of the remainder, the time of a SAPT0 computation
is dominated by the evaluation of E

(20)
exch−disp, which requires

nearly 2/3 of the total SAPT0 time. Here, we use the Laplace
transform of the energy denominators with a threshold of

Dimer HF

Monomer HF

DF Integrals
CPHF

Exch-Disp(N5)

Exch-Disp(N4)

Misc.

FIG. 2. Timing of a SAPT0/aug-cc-pVDZ′ computation on the Pf · CGA
complex with 220 atoms and 2845 basis functions. The prerequisite mononer
and dimer density-fitted Hartree-Fock computations required 40.4 h of total
wall time. The SAPT0 computation required 61.7 h of total wall time. The
total wall time for the complete computation was 102.1 h. These computa-
tions were performed on dual quad-core Intel Xeon processors clocked at
2.66 GHz.

10−6, which requires 10 quadrature points. The evaluation
of the DF integrals (including formation of the AO integrals,
multiplication by [JAB]−1/2, and AO to MO transformation)
takes roughly 1/5 of the SAPT0 time, with the bulk of the re-
mainder being spent in the solution of the CPHF equations. To
improve efficiency in terms with heavy disk I/O requirements
(the DF integrals and CPHF evaluation), the disk I/O is done
asynchronously. In the CPHF equations, for example, reading
of the CP

r1r2
DF integrals is “hidden” under the contractions

described in Eq. (43). The remaining terms, E
(10)
elst , E

(10)
exch, etc.,

are trivial in comparison.

B. Accuracy of approximate energy denominators

The introduction of approximations to the energy denom-
inator for a portion of the exchange-dispersion term intro-
duces an additional source of error into the DF-SAPT0 ansatz.
This error can be arbitrarily attenuated by refining the desired
error criterion δ in the denominator decomposition, at the cost
of a linear increase in computational expense with the num-
ber of Laplace quadrature points or Cholesky vectors. It is
desirable to produce a single δ criterion that provides efficient
computational performance and negligible numerical error for
all systems. To achieve very small numerical errors is not at
all demanding in this implementation: energy decompositions
are only used to factor parts of the exchange-dispersion term,
which is typically less than 10% of the size of the dispersion
term. When the magnitude of the errors associated with the
DF and frozen core approximations are considered, additional
errors from the approximate energy denominators of less than
one thousandth of one kcal mol−1 are easily acceptable in this
term.

To benchmark the accuracy of Laplace and Cholesky de-
compositions of the energy denominator, we have computed
error metrics for the E

(20)
exch−disp term evaluated at a range of

Downloaded 29 May 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



174107-9 Large-scale SAPT0 J. Chem. Phys. 135, 174107 (2011)

TABLE I. Errors in the E
(20)
exch−disp term evaluated with approximate energy denominators for the S22 test set.12

Laplace transform, aug-cc-pVDZ
Threshold 10−2 10−3 10−4 10−5 10−6

Pointsa 3.00 4.27 5.95 7.05 8.73
MSEb −7.64 × 10−4 1.36 × 10−5 −7.00 × 10−6 5.45 × 10−9 −6.82 × 10−9

MUEc 7.66 × 10−4 9.16 × 10−5 7.39 × 10−6 4.94 × 10−7 3.05 × 10−8

RMSd 1.07 × 10−3 1.62 × 10−4 1.12 × 10−5 7.38 × 10−7 4.62 × 10−8

Cholesky decomposition, aug-cc-pVDZ
Threshold 10−2 10−3 10−4 10−5 10−6

Points 3.00 5.00 6.23 7.73 9.27
MSE −2.02 × 10−3 1.39 × 10−5 −2.05 × 10−6 −3.89 × 10−7 −3.18 × 10−9

MUE 2.02 × 10−3 1.40 × 10−5 2.50 × 10−6 3.89 × 10−7 3.18 × 10−9

RMS 2.55 × 10−3 2.09 × 10−5 4.05 × 10−6 5.52 × 10−7 5.64 × 10−9

Laplace transform, aug-cc-pVTZ
Threshold 10−2 10−3 10−4 10−5 10−6

Points 3.18 5.00 6.18 7.95 9.95
MSE −8.50 × 10−4 6.39 × 10−5 2.29 × 10−6 −1.29 × 10−7 −7.73 × 10−9

MUE 1.17 × 10−3 7.77 × 10−5 8.73 × 10−6 5.60 × 10−7 1.95 × 10−8

RMS 1.63 × 10−3 1.12 × 10−4 1.33 × 10−5 8.99 × 10−7 3.13 × 10−8

Cholesky decomposition, aug-cc-pVTZ
Threshold 10−2 10−3 10−4 10−5 10−6

Points 3.00 5.00 6.95 8.50 10.45
MSE −1.97 × 10−3 2.37 × 10−5 −1.47 × 10−6 −2.65 × 10−7 3.18 × 10−9

MUE 1.97 × 10−3 2.38 × 10−5 2.46 × 10−6 3.11 × 10−7 3.18 × 10−9

RMS 2.49 × 10−3 3.84 × 10−5 3.93 × 10−6 4.20 × 10−7 7.69 × 10−9

aAverage number of quadrature points or average number of Cholesky vectors needed to obtain the specified accuracy (in a.u.).
bMean signed error in kcal mol−1.
cMean unsigned error in kcal mol−1.
dRoot mean square error in kcal mol−1.

δ over the S22 test set,12 using the aug-cc-pVDZ and aug-cc-
pVTZ basis sets. The core orbitals were frozen in all cases,
and the results were compared against the exact DF-SAPT0
values within the same auxiliary basis. The results of this
study are shown in Table I. Cholesky and Laplace show the
same general trends: decreasing the δ parameter by one order
of magnitude corresponds to a one to two order of magnitude
decrease in error in the E

(20)
exch−disp term, concomitant with an

increase of one to two quadrature points or Cholesky vectors.
Increasing basis size from aug-cc-pVDZ to aug-cc-pVTZ in-
creases the HUMO energy, and thereby the intrinsic range
R, inducing an increase of one quadrature point of Cholesky
vector for some systems. For each value of δ and basis set,
the Laplace approach requires one less quadrature point than
Cholesky for a few systems. However, for a δ of 10−3, the
RMS error of Laplace decomposition is almost one order of
magnitude larger than the equivalent Cholesky decomposi-
tion, but still far smaller than the required 10−3 kcal mol−1

accuracy. For all other values of δ, Cholesky and Laplace give
almost identical accuracy. The outlier at a δ of 10−3 is proba-
bly due to the windowed nature of the quadratures supplied by
Hackbusch, which were provided at discrete ranges of R. The
quadratures could be refined for each problem by application
of the minimax algorithm for the explicit value of R intrin-
sic to each system. We elected to not implement the minimax
algorithm on the grounds that this refinement would save at

most one quadrature point, and then only under certain cir-
cumstances. The slightly smaller number of quadrature points
for each δ and the possibility of slight additional refinement
point to Laplace decomposition being marginally more effi-
cient than Cholesky decomposition; however, the difference is
so slight as to be negligible from a computational standpoint.
Laplace decomposition does provide the theoretical advan-
tage that the factors are strictly positive, allowing for symmet-
ric factorizations to take advantage of the ability to take the
square roots of the Laplace factors. We have therefore elected
to default to Laplace decomposition using the predetermined
Hackbusch quadratures, and recommend a δ of 10−3, which
should result in errors of less than one part in one thousand in
the E

(20)
exch−disp term for all systems. This choice should result

in a computationally efficient 4–5 quadrature points for most
systems.

C. Application to intercalator complexes

The intercalation of DNA by proflavine has been a tar-
get of several previous theoretical studies. Langner et al. per-
formed small-basis MP2 computations on neutral and proto-
nated complexes of proflavine with A-U and C-G base pairs.17

Additionally, they reported an energy decomposition for these
complexes, based on partitioning of the MP2 interaction en-
ergy. More recently, Li et al. applied van der Waals DFT
to the stacking of proflavine on C-G and T-A base pairs.20
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FIG. 3. Geometries of proflavine intercalation complexes studied in this
work. (a) Proflavine intercalating a CG step. Complexes including the CG and
CGA segments of DNA are studied. (b) Three geometries of proflavine inter-
acting with individual base pair duplexes. (c) Four geometries of proflavine
interacting with segments of the DNA backbone.

Unfortunately, neither of these studies include the backbone
in their computations. This is consistent with other quantum
mechanical studies on intercalation (involving other interca-
lating molecules).15, 16, 19, 68 In order to determine the impor-
tance of the backbone in the intercalation of DNA, lower-
scaling methods must be applied. Our implementation of DF-
SAPT0 allows intercalation phenomena to be probed at semi-
quantitative accuracy without neglecting backbone and neigh-
boring base pair interactions.

In this work, we will consider the intercalation of a
CG step by a protonated, cationic proflavine molecule; in
Figure 3(a), the geometry considered is shown. An AT base
pair neighbors the intercalation site (the full segment of DNA
will be denoted with its sequence, CGA). This geometry
is taken from a crystal structure69 with the hydrogen posi-
tions determined by constrained B3LYP/6-31G** optimiza-

tion. The effect of solution-phase cations (e.g., Na+, K+) that
interact with the anionic phosphates in the backbone is mim-
icked by protonating the backbone to obtain a neutral species.
In addition to considering the interaction between proflavine
and the full trinucleotide duplex, the complex is fragmented
into various model systems. The fragmentation into base pair-
proflavine interactions is shown in Figure 3(b) and the frag-
mentation into backbone-proflavine interactions is shown in
Figure 3(c). Any covalent bonds cut during the fragmentation
are capped with hydrogen atoms whose positions are deter-
mined by B3LYP/6-31G** optimization. While it is straight-
forward to isolate the effect of the neighboring (AT) base pair,
it is difficult to fragment the backbone in a manner that iso-
lates its neighboring portion. For this reason, we will consider
the portion of the backbone that is adjacent to the intercala-
tion site and the entire backbone; the differences between the
interaction of these fragments with proflavine will provide in-
sight into the role of the neighboring portion of the backbone.

First, we will consider the interaction of proflavine with
the local portion of the intercalation site. The results from
the DF-SAPT0 computations can be found in Table II. In
the following discussion, we will refer to the designation
of intermolecular interactions as electrostatics-dominated,
dispersion-dominated, or mixed-influence based on the met-
ric used by Hobza and co-workers:70 if an interaction contains
twice as much dispersion as electrostatics, then it is disper-
sion dominated (and vice versa); otherwise, it is designated as
a mixed influence interaction. Using this definition, the inter-
action of proflavine with the CG step should be described as a
mixed-influence interaction. One interpretation of this result
might involve the nature of catonic π -π stacking interactions
present in this complex. While retaining the strong disper-
sion interactions found in neutral π -π interactions, catonic
π -π interactions should have enhanced electrostatic and in-
duction interactions. The SAPT compuations of the Pf · C-G
and Pf · G-C base pair-proflavine interactions show that, in-
deed, there are significant electrostatic contributions from the
stacking of the cationic proflavine intercalator. However, they
also indicate that the dispersion contributions are more than
twice as large. Perhaps surprisingly, more than a third of the
electrostatic contribution in the whole intercalator complex
comes from intercalator-backbone contributions. In fact, the
intecalator-backbone interaction contributes about one third
of the overall SAPT0 interaction energy of the complex.

Careful examination of the Pf · CG geometry reveals that
the proflavine favors one side of the complex and forms two
long hydrogen bonds with the phosphate group. One contact
is between the terminal NH2 group and a phosphate oxy-
gen (2.64 Å), and the other is between an aromatic hydrogen
and another phosphate oxygen (2.52 Å). The NH · · · O and
CH · · · O contacts are both nearly linear (178.4o and 176.3o,
respectively). (There is also at least one favorable aromatic
CH · · · O contact with a sugar oxygen on the other backbone
strand, at a distance of 2.59 Å, but this one occurs at an angle
of 135o instead of the favored linear arrangement). The pres-
ence of the two long hydrogen bonds appears in the SAPT
computations of the Pf · Bk-1 interaction (see Figure 3(c) for
the definition of the various backbone fragments considered);
this interaction, although designated as mixed influence due
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TABLE II. SAPT0/aug-cc-pVDZ′ computations of complexes of proflavine
with a CGA segment of DNA and fragments of the DNA segment, energies
in kcal mol−1.

Eelst Eexch Eind Edisp ESAPT0

Proflavine · DNA

Pf · CG − 38.8 54.1 − 10.4 − 66.0 − 61.1
Pf · CGA − 37.9 54.2 − 11.4 − 67.6 − 62.7

Proflavine base pair
Pf · C-G − 11.2 22.4 − 3.9 − 26.1 − 18.8
Pf · G-C − 13.0 22.6 − 4.0 − 26.8 − 21.2
Pf · A-T − 1.3 0.0 − 0.3 − 0.7 − 2.3

Proflavine backbone
Pf · Bk-1 − 12.2 6.8 − 3.0 − 7.6 − 16.0
Pf · Bk-2 − 3.3 3.6 − 1.8 − 4.9 − 6.5
Pf · Bk-3 − 13.2 6.8 − 3.2 − 7.7 − 17.3
Pf · Bk-4 − 0.3 3.6 − 1.9 − 5.1 − 3.7

Fragmented proflavine · CG
s(Pf · CG)a − 24.2 45.0 − 7.9 − 52.9 − 40.0
b(Pf · CG)b − 15.6 10.4 − 4.8 − 12.5 − 22.5
(Pf · CG)c − 39.8 55.4 − 12.8 − 65.4 − 62.5

Fragmented proflavine · CGA
s(Pf · CGA)a − 25.5 45.0 − 8.3 − 53.6 − 42.3
b(Pf · CGA)b − 13.5 10.4 − 5.1 − 12.8 − 21.0
(Pf · CGA)c − 39.0 55.4 − 13.4 − 66.3 − 63.3

aInteraction due to stacking of proflavine with base pairs.
bInteraction of proflavine with the DNA backbone.
cInteraction of proflavine with the segment of DNA computed as a sum of fragments.

to significant long-range dispersion, contains a very strong
electrostatic component. The interaction with the other back-
bone (the Pf · Bk-2 interaction), to which the proflavine does
not from a hydrogen bond, is much weaker and less electro-
static in nature. The importance of the proflavine-backbone
interactions suggest that they must be included in future stud-
ies. The geometric dependence of hydrogen bonding inter-
actions makes it crucial to obtain reasonable geometries for
intercalator-DNA complexes if the intercalator-backbone in-
teractions are to be reasonably described. While scans of the
intercalator-base pair potential energy surface are interesting
insofar as they provide insight into the nature of the stack-
ing interaction, these types of studies do not capture many of
the important contributions to the complex geometry. Even
though the stacking interaction comprises two-thirds of the
total interaction, stacking potential energy surfaces are usu-
ally flat compared to a hydrogen bonded surface; therefore,
the complex geometry may be significantly influenced by
intercalator-backbone interactions.

Our new SAPT0 implementation is also efficient enough
to allow examination of the interactions between the inter-
calator and a neighboring base pair. The Pf · CGA interaction
energy differs from the Pf · CG interaction energy by less than
3%. The inclusion of the neighboring base pair adds some ad-
ditional long-range dispersion, a slightly increased induction
interaction, and a weakly repulsive electrostatic interaction.
As revealed by SAPT0 computations on the Pf · AT complex,
the additional dispersion interactions (as well as an attrac-
tive electrostatic contribution) can be attributed, mainly, to

the distant Pf · A-T stacking. The source of the repulsive elec-
trostatic contribution between proflavine and the neighboring
part of the DNA trimer appears to be an unfavorable config-
uration of the additional proflavine-sugar contact. Overall, it
does not appear that neighboring base pairs play an impor-
tant role in the energetics or geometry of an intercalator-DNA
complex (unless, perhaps, the intercalator is much larger than
proflavine).

IV. CONCLUSIONS

Zeroth-order symmetry-adapted perturbation theory
(SAPT0) has the attractive property of providing semiquan-
titative insight into the nature of molecular interactions at rel-
atively low computational expense. The application of den-
sity fitting (DF) approximations and Laplace transformation
techniques allows for new factorizations of the SAPT0 en-
ergy equations. The use of dressed DF two-electron integrals
allows the generalized two-electron integrals, which appear in
SAPT exchange corrections, to be written in terms of three-
index arrays. This provides new possibilities for the factoriza-
tion of the SAPT0 exchange terms. The use of DF integrals
allows the CPHF equations to be efficiently evaluated in the
MO basis with reduced disk I/O. Finally, the Laplace trans-
formation techniques remove the disk I/O (or redundant com-
putation) associated with the dispersion amplitudes that had
previously limited the applicability of SAPT0, including DF-
SAPT0. As there are several approximate techniques for treat-
ing energy denominators, we have tested the quadratures de-
veloped by Braess and Hackbusch42, 43 for the Laplace trans-
formation of the energy denominator against partial Cholesky
decomposition and determined the the Laplace transformation
requires, on average, fewer quadrature points to approximate
the energy denominator. With roughly 4–5 quadrature points,
errors due to the approximation of the energy denominator of
less than 10−4 kcal mol−1 can be obtained in SAPT0 ener-
gies for the S22 test set.12 These advances offer a significant
improvement over previous implementations of SAPT0 and
allow these computations to be performed on systems with
more than 200 atoms and 2800 basis functions. It is estimated
that the implementation of DF-SAPT0 reported in this work
should be applicable to systems with 4000 basis functions.

The common feature of all approximations used within
this work is that they are both generic and controllable. The
former means that the efficient application of the approxima-
tion does not depend on the particular electronic environment
or spatial extent of the chemical system. The latter implies
that an arbitrary level of accuracy can be obtained within the
SAPT0 ansatz by increasing the δ parameter for energy de-
nominator decomposition or the completeness of the auxil-
iary basis set for the two-electron integrals. If extrinsic as-
sumptions of large system size and sparseness of the density
matrix are applied, linear scaling algorithms could be devel-
oped for the entirety of SAPT0, e.g., based on the methods of
Ochsenfeld et al.71, 72

DF-SAPT0 computations on the complex of a DNA se-
quence (CGA) with protonated proflavine have been per-
formed to elucidate the nature of intercalation phenom-
ena. Owing to the scalability of our new DF-SAPT0
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implementation, the entire proflavine-CGA complex can be
examined, including all three base pairs and the backbone
atoms. The stacking interactions comprise two-thirds of the
total, while the proflavine-backbone interactions account for
the remaining third. Overall, the interaction contains impor-
tant contributions from electrostatics and dispersion; however,
the dispersion interactions are mainly due to stacking inter-
actions, while a significant fraction of the electrostatic inter-
action is a result of proflavine forming long hydrogen bonds
with the backbone. Such hydrogen bonding contacts are likely
to influence the intercalation geometry. Although the en-
ergetics of the complex are largely comprised of cationic
π -π stacking interactions, these interactions should be less
sensitive to the geometry of the complex than intercalator-
backbone hydrogen bonds would be, likely magnifying the
importance of the latter in influencing the intercalation ge-
ometry. Future studies of intercalation phenomena should in-
clude intercalator-backbone interactions and their geometric
implications. Efficient implementations of reliable computa-
tional methods are essential for the study of large biologically
relevant molecules; we have demonstrated that DF-SAPT0 is
now capable of providing unique insight into these types of
systems.
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