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SUMMARY

In applications such as wind energy, industrial robotics, and chemical processing,

increases in complexity and automation have made component malfunctions and other

abnormal events (i.e., faults) an ever-present threat to safety and reliability. Thus,

fault detection algorithms have become an essential feature of modern control systems,

leading to significant decreases in downtime, maintenance costs, and catastrophic

failures. However, while well-established statistical methods are effective in many

cases, they often fail to make the critical distinction between faults and normal process

disturbances. An attractive alternative is to exploit detailed process models that, at

least in principle, can be used to characterize the outputs consistent with normal

operation, providing a rigorous basis for fault detection. Methods that furnish a

guaranteed enclosure of these outputs (e.g., using set-based state estimators) are

particularly attractive because they eliminate the possibility of costly false alarms

and provide better trade-offs between false alarms and missed faults. However,

such methods are currently impractical for systems with strong nonlinearities or

large uncertainties. For such systems, existing set-based estimation techniques often

produce enclosures that are far too conservative to be useful for fault detection, or

avoid this only at excessive computational cost. Thus, there is a critical need for

advanced algorithms that can rapidly detect faults for realistic nonlinear systems, and

do so rigorously in the presence of disturbances, measurement noise, and large model

uncertainties.

In this thesis, we develop an advanced set-based state estimation method for uncer-

tain nonlinear systems, and demonstrate its application to provide fast and accurate

fault detection for such systems. Our proposed estimation method is performed recur-

sively in two steps. First, the prediction step computes an enclosure of the possible

model outputs under uncertainty over one discrete time step. Next, the correction step
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uses the process measurements to update this enclosure by eliminating regions that

are not consistent with the measurements. In contrast to existing set-based estimation

methods, our prediction step makes use of our previously developed continuous-time

differential inequalities (DI) method and extends it to discrete-time systems. The

DI method uses very efficient interval computations, but is effective at mitigating

some key sources of conservatism typically associated with such computations in

discrete-time systems by exploiting redundant model equations, which can be easily

found in many representative reaction and separation models. Moreover, we make

use of past process measurements in a novel way in the prediction step, potentially

leading to further improvements in bound accuracy. Our results demonstrate that,

for a variety of systems of practical interest, the proposed prediction step in the

state estimation algorithm leads to dramatically tighter enclosures of the states, with

only modest additional computational cost relative to standard interval methods.

Moreover, by combining the proposed correction step with the prediction method, this

guaranteed state estimation algorithm largely increases the accuracy of the estimated

state sets and is suitable for online applications. The numerical results show that this

method produces state estimates with significantly higher accuracy and efficiency than

state-of-the-art zonotopic methods for a challenging nonlinear chemical reactor model.

Finally, we apply the resulting estimators to achieve significantly faster and more

accurate fault detection than is achievable with existing fault detection methods. The

proposed approach is demonstrated to achieve high accuracy and eliminate false alarms

using a range of examples with comparisons to existing state-of-the-art data-based

and model-based fault detection algorithms.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

Due to the level of complexity, integration, and automation in modern chemical

processes, robotics systems, and power systems, faults such as equipment malfunctions

and failures pose a serious threat to safe and profitable operation. In the United

States alone, the lack of high-performance fault detection systems results in 20

billion dollars in losses annually in the chemical industry [1]. Classical fault detection

(FD) methods exploit historical data and are well established for various systems.

However, these data-based methods cannot rigorously distinguish faults from system

disturbances. Therefore, a lack of high-quality historical data can result in alarms in

normal situations (i.e., false alarms) or failures to detect faults (i.e., missed faults). A

promising alternative is to use a first-principles model to detect faults by comparing

the model predictions to the outputs observed from the real process. Set-based FD is

a particularly useful model-based approach where a fault is declared whenever the

measured output lies outside of a rigorous enclosure of all possible model outputs

subject to disturbances and other model uncertainties. Such an enclosure can be

computed using a set-based state estimation method. This approach eliminates false

alarms while still having high sensitivity to faults, provided that the set-based state

estimator is accurate. However, modern set-based state estimation methods are either

too computationally demanding for online FD or produce enclosures that are too

conservative for effective FD.

To address these challenges, this thesis develops advanced set-based state estimation

methods for nonlinear discrete-time systems with large uncertainties and applies them

1



for online set-based fault detection. Set-based estimation is commonly performed

recursively in two steps. Given an enclosure of the possible system states at the current

time, the prediction step uses the model to compute an enclosure of all possible states

in the next discrete time step under uncertainty. Next, the correction step updates this

enclosure by eliminating regions that are inconsistent with the process measurements.

Prediction requires propagating sets through nonlinear uncertain dynamics, which

is a major source of conservatism in existing methods. The correction step requires

bounding the intersection of two complex sets, which is also nontrivial. This thesis

develops a set-based FD method by addressing these challenges in set-based estimation

first. Our overall contributions are achieved through the following specific objectives:

1. Develop an accurate and efficient reachability analysis method for the prediction

step in set-based state estimation

2. Develop a fast and accurate set-based state estimation algorithm by combining

the prediction step with an effective measurement correction step

3. Develop an effective online set-based FD algorithm using the advanced set-based

state estimation method. The proposed algorithm guarantees no false alarms

and has significantly higher fault sensitivity than existing set-based FD methods.

The resulting algorithm enables faults to be detected in highly nonlinear and

uncertain systems with significantly higher speed and accuracy than is currently

possible. Therefore, this work could help reduce process downtime, financial losses,

and safety risks caused by equipment malfunctions and other abnormal operations in

a range of applications, such as pharmaceutical processes, autonomous vehicles, wind

turbines, etc. Objective 1–3 are introduced in detail in Sections 1.2–1.4 below.

In addition to these main objectives, this thesis also has two separate contributions.

Firstly, Chapter 5 provides a detailed review and comparison of existing zonotope order

reduction methods. Zonotopes are a class of centrally symmetric convex polytopes
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that have a variety of computational advantages and are widely used in algorithms

for state estimation, fault detection, and elsewhere. However, many operations on

zonotopes yield results with higher complexity than their arguments [2], which is a

serious limitation, particularly for recursive algorithms. Order reduction methods

bound a given zonotope within another of lower complexity, and are essential for many

algorithms using zonotopes. The results of our comparison provide valuable guidance

for designing set-based estimation and control algorithms that more effectively balance

accuracy with computational cost.

Secondly, Chapter 6 proposes a method for using reachability analysis to verify

the safety of autonomous vehicles. This method is similar to the proposed reachability

analysis method in Objective 1, but it applies to continuous-time systems. This

algorithm enables efficient computation of accurate bounds on the possible vehicle

trajectories under uncertainty, which can potentially be applied for online collision

avoidance.

These two additional contributions are discussed in more detail in Sections 1.5 and

1.6 below.

1.2 Reachability Analysis

This section introduces Objective 1 of this thesis in more detail. Consider the following

discrete-time system, where x𝑘 is the state, w𝑘 is the disturbance, c0 is the initial

condition, and the time horizon is K ≡ {0, . . . , 𝐾}:

x𝑘+1 = h (𝑘, x𝑘, w𝑘) , x0 = c0. (1.1)

Let 𝐶0 and 𝑊 be given compact sets of admissible initial conditions and disturbances,

respectively, so that c0 ∈ 𝐶0 and w𝑘 ∈ 𝑊 , ∀𝑘 ∈ K. Furthermore, define the sequence

shorthand w0:𝐾 = (w0, . . . , w𝐾), 𝑊0:𝐾 ≡ 𝑊 × · · · ×𝑊 , x0:𝐾 = (x0, . . . , x𝐾), and
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R𝑛𝑥
0:𝐾 ≡ R𝑛𝑥×· · ·×R𝑛𝑥 . We call (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0×𝑊0:𝐾×R𝑛𝑥

0:𝐾 a solution of (1.1)

if it satisfies (1.1) for all 𝑘 ∈ {0, . . . , 𝐾 − 1}. The reachable set of the discrete-time

system (1.1) is defined for every 𝑘 ∈ K by

ℛ𝑘 ≡{z ∈ R𝑛𝑥 : ∃ a solution (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾

× R𝑛𝑥
0:𝐾 of (1.1) satisfying x𝑘 = z}.

In words, the reachable set at time 𝑘 is the set of all states of (1.1) at 𝑘 that can

be obtained with an admissible initial condition in 𝐶0 and sequence of disturbance

vectors in 𝑊0:𝑘−1. Objective 1 of this thesis is to develop a method for efficiently

computing an accurate enclosure of the reachable set for all 𝑘 ∈ K.

1.2.1 Motivation and Existing Methods

Enclosing reachable sets is a critical step in set-based state estimation [3, 4], which

is in turn used in a variety of robust control and fault detection algorithms [5, 6, 7,

8]. Reachable sets are also widely used in safety verification, motion planning, design

space construction, and many other applications [9, 10, 11].

A number of effective algorithms are available for bounding the reachable sets of

discrete-time linear systems [12, 13, 14, 2]. However, for nonlinear systems, computing

accurate enclosures remains a significant challenge, especially when enclosures must be

computed rapidly online. In essence, propagating a reachable set enclosure 𝑋𝑘 from

time 𝑘 to 𝑘 + 1 is equivalent to bounding the image of 𝑋𝑘 under the nonlinear vector

function defining the dynamics. This can be done efficiently using interval arithmetic

[15], but the resulting enclosure is often very weak. A tighter interval enclosure can

be obtained by partitioning 𝑋𝑘, but this is much more costly [15, 16]. For polynomial

systems, tighter bounds on the image of 𝑋𝑘 have been obtained using optimization

formulations such as linear, semidefinite, and DC programming [17, 18, 19]. In [20],
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a new approach for efficiently optimizing polynomials over parallelotopes using the

Bernstein basis is applied, and in [11, 21], polynomial dynamics are represented as

linear fractional transformations and bounded using the skewed structured singular

value. However, optimization-based approaches are generally not suitable for online

applications. A faster approach is to propagate 𝑋𝑘 from 𝑘 to 𝑘 + 1 by first considering

a local linearization of the dynamics and then adding a rigorous bound on the

linearization error [22, 23]. This strategy exploits efficient set-based calculations

that are possible in the linear case (e.g., using zonotopes), but can suffer from large

linearization errors for nonlinear systems.

1.2.2 Contribution

In this work, we develop a new class of methods for discrete-time reachability analysis

that is motivated by the theory of differential inequalities (DI). This theory pertains to

continuous-time systems, rather than the discrete-time systems of interest here, and is

the basis for some very effective reachability analysis methods in the continuous-time

setting (continuous-time reachability methods are reviewed more comprehensively in

Section 1.6). Given a continuous-time systems, the basic DI method uses interval

arithmetic to construct bounding differential equations that furnish time-varying

interval bounds as their solutions [24]. Like discrete-time interval methods (without

partitioning), this produces bounds at low cost, but can be very conservative. However,

several advanced DI methods have recently been developed that largely retain the

efficiency of the original method while providing much tighter enclosures (see §2.1)

[25, 24, 26, 27]. Thus, there is significant motivation to extend these approaches to

discrete-time.

However, DI-based reachability methods are based on theoretical arguments that

are only valid for continuous-time systems. Specifically, DI theory depends critically on

the fact that, for continuous-time systems, a trajectory cannot leave a set 𝑋 without
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crossing its boundary. Thus, to propagate a reachable set enclosure forward in time, it

suffices to consider the behavior of the vector field on its boundary [28]. Unfortunately,

this is not true in discrete-time, and this precludes any straightforward analogue of

the DI approach for general discrete-time systems.

However, in practice, most discrete-time systems of interest are derived as ap-

proximations of an underlying continuous-time system. If such an approximation is

accurate enough, it is sensible to expect that a discrete-time DI method might produce

valid bounds. Following this idea, Chapter 2 develops a novel discrete-time extension

of the basic DI bounding algorithm and proves that it produces valid reachable set

enclosures provided that the discrete-time dynamics satisfy a certain monotonicity

condition. As an important special case, we then show that any system derived by

forward Euler discretization of a continuous-time model will satisfy this monotonicity

requirement whenever the discretization step size is below an upper bound. This

step size bound can be easily computed in advance, and is no more restrictive than

the step size required to preserve basic physical properties of the solution, such as

non-negativity [29]. Next, the advanced DI methods in [24, 26] are also extended to

discrete-time systems and proven to be valid under a tighter step size restriction. Nu-

merical comparisons show that that these discrete-time DI algorithms offer significant

advantages over the standard discrete-time interval method and two popular methods

using zonotopes [22, 23] in terms of both speed and accuracy.

1.3 Set-Based State Estimation

This section introduces Objective 2 of this thesis in more detail. Consider system (1.1)

again, but now suppose that at each time 𝑘 we obtain a measured output y𝑘 with
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measurement error v𝑘. This leads to the following discrete-time system:

x𝑘+1 = h (𝑘, x𝑘, w𝑘) , (1.2a)

x0 = c0, (1.2b)

y𝑘 = g(x𝑘, v𝑘). (1.2c)

As with c0 and w𝑘, we assume that v𝑘 is time-varying and unknown but bounded

within a given compact set 𝑉 , so that v𝑘 ∈ 𝑉 , ∀𝑘 ∈ K.

The objective is to develop a fast and accurate set-based state estimation algorithm

for (1.2). In contrast to conventional state estimation, which aims to compute a single

best estimate for the current state, set-based state estimation aims to compute a set

that rigorously encloses all states consistent with the given model and the observed

outputs up to the present time.

1.3.1 Motivations and Existing Methods

Set-based state estimation is an essential step in many algorithms for robust control [30,

31], fault detection and diagnosis [8, 32, 7], fault tolerant control [33], safety verification

and collision avoidance [34], and others. In this thesis, we are primarily interested

in the application of set-based estimation to fault detection. There, set-based state

estimation is used to compute a rigorous enclosure of the set of all outputs at time 𝑘

that are consistent with the fault-free process model, the bounded system uncertainties,

and all past measurements. Faults are then detected by testing if the measured output

lies within this set. This provides a rigorous way to distinguish the effects of faults

from those of admissible disturbances, measurement noises, and other uncertainties.

However, this application requires a highly accurate set-based state estimator because

overly conservative enclosures will lead to very low fault sensitivities. Therefore, there

is a critical need to study effective set-based state estimation approaches.
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Figure 1.1: Prediction: Computing an interval enclosure �̂�𝑘+1|𝑘 of states reachable at
𝑘 + 1 from �̂�𝑘|𝑘 under given dynamics.

Figure 1.2: Correction: Computing an interval enclosure of the states in the prediction
set �̂�𝑘+1|𝑘 that are consistent with the measurement y𝑘+1.

A variety of set-based state estimation algorithms have been proposed for nonlinear

discrete-time systems. In most approaches, estimation is done recursively in two steps.

Given a set of consistent states 𝑋𝑘|𝑘 at time 𝑘, the prediction step aims to computes

the set 𝑋𝑘+1|𝑘 of states reachable at 𝑘 + 1 from 𝑋𝑘|𝑘 under the given dynamics (1.2a).

Next, in the correction step, 𝑋𝑘+1|𝑘 is refined to produce the corrected set 𝑋𝑘+1|𝑘+1 by

eliminating regions of 𝑋𝑘+1|𝑘 that are inconsistent with the observed output at 𝑘 + 1.

Unfortunately, the exact sets 𝑋𝑘+1|𝑘 and 𝑋𝑘+1|𝑘+1 can be arbitrarily complex and are

not computable. Thus, it is necessary to compute enclosures �̂�𝑘+1|𝑘 ⊃ 𝑋𝑘+1|𝑘 and

�̂�𝑘+1|𝑘+1 ⊃ 𝑋𝑘+1|𝑘+1 in the form of simpler sets such as interval, ellipsoids, or convex

polytopes. Figures 1.1 and 1.2 give an example of prediction and correction steps

using interval enclosures. Figure 1.1 shows the prediction step, which computes an

interval enclosure �̂�𝑘+1|𝑘 of states reachable at 𝑘 + 1 from �̂�𝑘|𝑘 under (1.2a). Figure

1.1 shows the correction step, which encloses states that are consistent with �̂�𝑘+1|𝑘

and the measurement y𝑘+1.
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The prediction step requires bounding the image of �̂�𝑘|𝑘 under the nonlinear vector

function defining the dynamics. Therefore, this step is equivalent to a single time-step

of the reachability analysis problem described in Section 1.2, and any of the methods

described there can be applied. A variety of prediction steps have been proposed using

enclosures with different geometries, including intervals, ellipsoids, parallelotopes,

polytopes, zonotopes, and constrained zonotopes [15, 35, 13, 14, 2, 4]. However,

as discussed in Section 1.2, computing accurate reachable set enclosures remains a

significant challenge, especially when the algorithm has to be efficient enough for

online systems. Thus, the prediction step remains a major cause of conservatism in

existing set-based state estimation methods.

The correction step also suffers from large overestimation errors or high computa-

tional costs, particularly for nonlinear systems with large uncertainties. In [36, 22], the

correction step requires bounding the intersection of an ellipsoid or a zonotope with a

measurement set, which remains a source of significant overestimation using simple

heuristics. Interval partitions are exploited in [15] but lead to exponential run-times.

In [35, 23, 37], more accurate online optimization or enumeration procedures are

proposed, but these also require substantial computational effort. As a consequence,

numerical demonstrations of these methods to date have only shown good performance

for systems with fewer than 5 states.

1.3.2 Contribution

This work develops a new set-based state estimation algorithm by adapting the DI-

based reachability method in Chapter 2 to provide accurate prediction sets using only

fast interval computations and adding an efficient and accurate correction algorithm.

The prediction step of our algorithm is not quite a direct application of the method in

Chapter 2. Instead, we show that output measurements can be used to modify the

prediction step in a simple but nontrivial way, leading to significantly tighter prediction
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Figure 1.3: Fault detection: An interval enclosure of the possible outputs 𝑌𝑘 is
computed using the prediction set �̂�𝑘+1|𝑘. A fault is detected when the measured
output y𝑘+1 is outside of 𝑌𝑘+1.

bounds. This method is described in detail in Chapter 3. The numerical results show

that this method produces state estimates with significantly higher accuracy and

efficiency than state-of-the-art zonotopic methods for a challenging nonlinear chemical

reactor model.

1.4 Set-Based Fault Detection

This section introduces Objective 3, which is to apply the efficient and accurate set-

based state estimation algorithm developed in Chapter 3 to achieve effective set-based

fault detection. To do this, we apply set-based state estimation to the discrete-time

dynamic system (1.2) under the assumption that this model describes the nominal

dynamics when no fault has occurred. In every time step 𝑘, this furnishes a prediction

set �̂�𝑘+1|𝑘 enclosing all states consistent with the nominal model and all measured

outputs up to time 𝑘. Then, an enclosure 𝑌𝑘 of the set of possible outputs is computed

using �̂�𝑘+1|𝑘. If the new measurement y𝑘 is outside the enclosure 𝑌𝑘, the measured

output sequence can no longer be explained by the nominal model, and a fault must

have occurred. Figure 1.3 illustrates this procedure using an interval enclosure 𝑌𝑘

computed using output function (1.2c) and the prediction set �̂�𝑘+1|𝑘. A fault is

detected in this case because the measured output is outside of 𝑌𝑘.
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1.4.1 Motivation

In applications such as wind energy, industrial robotics, and chemical processing,

increases in complexity and automation have made component malfunctions and other

abnormal events an ever-present threat to safety and reliability. Industrial statistics

show that in addition to explosions and other major accidents, minor accidents happen

frequently and may occur on a daily basis, causing injuries, environmental issues, and

billions of dollars of losses every year [1]. Moreover, it is impossible to completely

rely on humans to detect these abnormal events due to the size and complexity of

modern systems. Therefore, computer-based fault detection algorithms have become

an essential feature of modern control systems.

This work aims to develop an automated algorithm to detect the occurrence of

abnormal events quickly and accurately. Failing to detect faults quickly and accurately

can have potentially serious economic, safety, and environmental consequences. In the

United States and United Kingdom, the limitations of existing fault detection systems

used in the chemical industry have annually cost their economy 20 and 27 billion

dollars respectively [38]. Furthermore, in some applications of robotics (e.g., surgery

and transportation), system malfunctions directly cause threats to human safety [39,

40]. Therefore, there is an urgent need for algorithms that can achieve early and

accurate fault detection, which can effectively mitigate the safety risks associated with

abnormal operations, as well as the economic losses caused by off-spec production,

maintenance, and downtime.

1.4.2 Existing Methods

Classical FD methods exploit historical data and are well established for various systems

[41]. These methods detect faults by comparing observed measurements with previous

statistics, which are often effective with sufficient historical data. However, these

data-based methods cannot rigorously distinguish faults from system disturbances.
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This issue is particularly pronounced when systems have large uncertainties or when

there is a lack of high-quality historical data that is relevant to the current operating

conditions (e.g., an abnormal disturbance), which leads to false alarms and missed

faults. An alternative class of FD methods exploits first-principles process models,

which are available at least at the level of individual process units and subsystems

in many applications of interest. In model-based approaches, faults are detected

by comparing the process outputs that are consistent with the model (under all

relevant uncertainties) to the outputs observed from the real process. Specifically,

traditional model-based methods detect faults by checking if the difference between

the predicted and measured outputs exceeds a threshold. However, the threshold value

is usually empirical. Thus, choosing a threshold that minimizes missed faults without

generating too many false alarms is challenging. Set-based FD is a particularly useful

model-based approach that attempts to address this threshold problem rigorously.

In set-based approaches, all uncertainties, disturbances, and measurement noises are

assumed to be bounded and set-based computations are used to rigorously test if a

new measured output is consistent with the process model given these bounds. This

approach eliminates false alarms, but requires accurate set-based computations to

achieve high sensitivity to faults, which is challenging.

Many set-based fault detection methods are available for linear systems using

computations with intervals [42, 43], polytopes [44], ellipsoids [45], zonotopes [46, 47,

48], and constrained zonotopes [4]. However, testing the consistency of a measured

output with a nonlinear model is significantly more difficult.

One possible approach is to solve a nonlinear global optimization problem in each

time step to determine if there exists a feasible point in the model that explains the

current measurements. Although this would be accurate, it is clearly computationally

intractable for most systems. A closely related idea was proposed in [49] for active

input design rather than online fault detection.
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A second approach is to use set-based parameter estimation. In this approach,

measurements are used to compute an enclosure of the set of model parameters that

are consistent with the measurements, and a fault is detected when this enclosure has

no overlap with a known set of possible parameter values for the fault-free model. The

key challenge in this approach is to compute tight enclosures of the feasible parameter

set efficiently online. In [50], this is done using interval-based set inversion techniques.

However, the computational cost scales exponentially with the number of uncertain

parameters. This method is extended to systems with probabilistic noises using a

Bayesian framework in [51]. However, this method does not provide rigorous bounds.

A third approach to set-based FD is to apply set-based state estimation. Recall

that, in each time step, a set-based state estimator provides a guaranteed enclosure of

the set of states consistent with the model, the bounded uncertainties, and all past

measurements. This can then be used to compute an enclosure of the possible model

outputs, and a fault is declared if the measured output is outside of this set. Note that

some methods actually detect faults by computing a set of possible output prediction

errors (i.e, residuals) rather than directly computing a set of possible outputs. As

discussed in Chapter §1.3, the key challenge for these methods is to compute sufficiently

accurate enclosures of the possible fault-free outputs (or residuals) fast enough for

online fault detection. The articles [52] and [53] propose set-based FD approaches

based on a Luenberger-type set-based state estimators. However, both methods

compute rigorous enclosures of the residuals based on linear differential inclusions

for the nonlinear observer error dynamics, which is likely to be very conservative for

highly nonlinear systems. The article [54] also uses a Luenberger-type set-based state

estimator. However, instead of computing a rigorous enclosure of all possible residuals

for the fault-free model, they compute a smaller set of residuals based on a prescribed

false alarm rate. Thus, this method is not guaranteed to avoid false alarms. Moreover,

computing this set of residuals requires the solution of nonlinear chance constrained
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optimization problems in each time step, which is likely to be intractable for many

systems. In order to reduce conservatism and increase efficiency, some approaches use

approximate models with simpler structure. In [55], nonlinear models are linearized

before constructing the observer, as in the extended Kalman filter. Similarly, the

article [56] approximates nonlinear input-output models using a Takagi-Sugeno fuzzy

neural network that is linear in the uncertain parameters. Rigorous ellipsoidal [56]

and zonotopic [55] enclosures are then computed for the approximate models and

used for fault detection. However, these enclosures are not rigorous for the original

nonlinear systems and cannot provide guaranteed fault detection. Finally, the article

[57] proposes a set-based fault detection method for continuous-time nonlinear systems

based on enclosures of the fault-free states computed using advanced reachability

techniques based on differential inequalities (DI). Although these reachability methods

are very effective, they do not use measurements to refine the predicted enclosures as

in a true set-based state estimator. Rather, measurements are only used to test for

faults in each time step. This is a serious limitation and is likely to be prohibitive for

systems with large uncertainties, where even the exact reachable set can be large.

1.4.3 Contribution

To address these limitations, this Chapter develops a new set-based FD algorithm

based on the set-based state estimation algorithm developed in Chapter 3. This

algorithm guarantees no false alarms and improves upon the detection speed and fault

sensitivity of existing set-based methods due to the superior accuracy and efficiency of

our state estimator. The fault detection algorithm is firstly introduced in Section 4.2.

The proposed algorithm is then compared with a popular data-based method based

on principal component analysis (PCA), a conventional model-based method using

the extended Kalman filter (EKF), and four state-of-the-art set-based algorithms.

These algorithms are tested for four case studies and various scenarios within each
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case study, including fault-free cases with normal disturbances, fault-free cases with

large persistent disturbances, and cases with various faults. The results show that

the proposed set-based algorithm eliminates false alarms and has the highest fault

sensitivity among all set-based methods.

1.5 Zonotope Order Reduction

This section introduces work on zonotope order reduction, which is a contribution of

this thesis that is separate from but related to fault detection. A zonotope is a convex

polytope that can be represented as the image of a unit hypercube under an affine

mapping [2]. Specifically, an 𝑛-dimensional zonotope 𝑍 is described by

𝑍 = {G𝜉 + c : ‖𝜉‖∞ ≤ 1}, (1.3)

where c ∈ R𝑛 be the center of the zonotope and the 𝑛𝑔 columns of G ∈ R𝑛×𝑛𝑔 are

the generators. The complexity of a zonotope is described by its order 𝑜 ≡ 𝑛𝑔/𝑛

[58]. Increasing 𝑜 makes zonotopes more flexible, but also more cumbersome to do

computations with. Order reduction refers to the process of bounding a given zonotope

𝑍 within another zonotope of lower complexity 𝑍 ′ ⊃ 𝑍.

1.5.1 Motivations and Existing Methods

Since the seminal work of Kühn [2], zonotopes have been widely adopted as an accurate

and efficient way to model bounded uncertainties and noises in a variety of control

applications, including reachability analysis [2, 58, 59], state estimation [60, 22, 37,

61, 4], hybrid systems verification [62, 63, 64], robust control [65, 33], and fault

detection [47, 48, 66, 7]. Zonotopes are significantly more flexible than parallelotopes

and ellipsoids, while requiring much less computational effort than general convex

polytopes [4]. However, many operations on zonotopes yield results with higher
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complexity than their arguments [2], which is a serious limitation, particularly for

recursive algorithms. Thus, order reduction methods are essential for many control

algorithms and can significantly impact their efficiency and performance. For example,

inaccurate reduction can lead to overly conservative set-based estimators, and hence

to conservative control actions or ineffective fault detection [64, 4].

Order reduction was first addressed in [2] in the context of reachability analysis.

The first general purpose method was proposed in [60], followed shortly by a similar

method in [58]. These methods are both very efficient. However, while the method

in [60] has been overwhelmingly used in the literature [37, 61, 65, 48], there are

no available studies comparing their accuracy. A more sophisticated approach was

proposed in [63] and shown to be significantly more accurate than the method in

[58], but only for a limited set of tests with low-dimensional zonotopes (𝑛 ≤ 4).

Moreover, the method in [60] was not compared. Unfortunately, the method in [63]

requires a combinatorial search that is problematic in high-dimensions. To address

this, another method was recently proposed in [4] that follows the main insights of [63]

but eliminates the combinatorial search using an iterative matrix factorization. It was

claimed in [4] that the method matches the accuracy of [63] at significantly lower cost.

However, because order reduction was not the focus of that article, the method was

only described in the appendix, with no theoretical justification and no comparisons.

1.5.2 Contributions

These four existing zonotope order reduction methods are implemented and compared

in Chapter 5. This work makes two main contributions. First, the order reduction

method by [4] is presented in detail and its validity is rigorously established. Second,

a comprehensive comparison of the existing four methods is presented considering

both computational cost and overestimation error for a large test set. The effects

of problem dimension, initial zonotope order, and reduced zonotope order are also
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investigated. The results provide valuable guidance for designing set-based estimation

and control algorithms that more effectively balance accuracy with computational

cost.

1.6 Reachability Analysis for Safety Verification of Autonomous Vehicles

The objective of this work is to verify the safety of autonomous vehicles during path or

trajectory tracking using reachability analysis. A vehicle path or trajectory tracking

system is a nonlinear closed-loop system, which can be described by the following

continuous-time dynamics:

ẋ(𝑡) = f(𝑡, x(𝑡), w(𝑡), u(𝑡)), (1.4)

u(𝑡) = 𝜅(𝑡, x(𝑡), w(𝑡)),

where the state variables x(𝑡) represent the vehicle’s positions, velocities, etc., the

vector w(𝑡) represents disturbances and uncertain parameters, and the control inputs

u(𝑡) are computed by a given tracking controller 𝜅. The controller 𝜅 is designed to

force x to reach and follow a given reference path or trajectory, which is not shown in

(1.4) for brevity.

Let x(𝑡; x0, w) denote the solution of (1.4) for a given initial condition x0 and

disturbance function w. Given admissible sets of initial conditions 𝑋0 and disturbance

functions 𝒲 , the reachable set of (1.4) is defined for every time 𝑡 ∈ [𝑡0, 𝑡𝑓 ] as

ℛ(𝑡) = {x(𝑡; x0, w) : x0 ∈ 𝑋0, w ∈ 𝒲}.

For every time 𝑡, ℛ(𝑡) contains all possible states at 𝑡 under relevant uncertainties. In

order to verify the safety of (1.4), all the states in ℛ(𝑡) should be safe. Therefore, we

aim to compute reachability bounds of ℛ(𝑡) for the closed-loop system (1.4) to ensure
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the safety of vehicle trajectories.

1.6.1 Motivation and Existing Methods

Path and trajectory tracking is important in automated driving systems for road

vehicles, motion planning for autonomous robots, etc. [67, 68]. However, the reference

paths and trajectories computed by such systems, which are safe by design, are not

followed exactly by the vehicle due to various uncertainties in the vehicle’s dynamics and

environment (e.g., model parameters, tire slip, wind, measurement noises, etc.). These

deviations can lead to collisions or violations of other safety constraints. Therefore,

methods for ensuring safety of a vehicle’s real trajectory in real time are essential for

achieving safe autonomous systems in practice. For example, such methods will be

necessary to realize the anticipated safety benefits of autonomous road vehicles that

result from eliminating delayed reactions and other human errors [67].

The existing literature on vehicle safety verification addresses several distinct

problems based on how the vehicle’s control inputs are handled. One class of methods

assumes the inputs obey a probability distribution modeling the action of human

drivers and aims to compute the likelihood of a collision [69, 70, 71]. These methods

are primarily designed to generate warning alarms for human drivers, not for use in

automated control systems.

A second class of methods treats the inputs as degrees of freedom and aims to

compute either a feedback law or an open-loop input that guarantees safe trajectories

[72, 73, 74, 75]. General approaches in this category require the solution of Hamilton-

Jacobi-Isaac (HJI) partial differential equations, which is prohibitive because it scales

exponentially in the number of states. This is partially addressed by dimension

reduction methods in [73], but remains a significant limitation.

A third class of methods considers the simpler problem of verifying safety for

a fixed control input specified a priori. This input can be specified as either an
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open-loop input [76, 77, 78, 79] or a fixed feedback law [80, 34, 81, 10, 82, 83, 84].

Although these methods only assess the safety of a given control input rather than

synthesizing a safe input, they address a critical subtask that can be used within larger

algorithms for synthesizing safe controllers or motion plans. The methods in [76, 77,

79, 83, 84] compute the probability of safety violations by sampling or using stochastic

reachable sets. Therefore, these methods cannot make rigorous safety guarantees,

which is a drawback in some applications. Moreover, sampling-based methods are

computationally demanding for systems with more than a few uncertain quantities,

which limits their use for online safety verification. In contrast, the methods in [78, 80,

34, 81, 10, 82] aim to provide rigorous safety guarantees for systems subject to bounded

uncertainties using reachability analysis techniques. However, efficiently computing

an accurate enclosure of the reachable set of a nonlinear system is a significant

challenge. To avoid this, most safety verification approaches use linear models [78, 81]

or linearizations of nonlinear models [34, 74, 80]. Unfortunately, verifying safety of a

linearized model does not ensure that the original model is safe. To date, the only

guaranteed safety verification approach applicable to nonlinear vehicle models is given

in [10, 82]. For the example considered in [10], it was shown that this method can

verify the safety of a trajectory about 2× faster than the real vehicle traverses the

trajectory. While this is promising, there is still a need for significantly more efficient

methods to support verification for more complex models and to enable the use of

online verification within iterative algorithms for safe controller synthesis. In practice,

autonomous vehicles often update their trajectories every few milliseconds [85, 86, 87],

so reachability-based verification on a similar time-scale is desirable.

This chapter focuses on the problem of rigorous safety verification for nonlinear

vehicle models under a fixed feedback controller. Specifically, given a vehicle model, a

fixed reference path or trajectory, and a fixed tracking controller, we are interested in

computing a rigorous enclosure of the reachable set of the closed loop system under
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uncertainty.

Many methods are available for computing rigorous reachable set enclosures for

continuous-time nonlinear systems. However, these methods often exhibit an un-

workable compromise between accuracy and computational efficiency, particularly

for systems with strong nonlinearities or large uncertainties. The zonotope-based

method in [88], which has been applied for safety verification in [82, 10], propagates

valid enclosures over discrete time steps using a conservative linearization technique

with rigorously bounded linearization errors. Although this method is effective in

many cases, the linearization error bound can be conservative for systems with strong

nonlinearities. Moreover, high-order zonotopes and/or partitioning may be required

to achieve high accuracy, which may become inefficient. Another class of reachability

methods propagates valid enclosures over discrete time steps by first constructing a

Taylor expansions of the states with respect to time and then computing rigorous

bounds on the coefficients and remainder term [89]. Early methods computed these

bounds using interval arithmetic, but contemporary methods achieve much higher

accuracy using Taylor model arithmetic, which is based on multivariate Taylor expan-

sions with respect to uncertain parameters [90, 91, 92, 93]. However, high accuracy

may require high-order Taylor models, which also comes with high computational

cost.

A final class of reachability methods is based on the theory of differential inequalities

(DI). These methods compute valid enclosures as the solutions of an auxiliary system

of ordinary differential equations (ODEs). The standard DI method computes interval

enclosures using an auxiliary system constructed via interval arithmetic [94]. This

is very efficient, which is attractive for online verification, but it usually computes

very conservative bounds. Several more recent DI methods have addressed this by

replacing intervals with polytopes [27], Taylor models [95], or mean value enclosures

[96]. These methods produce much tighter bounds than standard DI, but are not
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as efficient. Another category of DI methods aims to use model redundancy to

mitigate the conservatism of the standard interval DI method while largely retaining

its speed. These approaches identify constraints that are redundant with the dynamics

(a.k.a. invariants), such as conservation laws, non-negativity of certain states, etc., and

exploit them within iterative refinement algorithms to tighten the bounds continuously

as they are propagated forward in time [24, 26, 96]. Importantly, this method can

be applied to general nonlinear systems that do not satisfy any known invariants by

manufacturing invariants [26]. This process involves embedding the system within a

higher-dimensional system that obeys invariants by design (see Chapter 6 for details).

Redundancy-based DI methods have proven to be remarkably effective for many case

studies, including systems that naturally satisfy invariants and many that do not

[24, 26, 96]. However, this approach requires significant problem insight to apply

effectively, especially when invariants must be manufactured. To date, successful

strategies have only been clearly demonstrated for models that arise from dynamic

mass and energy balances, particularly in the chemical engineering domain, where it

is relatively straightforward to manufacture simple and effective affine invariants.

1.6.2 Contributions

In this chapter, we demonstrate the application of advanced redundancy-based DI

methods to three representative case studies in vehicle path and trajectory tracking.

The application of redundancy-based DI to this class of problems is challenging for

three primary reasons. First, to the best of our knowledge, the models we consider do

not naturally obey any invariants. Moreover, compared to mass and energy balance

models, it much more difficult to identify effective manufactured invariants. Second,

the presence of a feedback law in these models causes a significant interval dependency

problem, which leads to very conservative bounds using interval-based methods if it

is not addressed. Both of these challenges are explained in more detail in Chapter 6.

21



Finally, the vehicle models of interest involve several functions that do not have well-

defined interval evaluations, or whose interval evaluations violate Lipschitz regularity

conditions that are required by DI-based reachability methods.

To address these issues, we first develop extended interval operations for several

functions common in vehicle models and prove Lipschitz regularity. Next, we demon-

strate the application of redundancy-based DI for three case studies in detail. In

all cases, we address the feedback dependency problem through appropriate coordi-

nate transformations. Moreover, we develop highly effective nonlinear manufactured

invariants. In all cases, we ultimately obtain reachability bounds that are greatly

improved relative to the standard DI method, and appear both accurate and efficient

enough to support many online safety verification tasks, although there is clearly still

room for improvement. Finally, we conclude with a discussion of lessons learned and

general strategies that are likely to be effective for other path and trajectory tracking

problems.

1.6.3 Overall Summary

This dissertation is organized as follows. Chapter 2 introduces a discrete-time reacha-

bility analysis method using differential inequalities with invariants. The invariants

are manufactured based on the special structure in many chemical reaction and

separation models. Moreover, strategies to manufacture invariants for autonomous

driving systems are proposed in Chapter 6. Next, Chapter 3 extends the reachability

method to set-based state estimation by adding an accurate correction step. Then,

Chapter 4 proposes a fast and accurate set-based fault detection method based on

the state estimation algorithm in Chapter 3. Although the set-based state estimation

and fault detection methods developed in this thesis use interval enclosures, many

state-of-the-art methods use zonotopic enclosures. A key challenge with these methods

is that many operations on zonotopes increase the complexity of the enclosure, and
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hence also increase the computational cost of future operations. Chapter 5 provides

a comprehensive comparison of zonotope order reduction methods for addressing

this problem, along with some new results that can be used to improve set-based

state estimation and fault detection algorithms using zonotopes. Finally, Chapter 6

applies differential inequalities with manufactured invariants to verify the safety of

autonomous vehicle trajectory tracking systems.
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CHAPTER 2

ACCURATE UNCERTAINTY PROPAGATION FOR

DISCRETE-TIME NONLINEAR SYSTEMS USING DIFFERENTIAL

INEQUALITIES WITH MODEL REDUNDANCY

2.1 Introduction

This chapter presents new methods for accurately and efficiently propagating uncer-

tainty through nonlinear discrete-time models in the form of rigorous interval bounds

on the set of possible solutions (i.e., the reachable set). Enclosing reachable sets is a

critical step in set-based state estimation [3, 4], which is used in a variety of robust

control and fault detection algorithms [5, 6, 7, 97]. Reachable sets are also widely used

in safety verification, motion planning, design space construction, and many other

applications [9, 10, 11].

A number of effective algorithms are available for bounding the reachable sets of

discrete-time linear systems [12, 13, 14, 2]. However, for nonlinear systems, computing

accurate enclosures remains a significant challenge, especially when enclosures must

be computed rapidly online. In essence, propagating an enclosure 𝑋𝑘 from time 𝑘 to

𝑘 + 1 is equivalent to bounding the image of 𝑋𝑘 under the nonlinear vector function

defining the dynamics. This can be done efficiently using interval arithmetic [15], but

the resulting enclosure is often very conservative. A tighter interval enclosure can be

obtained by partitioning 𝑋𝑘, but this is much more costly [15, 16]. For polynomial

systems, tighter bounds on the image of 𝑋𝑘 have been obtained using optimization

formulations such as linear, semidefinite, and DC programming [17, 18, 19]. In [20],

a new approach for efficiently optimizing polynomials over parallelotopes using the

Bernstein basis is applied, and in [11, 21], polynomial dynamics are represented as linear
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fractional transformations and bounded using the skewed structured singular value.

However, optimization-based approaches may be too computationally demanding for

online applications. A faster approach is to propagate 𝑋𝑘 from 𝑘 to 𝑘 + 1 by first

considering a local linearization of the dynamics and then adding a rigorous bound on

the linearization error [22, 23]. This strategy exploits efficient set-based calculations

that are possible in the linear case (e.g., using zonotopes), but can suffer from large

linearization errors for nonlinear systems.

In this chapter, we present two new methods for discrete-time uncertainty propa-

gation motivated by continuous-time methods based on differential inequalities (DI)

[28]. For continuous-time systems, the basic DI method uses interval arithmetic to

construct bounding differential equations that furnish time-varying interval bounds as

their solutions [94, 24]. Like discrete-time interval methods (without partitioning),

this produces bounds at low cost, but can be very conservative. However, DI is not

directly analogous to discrete-time interval methods, and it does provide sharp bounds

in many nontrivial cases, such as for quasi-monotone systems [28]. More importantly,

several advanced DI methods have recently been developed that largely retain the

efficiency of the original method while providing much tighter enclosures [98, 25, 24,

99, 100, 27, 26]. Thus, there is significant motivation to extend these approaches to

discrete time.

However, DI theory depends critically on the fact that, for continuous-time systems,

a trajectory cannot leave a set 𝑋 without crossing its boundary. Thus, to propagate

a reachable set enclosure forward in time, it is enough to consider the behavior of

the vector field on its boundary [28]. Unfortunately, this is not true in discrete-

time, and this precludes any straightforward analogue of the DI approach for general

discrete-time systems.

Despite this fact, the first main result of this chapter shows that a direct discrete-

time extension of the standard DI method in [94] does provide valid reachability bounds
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whenever the right-hand side of the discrete-time system satisfies a simple monotonicity

property. Since this property is not required in continuous-time, it stands to reason

that it should hold generally for discrete-time systems that accurately approximate

a continuous-time model. Indeed, we show that the required property holds for any

system derived by forward Euler discretization provided that the right-hand side is

locally Lipschitz continuous and the step size is below an easily computable upper

bound. This bound is no more restrictive than that required to preserve basic physical

properties of the solution, such as non-negativity [29].

Next, we consider the advanced DI method in [24, 26], which achieves much

tighter bounds than standard DI by exploiting redundant model equations within

an iterative bound refinement operator. We show that this method is also valid in

discrete-time provided that the refinement operator satisfies a Lipschitz condition and

the right-hand side function satisfies a stronger monotonicity property that depends

on the refinement Lipschitz constant. Again, we show that this property always

holds for Euler discretized systems with sufficiently small step size, but the step

size limit in this case also depends on the refinement Lipschitz constant. Two new

refinement algorithms are then presented that are deliberately designed to balance

refinement accuracy with a low Lipschitz constant, and simple formulas are established

for computing this constant. Finally, the new DI methods are compared to a standard

discrete-time interval method and two popular methods using zonotopes [22, 23]. Our

results show that discrete-time DI offers significant advantages in terms of both speed

and accuracy for some challenging examples.

We emphasize that our aim is not to bound the reachable sets of continuous-time

systems using discrete-time approximations, but rather to bound the reachable sets of

discrete-time systems directly for use in discrete-time algorithms for robust estimation

and control. Nevertheless, many discrete-time systems of interest are approximations

of continuous-time systems, and our results show that this leads to properties that
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are useful for bounding. Also, note that the methods herein strictly do not use

differential inequalities since they are formulated in discrete-time. We refer to them

as discrete-time DI methods only to emphasize their direct connection to true DI

methods for continuous-time systems.

In practice, however, discrete-time systems are often obtained by forward Euler

discretization of continuous-time models. Focusing on this special case, our main

results show that, for any given system, there exists a bound on the discretization step

size below which a discrete-time analogue of the basic DI method provides bounds

on the reachable sets of the discretized system. This step size bound can be easily

computed in advance, and is no more restrictive than the step size required to preserve

basic physical properties of the solution, such as non-negativity [29]. Moreover, the

DI bounding results can be applied to general discrete-time systems as well under

a monotonicity condition. Next, we show that the advanced DI methods in [24, 26]

are also valid in discrete time under a tighter step size restriction. This theoretical

development can be generalized to consider dynamic systems subject to externally

imposed state nonlinear constraints, where one is only interested in bounding the

feasible trajectories, which is useful in optimal control applications. We compare both

methods to the standard discrete-time interval method and two popular methods

using zonotopes [22, 23]. Our results show that discrete-time DI offers significant

advantages in terms of both speed and accuracy.

The remainder of Section 2.1 gives a formal problem statement and introduces

some required notation. Next, Sections 2.2 and 2.3 develop discrete-time extensions of

the standard DI method in [94] and the advanced DI method in [24, 26]. Section 2.5

develops new algorithms for bound refinement based on nonlinear constraints. Case

studies are presented in Section 2.6 and Section 2.7 gives concluding remarks.
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2.1.1 Problem Statement

Let K ≡ {0, . . . , 𝐾} be a time horizon of interest and let h : 𝐷ℎ ⊂ K×R𝑛𝑥×R𝑛𝑤 → R𝑛𝑥 .

Moreover, let 𝐺 ⊂ K×R𝑛𝑥 ×R𝑛𝑤 and consider the constrained discrete-time system:

x𝑘+1 = h (𝑘, x𝑘, w𝑘) , (2.1a)

x0 = c0, (2.1b)

(𝑘, x𝑘, w𝑘) ∈ 𝐺. (2.1c)

Let 𝐶0 ⊂ R𝑛𝑥 and 𝑊 ⊂ R𝑛𝑤 be intervals of admissible initial conditions and distur-

bances, respectively. Define the shorthand x0:𝐾 = (x0, . . . , x𝐾), w0:𝐾 = (w0, . . . , w𝐾),

𝑊0:𝐾 ≡ 𝑊×· · ·×𝑊 , and R𝑛𝑥
0:𝐾 ≡ R𝑛𝑥×· · ·×R𝑛𝑥 . We call (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0×𝑊0:𝐾×

R𝑛𝑥
0:𝐾 a solution of (2.1a)–(2.1b) if it satisfies (2.1a)–(2.1b) for all 𝑘 ∈ {0, . . . , 𝐾 − 1},

and a solution of (2.1) if it also satisfies (2.1c) for all 𝑘 ∈ {0, . . . , 𝐾}.

Definition 1. The reachable set of the discrete-time system (2.1) is defined for every

𝑘 ∈ K by

ℛ𝑘 ≡{z ∈ R𝑛𝑥 : ∃ a solution (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾

× R𝑛𝑥
0:𝐾 of (2.1) satisfying x𝑘 = z}.

We are interested in computing reachable set enclosures in the form of state bounds,

defined as follows.

Definition 2. Two sequences x𝐿
0:𝐾 and x𝑈

0:𝐾 are called state bounds for (2.1) if

ℛ𝑘 ⊂ [x𝐿
𝑘 , x𝑈

𝑘 ], ∀𝑘 ∈ K.

Depending on the application, the inputs w𝑘 may represent disturbances, control

inputs, or model uncertainties. Time-invariant uncertainties p ∈ 𝑊 can be modeled

by simply setting w𝑘 = p in (2.1). This is a special case of our problem formulation
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in the sense that any state bounds that are valid for all solutions of (2.1) must also

be valid for all solutions with w𝑘 = p, ∀𝑘 ∈ K. Unconstrained systems are also a

special case since we may always choose 𝐺 = K× R𝑛𝑥 × R𝑛𝑤 . In optimal and robust

control applications, 𝐺 may include state constraints that must hold for all solutions

of interest, but not necessarily for all solutions of (2.1a)–(2.1b). By Definition 2,

state bounds are then only required to enclose the feasible solutions. However, our

main motivation for including 𝐺 in (2.1) is to impose constraints that are redundant

with (2.1a)–(2.1b) (i.e., they are implied by (2.1a)–(2.1b) and therefore satisfied by

every solution of (2.1a)–(2.1b)). Examples include the non-negativity of certain states,

conservation laws, and more general invariant sets for (2.1a)–(2.1b). In this case, the

reachable sets of (2.1) are the same as those of (2.1a)–(2.1b), and state bounds must

enclose all solutions of (2.1a)–(2.1b). We will show that such a set 𝐺 can often be

used to refine state bounds at every 𝑘, resulting in much sharper bounds than would

be obtained by considering only (2.1a)–(2.1b). This use of model redundancy is now

well-established for continuous-time systems [98, 24, 100]. Moreover, for systems that

do not satisfy any known redundant constraints, a set 𝐺 can be manufactured by

introducing redundant states into the model, often resulting in much sharper bounds

[26].

2.1.2 Notation

For z𝐿, z𝑈 ∈ R𝑛, let 𝑍 = [z𝐿, z𝑈 ] denote the compact 𝑛-dimensional interval {z ∈ R𝑛 :

z𝐿 ≤ z ≤ z𝑈}, and denote the set of all such intervals by IR𝑛. For 𝐷 ⊂ R𝑛, let I𝐷

denote the set of all intervals 𝑍 such that 𝑍 ⊂ 𝐷. For 𝑍 ∈ IR𝑛, define the midpoint

mid(𝑍) = 1
2(z𝑈+z𝐿), width 𝑤(𝑍) = ‖z𝑈−z𝐿‖∞, magnitude |𝑍| = max{‖z‖∞ : z ∈ 𝑍},

and mignitude ⟨𝑍⟩ = min{‖z‖∞ : z ∈ 𝑍} [101].
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Denote the Hausdorff distance between two compact sets 𝑍, 𝑋 ⊂ R𝑛 by

𝑑𝐻(𝑍, 𝑋) = max{max
z∈𝑍

min
x∈𝑋
‖x− z‖∞, max

x∈𝑋
min
z∈𝑍
‖x− z‖∞}. (2.2)

For 𝑍, 𝑋 ∈ IR𝑛, the Hausdorff distance simplifies to

𝑑𝐻(𝑍, 𝑋) = max{‖z𝐿 − x𝐿‖∞, ‖z𝑈 − x𝑈‖∞}. (2.3)

2.2 State Bounds for Unconstrained Systems

This section presents a new method for computing state bounds for the unconstrained

system (2.1a)–(2.1b), which is equivalent to (2.1) with 𝐺 = K × R𝑛𝑥 × R𝑛𝑤 . We

assume throughout that an inclusion function is available for h.

Assumption 1. Let 𝐻 : 𝐷𝐻 ⊂ K× IR𝑛𝑥 × IR𝑛𝑤 → IR𝑛𝑥 satisfy the condition: For

any (𝑘, 𝑍, 𝑉 ) ∈ 𝐷𝐻 , the set {𝑘} × 𝑍 × 𝑉 is contained in 𝐷ℎ and

𝐻(𝑘, 𝑍, 𝑉 ) ⊃ {h(𝑘, z, v) : (z, v) ∈ 𝑍 × 𝑉 }.

Denote the elements of 𝐻 by 𝐻𝑖 = [ℎ𝐿
𝑖 , ℎ𝑈

𝑖 ].

If h(𝑘, ·, ·) is a factorable function (i.e., it can be written explicitly in computer

code using a standard mathematics library), then 𝐻(𝑘, ·, ·) can be readily computed

as its natural interval extension [102].

Given 𝐻, it is well known that state bounds for (2.1a)–(2.1b) can be computed as

the solutions of the bounding system [16]:

𝑥𝐿
𝑘+1,𝑖 = ℎ𝐿

𝑖 (𝑘, [x𝐿
𝑘 , x𝑈

𝑘 ], 𝑊 ), 𝑥𝐿
0,𝑖 = 𝑐𝐿

0,𝑖, (2.4)

𝑥𝑈
𝑘+1,𝑖 = ℎ𝑈

𝑖 (𝑘, [x𝐿
𝑘 , x𝑈

𝑘 ], 𝑊 ), 𝑥𝑈
0,𝑖 = 𝑐𝑈

0,𝑖,

for all 𝑖 ∈ {1, . . . , 𝑛𝑥}, where [c𝐿
0 , c𝑈

0 ] ≡ 𝐶0. While this method is very computationally
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efficient, it usually produces very conservative bounds. In contrast, this section

establishes conditions under which (2.4) can be refined by only bounding the range of

each ℎ𝑖 over particular faces of the current bounding interval [x𝐿
𝑘 , x𝑈

𝑘 ].

Definition 3. Let 𝛽𝐿
𝑖 , 𝛽𝑈

𝑖 : IR𝑛𝑥 → IR𝑛𝑥 for every 𝑖 ∈ {1, . . . , 𝑛𝑥} be defined by

𝛽𝐿
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
≡ {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝐿

𝑖 },

𝛽𝑈
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
≡ {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝑈

𝑖 }.

We now consider the refinement of (2.4):

𝑥𝐿
𝑘+1,𝑖 = ℎ𝐿

𝑖 (𝑘, 𝛽𝐿
𝑖

(︁
[x𝐿

𝑘 , x𝑈
𝑘 ]
)︁

, 𝑊 ), 𝑥𝐿
0,𝑖 = 𝑐𝐿

0,𝑖, (2.5)

𝑥𝑈
𝑘+1,𝑖 = ℎ𝑈

𝑖 (𝑘, 𝛽𝑈
𝑖

(︁
[x𝐿

𝑘 , x𝑈
𝑘 ]
)︁

, 𝑊 ), 𝑥𝑈
0,𝑖 = 𝑐𝑈

0,𝑖,

for all 𝑖 ∈ {1, . . . , 𝑛𝑥}. The form of (2.5) is motivated by state bounding methods

for continuous-time systems based on the theory of differential inequalities. The key

observation in these methods is that a continuous-time trajectory cannot leave a

bounding interval without first crossing its boundary. Thus, it is only necessary for

a bounding approach to account for the possible values of the vector field on the

boundaries of [x𝐿
𝑘 , x𝑈

𝑘 ]; see [24] for details. This is known to lead to much tighter

bounds for continuous time systems, specifically because 𝛽
𝐿/𝑈
𝑖

(︁
[x𝐿

𝑘 , x𝑈
𝑘 ]
)︁
⊂ [x𝐿

𝑘 , x𝑈
𝑘 ]

for all 𝑖, and so taking the natural interval extension of a function over 𝛽
𝐿/𝑈
𝑖

(︁
[x𝐿

𝑘 , x𝑈
𝑘 ]
)︁

instead of [x𝐿
𝑘 , x𝑈

𝑘 ] often yields tighter bounds (the result can be the same for some

simple functions; see Section 2.6.5). However, this key observation is generally not true

for discrete-time systems, since it is possible for x𝑘 to jump directly from the interior

of [x𝐿
𝑘 , x𝑈

𝑘 ] to its exterior in a single discrete time step. Even so, it could be anticipated

that (2.5) would be valid for discrete-time systems that are good approximations

of a continuous-time model, which is the case in most applications of interest. The
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following result shows that (2.5) is in fact valid under a monotonicity condition on h

which is likely to hold for discrete approximations of continuous dynamics, as discussed

in §2.2.1.

Theorem 1. Choose any compact set �̄� such that K × �̄� ×𝑊 ⊂ 𝐷ℎ. For every

𝑖 ∈ {1, . . . , 𝑛𝑥}, assume that

ℎ𝑖(𝑘, x, w)− ℎ𝑖(𝑘, x̂, w) ≥ 0, (2.6)

for every (𝑘, x, w), (𝑘, x̂, w) ∈ K × �̄� ×𝑊 such that 𝑥𝑖 ≥ �̂�𝑖 and 𝑥𝑗 = �̂�𝑗, ∀𝑗 ̸= 𝑖.

Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.5) and let 𝐾* denote the largest integer in K

such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*. If (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 is

a solution of (2.1a)–(2.1b), then x𝑘 ∈ [x𝐿
𝑘 , x𝑈

𝑘 ], ∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. Let (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0×𝑊0:𝐾 ×R𝑛𝑥
0:𝐾 be a solution of (2.1a)–(2.1b). Choose

any 𝑘 ∈ {0, . . . , 𝐾* − 1}. Using the shorthand 𝑋𝑘 ≡ [x𝐿
𝑘 , x𝑈

𝑘 ], we will show that

x𝑘 ∈ 𝑋𝑘 implies x𝑘+1 ∈ 𝑋𝑘+1. Since x0 ∈ 𝑋0 by (2.5), the result follows by induction.

Suppose x𝑘 ∈ 𝑋𝑘. Choose any 𝑖 ∈ {1, . . . , 𝑛𝑥} and define x̂𝑘 by setting �̂�𝑘,𝑗 = 𝑥𝑘,𝑗

for all 𝑗 ̸= 𝑖 and �̂�𝑘,𝑖 = 𝑥𝐿
𝑘,𝑖. By definition, x̂𝑘 ∈ 𝛽𝐿

𝑖 (𝑋𝑘). Thus,

𝑥𝐿
𝑘+1,𝑖 − 𝑥𝑘+1,𝑖 = ℎ𝐿

𝑖

(︁
𝑘, 𝛽𝐿

𝑖 (𝑋𝑘) , 𝑊
)︁
− ℎ𝑖 (𝑘, x𝑘, w𝑘) ,

≤ ℎ𝑖 (𝑘, x̂𝑘, w𝑘)− ℎ𝑖 (𝑘, x𝑘, w𝑘) . (2.7)

Since 𝑘 < 𝐾*, the choice of 𝐾* implies that 𝑋𝑘 ⊂ �̄�. It follows that x̂𝑘, x𝑘 ∈ �̄�.

Since �̂�𝑘,𝑖 = 𝑥𝐿
𝑘,𝑖 < 𝑥𝑘,𝑖 and 𝑥𝑘,𝑗 = �̂�𝑘,𝑗, ∀𝑗 ̸= 𝑖, by (2.6) we have 𝑥𝐿

𝑘+1,𝑖 − 𝑥𝑘+1,𝑖 ≤ 0.

Since the choice of 𝑖 was arbitrary, x𝐿
𝑘+1 − x𝑘+1 ≤ 0. The proof that x𝑈

𝑘+1 − x𝑘+1 ≥ 0

follows similarly. Therefore, x𝑘+1 ∈ 𝑋𝑘.

If K× R𝑛𝑥 ×𝑊 ⊂ 𝐷ℎ and (2.6) is known to hold with �̄� = R𝑛𝑥 , then there is no

need to specify �̄� and we can set 𝐾* = 𝐾. Otherwise, Corollary 1 below provides a
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computationally verifiable test for satisfaction of (2.6) on compact �̄�. With �̄� ̸= R𝑛𝑥 ,

the inclusion [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� must be checked at every 𝑘 during the solution of the

bounding system (2.5). If this inclusion fails at 𝑘, then (2.5) is no longer valid and

(2.4) must be used instead (see Section 2.5.2 for details).

Corollary 1. Choose any compact convex set �̄� such that K × �̄� ×𝑊 ⊂ 𝐷ℎ. For

every 𝑖 ∈ {1, . . . , 𝑛𝑥} and 𝑘 ∈ K, assume that ℎ𝑖 is continuously differentiable with

respect to 𝑥𝑖 and

min
(x,w)∈�̄�×𝑊

𝜕ℎ𝑖

𝜕𝑥𝑖

(𝑘, x, w) ≥ 0. (2.8)

Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.5) and let 𝐾* denote the largest integer in K

such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*. If (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 ×R𝑛𝑥
0:𝐾 is a

solution of (2.1a)–(2.1b), then x𝑘 ∈ [x𝐿
𝑘 , x𝑈

𝑘 ], ∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. By Theorem 1, it suffices to show that (2.6) holds for every (𝑘, x, w), (𝑘, x̂, w) ∈

K× �̄� ×𝑊 such that 𝑥𝑖 ≥ �̂�𝑖 and 𝑥𝑗 = �̂�𝑗, ∀𝑗 ̸= 𝑖. Choose any such points and any

𝑖 ∈ {1, . . . , 𝑛𝑥}. Since ℎ𝑖 is continuously differentiable w.r.t. 𝑥𝑖 and �̄� is convex, the

Mean Value Theorem furnishes x̃ ∈ �̄� such that

ℎ𝑖(𝑘, x, w)− ℎ𝑖(𝑘, x̂, w) = 𝜕ℎ𝑖

𝜕𝑥𝑖

(𝑘, x̃, w)(𝑥𝑖 − �̂�𝑖). (2.9)

Since 𝑥𝑖 − �̂�𝑖 ≥ 0 and 𝜕ℎ𝑖

𝜕𝑥𝑖
(𝑘, x̃, w) ≥ 0 by (2.8), we have ℎ𝑖(𝑘, x, w)− ℎ𝑖(𝑘, x̂, w) ≥ 0

as desired.

2.2.1 Explicit Euler Systems

An important special case where the improved bounding system (2.5) will very often

be valid is when the discrete-time system of interest is derived by forward Euler
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discretization of a continuous-time model with step size 𝛿 ∈ R+. In this case,

h(𝑘, x, w) = x + 𝛿f(𝑘, x, w) (2.10)

for some f : 𝐷ℎ → R𝑛𝑥 . Notably, the following result does not require any monotonicity

properties of f .

Corollary 2. Choose any compact set �̄� such that K× �̄� ×𝑊 ⊂ 𝐷ℎ. Assume that

h is given by (2.10) and let f satisfy the following Lipschitz condition: There exists

𝑀 ∈ R+ such that

|𝑓𝑖 (𝑘, x, w)− 𝑓𝑖 (𝑘, x̂, w) | ≤𝑀 |𝑥𝑖 − 𝑥𝑖|, (2.11)

for every 𝑖 ∈ {1, . . . , 𝑛𝑥}, every 𝑘 ∈ K, and every (x, x̂, w) ∈ �̄� × �̄� ×𝑊 such that

𝑥𝑗 = �̂�𝑗 for all 𝑗 ̸= 𝑖. Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.5) and let 𝐾* denote the

largest integer in K such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*. If 𝛿 ∈ (0, 1
𝑀

], then every

solution (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 of (2.1a)–(2.1b) satisfies x𝑘 ∈ [x𝐿

𝑘 , x𝑈
𝑘 ],

∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. By Theorem 1, it suffices to show that (2.6) holds for every (𝑘, x, w), (𝑘, x̂, w) ∈

K× �̄� ×𝑊 such that 𝑥𝑖 ≥ �̂�𝑖 and 𝑥𝑗 = �̂�𝑗, ∀𝑗 ̸= 𝑖. For any such points, (2.11) gives

ℎ𝑖(𝑘, x̂, w)−ℎ𝑖(𝑘, x, w) (2.12)

= �̂�𝑖 − 𝑥𝑖 + 𝛿 [𝑓𝑖 (𝑘, x̂, w)− 𝑓𝑖 (𝑘, x, w)] ,

≤ �̂�𝑖 − 𝑥𝑖 + 𝛿𝑀 |�̂�𝑖 − 𝑥𝑖| ,

= (�̂�𝑖 − 𝑥𝑖)(1− 𝛿𝑀).

Since 𝛿 ∈ (0, 1
𝑀

] and �̂�𝑖 − 𝑥𝑖 ≤ 0, we have ℎ𝑖(𝑘, x̂, w)− ℎ𝑖(𝑘, x, w) ≤ 0 as desired.

The step size bound 𝛿 ≤ 1
𝑀

in Corollary 2 is not particularly restrictive. For
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comparison, if the non-negative orthant is positively invariant for a continuous-time

system, then it is necessary to have 𝛿 ≤ 1
𝑀

to ensure non-negativity of the explicit

Euler discretization [29]. Therefore, choosing 𝛿 > 1
𝑀

is unlikely to provide physically

meaningful solutions.

If K× R𝑛𝑥 ×𝑊 ⊂ 𝐷ℎ and each 𝑓𝑖 is globally Lipschitz continuous w.r.t. 𝑥𝑖, then

there exists 𝑀 satisfying (2.11) without restricting x and x̂ to a compact set �̄�.

However, if f is only locally Lipschitz, which is far more common, then 𝑀 is only

guaranteed to exist for x, x̂ ∈ �̄�, and 𝑀 depends on the choice of �̄�. This choice is

discussed further in Section 2.5.2. Theorem 2 gives a simple means to compute 𝑀

when f is continuously differentiable and �̄� is an interval.

Theorem 2. Choose any �̄� ∈ IR𝑛𝑥, assume that f is continuously differentiable, and

let J ∈ R𝑛𝑥×𝑛𝑥 have elements satisfying 𝐽𝑖𝑗 ≥ max
x∈�̄�,w∈𝑊

| 𝜕𝑓𝑖

𝜕𝑥𝑗
(x, w) |. Then the inequality

‖f (x, w)− f (x̂, w) ‖𝑝 ≤𝑀‖x− x̂‖𝑝 (2.13)

holds for all (x, x̂, w) ∈ �̄� × �̄� ×𝑊 with 𝑀 = ‖J‖𝑝, where ‖ · ‖𝑝 denotes the standard

𝑝-norm with any 𝑝 ≥ 1 or 𝑝 =∞.

Proof. For any (x, x̂, w) ∈ �̄� × �̄� ×𝑊 and any 𝑖 ∈ {1, . . . , 𝑛𝑥}, the Mean Value

Theorem gives 𝜖 ∈ �̄� such that

𝑓𝑖 (x, w)− 𝑓𝑖 (x̂, w) = 𝜕𝑓𝑖

𝜕x
(𝜖, w) (x− x̂) . (2.14)

Letting | · | denote the componentwise absolute value,

|𝑓𝑖(x, w)− 𝑓𝑖(x̂, w)| ≤
⃒⃒⃒⃒
⃒𝜕𝑓𝑖

𝜕x
(𝜖, w)

⃒⃒⃒⃒
⃒ |x− x̂| , (2.15)

and hence |f(x, w) − f(x̂, w)| ≤ J |x− x̂|. The result follows by taking 𝑝-norms on

both sides.

35



2.3 State Bounds for Constrained Systems

In this section, the bounding method (2.5) is extended to the case where a nontrivial

constraint set 𝐺 is available that can be used to refine the bounds at each 𝑘. The results

are again motivated by continuous-time methods based on differential inequalities,

where it has been shown that the use of 𝐺 often results in much sharper bounds [24,

100, 26, 103]. In these approaches, the constraint set 𝐺 is enforced using an interval

refinement operator ℐ𝐺. This operator must return an interval satisfying an inclusion

property which, translated to the discrete-time setting, is of the following form, where

(𝑍, 𝑉 ) is an arbitrary interval in IR𝑛𝑥 × IR𝑛𝑤 :

ℐ𝐺(𝑘, 𝑍, 𝑉 ) ⊃ {(z, v) ∈ 𝑍 × 𝑉 : (𝑘, z, v) ∈ 𝐺}. (2.16)

In the continuous-time theory, ℐ𝐺 is also required to satisfy a local Lipschitz property

with respect to 𝑍, but the size of the Lipschitz constant is not important. In contrast,

the validity of the discrete-time analogue of these methods presented below depends

on the size of this constant. Accordingly, it is important here to develop refinement

methods with Lipschitz constants that are both small and simple to compute (in order

to test the validity of the bounding method for a given system). Notably, however,

the analysis below shows that the refinements done by ℐ𝐺 are only required to be

Lipschitz when they are applied to the facets 𝑍 = 𝛽
𝐿/𝑈
𝑖 ([x𝐿

𝑘 , x𝑈
𝑘 ]) appearing in (2.5),

as is done in the continuous-time methods [24, 103]. In contrast, there is no such

requirement for refinements applied to 𝑍 = [x𝐿
𝑘 , x𝑈

𝑘 ] in every time step. To exploit

this observation, we develop the theory below with a generalized operator taking two

𝑍 inputs; i.e., ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ), and only required to be Lipschitz with respect to 𝑍 ′. In

Section 2.5, this will provide the flexibility to develop specific implementations of ℐ𝐺

that compromise between the accuracy of the refinement and the resulting Lipschitz

constant by replacing 𝛽
𝐿/𝑈
𝑖 ([x𝐿

𝑘 , x𝑈
𝑘 ]) with [x𝐿

𝑘 , x𝑈
𝑘 ] in certain places in the algorithm.
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The specific requirements on ℐ𝐺 are given in the following assumption.

Assumption 2. Let 𝐸ℐ ⊂ K× IR𝑛𝑥 × IR𝑛𝑤 and let

𝐷ℐ = {(𝑘, 𝑍 ′, 𝑍, 𝑉 ) : (𝑘, 𝑍, 𝑉 ) ∈ 𝐸ℐ , 𝑍 ′ ∈ I𝑍}.

Let ℐ𝐺 : 𝐷ℐ → IR𝑛𝑥 × IR𝑛𝑤 satisfy:

1. For any (𝑘, 𝑍 ′, 𝑍, 𝑉 ) ∈ 𝐷ℐ ,

ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ) ⊃ {(z, v) ∈ 𝑍 ′ × 𝑉 : (𝑘, z, v) ∈ 𝐺}.

2. For any (𝑘, 𝑍 ′, 𝑍, 𝑉 ) ∈ 𝐷ℐ , ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ) ⊂ 𝑍 ′ × 𝑉 .

3. For any compact �̄� ⊂ R𝑛𝑥 such that K× I�̄� × I𝑊 ⊂ 𝐸ℐ , ∃𝑀ℐ ∈ R+ such that

𝑑𝐻(ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ), ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 )) ≤𝑀ℐ𝑑𝐻(𝑍 ′, 𝑍 ′),

for all (𝑘, 𝑍, 𝑉 ) ∈ K× I�̄� × I𝑊 and 𝑍 ′, 𝑍 ′ ∈ I𝑍.

Remark 1. If 𝐺 is defined by a set of constraints, e.g., g(𝑘, x, w) = 0, then ℐ𝐺 will

often involve evaluating an inclusion function for g or its derivatives at (𝑘, 𝑍, 𝑉 ) or

(𝑘, 𝑍 ′, 𝑉 ) (see Section 2.5). In this case, the set 𝐸ℐ represents the domain of this

inclusion function. Many standard methods for refining interval enclosures based on a

set of constraints violate Condition 3 (particularly in the way division by zero and

other domain violations are handled) or result in large 𝑀ℐ . Specific algorithms that

satisfy Assumption 2 are developed in §2.5.

We now consider the bounding system

𝑥𝐿
𝑘+1,𝑖 = ℎ𝐿

𝑖 (𝑘, ℐ𝐺[𝑘, 𝛽𝐿
𝑖 (𝑋𝑘) , 𝑋𝑘, 𝑊 ]), 𝑥𝐿

0,𝑖 = 𝑐𝐿
0,𝑖, (2.17)

𝑥𝑈
𝑘+1,𝑖 = ℎ𝑈

𝑖 (𝑘, ℐ𝐺[𝑘, 𝛽𝑈
𝑖 (𝑋𝑘) , 𝑋𝑘, 𝑊 ]), 𝑥𝑈

0,𝑖 = 𝑐𝑈
0,𝑖,
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for all 𝑖 ∈ {1, . . . , 𝑛𝑥}, where 𝑋𝑘 = [x𝐿
𝑘 , x𝑈

𝑘 ]. The next theorem shows that (2.17) is

valid provided that h satisfies a stronger monotonicity condition that depends on 𝑀ℐ .

Theorem 3. Choose any compact set �̄� such that K×�̄�×𝑊 ⊂ 𝐷ℎ and K×I�̄�×I𝑊 ⊂

𝐸ℐ, and let 𝑀ℐ satisfy Condition 3 of Assumption 2. For every 𝑖 ∈ {1, . . . , 𝑛𝑥}, assume

that

ℎ𝑖(𝑘, x, w)− ℎ𝑖(𝑘, x̂, ŵ) ≥ 0, (2.18)

for every (𝑘, x, w), (𝑘, x̂, ŵ) ∈ K× �̄� ×𝑊 such that 𝑥𝑖 ≥ �̂�𝑖 and

‖(x, w)− (x̂, ŵ)‖∞ ≤𝑀ℐ(𝑥𝑖 − �̂�𝑖). (2.19)

Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.17) and let 𝐾* denote the largest integer in K

such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*. If (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 is

a solution of (2.1), then x𝑘 ∈ [x𝐿
𝑘 , x𝑈

𝑘 ], ∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. Let (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 be a solution of (2.1). Choose any

𝑘 ∈ {0, . . . , 𝐾* − 1}. Using the shorthand 𝑋𝑘 ≡ [x𝐿
𝑘 , x𝑈

𝑘 ], we will show that x𝑘 ∈ 𝑋𝑘

implies x𝑘+1 ∈ 𝑋𝑘+1. Since x0 ∈ 𝑋0 by (2.17), the result follows by induction.

Choose any 𝑖 ∈ {1, . . . , 𝑛𝑥} and define the interval 𝑋 𝑖
𝑘 by setting 𝑋 𝑖

𝑘,𝑗 = [𝑥𝐿
𝑘,𝑗, 𝑥𝑈

𝑘,𝑗]

for all 𝑗 ̸= 𝑖 and 𝑋 𝑖
𝑘,𝑖 = [𝑥𝑘,𝑖, 𝑥𝑘,𝑖]. Since 𝑘 < 𝐾*, we have 𝑋𝑘 ⊂ �̄�. Thus, by

Condition 3 of Assumption 2, it follows that

𝑑𝐻(ℐ𝐺[𝑘, 𝑋 𝑖
𝑘, 𝑋𝑘, 𝑊 ], ℐ𝐺[𝑘, 𝛽𝐿

𝑖 (𝑋𝑘), 𝑋𝑘, 𝑊 ]) (2.20)

≤𝑀ℐ𝑑𝐻(𝑋 𝑖
𝑘, 𝛽𝐿

𝑖 (𝑋𝑘)),

≤𝑀ℐ(𝑥𝑘,𝑖 − 𝑥𝐿
𝑘,𝑖).

By the definition of 𝑋 𝑖
𝑘, Condition 1 of Assumption 2 ensures that (x𝑘, w𝑘) ∈
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ℐ𝐺(𝑘, 𝑋 𝑖
𝑘, 𝑋𝑘, 𝑊 ). Let

(x*, w*) ∈ argmin
(x,w)∈ℐ𝐺(𝑘,𝛽𝐿

𝑖 (𝑋𝑘),𝑋𝑘,𝑊 )
‖(x, w)− (x𝑘, w𝑘)‖∞. (2.21)

By the definition of 𝑑𝐻 in (2.2), it follows from (2.20) that

‖(x*, w*)− (x𝑘, w𝑘)‖∞ ≤𝑀ℐ(𝑥𝑘,𝑖 − 𝑥𝐿
𝑘,𝑖). (2.22)

But Condition 2 of Assumption 2 implies 𝑥*
𝑘,𝑖 = 𝑥𝐿

𝑘,𝑖, so

‖(x*, w*)− (x𝑘, w𝑘)‖∞ ≤𝑀ℐ
(︁
𝑥𝑘,𝑖 − 𝑥*

𝑘,𝑖

)︁
. (2.23)

Since (x*, w*) ∈ ℐ𝐺(𝑘, 𝛽𝐿
𝑖 (𝑋𝑘), 𝑋𝑘, 𝑊 ), Condition 1 of Assumption 1 gives

𝑥𝐿
𝑘+1,𝑖 − 𝑥𝑘+1,𝑖 (2.24)

= ℎ𝐿
𝑖

(︁
𝑘, ℐ𝐺

[︁
𝑘, 𝛽𝐿

𝑖 (𝑋𝑘) , 𝑋𝑘, 𝑊
]︁)︁
− ℎ𝑖 (𝑘, x𝑘, w𝑘)

≤ ℎ𝑖(𝑘, x*, w*)− ℎ𝑖 (𝑘, x𝑘, w𝑘) .

In light of (2.23), the assumed monotonicity property of ℎ𝑖 implies that 𝑥𝐿
𝑘+1,𝑖−𝑥𝑘+1,𝑖 ≤

0. Since the choice of 𝑖 was arbitrary, x𝐿
𝑘+1−x𝑘+1 ≤ 0. The proof that x𝑈

𝑘+1−x𝑘+1 ≥ 0

follows similarly.

Corollary 3. Choose any compact convex set �̄� such that K × �̄� ×𝑊 ⊂ 𝐷ℎ and

K × I�̄� × I𝑊 ⊂ 𝐸ℐ , and let 𝑀ℐ satisfy Condition 3 of Assumption 2. For every

𝑖 ∈ {1, . . . , 𝑛𝑥} and 𝑘 ∈ K, assume that ℎ𝑖(𝑘, ·, ·) is continuously differentiable and

𝜕ℎ𝑖

𝜕𝑥𝑖

(𝑘, 𝜂)−𝑀ℐ

⎛⎝ 𝑛𝑥∑︁
𝑗 ̸=𝑖

⃒⃒⃒⃒
⃒𝜕ℎ𝑖

𝜕𝑥𝑗

(𝑘, 𝜂)
⃒⃒⃒⃒
⃒+

𝑛𝑤∑︁
𝑙=1

⃒⃒⃒⃒
⃒ 𝜕ℎ𝑖

𝜕𝑤𝑙

(𝑘, 𝜂)
⃒⃒⃒⃒
⃒
⎞⎠ ≥ 0, (2.25)

for all 𝜂 ∈ �̄� ×𝑊 . Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.17) and let 𝐾* denote the
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largest integer in K such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*. If (c0, w0:𝐾 , x0:𝐾) ∈

𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 is a solution of (2.1), then x𝑘 ∈ [x𝐿

𝑘 , x𝑈
𝑘 ], ∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. By Theorem 3, it suffices to show that (2.18) holds for every (𝑘, x, w), (𝑘, x̂, ŵ) ∈

K× �̄� ×𝑊 satisfying (2.19) and 𝑥𝑖 ≥ �̂�𝑖. Since ℎ𝑖(𝑘, ·, ·) is continuously differentiable

and �̄� ×𝑊 is convex, the Mean Value Theorem gives 𝜂 ∈ �̄� ×𝑊 such that,

ℎ𝑖 (𝑘, x̂, ŵ)− ℎ𝑖(𝑘, x, w) (2.26)

=
𝑛𝑥∑︁

𝑗=1

𝜕ℎ𝑖

𝜕𝑥𝑗

(𝑘, 𝜂)(�̂�𝑗 − 𝑥𝑗) +
𝑛𝑤∑︁
𝑙=1

𝜕ℎ𝑖

𝜕𝑤𝑙

(𝑘, 𝜂)(�̂�𝑙−𝑤𝑙).

By (2.19), it follows that

ℎ𝑖 (𝑘, x̂, ŵ)− ℎ𝑖(𝑘, x, w) ≤ 𝜕ℎ𝑖

𝜕𝑥𝑖

(𝑘, 𝜂)(�̂�𝑖 − 𝑥𝑖) (2.27)

+
⎛⎝∑︁

𝑗 ̸=𝑖

⃒⃒⃒⃒
⃒𝜕ℎ𝑖

𝜕𝑥𝑗

(𝑘, 𝜂)
⃒⃒⃒⃒
⃒+

𝑛𝑤∑︁
𝑙=1

⃒⃒⃒⃒
⃒ 𝜕ℎ𝑖

𝜕𝑤𝑙

(𝑘, 𝜂)
⃒⃒⃒⃒
⃒
⎞⎠𝑀ℐ(𝑥𝑖 − �̂�𝑖).

Since (�̂�𝑖 − 𝑥𝑖) ≤ 0, ℎ𝑖 (𝑘, x̂, ŵ)− ℎ𝑖(𝑘, x, w) ≤ 0 by (2.25).

When 𝑀ℐ can be computed (see §2.5) and �̄� is an interval, the inequality (2.25)

required by Corollary 3 can be readily checked by interval arithmetic. Choosing �̄�

more generally, e.g. as a zonotope or a polytope, can make (2.25) less restrictive but

also more difficult to check.

2.3.1 Explicit Euler Systems

As with the bounding system (2.5), we now show that the refined system (2.17) is

always valid for discrete-time systems derived by forward Euler discretization of a

continuous-time model with sufficiently small step size 𝛿 ∈ R+. The bound on 𝛿 here

is slightly stronger than in Corollary 2 and depends on 𝑀ℐ . But again, f need not be

monotonic.
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Corollary 4. Choose any compact set �̄� such that K×�̄�×𝑊 ⊂ 𝐷ℎ and K×I�̄�×I𝑊 ⊂

𝐸ℐ , and let 𝑀ℐ satisfy Condition 3 of Assumption 2. Assume h is given by (2.10) and

∃𝑀 ∈ R+ such that

‖f(𝑘, x, w)− f(𝑘, x̂, ŵ)‖∞ ≤𝑀‖(x, w)− (x̂, ŵ)‖∞ (2.28)

for every 𝑘 ∈ K and (x, w), (x̂, ŵ) ∈ �̄� ×𝑊 . Let x𝐿
0:𝐾 and x𝑈

0:𝐾 be solutions of (2.17)

and let 𝐾* denote the largest integer in K such that [x𝐿
𝑘−1, x𝑈

𝑘−1] ⊂ �̄� for all 𝑘 ≤ 𝐾*.

If 𝛿 ∈ (0, 1
𝑀𝑀ℐ

] and (c0, w0:𝐾 , x0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 × R𝑛𝑥
0:𝐾 is a solution of (2.1), then

x𝑘 ∈ [x𝐿
𝑘 , x𝑈

𝑘 ], ∀𝑘 ∈ {0, . . . , 𝐾*}.

Proof. By Theorem 3, it suffices to show that (2.18) holds for every (𝑘, x, w), (𝑘, x̂, ŵ) ∈

K× �̄� ×𝑊 satisfying (2.19) and 𝑥𝑖 ≥ �̂�𝑖. Using (2.28), we have

ℎ𝑖(𝑘, x̂, ŵ)− ℎ𝑖(𝑘, x, w) = �̂�𝑖 − 𝑥𝑖 + 𝛿 [𝑓𝑖 (𝑘, x̂, ŵ)− 𝑓𝑖 (𝑘, x, w)] ,

≤ �̂�𝑖 − 𝑥𝑖 + 𝛿𝑀 ‖(x̂, ŵ)− (x, w)‖∞ ,

≤ �̂�𝑖 − 𝑥𝑖 + 𝛿𝑀𝑀ℐ (𝑥𝑖 − �̂�𝑖) ,

= (�̂�𝑖 − 𝑥𝑖)(1− 𝛿𝑀𝑀ℐ). (2.29)

Since 𝛿 ∈ (0, 1
𝑀𝑀ℐ

] and �̂�𝑖−𝑥𝑖 ≤ 0, we have ℎ𝑖(𝑘, x̂, ŵ)−ℎ𝑖(𝑘, x, w) ≤ 0, as desired.

Remark 2. Since Corollary 4 requires f to be locally Lipschitz w.r.t. w as well as

x, computing 𝑀 requires a slight modification of Theorem 2. Specifically, if J is as

in Theorem 2 and L ∈ R𝑛𝑥×𝑛𝑤 satisfies 𝐿𝑖𝑗 ≥ max
x∈�̄�,w∈𝑊

| 𝜕𝑓𝑖

𝜕𝑤𝑗
(x, w) |, then (2.28) holds

with 𝑀 = ‖[J L]‖∞.

2.4 Refinement Operators for Linear Constraints

This section discusses an algorithm that can be used to define the refinement operator

ℐ𝐺 such that Assumption 2 holds and an upper bound on the Lipschitz constant 𝑀ℐ
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can be easily computed. Suppose that 𝐺 ≡ {z ∈ 𝑋nat : Mz = b}, where M ∈ R𝑚×𝑛𝑥 ,

b ∈ R𝑚, and 𝑋nat ∈ IR𝑛𝑥 is an interval of natural bounds (i.e., non-negativity). In

this case, [26] gives a specific algorithm for ℐ𝐺(𝑍) which refines each 𝑍𝑗 by considering

all rearrangements of Mz = b of the form 𝑧𝑗 = 𝑚−1
𝑖𝑗 (𝑏𝑖−

∑︀
𝑙 ̸=𝑗 𝑚𝑖𝑙𝑧𝑙) and bounding the

right-hand sides over 𝑍𝑙 ̸=𝑗 . Algorithm 1 below is a modification designed have smaller

𝑀𝐺 (the mid function returns the middle value of its arguments; see [24] for further

explanation of the algorithm). The algorithm in [26] gives a more accurate refinement

of 𝑍 than Algorithm 1 by executing [𝑧𝐿
𝑗 , 𝑧𝑈

𝑗 ]← [𝑦𝐿
𝑗 , 𝑦𝑈

𝑗 ] after each pass through the

inner loop over 𝑖. However, this nests all of the refinements in lines 8-9, leading to

large 𝑀𝐺. Theorem 4 gives a computable bound on the constant 𝑀𝐺 for Algorithm 1.

Algorithm 1 An implementation of ℐ𝐺 with small 𝑀𝐺

1: function IG(z𝐿, z𝑈 , 𝑋nat, M, b, tol)
2: [z𝐿, z𝑈 ]← [z𝐿, z𝑈 ] ∩𝑋nat
3: [y𝐿, y𝑈 ]← [z𝐿, z𝑈 ]
4: for 𝑞 = 1 to 𝑄 do
5: for 𝑗 = 1 to 𝑛𝑥 do
6: for 𝑖 = 1 to 𝑚 do
7: if |𝑚𝑖𝑗 | > tol then
8: 𝜍𝑖𝑗 ← 𝑏𝑖

𝑚𝑖𝑗
+
∑︀

𝑙 ̸=𝑗 min
(︁
−𝑚𝑖𝑙

𝑚𝑖𝑗
𝑧𝐿

𝑙 ,−𝑚𝑖𝑙
𝑚𝑖𝑗

𝑧𝑈
𝑙

)︁
9: 𝛾𝑖𝑗 ← 𝑏𝑖

𝑚𝑖𝑗
+
∑︀

𝑙 ̸=𝑗 max
(︁
−𝑚𝑖𝑙

𝑚𝑖𝑗
𝑧𝐿

𝑙 ,−𝑚𝑖𝑙
𝑚𝑖𝑗

𝑧𝑈
𝑙

)︁
10: 𝑦𝐿

𝑗 ← mid
(︁
𝑦𝐿

𝑗 , 𝑦𝑈
𝑗 , 𝜍𝑖𝑗

)︁
11: 𝑦𝑈

𝑗 ← mid
(︁
𝑦𝐿

𝑗 , 𝑦𝑈
𝑗 , 𝛾𝑖𝑗

)︁
12: end if
13: end for
14: end for
15: [z𝐿, z𝑈 ]← [y𝐿, y𝑈 ]
16: end for
17: return [z𝐿, z𝑈 ]
18: end function

Theorem 4. Define ℐ𝐺 as in Algorithm 1 and let 𝑄 be as in line 4. For each

𝑖 ∈ {1, . . . , 𝑚}, define 𝑚*
𝑖 ≡ min𝑗{|𝑚𝑖𝑗| : |𝑚𝑖𝑗| ≥ tol} and 𝛼𝑖 ≡ (‖m𝑖‖1/𝑚*

𝑖 ) − 1.

Definition 4 is satisfied with 𝑀𝐺 = [max(max𝑖 𝛼𝑖, 1)]𝑄.

Proof. Consider the case 𝑄 = 1. The intersection in line 2 can be written using min
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and max operators, which are both Lipschitz with constants 1. Thus, after line 2, the

dependence of z𝐿 and z𝑈 on the input bounds is Lipschitz with constant 1, and the

same is true of y𝐿 and y𝑈 after line 3. With 𝑄 = 1, z𝐿 and z𝑈 do not change again

until line 15.

For any (𝑖, 𝑗) with |𝑚𝑖𝑗| ≥ tol, lines 8–9 define 𝜁𝑖𝑗 and 𝛾𝑖𝑗 as Lipschitz functions

of (z𝐿, z𝑈), and hence of the input bounds, with constants bounded by 𝛼𝑖. Moreover,

since the mid operator is Lipschitz with constant 1, lines 10–11 define 𝑦𝐿
𝑗 and 𝑦𝑈

𝑗 as

Lipschitz functions of 𝜁𝑖𝑗, 𝛾𝑖𝑗, and the previous values of 𝑦𝐿
𝑗 and 𝑦𝑈

𝑗 with constant 1.

Thus, if 𝑀𝐺 = max(max𝑖 𝛼𝑖, 1) is a valid Lipschitz constant for 𝑦𝐿
𝑗 and 𝑦𝑈

𝑗 with respect

to the input bounds immediately before an execution of lines 10–11, then 𝑀𝐺 is also

valid for 𝑦𝐿
𝑗 and 𝑦𝑈

𝑗 immediately after. But since 𝑀𝐺 ≥ 1, this holds immediately

before the first execution of lines 10–11. Then, by induction, 𝑀𝐺 is a valid Lipschitz

constant for 𝑦𝐿
𝑗 and 𝑦𝑈

𝑗 at all stages of the algorithm, and by line 15, the same is

true of z𝐿 and z𝑈 at termination. Finally, it follows readily from the definition of 𝑑𝐻

that Lipschitz continuity of the output bounds with respect to the input bounds is

equivalent to Lipschitz continuity in 𝑑𝐻 , and with the same constant.

The result for 𝑄 > 1 follows immediately from the observation that setting 𝑄 > 1

is equivalent to nesting 𝑄 calls of Algorithm 1 with 𝑄 = 1.

2.5 Refinement Operators for Nonlinear Constraints

This section extends Section 2.4 by considering the case where 𝐺 is described in terms

of nonlinear equality constraints. Specifically, let g : 𝐷𝑔 ⊂ K×R𝑛𝑥 ×R𝑛𝑤 → R𝑛𝑔 and

let

𝐺 ≡ {(𝑘, x, w) ∈ 𝐷𝑔 : g(𝑘, x, w) = 0}. (2.30)
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Inequality constraints can be handled by simply adding slack variables (see [103]), but

we omit them here for brevity. In this case, ℐ𝐺 is required to satisfy

ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ) ⊃ {(z, v) ∈ 𝑍 ′ × 𝑉 : g(𝑘, z, v) = 0}, (2.31)

for all (𝑘, 𝑍, 𝑉 ) ∈ 𝐸ℐ and 𝑍 ′ ∈ I𝑍. A computationally efficient refinement algorithm

for 𝐺 sets of this type is given in [103] based on the interval Krawczyk method

[101]. However, that algorithm can have large 𝑀ℐ , which is of no consequence in

the continuous-time setting considered in [103], but is restrictive in Theorem 3 and

Corollaries 3–4 here. Thus, we follow a similar refinement strategy here, but achieve a

smaller and more easily computable Lipschitz constant by using 𝑍 rather than 𝑍 ′ in

some places in the algorithm, and exploiting the fact that ℐ𝐺 is only required to be

locally Lipschitz w.r.t. 𝑍 ′ (the refinement in [103] takes only one 𝑍 argument).

Assumption 3. Assume that g(𝑘, ·, ·) is continuously differentiable w.r.t. y = (x, w)

for every 𝑘 ∈ K. Moreover, for every 𝑖 ∈ {1, . . . , 𝑛𝑔} and 𝑗 ∈ {1, . . . , 𝑛𝑥 + 𝑛𝑤}, let[︁
𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
: 𝐷[𝑔] ⊂ K× IR𝑛𝑥 × IR𝑛𝑤 → IR satisfy the condition: For any (𝑘, 𝑍, 𝑉 ) ∈ 𝐷[𝑔],

the set {𝑘} × 𝑍 × 𝑉 is contained in 𝐷𝑔 and

[︃
𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑍, 𝑉 ) ⊃

{︃
𝜕𝑔𝑖

𝜕𝑦𝑗

(𝑘, z, v) : (z, v) ∈ 𝑍 × 𝑉

}︃
.

The refinement algorithms developed below satisfy Assumption 2 with 𝐸ℐ = 𝐷[𝑔]

and 𝐷ℐ = {(𝑘, 𝑍 ′, 𝑍, 𝑉 ) : (𝑘, 𝑍, 𝑉 ) ∈ 𝐷[𝑔], 𝑍 ′ ∈ I𝑍}. Choose any (𝑘, 𝑍 ′, 𝑍, 𝑉 ) ∈ 𝐷ℐ

and, for brevity, define 𝑌 = 𝑍 × 𝑉 and 𝑌 ′ = 𝑍 ′ × 𝑉 . Then, the required inclusion

(2.31) is equivalent to

ℐ𝐺(𝑘, 𝑌 ′, 𝑌 ) ⊃ {y ∈ 𝑌 ′ : g(𝑘, y) = 0} . (2.32)

To enclose this set, consider any (𝑘, y) ∈ K × 𝑌 ′ such that g(𝑘, y) = 0 and choose
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any ȳ ∈ 𝑌 ′. Since 𝑌 ′ is convex, for any 𝑖 ∈ {1, . . . , 𝑛𝑔}, the Mean Value Theorem

furnishes 𝜉 ∈ 𝑌 ′ satisfying

0 = 𝑔𝑖(𝑘, y) = 𝑔𝑖(𝑘, ȳ) + 𝜕𝑔𝑖

𝜕y
(𝑘, 𝜉)(y− ȳ). (2.33)

Thus, each interval 𝑌 ′
𝑗 can in principle be refined by rearranging this equation for

𝑦𝑗 and then bounding over 𝑌 ′
𝑙 ̸=𝑗. However, this may involve division by intervals

containing zero, which would violate the required Lipschitz property of ℐ𝐺. Instead,

we proceed by scaling (2.33) by 𝜇 ∈ R and adding 𝑦𝑗 − 𝑦𝑗 to both sides to obtain

𝑦𝑗 = 𝑦𝑗 + 𝜇

⎡⎣𝑔𝑖(𝑘, ȳ) +
∑︁
𝑙 ̸=𝑗

𝜕𝑔𝑖

𝜕𝑦𝑙

(𝑘, 𝜉)(𝑦𝑙 − 𝑦𝑙)
⎤⎦ (2.34)

+
(︃

1 + 𝜇
𝜕𝑔𝑖

𝜕𝑦𝑗

(𝑘, 𝜉)
)︃

(𝑦𝑗 − 𝑦𝑗).

Thus, 𝑌 ′
𝑗 can be refined by the inclusion

𝑦𝑗 ∈ 𝑦𝑗 + 𝜇

⎡⎣𝑔𝑖(𝑘, ȳ) +
∑︁
𝑙 ̸=𝑗

[︃
𝜕𝑔𝑖

𝜕𝑦𝑙

]︃
(𝑘, 𝑌 ′)(𝑌 ′

𝑙 − 𝑦𝑙)
⎤⎦

+
(︃

1 + 𝜇

[︃
𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑌 ′)

)︃
(𝑌 ′

𝑗 − 𝑦𝑗). (2.35)

The algorithm in [26] applies this refinement sequentially for each 𝑖 and 𝑗, and with

two choices of 𝜇 is designed to minimize the width of the third term in (2.35). If[︁
𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑌 ) were a singleton, then choosing 𝜇 = −1/

[︁
𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑌 ) would eliminate the term.

More generally, we consider choosing 𝜇 = −1/ mid
[︁

𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 ′). However, this may

result in division by zero. One possible fix for this is to use

𝜇 = −sgn
{︃

mid
[︃

𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑌 ′)

}︃
/max

{︃
𝜖,

⃒⃒⃒⃒
⃒mid

[︃
𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑌 ′)

⃒⃒⃒⃒
⃒
}︃

,

where 𝜖 > 0 is a user specified tolerance. However, the sgn function would vio-
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late Lipschitz continuity of the refinement operator. Instead, two choices of 𝜇 are

implemented:

𝜇± = ±1/ max
{︃

𝜖,

⃒⃒⃒⃒
⃒mid

[︃
𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑌 ′)

⃒⃒⃒⃒
⃒
}︃

. (2.36)

This ensures that the desired sign is always used.

This algorithm has been shown to satisfy a local Lipschitz condition w.r.t. 𝑌 ′ in [26].

However, the Lipschitz constant is difficult to compute and potentially large. To be

precise, choose any �̄� ∈ IR𝑛𝑥 such that K× I�̄� × I𝑊 ⊂ 𝐷[𝑔] and let 𝑌 = �̄� ×𝑊 and

𝑟 = 1
2𝑤(𝑌 ). Moreover, let 𝐵𝑔 be an upper bound on ‖g(𝑘, y)‖∞ for all (𝑘, y) ∈ K×𝑌 ,

and suppose that 𝑀𝑔 satisfies

‖g(𝑘, y)− g(𝑘, ŷ)‖∞ ≤𝑀𝑔‖y− ŷ‖∞, (2.37)

for all (𝑘, y, ŷ) ∈ K× 𝑌 × 𝑌 . Finally, let 𝐵[𝑔]𝑖𝑙 ≥
⃒⃒⃒[︁

𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
(𝑘, 𝑌 )

⃒⃒⃒
for all (𝑘, 𝑌 ) ∈ K× I𝑌 ,

and let 𝑀[𝑔]𝑖𝑙 satisfy

𝑑𝐻

(︃[︃
𝜕𝑔𝑖

𝜕𝑦𝑙

]︃
(𝑘, 𝑌 ′),

[︃
𝜕𝑔𝑖

𝜕𝑦𝑙

]︃
(𝑘, 𝑌 ′)

)︃
≤𝑀[𝑔]𝑖𝑙𝑑𝐻(𝑌 ′, 𝑌 ′), (2.38)

for all (𝑘, 𝑌 ′, 𝑌 ′) ∈ K× I𝑌 × I𝑌 . Then, letting Ψ𝑖𝑗(𝑘, 𝑌 ′) denote the right-hand side

of (2.35) with ȳ = mid(𝑌 ′) and 𝜇 as in (2.36), it can be shown that

𝑑𝐻(Ψ𝑖𝑗(𝑘, 𝑌 ′), Ψ𝑖𝑗(𝑘, 𝑌 ′)) ≤ 𝛼𝑖𝑗𝑑𝐻(𝑌 ′, 𝑌 ′), (2.39)

for all (𝑘, 𝑌 ′, 𝑌 ′) ∈ K× I𝑌 × I𝑌 , with

𝛼𝑖𝑗 = 2 + 𝜖−1
[︃
𝑀𝑔 +

∑︁
𝑙

(︁
𝐵[𝑔]𝑖𝑙 + 𝑟𝑀[𝑔]𝑖𝑙

)︁]︃
(2.40)

+ 𝜖−2𝑀[𝑔]𝑖𝑗

[︃
𝐵𝑔 + 𝑟

∑︁
𝑙

𝐵[𝑔]𝑖𝑙

]︃
.
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We omit the proof here since it is a straightforward but lengthy application of the

results in S2.1 of [101]. The constant 𝑀𝑔 arises from the dependence of the reference

point on 𝑌 ′, while 𝑀[𝑔]𝑖𝑙 arises from the use of 𝑌 ′ as an argument to
[︁

𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
. If

[︁
𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
(𝑘, ·)

is computed as the natural interval extension of 𝜕𝑔𝑖

𝜕𝑦𝑙
(𝑘, ·), then 𝑀[𝑔]𝑖𝑙 exists by Corollary

2.5.31 in [104] and can be computed using the results in S2.1 of [101], but this requires

specialized code and the results can be very conservative. On the other hand, inclusion

monotonicity implies that 𝐵[𝑔]𝑖𝑙 can be easily computed by 𝐵[𝑔]𝑖𝑙 =
⃒⃒⃒[︁

𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
(𝑘, 𝑌 )

⃒⃒⃒
.

Applying the refinement (2.35) sequentially for all (𝑖, 𝑗), as is done in [103], results in

an overall Lipschitz constant of 𝑀ℐ = 2Π𝑖,𝑗𝛼𝑖𝑗 , which is likely to be unacceptably large

for many problems. In contrast, applying (2.35) in parallel for all (𝑖, 𝑗) and intersecting

the results furnishes weaker bounds but the smaller constant 𝑀ℐ = max𝑖,𝑗 𝛼𝑖𝑗, which

may be acceptable in some cases but is potentially still quite large.

To address these issues, an alternative approach is to use 𝑌 instead of 𝑌 ′ when

evaluating each
[︁

𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
in (2.35). In this case, ȳ does not need to be in 𝑌 ′, but must be

in 𝑌 so that 𝜉 ∈ 𝑌 is ensured by the Mean Value Theorem. Moreover, 𝜇± should also

be computed with 𝑌 in place of 𝑌 ′. Since 𝑌 ⊃ 𝑌 ′, this will result in weaker bounds

on 𝑦𝑗. However, as shown in Theorem 5, the resulting Lipschitz bound is simple to

compute and potentially much smaller.

This approach is described in detail in Algorithm 2. To keep the Lipschitz constant

small, the refinement (2.35) is applied in parallel rather than sequentially, as discussed

above. To this end, the dummy variable 𝑌 ′ is used to store the refined bounds, while the

value of 𝑌 ′ used in lines 9–10 is never updated. In line 11, ∩̄ is the extended intersection

defined componentwise by (𝑋∩̄𝑍)𝑖 = [middle
(︁
𝑧𝐿

𝑖 , 𝑥𝐿
𝑖 , 𝑥𝑈

𝑖

)︁
, middle

(︁
𝑧𝑈

𝑖 , 𝑥𝐿
𝑖 , 𝑥𝑈

𝑖

)︁
], where

middle returns the middle value of three scalar arguments. Note that 𝑋∩̄𝑍 agrees

with 𝑋 ∩𝑍 whenever 𝑋 ∩𝑍 is non-empty and is a singleton contained in 𝑋 otherwise.

This operation is used here so that ℐ𝐺 never returns the empty set.

Theorem 5. Assumption 2 holds with 𝐸ℐ = 𝐷[𝑔], 𝐷ℐ = {(𝑘, 𝑍 ′, 𝑍, 𝑉 ) : (𝑘, 𝑍, 𝑉 ) ∈
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Algorithm 2 An implementation of ℐ𝐺

1: function ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 )
2: 𝑌 ← 𝑍 × 𝑉
3: 𝑌 ′ ← 𝑍 ′ × 𝑉
4: ȳ← mid(𝑌 )
5: 𝑌 ′ ← 𝑌 ′ ◁ Copy 𝑌 ′ to store refinements
6: for 𝑖 = 1 to 𝑛𝑔 do
7: for 𝑗 = 1 to 𝑛𝑥 + 𝑛𝑤 do
8: 𝜇+ ← 1/ max

(︁
𝜖,
⃒⃒⃒
mid

[︁
𝜕𝑔𝑖
𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

⃒⃒⃒)︁
9: Φ← 𝑔𝑖(𝑘, ȳ) +

∑︀
𝑙 ̸=𝑗

[︁
𝜕𝑔𝑖
𝜕𝑦𝑙

]︁
(𝑘, 𝑌 )(𝑌 ′

𝑙 − 𝑦𝑙)

10: Ψ← 𝑦𝑗 + 𝜇+Φ +
(︁
1 + 𝜇+

[︁
𝜕𝑔𝑖
𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

)︁
(𝑌 ′

𝑗 − 𝑦𝑗)
11: 𝑌 ′

𝑗 ← 𝑌 ′
𝑗 ∩̄Ψ

12: Repeat lines 10–11 with 𝜇− ← −𝜇+

13: end for
14: end for
15: return 𝑌 ′

16: end function

𝐷[𝑔], 𝑍 ′ ∈ I𝑍}, and ℐ𝐺 : 𝐷ℐ → IR𝑛𝑥 × IR𝑛𝑤 defined by Algorithm 2. In particular,

choose any compact �̄� ⊂ R𝑛𝑥, let 𝑌 = �̄� ×𝑊 , and let 𝐵[𝑔]𝑖𝑙 ≥
⃒⃒⃒[︁

𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
(𝑘, 𝑌 )

⃒⃒⃒
for all

(𝑘, 𝑌 ) ∈ K× I𝑌 . Then Condition 3 of Assumption 2 holds with

𝑀ℐ = 1 + 𝜖−1 max
𝑖

∑︁
𝑙

𝐵[𝑔]𝑖𝑙. (2.41)

Proof. Condition 1 of Assumption 2 follows directly from (2.35) and the fact that

𝑌 ′ ⊂ 𝑌 . Condition 2 follows from the use of ∩̄ in line (11), which ensures that 𝑌 ′

only ever becomes smaller. To verify Condition 3, choose any compact �̄� ⊂ R𝑛𝑥 and

let 𝑌 = �̄� ×𝑊 . It is convenient to first consider Algorithm 2 from line 4 to the end,

viewed as a function of 𝑌 and 𝑌 ′. Denoting the output by ℐ𝐺(𝑘, 𝑌 ′, 𝑌 ), we will argue

that

𝑑𝐻(ℐ𝐺(𝑘, 𝑌 ′, 𝑌 ), ℐ𝐺(𝑘, 𝑌 ′, 𝑌 )) ≤𝑀ℐ𝑑𝐻(𝑌 ′, 𝑌 ′), (2.42)

for all (𝑘, 𝑌 ) ∈ K × I𝑌 and 𝑌 ′, 𝑌 ′ ∈ I𝑌 . From the definitions of 𝑌 and 𝑌 ′ in lines
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2–3, it then follows that

𝑑𝐻(ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 ), ℐ𝐺(𝑘, 𝑍 ′, 𝑍, 𝑉 )) ≤𝑀ℐ𝑑𝐻(𝑍 ′ × 𝑉, 𝑍 ′ × 𝑉 ),

= 𝑀ℐ𝑑𝐻(𝑍 ′, 𝑍 ′),

for all (𝑘, 𝑍, 𝑉 ) ∈ K× I�̄� × I𝑊 and 𝑍 ′, 𝑍 ′ ∈ I𝑍, as desired.

To establish (2.42) note that, in every iteration of Algorithm 2, lines 9 and 10 define

Ψ as a function of the form 𝑑 +∑︀
𝑙 𝐴𝑙(𝑌 ′

𝑙 − 𝑦𝑙), with scalar 𝑑 and intervals 𝐴𝑙 that are

independent of 𝑌 ′. It follows from S2.1 of [101] that Ψ is therefore Lipschitz continuous

with respect to 𝑌 ′ on I𝑌 with the Lipschitz constant 𝛼 = ∑︀
𝑙 |𝐴𝑙|. Specifically, we

have

|𝐴𝑙| =
⃒⃒⃒⃒
⃒𝜇±

[︃
𝜕𝑔𝑖

𝜕𝑦𝑙

]︃
(𝑘, 𝑌 )

⃒⃒⃒⃒
⃒ ≤ 𝜖−1𝐵[𝑔]𝑖𝑙, ∀𝑙 ̸= 𝑗, (2.43)

|𝐴𝑗| =
⃒⃒⃒⃒
⃒
(︃

1 + 𝜇+
[︃

𝜕𝑔𝑖

𝜕𝑦𝑗

]︃
(𝑘, 𝑌 )

)︃⃒⃒⃒⃒
⃒ ≤ 1 + 𝜖−1𝐵[𝑔]𝑖𝑗. (2.44)

Therefore, 𝛼 ≤ 1+ 𝜖−1∑︀
𝑙 𝐵[𝑔]𝑖𝑙 ≤𝑀ℐ . The extended intersection in line 11 is Lipschitz

with constant 1 (Lemma 2.8 in [105]). Thus, if 𝑌𝑗 is Lipchitz on I𝑌 with constant at

most 𝑀ℐ prior to the execution of line 11, then the same is true immediately after

line 11. But since line 5 trivially defines 𝑌𝑗 as a Lipschitz function of 𝑌 ′ with constant

1 ≤𝑀ℐ prior to the first execution of line 11, it follows by induction that the output

of Algorithm 2 is Lipschitz w.r.t. 𝑌 ′ on I𝑌 with constant at most 𝑀ℐ . Therefore

(2.42) holds.

Remark 3. Lines 8–12 in Algorithm 2 can alternatively be replaced by (recall the

notation ⟨·⟩ from §2.1.2):

8: if
⟨[︁

𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

⟩
≥ 𝜖 then

9: Φ← 𝑔𝑖(𝑘, ȳ) +∑︀
𝑙 ̸=𝑗

[︁
𝜕𝑔𝑖

𝜕𝑦𝑙

]︁
(𝑘, 𝑌 )(𝑌 ′

𝑙 − 𝑦𝑙)

10: Ψ← 𝑦𝑗 + Φ/
[︁

𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )
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11: 𝑌 ′
𝑗 ← 𝑌 ′

𝑗 ∩̄Ψ

12: end if

Letting 𝑆(𝑘, 𝑌 ) denote the set of all pairs (𝑖, 𝑗) such that
⟨[︁

𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

⟩
≥ 𝜖, the

resulting Lipschitz constant satisfies

𝑀ℐ ≤ max

⎧⎨⎩1, max
(𝑘,𝑌 )∈K×I𝑌

max
(𝑖,𝑗)∈𝑆(𝑘,𝑌 )

⎧⎨⎩
∑︀

𝑙 ̸=𝑗 𝐵[𝑔]𝑖𝑙⟨[︁
𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

⟩
⎫⎬⎭
⎫⎬⎭ ,

≤ max

⎧⎪⎪⎨⎪⎪⎩1, 𝜖−1 max
𝑖∈{1,...,𝑛𝑥}
𝑗∈{1,...,𝑛𝑔}

∑︁
𝑙 ̸=𝑗

𝐵[𝑔]𝑖𝑙

⎫⎪⎪⎬⎪⎪⎭ , (2.45)

which is smaller than (2.41). As with the Krawcyzk-type refinement in Algorithm

2, 𝑌 can be replaced by 𝑌 ′ nearly everywhere above at the expense of a larger 𝑀ℐ .

However, this approach must use 𝑌 in line 8, since otherwise the if statement would

introduce a non-Lipschitz dependence on 𝑌 ′.

2.5.1 Quadratic Constraints

Section 2.4 presents an alternative refinement algorithm that results in both tighter

enclosures and a smaller Lipschitz constant than Algorithm 2 for the case where each

𝑔𝑖 is affine. In this section, we present a similar algorithm for the common case where

each 𝑔𝑖 has a quadratic form

𝑔𝑖(𝑘, z, v) = vTQ𝑖z + 𝛾T
𝑖 z + 𝜎T

𝑖 v− 𝑐. (2.46)

Such constraints can be factored in two ways; namely:

(vTQ𝑖 + 𝛾T
𝑖 )⏟  ⏞  

≡ mT
𝑖 (v)

z = 𝑐− 𝜎T
𝑖 v⏟  ⏞  

≡ 𝑏𝑖(v)

, (zTQT
𝑖 + 𝜎T

𝑖 )⏟  ⏞  
≡ nT

𝑖 (z)

v = 𝑐− 𝛾T
𝑖 z⏟  ⏞  

≡ 𝑑𝑖(z)

(2.47)
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Refining 𝑍 ′ and 𝑉 by directly rearranging these equations often results in sharper

bounds than Algorithm 2, or the alternative approach in Remark 3, because it avoids

unnecessarily introducing a reference point ȳ. Therefore, using square brackets to

denote interval extensions of the quantities in (2.47), we replace lines 7–13 in Algorithm

2 by:

7: for 𝑗 = 1 to 𝑛𝑥 do

8: if ⟨[𝑚𝑖𝑗] (𝑉 )⟩ ≥ 𝜖 then

9: Ψ←
(︁
[𝑏𝑖] (𝑉 )−∑︀𝑙 ̸=𝑗 [𝑚𝑖𝑙] (𝑉 )𝑍 ′

𝑙

)︁
/[𝑚𝑖𝑗](𝑉 ).

10: 𝑌 ′
𝑗 ← 𝑌 ′

𝑗 ∩̄Ψ

11: end if

12: end for

13: for 𝑞 = 1 to 𝑛𝑤 do

14: if ⟨[𝑛𝑖𝑞] (𝑍)⟩ ≥ 𝜖 then

15: Ψ←
(︁
[𝑑𝑖] (𝑍 ′)−∑︀𝑙 ̸=𝑞 [𝑛𝑖𝑙] (𝑍)𝑉𝑙

)︁
/[𝑛𝑖𝑞](𝑍).

16: 𝑌 ′
𝑛𝑥+𝑞 ← 𝑌 ′

𝑛𝑥+𝑞∩̄Ψ

17: end if

18: end for

Let 𝑆(𝑉 ) and 𝑆 ′(𝑍) be the sets of all pairs (𝑖, 𝑗) such that ⟨[𝑚𝑖𝑗](𝑉 )⟩ ≥ 𝜖 and

⟨[𝑛𝑖𝑗](𝑍)⟩ ≥ 𝜖, respectively. Then, applying the rules in S2.1 of [101], the Lipschitz

constant of the updates in lines 7–12 is bounded by

𝑀ℐ𝑍 ≤ max
{︃

1, max
𝑉 ∈I𝑊

max
(𝑖,𝑗)∈𝑆(𝑉 )

{︃∑︀
𝑙 ̸=𝑗 |[𝑚𝑖𝑙](𝑉 )|
⟨[𝑚𝑖𝑗](𝑉 )⟩

}︃}︃
, (2.48)

≤ max

⎧⎨⎩1, 𝜖−1 max
𝑖,𝑗

∑︁
𝑙 ̸=𝑗

|[𝑚𝑖𝑙](𝑊 )|

⎫⎬⎭ . (2.49)

Replacing [𝑑𝑖](𝑍 ′) in line 15 by 𝑐− 𝛾𝑇
𝑖 𝑍 ′, the Lipschitz constant of the refinements in
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lines 13–18 is bounded by

𝑀ℐ𝑉 ≤ max
{︃

1, max
𝑍∈I�̄�

max
(𝑖,𝑗)∈𝑆′(𝑍)

(︃
‖𝛾𝑖‖1

⟨[𝑛𝑖𝑗](𝑍)⟩

)︃}︃
, (2.50)

≤ max
{︂

1, 𝜖−1 max
𝑖
‖𝛾𝑖‖1

}︂
. (2.51)

Thus, the Lipschitz constant of the modified algorithm is

𝑀ℐ ≤ max {𝑀ℐ𝑍 , 𝑀ℐ𝑉 } . (2.52)

As in Remark 3, 𝑍 can be replaced by 𝑍 ′ nearly everywhere in the code above at

the expense of a larger 𝑀ℐ . However, 𝑍 must be used in the if statement on line 14

to retain Lipschitz dependence on 𝑍 ′.

Remark 4. In several experiments we found that lines 13–18 above were only marginally

effective compared to lines 7–12, while including these lines significantly increased 𝑀ℐ .

Thus, another very useful option in practice is to omit lines 13–18, resulting in the

smaller Lipschitz bound 𝑀ℐ ≤𝑀ℐ𝑍 .

2.5.2 Implementation Details

This section outlines the entire procedure used to apply the bounding results of

this chapter, including guidance on choosing a refinement algorithm and setting the

parameters �̄�, 𝜖, 𝑀 , and 𝑀ℐ . The first step is to choose �̄�. This interval does not

directly affect the bounds computed by either of the new methods (2.5) and (2.17).

Rather, it is used to test the validity of these methods for a given system. Specifically,

�̄� affects 𝑀 and 𝑀ℐ , which appear in the monotonicity/step-size conditions in

Theorem 1, Theorem 3, and Corollaries 1–4. Moreover, these results require that

𝑋𝑘 ⊂ �̄� in order to propagate bounds beyond time 𝑘. Thus, �̄� should be chosen

large enough to contain all trajectories of (2.1) with high likelihood. There is no
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need for �̄� to be a tight enclosure, but choosing a very large interval can lead to

overly restrictive monotonicity/step-size conditions. Thus, while �̄� does not directly

affect the bounds, it does constrain the subsequent choices of parameters that do,

as discussed below. In many cases, the physics of the problem suggest reasonable

bounds for �̄� (e.g., non-negativity). Otherwise, one can perform a small number of

simulations and choose �̄� to enclose the solutions with some margin for error. Another

option is to first compute weak bounds 𝑋 ′
𝑘 using (2.4) and then choose �̄� as the

interval hull of ∪𝑘∈K𝑋 ′
𝑘.

For explicit Euler systems, the next step is to compute 𝑀 . This is done us-

ing Theorem 2 for problems without constraints and Remark 2 for problems with

constraints.

For problems with constraints, the next step is to choose a refinement algorithm ℐ𝐺

and determine 𝑀ℐ . For linear constraints, ℐ𝐺 and 𝑀ℐ are given by Algorithm 1 and

Theorem 4 in [106]. For general nonlinear constraints, ℐ𝐺 can be defined by Algorithm

2 herein or the modification in Remark 3, with 𝑀ℐ obtained from (2.41) or (2.45),

respectively. It is presently unclear if one of these algorithms is preferable in general,

and a detailed comparisons is beyond the scope of this work. For quadratic constraints,

ℐ𝐺 is defined by Algorithm 2 with lines 7–13 replaced by the pseudocode given in

Section 2.5.1 and 𝑀ℐ is obtained from (2.49), (2.51), and (2.52). In some cases, a

smaller 𝑀ℐ can be computed using (2.48) and (2.50) instead of (2.49) and (2.51) , as

is done for two examples in Section 2.6. If the resulting 𝑀ℐ is still unacceptably large,

then the modification in Remark 4 is used instead.

All of the refinement algorithms require a tolerance 𝜖 > 0. Choosing 𝜖 too small can

result in large 𝑀ℐ , while choosing 𝜖 too large can make ℐ𝐺 less effective. For general

discrete-time systems or Euler systems with a pre-specified step size 𝛿, the provided

bound for 𝑀ℐ can be substituted into the monotonicity/step-size requirements in

Corollaries 3–4 to back calculate the smallest 𝜖 for which the method (2.17) is valid.
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Since 𝑀ℐ is always at least 1, there may not exist an admissible 𝜖, in which case

(2.17) cannot be used. Otherwise, the smallest admissible 𝜖 corresponds to the most

aggressive refinement for which (2.17) is valid. For Euler systems with some latitude

in the choice of 𝛿, 𝜖 should be chosen to enhance the efficacy of ℐ𝐺. A good heuristic

is that 𝜖 should be less than
⟨[︁

𝜕𝑔𝑖

𝜕𝑦𝑗

]︁
(𝑘, 𝑌 )

⟩
for at least some (𝑖, 𝑗), which is most

easily seen in the if statements in Remark 3 and Section 2.5.1, although the effect on

Algorithm 2 is similar.

Once �̄�, 𝜖, 𝑀 , and 𝑀ℐ have been computed, the monotonicity/step-size conditions

must be checked. To apply the method (2.5), either (2.8) or the condition 𝛿 ∈ (0, 1
𝑀

]

must hold (for general or Euler systems, resp.). To apply the method (2.17), either

(2.25) or 𝛿 ∈ (0, 1
𝑀𝑀ℐ

] must hold. The corresponding method can then be applied until

the terminal time 𝐾 or until 𝑋𝑘 ⊂ �̄� fails. The latter case is unlikely with a good

choice of �̄� and did not occur in any of our numerical experiments. However, if it does

occur, then valid bounds can still be propagated to 𝐾 using (2.4). If 𝑋𝑘+𝑗 ⊂ �̄� at

some later time, then the original method can be resumed, but this is unlikely because

(2.4) is typically very conservative. Alternatively, one can attempt to re-establish the

validity of the original method at 𝑘 by choosing a new �̄� and repeating the steps

above.

2.6 Numerical Results

We compare the performance of five discrete-time reachability methods: (i) the

standard interval method (2.4); (ii) a similar method using zonotopes from [23];

(iii) an alternative zonotope method from [22]; (iv) the discrete-time DI method

(2.5); and (v) the discrete-time DI method with constraints (2.17). The articles [23,

22] specifically address state estimation rather than reachability, and [22] considers

continuous-time systems. However, both provide methods for bounding the image of a

zonotope 𝑋𝑘 under a nonlinear function. Methods (ii) and (iii) apply these techniques
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to the right-hand side of (2.1a) to recursively compute zonotopic enclosures of the

solutions of (2.1a)–(2.1b). These methods are analogous to Method (i), but use more

complex sets. Both methods are implemented with 10th order zonotopes using the

order reduction method in [22]. All interval methods use the natural interval extension

of h for 𝐻. Method (v) is the only method that makes use of a constraint set 𝐺. In

all examples, we use only constraints that hold for all solutions of (2.1a)–(2.1b). Thus,

the reachable set of the constrained system (2.1) coincides with that of (2.1a)–(2.1b),

so all methods are solving the same problem. All methods are compared in terms

of the volume or radius of the computed enclosures, the upper and lower bounds for

selected states (calculated by projection for zonotopic methods), and the wall clock

time per step (MATLAB R2015a on a Dell Precision T1700 with an i5-4690 CPU @

3.50GHz and 16.0 GB RAM).

2.6.1 Example 1

The following dynamics describe an enzymatic reaction network with six chemical

species, where 𝑥𝑖 is the concentration (M) of species 𝑖 [24]:

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝛿 [−𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝑘2,𝑘𝑥3,𝑘 + 𝑘6,𝑘𝑥6,𝑘] (2.53)

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝛿 [−𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝑘2,𝑘𝑥3,𝑘 + 𝑘3,𝑘𝑥3,𝑘]

𝑥3,𝑘+1 = 𝑥3,𝑘 + 𝛿 [𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2,𝑘𝑥3,𝑘 − 𝑘3,𝑘𝑥3,𝑘]

𝑥4,𝑘+1 = 𝑥4,𝑘 + 𝛿 [𝑘3,𝑘𝑥3,𝑘 − 𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 + 𝑘5,𝑘𝑥6,𝑘]

𝑥5,𝑘+1 = 𝑥5,𝑘 + 𝛿 [−𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 + 𝑘5,𝑘𝑥6,𝑘 + 𝑘6,𝑘𝑥6,𝑘]

𝑥6,𝑘+1 = 𝑥6,𝑘 + 𝛿 [𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 − 𝑘5,𝑘𝑥6,𝑘 − 𝑘6,𝑘𝑥6,𝑘]

The parameters k = (𝑘1, . . . , 𝑘6) are uncertain with k𝑘 ∈ 𝑊 ≡ [k̂, 10k̂] and k̂ =

(0.1, 0.033, 16, 5, 0.5, 0.3). The initial condition is c0 = (34, 20, 0, 0, 16, 0) and 𝐶0 =

[c0, c0].
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Figure 2.1: Example 2.6.1: Time, state bounds, enclosure volume, and enclosure
radius for Methods (i)–(v) (�, ∘,◇, O, ⋆) and the volume and radius of Method (v)
bounds intersected with 𝐺 (△). Sampled solutions are gray.

Eq. (2.53) satisfies 3 affine solution invariants [24], leading to an a priori enclosure

𝐺 ≡ {z ∈ 𝑋nat : Mz = b} with

M =
[︂

0 −1 −1 0 0 0
0 0 0 0 −1 −1
1 −1 0 1 −1 0

]︂
, b =

[︂
−20
−16
−2

]︂
, (2.54)

and 𝑋nat = [0, 34] × [0, 20] × [0, 20] × [0, 34] × [0, 16] × [0, 16]. By Theorem 4, the

Lipschitz constant for ℐ𝐺 defined as in Algorithm 1 with 𝑄 = 1 is 𝑀𝐺 = 3. Moreover,

choosing �̄� = 𝑋nat, Theorem 2 bounds the Lipschitz constant for f by 𝑀 = 2665. We

choose 𝛿 = 9× 10−5 ≤ 1
𝑀𝑀𝐺

and 𝐾 = 500.

Figure 2.1 shows that the standard interval method (i) produces very weak bounds,

as expected. Moreover, using high-order zonotopes in place of intervals, as in Methods

(ii)–(iii), is only marginally more effective due to the large linearization errors in

this problem. On the other hand, the basic DI method (iv) gives a very significant

improvement at low cost, and exploiting 𝐺 in Method (v) is even more effective, while

still requiring less than 10−2s per time step.
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2.6.2 Example 2

The following dynamics describe a sewer system with three tanks, where 𝑥𝑖 is the

water volume (m3) of tank 𝑖 and 𝑢𝑖 is the 𝑖th inlet flowrate (m3/s) [8]:

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝛿 [𝑢1,𝑘 + 𝑢2,𝑘 − 𝜅1𝑥1,𝑘] (2.55)

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝛿
[︁
𝜅1𝑥1,𝑘 − 𝜅2

√
𝑥2,𝑘

]︁
𝑥3,𝑘+1 = 𝑥3,𝑘 + 𝛿

[︁
𝜅2
√

𝑥2,𝑘 + 𝑢3,𝑘 − 𝜅3𝑥3,𝑘

]︁

We set 𝑢𝑖 = 𝑑𝑖 + 𝑤𝑖 with d = (1, 2, 1) and disturbances 𝑤𝑖 ∈ [0, 0.1]. The parameters

𝜅𝑖 are also uncertain with bounds 𝜅1 ∈ [4.8, 6.8]× 10−4, 𝜅2 ∈ [1.99, 2.01]× 10−2, and

𝜅3 ∈ [9.9, 10.1]× 10−4. The initial condition is c0 = (167, 1, 333) and is certain. Aside

from non-negativity of the states, an a priori enclosure for (2.55) is not known. Thus,

to apply Method (v), we follow the approach in [26] to manufacture a set 𝐺 by defining

the redundant state variable

𝑧𝑘 = 𝑥1,𝑘 + 𝑥2,𝑘 + 𝑥3,𝑘, (2.56)

and augmenting (2.55) with the redundant difference equation

𝑧𝑘+1 = 𝑧𝑘 + 𝛿 [𝑢1,𝑘 + 𝑢2,𝑘 + 𝑢3,𝑘 − 𝜅3𝑥3,𝑘] . (2.57)

This 𝑧𝑘 is chosen so that several terms cancel out when forming (2.57) from (2.55),

enabling 𝑧𝑘 to be bounded accurately (see [26] for details). Method (v) is then applied

to the lifted system consisting of (2.55) and (2.57), which by design satisfies the a

priori enclosure 𝐺 ≡ {(x, 𝑧) ∈ R4 : 𝑧 = 𝑥1 + 𝑥2 + 𝑥3, (x, 𝑧) ≥ 0}. By Theorem 4,

𝑀𝐺 = 3. Choosing �̄� = [167, 7× 103]× [1, 5× 104]× [333, 8× 103], Theorem 2 gives

𝑀 = 0.0111. We choose 𝛿 = 30s ≤ 1
𝑀𝑀𝐺

and 𝐾 = 600.
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Figure 2.2: Example 2.6.2: Time, state bounds, enclosure volume, and enclosure
radius for Methods (i)–(v) (�, ∘,◇, O, ⋆) and the volume and radius of Method (v)
bounds intersected with 𝐺 (△). Sampled solutions are gray.

Figure 2.2 shows that Method (i) is again very conservative. However, in this

case, using zonotopes in Methods (ii)–(iii) leads to a major improvement with modest

additional cost. Yet, interval bounds from the simple DI method (iv) are significantly

tighter than the zonotopic enclosures, especially at long times. Finally, the use of 𝐺

again provides the tightest enclosures while retaining high efficiency.

2.6.3 Example 3

The following system results from forward Euler discretization of a continuous-time

model of a four species stirred-tank reactor from [27], where 𝑥𝑖 is the concentration of
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species 𝑖:

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝛿
[︁
− 𝑤3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘+ (2.58)

𝜏−1 (𝑤1,𝑘 − 2𝑥1,𝑘)
]︁
,

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝛿
[︁
−𝑤3,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝜏−1 (𝑤2,𝑘 − 2𝑥2,𝑘)

]︁
,

𝑥3,𝑘+1 = 𝑥3,𝑘 + 𝛿
[︁
𝑤3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥3,𝑘

]︁
,

𝑥4,𝑘+1 = 𝑥4,𝑘 + 𝛿
[︁
𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥4,𝑘

]︁
.

The parameters 𝜏 = 20 (min) and 𝑘2 = 0.4 (M−1min−1) are constant, while 𝑤1,𝑘 ∈

[0.9, 1.1] (M), 𝑤2,𝑘 ∈ [0.8, 1.0] (M), and 𝑤3,𝑘 ∈ [10, 50] (M−1min−1) are time-varying

disturbances. The initial condition is c0 = (0, 0, 0, 0).

To apply Method (v), a constraint set 𝐺 is needed. Since the positive orthant is

invariant for the continuous-time system in [27], it can be shown through standard

arguments that the solutions of (2.58) are non-negative for 𝛿 ≤ 1
𝑀

, where 𝑀 is as

in Corollary 2[29]. However, no other constraints are known to hold for all solutions

of (2.58). Thus, we follow the approach in [26] to manufacture valid constraints by

defining several redundant state variables:

𝑧1,𝑘 = −1
3𝑥1,𝑘 −

1
3𝑥2,𝑘 + 1

3𝑥3,𝑘, (2.59)

𝑧2,𝑘 = −1
3𝑥1,𝑘 −

1
3𝑥3,𝑘 + 1

3𝑥4,𝑘,

𝑧3,𝑘 = −𝑥1,𝑘 + 2𝑥2,𝑘 + 𝑥3,𝑘,

𝑧4,𝑘 = 𝑥1,𝑘 − 𝑥2,𝑘 + 𝑥4,𝑘.
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Next, (2.58) is augmented with the redundant equations

𝑧1,𝑘+1 = 𝑧1,𝑘 + 𝛿

[︃
𝑤3,𝑘𝑥1,𝑘𝑥2,𝑘 −

1
3𝜏−1 (𝑤1,𝑘 + 𝑤2,𝑘) (2.60)

− 2𝜏−1𝑧1,𝑘

]︃
,

𝑧2,𝑘+1 = 𝑧2,𝑘 + 𝛿
[︂
𝑘2𝑥1,𝑘𝑥3,𝑘 −

1
3𝜏−1𝑤1,𝑘 − 2𝜏−1𝑧2,𝑘

]︂
,

𝑧3,𝑘+1 = 𝑧3,𝑘 + 𝛿𝜏−1 [2 (𝑤2,𝑘 − 𝑧3,𝑘)− 𝑤1,𝑘] ,

𝑧4,𝑘+1 = 𝑧4,𝑘 + 𝛿𝜏−1 (𝑤1,𝑘 − 𝑤2,𝑘 − 2𝑧4,𝑘) .

The solutions of this augmented system are, by construction, guaranteed to lie in the

set

𝐺 ≡ {(𝑘, (x, z), w) ∈ K× R8 × R3 : M [ x
z ] = b, x ≥ 0}, (2.61)

where

M =
[︃ −1/3 −1/3 1/3 0 −1 0 0 0

−1/3 0 −1/3 1/3 0 −1 0 0
−1 2 1 0 0 0 −1 0
1 −1 0 1 0 0 0 −1

]︃
, b =

[︂ 0
0
0
0

]︂
. (2.62)

The specific definition of each 𝑧𝑖,𝑘 above was chosen such that at least one term cancels

out when forming (2.60) from (2.58), resulting in right-hand sides that are bounded

more accurately using interval arithmetic.

Since all constraints in 𝐺 are linear, ℐ𝐺 is defined by Algorithm 1 and Theorem 4

gives 𝑀ℐ = 5. Choosing �̄� = [0, 0.13]× [0, 0.13]× [0, 0.45]× [0, 0.5] for the original

states and 𝑍 = [−0.087, 0.15] × [−0.19, 0.17] × [−0.13, 0.71] × [−0.13, 0.63] for the

augmented states, Theorem 2 shows that 𝑀 = 13.33 satisfies (2.11) and (2.28). Thus,

by Corollaries 2 and 4, Methods (iv) and (v) are valid with 𝛿 = 0.015s ≤ 1
𝑀𝑀ℐ

and

𝐾 = 600.

Figures 2.3 and 2.4 show that the standard interval Method (i) is the most
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Figure 2.3: Time and enclosure volume for Methods (i)–(v) applied to Example 2.6.3
(�, ∘,◇, O, ⋆) and the volume of Method (v) bounds intersected with 𝐺 (△).

computationally efficient but produces weak bounds as expected. The zonotope

Methods (ii) and (iii) produce similar bounds, but at higher cost. These methods

use linearizations of the dynamics with linearization error bounds computed using an

interval Jacobian in Method (ii) and interval Hessians in Method (iii). This strategy

appears to be conservative here because the dynamics are highly nonlinear, which

leads to large bounds on the linearization error, despite the fact that zonotopes are

propagated through the linearized dynamics effectively. Increasing the zonotope order

from 10 to 100 did not substantially improve the accuracy of either method, while their

costs increased by nearly 10×. The standard DI Method (iv) provides significantly

tighter bounds at very low cost. However, these bounds still become weak and diverge

after ∼ 3 min. In contrast, exploiting 𝐺 using Method (v) results in bounds that are

much tighter than any other method, and remain accurate for most states out to at

least 9 min. At the same time, Method (v) requires only ∼ 10−3 s per time step.

To better understand Method (v), bounds were also computed using only the

linear constraints M [ x
z ] = b in 𝐺 and omitting the non-negativity constraints. This

resulted in almost no loss of accuracy (the bounds would not be visually distinguishable

from the Method (v) bounds in Figure 2.4 and are therefore omitted). In contrast,
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(�, ∘,◇, O, ⋆). Sampled solutions are indicated by the gray shaded region.

eliminating the linear constraints in 𝐺 and using only non-negativity resulted in a

large loss of accuracy, producing nearly the same bounds as Method (iv). Thus, the

accuracy of Method (v) is almost entirely due to the manufactured constraints and is

not dependent on the fact that the states are non-negative for this system.

To investigate the effects of the initial condition, the comparisons above were

repeated with c0 = (0.36, 0.38, 0.36, 0.52), which is qualitatively different from c0 =

(0, 0, 0, 0) in that it is close to the steady-state solution of (2.58). We found that the

relative performance of the methods and the qualitative trends in Figures 2.3 and 2.4

did not change with c0 (results not shown).

2.6.4 Example 4

This example demonstrates the use of nonlinear manufactured constraints using

the refinement algorithm developed in Section 2.5.1. We consider the continuous
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stirred-tank reactor with cooling from [107] in dimensionless form:

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝛿
[︂
𝑤1,𝑘 − 𝑥1,𝑘 −𝐷𝑎𝑒

− 𝛼
𝑥2,𝑘 𝑥1,𝑘

]︂
, (2.63)

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝛿

[︃
𝑤2,𝑘 − 𝑥2,𝑘 − 𝑤4,𝑘𝐷𝑎𝑒

− 𝛼
𝑥2,𝑘 𝑥1,𝑘

− 𝑆
(︁
𝑥2,𝑘 − 𝛽−1𝑥3,𝑘

)︁ ]︃
,

𝑥3,𝑘+1 = 𝑥3,𝑘 + 𝛿 [𝛾(𝑤3,𝑘 − 𝑥3,𝑘) + 𝑆𝑐 (𝛽𝑥2,𝑘 − 𝑥3,𝑘)] ,

where 𝑥1, 𝑥2, and 𝑥3 are the dimensionless concentration, reactor temperature, and

cooling water temperature. The time-varying disturbances are the dimensionless inlet

concentration, reactor inlet temperature, and inlet cooling water temperature, which

are denoted as 𝑤1 ∈ [0.8, 1.2], 𝑤2 ∈ [0.9943, 1.006], and 𝑤3 ∈ [0.9929, 1.007]. The

dimensionless heat of reaction is treated as a time-invariant uncertainty bounded in

𝑤4 ∈ [−0.6097,−0.5858]. The parameters 𝐷𝑎 = 4.93 × 1011, 𝛼 = 25, 𝛽 = 1.2367,

𝛾 = 1.6096, 𝑆 = 14.3291, and 𝑆𝑐 = 4.0770 are constant. The initial condition is

c0 = (0.09, 0.9286, 1.127).

To apply Method (v), we again use the method in [26] to manufacture a constraint

that is useful for refining the state bounds. Specifically, we define the redundant state

𝑧𝑘 = −𝑤4𝑥1,𝑘 + 𝑥2,𝑘, and augment (2.63) with the redundant equation

𝑧𝑘+1 = 𝑧𝑘 + 𝛿

[︃
− 𝑤4,𝑘(𝑤1,𝑘 − 𝑥1,𝑘) + 𝑤2,𝑘 − 𝑥2,𝑘

− 𝑆
(︁
𝑥2,𝑘 − 𝛽−1𝑥3,𝑘

)︁ ]︃
. (2.64)

This specific 𝑧𝑘 is chosen to cancel the nonlinear reaction term when forming (2.64)

from (2.63). The initial condition for the new state satisfies 𝑧0 ∈ [0.9813, 0.9834]. The
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solutions of the augmented system are now guaranteed to lie in the set

𝐺 ≡ {(𝑘, (x, 𝑧), w) ∈ K× R4 × R4 : m1(w) ( x
𝑧 ) = 𝑏1, x ≥ 0},

where m1(w) = [−𝑤4 1 0 −1] and 𝑏1 = 0. Since the constraints in 𝐺 are quadratic,

we use the refinement algorithm described in §2.5.1 with the Lipschitz bound 𝑀ℐ ≤

max(𝑀ℐ𝑍 , 𝑀ℐ𝑉 ) from (2.52). To bound 𝑀ℐ𝑍 , we directly apply (2.48) rather than

using the simplified bound in (2.49); i.e.,

𝑀ℐ𝑍 ≤ max
{︃

1, max
𝑉 ∈I𝑊

max
(𝑖,𝑗)∈𝑆(𝑉 )

{︃∑︀
𝑙 ̸=𝑗 |[𝑚𝑖𝑙](𝑉 )|
⟨[𝑚𝑖𝑗](𝑉 )⟩

}︃}︃
. (2.65)

Recall that 𝑆(𝑉 ) denotes the set of (𝑖, 𝑗) such that ⟨[𝑚𝑖𝑗](𝑉 )⟩ ≥ 𝜖. Choosing any

𝑉 ∈ I𝑊 , the definition of m1 above gives

⟨[𝑚11](𝑉 )⟩ = ⟨−𝑉4⟩ ≥ ⟨𝑊4⟩ = 0.5858, (2.66)

⟨[𝑚12](𝑉 )⟩ = ⟨1⟩ = 1,

⟨[𝑚13](𝑉 )⟩ = ⟨0⟩ = 0,

⟨[𝑚14](𝑉 )⟩ = ⟨−1⟩ = 1.

Choosing 𝜖 = 0.01, it follows that 𝑆(𝑉 ) = 𝑆(𝑊 ) = {(1, 1), (1, 2), (1, 4)} for all 𝑉 ∈ I𝑊 .

Therefore, 𝑆(𝑉 ) can be replaced by 𝑆(𝑊 ) in (2.65), which permits the order of the

maximizations to be reversed, so that

𝑀ℐ𝑍 ≤ max
{︃

1, max
(𝑖,𝑗)∈𝑆(𝑊 )

max
𝑉 ∈I𝑊

{︃∑︀
𝑙 ̸=𝑗 |[𝑚𝑖𝑙](𝑉 )|
⟨[𝑚𝑖𝑗](𝑉 )⟩

}︃}︃
, (2.67)

≤ max
{︃

1, max
(𝑖,𝑗)∈𝑆(𝑊 )

{︃∑︀
𝑙 ̸=𝑗 |[𝑚𝑖𝑙](𝑊 )|
⟨[𝑚𝑖𝑗](𝑊 )⟩

}︃}︃
,

= 3.41,
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Figure 2.5: Time, upper and lower bounds on 𝑥1–𝑥3, and enclosure volume for Methods
(i)–(v) applied to Example 2.6.4 (�, ∘,◇, O, ⋆). Sampled solutions are indicated by the
gray shaded region.

where the second inequality follows from inclusion monotonicity of [m1] [102].

The simple bound (2.51) gives 𝑀ℐ𝑉 ≤ 𝜖−1‖𝛾1‖1 = 200. A sharper bound can

potentially be obtained using (2.50), which depends on �̄� and simplifies to 𝑀ℐ𝑉 ≤

2(�̄�𝐿
1 )−1 assuming �̄�1 is non-negative. Simulation data show that �̄� = [0.01, 0.1]×

[0.92, 1]× [1, 1.17]× [0.92, 1.1] is a reasonable choice, which leads again to 𝑀ℐ𝑉 ≤ 200.

To avoid this large constant, we chose to omit lines 13–18 in the modified algorithm in

§2.5.1, as described in Remark 4, which results in the final bound 𝑀ℐ ≤𝑀ℐ𝑍 ≤ 3.41.

Remark 2 shows that 𝑀 = 272.78 satisfies (2.11) and (2.28). Thus, by Corollaries 2

and 4, Methods (iv) and (v) are valid with 𝛿 = 0.001s ≤ 1
𝑀𝑀ℐ

and 𝐾 = 200.

Figure 2.5 shows the resulting state bounds, enclosure volume, and the CPU time

for Methods (i)–(v). The interval Method (i) again provides the weakest bounds. The

zonotope Methods (ii) and (iii) both provide improved bounds, with Method (iii)
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being tighter but also more expensive. However, neither method remains accurate

beyond a dimensionless time of 0.1. As in Example 2.6.3, these methods appear to be

conservative here because the dynamics are highly nonlinear, leading to large bounds

on the linearization errors. Increasing the zonotope order from 10 to 100 did not

substantially improve the accuracy of either method, while their costs increased by

nearly 10×. The standard DI Method (iv) produces bounds that are comparable

to those of Method (iii), but is significantly more computationally efficient. Finally,

Method (v) is again the most effective, producing tight bounds well beyond 0.1 for a

cost intermediate between that of Method (iv) and Method (iii).

We also tested Method (v) with the non-negativity constraints removed from 𝐺,

which resulted in almost no loss of accuracy, and with the manufactured constraint

removed from 𝐺 but non-negativity retained, which resulted in a large loss of accuracy,

producing bounds only slightly better than Method (iv) (not shown). As in Example

2.6.3, we conclude that the accuracy of Method (v) is almost entirely due to the

manufactured constraint and is not dependent on non-negativity of the states.

2.6.5 Example 5

This example shows the application and limitations of Methods (iv) and (v) for general

(non-Euler) discrete-time systems. This system was used in [23] to test Method (ii):

x𝑘+1 =

⎡⎢⎢⎣ 0 −0.5

1 1 + 0.3𝑣𝑘

⎤⎥⎥⎦x𝑘 + 0.02

⎡⎢⎢⎣ −6

1

⎤⎥⎥⎦w𝑘, (2.68)

where w𝑘 ∈ [−1, 1]× [−1, 1], 𝑣𝑘 ∈ [−1, 1], and c0 ∈ [−3, 3]× [−3, 3]. Since 1+0.3𝑣𝑘 > 0

for every 𝑣𝑘 ∈ [−1, 1], the monotonicity condition (2.8) required by Corollary 1 holds,

and hence the standard DI Method (iv) is valid. Unfortunately, Method (v) is not

valid for any choice of 𝐺 and ℐ𝐺 because the monotonicity condition (2.25) required

by Corollary 3 fails for any 𝑀ℐ > 0. This is because 𝜕ℎ1
𝜕𝑥1

= 0, while |𝜕ℎ1
𝜕𝑥2
| = 0.5 > 0.
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Numerical results (not shown) show that the standard interval Method (i) produces

rapidly diverging bounds. The zonotope Methods (ii) and (iii) are much more accurate

but have significant overestimation that grows roughly linearly with time. Method

(iv) yields exactly the same bounds as Method (i), and is therefore not competitive

with the zonotope methods in this case.

Due to their close relationship to effective continuous-time DI methods, we expect

Methods (iv) and (v) to perform well for discrete-time systems that accurately ap-

proximate a continuous-time system (by Euler discretization or otherwise). Any such

system must have relatively large positive values of 𝜕ℎ𝑖

𝜕𝑥𝑖
for all 𝑖. In contrast, (2.68)

has 𝜕ℎ1
𝜕𝑥1

= 0, and this is precisely why it is impossible to apply Method (v).

The equivalence of Methods (i) and (iv) is actually an indication that this problem

is (relatively) good for Method (i) rather than bad for Method (iv). Specifically, this

occurs because each 𝑥𝑖 only appears once in the corresponding ℎ𝑖 (i.e., there is no

interval dependency problem [102]). In this case, the simple interval extension of ℎ𝑖

over 𝑋𝑘 used in Method (i) gives the same result as the interval extensions of ℎ𝑖 over

the faces 𝛽
𝐿/𝑈
𝑖 (𝑋𝑘) used in (2.5). Similarly, the strength of the zonotope Methods (ii)

and (iii) relative to Method (iv) indicates that these methods are particularly well

suited for this problem. This is because, in contrast to Examples 2.6.3 and 2.6.4,

the dynamics are nearly linear, leading to small linearization errors (i.e., almost all

elements in the Jacobian and Hessian matrices used in Methods (ii) and (iii) are

constant, so their interval extensions are accurate).
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2.6.6 Example 6

The Lotka-Volterra model was used to test Method (iii) in [22]. After forward Euler

discretization, the model is

𝑥𝑘+1,1 = 𝑥𝑘,1 + 𝛿(𝑎𝑥𝑘,1 − 𝑏𝑥𝑘,1𝑥𝑘,2), (2.69)

𝑥𝑘+1,2 = 𝑥𝑘,2 + 𝛿(−𝑐𝑥𝑘,2 + 𝑑𝑥𝑘,1𝑥𝑘,2),

where 𝑎 = 𝑐 = 1, 𝑏 = 0.01, 𝑑 = 0.02, and c0 ∈ [49, 50] × [49, 50] × [147, 150]. To

implement Method (v), we again manufacture a constraint as in [26] by defining

𝑧𝑘 = 100𝑑𝑥𝑘,1 + 100𝑏𝑥𝑘,2

and augmenting (2.69) with the redundant equation 𝑧𝑘+1 = 𝑧𝑘 + 𝛿(100𝑑𝑎𝑥𝑘,1 −

100𝑏𝑐𝑥𝑘,2). Thus, we define

𝐺 ≡ {(𝑘, (x, 𝑧)) ∈ K× R3 : mT
1 ( x

𝑧 ) = 𝑏1}, (2.70)

where mT
1 = [2 1 −1] and 𝑏1 = 0.

Theorem 4 in [106] gives the Lipschitz constant 𝑀ℐ = 3. Moreover, choosing

�̄� = [0.01, 250]× [20, 350]× [39.6, 962] for the augmented system, Remark 2 shows

that 𝑀 = 11 satisfies (2.11) and (2.28). Thus, by Corollaries 2 and 4, Methods (iv)

and (v) are valid with 𝛿 = 0.01 ≤ 1
𝑀𝑀ℐ

and 𝐾 = 550.

Figure 2.6 shows that the standard interval Method (i) is computationally efficient

but very conservative. In contrast, both zonotope methods produce very tight bounds,

with Method (iii) slightly tighter but also less computationally efficient than Method

(ii). Unlike Examples 2.6.3 and 2.6.4, these methods perform well because the Jacobain

matrix used in Method (ii) is fairly simple, while the Hessians used in Method (iii)
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Figure 2.6: Time, upper and lower bounds on 𝑥1–𝑥2, and enclosure volume for Methods
(i)–(v) applied to Example 2.6.6 (�, ∘,◇, O, ⋆) and the volume of Method (v) bounds
intersected with 𝐺 (△). Sampled solutions are indicated by the gray shaded region.

are constant, leading to tight bounds on the linearization error in both methods.

Relative to the zonotope methods, the standard DI Method (iv) is significantly more

conservative, while Method (v) is competitive but still notably more conservative.

To provide another illustration of the use of nonlinear constraints, we now consider

the case with uncertain 𝑏 and 𝑑. To obtain a reasonable 𝑀 satisfying (2.28), it proves

useful to scale these parameters. Thus, we define w = (𝑤1, 𝑤2) = (100𝑏, 100𝑑) and let

w ∈ 𝑊 ≡ [0.98, 1.02]× [1.98, 2.02]. Writing the right-hand sides of (2.69) as functions

of w, Remark 2 shows that 𝑀 = 19.87 satisfies (2.11) and (2.28).

With uncertain 𝑎 and 𝑏, the manufactured constraint above becomes quadratic.

Specifically, we define

𝐺 ≡ {(𝑘, (x, 𝑧), w) ∈ K× R3 × R2 : mT
1 (w) ( x

𝑧 ) = 0}, (2.71)
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where mT
1 = [𝑤2 𝑤1 −1]. We define ℐ𝐺 as in Algorithm 2 with the modifications for

quadratic constraints in Section 2.5.1. To compute 𝑀ℐ𝑍 , we follow the same procedure

outlined in Example 2.6.4. For any, 𝑉 ∈ I𝑊 , the definition of m1 gives

⟨[𝑚11](𝑉 )⟩ = ⟨𝑉2⟩ ≥ ⟨𝑊2⟩ = 1.98, (2.72)

⟨[𝑚12](𝑉 )⟩ = ⟨𝑉1⟩ ≥ ⟨𝑊1⟩ = 0.98,

⟨[𝑚13](𝑉 )⟩ = ⟨−1⟩ = 1.

Choosing 𝜖 = 0.01, it follows that 𝑆(𝑉 ) = {(1, 1), (1, 2), (1, 3)} for all 𝑉 ∈ I𝑊 . Thus,

by (2.48),

𝑀ℐ𝑍 ≤ max
{︃

1, max
(𝑖,𝑗)∈𝑆(𝑊 )

{︃∑︀
𝑙 ̸=𝑗 |[𝑚𝑖𝑙](𝑊 )|
⟨[𝑚𝑖𝑗](𝑊 )⟩

}︃}︃
= 3.1.

As in Example 2.6.4, (2.50) provided a large bound for 𝑀ℐ𝑉 . To avoid this, we chose

to omit lines 13–18 in the modified algorithm in §2.5.1, as described in Remark 4,

which results in the final bound 𝑀ℐ ≤𝑀ℐ𝑍 ≤ 3.1. By Corollaries 2 and 4, Methods

(iv) and (v) are valid with 𝛿 = 0.01 ≤ 1
𝑀𝑀ℐ

and 𝐾 = 550.

Figure 2.7 shows that the zonotope methods are again the most effective. However,

Method (ii) is significantly more conservative in this case and diverges after ∼ 5

s. The DI methods (iv) and (v) are both more conservative than Method (iii).

However, Method (v) is significantly tighter than Method (iv) and diverges more

slowly, eventually becoming tighter than Method (ii) as well. Although Method (iii)

remains the best for this example, the bounds are not as accurate as when 𝑎 and 𝑑

were certain because now the Hessian matrices contain uncertain elements.

Fig. 2.8 shows the results of Methods (i)–(v) with the larger uncertainty set

𝑊 = [0.9, 1.05]× [1.9, 2.05]. None of the methods is able to produce accurate bounds

in this case. Notably, however, the zonotope Methods (ii)–(iii) are disproportionately
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affected by the increased uncertainty, which adversely affect the linearization error

bounds used in these methods. Both methods diverge rapidly prior to 4 s. In contrast,

the DI Methods (iv)–(v) diverge much more slowly, with Method (iv) providing tighter

bounds than Method (ii) after 3 s and Method (v) outperforming all other methods

after 4 s.

2.7 Conclusion

Effective reachable set bounding methods for continuous-time systems based on

differential inequalities (DI) have been extended to discrete-time systems under

sufficient monotonicity conditions. For Euler discretized systems, these conditions are

always satisfied when using a step size below a computable upper bound. This bound

depends on Lipschitz constants for the dynamics and for the refinement operator used

to exploit the (possibly redundant) system constraints, if any. Two new refinement

algorithms were proposed for exploiting nonlinear constraints in a way that effectively
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balances accuracy with the need to achieve a small Lipschitz constant. Examples 2.6.3

and 2.6.4 show that the standard DI method can provide significant gains in accuracy

at lower cost when compared with existing bounding approaches based zonotopes,

while advanced DI methods using refinements based on redundant model equations

provide much more accurate bounds at similar cost. However, Examples 2.6.5–2.6.6

show that zonotopic approaches are still more effective for some problems. Our results

suggest that zonotopic methods are more effective when the interval Jacobian or

Hessian matrices used for bounding the linearization errors in these methods have

few uncertain elements. In contrast, the DI approaches appear to be more effective

for highly nonlinear system with large uncertainties, particularly when nonlinear or

uncertain terms can be canceled through the introduction of appropriate new variables

and manufactured constraints.
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CHAPTER 3

ACCURATE SET-BASED STATE ESTIMATION FOR NONLINEAR

DISCRETE-TIME SYSTEMS USING DIFFERENTIAL

INEQUALITIES WITH MODEL REDUNDANCY

3.1 INTRODUCTION

This chapter presents a new set-based state estimation algorithm for nonlinear discrete-

time systems subject to bounded disturbances and measurement errors. In contrast

to conventional state estimation, which aims to compute a single best estimate for

the current state, set-based state estimation aims to compute a set that rigorously

encloses all states consistent with the given model and the observed outputs up to

the present time. Set-based state estimation is central to a variety of algorithms for

guaranteed fault diagnosis and robust control [8, 32, 7, 30, 31, 33].

Set-based state estimation is typically done recursively in two steps. Given a set

of consistent states �̂�𝑘|𝑘 at time 𝑘, the prediction step computes an enclosure �̂�𝑘+1|𝑘

of the states reachable at 𝑘 + 1 from �̂�𝑘|𝑘 by the given dynamics. In the correction

step, �̂�𝑘+1|𝑘 is refined to produce �̂�𝑘+1|𝑘+1 by eliminating regions of �̂�𝑘+1|𝑘 that are

inconsistent with the observed output at 𝑘 + 1. Algorithmically, prediction requires

bounding the image of �̂�𝑘|𝑘 under a nonlinear function, while correction requires

bounding the intersection of two sets.

Starting with the seminal papers [36, 108], a wide variety of methods have been

developed for set-based state estimation using intervals, ellipsoids, parallelotopes,

polytopes, zonotopes, and constrained zonotopes [15, 35, 13, 14, 2, 4]. However,

methods for both prediction and correction often suffer from large overestimation

errors or high computational costs, particularly for nonlinear systems with large
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uncertainties. In [15, 16], efficient interval computations are used for both steps.

However, achieving accurate results often requires extensive partitioning, which can

lead to very high costs. Several alternative approaches [109, 22, 23, 37] use linearized

dynamics with rigorous error bounds in order to apply efficient prediction methods

for linear systems using ellipsoids and zonotopes [36, 2]. However, these methods are

vulnerable to large linearization errors [106]. Moreover, the correction step requires

bounding the intersection of an ellipsoid or a zonotope with a measurement set, which

remains a source of significant overestimation and computational complexity (see

[36, 22] for simple heuristics and [35, 23, 37] for more accurate online optimization

or enumeration procedures). A promising new zonotope-based correction step for

systems with linear output equations is presented in [4]. Finally, the method in [19]

aims to achieve more accurate predictions by solving difference of convex functions

(DC) programs online, but requires an effective DC representation of the dynamics.

This chapter presents a new set-based state estimation algorithm with an improved

prediction step based on the theory of differential inequalities (DI). Methods based

on DI have been extensively developed for bounding the reachable sets of nonlinear

systems in continuous-time [24, 26, 99, 100, 27] (note that reachability bounding

differs from set-based state estimation in that measurements are not considered). The

most basic DI method uses only simple interval computations, and therefore provides

bounds that are very efficient but often very weak. Although some DI approaches

have addressed this using more complex sets [99, 27], our interest here is in methods

that achieve tighter bounds at low cost using model redundancy. These methods use

efficient bounds-tightening techniques based on redundant equations that are implied

by the given dynamics, but are not necessarily preserved by the computed bounds

due to overestimation. In many applications, such redundant equations are readily

available in the form conservation laws, physical bounds on certain states, etc. [24].

More generally, any system of interest can be embedded in a higher-dimensional
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system that obeys such relationships by design, as described in detail in [26] (see also

§3.5). Extensive numerical experiments in [24, 26] show that using model redundancy

enables fast interval-based DI methods to produce very sharp reachability bounds for

a variety of challenging problems. Recently, the authors extended this approach to

address reachability problems in discrete-time with similar results [106]. Notably, this

approach has so far only been shown to be valid for forward-Euler-discretized systems

satisfying a step size bound. However, many discrete-time systems are formed in this

way in practice, and the step size bound is not very restrictive [106].

In this chapter, we develop a new set-based state estimation algorithm by adapting

the DI-based reachability method in [106] to provide accurate prediction sets using

only fast interval computations. The prediction step of our algorithm is not quite a

direct application of the method in [106]. Instead, we show that output measurements

can be used to modify the prediction step in a simple but nontrivial way, leading to

significantly tighter prediction bounds. This method is described in detail in §3.4,

following the formal problem statement and background information in §3.2–3.3. In

§3.5, we show that this method produces state estimates with significantly higher

accuracy and efficiency than state-of-the-art zonotopic methods for a challenging

nonlinear chemical reactor model.

3.2 Problem Statement

We consider nonlinear discrete-time systems in the following forward-Euler-discretized

form with step size ℎ ∈ R+:

x𝑘+1 = x𝑘 + ℎf (x𝑘, w𝑘) , (3.1)

y𝑘 = g(x𝑘, v𝑘). (3.2)
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Above, x𝑘 ∈ R𝑛𝑥 is the state, y𝑘 ∈ R𝑛𝑦 is the output, w𝑘 ∈ R𝑛𝑤 is the disturbance,

v𝑘 ∈ R𝑛𝑣 is the measurement error, f : R𝑛𝑥×R𝑛𝑤 → R𝑛𝑥 is locally Lipschitz continuous,

g : R𝑛𝑥 × R𝑛𝑣 → R𝑛𝑦 , and 𝑘 ∈ K ≡ {0, . . . , 𝐾} with horizon length 𝐾. The initial

conditions, disturbances, and measurement errors are assumed to lie in known compact

intervals,

(x0, w𝑘, v𝑘) ∈ 𝐶0 ×𝑊 × 𝑉, ∀𝑘 ∈ K. (3.3)

Our objective is to compute accurate enclosures of 𝑋𝑘|𝑘(y0:𝐾) and 𝑋𝑘+1|𝑘(y0:𝐾)

defined below, which contain all states at 𝑘 and 𝑘 + 1, respectively, that are consistent

with (3.1)–(3.3) and an observed output sequence y0:𝐾 = (y0, . . . , y𝐾) up to 𝑘. For

any y ∈ R𝑛𝑦 , define the measurement set

𝑋𝑚(y) ≡ {x ∈ R𝑛𝑥 : y = g (x, v) , v ∈ 𝑉 }. (3.4)

Then, 𝑋𝑘|𝑘(y0:𝐾) and 𝑋𝑘+1|𝑘(y0:𝐾) are defined precisely for all 𝑘 ∈ K by the following

recursion:

𝑋0|−1(y0:𝐾) ≡ 𝐶0, (3.5)

𝑋𝑘|𝑘(y0:𝐾) ≡ 𝑋𝑘|𝑘−1(y0:𝐾) ∩𝑋𝑚(y𝑘), (3.6)

𝑋𝑘+1|𝑘(y0:𝐾) ≡ {x + ℎf(x, w) : (x, w) ∈ 𝑋𝑘|𝑘(y0:𝐾)×𝑊}. (3.7)

We assume throughout the chapter that a crude set 𝐺 is known a priori to contain

all solutions of (3.1), irrespective of the observed output y0:𝐾 . Let x𝑘(c0, w0:𝐾)

denote the solution of (3.1) at 𝑘 with initial condition c0 ∈ 𝐶0 and disturbances

w0:𝐾 ∈ 𝑊0:𝐾 ≡ 𝑊 × · · · ×𝑊 .
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Assumption 4. A set 𝐺 ⊂ R𝑛𝑥 is known such that

x𝑘(c0, w0:𝐾) ∈ 𝐺 (3.8)

for all (c0, w0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 and all 𝑘 ∈ {0, . . . , 𝐾 + 1}.

Assumption 4 is not restrictive since choosing 𝐺 = R𝑛𝑥 is always valid. However,

in many applications, a nontrivial set 𝐺 can be defined as the set of points satisfying

relevant conservation laws, physical bounds, etc. These constraints are redundant

in the sense that they are implied by the dynamics. Nevertheless, they are often

violated by the conservative set-based calculations used in reachability analysis and

set-based state estimation [24]. As outlined in §3.1, the new state estimation algorithm

presented here is based on the reachable set bounding method in [106], which is able

to use nontrivial 𝐺 sets to achieve much tighter enclosures in many cases. Moreover,

as shown originally in [26], a nontrivial set 𝐺 can be obtained for nearly any system

of interest by embedding it in a higher-dimensional system whose states satisfy a set

of equality constraints by definition, and this often leads to much tighter reachability

bounds. We show an example of this simple construction §3.5.

3.3 Discrete-Time Differential Inequalities

This section briefly reviews the main result of [106] for bounding the reachable set of

(3.1), which will be used for the prediction step of the new set-based state estimator

presented in §3.4. The reachability problem addressed in [106] is to compute tight

interval bounds 𝑋𝑘 such that

x𝑘(c0, w0:𝐾) ∈ 𝑋𝑘 (3.9)

for all (c0, w0:𝐾) ∈ 𝐶0 ×𝑊0:𝐾 and all 𝑘 ∈ {0, . . . , 𝐾 + 1}.
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We begin by introducing some basic notation. For z𝐿, z𝑈 ∈ R𝑛, let 𝑍 = [z𝐿, z𝑈 ]

denote the compact 𝑛-dimensional interval {z ∈ R𝑛 : z𝐿 ≤ z ≤ z𝑈}, and denote

the set of all such intervals by IR𝑛. An interval-valued function 𝐻 : IR𝑛 → IR𝑚

is called an inclusion function for h : R𝑛 → R𝑚 if, for every 𝑍 ∈ IR𝑛, we have

h(𝑍) ≡ {h(z) : z ∈ 𝑍} ⊂ 𝐻(𝑍). We assume throughout that an inclusion function

𝐹 : IR𝑛𝑥 × IR𝑛𝑤 → IR𝑛𝑥 is available for f in (3.1), e.g. by interval arithmetic, and we

denote its elements by 𝐹𝑖(𝑋, 𝑊 ) = [𝑓𝐿
𝑖 (𝑋, 𝑊 ), 𝑓𝑈

𝑖 (𝑋, 𝑊 )].

To state the main reachability result in [106], two kinds of interval operators must

be defined. The first are the flattening or face selection operators 𝛽𝐿
𝑖 , 𝛽𝑈

𝑖 : IR𝑛 → IR𝑛

defined for every 𝑖 ∈ {1, . . . , 𝑛} by

𝛽𝐿
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
= {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝐿

𝑖 },

𝛽𝑈
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
= {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝑈

𝑖 }.

The second is a generic refinement operator that bounds the intersection of an interval

𝑍 with an arbitrary set 𝐴, and is required to satisfy a Lipschitz continuity property.

Definition 4. Given any set 𝐴 ⊂ R𝑛, let ℐ[·, 𝐴] : IR𝑛 → IR𝑛 satisfy the following

conditions:

1. (𝑍 ∩ 𝐴) ⊂ ℐ[𝑍, 𝐴] ⊂ 𝑍, ∀𝑍 ∈ IR𝑛.

2. ℐ[·, 𝐴] is Lipschitz continuous with respect to the Hausdorff metric 𝑑𝐻 ; i.e.,

∃𝑀𝐴 ∈ R+ such that

𝑑𝐻(ℐ[𝑍, 𝐴], ℐ[𝑍, 𝐴]) ≤𝑀𝐴𝑑𝐻(𝑍, 𝑍), ∀𝑍, 𝑍 ∈ IR𝑛.

A specific refinement algorithm ℐ[·, 𝐴] satisfying Definition 4 for polyhedral sets 𝐴

is available in [106] and is generalized here in §3.4.
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With some technical caveats, the central result of [106] is that valid reachability

bounds 𝑋𝑘 = [x𝐿
𝑘 , x𝑈

𝑘 ] satisfying (3.9) are given by the solutions of the following

dynamic system with 𝑋0 = 𝐶0:

𝑥𝐿
𝑘+1,𝑖 = 𝑥𝐿

𝑘,𝑖 + ℎ𝑓𝐿
𝑖 (ℐ[𝛽𝐿

𝑖 (𝑋𝑘) , 𝐺], 𝑊 ), (3.10)

𝑥𝑈
𝑘+1,𝑖 = 𝑥𝑈

𝑘,𝑖 + ℎ𝑓𝑈
𝑖 (ℐ[𝛽𝑈

𝑖 (𝑋𝑘) , 𝐺], 𝑊 ). (3.11)

To understand the key ideas, consider first the case where 𝐺 = R𝑛𝑥 and ℐ[𝑍, 𝐺] = 𝑍 for

all 𝑍 ∈ IR𝑛𝑥 , and assume inductively that, for some 𝑘 ∈ K, we have x𝑘(c0, w0:𝐾) ∈ 𝑋𝑘

for all (c0, w0:𝐾) ∈ 𝐶0 × 𝑊0:𝐾 . Then, this result states that, e.g., a valid lower

bound on 𝑥𝑘+1,𝑖(c0, w0:𝐾) is obtained by bounding the range of 𝑓𝑖 over the interval

𝛽𝐿
𝑖 (𝑋𝑘)×𝑊 . The idea of bounding 𝑓𝑖 only over the 𝑖th lower face of 𝑋𝑘 rather than

over all of 𝑋𝑘 is central to reachable set bounding methods for continuous-time systems

based on differential inequalities (DI), and is related to the simple observation that a

continuous-time trajectory cannot leave a continuous, time-varying interval enclosure

without being incident on its boundary at some point in time. For an arbitrary

sequence of intervals 𝑋𝑘 in discrete-time, the analogous claim that 𝑥𝑘,𝑖(c0, w0:𝐾) must

coincide with 𝑥𝐿
𝑘,𝑖 in order for 𝑥𝑘+1,𝑖(c0, w0:𝐾) to lie below 𝑥𝐿

𝑘+1,𝑖 is clearly not true.

Nevertheless, the main result of [106] shows that the use of 𝛽
𝐿/𝑈
𝑖 in (3.10)–(3.11)

still produces valid bounds provided that the step size ℎ is below an upper bound.

Moreover, this upper bound is easily computable and was shown to be reasonable in

practice.

When the a priori enclosure 𝐺 is nontrivial, (3.10)–(3.11) states that the faces

𝛽
𝐿/𝑈
𝑖 (𝑋𝑘) can be further refined by eliminating regions that lie outside of 𝐺 before

bounding the range of each 𝑓𝑖. Note that 𝐺 is permitted to refine each face of

𝑋𝑘 independently, rather than refining 𝑋𝑘 first and selecting faces second, as in

𝛽
𝐿/𝑈
𝑖 (ℐ[𝑋𝑘, 𝐺]). Unless 𝐺 is an interval, it is generally true that ℐ[𝛽𝐿/𝑈

𝑖 (𝑋𝑘), 𝐺] ⊂
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𝛽
𝐿/𝑈
𝑖 (ℐ[𝑋𝑘, 𝐺]), so this often has a very significant impact on the accuracy of the

resulting reachability bounds.

The use of the flattening operators 𝛽
𝐿/𝑈
𝑖 and the model redundancy 𝐺 to reduce

overestimation in (3.10)–(3.11) is unique among discrete-time bounding algorithms,

and was shown to be very effective relative to state-of-the-art zonotopic methods in

[106]. However, these techniques have not previously been applied in the context of

state estimation.

3.4 Set-Based State Estimation using Discrete-Time Differential Inequal-

ities

This section presents a new set-based state estimation algorithm whose prediction

step is based on the discrete-time differential inequalities approach outlined in the

previous section. Let y0:𝐾 be an observed output sequence for (3.1)–(3.2) and recall

the definitions of 𝑋𝑘|𝑘(y0:𝐾) and 𝑋𝑘+1|𝑘(y0:𝐾) from §3.2. Furthermore, recall the

measurement set 𝑋𝑚(y) from §3.2 and, for every 𝑋 ∈ IR𝑛𝑥 and y ∈ R𝑛𝑦 , define the

shorthand

Ω(𝑋, y) ≡ ℐ[𝑋, 𝑋𝑚(y) ∩𝐺], (3.12)

Ω𝐿
𝑖 (𝑋, y) ≡ ℐ[𝛽𝐿

𝑖 (𝑋), 𝑋𝑚(y) ∩𝐺], (3.13)

Ω𝑈
𝑖 (𝑋, y) ≡ ℐ[𝛽𝑈

𝑖 (𝑋), 𝑋𝑚(y) ∩𝐺]. (3.14)

In Theorem 6 below, we will show that intervals �̂�𝑘|𝑘 = [x̂𝐿
𝑘|𝑘, x̂𝑈

𝑘|𝑘] and �̂�𝑘+1|𝑘 =

[x̂𝐿
𝑘+1|𝑘, x̂𝑈

𝑘+1|𝑘] that enclose 𝑋𝑘|𝑘(y0:𝐾) and 𝑋𝑘+1|𝑘(y0:𝐾), respectively, are given by the
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following recursive algorithm:

�̂�0|−1 = 𝐶0, (3.15)

�̂�𝑘|𝑘 = Ω(�̂�𝑘|𝑘−1, y𝑘), (3.16)

�̂�𝐿
𝑘+1|𝑘,𝑖 = �̂�𝐿

𝑘|𝑘,𝑖 + ℎ𝑓𝐿
𝑖 (Ω𝐿

𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊 ), (3.17)

�̂�𝑈
𝑘+1|𝑘,𝑖 = �̂�𝑈

𝑘|𝑘,𝑖 + ℎ𝑓𝑈
𝑖 (Ω𝑈

𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊 ). (3.18)

Note that applying the reachability method described in the previous section

directly to the prediction step here would have resulted in predictions (3.17)–(3.18)

using the alternative definitions Ω𝐿/𝑈
𝑖 (𝑋, y) = ℐ[𝛽𝐿/𝑈

𝑖 (𝑋), 𝐺]. In this case, the

measurement y𝑘 would only be used to refine �̂�𝑘|𝑘−1 in correction step (3.16). However,

as written, the estimator (3.15)–(3.18) also uses y𝑘 to refine the individual faces of

�̂�𝑘|𝑘 before bounding the ranges of the functions 𝑓𝑖. We show in §3.5 that this can

lead to significantly tighter enclosures when the output y𝑘 is not simply a subset of

the states x𝑘.

Theorem 6. Choose any y0:𝐾 ∈ R(𝐾+1)𝑛𝑦 , let 𝐺 satisfy Assumption 4, let ℐ[·, 𝑋𝑚(y𝑘)∩

𝐺] satisfy Definition 4 for every 𝑘 ∈ K with the same Lipschitz constant 𝑀𝐺 ∈ R+,

and let �̂�𝑘|𝑘 and �̂�𝑘+1|𝑘 be defined for all 𝑘 ∈ K by (3.15)–(3.18) with the definitions

(3.12)–(3.14). Furthermore, choose any compact set �̄� ⊂ R𝑛𝑥 containing 𝐶0 and let

𝑀 ∈ R+ satisfy

‖f(z, w)− f(ẑ, w)‖∞ ≤𝑀‖z− ẑ‖∞, (3.19)

for all (z, ẑ, w) ∈ �̄� × �̄� ×𝑊 . Let 𝐾* be the largest 𝑘 ∈ K such that �̂�𝑘|𝑘 ⊂ �̄�. If

ℎ ∈ (0, 1
𝑀𝑀𝐺

], then

𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘 and 𝑋𝑘+1|𝑘(y0:𝐾) ⊂ �̂�𝑘+1|𝑘, (3.20)
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for all 𝑘 ∈ K* ≡ {0, . . . , 𝐾*}.

Remark 5. If f is globally Lipschitz, then (3.19) holds without restricting z and ẑ

to a compact set �̄�. Thus, there is no need to specify �̄� and we can set 𝐾* = 𝐾.

If f is only locally Lipschitz, then 𝑀 is only guaranteed to exist for z, ẑ ∈ �̄�, and

𝑀 depends on the choice of �̄�. In applying Theorem 6, we simply choose �̄� as a

reasonably large interval based on physical insight, and then check �̂�𝑘|𝑘 ⊂ �̄� at every

time step. When �̄� is an interval and f is continuously differentiable, Theorem 2 in

[106] provides a simple means to compute 𝑀 , which we use for all examples in §3.5.

Computing 𝑀𝐺 is discussed following the proof.

Proof. To set up an inductive argument, note that 𝑋0|−1(y0:𝐾) ⊂ �̂�0|−1 since both sets

equal 𝐶0 by definition. Choose any 𝑘 ∈ K* and assume that 𝑋𝑘|𝑘−1(y0:𝐾) ⊂ �̂�𝑘|𝑘−1.

We will show that this implies 𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘 and 𝑋𝑘+1|𝑘(y0:𝐾) ⊂ �̂�𝑘+1|𝑘. The

results then follows by induction.

We first show that 𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘. By definition, 𝑋𝑘|𝑘(y0:𝐾) = 𝑋𝑘|𝑘−1(y0:𝐾) ∩

𝑋𝑚(y𝑘). Since 𝑋𝑘|𝑘−1(y0:𝐾) ⊂ �̂�𝑘|𝑘−1 by our inductive hypothesis, it follows that

𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘−1 ∩𝑋𝑚(y𝑘). Moreover, Assumption 4 implies that 𝑋𝑘|𝑘(y0:𝐾) ⊂ 𝐺,

and hence 𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘−1 ∩𝑋𝑚(y𝑘) ∩𝐺. Then, by Condition 1 of Definition 4,

𝑋𝑘|𝑘(y0:𝐾) ⊂ ℐ[�̂�𝑘|𝑘−1, 𝑋𝑚(y𝑘) ∩𝐺] = �̂�𝑘|𝑘, as desired.

Next, we show that 𝑋𝑘+1|𝑘(y0:𝐾) ⊂ �̂�𝑘+1|𝑘. Choose any x𝑘+1 ∈ 𝑋𝑘+1|𝑘(y0:𝐾). It

suffices to show that that x𝑘+1 ∈ �̂�𝑘+1|𝑘. By the definition of 𝑋𝑘+1|𝑘(y0:𝐾), there must

exist x𝑘 ∈ 𝑋𝑘|𝑘(y0:𝐾) and w𝑘 ∈ 𝑊 such that x𝑘+1 = x𝑘 + ℎf(x𝑘, w𝑘). Choose any

𝑖 ∈ {1, . . . , 𝑛𝑥} and any

x*
𝑘 ∈ argmin

{︁
‖x− x𝑘‖∞ : x ∈ Ω𝐿

𝑖 (�̂�𝑘|𝑘, y𝑘)
}︁

. (3.21)

Since 𝑓𝐿
𝑖 is a lower bounding function for 𝑓𝑖, it follows that 𝑓𝐿

𝑖

(︁
Ω𝐿

𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊
)︁
≤
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𝑓𝑖(x*
𝑘, w𝑘). Thus, we have

�̂�𝐿
𝑘+1|𝑘,𝑖 − 𝑥𝑘+1,𝑖

= �̂�𝐿
𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖 + ℎ

(︁
𝑓𝐿

𝑖 (Ω𝐿
𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊 )− 𝑓𝑖(x𝑘, w𝑘)

)︁
,

≤ �̂�𝐿
𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖 + ℎ (𝑓𝑖(x*

𝑘, w𝑘)− 𝑓𝑖(x𝑘, w𝑘)) . (3.22)

In order to apply the Lipschitz condition on 𝑓𝑖, we now establish that the points x*
𝑘 and

x𝑘 are both elements of �̄�. First, we have already shown that x𝑘 ∈ 𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘.

Thus, the fact that 𝑘 ≤ 𝐾* implies that x𝑘 ∈ �̄�. Next, the definition of x*
𝑘 implies

that

x*
𝑘 ∈ Ω𝐿

𝑖 (�̂�𝑘|𝑘, y𝑘) = ℐ[𝛽𝐿
𝑖 (�̂�𝑘|𝑘), 𝑋𝑚(y𝑘) ∩𝐺]. (3.23)

Thus, by Condition 1 of Definition 4, x*
𝑘 ∈ 𝛽𝐿

𝑖 (�̂�𝑘|𝑘) ⊂ �̂�𝑘|𝑘 ⊂ �̄�, where the last

inclusion again follows from the fact that 𝑘 ≤ 𝐾*. Thus, (3.19) can be applied in

(3.22) to obtain

�̂�𝐿
𝑘+1|𝑘,𝑖 − 𝑥𝑘+1,𝑖 ≤ �̂�𝐿

𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖 + ℎ𝑀‖x*
𝑘 − x𝑘‖∞. (3.24)

We now show that ‖x*
𝑘 − x𝑘‖∞ is bounded above by 𝑀𝐺(𝑥𝑘,𝑖 − �̂�𝐿

𝑘|𝑘,𝑖). Define the

interval �̂� 𝑖
𝑘|𝑘 by setting �̂� 𝑖

𝑘|𝑘,𝑗 = �̂�𝑘|𝑘,𝑗 for all 𝑗 ̸= 𝑖 and �̂� 𝑖
𝑘|𝑘,𝑖 = [𝑥𝑘,𝑖, 𝑥𝑘,𝑖]. Since

x𝑘 ∈ �̂�𝑘|𝑘, we have x𝑘 ∈ �̂� 𝑖
𝑘|𝑘. Moreover, since x𝑘 ∈ 𝑋𝑘|𝑘(y0:𝐾) ⊂ 𝑋𝑚(y𝑘) ∩ 𝐺 by

Assumption 4, it follows from Condition 1 of Definition 4 that x𝑘 ∈ ℐ[�̂� 𝑖
𝑘|𝑘, 𝑋𝑚(y𝑘)∩𝐺].

But, by definition, x*
𝑘 is a point in ℐ[𝛽𝐿

𝑖 (�̂�𝑘|𝑘), 𝑋𝑚(y𝑘)∩𝐺] with the minimum possible

infinity-norm distance from x𝑘. Thus, it follows from the definition of the Hausdorff
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metric that

‖x*
𝑘 − x𝑘‖∞ ≤ 𝑑𝐻(ℐ[�̂� 𝑖

𝑘|𝑘, 𝑋𝑚(y𝑘) ∩𝐺], (3.25)

ℐ[𝛽𝐿
𝑖 (�̂�𝑘|𝑘), 𝑋𝑚(y𝑘) ∩𝐺]). (3.26)

Using the Lipschitz assumption on ℐ[·, 𝑋𝑚(y𝑘) ∩𝐺],

‖x*
𝑘 − x𝑘‖∞ ≤𝑀𝐺𝑑𝐻(�̂� 𝑖

𝑘|𝑘, 𝛽𝐿
𝑖 (�̂�𝑘|𝑘)). (3.27)

Noting that the intervals �̂� 𝑖
𝑘|𝑘 and 𝛽𝐿

𝑖 (�̂�𝑘|𝑘) differ only in their 𝑖th components, it

further follows that

‖x*
𝑘 − x𝑘‖∞ ≤𝑀𝐺

⃒⃒⃒
𝑥𝑘,𝑖 − �̂�𝐿

𝑘|𝑘,𝑖

⃒⃒⃒
. (3.28)

Now, since we have already shown that x𝑘 ∈ 𝑋𝑘|𝑘(y0:𝐾) ⊂ �̂�𝑘|𝑘, we must have

�̂�𝐿
𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖 ≤ 0. Then, (3.28) and (3.24) give

�̂�𝐿
𝑘+1|𝑘,𝑖 − 𝑥𝑘+1,𝑖 ≤ �̂�𝐿

𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖 + ℎ𝑀𝑀𝐺

⃒⃒⃒
𝑥𝑘,𝑖 − �̂�𝐿

𝑘|𝑘,𝑖

⃒⃒⃒
, (3.29)

= (1− ℎ𝑀𝑀𝐺)
(︁
�̂�𝐿

𝑘|𝑘,𝑖 − 𝑥𝑘,𝑖

)︁
. (3.30)

Thus, the condition ℎ ∈ (0, 1
𝑀𝑀𝐺

] implies that �̂�𝐿
𝑘+1|𝑘,𝑖 − 𝑥𝑘+1,𝑖 ≤ 0, and since the

choice of 𝑖 was arbitrary, we have x̂𝐿
𝑘+1|𝑘−x𝑘+1 ≤ 0. The proof that x̂𝑈

𝑘+1|𝑘−x𝑘+1 ≥ 0

is analogous. Thus, we have x𝑘+1 ∈ �̂�𝑘+1|𝑘, as desired.

It remains to define a specific refinement algorithm ℐ[·, 𝑋𝑚(y𝑘) ∩𝐺] and provide

a bound for its Lipschitz constant 𝑀𝐺. For this purpose, we apply Algorithm 1 in

[106], which is a slight modification of the algorithm originally given in Definition 4

of [24]. This algorithm defines a refinement ℐ[·, 𝐺] specifically for sets of the form

𝐺 ≡ {x ∈ 𝑋nat : Mx = b}, where M ∈ R𝑚×𝑛𝑥 , b ∈ R𝑚, and 𝑋nat ⊂ R𝑛𝑥 is an
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interval of natural bounds (i.e., non-negativity). For brevity, we do not repeat the

algorithm here. However, given an argument 𝑋 ∈ IR𝑛𝑥 , the basic idea is to refine 𝑋

by first intersecting it with 𝑋nat, and then considering rearrangements of the equations

Mx = b that isolate each 𝑥𝑗 independently; i.e., 𝑥𝑗 = 𝑚−1
𝑖𝑗 (𝑏𝑖−

∑︀
𝑙 ̸=𝑗 𝑚𝑖𝑙𝑥𝑙). For every

such rearrangement, taking the interval extension of the right-hand side potentially

gives an improved bound for 𝑋𝑗. Theorem 4 in [106] shows that the implementation

of this scheme given in Algorithm 1 there satisfies Definition 4 with the Lipschitz

constant

𝑀𝐺 = [max(max
𝑖

𝛼𝑖, 1)]𝑄, (3.31)

where 𝛼𝑖 ≡ (‖m𝑖‖1/𝑚*
𝑖 ) − 1, m𝑖 is the 𝑖th row of M, 𝑚*

𝑖 ≡ min𝑗{|𝑚𝑖𝑗| : |𝑚𝑖𝑗| > 0},

and 𝑄 is the number of iterations through all possible rearrangements of Mx = b.

To apply Algorithm 1 in [106] to refinements of the form ℐ[·, 𝑋𝑚(y𝑘) ∩𝐺] here,

we must restrict our attention to the linear output equation

y𝑘 = Cx𝑘 + Dv𝑘. (3.32)

Then, Algorithm 1 can be applied to the set

𝐺′ ≡
{︁
(x, v) ∈ 𝑋nat × 𝑉 : [ M 0

C D ] [ x
v ] =

[︁
b
y𝑘

]︁}︁
. (3.33)

Specifically, we define ℐ[𝑋, 𝑋𝑚(y𝑘) ∩𝐺] = 𝜋x ∘ ℐ[𝑋 × 𝑉, 𝐺′], where 𝜋x denotes the

projection of the interval ℐ[𝑋×𝑉, 𝐺′] onto its first 𝑛𝑥 components. It is straightforward

to show that this provides a valid refinement of 𝑋. Moreover, the Lipschitz constant

for this refinement is bounded by (3.31) with [ M 0
C D ] in place of M. Notably, this

constant is independent of the value of y𝑘, as required by Theorem 6.
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Table 3.1: Definition of set-based state estimation methods of the form (3.15)–(3.18)
compared in Examples 3.5.1 and 3.5.2.

Ω𝐿/𝑈
𝑖 (𝑋, y) Ω(𝑋, y)

Method 1 ℐ[ℬ𝐿/𝑈
𝑖 (𝑋)] ℐ[𝑋, 𝑋𝑚(y)]

Method 2 ℐ[ℬ𝐿/𝑈
𝑖 (𝑋), 𝑋𝑚(y)] ℐ[𝑋, 𝑋𝑚(y)]

Method 3 ℐ[ℬ𝐿/𝑈
𝑖 (𝑋), 𝐺] ℐ[𝑋, 𝑋𝑚(y) ∩𝐺]

Method 4 ℐ[ℬ𝐿/𝑈
𝑖 (𝑋), 𝑋𝑚(y) ∩𝐺] ℐ[𝑋, 𝑋𝑚(y) ∩𝐺]

3.5 Numerical Results

This section compares our new state estimation method with five other methods. The

first four methods are of the general form (3.15)–(3.18), but with different definitions

of Ω and Ω𝐿/𝑈
𝑖 than those given in (3.12)–(3.14), as described in Table 3.1. Method 4

is our new method, while Methods 1–3 are weaker methods that help to understand

the key features of Method 4. We also compare against two common set-based state

estimation algorithms based on zonotopes. These methods (Methods 5 and 6) are

described in [23] and [22], respectively. However, we modify Method 6 to use the

improved correction step described in [23]. Methods 5 and 6 are implemented with

10tℎ order zonotopes using the order reduction method in [22]. We report wall clock

times for implementations in MATLAB R2015a on a Dell Precision T1700 with an

i5-4690 CPU @ 3.50GHz and 16.0 GB RAM.
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3.5.1 Example 1

The following discrete-time system describes a continuous-stirred tank reactor from

[27], where 𝑥𝑖 is the concentration (M) of species 𝑖:

𝑥1,𝑘+1 =𝑥1,𝑘 + ℎ
[︁
− 𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘+

𝜏−1 (𝑢1,𝑘 − 2𝑥1,𝑘)
]︁
, (3.34)

𝑥2,𝑘+1 =𝑥2,𝑘 + ℎ
[︁
−𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝜏−1 (𝑢2,𝑘 − 2𝑥2,𝑘)

]︁
,

𝑥3,𝑘+1 =𝑥3,𝑘 + ℎ
[︁
𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥3,𝑘

]︁
,

𝑥4,𝑘+1 =𝑥4,𝑘 + ℎ
[︁
𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥4,𝑘

]︁
.

The parameters 𝜏−1 = 0.05(min−1) and 𝑘2 = 0.4(M−1min−1) are constant and 𝑢1 ∈

[0.9, 1.1] (M), 𝑢2 ∈ [0.8, 1.0] (M) and 𝑢3 ∈ [10, 50] (M) are time-varying uncertainties.

The initial condition is c0 = (0.036, 0.038, 0.36, 0.052) and is certain. The states 𝑥2,

𝑥3 and 𝑥4 are measured, so that

𝑦1,𝑘 = 𝑥2,𝑘 + 𝑣1,𝑘, (3.35)

𝑦2,𝑘 = 𝑥3,𝑘 + 𝑣2,𝑘,

𝑦3,𝑘 = 𝑥4,𝑘 + 𝑣3,𝑘,

with 𝑣1,𝑘 ∈ [−10−2, 10−2] and 𝑣2,𝑘, 𝑣3,𝑘 ∈ [−10−3, 10−3].

We are not aware of any redundant algebraic relationships satisfied by the states of

(3.34) that can be used to define a nontrivial set 𝐺. Therefore, we follow the approach

in [26] to manufacture a set G by embedding (3.34) in a higher-dimensional system.
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We first define the redundant states,

𝑧1,𝑘 = −1
3𝑥1,𝑘 −

1
3𝑥2,𝑘 + 1

3𝑥3,𝑘, (3.36)

𝑧2,𝑘 = −1
3𝑥1,𝑘 −

1
3𝑥3,𝑘 + 1

3𝑥4,𝑘,

𝑧3,𝑘 = −𝑥1,𝑘 + 2𝑥2,𝑘 + 𝑥3,𝑘,

𝑧4,𝑘 = 𝑥1,𝑘 − 𝑥2,𝑘 + 𝑥4,𝑘.

Next, we augment (3.34) with the corresponding difference equations,

𝑧1,𝑘+1 = 𝑧1,𝑘 + ℎ

[︃
𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 −

1
3𝜏−1 (𝑢1,𝑘 + 𝑢2,𝑘) (3.37)

− 2𝜏−1𝑧1,𝑘

]︃
,

𝑧2,𝑘+1 = 𝑧2,𝑘 + ℎ
[︂
𝑘2𝑥1,𝑘𝑥3,𝑘 −

1
3𝜏−1𝑢1,𝑘 − 2𝜏−1𝑧2,𝑘

]︂
,

𝑧3,𝑘+1 = 𝑧3,𝑘 + ℎ𝜏−1 [2 (𝑢2,𝑘 − 𝑧3,𝑘)− 𝑢1,𝑘] ,

𝑧4,𝑘+1 = 𝑧4,𝑘 + ℎ𝜏−1 (𝑢1,𝑘 − 𝑢2,𝑘 − 2𝑧4,𝑘) .

The specific definitions of z𝑘 above are chosen so that fortuitous term cancellations

occur when deriving (3.37) from (3.34), which helps to mitigate overestimation when

bounding the right-hand sides of (3.37) [26]. The solutions of this augmented system

now satisfy (3.36) for all 𝑘 ∈ K by design. Accordingly, we define 𝐺 ≡ {(x, z) ∈ R8 :

M [ x
z ] = b} with

M =
[︃ −1/3 −1/3 1/3 0 −1 0 0 0

−1/3 0 −1/3 1/3 0 −1 0 0
−1 2 1 0 0 0 −1 0
1 −1 0 1 0 0 0 −1

]︃
, b =

[︂ 0
0
0
0

]︂
. (3.38)

We define the refinement ℐ[·, 𝑋𝑚(y𝑘)∩𝐺] and bound its Lipschitz constant as described

in §3.4, which gives 𝑀𝐺 = 5. To apply Thoerem 6, we are choosing �̄� = [0, 0.13]×

[0, 0.13]× [0, 0.45]× [0, 0.5], which gives 𝑀 = 13.33 by Theorem 4 in [106]. Thus, we
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choose ℎ = 0.015s ≤ 1
𝑀𝑀𝐺

and 𝐾 = 600.
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Figure 3.1: CPU time, volume, radius, and single-component projections of �̂�𝑘|𝑘 for
Methods 1–6 on Example 3.5.1 (�, ⋆, ∘, ◇, O, ×), and volume and radius of �̂�𝑘|𝑘 ∩𝐺
for Method 4 (△). Bounded error measurements are gray.

Figure 3.1 compares Methods 1–6 in terms of the required CPU time per time step

𝑘 and the quality of the bound �̂�𝑘|𝑘. Specifically, we compare the upper and lower

bounds obtained by projecting �̂�𝑘|𝑘 onto 𝑥1 and 𝑥4, as well as the volume and radius

of �̂�𝑘|𝑘. Note that 𝑥4 is measured, as indicated by the gray shaded bounds, but 𝑥1 is

not. For Method 4, we also show the volume and radius of the polytope obtained by

intersecting the interval �̂�𝑘|𝑘 with 𝐺.

Figure 3.1 shows that our new method (◇) produces significantly tighter enclosures

�̂�𝑘|𝑘 than the state-of-the-art zonotope-based methods (O, ×), and is also more

efficient. Comparing the various DI methods in Table 3.1, we see that the methods

making use of 𝐺 (∘, ◇) are more accurate but slightly more costly than those that

do not use 𝐺 (�, ⋆). However, there is no observable difference between the methods

within these groups, which differ in the use of 𝑋𝑚(y𝑘) to refine 𝛽
𝐿/𝑈
𝑖 (�̂�𝑘|𝑘) in the

prediction step, as discussed immediately after (3.15)–(3.18). Interestingly, this results

from the outputs y𝑘 being simply a subset of the states x𝑘, which makes 𝑋𝑚(y𝑘)

an interval. In the next example, we show that there can be significant differences
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between these methods in the case of general linear outputs.

3.5.2 Example 2

Consider Example 3.5.1 with the outputs

𝑦1,𝑘 = 𝑥1,𝑘 + 𝑥2,𝑘 + 𝑥3,𝑘 + 𝑣1,𝑘, (3.39)

𝑦2,𝑘 = 𝑥2,𝑘 + 𝑥3,𝑘 + 𝑥4,𝑘 + 𝑣2,𝑘,

𝑦3,𝑘 = 𝑥1,𝑘 + 𝑥4,𝑘 + 𝑣3,𝑘,

where 𝑣1,𝑘, 𝑣2,𝑘 ∈ [−10−2, 10−2] and 𝑣3,𝑘 ∈ [−10−3, 103]. In this case, 𝑀𝐺 = 5 again, so

the same step size ℎ is valid.

0 1 2 3 4 5 6 7
0.025

0.03

0.035

0.04

x
1

0 1 2 3 4 5 6 7
0

0.05

0.1

x
2

0 1 2 3 4 5 6 7

time (s)

0

0.5

1

V
o

lu
m

e

10
-7

Figure 3.2: CPU time, volume, radius, and single-component projections of �̂�𝑘|𝑘 for
Methods 1–6 on Example 3.5.2 (�, ⋆, ∘, ◇, O, ×), and volume and radius of �̂�𝑘|𝑘 ∩𝐺
for Method 4 (△).

Figure 3.2 shows that our new method (◇) again produces significantly tighter

enclosures �̂�𝑘|𝑘 than the state-of-the-art zonotope-based methods (O, ×), and is again

more efficient. Comparing the DI methods in Table 3.1, we also find again that the

methods making use of 𝐺 (∘, ◇) are more accurate but slightly more costly than those

that do not use 𝐺 (�, ⋆). However, in this case, there is a clear difference between
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Methods 1 and 2 (�, ⋆), and also between Methods 3–4 (∘, ◇). These differences are

particularly evident in the volume plot, and result from the use of 𝑋𝑚(y𝑘) to refine

𝛽
𝐿/𝑈
𝑖 (�̂�𝑘|𝑘) in the prediction step of Methods 2 and 4, but not in Methods 1 and 3.

We draw the following general conclusions from these results. First, the state-

of-the-art zonotope method in [23] consistently outperforms that in [22]. However,

even the most basic DI method (Method 1) is more effective in all comparisons

except volume. This is due to the use of the flattening operators 𝛽
𝐿/𝑈
𝑖 permitted

by the discrete-time DI theory developed here, which presently has no analogue in

zonotope-based methods. The addition of model redundancy in Methods 3–4 relative

to Methods 1–2 leads to much sharper enclosures with costs that are intermediate

between Methods 1–2 and the zonotopic methods. Notably, Methods 3–4 significantly

outperform the zonotopic methods even in terms of volume. Finally, in the case of

general linear output equations, tighter enclosures are obtained by using 𝑋𝑚(y𝑘) to

refine 𝛽
𝐿/𝑈
𝑖 (�̂�𝑘|𝑘) in the prediction step of Methods 2 and 4 relative to Methods 1 and

3, which is a key new feature enabled by the DI estimation theory presented here.

3.6 Conclusion

This chapter proposed a novel approach for guaranteed state estimation using discrete-

time DI method. The proposed state estimation algorithm largely increases the

accuracy of the estimated state sets and is suitable for online applications. The main

contribution of the chapter is exploiting the measurement set 𝑋𝑚(y𝑘) with DI method

to refine for the prediction. The time step restriction for the new algorithm is stated

in Section 3.3. The numerical results clearly verify the accuracy and efficiency of the

proposed algorithm. The major limitation of the current algorithm is the lack of the

refinement operator for nonlinear a priori set, which can be considered as the future

work.
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CHAPTER 4

GUARANTEED FAULT DETECTION USING DIFFERENTIAL

INEQUALITIES

4.1 Introduction

This chapter applies the set-based state estimation method using differential inequal-

ities in Chapter 3 to rapid and accurate set-based fault detection (FD) for highly

nonlinear systems with uncertainties. Due to the level of complexity, integration,

and automation in modern chemical processes, robotics systems, and power systems,

faults such as equipment malfunctions and failures pose a serious threat to safe and

profitable operation. Classical FD methods exploit historical data and are well es-

tablished for various systems [41]. The methods detect faults by comparing observed

measurements with previous statistics, which are often effective with sufficient histori-

cal data. However, these data-based methods cannot rigorously distinguish faults from

system disturbances. This issue is particularly pronounced when systems have large

uncertainties or when there is a lack of high-quality historical data that is relevant to

the current operating conditions (e.g., an abnormal disturbance), which leads to false

alarms and missed faults. An alternative class of FD methods exploits first-principles

process models, which are available at least at the level of individual process units and

subsystems in many applications of interest. In model-based approaches, faults are

detected by comparing the process outputs that are consistent with the model (under

all relevant uncertainties) to the outputs observed from the real process. Specifically,

traditional model-based methods detect faults by checking if the difference between

the predicted and measured outputs exceeds a threshold. However, the threshold value

is usually empirical. Thus, choosing a threshold that minimizes missed faults without
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generating too many false alarms is challenging. Set-based FD is a particularly useful

model-based approach that attempts to address this threshold problem rigorously.

In set-based approaches, all uncertainties, disturbances, and measurement noises are

assumed to be bounded and set-based computations are used to rigorously test if a

new measured output is consistent with the process model given these bounds. This

approach eliminates false alarms, but requires accurate set-based computations to

achieve high sensitivity to faults, which is challenging.

Many set-based fault detection methods are available for linear systems using

computations with intervals [42, 43], polytopes [44], ellipsoids [45], zonotopes [46, 47,

48], and constrained zonotopes [4]. However, testing the consistency of a measured

output with a nonlinear model is significantly more difficult. One possible approach

is to solve a nonlinear global optimization problem in each time step to determine

if there exists a feasible point in the model that explains the current measurements.

Although this would be accurate, it is clearly computationally intractable for most

systems. A closely related idea was proposed in [49] for active input design rather than

online fault detection. A second approach is to use set-based parameter estimation.

In this approach, measurements are used to compute an enclosure of the set of model

parameters that are consistent with the measurements, and a fault is detected when

this enclosure has no overlap with a known set of possible parameter values for the

fault-free model. The key challenge in this approach is how to compute tight enclosures

of the feasible parameter set efficiently online. In [50], this is done using interval-

based set inversion techniques. However, the computational cost scales exponentially

with the number of uncertain parameters. This method is extended to systems with

probabilistic noises using a Bayesian framework in [51]. However, this method does

not provide rigorous bounds for uncertain parameters.

A third approach to set-based FD methods is to apply set-based state estimation.

Recall that, in each time step, a set-based state estimator provides a guaranteed
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enclosure of the set of states consistent with the model, the bounded uncertainties,

and all past measurements. This can then be used to compute an enclosure of the

possible model outputs, and a fault is declared if the measured output is outside

of this set. Note that some methods actually detect faults by computing a set of

possible output prediction errors (i.e, residuals) rather than directly computing a set

of possible outputs. As discussed in Chapter §3, the key challenge for these methods

is to compute sufficiently accurate enclosures of the possible fault-free outputs (or

residuals) fast enough for online fault detection. The articles [52] and [53] propose

set-based FD approaches based on a Luenberger-type set-based state estimators.

However, both methods compute rigorous enclosures of the residuals based on linear

differential inclusions for the nonlinear observer error dynamics, which is likely to be

very conservative for highly nonlinear systems. The article [54] also uses a Luenberger-

type set-based state estimator. However, instead of computing a rigorous enclosure of

all possible residuals for the fault-free model, they compute a smaller set of residuals

based on a prescribed false alarm rate. Thus, this method is not guaranteed to

avoid false alarms. Moreover, computing this set of residuals requires the solution

of nonlinear chance constrained optimization problems in each time step, which is

likely to be intractable for many systems. In order to reduce conservatism and

increase efficiency, some approaches use approximate models with simpler structure.

In [55], nonlinear models are linearized before constructing the observer, as in the

extended Kalman filter. Similarly, the article [56] approximates nonlinear input-output

models using a Takagi-Sugeno fuzzy neural network that is linear in the uncertain

parameters. Rigorous ellipsoidal [56] and zonotopic [55] enclosures are then computed

for the approximate models and used for fault detection. However, these enclosures

are not rigorous for the original nonlinear systems and cannot provide guaranteed

fault detection. Finally, the article [57] proposes a set-based fault detection method

for continuous-time nonlinear systems based on enclosures of the fault-free states
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computed using advanced reachability techniques based on differential inequalities (DI).

Although these reachability methods are very effective, they do not use measurements

to refine the predicted enclosures as in a true set-based state estimator. Rather,

measurements are only used to test for faults in each time step. This is a serious

limitation and is likely to be prohibitive for systems with large uncertainties, where

even the exact reachable set can be large.

To address these limitations, this Chapter develops a new set-based FD algorithm

based on the set-based state estimation algorithm developed in Chapter 3. This

algorithm guarantees no false alarms and improves upon the detection speed and fault

sensitivity of existing set-based methods due to the superior accuracy and efficiency of

our state estimator. The fault detection algorithm is firstly introduced in Section 4.2.

The proposed algorithm is then compared with a popular data-based method based on

principal component analysis (PCA), a conventional model-based method using the

extended Kalman filter (EKF), and four state-of-the-art set-based algorithms. These

algorithms are tested for four case studies and various scenarios within each case study,

including fault-free cases normal disturbances, fault-free cases with large persistent

disturbances, and cases with various faults. The results show that the proposed

set-based algorithm eliminates false alarms and has the highest fault sensitivity among

all set-based methods.

4.2 Set-Based Fault Detection Algorithm

Suppose that (3.1)–(3.2) represents the system model in the fault-free condition. Let

y0:𝐾 = (y0, . . . , y𝐾) be a measured output sequence and recall the sets 𝑋𝑘|𝑘(y0:𝐾) and

𝑋𝑘+1|𝑘(y0:𝐾) defined in (3.5)–(3.7). Furthermore, define the set

𝑌𝑘|𝑘−1(y0:𝐾) ≡ {g(x, v) : (x, v) ∈ 𝑋𝑘|𝑘−1(y0:𝐾)× 𝑉 }. (4.1)
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In words, the set 𝑌𝑘(y0:𝐾) is the set of all outputs that can be generated by the

nominal model (3.1)–(3.2) at time 𝑘 given any inputs x0 ∈ 𝑋0, w0:𝑘−1 ∈ 𝑊0:𝑘−1, and

v0:𝑘 ∈ 𝑉0:𝑘 that could have generated the previous outputs y0:𝑘−1.

Definition 5. A measured output sequence y0:𝐾 = (y0, . . . , y𝐾) is said to be incon-

sistent with the model (3.1)–(3.2) if and only if y𝑘 ̸∈ 𝑌𝑘|𝑘−1(y0:𝐾).

According to Definition 5, if a measured output sequence becomes inconsistent,

then the sequence can no longer be explained by the nominal model (3.1)–(3.2), and

hence a fault must have occurred. The set-based fault detection approaches considered

in this chapter aim to detect this situation as quickly as possible. On the other hand,

it is assumed that no fault has occurred as long as the measured output remains

consistent with the nominal model. The general structure of these methods is given

in Algorithm 3, where �̂�𝑘|𝑘(y0:𝐾), �̂�𝑘+1|𝑘(y0:𝐾), and 𝑌𝑘|𝑘−1(y0:𝐾) are enclosures of

𝑋𝑘|𝑘(y0:𝐾), 𝑋𝑘+1|𝑘(y0:𝐾), and 𝑌𝑘|𝑘−1(y0:𝐾) computed using a set-based state estimation

algorithm of the general form given in (3.5)–(3.7). For brevity, we drop the argument

y0:𝐾 from these enclosures in Algorithm 3 and elsewhere where the output sequence is

clear from context.

Algorithm 3 Set-based fault detection using a set-based state estimator
1: function FD(y0:𝐾 , 𝐶0, 𝑊 , 𝑉 )
2: �̂�0|−1 ⊃ 𝐶0
3: for 𝑘 = 0 to 𝐾 do
4: 𝑌𝑘|𝑘−1 ⊃ {g(x, v) : (x, v) ∈ �̂�𝑘|𝑘−1 × 𝑉 }
5: if y𝑘 ̸∈ 𝑌𝑘|𝑘−1 then
6: Generate an alarm and break
7: end if
8: �̂�𝑘|𝑘 ⊃ �̂�𝑘|𝑘−1 ∩𝑋𝑚(y𝑘)
9: �̂�𝑘+1|𝑘 ⊃ {x + ℎf(x, w) : (x, w) ∈ �̂�𝑘|𝑘 ×𝑊}

10: end for
11: return
12: end function

Lemma 1. If Algorithm 3 is applied with input (y0:𝐾, 𝐶0, 𝑊 , 𝑉 ) and, for some
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𝑘 ∈ {0, . . . , 𝐾}, it happens that y𝑘 ̸∈ 𝑌𝑘|𝑘−1 in line 5, then y0:𝐾 is inconsistent with

(3.1)–(3.2).

Proof. Since 𝑌𝑘|𝑘−1 ⊂ 𝑌𝑘|𝑘−1 by definition, y𝑘 ̸∈ 𝑌𝑘|𝑘−1 indicates that y𝑘 ̸∈ 𝑌𝑘|𝑘−1.

Therefore, y0:𝐾 is inconsistent with (3.1)–(3.2) by Definition 5.

The next lemma shows that the consistency test y𝑘 ̸∈ 𝑌𝑘|𝑘−1 can be written

equivalently in the state-space as 𝑋𝑘|𝑘−1(y0:𝐾) ∩𝑋𝑚(y𝑘) = ∅. This suggests that the

enclosure-based test y𝑘 ̸∈ 𝑌𝑘|𝑘−1 used in Algorithm 3 could alternatively be replaced

with the test �̂�𝑘|𝑘−1(y0:𝐾) ∩𝑋𝑚(y𝑘) = ∅, which may be advantageous in some cases.

The next lemma gives a condition under which these two implementations are in fact

equivalent.

Lemma 2. For any measured output sequence y0:𝐾 = (y0, . . . , y𝐾) and any 𝑘 ∈

K, y𝑘 ̸∈ 𝑌𝑘|𝑘−1(y0:𝐾) if and only if 𝑋𝑘|𝑘−1(y0:𝐾) ∩ 𝑋𝑚(y𝑘) = ∅. Moreover, if

𝑌𝑘|𝑘−1(y0:𝐾) = {g(x, v) : (x, v) ∈ �̂�𝑘|𝑘−1(y0:𝐾) × 𝑉 }, then y𝑘 ̸∈ 𝑌𝑘|𝑘−1(y0:𝐾) if

and only if �̂�𝑘|𝑘−1(y0:𝐾) ∩𝑋𝑚(y𝑘) = ∅.

Proof. Suppose that y𝑘 ̸∈ 𝑌𝑘. We prove that 𝑋𝑘|𝑘−1 ∩𝑋𝑚(y𝑘) = ∅ by contradiction.

Suppose that there exists x ∈ 𝑋𝑘|𝑘−1 ∩𝑋𝑚(y𝑘). By the definition of 𝑋𝑚(y𝑘) in (3.4),

it follows that there exist v ∈ 𝑉 and x ∈ 𝑋𝑘|𝑘−1 such that y𝑘 = g(x, v). But then

y𝑘 ∈ {g(x, v) : (x, v) ∈ 𝑋𝑘|𝑘−1 × 𝑉 } = 𝑌𝑘, which is a contradiction.

Next suppose 𝑋𝑘|𝑘−1 ∩𝑋𝑚(y𝑘) = ∅. By the definition of 𝑋𝑚(y𝑘), y𝑘 ̸= g(x, v) for

every (x, v) ∈ 𝑋𝑘|𝑘−1 × 𝑉 . Therefore, y𝑘 /∈ {g(x, v) : (x, v) ∈ 𝑋𝑘|𝑘−1 × 𝑉 } = 𝑌𝑘.

To prove the second claim, suppose that y𝑘 ̸∈ 𝑌𝑘. We prove that �̂�𝑘|𝑘−1∩𝑋𝑚(y𝑘) =

∅ by contradiction. Suppose that there exists x ∈ �̂�𝑘|𝑘−1 ∩𝑋𝑚(y𝑘). By the definition

of 𝑋𝑚(y𝑘) in (3.4), it follows that there exist v ∈ 𝑉 and x ∈ �̂�𝑘|𝑘−1 such that

y𝑘 = g(x, v). But then y𝑘 ∈ {g(x, v) : (x, v) ∈ �̂�𝑘|𝑘−1 × 𝑉 } = 𝑌𝑘, which is a

contradiction.
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Next suppose �̂�𝑘|𝑘−1 ∩𝑋𝑚(y𝑘) = ∅. By the definition of 𝑋𝑚(y𝑘), y𝑘 ̸= g(x, v) for

every (x, v) ∈ �̂�𝑘|𝑘−1 × 𝑉 . Therefore, y𝑘 /∈ {g(x, v) : (x, v) ∈ �̂�𝑘|𝑘−1 × 𝑉 } = 𝑌𝑘.

Although all of the set-based FD methods implemented in this chapter are based

on the implementation in Algorithm 3 with the fault detection test y𝑘 ̸∈ 𝑌𝑘|𝑘−1(y0:𝐾),

it is more convenient to plot the numerical results in a way that shows the intersec-

tion �̂�𝑘|𝑘−1(y0:𝐾) ∩ 𝑋𝑚(y𝑘). Since the condition 𝑌𝑘|𝑘−1(y0:𝐾) = {g(x, v) : (x, v) ∈

�̂�𝑘|𝑘−1(y0:𝐾) × 𝑉 } is satisfied in all of our examples, Lemma 2 ensures that these

graphical representations are consistent with the way faults are detected in our

algorithms.

4.2.1 Set-based Fault Detection Using Differential Inequalities

The new set-based FD algorithm proposed in the chapter results from implementing

Algorithm 3 with the set-based state estimator developed in Chapter 3 using differential

inequalities (DI). Specifically, we use the DI method (3.15)–(3.18) to compute �̂�𝑘|𝑘

and �̂�𝑘+1|𝑘 in lines 8 and 9:

�̂�𝑘|𝑘 = Ω(�̂�𝑘|𝑘−1, y𝑘), (4.2)

�̂�𝐿
𝑘+1|𝑘,𝑖 = �̂�𝐿

𝑘|𝑘,𝑖 + ℎ𝑓𝐿
𝑖 (Ω𝐿

𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊 ), (4.3)

�̂�𝑈
𝑘+1|𝑘,𝑖 = �̂�𝑈

𝑘|𝑘,𝑖 + ℎ𝑓𝑈
𝑖 (Ω𝑈

𝑖 (�̂�𝑘|𝑘, y𝑘), 𝑊 ), (4.4)

with Ω(𝑋, y), Ω𝐿
𝑖 (𝑋, y), and Ω𝑈

𝑖 (𝑋, y) defined in Method 4 in Table 3.1.

To obtain the output enclosure 𝑌𝑘 required in line 4, we assume that an interval

inclusion function 𝒢 : IR𝑛𝑥 × IR𝑛𝑣 → IR𝑛𝑦 is available for the measurement function g

in (3.2), e.g., using interval arithmetic, and we denote 𝒢(𝑋, 𝑉 ) = [g𝐿(𝑋, 𝑉 ), g𝑈 (𝑋, 𝑉 )].
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Then, 𝑌𝑘 is obtained by

𝑦𝐿
𝑘,𝑖 = 𝑔𝐿

𝑖 (�̂�𝑘|𝑘−1, 𝑉 ),

𝑦𝑈
𝑘,𝑖 = 𝑔𝑈

𝑖 (�̂�𝑘|𝑘−1, 𝑉 ). (4.5)

4.3 Numerical Results

In this section, we compare seven fault detection methods using four numerical exam-

ples. For each example, the performance of each method is tested in multiple different

faulty and fault-free scenarios. Performance is evaluated in terms of computational

cost, the number of false alarms, and the time to detect a given fault using each

method. We report wall clock times for implementations in MATLAB R2019b on a

Macbook Pro with a 2.9 GHz Dual-Core Intel Core i5 processor and 8.0 GB RAM.

Method (i) is a conventional data-based method based on principal component

analysis (PCA). PCA methods have been widely used for fault detection in industry [41].

Given a set of observation data, the PCA method first computes the eigendecomposition

of the corresponding co-variance matrix. The eigenvalues indicate how much of the

variance in the data is explained by each eigenvector. Any eigenvectors with small

variance are eliminated, resulting in a remaining set of so-called principle directions.

In many cases, this can lead to a substantial reduction in the dimensionality of the

data. However, all of the case studies considered in this chapter are low dimensional

systems and the computed eigenvalues indicated that the dimensionality could not be

reduced further (i.e., all eigenvectors were retained). Next, the PCA method maps the

data into a score space by computing the extent of each data point along each principle

direction, normalized by the variance in that direction. Assuming that this data is

normally distributed, a 𝑇 2 statistic is then used to compute a threshold containing

the data with a specified probability level. This level is the probability that a new

observation generated by the same dynamics will fall within the computed threshold
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[41]. We compute the threshold by choosing a 95% probability level in all numerical

examples as suggested by [41].

The assumption of normally distributed data in the PCA method is satisfied for

linear systems with Gaussian noises. However, this assumption fails for nonlinear

systems or systems with other kinds of uncertainties. As a result, the threshold

computed by the PCA method is only approximate and cannot guarantee that a new

observation falls within the threshold with 95% probability. Therefore, this method

can potentially exhibit many false alarms for highly nonlinear systems.

Since we do not have real experimental data for the numerical examples consid-

ered here, we apply Method (i) using synthetic data generated by simulating 50000

observations starting from steady-state using the fault-free system dynamics and the

distributions of uncertainties specified in each example.

Method (ii) is a model-based method that utilizes the extended Kalman filter

(EKF) in Chapter 13 of [110]. We chose to compare with this EKF-based algorithm

because the EKF is a very widely used state estimation technique in industry [111]. To

use the EKF for fault detection, this method fist computes a set of residuals defined as

the difference between the real measured outputs and the predicted outputs from the

EKF. The method assumes that the system is fault-free if each residual sequence is an

independent Gaussian random sequence with zero mean and a computed covariance.

The system is faulty if the system follows an alternative hypothesis that residuals

have positive or negative bias with mean 𝑎. As recommended in [112], we tested

both 𝑎 = ±1 and only gives the results with most false alarms rates. A sequential

probability ratio test (SPRT) is performed to test if the statistics of the residuals follow

this hypothesis. A threshold is computed for the likelihood ratio function based on a

5% probability of a false alarm and 5% probability of missing a fault that specifically

follows the alternative hypothesis [112]. In the numerical results, we only show the

SPRT for one output variable for each fault detection test. In fault-free cases, we
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show the variable with the most false alarms. In faulty cases, we show the variable

that detects the fault earliest.

We also compared four set-based methods. All of these methods follow Algorithm

3, but each one uses a different set-based state estimator in lines 8–9. In Method (iii),

state estimation is done using the DI method with invariants described in Chapter 3.

More specifically, state estimation is done using (4.2)–(4.4) with Ω(𝑋, y), Ω𝐿
𝑖 (𝑋, y),

and Ω𝑈
𝑖 (𝑋, y) computed by Method 4 in Table 3.1. In Method (iv), state estimation

is done using the standard DI method without invariants, which is described by

(4.2)–(4.4) with Ω(𝑋, y), Ω𝐿
𝑖 (𝑋, y), and Ω𝑈

𝑖 (𝑋, y) computed by Method 1 in Table

3.1. In Method (v), state estimation is done using a more basic discrete-time interval

approach instead of DI. Specifically, the prediction step is done by taking the natural

interval extension of (3.1) over the entire sets �̂�𝑘|𝑘 and 𝑊 , as in the so-called standard

interval method in Chapter 2, and the correction step is done using (4.2) with Ω(𝑋, y)

computed by Method 1 in Table 3.1. In all of these interval methods, the computation

of 𝑌𝑘 in line 4 of Algorithm 3 is done using (4.5) and, since 𝑌𝑘 is an interval, the

condition y𝑘 /∈ 𝑌𝑘 in line 5 is easily checked.

In Methods (vi) and (vii), state estimation is done using the zonotope-based

methods described in Chapter 3 as Methods 6 and 5, respectively. Since all examples

in this chapter have linear measurement equations of the form y𝑘 = Cx𝑘 + v𝑘, a

zonotopic enclosure 𝑌𝑘 for use in line 4 can be computed as 𝑌𝑘 = C�̂�𝑘 ⊕ 𝑉 . However,

this would require solving a linear program to check y𝑘 ̸∈ 𝑌𝑘 in line 5. To avoid

this additional computational cost, we instead compute 𝑌𝑘 as the interval hull of

C�̂�𝑘⊕𝑉 , where ⊕ is the Minkowski sum. Our numerical experiments show that using

linear programming to detect faults in line (5) does not significantly increase the fault

sensitivity of either method, but does increase the computational time by 5–6 times.

Methods (i)–(vii) are summarized in Table 4.1. These methods are compared in

Figures 4.1–4.24 in the numerical example. The markers in the figures representing
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Table 4.1: Summary descriptions and markers used for Methods (i)–(vii)

Method Index Method Description Marker
(i) The data-based method using PCA black lines
(ii) The model-based method using EKF blue lines
(iii) The DI with invariants method ⋆
(iv) The standard DI method △
(v) The standard interval method �
(vi) The zonotope method in [22] ◇
(vi) The zonotope method in [23] ∘

Methods (i)–(vii) and are also summarized in Table 4.1.

Note that Methods (i) and (ii) are derived assuming that all uncertain parameters

are all normally distributed. On the other hand, Methods (iii)–(vii) assume that the

uncertain parameters are bounded within compact sets with arbitrary distributions. In

most of the following examples, we assume that the uncertain parameters obey normal

distributions and we implement the set-based methods using the 99.7% confidence

interval for each parameter. In a few cases, we assume that a parameter is interval

bounded, in which case Methods (i) and (ii) are implemented using the normal

distribution whose 99.7% confidence interval coincides with the specified bounds.

Let 𝑥 ∼ 𝒩 (𝜇, 𝜎) denote a normal distributed variable 𝑥 with mean 𝜇 and standard

deviation 𝜎.
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4.3.1 Example 1

Consider the continuous stirred-tank reactor (CSTR) with cooling from [107] in

dimensionless form:

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝛿
[︂
𝑤1,𝑘 − 𝑥1,𝑘 −𝐷𝑎𝑒

− 𝛼
𝑥2,𝑘 𝑥1,𝑘

]︂
, (4.6)

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝛿

[︃
𝑤2,𝑘 − 𝑥2,𝑘 −𝐻𝐷𝑎𝑒

− 𝛼
𝑥2,𝑘 𝑥1,𝑘

− 𝑆
(︁
𝑥2,𝑘 − 𝛽−1𝑥3,𝑘

)︁ ]︃
,

𝑥3,𝑘+1 = 𝑥3,𝑘 + 𝛿 [𝛾(𝑤3,𝑘 − 𝑥3,𝑘) + 𝑆𝑐 (𝛽𝑥2,𝑘 − 𝑥3,𝑘)] ,

where 𝑥1, 𝑥2, and 𝑥3 are the dimensionless concentration, reactor temperature, and

cooling water temperature. The time-varying disturbances are the dimensionless inlet

concentration, reactor inlet temperature, and inlet cooling water temperature, which

are denoted as 𝑤1 ∼ 𝒩 (1, 0.2/3), 𝑤2 ∼ 𝒩 (1, 0.84), and 𝑤3 ∼ 𝒩 (1, 0.00195). The

99.7% confidence intervals used as interval bounds for the set-based methods are

𝑤1 ∈ [0.8, 1.2], 𝑤2 ∈ [0.9943, 1.006], and 𝑤3 ∈ [0.9929, 1.007]. The dimensionless heat

of reaction is 𝐻 = 0.5977. The parameters 𝐷𝑎 = 4.93 × 1011, 𝛼 = 25, 𝛽 = 1.2367,

𝛾 = 1.6096, 𝑆 = 14.3291, and 𝑆𝑐 = 4.0770 are constant. The initial condition is

x0 = (0.0398, 0.96, 1.133), which is near the nominal steady state without disturbances.

There are no existing invariants for this systems. Therefore, in order to apply

Method (iii), we manufacture invariants using the approach described in Chapter 2.

First, we define the redundant state 𝑧𝑘 = −𝐻𝑥1,𝑘 + 𝑥2,𝑘 and augment (4.6) with the

redundant difference equation

𝑧𝑘+1 = 𝑧𝑘 + 𝛿

[︃
−𝐻(𝑤1,𝑘 − 𝑥1,𝑘) + 𝑤2,𝑘 − 𝑥2,𝑘 − 𝑆

(︁
𝑥2,𝑘 − 𝛽−1𝑥3,𝑘

)︁ ]︃
. (4.7)
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The solutions of the augmented system are now guaranteed to lie in the set

𝐺 ≡ {(𝑘, (x, 𝑧)) ∈ K× R4 : m1 ( x
𝑧 ) = 𝑏1, x ≥ 0},

where m1 = [−𝐻 1 0 −1] and 𝑏1 = 0. We choose time step 𝛿 = 0.001 and total

time 𝐾 = 300. The dimensionless measurement equations are as follows, where

𝑣1, 𝑣2 ∼ 𝒩 (0, 0.01/3) and their 99.7% confidence intervals are [−0.01, 0.01]:

𝑦1 = 𝑥2 + 𝑣1,

𝑦2 = 𝑥3 + 𝑣2.

Methods (i)–(vi) are compared using the fault-free and faulty scenarios described

in Table 4.2. The synthetic historical data needed for Method (i) was generated by

simulating 100 trajectories over 500 time steps starting from the nominal steady-state

x0 and with normally distributed uncertainties. For each scenario in Table 4.2, all

the performance of all methods were compared using a new sequence of ’measured’

outputs generated by simulating either the fault-free or faulty model with values of

the uncertainties as described in the table.

The fault detection results are given in Figures 4.1–4.4. First, Figure 4.1 considers

the fault-free scenario (a). The results show that the PCA method occasionally

generates brief false alarms, while none of the other methods do. This is likely due to

the fact that the system is nonlinear, which implies that the measured output data is

not normally distributed even for normally distributed disturbances and measurement

noises.

When there is a large persistent disturbance in the parameter 𝑤2, the results in

Figure 4.2 show that both PCA and EKF methods generate clear, persistent false

alarms. In contrast, none of set-based methods gives a false alarm. This is the expected

behavior of the PCA and EKF methods since such a persistent disturbance would be
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very unlikely if all uncertainties followed their typical distributions. Nonetheless, it

shows a clear limitation of the PCA and EKF methods for handling problems with

bounded uncertainties with unknown distribution.

In Scenario (c), a fault occurs at time 0.1 that causes the inlet concentration to

decrease outside of its normal range. Figure 4.3 shows that both PCA and EKF

methods detect the fault around time 0.13. Among all of the compared set-based

methods, the DI method with invariants detects the fault earliest, around time 0.2.

The standard DI method (iv) also detects the fault, but more slowly. In contrast,

Methods (v)–(vii) all fail to detect this fault at all due to overly conservative state

estimation sets.

Finally, Figure 4.4 shows the results in Scenario (d), in which a fault occurs at

time 0.1 that causes the cooling temperature increase outside of its normal range.

PCA, EKF, and the DI methods (iii) and (iv) all detect the fault at around the same

time after 0.1. The zonotope methods also detect the fault in this case, but more

slowly than the DI methods.

In this example, all uncertainties are normally distributed and we used their 99.7%

confidence intervals as the interval bounds for the set-based methods (iii)–(vii). This

assumption favors Methods (i) and (ii) and puts all of the set-based methods at

a disadvantage. If the uncertainties do not follow normal distributions in practice,

Methods (i) and (ii) will not be as effective as shown in Scenario (a). This is the reason

that Methods (i) and (ii) generate persistent false alarms in Scenario (b). However,

these two methods detect faults rapidly. In contrast, the set-based methods (iii)–(vii)

do not assume any distribution for the uncertainties and guarantee no false alarms.

The DI method (iii) detects faults the earliest among all set-based methods, and is

nearly as fast as Methods (i) and (ii) for Scenario (d), although about 4× slower in

Scenario (c). Finally, the DI with invariants algorithm only takes 0.027 s of CPU time

for every time step of the algorithm, which is about 5× faster than the the zonotope
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Table 4.2: Faulty and fault-free scenarios for Example 4.3.1. The uncertainties 𝑤1–𝑤3
and 𝑣1–𝑣2 are time-varying, independent, and normally distributed unless specified
otherwise.

Scenario Index Fault-Free Scenario Descriptions
(a) All uncertain parameters are as in the caption.
(b) At time 0.1, 𝑤2 takes a large constant value within its

99.7% confidence interval 𝑤2 ∈ [0.9943, 1.006]: 𝑤2 = 1.
Faulty Scenario Descriptions

(c) At time 0.1, the inlet concentration decreases to the
constant value 𝑤1 = 0.7, which is outside its confidence
interval 𝑤1 ∈ [0.8, 1.2].

(d) At time 0.1, cooling temperature increases to the constant
value 𝑤3 = 290/283, which is outside its confidence
interval 𝑤3 ∈ [0.9929, 1.007].
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Figure 4.1: Fault detection results for Scenario (a) in Example 4.3.1 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.2: Fault detection results for Scenario (b) in Example 4.3.1 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.3: Fault detection results for Scenario (c) in Example 4.3.1 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.4: Fault detection results for Scenario (d) in Example 4.3.1 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).

4.3.2 Example 2

The following dynamics describe a sewer system with three tanks, where 𝑥𝑖 is the

water volume (m3) of tank 𝑖 and 𝑢𝑖 is the 𝑖th inlet flow rate (m3/s) [8]:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ℎ [𝑢1,𝑘 + 𝑢2,𝑘 − 𝜅1𝑥1,𝑘] (4.8)

𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ
[︁
𝜅1𝑥1,𝑘 − 𝜅2

√
𝑥2,𝑘

]︁
𝑥3,𝑘+1 = 𝑥3,𝑘 + ℎ

[︁
𝜅2
√

𝑥2,𝑘 + 𝑢3,𝑘 − 𝜅3𝑥3,𝑘

]︁

We set 𝑢𝑖 = 𝑑𝑖 + 𝑤𝑖 with d = (1, 2, 1) and disturbances 𝑤𝑖 ∼ 𝒩 (0, 0.1/3). The

time-invariant parameters 𝜅𝑖 are uncertain but bounded: 𝜅1 ∈ [4.8, 6.8] × 10−4,
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𝜅2 ∈ [1.99, 2.01]× 10−2, and 𝜅3 ∈ [9.9, 10.1]× 10−4. The measurement functions are

𝑦1 = 𝑥2 + 𝑣1,

𝑦2 = 𝑥3 + 𝑣2,

where the measurement noises 𝑣1 ∼ 𝒩 (0, 100/3) and 𝑣2 ∼ 𝒩 (0, 50/3) are uncertain

and time-varying. The initial condition x0 = (5400, 23000, 4000) is near the fault-free

nominal steady-state and is certain.

Synthetic historical data was generated for Method (i) by simulating 10 trajectories

of the fault-free system over 5000 time steps with the uncertain parameters 𝑤1–𝑤3

and 𝑣1–𝑣2 normally distributed as described above. In each of these ten trajectories, a

different sample of the time-invariant uncertainties 𝜅1–𝜅3 was randomly drawn from a

uniform distribution over the given bounds. This was intended to mimic a situation

where 𝜅1–𝜅3 are physical parameters that are time-invariant on the time-scale of

operation but may vary over longer time-scales; i.e., due to changes in environmental

conditions. Method (ii) assumes that all uncertainties are time-varying and normally

distributed, and the mean and covariance of these uncertainties are used explicitly in the

computations. Therefore, there is no satisfactory way to accommodate time-invariant

uncertainties like 𝜅1–𝜅3 within Method (ii). For lack of a better option, we implemented

Method (ii) using independent normal distributions for 𝜅1–𝜅3 formed by considering

their interval bounds as their 99.7% confidence intervals: 𝜅1 ∼ 𝒩 (0.0005, 0.0001/3),

𝜅2 ∼ 𝒩 (0.02, 0.0001/3), and 𝜅3 ∼ 𝒩 (0.001, 0.00001/3).

All of the set-based methods are implemented assuming that each normally

distributed uncertain parameter is bounded within its 99.7% confidence interval:

𝑤𝑖 ∈ [−0.1, 0.1], 𝑣1 ∈ [−100, 100] and 𝑣2 ∈ [−50, 50]. To apply Method (iii), the

manufactured invariants given in Example 2.6.2 in Chapter 2 were used. Finally, we

chose a step size of ℎ = 30 s and total a number of time steps 𝐾 = 500.
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Table 4.3: Faulty and fault-free scenarios for Example 4.3.2. Unless otherwise specified,
the uncertainties 𝑤1–𝑤3 and 𝑣1–𝑣2 are time-varying, independent, and normally
distributed. In Scenarios (b)–(c), the time-invariant uncertainties 𝜅1–𝜅3 are sampled
from independent uniform distributions at time 0. In Scenarios (d)–(g), 𝜅1–𝜅3 are
fixed to values near the center of their bounding intervals in order to reduce false
alarms in Method (ii) and more clearly show the effects of the faults in those scenarios.

Scenario Index Fault-Free Scenario Descriptions
(a) All uncertain parameters are as in the caption.
(b) 𝑤1–𝑤3 and 𝑣1–𝑣2 are as in the caption. 𝜅1 − 𝜅3 are

time-varying, independent, and normally distributed.
(c) The initial condition is perturbed away from steady-state

by 10% to x0 = (5000, 20000, 3500).
(d) At 3000 s, 𝑤1 takes a large constant value within its

99.7% confidence interval [−0.1, 0.1]: 𝑤1 = 0.08.
Scenario Index Faulty Scenario Descriptions
(e) At 3000 s, the flow rates increase to constant values

outside their 99.7% confidence intervals [−0.1, 0.1]: 𝑤1 =
𝑤2 = 0.15 and 𝑤3 = 0.2.

(f) At 3000 s, the second tank begins leaking. The dynamics
change to: 𝑥2 = 𝑥2,𝑘 + ℎ

[︁
𝜅1𝑥1,𝑘 − (𝜅2 + 0.005)√𝑥2,𝑘

]︁
.

(g) At 3000 s, a sensor fault happens causing the constant
noise value 𝑣2 = 100, which is outside the confidence
interval [−50, 50].

All methods were compared in all of the fault-free and faulty scenarios described in

Table 4.3. Scenario (a) is the nominal case as discussed above. The results are shown

in Figure 4.5. Because the EKF method assumes that 𝜅1–𝜅3 are normally distributed,

it generates many false alarms in this normal condition. Although the PCA method

is also derived assuming that the data are normally distributed, PCA is much more

robust in this case because it was trained on synthetic historical data generated by

the true distributions.

In order to investigate the cause of the poor performance of Method (ii) in Scenario

(a), Scenario (b) considers a fault-free case where the ’measured’ outputs are actually

generated with 𝜅1–𝜅3 normally distributed and time-varying. The results in Figure

4.6 show that the number of false alarms for the EKF method is greatly reduced
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as expected. For this scenario, the PCA method was also retrained using historical

data generated by the modified 𝜅1–𝜅3, and again exhibited no false alarms. This

experiment confirms that the EKF method is not fit to handle problems with time-

invariant bounded uncertainties and should be expected to give frequent false alarms

in such cases. On the other hand, the set-based methods (iii)–(vi) have no false alarms

in either Scenario (a) or (b).

Scenario (c) considers a fault-free case where the system starts from an initial

condition perturbed away from the fault-free steady state. Figure 4.7 shows that

the data-based method (i) generates a clear and persistent false alarm immediately,

clearly mistaking the initial transient for a fault. The EKF method also generates a

clear false alarms at early times. The results of a similar scenario tested in Example

4.3.3 show that Method (ii) using EKF deals with different initial conditions very well.

Thus, the false alarms triggered by EKF in this example may be caused by the same

reason as in Scenario (a). In contrast, the set-based methods again exhibit no false

alarms. This illustrates another key advantage of these methods. Because they make

use of a dynamic process model, the are able to clearly distinguish the effects of the

initial transient from the effects of a fault.

In scenarios (d)–(g), the time-invariant parameters are fixed to values near their

mean values: 𝜅1 = 5× 10−4, 𝜅2 = 2× 10−2, and 𝜅3 = 10−3. This was done in order to

avoid excessive false alarms in Method (ii) and more clearly illustrate the disturbances

and faults considered in these scenarios. Note that in practice 𝜅1 − 𝜅3 may not take

values near their means, in which case the EKF method will generate many false

alarms and not be useful for fault detection in scenarios (d)–(g).

Figure 4.8 shows the results of Scenario (d), where a large, persistent disturbance

occurs in 𝑤1, but there is no fault. In this case, the EKF method generates aclear

false alarm. The residual for the PCA method trends upwards, but does not result in

a false alarm, while the set-based methods again exhinit no false alarms.
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The results of the faulty scenarios (e)–(g) are shown in Figures 4.9–4.11. In

Scenario (e), both the PCA and EKF methods detect the fault immediately after it

happens. The set-based methods (iii) and (iv) using DI and the zonotope method

(vii) detect the fault about 1000 s later than PCA and EKF. The zonotope method

(vi) detects the fault shortly after Methods (iii),(iv), and (vii). Finally, the standard

interval method is not sensitive to detect this fault. In Scenario (f), an extra term is

added to 𝜅2 to simulate a leak in Tank 2. The results show that only PCA, EKF, and

Method (iii) using DI with invariants can detect this fault, where Method (iii) detects

the fault 2000 s later than the other two methods. In Scenario (g), the results show

that all the methods including all set-based methods are very sensitive to the sensor

fault in this scenario.

In this example, we assume that some of the uncertain parameters are time-

varying and normally distributed and some of the uncertainties are time-invariant and

bounded in given intervals. Since Method (ii) is strongly dependent on the assumption

of time-varying normal uncertainties, it generates false alarms in all of the fault-free

scenarios. Moreover, since the data-based method (i) only applies to steady-state

data, it becomes ineffective during process transients. Furthermore, a sensor bias as

a new fault detection scenario in this example can be detected immediately by the

set-based methods (iii)–(vii), which are as fast as Methods (i) and (ii). Finally, the

DI with invariants is very efficient and only takes 0.001 s to compute for every time

step of the algorithm. In contrast, the computational cost of the zonotope methods

are more than 3 times higher than the DI method (iii).
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Figure 4.5: Fault detection results for Scenario (a) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.6: Fault detection results for Scenario (b) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.7: Fault detection results for Scenario (c) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.8: Fault detection results for Scenario (d) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.9: Fault detection results for Scenario (e) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.10: Fault detection results for Scenario (f) in Example 4.3.2 using Method (i)
(top), Method (ii) (the second), Methods (iii)-(vii) (the third), and zoomed-in Methods
(iii)-(vii) (bottom). Methods (i) and (ii) declare a fault when their residuals (black
and blue) exceed the threshold (red). Methods (iii)-(vii) declare a fault when the
state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the bounded-error
measurement (gray shaded).
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Figure 4.11: Fault detection results for Scenario (g) in Example 4.3.2 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).

4.3.3 Example 3

Consider the following model of a CSTR from [26], where 𝑥𝑖 is the concentration (M)

of species 𝑖, the parameters 𝜏−1 = 0.05(min−1) and 𝑘2 = 0.4(M−1min−1) are constant,

and 𝑢1 ∼ 𝒩 (1, 0.1/3) (M), 𝑢2 ∼ 𝒩 (0.9, 0.1/3) (M), and 𝑢3 ∼ 𝒩 (30, 20/3) (M) are

time-varying uncertainties:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ℎ
[︁
− 𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘 + 𝜏−1 (𝑢1,𝑘 − 2𝑥1,𝑘)

]︁
(4.9)

𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ
[︁
−𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝜏−1 (𝑢2,𝑘 − 2𝑥2,𝑘)

]︁
𝑥3,𝑘+1 = 𝑥3,𝑘 + ℎ

[︁
𝑢3,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥3,𝑘

]︁
𝑥4,𝑘+1 = 𝑥4,𝑘 + ℎ

[︁
𝑘2𝑥1,𝑘𝑥3,𝑘 − 2𝜏−1𝑥4,𝑘

]︁
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We choose the time step ℎ = 0.015 min and the horizon 𝐾 = 800. The measurement

equations are

𝑦1,𝑘 = 𝑥2,𝑘 + 𝑣1,

𝑦2,𝑘 = 𝑥3,𝑘 + 𝑣2,

𝑦3,𝑘 = 𝑥4,𝑘 + 𝑣3, (4.10)

with measurement noises 𝑣1 ∼ 𝒩 (0, 0.01/3) and 𝑣2, 𝑣3 ∼ 𝒩 (0, 0.001/3). The initial

condition is chosen as x0 = (0.036, 0.038, 0.36, 0.052), which is close to the fault-free

steady-state.

To apply Method (i) using PCA, synthetic historical data was generated by simulat-

ing 100 trajectories of the fault-free model. In all set-based methods, the uncertainties

were assumed to be bounded within their 99.7% confidence intervals: 𝑢1 ∈ [0.9, 1.1]

(M), 𝑢2 ∈ [0.8, 1.0] (M), 𝑢3 ∈ [10, 50] (M), 𝑣1 ∈ [−0.01, 0.01], 𝑣2 ∈ [−0.001, 0.001],

and 𝑣3 ∈ [−0.001, 0.001]. In order to apply Method (iii), the manufactured invariants

developed in Example 3.5.1 were used.

Six fault detection scenarios are given in Table 4.4. The results for each scenario

are shown in Figures 4.12–4.17.

Scenario (a) is the nominal case. Figure 4.13 shows that both PCA and EKF

generate a modest number of false alarms in this case. In order to investigate the

impact of non-Gaussian distribution on these methods, Scenario (b) considers all

uncertainties to be uniformly distributed within the interval bounds given above. The

PCA method was retrained specifically for Scenario (b) using synthetic historical

data generated with these modified distributions. Figure 4.13 shows that both PCA

and EKF exhibit many more false alarms in this case, which illustrates again the

shortcomings of these methods for systems with non-Gaussian uncertainties.

In Scenario (c), the initial condition is perturbed by 10% away from the fault-free
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Table 4.4: Faulty and fault-free scenarios for Example 4.3.3. Unless otherwise speci-
fied, the uncertainties 𝑢1–𝑢3 and 𝑣1–𝑣3 are time-varying, independent, and normally
distributed.

Scenario Index Fault-Free Scenario Descriptions
(a) All uncertain parameters are as in the caption.
(b) 𝑢1–𝑢3 and 𝑣1–𝑣3 are time-varying, independent, and uni-

formly distributed in the given bounds.
(c) The initial condition is perturbed away from the fault-free

steady-state by 10% to x0 = (0.032, 0.034, 0.32, 0.047).
(d) At 4.5 min, 𝑢1–𝑢3 take large constant values within their

99.7% confidence intervals: 𝑢1 = 1.05, 𝑢2 = 0.95, and
𝑢3 = 45.

Scenario Index Faulty Scenario Descriptions
(e) At 4.5 min, the inlet concentration decreases to a

constant value outside its 99.7% confidence interval:
𝑢1 = 0.5.

(f) At 4.5 min, the residence time decreases by 40% to
𝜏 = 12.

nominal steady state. Figure 4.14 shows that the PCA method generates a clear false

alarm after a short time and becomes ineffective. This shows once again that the PCA

method cannot distinguish between process transients and faults because it is trained

on steady-state data. In contrast, all methods that make use of the dynamic process

model are able to make this distinction clearly, including all set-based methods as well

as the EKF method. While the EKF method does generate some false alarms in this

scenario, the number of false alarms is similar to Scenario (a).

In Scenario (d), a large persistent disturbance happens at 4.5 min but no fault

occurs. The results in Figure 4.15 show that both PCA and EKF generate false alarms

shortly after 4.5 min and become ineffective. In contrast, the set-based methods give

no false alarms.

In all of the previuos scenarios, Methods (vi) and (vii), which use zonotopic

set-based state estimators, both exhibit strange oscillatory prediction bounds. This

is correct and is attributable to to some technical details of the heuristics used for
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approximating the intersection in the correction step of these methods.

In Scenario (e), a fault occurs at 4.5 min that causes the inlet flow rate to take a

constant value outside its normal range. Figure 4.16 shows that PCA, EKF, and DI

with invariants are the only methods able to detect this fault. PCA detects the fault

at 5 min, which is a half minute earlier than the EKF and DI with invariants.

In Scenario (f), a fault occurs at 4.5 min that causes the residence time of the

reactor to change to a different value due to channeling. Figure 4.17 shows that PCA

detects the fault immediately after it occurs, followed by EKF and DI with invariants

about 1 minute later.

The computational time of Method (iii) is 0.0031 s, while the zonotope methods

take about 0.0085 s to compute for every time step.
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Figure 4.12: Fault detection results for Scenario (a) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.13: Fault detection results for Scenario (b) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.14: Fault detection results for Scenario (c) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.15: Fault detection results for Scenario (d) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.16: Fault detection results for Scenario (e) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).
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Figure 4.17: Fault detection results for Scenario (f) in Example 4.3.3 using Method
(i) (top), Method (ii) (middle), and Methods (iii)-(vii) (bottom). Methods (i) and
(ii) declare a fault when their residuals (black and blue) exceed the threshold (red).
Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘) have
empty intersection with the bounded-error measurement (gray shaded).

4.3.4 Example 4

The following dynamics describe an enzymatic reaction network with six chemical

species occurring in a batch reactor, where 𝑥𝑖 is the concentration (M) of species 𝑖:

[24]:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ℎ [−𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝑘2,𝑘𝑥3,𝑘 + 𝑘6,𝑘𝑥6,𝑘] (4.11)

𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ [−𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 + 𝑘2,𝑘𝑥3,𝑘 + 𝑘3,𝑘𝑥3,𝑘]

𝑥3,𝑘+1 = 𝑥3,𝑘 + ℎ [𝑘1,𝑘𝑥1,𝑘𝑥2,𝑘 − 𝑘2,𝑘𝑥3,𝑘 − 𝑘3,𝑘𝑥3,𝑘]

𝑥4,𝑘+1 = 𝑥4,𝑘 + ℎ [𝑘3,𝑘𝑥3,𝑘 − 𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 + 𝑘5,𝑘𝑥6,𝑘]

𝑥5,𝑘+1 = 𝑥5,𝑘 + ℎ [−𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 + 𝑘5,𝑘𝑥6,𝑘 + 𝑘6,𝑘𝑥6,𝑘]

𝑥6,𝑘+1 = 𝑥6,𝑘 + ℎ [𝑘4,𝑘𝑥4,𝑘𝑥5,𝑘 − 𝑘5,𝑘𝑥6,𝑘 − 𝑘6,𝑘𝑥6,𝑘] .

Let k̂ = (0.1, 0.033, 16, 5, 0.5, 0.3). The parameters k = (𝑘1, . . . , 𝑘6) are uncertain

and time-invariant with k ∈ [k̂, 10k̂]. Every state is measured, so 𝑦𝑖 = 𝑥𝑖 + 𝑣𝑖 with
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𝑣𝑖 ∼ 𝒩 (0, 0.1/3) for all 𝑖. The initial condition is x0 = (34, 20, 0, 0, 16, 0) and is

certain.

Method (i) is not compared in this problem because the PCA method only applies

to steady-state processes and this is a non-steady batch reactor model. Method (ii) is

implemented assuming that 𝑘𝑖 ∼ 𝒩 (5.5𝑘𝑖, 1.5𝑘𝑖) for all 𝑖. These distributions have

the prescribed bounds [k̂, 10k̂] as their 99.7% confidence intervals. To apply Method

(iii), we manufacture invariants as given in Example 2.6.1 and assume 𝑣𝑖 ∈ [−0.1, 0.1]

for all set-based methods, which is the 99.7% confidence interval for 𝑣𝑖.

The fault-free and faulty scenarios tested are described in Table 4.5. Scenario (a)

is the nominal case. Figure 4.18 shows that Method (ii) generates consistent false

alarms after 0.001s. As discussed in Example 4.3.2, the EKF method is based on the

assumption that all parameters are normally distributed and produces many false

alarms for other distributions. In contrast, the set-based methods (iii)–(vi) are very

flexible with respect to the distributions of uncertainties and do not exhibit false

alarms.

In Scenario (b), all of the uncertainties are modifed to follow time-varying normal

distributions, as assumed by Method (ii). As expected, Figure 4.19 shows that Method

(ii) is performs much better in this case. None of the tested methods generate any

false alarms.

In Scenario (c), 𝑘3 takes a large constant value within its normal range. Figure

4.20 shows that the EKF method generates many false alarms in this case, while the

set based methods do not.

Scenarios (d)–(g) are all faulty scenarios. For all of these scenarios, the time-

invariant parameters 𝑘1–𝑘6 are set to constant values near their means rather than

randomly sampled at time zero. This is done to avoid false alarms in the EKF method

simply due to 𝑘1–𝑘6 being time-invariant and non-Gaussian so that the effects of faults

can be seen more clearly.
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In Scenario (d), a sensor fault occurs that changes the distribution of 𝑣3. The fault

is immediately detected by all set-based methods. The EKF method also generates

alarms, but there is not a clear and persistent fault signal, so it is hard to tell if the

alarms are triggered by disturbances or the real fault.

Scenarios (e) and (f) represent cases where enzyme deactivation causes one of the

reaction rate constants to drop outside of its normal range. The fault in Scenarios (e) is

detected immediately by the EKF method, but is not detected by any of the set-based

methods. The fault in Scenario (f) is detected early by the EKF method and the DI

methods (iii) and (iv), but is not detected by the other set-based methods. Further

investigation into Scenario (e) shows that this fault does not change the dynamics by

much, and should therefore be considered a difficult fault to detect. Thus, y𝑘 remains

in the set 𝑌𝑘 predicted by all set-based methods. In fact, it may be true that y𝑘

even remains within the exact set of consistent outputs, indicating that there is some

combination of admissible uncertainties that would result in the same trajectory that

is generated by the fault, although this is difficult to verify. In such cases, passive

set-based fault detection methods will be unable to detect the fault and active fault

detection is needed, which we leave for future work.

Scenario (g) represents a that occurs during loading of the batch reactor and causes

an incorrect initial state of the batch reactor. In this case, the state estimators used

in all fault detection methods are initialized with the desired initial state, while the

real trajectory producing the output measurements is initialized from the faulty initial

state. Note that this change in initial condition is considered a fault in Example 4,

while similar situations were considered fault-free scenarios in earlier examples. The

difference is that, in all earlier examples, the scenarios with modified initial conditions

represented non-faulty cases where the process was deliberately and knowingly operated

from a different initial state, with the initial states of all state estimators changed

accordingly. Therefore, the trajectories in those cases were consistent with the models
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used for fault detection. In contrast, in this scenario, the estimators are not aware of

the incorrect initial condition and the trajectory is not consistent with the fault-free

model.

To make Scenario (g) non-trivial, we only measure 𝑥1, 𝑥3, and 𝑥6, so that the

faulty initial values of 𝑥2 and 𝑥5 are not immediately detectable from the measurement

at the initial time. We also choose the time horizon as 𝐾 = 1000. Figure 4.24 shows

that the set-based method using DI with invariants (Method (iii)) is the only method

that detects the initial condition fault. This is in part due to the use of invariants in

Method (iii) that depend on the initial condition. Since the fault initial condition in

this scenario violates the invariants used on Method (iii), the method is able to detect

the fault effectively.

Table 4.5: Faulty and fault-free scenarios of Example 4.3.4. Unless otherwise spec-
ified, the uncertain parameters 𝑣1–𝑣6 are time-varying, independent, and normally
distributed and 𝑘1–𝑘6 are time-invariant and uniformly distributed. In Scenarios
(c)–(g), 𝑘1–𝑘6 are fixed to the following values near their means rather than randomly
sampled: 𝑘1 = 0.55, 𝑘2 = 0.18, 𝑘3 = 88, 𝑘4 = 27, 𝑘5 = 2.7, and 𝑘6 = 1.6.

Scenario Index Fault-Free Scenario Descriptions
(a) All uncertainties are as in the caption.
(b) 𝑘1–𝑘6 are time-varying, independent, and normally dis-

tributed.
(c) 𝑘3 takes a large constant value within its normal range

𝑘3 ∈ [16, 160]: 𝑘3 = 145.
Faulty Scenario Descriptions

(d) A sensor fault happens: Measurement noise 𝑣3 changes
to a uniform distribution 𝑣3 ∈ [−0.15, 0.15], which is
larger than its 99.7% confidence interval [−0.1, 0.1] of its
original distribution.

(e) Enzyme deactivates: 𝑘3 = 8, which is outside its normal
range 𝑘3 ∈ [16, 160].

(f) Enzyme deactivates: 𝑘1 = 0.08, which is outside its
normal range 𝑘1 ∈ [0.1, 1].

(g) The initial condition of the batch is faulty: x =
(34, 25, 0, 0, 20, 0).
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Figure 4.18: Fault detection results for Scenario (a) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.19: Fault detection results for Scenario (b) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.20: Fault detection results for Scenario (c) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.21: Fault detection results for Scenario (d) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.22: Fault detection results for Scenario (e) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.23: Fault detection results for Scenario (f) in Example 4.3.4 using Method
(ii) (top) and Methods (iii)-(vii) (bottom). Methods (ii) declares a fault when their
residuals (black and blue) exceed the threshold (red). Methods (iii)-(vii) declare a
fault when the state estimator bounds (⋆,△,�, ◇, ∘) have empty intersection with the
bounded-error measurement (gray shaded).
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Figure 4.24: Fault detection results for Scenario (g) in Example 4.3.4 using Method
(ii) (top), Methods (iii)-(vii) (middle), and zoomed-in Methods (iii)-(vii) (bottom).
Methods (ii) declares a fault when their residuals (black and blue) exceed the threshold
(red). Methods (iii)-(vii) declare a fault when the state estimator bounds (⋆,△,�, ◇, ∘)
have empty intersection with the bounded-error measurement (gray shaded).

131



CHAPTER 5

A COMPARISON OF ZONOTOPE ORDER REDUCTION

TECHNIQUES

5.1 Introduction

Since the seminal work of Kühn [2], zonotopes have been widely adopted as an accurate

and efficient way to model bounded uncertainties and noises in a variety of control

applications, including reachability analysis [2, 58, 59], state estimation [60, 22, 37,

61, 4], hybrid systems verification [62, 63, 64], robust control [65, 33], and fault

detection [47, 48, 66, 7]. Zonotopes are significantly more flexible than parallelotopes

and ellipsoids, while requiring much less computational effort than general convex

polytopes [4]. However, many operations on zonotopes yield results with higher

complexity than their arguments [2], which is a serious limitation, particularly for

recursive algorithms. To address this, order reduction methods bound a given zonotope

within another of lower complexity. These methods are essential for many control

algorithms, and can significantly impact their efficiency and performance. For example,

inaccurate reduction can lead to overly conservative set-based estimators, and hence

to conservative control actions or ineffective fault detection [64, 4].

Order reduction was first addressed in [2] in the context of reachability analysis.

The first general purpose method was proposed in [60], followed shortly by a similar

method in [58]. These methods (Methods 1 & 2, resp.) are both very efficient.

However, while Method 1 has been overwhelmingly used in the literature [37, 61, 65,

48], there are no available studies comparing their accuracy. A more sophisticated

approach was proposed in [63] (Method 3) and shown to be significantly more accurate

than Method 2, but only for a limited set of tests with low-dimensional zonotopes
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(𝑛 ≤ 4). Moreover, Method 1 was not compared. Unfortunately, Method 3 requires a

combinatorial search that is problematic in high-dimensions (see §5.3.3). To address

this, a fourth method was recently proposed in [4] (Method 4) that follows the main

insights of Method 3 but eliminates the combinatorial search using an iterative matrix

factorization. It was claimed in [4] that Method 4 matches the accuracy of Method

3 at significantly lower cost. However, because Method 4 was not the focus of that

article, it was described only in the appendix, with no theoretical justification and no

comparisons.

This Chapter makes two main contributions. First, Method 4 is presented in detail

and its validity is established. Second, a comprehensive comparison of Methods 1–4 is

presented considering both computational cost and overestimation error for a large test

set. The effects of problem dimension, initial zonotope order, and reduced zonotope

order are also investigated. The results provide valuable guidance for designing set-

based estimation and control algorithms that more effectively balance accuracy with

computational cost.

5.2 Preliminaries

A zonotope is a convex polytope that can be represented as a Minkowski sum of line

segments, or equivalently as the image of a unit hypercube under an affine mapping

[2]. Formally, 𝑍 ⊂ R𝑛 is a zonotope iff

∃(G, c) ∈ R𝑛×𝑛𝑔 × R𝑛 : 𝑍 = {G𝜉 + c : ‖𝜉‖∞ ≤ 1}. (5.1)

The vector c is the center, the 𝑛𝑔 columns of G are the generators, and (5.1) is called

the generator-representation (G-rep) of 𝑍. We use the shorthand 𝑍 = {G, c} ⊂ R𝑛 to

denote zonotopes throughout. Increasing 𝑛𝑔 makes zonotopes more flexible, but also

more cumbersome. The complexity of a zonotope is described by its order, defined
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as 𝑜 ≡ 𝑛𝑔/𝑛 [58]. A first-order zonotope is a parallelotope if G is full rank and an

interval if G is diagonal.

For 𝑍, 𝑌 ⊂ R𝑛 and R ∈ R𝑚×𝑛, define the linear mapping and Minkowsi sum,

respectively, as

R𝑍 ≡ {Rz : z ∈ 𝑍}, 𝑍 + 𝑌 ≡ {z + y : z ∈ 𝑍, y ∈ 𝑌 }.

When 𝑍 = {G𝑧, c𝑧} and 𝑌 = {G𝑦, c𝑦} are zonotopes, R𝑍 and 𝑍 +𝑌 can be computed

exactly as [2]:

R𝑍 = {RG𝑧, Rc𝑧}, 𝑍 + 𝑌 = {[G𝑧 G𝑦], c𝑧 + c𝑦}. (5.2)

Clearly, this can be done efficiently and reliably, even in high dimensions, which is

not the case for general convex polytopes [4]. However, R𝑍 and 𝑍 + 𝑌 can be higher

order than 𝑍 and 𝑌 , and this holds for other important operations as well, such as the

convex hull in [58]. This is a major drawback, particularly when such operations are

applied recursively (e.g., Minkowski sums in state estimation with additive uncertainty

[2, 37]).

Given 𝑍 = {G, c} ⊂ R𝑛, order reduction addresses this issue by finding a lower-

order zonotope 𝑍𝑅 that contains 𝑍. Ideally, 𝑍𝑅 has minimal overestimation, which

can be assessed using the following volume and Hausdorff error metrics, where 𝑣(𝑍) is

the volume of 𝑍, 𝑟(𝑍) ≡ maxz∈𝑍 ‖z− c‖2 is the radius of 𝑍, and 𝑑𝐻 is the Hausdorff

distance:

Θ𝑉 ≡
𝑣(𝑍𝑅) 1

𝑛 − 𝑣(𝑍) 1
𝑛

𝑣(𝑍)
1
𝑛

, Θ𝐻 ≡
𝑑𝐻(𝑍𝑅, 𝑍)

𝑟(𝑍) . (5.3)
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Since 𝑍 ⊂ 𝑍𝑅, the Hausdorff distance is given by

𝑑𝐻(𝑍𝑅, 𝑍) = max
y∈𝑍𝑅

min
z∈𝑍
‖y− z‖2.

Thus, Θ𝐻 is the maximum distance that a point in 𝑍𝑅 can be from 𝑍, relative to the

radius of 𝑍, while Θ𝑉 measures the volume added by reduction relative to the volume

of 𝑍.

Lemma 3. The volume of 𝑍 = {G, c} ⊂ R𝑛 is given by [37]:

𝑣(𝑍) = 2𝑛
∑︁
|det[g𝑠1 · · · g𝑠𝑛 ]|,

where the sum runs over all combinations of 𝑛 indices 𝑠𝑖 from the set {1, . . . , 𝑛𝑔} and

g𝑖 is the 𝑖th column of G.

Lemma 4. Let 𝑍 = {G, c} and let 𝑍𝑅 = {G𝑅, c𝑅} be a superset of 𝑍 with c𝑅 = c.

Then,

𝑟(𝑍) = max
‖𝜆‖2=1

‖𝜆TG‖1, (5.4)

𝑑𝐻(𝑍𝑅, 𝑍) = max
‖𝜆‖2=1

|‖𝜆TG𝑅‖1 − ‖𝜆TG‖1|. (5.5)

Proof. Define the support function ℎ𝑍(𝜆) ≡ maxz∈𝑍 𝜆Tz. It follows from a standard

duality argument that 𝑑𝐻(𝑍𝑅, 𝑍) = max‖𝜆‖2=1 |ℎ𝑍𝑅
(𝜆) − ℎ𝑍(𝜆)| (see Lemma 2 in

[113]). This is equivalent to (5.5) because, by (5.1),

ℎ𝑍(𝜆) = max
‖𝜉‖∞≤1

𝜆T(G𝜉 + c) = ‖𝜆TG‖1 + 𝜆Tc.

Moreover, (5.4) follows from (5.5) because 𝑟(𝑍) is the Hausdorff distance between 𝑍

and the singleton {c}.
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Lemma 5. Let 𝑍 = {G, c} ⊂ R𝑛, denote the elements of G by 𝑔𝑖𝑗, and define d ∈ R𝑛

elementwise by 𝑑𝑖 ≡
∑︀

𝑗 |𝑔𝑖𝑗|. The interval hull of 𝑍 is given in G-rep by {diag(d), c}

[60].

5.3 Order Reduction Methods

Let 𝑍 = {G, c} be a zonotope with initial order 𝑜𝑜 = 𝑛𝑔/𝑛. To reduce 𝑍 to order

𝑜 < 𝑛𝑔/𝑛, existing methods all take the following four steps. First, the columns of G

are reordered. It follows from (5.1) that this does not affect the set 𝑍. Second, the

reordered G matrix is partitioned as [K L] with K ∈ R𝑛×𝑛(𝑜−1) and L ∈ R𝑛×(𝑛𝑔−𝑛(𝑜−1)).

From (5.2), this corresponds to splitting 𝑍 into a sum of two zonotopes,

𝑍 = 𝐾 + 𝐿, 𝐾 ≡ {K, c}, 𝐿 ≡ {L, 0}.

Third, 𝐿 is overapproximated by a first order zonotope 𝐿𝑅 ≡ {L𝑅, 0} with L𝑅 ∈ R𝑛×𝑛.

Finally, 𝑍 is overapproximated by

𝑍𝑅 ≡ 𝐾 + 𝐿𝑅 = {[K L𝑅], c}. (5.6)

It is readily verified that this eliminates all but 𝑛× 𝑜 generators, as desired. Methods

1–4 are now described in detail.

5.3.1 Method 1

Method 1 [60] chooses 𝐿𝑅 as the interval hull of 𝐿, which is easily computed as in

Lemma 5. Clearly, it is desirable to choose 𝐿 so that the overestimation introduced

by taking its interval hull is minimized. Method 1 aims to achieve this by choosing L

as the 𝑛𝑔 − 𝑛(𝑜− 1) shortest generators in G. This is implemented in Algorithm 4,

where the subroutine IntervalHull(L) returns the generator matrix of the interval

hull of 𝐿. The complexity of Algorithm 4 is dominated by line 2, with 𝒪(𝑛𝑛𝑔) for
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computing two-norms and 𝒪(𝑛𝑔 log 𝑛𝑔) for sorting, for a total of 𝒪(𝑛𝑔(𝑛 + log 𝑛𝑔)), or

𝒪(𝑛𝑜0(𝑛 + log(𝑛𝑜0))).

Algorithm 4 Reduces {G, c} to order 𝑜 using Method 1
1: procedure ReduceOrder1(G,𝑛,𝑛𝑔,𝑜)
2: Reorder the columns of G by decreasing two-norm
3: K← G1:𝑛,1:𝑛(𝑜−1)
4: L← G1:𝑛,𝑛(𝑜−1)+1:𝑛𝑔

5: L𝑅 ← IntervalHull(L)
6: return

[︁
K L𝑅

]︁
7: end procedure

5.3.2 Method 2

Method 2 [58] also chooses 𝐿𝑅 as the interval hull of 𝐿, but aims to minimize the error

by making 𝐿 interval-shaped. Specifically, L is chosen as the 𝑛𝑔 − 𝑛(𝑜− 1) generators

g𝑗 that have the smallest values of the score

𝛾𝑗 ≡ ‖g𝑗‖1 − ‖g𝑗‖∞,

which measures how nearly axis-aligned g𝑗 is and is zero when g𝑗 is a scaled unit

vector. This is implemented exactly as in Algorithm 4 by simply replacing line 2. The

complexity is again 𝒪(𝑛𝑔(𝑛 + log 𝑛𝑔)) = 𝒪(𝑛𝑜0(𝑛 + log(𝑛𝑜0))).

5.3.3 Method 3

Method 3 was proposed in [63, 64] to reduce the conservatism of Methods 1 and 2

using the key new idea of enclosing 𝐿 with a parallelotope rather than an interval.

As in Method 1, L is chosen as the 𝑛𝑔 − 𝑛(𝑜− 1) shortest generators in G. Next, an

invertible matrix T ∈ R𝑛×𝑛 is chosen that defines a parallelotope 𝑇 ≡ {T, 0}, and

𝐿𝑅 is chosen as the minimum volume parallelotope with the same ‘shape’ as 𝑇 that

encloses 𝐿. Precisely, 𝐿𝑅 is chosen from the family of parallelotopes 𝑇D ≡ {TD, 0},
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where D ∈ R𝑛×𝑛 is a diagonal scaling matrix. The smallest such set enclosing 𝐿 is

[63]:

𝐿𝑅 ≡ {T× IntervalHull(T−1L), 0}. (5.7)

In [64], T is chosen as a combination of 𝑛 generators in L. The choice that minimizes

𝑣(𝐿𝑅) is desirable since this also minimizes the volume error 𝑣(𝐿𝑅)− 𝑣(𝐿) (although

not necessarily 𝑣(𝑍𝑅)−𝑣(𝑍) via (5.6)). However, computing 𝑣(𝐿𝑅) is 𝒪(𝑛3) and there

are a huge number of combinations T (i.e.,
(︁

𝑛𝑔−𝑜(𝑛−1)
𝑛

)︁
). Thus, we implemented a more

practical heuristic that is closest to Method C in [64] and follows the implementation

in the code CORA [114]. It requires two parameters 𝜅1, 𝜅2 ≤ 𝑛𝑔 and is described

in Algorithm 5. First, 𝜅1 candidate generators are selected from L based on their

two-norm. Second, candidate T matrices are generated from all combinations of 𝑛

generators from this restricted group, and these are ordered in terms of the volume of

the corresponding parallelotope {T, 0}. From this, the 𝜅2 choices of T with largest

volume are selected. A key idea here is that, if {T, 0} (which is a subset of 𝐿) has large

volume, then it should not need to be enlarged by much in order to enclose 𝐿, which

will tend to minimize the over-approximation error. Next, an enclosure 𝐿𝑅 is computed

as in (5.7) for each of the 𝜅2 choices of T, and the enclosure with minimum volume is

selected. The complexity of Algorithm 5 is 𝒪(𝑛𝑜0(𝑛+log(𝑛𝑜0))+
(︁

𝜅1
𝑛

)︁
𝑛3+𝜅2𝑛

3(𝑜0−𝑜)),

where the three terms correspond to, respectively, the initial sort in line 2, the loop in

lines 9–12, and the loop in lines 14–18. In all of the comparisons in this study, we use

the heuristics 𝜅1 = 𝑛 + 8 and 𝜅2 = 𝑛 + 3 suggested in [64].

5.3.4 Method 4

Method 4 was introduced in [4] to achieve accurate reductions using the main ideas of

Method 3 with lower computational cost. Like Method 3, Method 4 also chooses a
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Algorithm 5 Reduces {G, c} to order 𝑜 using Method 3
1: procedure ReduceOrder3(G,𝑛,𝑛𝑔,𝑜,𝜅1,𝜅2)
2: Reorder the columns of G by decreasing two-norm
3: K← G1:𝑛,1:𝑛(𝑜−1)
4: L← G1:𝑛,𝑛(𝑜−1)+1:𝑛𝑔

5: L′ ← [IntervalHull(L)]−1L ◁ Scale L
6: Reorder the columns of L′ by decreasing two-norm
7: L′′ ← L′

1:𝑛,1:𝜅1
8: ℒ ← collection of all combinations of 𝑛 columns from L′′

9: for 𝑙 = 1 to |ℒ| do
10: T← ℒ(𝑙)
11: 𝑣𝑙 ← Volume(T)
12: end for
13: 𝐸 ← set of indices 𝑙 of the 𝜅2 largest values of 𝑣𝑙

14: for 𝑙 ∈ 𝐸 do
15: T← ℒ(𝑙)
16: L𝑅 ← T× IntervalHull(T−1L)
17: 𝑣*

𝑙 ← Volume(L𝑅)
18: end for
19: 𝑙← argmin𝑙∈𝐸𝑣*

𝑙

20: T← ℒ(𝑙)
21: L𝑅 ← T× IntervalHull(T−1L)
22: return

[︁
K L𝑅

]︁
23: end procedure

matrix T ∈ R𝑛×𝑛 defining a parallelotope that is used to enclose 𝐿. However, T is

specified as a selection of 𝑛 generators from G, rather than from L, and the partitioning

of G into [K L] is decided after T is determined using a novel volume-error heuristic.

The first step is to reorder the columns of G to obtain [T V]. As in Method 3, the

aim is to find T such that {T, 0} has large volume. Method 4 accomplishes this using

a greedy matrix factorization algorithm (Algorithm 6) based on the following lemma.

Lemma 6. Let T ∈ R𝑛×𝑛 be invertible and let 𝑇 ≡ {T, 0}. Choose v ∈ R𝑛 and, for

each 𝑖, let 𝑇 𝑖 be the parallelotope constructed by replacing the 𝑖th column of T by v.

Then 𝑣(𝑇 𝑖) = |𝑟𝑖|𝑣(𝑇 ) for all 𝑖 ∈ {1, . . . , 𝑛}, where r ≡ T−1v.

Proof. Since T−1v = r, we have

T−1T𝑖 =
[︂
e1 · · · e𝑖−1 r e𝑖+1 · · · e𝑛

]︂
.
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Noting that r = ∑︀𝑛
𝑖=1 𝑟𝑖e𝑖 and using standard properties of the determinant gives

det(T−1T𝑖) = det
[︂
e1 · · · e𝑖−1 𝑟𝑖e𝑖 e𝑖+1 · · · e𝑛

]︂
= 𝑟𝑖.

Thus, |𝑟𝑖| = | det(T−1T𝑖)| = |det(T𝑖)|
|det(T)| , which equals 𝑣(𝑇 𝑖)

𝑣(𝑇 ) by Lemma 3.

Algorithm 6 transforms G to [T V] by iteratively swapping columns into T that

increase 𝑣({T, 0}) according to Lemma 6. A similar algorithm is used in [115, 116] in

the context of low-rank matrix approximation. Given 𝛿 ≥ 0, Algorithm 6 terminates

with T such that 𝑣({T, 0}) cannot be increased by more than a factor of (1 + 𝛿) by

any single column swap, but it does not ensure that 𝑣({T, 0}) is maximal. Choosing

𝛿 > 0 reduces the complexity, as shown below. Notably, Algorithm 6 does not require

any volume computations.

Theorem 7. Choose any G ∈ R𝑛×𝑛𝑔 and any 𝜖, 𝛿 ≥ 0. Let 𝐿 ∈ R+ satisfy 𝐿 ≥ ‖g𝑖‖2

for every column g𝑖 of G. If G is full rank and all pivot elements selected in line 7

of Algorithm 6 satisfy |𝑔*
𝑖𝑗| > 𝜖, then FactorG(G, 𝜖, 𝛿) terminates finitely after 𝑀

passes through the while loop on lines 16–21, where

𝑀 ≤ min
(︃

𝑛
log(𝐿/𝜖)

log(1 + 𝛿) ,

(︃
𝑛𝑔

𝑛

)︃)︃
. (5.8)

Moreover, upon termination (a) T ≡ G1:𝑛,1:𝑛 is invertible, (b) G* = T−1G, and (c)

|𝑔*
𝑖𝑗| ≤ 1 + 𝛿 for all 𝑖 and 𝑗.

Proof. Let G0 and G*
0 denote the matrices stored as G and G* when line 15 is

reached for the first time. Since lines 5–13 bring G to reduced row echelon form,

G*
0 = [I𝑛×𝑛 R0] for some R0 ∈ R𝑛×(𝑛𝑔−𝑛). Line 10 mimics all column swaps on

the original G matrix. Thus, with G0 = [T0 V0], it follows that [T0 V0] can be

transformed to [I𝑛×𝑛 R0] by elementary row operations. Therefore, T0 is invertible

and G*
0 = T−1

0 G0.
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Algorithm 6 Reorders columns of G by mimicking column swaps needed to transform
G to a reduced row echelon form G* with all |𝑔*

𝑖𝑗| ≤ 1 + 𝛿.
1: procedure FactorG(G, 𝜖, 𝛿)
2: G* ← G
3: ◁ This loop brings G* to reduced row echelon form and
4: ◁ mimics all column swaps on G
5: for 𝑘 = 1 to 𝑛 do
6: Normalize rows 𝑘 through 𝑛 of G* by their 1-norms
7: (𝑖, 𝑗)← argmax

𝑖∈{𝑘,...,𝑛}, 𝑗∈{𝑘,...,𝑛𝑔}
|𝑔*

𝑖𝑗 |

8: If |𝑔*
𝑖𝑗 | ≤ 𝜖, break loop

9: Swap rows 𝑘 and 𝑖 of G*

10: Swap columns 𝑘 and 𝑗 of G
11: Swap columns 𝑘 and 𝑗 of G*

12: Transform the 𝑘th column of G* to e𝑘 by row operations
13: end for
14: ◁ Do extra column swaps until all |𝑔*

𝑖𝑗 | ≤ 1 + 𝛿
15: (𝑘, 𝑗)← argmax

𝑘∈{1,...,𝑛}, 𝑗∈{1,...,𝑛𝑔}
|𝑔*

𝑘𝑗 |

16: while |𝑔*
𝑘𝑗 | > 1 + 𝛿 do ◁ Entering this loop implies 𝑗 > 𝑛

17: Swap columns 𝑘 and 𝑗 of G
18: Swap columns 𝑘 and 𝑗 of G*

19: Transform the 𝑘th column of G* to e𝑘 by row operations
20: (𝑘, 𝑗)← argmax

𝑘∈{1,...,𝑛}, 𝑗∈{1,...,𝑛𝑔}
|𝑔*

𝑘𝑗 |

21: end while
22: return G, G*

23: end procedure

To set up an inductive argument, suppose that line 16 is reached after 𝑚 ≥ 0

passes through the while loop (lines 16–21) with G𝑚 = [T𝑚 V𝑚], G*
𝑚 = [I R𝑚], and

G*
𝑚 = T−1

𝑚 G𝑚. Denote 𝑣𝑚 = 𝑣({T𝑚, 0}) and suppose that |𝑔*
𝑘𝑗| > 1 + 𝛿. Then, noting

that 𝑗 > 𝑛, let v be the 𝑗th column of G𝑚 and let r = g*
𝑗 = T−1

𝑚 v. Examining the code

inside the while loop, G𝑚+1 = [T𝑚+1 V𝑚+1] is formed by swapping the 𝑘th column

of T𝑚 with v, while G*
𝑚+1 = [I R𝑚+1] is formed by swapping the 𝑘th column of I

with r and then recovering reduced row echelon form by elementary row operations.

Since identical column swaps are done on G𝑚 and G*
𝑚, G𝑚+1 must again be reducible

to G*
𝑚+1 by elementary row operations, which implies that T𝑚+1 is invertible and

G*
𝑚+1 = T−1

𝑚+1G𝑚+1. Moreover, Lemma 6 gives 𝑣𝑚+1 = |𝑟𝑘|𝑣𝑚 = |𝑔*
𝑘𝑗|𝑣𝑚 > (1 + 𝛿)𝑣𝑚.

Thus, {𝑣𝑚} is strictly increasing and {T𝑚} has no repeats. Since there are only
(︁

𝑛𝑔

𝑛

)︁
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choices of T, the algorithm terminates after 𝑀 ≤
(︁

𝑛𝑔

𝑛

)︁
iterations. Conclusions (a) and

(b) follow by induction, and (c) follows from line 16.

To improve the 𝑀 ≤
(︁

𝑛𝑔

𝑛

)︁
bound when 𝜖, 𝛿 > 0, note that Hadamard’s inequality

implies 𝑣𝑚 = 𝑣({T𝑚, 0}) = 2𝑛| det(T𝑚)| ≤ 2𝑛𝐿𝑛 for all 𝑚. On the other hand,

𝑣0 = 2𝑛| det(T0)| > 2𝑛𝜖𝑛 because | det(T0)| is the product of the pivot values |𝑔*
𝑖𝑗| > 𝜖

selected in line 7. Since 𝑣𝑚+1 > (1 + 𝛿)𝑣𝑚, 𝑀 must satisfy 2𝑛𝜖𝑛(1 + 𝛿)𝑀 ≤ 𝑣𝑀 ≤ 2𝑛𝐿𝑛,

which yields (5.8).

For reasonable 𝐿, 𝜖, 𝛿 > 0, the term 𝑛 log(𝐿/𝜖)
log(1+𝛿) is much less than

(︁
𝑛𝑔

𝑛

)︁
. Moreover,

computational experience shows that Algorithm 6 typically requires dramatically fewer

than 𝑛 log(𝐿/𝜖)
log(1+𝛿) iterations because 𝑣𝑚 increases by more than the minimum factor (1+ 𝛿)

in each iteration. For example, using 100 randomly generated zonotopes with order 10,

dimension 100, and ‖g𝑖‖2 ≤ 𝐿 = 60, the average number of iterations with 𝜖 = 10−6

and 𝛿 = 10−3 was a mere 15.37, compared to 𝑛 log(𝐿/𝜖)
log(1+𝛿) ≥ 106 and

(︁
𝑛𝑔

𝑛

)︁
≥ 10100.

After T is computed, Method 4 chooses L to be composed of the generators in

T (which are never eliminated) and a selection of other generators from G that are

chosen and eliminated one at a time, as described in Algorithm 7. In each iteration,

the next generator to be eliminated is chosen based on the following result.

Lemma 7. Let 𝑍 = {G, c} ⊂ R𝑛, let T = G1:𝑛,1:𝑛 be invertible, and define G* ≡

T−1G. Choose 𝑗 > 𝑛 and let v and r denote the 𝑗th columns of G and G*, respectively.

The order 𝑛+1
𝑛

zonotope 𝑋 ≡ {[T v], c} is enclosed by the parallelotope 𝑋𝑅 ≡ {T(I +

diag|r|), c}, and

𝑣(𝑋𝑅)− 𝑣(𝑋)
𝑣({T, c}) = Π𝑛

𝑖=1(1 + |𝑟𝑖|)− (1 + ‖r‖1). (5.9)

Moreover, if ‖r‖∞ ≤ 1, then 𝑋𝑅 is the minimum volume parallelotope enclosing 𝑋.

Proof. Theorem 3 in [13] proves that 𝑋𝑅 encloses 𝑋 and is minimal when ‖r‖∞ ≤ 1.
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By Lemma 3,

𝑣(𝑋𝑅) = 2𝑛| det(T(I + diag|r|))| = 2𝑛|det T|Π𝑛
𝑖=1(1 + |𝑟𝑖|).

Moreover, letting t𝑖 denote the 𝑖𝑡ℎ column of T,

𝑣(𝑋) = 2𝑛(|det T|+∑︀𝑛
𝑖=1|det [t1 · · · t𝑖−1 v t𝑖+1 · · · t𝑛]|),

= 2𝑛(|det T|+∑︀𝑛
𝑖=1|det (T[e1 · · · e𝑖−1 r e𝑖+1 · · · e𝑛])|),

= 2𝑛|det T|(1 +∑︀𝑛
𝑖=1|𝑟𝑖|).

Thus, (5.9) follows using 𝑣({T, c}) = 2𝑛| det T|.

Given G = [T V] and G* = T−1G = [I R] with all |𝑟𝑖𝑗| ≤ 1 + 𝛿, Method 4

proceeds by first selecting the column r of R that minimizes the error (5.9). The

corresponding column v of V is then removed to form V− and eliminated as follows:

𝑍 = {[T V], c} = {V−, c}+ {[T v], 0}

⊂ {V−, c}+ {T(I + diag|r|), 0}

= {[T(I + diag|r|) V−], c}.

When 𝛿 > 0, this reduction of {[T v], 0} may not be optimal because ‖r‖∞ may not

be less than 1. However, we expect it to be nearly optimal for small 𝛿. This strategy is

then repeated in the next iteration following the updates V′ = V−, T′ = T(I+diag|r|),

and R′ = (T′)−1V′ = [(I + diag|r|)]−1T−1V− = [(I + diag|r|)]−1R−, where R− is

obtained by simply removing column r from R. Note that R′ retains the property

that all elements are less than 1 + 𝛿 in magnitude. We have proven the following:

Theorem 8. Let 𝑍 = {G, c} ⊂ R𝑛 and assign G𝑅 ← ReduceOrder4(G, 𝑛, 𝑛𝑔, 𝑜, 𝜖, 𝛿).

Then 𝑍 ⊂ 𝑍𝑅 ≡ {G𝑅, c} and 𝑍𝑅 has order 𝑜.
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Algorithm 7 Reduces {G, c} to order 𝑜 using Method 4
1: procedure ReduceOrder4(G,𝑛,𝑛𝑔,𝑜,𝜖,𝛿)
2: (G, G*)← FactorG(G, 𝜖, 𝛿)
3: while 𝑛𝑔/𝑛 > 𝑜 do
4: 𝑗 ← argmin

𝑗=𝑛+1,...,𝑛𝑔

[︁
Π𝑖(1 + |𝑔*

𝑖𝑗 |)− (1 +
∑︀

𝑖 |𝑔*
𝑖𝑗 |)
]︁

5: r← 𝑗th column of G*

6: Remove column 𝑗 from G and G*

7: 𝑛𝑔 ← 𝑛𝑔 − 1
8: G1:𝑛,1:𝑛 ← G1:𝑛,1:𝑛[diag(1 + |r|)]
9: G*

1:𝑛,𝑛+1:𝑛𝑔
= [diag(1 + |r|)]−1G*

1:𝑛,𝑛+1:𝑛𝑔

10: end while
11: return G
12: end procedure

For fixed 𝜖, 𝛿 > 0 and zonotopes with bounded generators ‖g𝑖‖2 ≤ 𝐿, Algorithm 7

has worst-case complexity 𝒪(𝑛 log(𝐿/𝜖)
log(1+𝛿)𝑛

2𝑜0 + 𝑛(𝑜0 − 𝑜)𝑛2𝑜0) = 𝒪(𝑛3(𝑜0 − 𝑜)𝑜0), where

the first term is the complexity of Algorithm 6 and the second results from the 𝑛(𝑜0−𝑜)

passes through the while loop on lines 3–10.

5.4 Numerical Comparisons

This section compares Methods 1–4 on several reduction tasks. All results are averaged

over 500 zonotopes 𝑍 = {G, c} generated by sampling [G c] elementwise from a

uniform distribution on [−1, 1] and then scaling each column g𝑖 (and c) by 𝛼𝑖/‖g𝑖‖2,

where 𝛼𝑖 is a uniform random scalar in [0, 60]. Due to the excessive cost of the

combinatorial procedures in Lemma 3 and Algorithm 5, volume errors Θ𝑉 (see (5.3))

are not shown for 𝑛 > 8, and Method 3 is not compared for 𝑛 > 10. Moreover,

Hausdorff distances and radii are approximated using (5.4)–(5.5) by maximizing over

500 random 𝜆s with ‖𝜆‖2 = 1. These approximations are sharp in the sense that they

change by < 1% when using 2000 random 𝜆s for random zonotopes up to 𝑛 = 100.

Finally, we report wall-clock times for MATLAB R2015a on a Dell Precision T1700

with an i5-4690 CPU @ 3.50GHz and 16.0 GB RAM.
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5.4.1 Reducing zonotopes by a single order
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Figure 5.1: Average time and Hausdorff error Θ𝐻 for reducing a zonotope from order
5 to 4 using Methods 1–4 (�,⋆,∘,◇, resp.).
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Figure 5.2: Average volume and Hausdorff errors for reducing a zonotope from order 5
to 4 using Methods 1–4 (�,⋆,∘,◇, resp.).
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Figure 5.3: Average Hausdorff error Θ𝐻 for reducing a zonotope from order 10 to 9
using Methods 1–4 (�,⋆,∘,◇, resp.).

Figures 5.1–5.3 compare Methods 1–4 for single-order reductions with variable dimen-

sion 𝑛. Method 3 is more accurate than Methods 1–2 for 𝑛 ≤ 10, but its cost rapidly
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increases with 𝑛. Method 4 is slightly more accurate than Method 3, but with much

lower cost, enabling accurate reduction up to 𝑛 = 98. Clearly, Method 4 follows the

empirical 𝒪(𝑛3) complexity discussed in §5.3.4 rather than the exponential worst-case

estimate. For small 𝑛, Figure 5.2 shows that Θ𝑉 and Θ𝐻 have qualitatively similar

trends.

Figure 5.3 shows Θ𝐻 trends similar to Figure 5.1 for initial order 10 instead of

5. Time trends (not shown) are also similar, with Method 3 reaching 0.2466s at

𝑛 = 10 and Method 4 reaching 0.1782s at 𝑛 = 98. Finally, Figure 5.4 shows the

effect of initial order with 𝑛 = 4. Interestingly, the reduction error is greatly reduced

with increasing order, while computation times are nearly constant at 1.1 × 10−4s,

4.9× 10−5s, 2.1× 10−3s, and 3.3× 10−4s for Methods 1–4, respectively.
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Figure 5.4: Average Hausdorff and volume errors for reducing zonotopes with dimension
𝑛 = 4 by one order from various initial orders using Methods 1–4 (�,⋆,∘,◇, resp.).

5.4.2 Reducing zonotopes by multiple orders

Figures 5.5–5.6 compare Methods 1–4 for reducing zonotopes by three orders at a

time. All methods achieve this by a single call to Algorithm 4, 5, or 7 with input

𝑜 = 𝑜0−3. A variant of Method 1 is also shown (O) that calls Algorithm 4 three times,

reducing one order each time. The results differ due to the column ordering on line 2.

We found this distinction unclear in [60], although the single call is markedly more

accurate. Method 2 gives identical results with one or three calls, while sequential
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calls to Methods 3–4 were not considered because this significantly increases their

complexity.
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Figure 5.5: Average Hausdorff and volume errors for reducing zonotopes from order 6
to 3 using Methods 1–4 (�,⋆,∘,◇, resp.) and a variant of Method 1 using 3 sequential
calls to Algorithm 4 (O).
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Figure 5.6: Average Hausdorff error for reducing zonotopes from order 20 to 17 using
Methods 1–4 (�,⋆,∘,◇, resp.).
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Figure 5.7: Average time and errors for reducing zonotopes with 𝑛 = 4 from 𝑜0 = 10
to different final orders using Methods 1–4 (�,⋆,∘,◇).
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Volume errors in Figure 5.5 are similar but larger than in Figure 5.2, with Methods

3–4 more accurate than 1–2. Surprisingly, however, Θ𝐻 favors Methods 1–2 over 3–4

when 𝑛 > 5 (see also Fig. 5.6). Thus, Methods 1–2 may be desirable for multi-order

reductions with large 𝑛, although its likely that Θ𝑉 would continue to favor Methods

3–4 for large 𝑛. When reducing by many orders for 𝑛 = 4, Figure 5.7 shows that times

increase modestly, Θ𝐻 increases significantly but similarly for all methods, and Θ𝑉

again favors Methods 3–4.

5.4.3 Reducing zonotopes in reachability analysis

Figure 5.8 compares methods for reducing zonotopes enclosing the reachable sets of

random discrete-time linear systems x𝑘+1 = Ax𝑘 + Bw𝑘 generated by the MATLAB

routine drss with 𝑛𝑥 = 𝑛𝑤 = 4. Each system has bounded initial conditions and

disturbances lying in random first-order zonotopes 𝑋0 and 𝑊 . The reachable sets are

defined recursively by

𝑅0 = 𝑋0, 𝑅𝑘+1 ≡ {Ax𝑘 + Bw𝑘 : (x𝑘, w𝑘) ∈ 𝑅𝑘 ×𝑊}.

It is well known that each 𝑅𝑘 is a zonotope [2]. However, the order of 𝑅𝑘 increases

linearly with 𝑘. Thus, it is common to consider low-order enclosures computed

recursively by

�̂�0 = 𝑋0, �̂�𝑘+1 = Red[A�̂�𝑘 + B𝑊 ], (5.10)

where the set operations are computed as in (5.2) and Red[𝑍] reduces 𝑍 to a desired

order 𝑜. Figure 5.8 compares Methods 1–4 for this reduction with 𝑜 = 8. In addition,

Figure 5.8 also compares variants denoted as Methods 1’–4’. Method 𝑖′ works by first

removing the 𝑛 largest two-norm generators from 𝑍, then reducing the remaining

zonotope to order 7 using Method 𝑖, and finally replacing the 𝑛 removed generators.

148



This simple modification is designed to mitigate unstable growth of the enclosures

over long horizons based on the key insights in [2]. Note that this change has no

effect on Methods 1 and 3, since they already use an initial generator sorting based

on two-norms (see Algorithms 4 and 5).

Figure 5.8 shows that Methods 1–2 are the most efficient, with Method 4 about

10× slower and Method 3 about 100× slower. The Hausdorff and volume errors for

Methods 1–2 grow roughly linearly in 𝑘. Method 3 is comparable to 1–2 in Θ𝐻 , but

much more accurate in Θ𝑉 . Over short horizons, Method 4 is more accurate than

Methods 1–3 in both metrics (𝑘 ≤ 30 for Θ𝐻 and 𝑘 ≤ 50 for Θ𝑉 ). However, Method 4

is unstable over longer horizons. Experiments show that Method 4 performs very well

for the majority of random systems, but exhibits dramatic exponential growth for a

small number of systems, leading to poor performance on average (e.g., Θ𝐻 exceeded

30 at 𝑘 = 100 for 852 of 104 systems, with some cases exceeding 106, while no other

method exceeds 30 even once). This instability is not fully understood at present.

However, Method 4’ largely corrects the problem, providing the tightest enclosure in

both Θ𝐻 and Θ𝑉 out to 𝑘 = 100. In contrast, the performance of Methods 1’–3’ is

nearly identical to that of Methods 1–3.

We also compared the accuracy of Method 4’ with 𝑜 = 8 to Methods 1–2 with

𝑜 = 60, where 60 was chosen to make the CPU times for the three methods roughly

equal at 3.3 × 10−4s per time step. In this case, Methods 1–2 provide the exact

reachable set for 𝑘 ≤ 60 since no reduction is necessary. Despite this, Method 4’

becomes the best in terms of Θ𝑉 at 𝑘 = 77, and stabilizes with Θ𝑉 about 10% smaller

than that of Methods 1–2 (not shown). However, Method 4’ is not competitive in

terms of Θ𝐻 due to exponential growth for some random systems prior to 𝑘 = 150.
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Figure 5.8: Average time and errors for reducing �̂�𝑘 in (5.10) to 𝑜 = 8 with Methods 1–4
(�,⋆,∘,◇, solid lines) and Methods 1’–4’ (�,⋆,∘,◇, dashed lines). Errors are relative to the
true reachable set, Θ𝑉 = [𝑣(�̂�𝑘)1/𝑛−𝑣(𝑅𝑘)1/𝑛]/𝑣(𝑅𝑘)1/𝑛 and Θ𝐻 = 𝑑𝐻(�̂�𝑘, 𝑅𝑘)/𝑟(𝑅𝑘).
After 𝑘 = 30, 𝑣(𝑅𝑘) is too difficult to compute and is replaced by the minimum volume
among the eight computed enclosures. All results are averaged over enough random
systems to achieve a coefficient of variance 𝜇/𝜎 ≤ 0.1; i.e., 500 for CPU time, 1900 for
Θ𝑉 with 𝑘 ≤ 30, and 104 for Θ𝐻 and Θ𝑉 with 𝑘 > 30.

5.5 Conclusions

Our results show that Method 4 is similar to Method 3 in terms of accuracy, but has

much lower theoretical and empirical complexity, allowing it to address zonotopes up

to at least 100 dimensions. Compared to the simpler Methods 1–2, Method 4 is more

complex by a factor of 𝑛 and empirically slower by 10–100×. However, it has lower

volume and Hausdorff errors when reducing by a single order, but interestingly, only

lower volume error when reducing by multiple orders in sufficiently high dimensions.

In the context of reachability analysis, Method 4 is the most accurate over short

horizons, but eventually becomes unstable. This instability is not well understood,

but is largely mitigated by Method 4’ and will be the subject of future investigations.

Moreover, for applications in which the reachable set can be periodically intersected

with measurements, long-term stability may be less important than short-term accuracy.

When provided with equal CPU time, Methods 1–2 can accommodate much higher

order zonotopes than Method 4’, leading to lower Hausdorff errors. However, Method
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4’ still achieves lower volume errors. Moreover, many applications require operations

that scale poorly with zonotope order, which may make Method 4’ more desirable. For

example, the approximate intersection of a zonotope with a bounded-error measurement

in [37] scales as 𝑛5𝑛2
𝑔, the active fault detection method in [66] scales exponentially in

𝑛𝑔, and computing volumes and half-space representations of zonotopes both scale as(︁
𝑛𝑔

𝑛

)︁
[64].
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CHAPTER 6

GUARANTEED SAFE PATH AND TRAJECTORY TRACKING VIA

REACHABILITY ANALYSIS USING DIFFERENTIAL

INEQUALITIES

6.1 Introduction

This chapter presents rigorous nonlinear reachable set bounding methods for rapidly

and accurately verifying the safety of automated vehicles tracking reference paths or

trajectories under uncertainty. Path and trajectory tracking is important in automated

driving systems for road vehicles, motion planning for autonomous robots, etc. [67,

68]. However, the reference paths and trajectories computed by such systems, which

are safe by design, are not followed exactly by the vehicle due to various uncertainties

in the vehicle’s dynamics and environment (e.g., model parameters, tire slip, wind,

measurement noises, etc.). These deviations of the real trajectory from the desired

trajectory can lead to collisions or violations of other safety constraints. Therefore,

methods for ensuring safety of a vehicle’s real trajectory in real time are essential for

achieving safe autonomous systems in practice. For example, such methods will be

necessary to realize the anticipated safety benefits of autonomous road vehicles that

result from eliminating delayed reactions and other human errors [67].

The existing literature on vehicle safety verification addresses several distinct

problems based on how the vehicle’s control inputs are handled. One class of methods

assumes the inputs obey a probability distribution modeling the action of human

drivers and aims to compute the likelihood of a collision [69, 70, 71]. These methods

are primarily designed to generate warning alarms for human drivers, not for use

in automated control systems. The computation of an optimal (i.e., safest) set of
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inputs for all vehicles in a road scene is discussed in [69], but safety is only ensured

for nominal vehicle dynamics with no uncertainty.

A second class of methods that is more relevant for autonomous vehicle control

treats the inputs as degrees of freedom and aims to compute either a feedback law or an

open-loop input that guarantees safe trajectories [72, 73, 74, 75]. General approaches

in this category require the solution of Hamilton-Jacobi-Isaac (HJI) partial differential

equations, which is prohibitive in many cases because it scales exponentially in the

number of states. This is partially addressed by dimension reduction methods in [73],

but remains a significant limitation.

A third class of methods considers the simpler problem of verifying safety for

a fixed control input specified a priori. This input can be specified as either an

open-loop input [76, 77, 78, 79] or a fixed feedback law [80, 34, 81, 10, 82, 83, 84].

The most popular feedback approach is to first compute a safe reference trajectory

(or path) and then follow it using a closed-loop tracking controller. Although these

methods only assess the safety of a given control input rather than synthesizing a

safe input, they address a critical subtask that can be used within larger algorithms

for synthesizing safe controllers or motion plans. The methods in [76, 77, 79, 83,

84] compute the probability of safety violations by sampling or using stochastic

reachable sets. Therefore, these methods cannot make rigorous safety guarantees,

which is a drawback in some applications. Moreover, sampling-based methods are

computationally demanding for systems with more than a few uncertain quantities,

which limits their use for online safety verification. In contrast, the methods in [78, 80,

34, 81, 10, 82] aim to provide rigorous safety guarantees for systems subject to bounded

uncertainties using reachability analysis techniques. However, efficiently computing

an accurate enclosure of the reachable set of a nonlinear system is a significant

challenge. To avoid this, most safety verification approaches use linear models [78, 81]

or linearizations of nonlinear models [34, 74, 80]. Unfortunately, verifying safety of a
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linearized model does not ensure that the original model is safe. To date, the only

guaranteed safety verification approach applicable to nonlinear vehicle models is given

in [10, 82]. For the example considered in [10], it was shown that this method can

verify the safety of a trajectory about 2× faster than the real vehicle traverses the

trajectory. While this is promising, there is still a need for significantly more efficient

methods to support verification for more complex models and to enable the use of

online verification within iterative algorithms for safe controller synthesis. In practice,

autonomous vehicles often update their trajectories every few milliseconds [85, 86, 87],

so reachability-based verification on a similar time-scale is desirable.

This chapter focuses on the problem of rigorous safety verification for nonlinear

vehicle models under a fixed feedback controller. Specifically, given a vehicle model, a

fixed reference path or trajectory, and a fixed tracking controller, we are interested

in computing a rigorous enclosure of the reachable set of the closed loop system

under uncertainty. We are interested in rigorous enclosures because they can be used

to ensure safety of the planned path or trajectory with certainty by subsequently

testing for intersections with obstacles or other unsafe sets. Moreover, we consider

verification of a fixed tracking controller, rather than the more challenging problem of

safe controller synthesis, because effective tracking controllers are available and widely

used for many vehicle models, and we expect that a technology for efficiently verifying

their safety in real-time will be very useful within practical iterative approaches for

safe controller synthesis and motion planning.

Many methods are available for computing rigorous reachable set enclosures for

continuous-time nonlinear systems. However, these methods often exhibit an un-

workable compromise between accuracy and computational efficiency, particularly

for systems with strong nonlinearities or large uncertainties. The zonotope-based

method in [88], which has been applied for safety verification in [82, 10], propagates

valid enclosures over discrete time steps using a conservative linearization technique
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with rigorously bounded linearization errors. Although this method is effective in

many cases, the linearization error bound can be conservative for systems with strong

nonlinearities. Moreover, high-order zonotopes and/or partitioning may be required

to achieve high accuracy, which may become inefficient. Another class of reachability

methods propagates valid enclosures over discrete time steps by first constructing a

Taylor expansions of the states with respect to time and then computing rigorous

bounds on the coefficients and remainder term [89]. Early methods computed these

bounds using interval arithmetic, but contemporary methods achieve much higher

accuracy using Taylor model arithmetic, which is based on multivariate Taylor expan-

sions with respect to uncertain parameters [90, 91, 92, 93]. However, high accuracy

may require high-order Taylor models, which also comes with high computational

cost.

A final class of reachability methods is based on the theory of differential inequalities

(DI). These methods compute valid enclosures as the solutions of an auxiliary system

of ordinary differential equations (ODEs). The standard DI method computes interval

enclosures using an auxiliary system constructed via interval arithmetic [94]. This

is very efficient, which is attractive for online verification, but it usually computes

very conservative bounds. Several more recent DI methods have addressed this by

replacing intervals with polytopes [27], Taylor models [95], or mean value enclosures

[96]. These methods produce much tighter bounds than standard DI, but are not

as efficient. Another category of DI methods aims to use model redundancy to

mitigate the conservatism of the standard interval DI method while largely retaining

its speed. These approaches identify constraints that are redundant with the dynamics

(a.k.a. invariants), such as conservation laws, non-negativity of certain states, etc., and

exploit them within iterative refinement algorithms to tighten the bounds continuously

as they are propagated forward in time [24, 26, 117]. Importantly, this method can

be applied to general nonlinear systems that do not satisfy any known invariants by
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manufacturing invariants [26]. This process involves embedding the system within

a higher-dimensional system that obeys invariants by design (see §6.2 for details).

Redundancy-based DI methods have proven to be remarkably effective for many case

studies, including systems that naturally satisfy invariants and many that do not

[24, 26, 117]. However, this approach requires significant problem insight to apply

effectively, especially when invariants must be manufactured. To date, successful

strategies have only been clearly demonstrated for models that arise from dynamic

mass and energy balances, particularly in the chemical engineering domain, where it

is relatively straightforward to manufacture simple and effective affine invariants.

In this chapter, we demonstrate the application of advanced redundancy-based DI

methods to three representative case studies in vehicle path and trajectory tracking.

The application of redundancy-based DI to this class of problems is challenging for

three primary reasons. First, to the best of our knowledge, the models we consider do

not naturally obey any invariants. Moreover, compared to mass and energy balance

models, it much more difficult to identify effective manufactured invariants. Second,

the presence of a feedback law in these models causes a significant interval dependency

problem, which leads to very conservative bounds using interval-based methods if

it is not addressed. Both of these challenges are explained in more detail in §6.2.

Finally, the vehicle models of interest involve several functions that do not have well-

defined interval evaluations, or whose interval evaluations violate Lipschitz regularity

conditions that are required by DI-based reachability methods.

To address these issues, we first develop extended interval operations for several

functions common in vehicle models and prove Lipschitz regularity. Next, we demon-

strate the application of redundancy-based DI for three case studies in detail. In

all cases, we address the feedback dependency problem through appropriate coordi-

nate transformations. Moreover, we develop highly effective nonlinear manufactured

invariants. In all cases, we ultimately obtain reachability bounds that are greatly
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improved relative to the standard DI method, and appear both accurate and efficient

enough to support many online safety verification tasks, although there is clearly still

room for improvement. Finally, we conclude with a discussion of lessons learned and

general strategies that are likely to be effective for other path and trajectory tracking

problems.

6.1.1 Problem Statement

Let 𝐼 = [𝑡0, 𝑡𝑓 ] be a time horizon of interest, let f0 : 𝐷𝑓0 ⊂ R×R𝑛𝑥×R𝑛𝑤×R𝑛𝑢 → R𝑛𝑥 ,

let 𝜅 : 𝐷𝜅 ⊂ R × R𝑛𝑥 × R𝑛𝑤 → R𝑛𝑢 , and consider the following closed-loop system

with input u, disturbance w, and state x:

ẋ(𝑡) = f0(𝑡, x(𝑡), w(𝑡), u(𝑡)), a.e. 𝑡 ∈ 𝐼, (6.1a)

u(𝑡) = 𝜅(𝑡, x(𝑡), w(𝑡)), (6.1b)

x(𝑡0) = x0. (6.1c)

We are interested in computing reachability bounds for systems of the form (6.1) under

a given path or trajectory tracking controller 𝜅. We assume throughout that all states

can be measured exactly, and we allow 𝜅 to depend on w(𝑡) to account for cases where

some disturbances are also measured. In practice, 𝜅 will also depend on a fixed reference

path or trajectory, but we suppress this dependence for brevity. To further simplify

notation, we define the closed-loop right-hand side f : 𝐷𝑓 ⊂ R×R𝑛𝑥 ×R𝑛𝑤 → R𝑛𝑥 by

f(𝑡, z, v) ≡ f0(𝑡, z, v, 𝜅(𝑡, z, v)). Then, (6.1) is equivalent to

ẋ(𝑡) = f(𝑡, x(𝑡), w(𝑡)), a.e. 𝑡 ∈ 𝐼, (6.2a)

x(𝑡0) = x0. (6.2b)

Denote the space of Lebesgue integrable functions 𝑦 : 𝐼 → R by 𝐿1(𝐼). Let 𝑊 ⊂
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R𝑛𝑤 be a compact interval and define the set of admissible time-varying uncertainties

or disturbances as

𝒲 ≡ {w ∈ (𝐿1(𝐼))𝑛𝑤 : w(𝑡) ∈ 𝑊 for a.e. 𝑡 ∈ 𝐼}. (6.3)

Similarly, let 𝑋0 ⊂ R𝑛𝑥 be a compact interval of admissible initial conditions. Let

𝒜𝒞(𝐼,R𝑛) denote the space of absolutely continuous functions from 𝐼 into R𝑛. We

assume that (6.2) has a unique solution x ∈ 𝒜𝒞(𝐼,R𝑛𝑥) corresponding to every

(x0, w) ∈ 𝑋0×𝒲 , and we denote this solution by x(·; x0, w) when explicit dependence

on (x0, w) is necessary for clarity.

Definition 6. The reachable set of (6.2) is defined for every 𝑡 ∈ 𝐼 by

Re(𝑡) ≡ {x(𝑡; x0, w) : (x0, w) ∈ 𝑋0 ×𝒲}.

Moreover, functions x𝐿, x𝑈 : 𝐼 → R𝑛𝑥 are called state bounds for (6.2) if Re(𝑡) ⊂

[x𝐿(𝑡), x𝑈(𝑡)], ∀𝑡 ∈ 𝐼.

]

The objective of this chapter is to compute state bounds for closed-loop path and

trajectory problems of the form (6.2) that are both accurate and efficient enough to

support rigorous motion planning and real-time safety verification tasks.

6.1.2 Notation

For z𝐿, z𝑈 ∈ R𝑛, let 𝑍 = [z𝐿, z𝑈 ] denote the compact 𝑛-dimensional interval {z ∈ R𝑛 :

z𝐿 ≤ z ≤ z𝑈}. For 𝐷 ⊂ R𝑛, let I𝐷 denote the set of all intervals 𝑍 such that 𝑍 ⊂ 𝐷.

Let IR+ denote the set of all intervals 𝑍 such that 𝑍 ⊂ R+. Let h : 𝐷 ⊂ R𝑛 → R𝑚.

An interval function 𝐻 : 𝐷𝐻 ⊂ I𝐷 → IR𝑚 is an inclusion function for h on 𝐷𝐻 if

𝐻(𝑋) ⊃ {h(x) : x ∈ 𝑋} for every 𝑋 ∈ 𝐷𝐻 . A function h is called factorable if it can
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be written explicitly as a finite composition of elementary operations such as binary

addition, binary multiplication, and intrinsic univariate functions (−𝑥, 𝑥𝑛, 𝑒𝑥, etc.).

For any factorable function h, a specific inclusion function called the natural interval

extension of h can be readily computed using interval arithmetic [101].

The space IR𝑛 is a metric space under the Hausdorff metric 𝑑𝐻(𝑍1, 𝑍2) = max{‖z𝐿
1−

z𝐿
2 ‖∞, ‖z𝑈

1 − z𝑈
2 ‖∞} [101]. Then, following standard metric space definitions, the open

ball of radius 𝜖 > 0 centered at 𝑋 ∈ IR𝑛 is defined by 𝐵𝜖(𝑋) ≡ {𝑍 ∈ IR𝑛 : 𝑑𝐻(𝑋, 𝑍) <

𝜖}. A set 𝐷 ⊂ IR is open if for every 𝑍 ∈ 𝐷 there exists a 𝜖 > 0 such that 𝐵𝜖(𝑍) ⊂ 𝐷.

Moreover, a function 𝐹 : 𝐷 ⊂ IR𝑛 → IR𝑚 is locally Lipschitz continuous on 𝐷 if for

every 𝑍 ∈ 𝐷, there exist constants 𝑀, 𝜖 > 0 such that 𝑑𝐻(𝐹 (𝑋), 𝐹 (𝑌 )) < 𝑀𝑑𝐻(𝑋, 𝑌 )

for every 𝑋, 𝑌 ∈ 𝐵𝜖(𝑍) ∩𝐷.

6.2 Differential Inequalities

This section introduces the differential inequalities (DI) methods that will be used to

compute reachability bounds for the closed loop system (6.2). We assume throughout

that we have an inclusion function for f in (6.2). We denote this function by 𝐹 :

𝐷𝐹 ⊂ I𝐷𝑓 → IR and further denote [f𝐿(𝑋), f𝑈(𝑋)] = 𝐹 (𝑋). Such a function can

be computed, e.g., using interval arithmetic. We also require the following interval

functions, which select an individual face of a given interval.

Definition 7. For every 𝑖 ∈ {1, . . . , 𝑛𝑥}, define the face selection operators 𝛽𝐿
𝑖 , 𝛽𝑈

𝑖 :

IR𝑛𝑥 → IR𝑛𝑥 by

𝛽𝐿
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
≡ {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝐿

𝑖 },

𝛽𝑈
𝑖

(︁
[z𝐿, z𝑈 ]

)︁
≡ {z ∈ [z𝐿, z𝑈 ] : 𝑧𝑖 = 𝑧𝑈

𝑖 }.

The standard DI method originally proposed in [94] computes state bounds 𝑋(𝑡) ≡
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[x𝐿(𝑡), x𝑈(𝑡)] as the solutions of the following system of ODEs:

�̇�𝐿
𝑖 (𝑡) = 𝑓𝐿

𝑖 ([𝑡, 𝑡], 𝛽𝐿
𝑖 (𝑋(𝑡)) , 𝑊 ), (6.4)

�̇�𝑈
𝑖 (𝑡) = 𝑓𝑈

𝑖 ([𝑡, 𝑡], 𝛽𝑈
𝑖 (𝑋(𝑡)) , 𝑊 ),

𝑋(𝑡0) = 𝑋0.

To understand this method, note that at the initial time we have x(𝑡0) ∈ 𝑋0 =

[x𝐿(𝑡0), x𝑈 (𝑡0)]. In order for, e.g., the 𝑖th lower bound 𝑥𝐿
𝑖 (𝑡) to remain lower than 𝑥𝑖(𝑡)

for 𝑡 > 𝑡0, it is sufficient to require that 𝑥𝐿
𝑖 decreases faster than any trajectory 𝑥𝑖

corresponding to any (x0, w) ∈ 𝑋0 ×𝒲; i.e. �̇�𝐿
𝑖 (𝑡) ≤ �̇�𝑖(𝑡). However, more careful

analysis shows that it is really only necessary to have �̇�𝐿
𝑖 (𝑡) ≤ �̇�𝑖(𝑡) at those 𝑡 ∈ 𝐼

for which 𝑥𝑖(𝑡) = 𝑥𝐿
𝑖 (𝑡). This weaker requirement is achieved by bounding 𝑓𝑖 over

𝛽𝐿
𝑖 (𝑋(𝑡)) rather than 𝑋(𝑡) in (6.4).

As discussed in Section 6.1, the standard DI method is very efficient, but often

gives very conservative bounds [24]. One key reason is the dependency problem, which

refers to the fact that interval arithmetic treats multiple instances of a variable as

independent. For example, consider the ODE �̇�1 = 𝑓1(x) = −𝑎𝑥1𝑥2 + 𝑏𝑥2𝑥3, in which

𝑥2 appears twice. If the inclusion function 𝐹1 is computed using interval arithmetic,

then it will bound the range of 𝑓1 assuming that these two instances of 𝑥2 are

independent, leading to overestimation. The dependency problem is not an inherent

weakness of DI, but rather a weakness of the kind of inclusion function normally used

in DI. Indeed, it can be mitigated using more sophisticated inclusion functions such as

mean value forms, although this is less efficient. In the example above, the problem

can also be eliminated by simply rewriting 𝑓1 as 𝑓1(x) = (−𝑎𝑥1 + 𝑏𝑥3)𝑥2 and applying

interval arithmetic to this factored expression. Notably, substantially different bounds

can be obtained from DI using different expressions of f , even though these expressions

are equivalent in real number arithmetic. Rearrangements like this are important for
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getting good results from interval methods, but good rearrangements are not always

possible.

A more subtle and often more significant source of conservatism in DI is the histor-

ical dependency problem [26]. This refers to the fact that even distinct variables such

as 𝑥2 and 𝑥3 in the example above are not independent after 𝑡0. Thus, treating these

variables as independent when bounding the range of f also leads to overestimation.

Historical dependency is a weakness of DI itself and cannot be resolved by refactoring

f or using more sophisticated inclusion functions. In fact, it would persist even if 𝐹

returned the interval hull of the range of f over any interval of interest. Historical

dependency can be mitigated by propagating non-interval reachable set enclosures

such as polytopes or Taylor models because such enclosures can capture some of the

dependence between state variables. However, such methods lose much of the speed

that is so attractive in interval methods.

To address these limitations, several papers have subsequently developed efficient,

interval-based DI methods that compute much tighter bounds than standard DI by

exploiting redundant model equations [24, 26, 117]. By redundant model equations,

we refer to any relationships between the states of a system that are known a priori

to be satisfied by all solutions of the system. Examples of redundant equations that

are often satisfied in applications are non-negativity of certain states, conservation

mass, energy, or chemical species [24], the unit norm of rotation quaternions in some

vehicle models [118], and various other solution invariants. Such relationships are

useful because they provide information about the historical dependency between

system states that is not captured by the standard DI method. In redundancy-based

DI methods, these relationships are used to limit the range of inputs over which each

𝑓𝑖 must be bounded when computing the right-hand sides of the bounding ODEs (6.4),

often leading to much tighter bounds.

In what follows, we assume that redundant information is available in the form
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of an a priori enclosure 𝐺 (see Assumption 5) and present the main details of the

method in [117] for exploiting this enclosure to achieve tighter bounds. Subsequently,

we will discuss how this approach can be applied to general systems for which no a

priori enclosure is known using the concept of manufactured invariants.

Assumption 5. An a priori enclosure 𝐺 ⊂ R× R𝑛𝑥 × R𝑛𝑤 is known such that every

solution of (6.2) with (x0, w) ∈ 𝑋0 ×𝒲 satisfies (𝑡, x(𝑡), w(𝑡)) ∈ 𝐺 for all 𝑡 ∈ 𝐼.

The method in [117] makes use of 𝐺 through a special kind of inclusion function

for f called ℛ. The function ℛ takes 𝑡 and intervals 𝑍 and 𝑉 as input and computes

an interval enclosure of f(𝑡, z, v) for all (z, v) ∈ 𝑍 × 𝑉 such that (𝑡, z, v) ∈ 𝐺. This is

different from the conventional inclusion function used in standard DI, which computes

an interval enclosure of f(𝑡, z, v) for all (z, v) ∈ 𝑍 × 𝑉 . The inclusion function ℛ

also needs to satisfy several technical conditions detailed in the following formal

assumption.

Assumption 6. Let ℛ : 𝐷ℛ ⊂ R × IR𝑛𝑥 × IR𝑛𝑤 → IR𝑛𝑥 be an interval function

satisfying:

1. For any (𝑡, 𝑍, 𝑉 ) ∈ 𝐷ℛ, the set {𝑡}×𝑍 × 𝑉 is contained in the domain of f , 𝐷𝑓 ,

and

ℛ(𝑡, 𝑍, 𝑉 ) ⊃{𝜎 ∈ R𝑛𝑥 : 𝜎 = f(𝑡, z, v), (z, v) ∈ 𝑍 × 𝑉,

(𝑡, z, v) ∈ 𝐺}. (6.5)

2. 𝐷ℛ is open with respect to 𝑡 and 𝑍. Specifically, for every (𝑡, 𝑍, 𝑉 ) ∈ 𝐷ℛ, there

exists 𝜖 > 0 such that (𝑡, 𝑍, 𝑉 ) ∈ 𝐷ℛ for every 𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍 ∈ 𝐵𝜖(𝑍).

3. ℛ is locally Lipschitz continuous with respect to Z, uniformly with respect to 𝑡.
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Specifically, for any (𝑡, 𝑍, 𝑉 ) ∈ ℛ, there exists 𝜖, 𝐿 > 0 such that

𝑑𝐻(ℛ(𝑡, 𝑍, 𝑉 ),ℛ(𝑡, 𝑍, 𝑉 )) ≤ 𝐿𝑑𝐻(𝑍, 𝑍), (6.6)

for every 𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍, 𝑍 ∈ 𝐵𝜖(𝑍).

Moreover, let ℛ𝑖 = [ℛ𝐿
𝑖 ,ℛ𝑈

𝑖 ] denote the 𝑖th component of ℛ.

Given any ℛ satisfying Assumption 6, state bounds for (6.2) can be computed

using the following corollary from [117].

Corollary 5. Suppose that x𝐿, x𝑈 ∈ 𝒜𝒞(𝐼,R𝑛𝑥) are solutions of the following system

of ODEs with 𝑖 ∈ {1, . . . , 𝑛𝑥} and 𝑋(𝑡) ≡ [x𝐿(𝑡), x𝑈(𝑡)]:

�̇�𝐿
𝑖 (𝑡) = ℛ𝐿

𝑖 (𝑡, 𝛽𝐿
𝑖 (𝑋(𝑡)), 𝑊 ), (6.7)

�̇�𝑈
𝑖 (𝑡) = ℛ𝑈

𝑖 (𝑡, 𝛽𝑈
𝑖 (𝑋(𝑡)), 𝑊 ),

𝑋(𝑡0) = 𝑋0. (6.8)

Then, for every (x0, w) ∈ 𝑋0 × 𝒲, the solution x(·; x0, w) ∈ 𝒜𝒞(𝐼,R𝑛𝑥) of (6.2)

satisfies x(𝑡; x0, w) ∈ 𝑋(𝑡) for all 𝑡 ∈ 𝐼.

Remark 6. The version of Corollary 5 given above is a simplified version of the more

general result proven in [117]. Specifically, in [117], the assumption that (𝑡, x(𝑡), w(𝑡)) ∈

𝐺 is generalized to (𝑡, x(𝑡), w(𝑡), ẋ(𝑡)) ∈ 𝐺, with 𝐺 now a subset of R×R𝑛𝑥×R𝑛𝑤×R𝑛𝑥 ,

and the inclusion property of ℛ is generalized to ℛ(𝑡, 𝑍, 𝑉 ) ⊃ {𝜎 ∈ R𝑛𝑥 : 𝜎 =

f(𝑡, z, v), (z, v) ∈ 𝑍 × 𝑉, (𝑡, z, v, 𝜎) ∈ 𝐺}. Since none of the redundant relationships

defining 𝐺 in our case studies depend on ẋ(𝑡), we have omitted the ẋ(𝑡) dependence

above for simplicity.

To implement Corollary 5 numerically, a specific inclusion function ℛ must be

defined. In [117], a general approach is proposed consisting of two steps. Given generic

inputs (𝑡, 𝑍, 𝑉 ) ∈ 𝐷ℛ, the method first refines the intervals 𝑍 and 𝑉 by eliminating
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regions that violate the constraint (𝑡, z, v) ∈ 𝐺. Specifically, this step results in refined

intervals 𝑍† and 𝑉 † satisfying 𝑍† × 𝑉 † ⊃ (𝑍 × 𝑉 ) ∩ {(z, v) : (𝑡, z, v) ∈ 𝐺}. Next,

these refined intervals are used to evaluate a standard inclusion function for f ; i.e.,

ℛ(𝑡, 𝑍, 𝑉 ) = 𝐹 ([𝑡, 𝑡], 𝑍†, 𝑉 †). In the first step, the refined intervals 𝑍† and 𝑉 † are

computed using a variant of the interval Krawczyk method [101] called the 𝜅-operator.

This method is applicable whenever 𝐺 can be written in the general form

𝐺 = {(𝑡, z, v) ∈ 𝐷𝐺 : g(𝑡, z, v) ≤ 0, h(𝑡, z, v) = 0}, (6.9)

where (g, h) : 𝐷𝐺 ⊂ R × R𝑛𝑥 × R𝑛𝑤 → R𝑛𝑔 × R𝑛ℎ are locally Lipschitz continuous

functions.

Although this redundancy-based DI method provides much tighter state bounds

than standard DI in many cases, the key drawback is that it only applies to systems

for which redundant information is available in the form of an a priori enclosure

𝐺. To address this, Shen and Scott [26] developed the concept of manufactured

invariants, which extends the redundancy-based DI approach to general systems for

which no a priori enclosure is known. To present this idea in a sufficiently general

form, assume that the uncertainty w(𝑡) in (6.2) can be decomposed into two parts,

w(𝑡) = (d(𝑡), p), where d(𝑡) ∈ R𝑛𝑑 is a time-varying disturbance and p ∈ R𝑛𝑝 is a

vector of time-invariant uncertain parameters. Shen and Scott’s procedure begins by

choosing a smooth function 𝜑 : 𝐷𝜑 ⊂ R𝑛𝑥 × R𝑛𝑝 → R𝑛𝑧 and defining the new state

variables z(𝑡; x0, w) ≡ 𝜑(x(𝑡; x0, w), p). The choice of 𝜑 is discussed further below.
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Next, the new states are differentiated to form the augmented system

ẋ(𝑡) = f(𝑡, x(𝑡), w(𝑡)), (6.10)

ż(𝑡) = 𝜕𝜑

𝜕x
(x(𝑡), p)f(𝑡, x(𝑡), w(𝑡)),

x(𝑡0) = x0,

z(𝑡0) = 𝜑(x0, p).

We assume that (6.10) has a unique solution (x, z) ∈ 𝒜𝒞(𝐼,R𝑛𝑥+𝑛𝑧) corresponding

to every (x0, w) ∈ 𝑋0 ×𝒲. For any (x0, w) ∈ 𝑋0 ×𝒲, if (x, z) ∈ 𝒜𝒞(𝐼,R𝑛𝑥+𝑛𝑧) is

the solution of (6.10), then x ∈ 𝒜𝒞(𝐼,R𝑛𝑥) must be the solution of (6.2). Therefore,

to bound the reachable set of (6.2), it suffices to compute state bounds for (6.10).

But, by design, all solutions of (6.10) are guaranteed to satisfy the manufactured

invariants z(𝑡) − 𝜑(x(𝑡), p) = 0, ∀𝑡 ∈ 𝐼. Thus, state bounds can be computed by

applying Corollary 5 with 𝐺 ≡ {(𝑡, (x, z), (d, p)) : z− 𝜑(x, p) = 0}.

This technique has been shown to result in much tighter bounds than standard

DI for many problems with no known a priori enclosure. However, achieving good

results requires careful choice of the function 𝜑 defining the new states. The aim is

to choose 𝜑 such that the function 𝜕𝜑
𝜕xf appearing in the ODEs for z reduces to an

expression that is simple in the sense that it does not suffer much from the dependency

problems discussed above. For example, for a two-dimensional system described by

�̇�1 = −𝑥1 − 𝑟(w, x) and �̇�2 = −2𝑥2 + 𝑟(w, x) with some nonlinear and uncertain

term 𝑟, a good choice is 𝑧 = 𝑥1 − 𝑥2, which leads to �̇� = −𝑥1 + 2𝑥2 = −𝑧 + 𝑥2.

When the bounding ODEs (6.7) in Corollary 5 are solved for the augmented system,

simplifications of this sort can cause the bounds on z to accumulate conservatism less

quickly than those on x, or not at all. In turn, this enables the bounds on x to be

effectively refined using the manufactured invariant during the evaluation of ℛ, which

can slow or prevent conservatism from accumulating in the bounds of x as well. A
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more detailed explanation of the effects of using manufactured invariants can be found

in [26]. Although the example above is contrived, similar term cancellations and other

simplifications can be achieved by choosing simple affine 𝜑 functions in a wide variety

of practical examples, and the improvements in bound accuracy relative to standard

DI are stark [26]. However, most of these examples are drawn from (bio)chemical

engineering applications and the models, which are derived from differential balances

on mass, energy, and chemical species, share some advantageous structural features.

Thus, while this technique is broadly applicable in principle, effective strategies for

choosing 𝜑 have so far only been demonstrated for a limited class of models.

In the remainder of this chapter, we aim to apply the advanced redundancy-based

DI method formalized in Corollary 5 to obtain accurate reachability bounds for

some representative path and trajectory tracking problems. In preparation for this,

we conclude this section by highlighting some key challenges posed by this class of

problems in light of the discussion above. The first is that the systems of interest are

closed-loop, with right-hand sides of the form

f(𝑡, z, v) = f0(𝑡, z, v, 𝜅(𝑡, z, v)). (6.11)

Regardless of the functional forms of f0 and 𝜅, this structure ensures that there is a

significant interval dependency problem due to the two appearances of z and v. Thus, if

interval arithmetic is applied directly to f in this form to evaluate the inclusion function

ℛ, the result will almost certainly be very conservative. In particular, bounds on the

range of f(𝑡, ·, ·) over some interval 𝑍×𝑉 computed in this way would include all values

of f0(𝑡, z, v, u) obtained by pairing any (z, v) ∈ 𝑍 × 𝑉 with any input u ∈ 𝜅(𝑡, 𝑍, 𝑉 ),

which completely undermines the desired action of the controller. Second, to the

best of our knowledge, the systems we consider do not satisfy any known a priori

enclosures. It is therefore necessary to manufacture invariants. However, unlike the
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chemical engineering examples mentioned above, there are no obvious choices of 𝜑

that lead to desirable simplifications when forming the augmented right-hand sides
𝜕𝜑
𝜕xf , so new strategies must be developed. Finally, the systems we consider involve

several functions that do not have well-defined interval evaluations, or whose interval

evaluations would violate the Lipschitz property of ℛ required by Assumption 6.

Therefore, new interval evaluations with the appropriate properties must be defined.

6.3 Interval Inclusion Functions for Some Non-Standard Functions

This section introduces interval inclusion functions for several functions that do not

appear in standard interval arithmetic libraries. This includes the multi-valued inverses

of 𝑥2 and cos(𝑥), which are required in our interval refinement algorithms, as well

as the derivatives of some trigonometric functions, which appear commonly in the

vehicle models of interest here. Each inclusion function is designed to ensure locally

Lipschitz continuity, which will be needed in order to use them in the construction of

an inclusion function ℛ satisfying Assumption 6.

We begin with an inclusion function for the multi-valued square root defined on

the positive reals, including both the positive and negative roots as illustrated in

Figure 6.1. The standard interval inclusion function for this operation, which gives

the exact interval hull of its range over any 𝑋 ∈ IR, is ±
√

𝑋 = [−
√

𝑥𝑈 , +
√

𝑥𝑈 ].

However, this definition inherits the non-locally-Lipschitz behavior of
√

𝑥 at 𝑥 = 0.

To avoid this, we define a weaker modified inclusion function using upper and lower

linearizations around 𝑥 = 𝜖 > 0, as shown in Figure 6.1. For intervals with 𝑥𝑈 ≥ 𝜖, the

modified inclusion function returns [−
√

𝑥𝑈 , +
√

𝑥𝑈 ] as usual. However, for intervals

with 𝑥𝑈 < 𝜖, the upper and lower bounds are instead determined by the upper and

lower linearizations.
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Definition 8. For any tolerance 𝜖 > 0, define −
√

: IR+ → IR by

−
√

𝑋 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︁
−
√

𝑥𝑈 ,
√

𝑥𝑈
]︁

if 𝑥𝑈 ≥ 𝜖,[︁
− 1

2
√

𝜖
𝑥𝑈 −

√
𝜖

2 , 1
2
√

𝜖
𝑥𝑈 +

√
𝜖

2

]︁
if 𝑥𝑈 < 𝜖.

(6.12)
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Figure 6.1: Multi-valued square root 𝑦 = ±
√

𝑥 (black) with lower and upper lineariza-
tions at 𝜖 = 10−4, 𝑦 = − 1

2
√

𝜖
𝑥−

√
𝜖

2 and 𝑦 = 1
2
√

𝜖
𝑥 +

√
𝜖

2 (red).

The next two theorems show that −
√

is a valid inclusion function for ±
√

𝑥 and

is Lipschitz continuous on IR+.

Theorem 9. If 𝑋 ∈ IR+ and 𝑥 ∈ 𝑋, then ±
√

𝑥 ∈ −
√

𝑋.

Proof. Choose any 𝑋 ∈ IR+ and any 𝑥 ∈ 𝑋. Monotonicity of the square root

function implies that
√

𝑥 ∈
[︁√

𝑥𝐿,
√

𝑥𝑈
]︁

and −
√

𝑥 ∈
[︁
−
√

𝑥𝑈 ,−
√

𝑥𝐿
]︁

[102]. Thus,

±
√

𝑥 ∈
[︁√

𝑥𝐿,
√

𝑥𝑈
]︁
∪
[︁
−
√

𝑥𝑈 ,−
√

𝑥𝐿
]︁
⊂
[︁
−
√

𝑥𝑈 ,
√

𝑥𝑈
]︁
. Therefore, if 𝑥𝑈 ≥ 𝜖, then

±
√

𝑥 ∈ −
√

𝑋. Suppose instead that 𝑥𝑈 < 𝜖. Since the square root function is concave,
√

𝑥𝑈 must be dominated by the linearization
√

𝜖+ 1
2
√

𝜖
(𝑥𝑈−𝜖) = 1

2
√

𝜖
𝑥𝑈 +

√
𝜖

2 . Therefore,

±
√

𝑥 ∈
[︁
−
√

𝑥𝑈 ,
√

𝑥𝑈
]︁

implies ±
√

𝑥 ∈
[︁
− 1

2
√

𝜖
𝑥𝑈 −

√
𝜖

2 , 1
2
√

𝜖
𝑥𝑈 +

√
𝜖

2

]︁
= −
√

𝑋.

Theorem 10. The extended square root function is Lipschitz continuous on IR+.

Proof. Choose any 𝑋1, 𝑋2 ∈ IR+. First, assume that 𝑥𝑈
1 , 𝑥𝑈

2 ≥ 𝜖. By the definition of
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the Hausdorff distance,

𝑑𝐻( −
√︁

𝑋1,
−
√︁

𝑋2) =
⃒⃒⃒⃒√︁

𝑥𝑈
1 −

√︁
𝑥𝑈

2

⃒⃒⃒⃒
.

Let 𝐿 ≥ max𝑦≥𝜖
1

2√
𝑦

= 1
2
√

𝜖
. Then, the Mean Value Theorem gives

⃒⃒⃒⃒√︁
𝑥𝑈

1 −
√︁

𝑥𝑈
2

⃒⃒⃒⃒
≤

𝐿
⃒⃒⃒
𝑥𝑈

1 − 𝑥𝑈
2

⃒⃒⃒
. Therefore, 𝑑𝐻( −

√
𝑋1,

−
√

𝑋2) ≤ 𝐿𝑑𝐻 (𝑋1, 𝑋2).

Next, assume that 𝑥𝑈
1 , 𝑥𝑈

2 ≤ 𝜖. By the definition of Hausdorff distance,

𝑑𝐻

(︂
−
√︁

𝑋1,
−
√︁

𝑋2

)︂
= 1

2
√

𝜖

⃒⃒⃒
𝑥𝑈

1 − 𝑥𝑈
2

⃒⃒⃒
≤ 𝐿𝑑𝐻 (𝑋1, 𝑋2) .

Finally, assume w.l.o.g. that 𝑥𝑈
1 ≥ 𝜖 and 𝑥𝑈

2 ≤ 𝜖. Then,

𝑑𝐻

(︂
−
√︁

𝑋1,
−
√︁

𝑋2

)︂
=
⃒⃒⃒⃒
⃒
√︁

𝑥𝑈
1 −

(︃
1

2
√

𝜖
𝑥𝑈

2 +
√

𝜖

2

)︃⃒⃒⃒⃒
⃒ . (6.13)

The term inside the absolute value above must be nonnegative since
√︁

𝑥𝑈
1 dominates

√
𝜖,
√

𝜖 is equal to the linearization evaluated at 𝜖, 1
2
√

𝜖
𝜖+

√
𝜖

2 , and this in turn dominates
1

2
√

𝜖
𝑥𝑈

2 +
√

𝜖
2 by monotonicity of the linearization. Therefore,

𝑑𝐻

(︂
−
√︁

𝑋1,
−
√︁

𝑋2

)︂
=
√︁

𝑥𝑈
1 −

1
2
√

𝜖
𝑥𝑈

2 −
√

𝜖

2 , (6.14)

=
√︁

𝑥𝑈
1 −

1
2
√

𝜖
𝑥𝑈

2 −
√

𝜖

2 −
1√︁
𝑥𝑈

1

(𝑥𝑈
1 − 𝑥𝑈

2 ) + 1√︁
𝑥𝑈

1

(𝑥𝑈
1 − 𝑥𝑈

2 ),

=
⎛⎝ 1√︁

𝑥𝑈
1

− 1
2
√

𝜖

⎞⎠𝑥𝑈
2 −
√

𝜖

2 + 1√︁
𝑥𝑈

1

(𝑥𝑈
1 − 𝑥𝑈

2 ).

Since 𝑥𝑈
1 ≥ 𝜖, we have 1√

𝑥𝑈
1
≤ 1√

𝜖
. Thus,

𝑑𝐻

(︂
−
√︁

𝑋1,
−
√︁

𝑋2

)︂
≤ 1

2
√

𝜖
𝑥𝑈

2 −
√

𝜖

2 + 1√
𝜖
(𝑥𝑈

1 − 𝑥𝑈
2 ). (6.15)
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Since 𝑥𝑈
2 ≤ 𝜖, the term 1

2
√

𝜖
𝑥𝑈

2 −
√

𝜖
2 ≤ 0. Therefore,

𝑑𝐻

(︂
−
√︁

𝑋1,
−
√︁

𝑋2

)︂
≤ 1√

𝜖
(𝑥𝑈

1 − 𝑥𝑈
2 ) ≤ 2𝐿𝑑𝐻(𝑋1, 𝑋2).

Therefore, the Lipschitz constant 2𝐿 is valid on all of IR+.

Next, we develop an inclusion function of arcsin. The function arcsin is monotoni-

cally increasing, but is not Lipschitz continuous at 𝑥 = −1 and 𝑥 = 1, as shown in

Figure 6.2. In this case, it suffices for our purposes in §6.4 to avoid this non-Lipschitz

behavior by simply restricting the domain of our inclusion function to intervals con-

tained in the open interval (−1, 1) and establish local Lipschitz continuity on this

domain.

Definition 9. Let 𝐷 ≡ {𝑥 ∈ R : −1 < 𝑥 < 1} and define the ¯arcsin : I𝐷 → IR by

¯arcsin(𝑋) = [arcsin(𝑥𝐿), arcsin(𝑥𝑈)]. (6.16)

Theorem 11. For any 𝑋 ∈ I𝐷 and 𝑥 ∈ 𝑋, arcsin(𝑥) ∈ ¯arcsin(𝑋).

Proof. The result follows immediately from the fact that arcsin is monotonically

increasing on (−1, 1).

Theorem 12. The function ¯arcsin is locally Lipschitz continuous on I𝐷.

Proof. Consider the two real-valued functions 𝑙𝑏(𝑥𝐿, 𝑥𝑈 ) = arcsin(𝑥𝐿) and 𝑢𝑏(𝑥𝐿, 𝑥𝑈 ) =

arcsin(𝑥𝑈) describing the upper and lower bounds in (6.16). According to Theorem

2.5.30 in [104], ¯arcsin is locally Lipschitz continuous on I𝐷 if an only if both 𝑙𝑏 and 𝑢𝑏

are locally Lipschitz continuous on {(𝑥𝐿, 𝑥𝑈) ∈ 𝐷 ×𝐷 : 𝑥𝐿 ≤ 𝑥𝑈}. But this follows

directly from the fact that arcsin is continuously differentiable, and hence locally

Lipschitz continuous, on 𝐷 = (−1, 1).
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Next, we develop an inclusion function for the multi-valued arccos function includ-

ing both positive and negative branches as illustrated in Figure 6.2 (middle). It is easy

to see from the figure that arccos(𝑋) = [− arccos(𝑥𝐿), arccos(𝑥𝐿)] is a valid inclusion

function. However, this inclusion function inherits non-locally-Lipschitz behavior from

the real-valued arccos function at −1 and 1. For our purposes in §6.4, it suffices

to simply exclude −1 from the domain of our inclusion function, as was done with

arcsin above. However, we will need to apply this inclusion function to intervals that

potentially contain 1. Therefore, we propose a weaker inclusion function that makes

use of upper and lower linearizations at a point 𝜖 arbitrarily close to 1 (see Figure 6.2).

Definition 10. Let 𝐷 ≡ (−1, 1], choose any 𝜖 ∈ 𝐷, and define ¯arccos : I𝐷 → IR by

¯arccos(𝑋) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[︁
− arccos(𝑥𝐿), arccos(𝑥𝐿)

]︁
if 𝑥𝐿 ≤ 𝜖,[︂

1√
1−𝜖2 (𝑥𝐿 − 𝜖)− arccos(𝜖),

− 1√
1−𝜖2 (𝑥𝐿 − 𝜖) + arccos(𝜖)

]︂
if 𝑥𝐿 > 𝜖.

(6.17)
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Figure 6.2: The arcsin function (top), the multi-valued arccos function on [−1, 1]
(middle), and the multi-valued arccos function near 𝑥 = 1 with lower and upper
linearizations at 𝜖 = 0.9999, 𝑦 = ±

(︁
1√

1−𝜖2 (𝑦𝐿 − 𝜖)− arccos(𝜖)
)︁
(red).

Theorem 13. For any 𝑋 ∈ I𝐷 and 𝑥 ∈ 𝑋, ± arccos(𝑥) ∈ ¯arccos(𝑋).

Proof. Choose any ∈ I𝐷 and any 𝑥 ∈ 𝑋. Since arccos is monotonically decreas-

ing on (−1, 1], we have arccos(𝑥𝑈) ≤ arccos(𝑥) ≤ arccos(𝑥𝐿) and − arccos(𝑥𝐿) ≤

− arccos(𝑥) ≤ − arccos(𝑥𝑈). Combining these inequalities with − arccos(𝑥𝐿) ≤ 0 ≤

arccos(𝑥𝑈), we conclude that

± arccos(𝑥) ⊂
[︁
− arccos(𝑥𝐿), arccos(𝑥𝐿)

]︁
. (6.18)

This proves that ± arccos(𝑥) ∈ ¯arccos(𝑋) provided that 𝑥𝐿 ≤ 𝜖.

Assume instead that 𝜖 < 𝑥𝐿 ≤ 1. To show that ± arccos(𝑥) ∈ ¯arccos(𝑋) in this
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case, it suffices to prove that

arccos(𝑥𝐿) ≤ − 1√
1− 𝜖2

(𝑥𝐿 − 𝜖) + arccos(𝜖). (6.19)

It is equivalent to prove that − 1√
1−𝜖2 𝑥𝐿 + 𝜖√

1−𝜖2 + arccos(𝜖) − arccos(𝑥𝐿) ≥ 0. We

construct a function 𝑓(𝑥) = 𝑥√
1−𝜖2 + arccos(𝑥), which is monotonically decreasing for

𝑥 ∈ [𝜖, 1]. Thus, we have 𝑓(𝜖) ≥ 𝑓(𝑥𝐿) since 𝜖 < 𝑥𝐿 ≤ 1. Therefore, Therefore, we

have arccos(𝑥𝐿) ≤ − 1√
1−𝜖2 𝑥𝐿 + 𝜖√

1−𝜖2 + arccos(𝜖).

Theorem 14. The function ¯arccos is locally Lipschitz continuous on I𝐷.

Proof. Let 𝑢𝑏 : 𝐷 ×𝐷 → R be the real-valued function corresponding to the upper

bound in (6.17); i.e.,

𝑢𝑏(𝑥𝐿, 𝑥𝑈) =

⎧⎪⎪⎨⎪⎪⎩
arccos(𝑥𝐿) if 𝑥𝐿 ≤ 𝜖,

−1√
1−𝜖2 (𝑥𝐿 − 𝜖) + arccos(𝜖) if 𝑥𝐿 > 𝜖.

(6.20)

Let 𝑙𝑏 denote the lower bounding function defined analogously. According to Theorem

2.5.30 in [104], ¯arccos is locally Lipschitz continuous on I𝐷 if both 𝑙𝑏 and 𝑢𝑏 are

locally Lipschitz continuous on 𝐷 ×𝐷. We prove this below for 𝑢𝑏. The proof for 𝑙𝑏

is analogous.

Since 𝑢𝑏 is independent of 𝑥𝑈 for this inclusion function, we may view it as a

univariate function and show that it is locally Lipschitz on 𝐷. Choose any �̂� ∈ 𝐷. We

must show that there exists 𝜂, 𝐿 > 0 such that

|𝑢𝑏(𝑥1)− 𝑢𝑏(𝑥2)| ≤ 𝐿|𝑥1 − 𝑥2|, ∀𝑥1, 𝑥2 ∈ 𝐵𝜂(�̂�) ∩𝐷. (6.21)

Choose any 𝜂 > 0 small enough that the closure of 𝐵𝜂(�̂�) does not contain −1 and
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define

𝐿1 = sup
{︃⃒⃒⃒⃒
⃒ 𝑑

𝑑𝑥
arccos(𝑥)

⃒⃒⃒⃒
⃒ : 𝑥 ∈ 𝐵𝜂(�̂�) ∩ (−1, 𝜖]

}︃
, (6.22)

= sup
{︃

1√
1− 𝑥2

: 𝑥 ∈ 𝐵𝜂(�̂�) ∩ (−1, 𝜖]
}︃

. (6.23)

This constant is finite because neither 1 nor −1 is a limit point of 𝐵𝜂(�̂�) ∩ (−1, 𝜖].

Next, define 𝐿2 = 1√
1−𝜖2 and let 𝐿 = max(𝐿1, 𝐿2). We will show that (6.21) holds

with this 𝐿.

Choose any 𝑥1, 𝑥2 ∈ 𝐵𝜂(�̂�) ∩𝐷. If 𝑥1, 𝑥2 ≤ 𝜖, then by the Mean Value Theorem,

|𝑢𝑏(𝑥1)− 𝑢𝑏(𝑥2)| = | arccos(𝑥1)− arccos(𝑥2)|, (6.24)

≤ 𝐿1|𝑥1 − 𝑥2|. (6.25)

Similarly, if 𝑥1, 𝑥2 > 𝜖, then

|𝑢𝑏(𝑥1)− 𝑢𝑏(𝑥2)| =
⃒⃒⃒⃒
⃒ −1√

1− 𝜖2
(𝑥1 − 𝜖)− −1√

1− 𝜖2
(𝑥2 − 𝜖)

⃒⃒⃒⃒
⃒ ,

≤ 𝐿2|𝑥1 − 𝑥2|. (6.26)

Finally, assume w.l.o.g. that 𝑥1 ≤ 𝜖 and 𝑥2 > 𝜖. Then,

|𝑢𝑏(𝑥1)− 𝑢𝑏(𝑥2)| (6.27)

=
⃒⃒⃒⃒
⃒arccos(𝑥1)−

(︃
−1√
1− 𝜖2

(𝑥2 − 𝜖) + arccos 𝜖

)︃⃒⃒⃒⃒
⃒ ,

≤ |arccos(𝑥1)− arccos(𝜖)|+
⃒⃒⃒⃒
⃒ 1√

1− 𝜖2
(𝑥2 − 𝜖)

⃒⃒⃒⃒
⃒ ,

≤ 𝐿1 |𝑥1 − 𝜖|+ 𝐿2 |𝑥2 − 𝜖| ,

≤ 𝐿 |𝑥1 − 𝑥2| .
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Thus, (6.21) holds.

Finally, we define locally Lipschitz inclusion functions for the following four trigono-

metric functions, which commonly appear in vehicle models.

Definition 11. Let 𝐷 = {𝑥 ∈ R : −𝜋/2 < 𝑥 < 𝜋/2} and define ℎ1, ℎ2, ℎ3, ℎ4 : 𝐷 → R

by

ℎ1(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos 𝑥−1

𝑥
𝑥 ̸= 0,

0 𝑥 = 0.

(6.28)

ℎ2(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin 𝑥

𝑥
𝑥 ̸= 0,

1 𝑥 = 0.

(6.29)

ℎ3(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos 𝑥−1

𝑥2 𝑥 ̸= 0,

−0.5 𝑥 = 0.

(6.30)

ℎ4(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 cos(𝑥)−sin(𝑥)

𝑥2 𝑥 ̸= 0,

0 𝑥 = 0.

(6.31)

The functions ℎ1–ℎ4 are shown in Figure 6.3. In the following definitions, mid

denotes the function that returns the middle value of its three arguments; i.e.,

mid(−10, 5, 4) = 4.
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Figure 6.3: The functions ℎ1–ℎ4 defined in Definition 11

Definition 12. Let 𝐷 = {𝑥 ∈ R : −𝜋/2 < 𝑥 < 𝜋/2} and define 𝐻1, 𝐻2, 𝐻3, 𝐻4 :

I𝐷 → IR by

𝐻1(𝑋) = [ℎ1(𝑥𝑈), ℎ1(𝑥𝐿)], (6.32)

𝐻2(𝑋) = [min(ℎ2(𝑥𝐿), ℎ2(𝑥𝑈)), ℎ2(mid(𝑥𝐿, 0, 𝑥𝑈))], (6.33)

𝐻3(𝑋) = [ℎ3(mid(𝑥𝐿, 0, 𝑥𝑈)), max(ℎ3(𝑥𝐿), ℎ3(𝑥𝑈))], (6.34)

𝐻4(𝑋) = [ℎ4(𝑥𝑈), ℎ4(𝑥𝐿)]. (6.35)

Theorem 15. For any 𝑋 ∈ I𝐷 and 𝑥 ∈ 𝑋, we have ℎ1(𝑥) ∈ 𝐻1(𝑋), ℎ2(𝑥) ∈ 𝐻2(𝑋),

ℎ3(𝑥) ∈ 𝐻3(𝑋), ℎ4(𝑥) ∈ 𝐻4(𝑋).

Proof. Choose any 𝑋 ∈ I𝐷 and 𝑥 ∈ 𝑋. The inclusions ℎ1(𝑥) ∈ 𝐻1(𝑋) and ℎ4(𝑥) ∈

𝐻4(𝑋) follow from the fact that ℎ1 and ℎ4 are monotonically decreasing functions.

The inclusion function for ℎ2 is based on the fact that ℎ2 has maximum at 𝑥 = 0, is

monotonically increasing on (−𝜋/2, 0), and is monotonically decreasing on (0, 𝜋/2).

Therefore, the lower bound is the smaller value among ℎ2(𝑥𝐿) and ℎ2(𝑥𝑈). The

maximum value will be ℎ2(𝑥𝑈) if 𝑥𝑈 < 0, ℎ2(𝑥𝐿) if 𝑥𝐿 > 0, and ℎ2(0) if 𝑥𝐿 < 0 < 𝑥𝑈 .

Therefore, the upper bound is always attained at mid(𝑥𝐿, 0, 𝑥𝑈). The proof for 𝐻3 is
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analogous.

Theorem 16. The functions 𝐻1, 𝐻2, 𝐻3, and 𝐻4 are locally Lipschitz continuous on

I𝐷.

Proof. It is straightforward to show that ℎ1–ℎ4 are continuously differentiable func-

tions (in fact, ℎ3 and ℎ4 are the derivatives of ℎ1 and ℎ2). Therefore, ℎ1–ℎ4 are

locally Lipschitz continuous on (−𝜋/2, 𝜋/2). Consider the real-valued functions

𝑙𝑏1(𝑥𝐿, 𝑥𝑈)–𝑙𝑏4(𝑥𝐿, 𝑥𝑈) and 𝑢𝑏1(𝑥𝐿, 𝑥𝑈)–𝑢𝑏4(𝑥𝐿, 𝑥𝑈) defined as the lower and upper

bound functions of 𝐻1–𝐻4. According to Theorem 2.5.30 in [104], 𝐻1–𝐻4 are locally

Lipschitz continuous on I𝐷 if and only if 𝑙𝑏1(𝑥𝐿, 𝑥𝑈)–𝑙𝑏4(𝑥𝐿, 𝑥𝑈) and 𝑢𝑏1(𝑥𝐿, 𝑥𝑈)–

𝑢𝑏4(𝑥𝐿, 𝑥𝑈) are locally Lipschitz continuous on {(𝑥𝐿, 𝑥𝑈) ∈ 𝐷 ×𝐷 : 𝑥𝐿 ≤ 𝑥𝑈}. But

this follows immediately from local Lipschitz continuity of ℎ1–ℎ4, min, max, and mid

(Lemma 2.5.25 in [104]).

We close this section by recalling the extended intersection defined in [104], which

will be needed in the refinement algorithms developed in the next section.

Definition 13. Define the extended intersection ∩̄ : IR𝑛× IR𝑛 → IR𝑛 componentwise

by

(𝑋∩̄𝑍)𝑖 =
[︁
mid

(︁
𝑥𝐿

𝑖 , 𝑥𝑈
𝑖 , 𝑧𝐿

𝑖

)︁
, mid

(︁
𝑥𝐿

𝑖 , 𝑥𝑈
𝑖 , 𝑧𝑈

𝑖

)︁]︁
, (6.36)

for all 𝑖 ∈ {1, . . . , 𝑛}.

Note that (𝑋∩̄𝑍) = (𝑋 ∩ 𝑍) whenever (𝑋 ∩ 𝑍) is nonempty. The following

regularity result is from Lemma 2.8 in [46].

Theorem 17. The extended intersection ∩̄ is Lipschitz continuous on IR𝑛 with

Lipschitz constant 1.
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6.4 Case Studies

In this section, we apply the advanced redundancy-based DI method formalized in

Corollary 5 to obtain accurate reachability bounds for two trajectory tracking problems

and one path tracking problem. The first and third examples consider a simple Dubins

car model using two different control strategies. This is the simplest model used in

the motion planning literature that is not fully actuated (due to its limited turning

rate), and is therefore interesting from the perspective of reachability and rigorous

safety verification [67]. The second example considers trajectory tracking for a more

complex full size vehicle model, where both turning rate and acceleration are limited.

All case studies were implemented in C++ on a laptop with a 2.9 GHz Intel Core i7,

and ODEs were solved using CVODE with default settings [119].

Example 1. Consider the following vehicle dynamics, where (𝑥, 𝑦) is the vehicle position,

𝑣 is the velocity, 𝜃 is the heading angle, and 𝜔 is the heading rate:

�̇� = 𝑣 cos(𝜃), (6.37)

�̇� = 𝑣sin(𝜃),

𝜃 = 𝜔.

Define the reference trajectory 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 : 𝐼 → R with 𝐼 = [0, 8] s as the

solution of (6.37) with the piecewise constant control inputs 𝑣𝑟𝑒𝑓 and 𝜔𝑟𝑒𝑓 given in

Table 6.1. The control objective is to manipulate 𝑣 and 𝜔 to bring the vehicle’s real

trajectory close to this reference. To do this, we use the control law from [120], which
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Table 6.1: Reference control inputs for Example 1

Time interval (s) [0,1] [1,2] [2,3] [3,4] [4,5]
𝜔 (rad/s) 0.094 -0.680 -1 0.46 1
𝑣 (cm/s) 34.6 28.3 22.85 36.17 10.1

Time interval (s) [5,6] [6,7] [7,8] [8,9] [9,10]
𝜔 (rad/s) -0.915 -0.2955 1.0 0.478 0
𝑣 (cm/s) 19.34 31.405 13.131 23.09 8.3

is defined in terms of the following error coordinates:

𝑥𝑒 = cos(𝜃)(𝑥𝑟𝑒𝑓 − 𝑥) + sin(𝜃)(𝑦𝑟𝑒𝑓 − 𝑦),

𝑦𝑒 = − sin(𝜃)(𝑥𝑟𝑒𝑓 − 𝑥) + cos(𝜃)(𝑦𝑟𝑒𝑓 − 𝑦),

𝜃𝑒 = 𝜃𝑟𝑒𝑓 − 𝜃. (6.38)

The control law is given by

𝜔 = 𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑦𝑒 + 𝑘3 sin(𝜃𝑒)) + 𝑑1, (6.39)

𝑣 = 𝑣𝑟𝑒𝑓 cos(𝜃𝑒) + 𝑘1𝑥𝑒 + 𝑑2,

with gains 𝑘1 = 10 s−1, 𝑘2 = 6.4 × 10−3 rad/cm2, and 𝑘3 = 0.16 rad/cm. The

disturbances 𝑑1 and 𝑑2 are not included in [120] but are assumed to corrupt the desired

control inputs here. We assume that these disturbances are time-invariant and satisfy

𝑑1 ∈ [−0.1, 0.1] rad/s and 𝑑2 ∈ [−1, 1] cm/s. Moreover, we assume that the initial

condition is uncertain and satisfies x0 ∈ 𝑋0 = [−5, 5]× [−5, 5]× [−𝜋/6, 𝜋/6]. In [120],

it is shown that the vehicle trajectory under this control law converges to the reference

trajectory when 𝑑1 = 𝑑2 = 0. However, with nonzero disturbances 𝑑1 and 𝑑2, the

vehicle may not converge to the reference trajectory exactly. Therefore, we aim to

compute a rigorous enclosure of the real state trajectories.

The most straightforward approach to compute interval bounds on the states 𝑥,
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𝑦, and 𝜃 is to apply the standard DI method directly to (6.37) with the control law

(6.39). As discussed in §6.2, this requires an inclusion function for the closed-loop

right-hand side functions, which can be computed as follows. Given intervals 𝑋, 𝑌 ,

and Θ, intervals 𝑋𝑒, 𝑌𝑒, and Θ𝑒 are first computed by evaluating (6.38) in interval

arithmetic. Then, bounds on the control inputs 𝑉 and Ω are computed using (6.39).

Finally, the right-hand sides of (6.37) are evaluated in interval arithmetic. The result

of applying standard DI with this inclusion function are shown in Figure 6.4 (green)

along with 500 sampled trajectories generated by solving the closed-loop system with

x0, 𝑑1, and 𝑑2 drawn from uniform distributions over their interval bounds (gray).

Clearly, the bounds are very conservative. This is largely due to a significant

dependency problem in the inclusion function described above, as discussed in Section

6.2. Specifically, 𝜃 affects the right-hand sides of 𝑥 and 𝑦 in two ways - directly

through (6.37) and again through the control input 𝑣 using (6.39) and (6.38). In real

arithmetic, this allows the controller to cancel out the systems natural dynamics and

impose the desired behavior. However, when we apply interval arithmetic to bound

the closed-loop right-hand side function, the instance of 𝜃 in the original dynamics

is treated as independent from that in the control law. Hence, the state bounds on

(6.37) explode quickly.

To mitigate this dependency problem, a better approach is to apply the standard

DI method to the dynamics of the error coordinates (6.38) rather than to the original

coordinates in (6.37):

�̇�𝑒 = 𝜔𝑦𝑒 − 𝑣 + 𝑣𝑟𝑒𝑓 cos 𝜃𝑒, (6.40)

�̇�𝑒 = −𝜔𝑥𝑒 + 𝑣𝑟𝑒𝑓sin(𝜃𝑒),

𝜃𝑒 = 𝜔𝑟𝑒𝑓 − 𝜔.
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Plugging in the control law (6.39) and simplifying gives the closed-loop error dynamics

�̇�𝑒 = (𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑦𝑒 + 𝑘3sin (𝜃𝑒)) + 𝑑1) 𝑦𝑒 − 𝑘1𝑥𝑒 − 𝑑2,

�̇�𝑒 = − (𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑦𝑒 + 𝑘3sin(𝜃𝑒)) + 𝑑1) 𝑥𝑒 + 𝑣𝑟𝑒𝑓sin(𝜃𝑒),

𝜃𝑒 = −𝑣𝑟𝑒𝑓 (𝑘2𝑦𝑒 + 𝑘3sin(𝜃𝑒))− 𝑑1. (6.41)

Applying DI to this system is expected to be more effective because the action of

the control law is represented more explicitly in these coordinates and can be better

captured by simple interval computations. As a specific example, note that the

nonlinear term 𝑣𝑟𝑒𝑓 cos 𝜃𝑒 is completely cancelled from the right-hand side function

for 𝑥𝑒 when the control law is substituted in. Since this simplification can be done

analytically, before the use of interval arithmetic, the dependency problem discussed

above is reduced. Once bounds on the error coordinates are computed, they can be

mapped back to the original coordinates by evaluating the following inverse coordinate

transformation in interval arithmetic:

𝑥 = 𝑥𝑟𝑒𝑓 − cos(𝜃𝑟𝑒𝑓 − 𝜃𝑒)𝑥𝑒 + sin(𝜃𝑟𝑒𝑓 − 𝜃𝑒)𝑦𝑒, (6.42)

𝑦 = 𝑦𝑟𝑒𝑓 − sin(𝜃𝑟𝑒𝑓 − 𝜃𝑒)𝑥𝑒 − cos(𝜃𝑟𝑒𝑓 − 𝜃𝑒)𝑦𝑒,

𝜃 = 𝜃𝑟𝑒𝑓 − 𝜃𝑒.

Figure 6.4 shows the results of this approach (blue). As expected, the results are

significantly tighter those obtained by applying DI directly to (6.37). However, the

bounds are still very conservative and diverge quickly.
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Figure 6.4: Example 1: Bounds on the vehicle position produced by applying standard
DI to (6.37) (green) and (6.41) (blue) with 500 sampled trajectories (gray).

To achieve further improvements, we now manufacture invariants for (6.41) fol-

lowing the method in [26]. As described in §6.2, the aim is to find a 𝐶1 function 𝜑

of the system states such that 𝜕𝜑
𝜕xf simplifies to a form that is likely to be bounded

accurately using DI. Inspection of (6.41) shows that this cannot be done using any

affine 𝜑, as is the case for most models considered in [26]. Specifically, although there

are common nonlinear terms among the ODEs in (6.41) that would be advantageous

to eliminate in 𝜕𝜑
𝜕xf (e.g. (𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑦𝑒 + 𝑘3sin (𝜃𝑒)))), they cannot be cancelled

out by any linear combination of these ODEs. Therefore, we need to manufacture

invariants using nonlinear combinations of the states. For reasons discussed below, an

excellent candidate is the following Lyapunov function for (6.41), which was used to

prove stability in [120]:

𝒱 = 1
2(𝑥2

𝑒 + 𝑦2
𝑒) + (1− cos(𝜃𝑒))

𝑘2
. (6.43)

To use this function as a manufactured invariant, we define 𝒱 as a new state variable

and augment (6.41) with the ODE derived by differentiating 𝒱 with respect to time.

The ODE obtained in this way benefits from several term cancellations and algebraic
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simplifications, ultimately leading to the form

�̇� = −𝑘1𝑥
2
𝑒 −

𝑣𝑟𝑒𝑓𝑘3sin2(𝜃𝑒)
𝑘2

− 𝑥𝑒𝑑2 + sin(𝜃𝑒)𝑑1

𝑘2
. (6.44)

Let z ≡ (𝑥𝑒, 𝑦𝑒, 𝜃𝑒,𝒱) and p = (𝑑1, 𝑑2) be shorthand for generic augmented state and

uncertain parameter vectors. Then, by definition, the augmented system consisting of

(6.41) and (6.44) satisfies Assumption 5 with the a priori enclosure

𝐺 =
{︃

(𝑡, z, p) ∈ R7 : 𝒱 = 1
2(𝑥2

𝑒 + 𝑦2
𝑒) + (1− cos(𝜃𝑒))

𝑘2

}︃
. (6.45)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, it remains

to define an inclusion function ℛ satisfying Assumption 6. Recall from §6.2 that the

general approach in [117] defines ℛ in two steps. Given generic inputs (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ,

the method first computes a refined interval 𝑍†×𝑃 † such that {𝑡}×𝑍†×𝑃 † contains

({𝑡}×𝑍×𝑃 )∩𝐺, and then bounds f over {𝑡}×𝑍†×𝑃 †. In [117], 𝑍†×𝑃 † is computed

using a variant of the interval Krawczyk method [101].

Although this general approach can be used here, we instead define a more

effective custom refinement algorithm based on direct algebraic rearrangements of

the manufactured invariant (6.43). Given any (𝑡, 𝑍, 𝑃 ) ∈ R × IR4 × IR2 and any

z = (𝑥𝑒, 𝑦𝑒, 𝜃𝑒,𝒱) ∈ 𝑍 and p = (𝑑1, 𝑑2) ∈ 𝑃 such that (𝑡, z, p) ∈ 𝐺, the following

rearrangements of (6.43) must hold:

𝑥2
𝑒 = 2

(︃
𝒱 − (1− cos(𝜃𝑒))

𝑘2
− 1

2𝑦2
𝑒

)︃
,

𝑦2
𝑒 = 2

(︃
𝒱 − (1− cos(𝜃𝑒))

𝑘2
− 1

2𝑥2
𝑒

)︃
,

cos 𝜃𝑒 = 1− 𝑘2

(︂
𝒱 − 1

2(𝑥2
𝑒 + 𝑦2

𝑒)
)︂

.

Therefore, denoting 𝑍 component-wise by 𝑍 = 𝑋𝑒 × 𝑌𝑒 ×Θ𝑒 × 𝑉 , z must satisfy the
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following inclusions, where the right-hand-side are evaluated in interval arithmetic

using the inclusion functions −
√ and ¯arccos defined in §6.3:

𝒱 ∈ 1
2
(︁
𝑋2

𝑒 + 𝑌 2
𝑒

)︁
+ (1− cos(Θ𝑒))

𝑘2
, (6.46)

𝑥𝑒 ∈ −

⎯⎸⎸⎷2
(︃

𝑉 − (1− cos(Θ𝑒))
𝑘2

− 1
2𝑌 2

𝑒

)︃
,

𝑦𝑒 ∈ −

⎯⎸⎸⎷2
(︃

𝑉 − (1− cos(Θ𝑒))
𝑘2

− 1
2𝑋2

𝑒

)︃
,

𝜃𝑒 ∈ ¯arccos
(︂

1− 𝑘2

(︂
𝑉 − 1

2(𝑋2
𝑒 + 𝑌 2

𝑒 )
)︂)︂

.

The right-hand sides of these inclusions can be used to refine the intervals 𝑉 , 𝑋𝑒,

𝑌𝑒, and Θ𝑒, respectively, and this refinement can be done iteratively. Our proposed

definition of ℛ based on these refinements is given in Algorithm 8. The refinements are

done in the loop beginning on line 3, while the final enclosure of f (i.e., the right-hand

sides of (6.41) and (6.44)) is computed in lines 12–15. All set operations in Algorithm

8 are done using standard interval arithmetic or the operations defined in §6.3, and we

choose the number of iterations as 𝑙 = 2. A formal proof that this algorithm satisfies

Assumption 6 is given at the end of this subsection.
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Algorithm 8 An implementation of ℛ for Example 1
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝑋𝑒, 𝑌𝑒, Θ𝑒, 𝑉 )← 𝑍, (𝐷1, 𝐷2)← 𝑃

3: for 𝑖 = 1 to 𝑙 do

4: 𝑉 ← 𝑉 ∩̄1
2(𝑋2

𝑒 + 𝑌 2
𝑒 ) + (1−cos(Θ𝑒))

𝑘2

5: 𝑆𝑄𝑋𝑒 ← 𝑋2
𝑒 ∩̄
(︁
2(𝑉 − (1−cos(Θ𝑒))

𝑘2
− 1

2𝑌 2
𝑒 )
)︁

6: 𝑋𝑒 ← 𝑋𝑒∩̄ −
√︀

𝑆𝑄𝑋𝑒

7: 𝑆𝑄𝑌𝑒 ← 𝑌 2
𝑒 ∩̄2(𝑉 − (1−cos(Θ𝑒))

𝑘2
− 1

2𝑋2
𝑒 )

8: 𝑌𝑒 ← 𝑌𝑒∩̄ −
√︀

𝑆𝑄𝑌𝑒

9: 𝐶𝑂𝑆Θ𝑒 ← cos(Θ𝑒)∩̄
(︁
1− 𝑘2(𝑉 − 1

2𝑌 2
𝑒 − 1

2𝑋2
𝑒 )
)︁

10: Θ𝑒 ← Θ𝑒∩̄ ¯arccos(𝐶𝑂𝑆Θ𝑒)

11: end for

12: Σ1 ← (𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑌𝑒 + 𝑘3sinΘ𝑒) + 𝐷1)𝑌𝑒 − 𝑘1𝑋𝑒 −𝐷2

13: Σ2 ← −(𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑌𝑒 + 𝑘3sinΘ𝑒) + 𝐷1)𝑋𝑒 + 𝑣𝑟𝑒𝑓 sinΘ𝑒

14: Σ3 ← −𝑣𝑟𝑒𝑓 (𝑘2𝑌𝑒 + 𝑘3sin(Θ𝑒))−𝐷1

15: Σ4 ← −𝑘1𝑋2
𝑒 −

𝑣𝑟𝑒𝑓 𝑘3sin2(Θ𝑒)
𝑘2

−𝑋𝑒𝐷2 + sin(Θ𝑒)𝐷1/𝑘2

16: return Σ← (Σ1, Σ2, Σ3, Σ4)

17: end function

Figure 6.5 shows the bounds on the error states (𝑥𝑒, 𝑦𝑒, 𝜃𝑒) computed by applying

standard DI to (6.41) (Method (i), blue) and by applying redundancy-based DI

(Corollary 5) to the augmented system (6.41) and (6.44) with ℛ defined by Algorithm

8 (Method (ii), green). Note that the non-smoothness of the bounding trajectories in

some figures is caused by the piecewise constant inputs used to generate the reference

trajectory. While the bounds computed by standard DI rapidly diverge to ±∞, the

bounds computed using redundancy-based DI are much more accurate and diverge

slowly if at all. This indicates that using the Lyapunov function as a manufactured

invariant is very effective at mitigating the dependency problems discussed in §6.2.

Figures 6.6–6.7 show the corresponding bounds on the original states (𝑥, 𝑦, 𝜃) obtained
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by evaluating the inverse coordinate transformation (6.42) in interval arithmetic. It

can be seen that the accuracy of the redundancy-based DI method is retained in

the original coordinates. Moreover, although these bounds certainly leave room for

improvement, they do appear to be accurate enough to support some motion planning

or collision avoidance tasks.

Figure 6.5: Example 1: Bounds on the error coordinates (𝑥𝑒, 𝑦𝑒, 𝜃𝑒) produced by (i)
applying standard DI to (6.41) (blue), (ii) applying redundancy-based DI to (6.41)
and (6.44) with manufactured invariant (6.43) (green), (iii) applying redundancy-
based DI to (6.41), (6.44), and (6.37) with manufactured invariants (6.38), (6.42),
and (6.43) (purple), and (iv) applying redundancy-based DI to (6.41) and (6.37) with
manufactured invariants (6.38) and (6.42) (red) with 500 sampled trajectories (gray).
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Figure 6.6: Example 1: Bounds on the original coordinates (𝑥, 𝑦, 𝜃) produced by (i)
applying standard DI to (6.41) (blue), (ii) applying redundancy-based DI to (6.41)
and (6.44) with manufactured invariant (6.43) (green), (iii) applying redundancy-
based DI to (6.41), (6.44), and (6.37) with manufactured invariants (6.38), (6.42),
and (6.43) (purple), and (iv) applying redundancy-based DI to (6.41) and (6.37) with
manufactured invariants (6.38) and (6.42) (red) with 500 sampled trajectories (gray).
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Figure 6.7: Example 1: Bounds on the vehicle positions produced by (i) applying
standard DI to (6.41) (blue), (ii) applying redundancy-based DI to (6.41) and (6.44)
with manufactured invariant (6.43) (green), (iii) applying redundancy-based DI to
(6.41), (6.44), and (6.37) with manufactured invariants (6.38), (6.42), and (6.43) (pur-
ple), and (iv) applying redundancy-based DI to (6.41) and (6.37) with manufactured
invariants (6.38) and (6.42) (red) with 500 sampled trajectories (gray).

In addition to using a Lyapunov function as a manufactured invariant, another

potentially useful approach for introducing model redundancy into vehicle models is

to write the model in multiple coordinate systems simultaneously. This could have

advantages over using a single coordinate system if there are some aspects of the

model are more simply represented in the first coordinate system and others that

are more simply represented in the second. To try this approach for the present

example, we now augment (6.41) and (6.44) with the closed-loop dynamics in the

original coordinates described by (6.37) with (6.39). In addition to (6.43), the states of

this augmented system also satisfy the invariants (6.38) and (6.42). Therefore, we can

define the following a priori enclosure with z = (𝑥𝑒, 𝑦𝑒, 𝜃𝑒,𝒱 , 𝑥, 𝑦, 𝜃) and p = (𝑑1, 𝑑2):

𝐺 =
{︁
(𝑡, z, p) ∈ R10 : (6.38), (6.42), and (6.43) hold

}︁
. (6.47)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, we must

again define an inclusion function ℛ satisfying Assumption 6. We follow the same
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procedure as in Algorithm 8, but now include additional refinements based on (6.38)

and (6.42). Given any (𝑡, 𝑍, 𝑃 ) ∈ R× IR7 × IR2 and denoting 𝑍 component-wise by

𝑍 = 𝑋𝑒 × 𝑌𝑒 × Θ𝑒 × 𝑉 × 𝑋 × 𝑌 × Θ, (6.38) and (6.42) imply that any z ∈ 𝑍 and

p ∈ 𝑃 satisfying (𝑡, z, p) ∈ 𝐺 must also satisfy the following inclusions:

𝑥𝑒 ∈ cos(Θ)(𝑋𝑟𝑒𝑓 −𝑋) + sin(Θ)(𝑌𝑟𝑒𝑓 − 𝑌 ), (6.48)

𝑦𝑒 ∈ − sin(Θ)(𝑋𝑟𝑒𝑓 −𝑋) + cos(Θ)(𝑌𝑟𝑒𝑓 − 𝑌 ),

𝜃𝑒 ∈ 𝜃𝑟𝑒𝑓 −Θ,

𝑥 ∈ 𝑋𝑟𝑒𝑓 − cos(𝜃𝑟𝑒𝑓 −Θ𝑒)𝑥𝑒 + sin(𝜃𝑟𝑒𝑓 −Θ𝑒)𝑌𝑒,

𝑦 ∈ 𝑌𝑟𝑒𝑓 − sin(𝜃𝑟𝑒𝑓 −Θ𝑒)𝑥𝑒 − cos(𝜃𝑟𝑒𝑓 −Θ𝑒)𝑌𝑒,

𝜃 ∈ 𝜃𝑟𝑒𝑓 −Θ𝑒.

Our proposed definition of ℛ based on these refinements is given in Algorithm 9.

Compared to Algorithm 8, Algorithm 9 adds the refinements (6.48) in lines 5–10 and

computes bounds on the right-hand sides of the ODEs (6.37) (which are now included

in the augmented system) in lines 13–15. A formal proof that this algorithm satisfies

Assumption 6 is given at the end of this subsection.
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Algorithm 9 An implementation of ℛ for Example 1 with additional invariants
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝑋𝑒, 𝑌𝑒, Θ𝑒, 𝑉, 𝑋, 𝑌, Θ)← 𝑍 , (𝐷1, 𝐷2)← 𝑃

3: for 𝑖 = 1 to 𝑙 do

4: Apply lines 4–10 in Algorithm 8

5: 𝑋 ← 𝑋∩̄ (𝑥𝑟𝑒𝑓 − cos(Θ)𝑋𝑒 + sin(Θ)𝑌𝑒)

6: 𝑌 ← 𝑌 ∩̄ (𝑦𝑟𝑒𝑓 − sin(Θ)𝑋𝑒 − cos(Θ)𝑌𝑒)

7: Θ← Θ∩̄ (𝜃𝑟𝑒𝑓 −Θ𝑒)

8: 𝑋𝑒 ← 𝑋𝑒∩̄ (cos(Θ)(𝑥𝑟𝑒𝑓 −𝑋) + sin(Θ)(𝑦𝑟𝑒𝑓 − 𝑌 ))

9: 𝑌𝑒 ← 𝑌𝑒∩̄ (−sin(Θ)(𝑥𝑟𝑒𝑓 −𝑋) + cos(Θ)(𝑦𝑟𝑒𝑓 − 𝑌 ))

10: Θ𝑒 ← Θ𝑒∩̄ (𝜃𝑟𝑒𝑓 −Θ)

11: end for

12: Apply lines 12–15 in Algorithm 8 to compute Σ1–Σ4

13: Σ5 ← cos(Θ)(𝑣𝑟𝑒𝑓 cos(Θ𝑒) + 𝑘1𝑋𝑒 + 𝐷2)

14: Σ6 ← sin(Θ)(𝑣𝑟𝑒𝑓 cos(Θ𝑒) + 𝑘1𝑋𝑒 + 𝐷2)

15: Σ7 ← 𝜔𝑟𝑒𝑓 + 𝑣𝑟𝑒𝑓 (𝑘2𝑌𝑒 + 𝑘3 sin(Θ𝑒)) + 𝐷1

16: return Σ← (Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7)

17: end function

The results applying redundancy-based DI (Corollary 5) with ℛ defined by Algo-

rithm 9 (Method (iii), purple) are shown in Figures 6.5–6.7. In the error coordinates,

the bounds from this method lie entirely behind the plotted bounds for Method (ii),

indicating that use of multiple coordinate systems to generate additional manufac-

tured invariants offers no improvement over using just the Lyapunov function. In

the original coordinates, Method (iii) offers a very slight improvement that can be

seen, e.g., for 𝑦 just before 4 s. We also compared the bounds obtained by using

the manufactured invariants (6.38) and (6.42) (i.e., the coordinate transformations)

without using the Lyapunov function (Method (iv), red). This resulted in diverging

bounds that are only only slightly tighter than those of Method (i) (standard DI).
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We conclude that the model redundancy offered by using both the original and error

coordinates simultaneously is ineffective at mitigating the dependency problem for

this example. We expect that using multiple coordinate systems will be effective in

cases where each coordinate system is able to represent some aspect of the model more

simply than the other. However, for this example, it appears that the error coordinates

are universally better for interval computations, so that refinements based on the

coordinate transformations (6.38) and (6.42) have the effect of using (𝑋𝑒, 𝑌𝑒, Θ𝑒) to

tighten (𝑋, 𝑌, Θ), but rarely the reverse.

In terms of computational cost, standard DI is the most efficient method tested with

a cost of 0.0009 s. However, this time is misleading because integration was stopped

early due to divergence of the bounds. Method (ii) using the Lyapunov function

requires 0.46 s, and Method (iii) using the Lyapunov function and the coordinate

transformations requires 0.773 s. For context, it takes about 3 s to simulate 3125

real trajectories, which corresponds to a grid with only 5 values for each uncertain

variable. Method (ii) clearly offers the best trade-off between accuracy and efficiency,

producing effective bounds with a computational time that is equivalent to sampling

about 480 real trajectories, and that is roughly 20× faster than the real travel time

for this vehicle.

We close this subsection by proving that Algorithm 8 satisfies Assumption 6. The

proof for Algorithm 9 is a straightforward extension of the same arguments and is

omitted for brevity. Consider the augmented system consisting of (6.41) and (6.44)

and let z = (𝑥𝑒, 𝑦𝑒, 𝜃𝑒,𝒱) and p = (𝑑1, 𝑑2) denote generic state and parameter vectors.

Similarly, let 𝑍 = (𝑋𝑒, 𝑌𝑒, Θ𝑒, 𝑉 ) and 𝑃 = (𝐷1, 𝐷2) denote generic state and parameter

interval vectors. Note that in verifying Assumption 6, we are free to choose the domain

𝐷ℛ, provided that Algorithm 9 is well defined for any (𝑡, 𝑃, 𝑍) ∈ 𝐷ℛ. However, it

is desirable to choose 𝒟ℛ as the largest set for which Assumption 6 holds because

this maximizes the applicability of Corollary 5. Specifically, if the solutions of the
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bounding ODEs (6.7) leave 𝐷ℛ, then they cease to exist as solutions of (6.7) and their

validity is no longer ensured by Corollary 5. For this example, the only restriction

we impose in the definition of 𝐷ℛ is that the interval Θ𝑒 must be a subset of (−𝜋, 𝜋),

which will be used to ensure that a domain violation does not occur in the ¯arccos

function in line 10 of Algorithm 8. Since the 𝜃𝑒 bounds for Method (ii) in Figure 6.5

are well within (−𝜋, 𝜋) for all time, this requirement is not restrictive here.

Theorem 18. Define 𝐷ℛ ≡ {(𝑡, 𝑍, 𝑃 ) ∈ R× IR𝑛𝑥 × IR𝑛𝑝 : Θ𝑒 ⊂ (−𝜋, 𝜋)}. Algorithm 8

is well defined for every (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Moreover, Assumption 6 holds with ℛ(𝑡, 𝑍, 𝑃 )

defined by Algorithm 8.

Proof. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Algorithm 8 is well defined for (𝑡, 𝑍, 𝑃 ) if and only

if no domain violations occur when evaluating the inclusion functions in lines 4–10

and lines 12–15. The only interval operations in these lines that could possibly lead

to a domain violation (i.e., are not defined for every possible argument) are the −
√ in

lines 6 and 8 and the ¯arccos in line 10. But by the extended intersections in lines 5

and 7, 𝑆𝑄𝑋𝑒 and 𝑆𝑄𝑌𝑒 are guaranteed to lie in 𝑋2
𝑒 and 𝑌 2

𝑒 , respectively, and hence in

IR+, which is the domain of −
√. Regarding the ¯arccos, first note that (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ

implies that Θ𝑒 ⊂ (−𝜋, 𝜋) when line 9 is reached for the first time. Therefore, the

extended intersection in 9 ensures that 𝐶𝑂𝑆Θ𝑒 ⊂ cos(Θ𝑒) ⊂ (−1, 1]. It follows that

¯arccos(𝐶𝑂𝑆Θ𝑒) is well defined when line 10 is reached for the first time. Furthermore,

the extended intersection in line 10 implies that Θ𝑒 remains a subset of (−𝜋, 𝜋), so

the same arguments apply in subsequent visits to lines 9–10. Therefore, ℛ is well

defined on 𝐷ℛ.

To verify Condition 1 of Assumption 6, choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ and let Σ =

ℛ(𝑡, 𝑃, 𝑍) be the output of Algorithm 8. We must show that

Σ ⊃{f(𝑡, z, p) : (z, p) ∈ 𝑍 × 𝑃, (𝑡, z, p) ∈ 𝐺}, (6.49)
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where f denotes the right-hand sides of (6.41) and (6.44) and

𝐺 =
{︃

(𝑡, z, p) ∈ R7 : 𝒱 = 1
2(𝑥2

𝑒 + 𝑦2
𝑒) + (1− cos(𝜃𝑒))

𝑘2

}︃
. (6.50)

Choose any (z, p) ∈ 𝑍 × 𝑃 satisfying (𝑡, z, p) ∈ 𝐺 and let (𝑥𝑒, 𝑦𝑒, 𝜃𝑒,𝒱) = z. Since

z ∈ 𝑍, the following inclusions all hold immediately after line 2: 𝑥𝑒 ∈ 𝑋𝑒, 𝑦𝑒 ∈ 𝑌𝑒,

𝜃𝑒 ∈ Θ𝑒, and 𝒱 ∈ 𝑉 . If these inclusions remain valid when line 12 is reached, then

(6.49) must hold because lines 12–15 are direct interval evaluations of the right-hand

sides of (6.41) and (6.44) (i.e., f). Thus, it suffices to show that these inclusions

are maintained through lines 4–10. Since (𝑡, z, p) ∈ 𝐺, (6.46) must hold. But (6.46)

implies that 𝒱 ∈ 𝑉 still holds after line 4. Similarly, (6.46) implies that 𝑥2
𝑒 ∈ 𝑆𝑄𝑋𝑒

after line 5. Thus, by Theorem 9, 𝑥𝑒 ∈ 𝑋𝑒 still holds after line 6. An identical argument

shows that 𝑦𝑒 ∈ 𝑌𝑒 still holds after 8. Finally, (6.46) implies that cos(𝜃𝑒) ∈ 𝐶𝑂𝑆Θ𝑒

after line 9. Thus, by Theorem 13, 𝜃𝑒 ∈ Θ𝑒 still holds after line 10. Therefore, (6.49)

holds.

Now, we verify Condition 2 of Assumption 6. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. By

definition, Θ̂𝑒 ⊂ (−𝜋, 𝜋). By openness of (−𝜋, 𝜋) and the definition of the Hausdorff

metric, there must exist 𝜖 > 0 such that Θ𝑒 ⊂ (−𝜋, 𝜋) for all Θ𝑒 ∈ IR satisfying

𝑑𝐻(Θ𝑒, Θ̂𝑒) < 𝜖. By the definition of 𝐷ℛ, this implies that (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ for all

𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍 ∈ 𝐵𝜖(𝑍).

Finally, we verify Condition 3 of Assumption 6 by arguing that every line of the

algorithm defines its output as a locally Lipschitz continuous function of all variables

on which it depends. It follows that ℛ is a finite composition of locally Lipschitz

functions and is therefore locally Lipschitz.

By Theorem 2.1.1 in [101], the interval operations +, −, ×, 𝑥2, cos, sin, and

division by a nonzero constant are all locally Lipschitz continuous on their domains.

Moreover, by Theorems 10 and 14, −
√ and ¯arccos are locally Lipschitz continuous on
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their domains as well. Finally, the extended intersection ∩̄ is Lipschitz continuous

by Theorem 17. Combining these facts, we conclude that each of the lines 4–10

and 12–15 defines its output by a composition of locally Lipschitz functions, and is

therefore locally Lipschitz with respect to all arguments, as desired. Therefore, the

entire algorithm is Lipschitz continuous with respect to (𝑡, 𝑍, 𝑃 ) on all of 𝒟ℛ, which

is a stronger condition than Condition 3 of Assumption 6.

Example 2. Next, we consider trajectory tracking for the following extended model of

a full size autonomous road vehicle of length 𝑙 = 2 m [121]:

�̇� = 𝑣 cos 𝜃,

�̇� = 𝑣 sin 𝜃,

𝜃 = 𝑣
tan 𝛿

𝑙
,

�̇� = 𝑢1,

�̇� = 𝜔2. (6.51)

Above, 𝑥 and 𝑦 are the vehicle positions, 𝜃 is the heading angle, 𝛿 is the steering angle,

and 𝑣 is the vehicle velocity. The control variables are the steering angle rate 𝑢1 and

the acceleration 𝜔2. The reference trajectory is described by 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 , and 𝑣𝑟𝑒𝑓 ,

which are computed by solving the following simplified model using the piecewise

constant control inputs 𝛼𝑟𝑒𝑓 and 𝜔2 described in Table 6.2:

�̇�𝑟𝑒𝑓 = 𝑣𝑟𝑒𝑓 cos 𝜃𝑟𝑒𝑓 ,

�̇�𝑟𝑒𝑓 = 𝑣𝑟𝑒𝑓 sin 𝜃𝑟𝑒𝑓 ,

𝜃𝑟𝑒𝑓 = 𝛼𝑟𝑒𝑓 ,

�̇�𝑟𝑒𝑓 = 𝜔2. (6.52)

We apply the tracking control law from [121], which is based on the following
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Table 6.2: Reference control inputs for Example 2

Time intervals (s) [0,0.7] [0.7,1.4] [1.4,2.1]
𝛼𝑟𝑒𝑓 (rad/s) 10 -4.68 1.59
𝜔2 (m/s2) 0.1 -2.05 1.16

Time intervals (s) [2.1,2.8] [2.8,3.5] [3.5,4.2]
𝛼𝑟𝑒𝑓 (rad/s) -1.67 -2.9 4.15
𝜔2 (m/s2) 2.3 -0.05 -4.88

Time intervals (s) [4.2,4.9] [4.9,5.6] [5.6,6.3]
𝛼𝑟𝑒𝑓 (rad/s) -0.35 -3.63 3.56
𝜔2 (m/s2) 5.47 -0.56 -2.23

global diffeomorphic coordinate transformation:

𝑒𝑡 = cos(𝜃𝑟𝑒𝑓 )(𝑥− 𝑥𝑟𝑒𝑓 ) + sin(𝜃𝑟𝑒𝑓 )(𝑦 − 𝑦𝑟𝑒𝑓 ),

𝑒𝑛 = − sin(𝜃𝑟𝑒𝑓 )(𝑥− 𝑥𝑟𝑒𝑓 ) + cos(𝜃𝑟𝑒𝑓 )(𝑦 − 𝑦𝑟𝑒𝑓 ),

𝑒𝜃 = 𝜃 − 𝜃𝑟𝑒𝑓 ,

𝑣 = 𝑣,

𝜅𝛿 = tan(𝛿)/𝑙. (6.53)

Noting that �̇�𝛿 = [𝑙−1 + 𝑙𝜅2
𝛿 ]𝑢1, consider the virtual control variable 𝜔1 = [𝑙−1 + 𝑙𝜅2

𝛿 ]𝑢1.

The feedback law given in [121] is,

𝜔1 = −𝑒𝜃𝑣 + 𝜉 − 𝑘4(𝜅𝛿 − 𝜉),

𝜔2 = �̇�𝑟𝑒𝑓 − 𝑘1𝑒𝑡 − 𝑘3(𝑣 − 𝑣𝑟𝑒𝑓 ) + 𝑘2𝑒
2
𝜃 − 𝑒𝜃𝜅𝑟𝑒𝑓 , (6.54)

where 𝑘1 = 2, 𝑘2 = 3, 𝑘3 = 1, 𝑘4 = 10, and

𝜉 = 𝜅𝑟𝑒𝑓 − 𝑘1[𝑒𝑡ℎ1(𝑒𝜃) + 𝑒𝑛ℎ2(𝑒𝜃)]− 𝑘2𝑒𝜃, (6.55)

𝜉 = �̇�𝑟𝑒𝑓 − 𝑘1[�̇�𝑡ℎ1(𝑒𝜃)− 𝑒𝑡�̇�𝜃(ℎ2(𝑒𝜃) + ℎ3(𝑒𝜃)) + �̇�𝑛ℎ2(𝑒𝜃)

− 𝑒𝑛�̇�𝜃ℎ4(𝑒𝜃)]− 𝑘2�̇�𝜃.
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Above, ℎ1–ℎ4 are the functions defined in Definition 11 and 𝜅𝑟𝑒𝑓 = 𝜃𝑟𝑒𝑓/𝑣𝑟𝑒𝑓 .

The reachability problem of interest is to compute bounds on the solutions of the

closed-loop system consisting of (6.53)–(6.55) subject to uncertain initial conditions

described by (𝑒𝑡, 𝑒𝑛, 𝑒𝜃) ∈ [0, 1] m × [0, 1] m × [−𝜋/6, 𝜋/6]. We do not consider any

uncertain parameters in this example. As in Example 1, the most straightforward

approach to compute such bounds is to apply the standard DI method directly to (6.53)

with the control law (6.54). This requires an inclusion function for the closed-loop

right-hand side functions, which would be computed as follows. Given intervals 𝑋,

𝑌 , Θ, Δ, and 𝑉 , interval bounds on the error states (6.53) are first computed by

evaluating (6.53) in interval arithmetic. Then, interval bounds on 𝜔1 and 𝜔2 are

computed by evaluating (6.54) in interval arithmetic. Next, bounds on the control

input 𝑢1 are computed from 𝑢1 = 𝜔1/[1/𝑙 + 𝑙𝜅2
𝛿 ], and bounds on the right-hand sides

of (6.53) are finally computed by interval arithmetic. As discussed in Example 1,

this approach suffers from a major interval dependency problem and leads to very

conservative bounds (not shown).

Following the strategy proposed in Example 1, a better approach is to directly

bound the error coordinates used in the feedback law. After some simplification, the

error dynamics are

�̇�𝑡 = 𝑣 cos 𝑒𝜃 − 𝑣𝑟𝑒𝑓 [1− 𝜅𝑟𝑒𝑓𝑒𝑛],

�̇�𝑛 = 𝑣 sin 𝑒𝜃 − 𝑣𝑟𝑒𝑓𝜅𝑟𝑒𝑓𝑒𝑡,

�̇�𝜃 = 𝑣𝜅𝛿 − 𝑣𝑟𝑒𝑓𝜅𝑟𝑒𝑓 ,

�̇�𝛿 = 𝜔1,

�̇� = 𝜔2. (6.56)

Note that the right-hand side of the ODE describing 𝜅𝛿 is written in terms of 𝜔1

rather than 𝑢1. This avoids having to compute 𝑢1 using 𝑢1 = 𝜔1/[1/𝑙 + 𝑙𝜅2
𝛿 ] and then
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subsequently compute �̇�𝛿 using �̇�𝛿 = [1/𝑙 + 𝑙𝜅2
𝛿]𝑢1. Although the latter approach is

equivalent in real arithmetic, it would result in a more conservative interval evaluation

of �̇�𝛿.

The results of applying standard DI to the closed-loop error system consisting

of (6.56) with (6.54) and (6.55) are show in Figures 6.8–6.9 (blue). The bounds are

significantly tighter those obtained by applying DI directly in the original coordinates

(not shown). However, this approach still does not produce effective bounds after 0.4

s.
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Figure 6.8: Example 2: Bounds on the error coordinates (𝑒𝑡, 𝑒𝑛, 𝑒𝜑) produced by (i)
applying standard DI to (6.56) (blue), (ii) applying redundancy-based DI to (6.56)
and (6.58) with manufactured invariants (6.57) (green), and (iii) applying redundancy-
based DI to (6.56), (6.58), and (6.51) with manufactured invariants (6.57), (6.61) and
(6.53) (purple) with 500 sampled trajectories (gray).
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Figure 6.9: Example 2: Bounds on (𝑣, 𝜅𝛿) produced by (i) applying standard DI to
(6.56) (blue), (ii) applying redundancy-based DI to (6.56) and (6.58) with manufactured
invariants (6.57) (green), and (iii) applying redundancy-based DI to (6.56), (6.58),
and (6.51) with manufactured invariants (6.57), (6.61) and (6.53) (purple) with 500
sampled trajectories (gray).

To achieve further improvements, we now manufacture invariants for (6.56) follow-

ing the method in [26]. As in Example 1, inspection shows that affine combinations of

the states will not result in fortuitous cancellations of nonlinear and uncertain terms

for this problem, as they do for most models considered in [26]. Therefore, we need

to manufacture invariants using nonlinear combinations of the states. Following the

same strategy used in Example 1, we consider the following two Lyapunov functions
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and the additional variable 𝑒𝛿 used in the analysis of the controller (6.54) in [121]:

ℒ = [𝑘1𝑒
2
𝑡 + 𝑘1𝑒

2
𝑛 + 𝑒2

𝜃 + (𝑣 − 𝑣𝑟𝑒𝑓 )2]/2,

ℒ𝐶 = ℒ+ (1/2)𝑒2
𝛿 ,

𝑒𝛿 = 𝜅𝛿 − 𝜉. (6.57)

To use these functions as a manufactured invariants, we define ℒ, ℒ𝐶 , and 𝑒𝛿 as new

state variables and augment (6.56) with the ODEs derived by differentiating them with

respect to time. The ODEs obtained in this way benefits from several simplifications,

ultimately leading to the forms

ℒ̇ = −𝑣𝑟𝑒𝑓𝑘2𝑒
2
𝜃 − 𝑘3(𝑣 − 𝑣𝑟𝑒𝑓 )2,

ℒ̇𝐶 = −𝑣𝑟𝑒𝑓𝑘2𝑒
2
𝜃 − 𝑘3(𝑣 − 𝑣𝑟𝑒𝑓 )2 − 𝑘4(𝜅𝛿 − 𝜉)2,

�̇�𝛿 = −𝑒𝜑𝑣 − 𝑘4𝑒𝛿. (6.58)

Let z = (𝑒𝑡, 𝑒𝑛, 𝑒𝜃, 𝑘𝛿, 𝑣,ℒ,ℒ𝐶 , 𝑒𝛿) and p = ∅ be shorthand for generic augmented

state and uncertain parameter vectors. Then, by definition, the augmented system

consisting of (6.56) and (6.58) satisfies Assumption 5 with the a priori enclosure

𝐺 =
{︁
(𝑡, z, p) ∈ R9 : (6.57) holds

}︁
. (6.59)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, we need to

define an inclusion function ℛ satisfying Assumption 6. Given any (𝑡, 𝑍) ∈ R× IR8

with 𝑍 denoted component-wise by 𝑍 = 𝐸𝑡 × 𝐸𝑛 × 𝐸𝜃 ×𝐾𝛿 × 𝑉 × 𝐿× 𝐿𝐶 × 𝐸𝛿, any
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z ∈ 𝑍 such that (𝑡, z, p) ∈ 𝐺 must satisfy the following inclusions:

𝑒𝑡 ∈ −

√︃
1
𝑘1

(2𝐿− 𝐸2
𝜃 − 𝑘1𝐸2

𝑛 − (𝑉 − 𝑣𝑟𝑒𝑓 )2), (6.60)

𝑒𝑛 ∈ −

√︃
1
𝑘1

(2𝐿− 𝐸2
𝜃 − 𝑘1𝐸2

𝑡 − (𝑉 − 𝑉𝑟𝑒𝑓 )2),

𝑒𝜃 ∈ −
√︁

2𝐿− 𝑘1𝐸2
𝑡 − 𝑘1𝐸2

𝑛 − (𝑉 − 𝑣𝑟𝑒𝑓 )2,

𝑣 ∈ −
√︁

2𝐿− 𝑘1𝐸2
𝑡 − 𝑘1𝐸2

𝑛 − 𝐸2
𝜃 + 𝑣𝑟𝑒𝑓 ,

ℒ ∈ [𝑘1𝐸
2
𝑡 + 𝑘1𝐸

2
𝑛 + 𝐸2

𝜃 + (𝑉 − 𝑣𝑟𝑒𝑓 )2]/2,

ℒ ∈ ℒ𝐶 − 0.5𝐸2
𝛿 ,

ℒ𝐶 ∈ ℒ+ 0.5𝐸2
𝛿 ,

𝑒𝛿 ∈ 2(𝐿𝐶 − 𝐿),

𝑒𝛿 ∈ 𝐾𝛿 − Ξ,

𝜅𝛿 ∈ 𝐸𝛿 + Ξ.

Our proposed definition of ℛ based on these inclusions is given in Algorithm

10. The refinements based on these inclusions are done in lines 4–19, while the final

enclosure of f (i.e., the right-hand sides of (6.56) and (6.58)) is computed in lines

21–30. All set operations are done using standard interval arithmetic or the operations

defined in §6.3, and we choose the number of iterations as 𝑙 = 2. A formal proof that

this algorithm satisfies Assumption 6 is given at the end of this subsection.

Figures 6.8–6.9 show the bounds on the error states computed by applying standard

DI to (6.56) (Method (i), blue) and by applying redundancy-based DI (Corollary 5)

to the augmented system (6.56) and (6.58) with ℛ defined by Algorithm 10 (Method

(ii), green). Note that the non-smoothness of the bounding trajectories in some figures

is caused by the piecewise constant inputs used to generate the reference trajectory.

While the bounds computed by standard DI rapidly diverge to ±∞, the bounds

computed using redundancy-based DI are much more accurate and do not diverge.
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This indicates that using Lyapunov functions as manufactured invariants is very

effective for this example as well.

Since the Lyapunov functions ℒ and ℒ𝐶 are monotonically decreasing by (6.58),

we can conclude that [𝑘1𝑒
2
𝑡 + 𝑘1𝑒

2
𝑛 + 𝑒2

𝜃 + (𝑣 − 𝑣𝑟𝑒𝑓 )2]/2 ≤ ℒ(𝑡 = 0) and [𝑘1𝑒
2
𝑡 + 𝑘1𝑒

2
𝑛 +

𝑒2
𝜃 + (𝑣 − 𝑣𝑟𝑒𝑓 )2 + 𝑒2

𝛿 ]/2 ≤ ℒ𝐶(𝑡 = 0). Thus, even without DI, the Lyapunov functions

alone imply that the state variables 𝑒𝑡, 𝑒𝑛, 𝑒𝜃, 𝑣 − 𝑣𝑟𝑒𝑓 , and 𝑒𝛿 are bounded within

two ellipsoids. Before 0.8 s, the bounds on 𝑒𝑡 and 𝑒𝑛 produced by DI (Method (ii))

are tighter than the bounds given by these ellipsoids. However, as time goes on, they

gradually approach and overlap with the bounds given by the ellipsoids. In contrast,

DI produces significantly better bounds than the Lyapunov functions alone for 𝑒𝜑.

Specifically, the ellipsoids computed by the Lyapunov functions indicate that the

absolute value of 𝑒𝜑 should be bounded by 2.07. This is much larger than the bounds

computed by the Method (ii), which converges around 1.28. Hence, the combination

of DI with the Lyapunov functions as additional variables in Method (ii) achieves

tighter bounds than can be inferred from either DI or the Lyapunov functions alone.

Given bounds on the error coordinates, bounds on the vehicle’s position in the

original coordinates can be obtained by evaluating the following inverse coordinate

transformation in interval arithmetic:

𝑥 = cos(𝜃𝑟𝑒𝑓 )𝑒𝑡 − sin(𝜃𝑟𝑒𝑓 )𝑒𝑛 + 𝑥𝑟𝑒𝑓 (6.61)

𝑦 = sin(𝜃𝑟𝑒𝑓 )𝑒𝑡 + cos(𝜃𝑟𝑒𝑓 )𝑒𝑛 + 𝑦𝑟𝑒𝑓

𝜃 = 𝑒𝜃 + 𝜃𝑟𝑒𝑓 .

Figure 6.10 shows the resulting bounds for each method. It can be seen that the

accuracy of the redundancy-based DI method is retained in the original coordinates.

As in Example 1, these bounds certainly leave room for improvement, but do appear

to be accurate enough to support some motion planning and collision avoidance tasks.
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Figure 6.10: Example 2: Bounds on the original coordinates (𝑥, 𝑦) produced by (i)
applying standard DI to (6.56) (blue), (ii) applying redundancy-based DI to (6.56)
and (6.58) with manufactured invariants (6.57) (green), and (iii) applying redundancy-
based DI to (6.56), (6.58), and (6.51) with manufactured invariants (6.57), (6.61) and
(6.53) (purple) with 500 sampled trajectories (gray).

To make further improvements, we again consider using the original and error
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coordinates simultaneously with the coordinate transformation serving as additional

manufactured invariants. Specifically, we now augment (6.56) and (6.58) with (6.51).

In addition to (6.57), the states of this augmented system also satisfy the invariants

(6.53) and (6.61). Therefore, we can define the following a priori enclosure with

z = (𝑒𝑡, 𝑒𝑛, 𝑒𝜃, 𝑘𝛿, 𝑣,ℒ,ℒ𝐶 , 𝑒𝛿, 𝑥, 𝑦, 𝜃, 𝛿):

𝐺 =
{︁
(𝑡, z, p) ∈ R13 : (6.57), (6.53), and (6.61) hold

}︁
. (6.62)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, we again

define an inclusion function ℛ by including additional refinements based on (6.53)

and (6.61).

Given any (𝑡, 𝑍) ∈ R× IR13 with 𝑍 denoted component-wise by 𝑍 = 𝐸𝑡 × 𝐸𝑛 ×

𝐸𝜃×𝑉 ×𝐿×𝐿𝐶 ×𝐸𝛿 ×𝐾𝛿 ×𝑋 ×𝑌 ×Θ×Δ, any z ∈ 𝑍 such that (𝑡, z, p) ∈ 𝐺 must

satisfy:

𝑒𝑡 ∈ cos(𝜃𝑟𝑒𝑓 )(𝑋 − 𝑥𝑟𝑒𝑓 ) + sin(𝜃𝑟𝑒𝑓 )(𝑌 − 𝑦𝑟𝑒𝑓 ), (6.63)

𝑒𝑛 ∈ − sin(𝜃𝑟𝑒𝑓 )(𝑋 − 𝑥𝑟𝑒𝑓 ) + cos(𝜃𝑟𝑒𝑓 )(𝑌 − 𝑦𝑟𝑒𝑓 ),

𝑒𝜃 ∈ Θ− 𝜃𝑟𝑒𝑓 ,

𝜅𝛿 ∈ tan(Δ)/𝑙,

𝑥 ∈ cos(𝜃𝑟𝑒𝑓 )𝐸𝑡 − sin(𝜃𝑟𝑒𝑓 )𝐸𝑛 + 𝑥𝑟𝑒𝑓 ,

𝑦 ∈ sin(𝜃𝑟𝑒𝑓 )𝐸𝑡 + cos(𝜃𝑟𝑒𝑓 )𝐸𝑛 + 𝑦𝑟𝑒𝑓 ,

𝜃 ∈ 𝐸𝜃 + 𝜃𝑟𝑒𝑓 ,

𝛿 ∈ arctan(𝑙𝐾𝛿).

Our proposed definition of ℛ based on these refinements is given in Algorithm 11.

Compared to Algorithm 10, Algorithm 11 adds the refinements (6.63) in lines 5–12

and computes bounds on the right-hand sides of the ODEs (6.51) (which are now
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included in the augmented system) in lines 15–18.

Algorithm 11 An implementation of ℛ
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝐸𝑡, 𝐸𝑛, 𝐸𝜃, 𝐾𝛿, 𝑉, 𝐿, 𝐿𝐶 , 𝐸𝛿, 𝑋, 𝑌, Θ, Δ)← 𝑍

3: for 𝑖 = 1 to 𝑙 do

4: Apply lines 4–19 in Algorithm 10

5: 𝑋 = 𝑋∩̄ (cos(𝜃𝑟𝑒𝑓 )𝐸𝑡 − sin(𝜃𝑟𝑒𝑓 )𝐸𝑛 + 𝑥𝑟𝑒𝑓 )

6: 𝑌 = 𝑌 ∩̄ (sin(𝜃𝑟𝑒𝑓 )𝐸𝑡 + cos(𝜃𝑟𝑒𝑓 )𝐸𝑛 + 𝑦𝑟𝑒𝑓 )

7: Θ = Θ∩̄ (𝐸𝜃 + 𝜃𝑟𝑒𝑓 )

8: Δ = Δ∩̄ arctan(𝑙𝐾𝛿)

9: 𝐸𝑡 = 𝐸𝑡∩̄ (cos(𝜃𝑟𝑒𝑓 )(𝑋 − 𝑥𝑟𝑒𝑓 ) + sin(𝜃𝑟𝑒𝑓 )(𝑌 − 𝑦𝑟𝑒𝑓 ))

10: 𝐸𝑛 = 𝐸𝑛∩̄ (− sin(𝜃𝑟𝑒𝑓 )(𝑋 − 𝑥𝑟𝑒𝑓 ) + cos(𝜃𝑟𝑒𝑓 )(𝑌 − 𝑦𝑟𝑒𝑓 ))

11: 𝐸𝜃 = 𝐸𝜃∩̄ (Θ− 𝜃𝑟𝑒𝑓 )

12: 𝐾𝛿 = 𝐾𝛿∩̄ tan(Δ)
𝑙

13: end for

14: Apply lines 21–30 in Algorithm 10

15: Σ9 ← 𝑉 cos Θ

16: Σ10 ← 𝑉 sin Θ

17: Σ11 ← 𝑉 tan Δ
𝑙

18: Σ12 ← Σ4/(1/𝑙 + 𝑙𝐾2
𝛿 )

19: return Σ← (Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7, Σ8, Σ9, Σ10, Σ11, Σ12)

20: end function

The results applying redundancy-based DI (Corollary 5) with ℛ defined by Algo-

rithm 11 (Method (iii), purple) are shown in Figures 6.8–6.10. In both original and

error coordinates, the bounds from this method lie entirely behind the plotted bounds

for Method (ii), indicating that the model redundancy offered by using both the origi-

nal and error coordinates simultaneously is ineffective at mitigating the dependency

problem for this example, as it was for Example 1.
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In terms of computational cost, standard DI is the most efficient method tested

with a cost of 0.0018 s. However, this time is misleading because integration was

stopped early due to divergence of the bounds. Method (ii) using the Lyapunov

functions requires 0.222 s, and Method (iii) using the Lyapunov function and the

coordinate transformations requires 1.83 s for a time horizon of 6 s. For comparison,

approximating the reachable set by simulating solutions on a grid with 20 points for

every uncertain initial condition (i.e., 8000 trajectories) requires 14.2 s. Method (ii)

clearly offers the best trade-off between accuracy and efficiency, producing effective

bounds with a computational time that is equivalent to sampling about 125 real

trajectories, and that is roughly 27× faster than the real travel time for this vehicle.

We close this subsection by proving that Algorithm 10 satisfies Assumption 6.

The proof for Algorithm 11 is a straightforward extension of the same arguments

and is omitted for brevity. Consider the augmented system consisting of (6.56) and

(6.58) and let z ≡ (𝑒𝑡, 𝑒𝑛, 𝑒𝜃, 𝑘𝛿, 𝑣,ℒ,ℒ𝐶 , 𝑒𝛿) and p = ∅ denote generic state and

parameter vectors. Similarly, let 𝑍 = (𝑋𝑒, 𝑌𝑒, Θ𝑒, 𝑉 ) and 𝑃 = ∅ denote generic state

and parameter interval vectors.

Theorem 19. Define 𝐷ℛ ≡ {(𝑡, 𝑍, 𝑃 ) ∈ R×IR𝑛𝑥×IR𝑛𝑝 : 𝐸𝜃 ⊂ (−𝜋/2, 𝜋/2). Algorithm

10 is well defined for every (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Moreover, Assumption 6 holds with

ℛ(𝑡, 𝑍, 𝑃 ) defined by Algorithm 10.

Proof. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Algorithm 10 is well defined for (𝑡, 𝑍, 𝑃 ) if and

only if no domain violations occur when evaluating the inclusion functions in lines

4–19 and 21–30. By the extended intersection in lines 4–19, lines of inclusion functions

21–30 are always evaluated in [𝑡, 𝑡], 𝑍 ′, 𝑃 with 𝑍 ′ ⊂ 𝑍. Thus, we have 𝐸𝜃 ⊂ (𝜋/2, 𝜋/2)

always evaluated in the domain of 𝐻1–𝐻4. Therefore, there are no domain violations

in lines 17 and 24. By the extended intersection in lines 7, 9, 11, 13, and 15, we have

𝑆𝑄𝐸𝛿
, 𝑆𝑄𝐸𝜃

, 𝑆𝑄𝐸𝑡 , 𝑆𝑄𝐸𝑛 and 𝑆𝑄𝐸𝑣 are always lying in IR+, which is the appropriate

domain of the extended square root function in lines 8, 10, 12, 14, and 16. Since lines

206



4, 5, 6, 7, 9, 11, 13, 15, 18, and 19 always lie in the appropriate domains, ℛ is always

well defined in 𝐷ℛ.

To verify Condition 1 of Assumption 6, choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ, and let

Σ = ℛ(𝑡, 𝑃, 𝑍) be the output of Algorithm 10. We must show that

Σ ⊃{f(𝑡, z, p) : (z, p) ∈ 𝑍 × 𝑃, (𝑡, z, p) ∈ 𝐺}, (6.64)

where f denotes the right-hand side functions of (6.56) and (6.58) and

𝐺 =
{︁
(𝑡, z) ∈ R9 : (6.57), (6.56), and (6.61) hold

}︁
. (6.65)

Choose any (z, p) ∈ 𝑍×𝑃 satisfying (𝑡, z, p) ∈ 𝐺 and let (𝑒𝑡, 𝑒𝑛, 𝑒𝜃, 𝑘𝛿, 𝑣,ℒ,ℒ𝐶 , 𝑒𝛿) = z.

Since z ∈ 𝑍, the following inclusion all hold immediately after line 2: 𝑒𝑡 ∈ 𝐸𝑡, 𝑒𝑛 ∈ 𝐸𝑛,

𝑒𝜃 ∈ 𝐸𝜃, 𝑘𝛿 ∈ 𝐾𝛿, 𝑣 ∈ 𝑉 , ℒ ∈ 𝐿, ℒ𝐶 ∈ 𝐿𝐶 , 𝑒𝛿 ∈ 𝐸𝛿. If these inclusions remain valid

when line 21 is reached, then (6.64) must hold because lines 21–30 are direct interval

evaluations of the right-hand side functions of (6.56) and (6.58) (i.e., f). Thus, it

suffices to show that these inclusions are maintained through lines 4–19. By (6.60) and

the extended intersection, z satisfies the inclusions ℒ𝐶 ∈ 𝐿𝐶 after line 4, ℒ ∈ 𝐿 after

lines 5 and 6, 𝑒2
𝛿 ∈ 𝑆𝑄𝐸𝛿

, 𝑒2
𝜃 ∈ 𝑆𝑄𝐸𝜃

, 𝑒2
𝑡 ∈ 𝑆𝑄𝐸𝑡 , 𝑒2

𝑛 ∈ 𝑆𝑄𝐸𝑛 , (𝑣− 𝑣𝑟𝑒𝑓 )2 ∈ 𝑆𝑄𝐸𝑣 after

lines 7, 9, 11, 13, and 15, 𝑒2
𝛿 ∈ 𝐸𝛿 after line 18, 𝜅𝛿 ∈ 𝐾𝛿 after line 19. By Theorem 9,

we have 𝑒𝛿 ∈ 𝐸𝛿, 𝑒𝜃 ∈ 𝐸𝜃, 𝑒𝑡 ∈ 𝐸𝑡, 𝑒𝑛 ∈ 𝐸𝑛, 𝑉 − 𝑣𝑟𝑒𝑓 ∈ 𝐸𝑣 in lines 8, 10, 12, 14 and

16. By the definition of extended intersection, (6.64) holds after line 19. Therefore,

(6.64) holds for the entire algorithm.

Now, we verify Condition 2 of Assumption 6. Choose (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. By definition,

�̂�Θ ⊂ (−𝜋/2, 𝜋/2). By openness of (−𝜋/2, 𝜋/2) and the definition of the Hausdorff

metric, there must exist 𝜖 > 0 such that 𝐸Θ ⊂ (−𝜋, 𝜋) for all 𝐸Θ ∈ IR satisfying

𝑑𝐻(𝐸Θ, �̂�Θ) < 𝜖. By the definition of 𝐷ℛ, this implies that (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ for all

𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍 ∈ 𝐵𝜖(𝑍).
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Finally, we verify Condition 3 of Assumption 6 by arguing that every line of the

algorithm defines its output as a locally Lipschitz continuous function of all variables

on which it depends. It follows that ℛ is a finite composition of locally Lipschitz

functions and is therefore locally Lipschitz continuous.

By Theorem 2.1.1 in [101], the interval operations +, −, ×, 𝑥2, cos, sin, and

division by a nonzero constant are all locally Lipschitz continuous on their domains.

Moreover, by Theorems 10 and 16, −
√ and 𝐻1–𝐻4 are locally Lipschitz continuous on

their domains as well. Finally, the extended intersection ∩̄ is Lipschitz continuous

by Theorem 17. Combining these facts, we conclude that each of the lines 4–19

and 21–30 defines its output by a composition of locally Lipschitz functions, and is

therefore locally Lipschitz with respect to all arguments, as desired. Therefore, the

entire algorithm is Lipschitz continuous with respect to (𝑡, 𝑍, 𝑃 ) on all of 𝒟ℛ, which

is a stronger condition than Condition 3 of Assumption 6.

Example 3. Consider the same vehicle dynamics as in (6.37). The velocity is considered

to be a time-invariant uncertain parameter satisfying 𝑣 ∈ 𝑉 for some interval 𝑉 . The

initial condition may also be uncertain with x0 ∈ 𝑋0. The control objective is to

manipulate 𝜔 to track a smooth path 𝐶. Specifically, 𝐶 ≡ {(𝑥𝑟𝑒𝑓(𝑠), 𝑦𝑟𝑒𝑓(𝑠)) : 𝑠 ∈

[0, 𝑠]} where (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 ) ∈ 𝒞2([0, 𝑠],R2) and 𝑠 is the arc length of 𝐶.

We consider the path tracking controller proposed in [122], which is based on the

following curvilinear coordinate transformation. First, the curvature of 𝐶 at (𝑥, 𝑦) ∈ 𝐶

is defined as the derivative of the unit tangent at (𝑥, 𝑦) with respect to the arc length

of the path. Let 𝑐 : [0, 𝑠]→ R map each 𝑠 ∈ [0, 𝑠] to the curvature of 𝐶 at the point

(𝑥𝑟𝑒𝑓 (𝑠), 𝑦𝑟𝑒𝑓 (𝑠)) and define 𝑐 ≡ min𝑠∈[0,𝑠] |𝑐(𝑠)|.

Assume that, at any point (𝑥, 𝑦) ∈ 𝐶, the circle with radius 1/𝑐 that is tangent to

𝐶 at (𝑥, 𝑦) does not contain any points of 𝐶 in its interior [122]. Consider a single

trajectory (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)) of (6.37) corresponding to some x ∈ 𝑋0, 𝑣 ∈ 𝑉 , and control

input 𝜔 : [𝑡0, 𝑡𝑓 ] → R. Assume that the minimum distance between the position
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(𝑥(𝑡), 𝑦(𝑡)) and the path 𝐶 remains less than 1/𝑐 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. In this case,

the projection of (𝑥(𝑡), 𝑦(𝑡)) onto 𝐶 is well-defined and we may define the curviliear

coordinate 𝑠 : [𝑡0, 𝑡𝑓 ]→ R for this trajectory as

𝑠(𝑡) = argmin
𝛾∈[0,𝑠]

‖((𝑥(𝑡), 𝑦(𝑡))− (𝑥𝑟𝑒𝑓 (𝛾), 𝑦𝑟𝑒𝑓 (𝛾)))‖2, (6.66)

Following [67], define the 𝑥 and 𝑦 coordinate errors by 𝑑𝑥(𝑡) ≡ 𝑥(𝑡) − 𝑥𝑟𝑒𝑓(𝑠(𝑡))

and 𝑑𝑦(𝑡) ≡ 𝑦(𝑡) − 𝑦𝑟𝑒𝑓(𝑠(𝑡)). Moreover, define the unit tangent to 𝐶 at the point

(𝑥𝑟𝑒𝑓 (𝑠(𝑡)), 𝑦𝑟𝑒𝑓 (𝑠(𝑡))) by

n(𝑡) = (𝑛𝑥(𝑡), 𝑛𝑦(𝑡)) ≡

(︁
𝜕𝑥𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡)), 𝜕𝑦𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡))

)︁
⃦⃦⃦(︁

𝜕𝑥𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡)), 𝜕𝑦𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡))

)︁⃦⃦⃦ . (6.67)

Define the tracking error 𝑒 : [𝑡0, 𝑡𝑓 ]→ R by

𝑒(𝑡) = 𝑑𝑥(𝑡)𝑛𝑦(𝑡)− 𝑑𝑦(𝑡)𝑛𝑥(𝑡). (6.68)

The tracking error is positive if the vehicle is to the right of the curve 𝐶 and negative

if it is to the left. Finally, define the tracking angle error 𝜃𝑒 : [𝑡0, 𝑡𝑓 ] → R as the

difference between the heading angle 𝜃(𝑡) and angle of the tangent vector n(𝑡):

𝜃𝑒(𝑡) = 𝜃(𝑡)− arctan 2
(︃

𝜕𝑥𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡)), 𝜕𝑦𝑟𝑒𝑓

𝜕𝑠
(𝑠(𝑡))

)︃
. (6.69)

According to [122], the trajectory (𝑠(𝑡), 𝑒(𝑡), 𝜃𝑒(𝑡)) defined in this way satisfies the
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following system of ODEs:

�̇� = 𝑣cos(𝜃𝑒)
1− 𝑐(𝑠)𝑒,

�̇� = 𝑣sin(𝜃𝑒),

𝜃𝑒 = 𝜔 − 𝑣𝑐(𝑠)cos(𝜃𝑒)
1− 𝑐(𝑠)𝑒 . (6.70)

Here, we have 𝑠, 𝑒, 𝜃𝑒 uniquely defined if |𝑒| <
⃒⃒⃒

1
𝑐

⃒⃒⃒
, where 𝑐 = 𝑐(𝑠) = 1/30. Thus, the

domain of 𝑒 is 𝑒 ∈ (−30, 30). Following [122], we apply the following tracking control

law in these coordinates:

𝜔 = 𝑣𝑐(𝑠)cos(𝜃𝑒)
1− 𝑐(𝑠)𝑒 − 𝑔1𝜃𝑒 − (𝑔2𝑣ℎ2(𝜃𝑒)) 𝑒, (6.71)

where ℎ2 is defined in Definition 11 and the gains are 𝑔1 = 5.71
√

𝑣2 + 0.1 and 𝑔2 = 4.

This closed-loop system is proven to be asymptotically stable in [122] for systems with

certain velocity. However, for safety verification it is of interest to know how far the

vehicle can deviate from the desired path 𝐶 under uncertainty. Therefore, our aim is

to compute bounds on the solutions of the closed-loop system consisting of (6.70) and

(6.71) and bound the position of the vehicle at each instant in time.

Let the time-invariant uncertain parameter 𝑣 ∈ [5, 6] m/s2 and the initial condition

x0 = (0, 1, 𝜋/6). As in Example 1, a straight forward way is to compute bounds

on the error coordinates (6.70) with feedback law (6.71) using standard DI. This

requires an inclusion function for the closed-loop right-hand side functions computed

as follows. Given intervals 𝑆, 𝐸, and Θ𝑒, interval bounds on 𝜔 is computed by

evaluating (6.71). Then, the bounds on the right-hand side of (6.70) are evaluated

using interval arithmetic. As discussed in Examples 1 and 2, this method leads to

conservative bounds because of the interval dependency problem caused by interval

arithmetic evaluating 𝜔 and the right-hand side of (6.70).
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Following similar strategies in Example 1, the right hand side function of 𝜃𝑒 can

be simplified by plugging in (6.71):

𝜃𝑒 = −𝑔1𝜃𝑒 − 𝑔2𝑣ℎ2(𝜃𝑒)𝑒.

A nice cancellation on the term 𝑣𝑐(𝑠)cos(𝜃𝑒)
1−𝑐(𝑠)𝑒 reduces the dependency problem. Of course,

valid bounds can be obtained by directly applying the standard DI method to this

system. However, this still results very weak bounds as discussed in Examples 1 and

2. In Figure 6.11, Method (i) computes bounds of the states using the standard DI

method on this system. The bounds start to diverge since 0.4 s.

To improve these bounds using the redundancy-based DI method described in

Corollary 5, we need construct a valid constraint set 𝐺 by introducing redundant

states and ODEs. Since there is no obvious linear invariants in this example, we follow

the proposed strategy in Example 1 to manufacture invariants based on Lyapunov

function in [122]:

ℒ = 1
2(𝑒2 + (1/𝑔2)𝜃2

𝑒). (6.72)

Then, augment (6.70) with

ℒ̇ = −𝑔1

𝑔2
𝜃2

𝑒 . (6.73)

Define z ≡ (𝑠, 𝑒, 𝜃𝑒,ℒ) and the uncertain parameter 𝑝 = 𝑣. Then, the augmented

system consisting of (6.70) and (6.73) satisfies Assumption 5 with the a priori enclosure

𝐺 =
{︂

(𝑡, z, 𝑝) ∈ R6 : ℒ = 1
2(𝑒2 + (1/𝑔2)𝜃2

𝑒)
}︂

. (6.74)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, we follow the
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same procedure as in Example 1 to define an inclusion function ℛ satisfying 6. Given

any (𝑡, 𝑍, 𝑃 ) ∈ R× IR4 × IR and any z = (𝑠, 𝑒, 𝜃𝑒,ℒ) ∈ 𝑍 and 𝑝 = 𝑣 ∈ 𝑃 such that

(𝑡, z, 𝑝) ∈ 𝐺, the following rearrangements of (6.43) must hold:

𝑒2 = 2ℒ − (1/𝑔2)𝜃2
𝑒 , (6.75)

𝜃2
𝑒 = 𝑔2(2ℒ − 𝑒2). (6.76)

Therefore, denoting 𝑍 component-wise by 𝑍 = 𝑆 × 𝐸 ×Θ𝑒 × 𝐿, z must satisfy the

following inclusions, where the right-hand-side is evaluated in interval arithmetic using

the inclusion functions −
√ defined in §6.3:

ℒ ∈ 1
2(𝐸2 + (1/𝑔2)Θ2

𝑒), (6.77)

𝑒 ∈ −
√︁

2𝐿− (1/𝑔2)Θ2
𝑒,

𝜃𝑒 ∈ −
√︁

𝑔2(2𝐿− 𝐸2).

Based on the refinement (6.77), we have the refinement algorithm defined in

Algorithm 12. The inputs of the algorithm are the interval bounds of the states 𝑍

and the interval bounds of the uncertainties 𝑃 . Specifically, lines 4–8 refines intervals

𝑆, 𝐸, Θ𝑒, and 𝐿 based on the rearrangements in (6.77). Finally, the enclosures of the

right-hand-side functions in (6.70) and (6.73) are computed by lines 10–13.
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Algorithm 12 An implementation of ℛ for Example 3
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝑆 × 𝐸 ×Θ𝑒 × 𝐿)← 𝑍 and 𝑉 ← 𝑃

3: for 𝑖 = 1 to 𝑙 do

4: 𝐿← 𝐿∩̄[1
2(𝐸2 + (1/𝑔2)Θ2

𝑒)]

5: 𝑆𝑄𝐸 ← 𝐸2∩̄(2𝐿− 1
𝑔2

Θ2
𝑒)

6: 𝐸 ← 𝐸∩̄ −
√

𝑆𝑄𝐸

7: 𝑆𝑄Θ𝑒 ← Θ2
𝑒∩̄(𝑔2(2𝐿− 𝐸2))

8: Θ𝑒 ← Θ𝑒∩̄ −
√︀

𝑆𝑄Θ𝑒

9: end for

10: Σ1 ← 𝑉 cos(Θ𝑒)
1−𝑐𝐸

11: Σ2 ← 𝑉 sin(Θ𝑒)

12: Σ3 ← −5.71
√

𝑉 2 + 0.1Θ𝑒 − 𝑔2𝑉 𝐻2(Θ𝑒)𝐸,

13: Σ4 ← −5.71
√

𝑉 2+0.1
𝑔2

𝑆𝑄Θ𝑒

14: return Σ← (Σ1, Σ2, Σ3, Σ4)

15: end function
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Figure 6.11: Example 3: Bounds on the error coordinates (𝑠, 𝑒, 𝜃𝑒) produced by (i)
applying standard DI to (6.70) (blue), (ii) applying redundancy-based DI to (6.70) and
(6.73) with manufactured invariant (6.72) (green) using Algorithm 12, (iii) applying
redundancy-based DI to (6.70) and (6.73) with manufactured invariant (6.72) using
the 𝜅-operator in [117] (red), (iv) applying redundancy-based DI to (6.78) with
manufactured invariants (6.79) and (6.72) using Algorithm 13 (purple) with 500
sampled trajectories (grey).
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Figure 6.11 compares bounds of the states using the proposed methods. Method (ii)

and (iii) compute bounds for (6.70) using redundancy-based DI by applying 𝜅-operator

in [96] and Algorithm 12 respectively as the refinement operator ℛ. Applying the

Lyapunov invariant (6.72), the redundancy-based DI methods improve the performance

to the standard DI method (i). The bounds of Method (ii) and Method (iii) converges

after 0.4 s. Furthermore, applying the proposed refinement algorithm 12 based

on algebraic rearrangement leads to much tighter bounds than Method (ii) using

𝜅-operator in [96].

Now, we propose a new strategy to manufacture additional invariant constraints

in this specific example. We define 𝜑1 = 𝑣cos(𝜃𝑒) and 𝜑2 = 𝑣sin(𝜃𝑒). Then, replace

𝑣cos(𝜃𝑒) and 𝑣sin(𝜃𝑒) in (6.70) with 𝜑1, 𝜑2. Since velocity 𝑣 in (6.70) is time-invariant,

the augmented system dynamics becomes:

�̇� = 𝜑1

1− 𝑐(𝑠)𝑒,

�̇� = 𝜑2,

𝜃𝑒 = −𝑔1𝜃𝑒 − 𝑔2𝑒𝑣ℎ2(𝜃𝑒),

ℒ̇ = −𝑔1

𝑔2
𝜃2

𝑒 ,

�̇�1 = −𝑣sin(𝜃𝑒)𝜃𝑒,

�̇�2 = 𝑣cos(𝜃𝑒)𝜃𝑒, (6.78)

where the system satisfies the constraints (6.72) and

𝑣2 = 𝜑2
1 + 𝜑2

2,

𝜑1 = 𝑣cos(𝜃𝑒),

𝜑2 = 𝑣sin(𝜃𝑒). (6.79)

Define z ≡ (𝑠, 𝑒, 𝜃𝑒,ℒ, 𝜑1, 𝜑2). Now, we define the following a priori enclosure with
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uncertain parameter 𝑝 = 𝑣:

𝐺 =
{︁
(𝑡, z, p) ∈ R8 : (6.79) and (6.72) hold

}︁
. (6.80)

To apply the redundancy-based DI method in Corollary 5 using this 𝐺, we again define

an inclusion function ℛ by including additional refinements based on (6.79). Given any

(𝑡, 𝑍, 𝑃 ) ∈ R×IR6×IR and denoting 𝑍 component-wise by 𝑍 = 𝑆×𝐸×Θ𝑒×𝐿×Φ1×Φ2,

(6.79) implies that any z ∈ 𝑍 and 𝑝 ∈ 𝑃 satisfying (𝑡, z, p) ∈ 𝐺 must also satisfy the

following inclusions:

𝜑1 ∈ cos(Θ𝑒)𝑉, (6.81)

𝜑2 ∈ sin(Θ𝑒)𝑉,

𝑣 ∈ −
√︁

Φ2
1 + Φ2

2,

𝜑1 ∈ −
√︁

𝑉 2 − Φ2
2,

𝜑2 ∈ −
√︁

𝑉 2 − Φ2
1,

𝜃𝑒 ∈ ¯arccos(Φ1/𝑉 ),

𝜃𝑒 ∈ ¯arcsin(Φ2/𝑉 ),

𝜃𝑒 ∈ arctan(Φ2/Φ1),

where −
√, ¯arcsin, and ¯arccos defined in §6.3 are used.

Our proposed definition of ℛ based on these inclusions is given in Algorithm 13.

The refinements based on these inclusions are in lines 4–18. The enclosure of f (i.e.,

the right-hand sides of (6.78)) is computed in lines 20–25. All set operations are done

using standard interval arithmetic or the operations defined in §6.3, and we choose the

number of iterations as 𝑙 = 2. A formal proof that this algorithm satisfies Assumption

6 is given at the end of this subsection.
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Algorithm 13 An implementation of ℛ for Example 3
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝑆 × 𝐸 ×Θ𝑒 × 𝐿× Φ1 × Φ2)← 𝑍 and 𝑉 ← 𝑃

3: for 𝑖 = 1 to 𝑙 do

4: Apply lines 4–8 in Algorithm 12

5: Φ1 ← 𝑉 cos(Θ𝑒)∩̄Φ1

6: Φ2 ← Φ2∩̄𝑉 sin(Θ𝑒)

7: 𝑆𝑄𝑉 ← 𝑉 2∩̄(Φ2
1 + Φ2

2)

8: 𝑉 ← 𝑉 ∩̄ −
√

𝑆𝑄𝑉

9: 𝑆𝑄Φ1 ← Φ2
1∩̄(𝑉 2 − Φ2

2)

10: Φ1 ← Φ1∩̄ −
√︀

𝑆𝑄Φ1

11: 𝑆𝑄Φ2 ← Φ2
2∩̄(𝑉 2 − Φ2

1)

12: Φ2 ← Φ2∩̄ −
√︀

𝑆𝑄Φ2

13: 𝐶𝑂𝑆Θ𝑒 ← cos Θ𝑒∩̄(Φ1/𝑉 )

14: Θ𝑒 ← Θ𝑒∩̄ ¯arccos(𝐶𝑂𝑆Θ𝑒)

15: 𝑆𝐼𝑁Θ𝑒 ← sin Θ𝑒∩̄(Φ2/𝑉 )

16: Θ𝑒 ← Θ𝑒∩̄ ¯arcsin(𝑆𝐼𝑁Θ𝑒)

17: 𝑇𝐴𝑁Θ𝑒 ← tan Θ𝑒∩̄(Φ2/Φ1)

18: Θ𝑒 ← Θ𝑒∩̄ arctan(𝑇𝐴𝑁Θ𝑒)

19: end for

20: Σ1 ← Φ1
1−𝑐𝐸

21: Σ2 ← Φ2

22: Σ3 ← −
√

𝑉 2 + 0.1Θ𝑒 − 𝑔2𝑉 𝐻2(Θ𝑒)𝐸,

23: Σ4 ← −
√

𝑉 2+0.1
𝑔2

𝑆𝑄Θ𝑒

24: Σ5 ← −𝑉 sin(Θ𝑒)Σ3

25: Σ6 ← 𝑉 cos(Θ𝑒)Σ3

26: return Σ← (Σ1, Σ2, Σ3, Σ4, Σ5, Σ6)

27: end function
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Method (iv) computes bounds on (6.78) with invariants (6.79) using refinement

Algorithm 13. Figure 6.11 shows that applying both Lyapunov function and coordinate

transformation using 𝜑1 and 𝜑2 as invariants in (6.79), Method (iv) computes tightest

bounds on (6.78) among all compared methods. Moreover, the Lyapunov function

(6.72) directly implies that the system states are always staying in the ellipsoid
1
2(𝑒2 + (1/𝑔2)𝜃2

𝑒) ≤ 𝑉 (𝑒(𝑡 = 0), 𝜃𝑒(𝑡 = 0)). Thus, the absolute values of 𝑒 and 𝜃𝑒

are approximately bounded by 1.03 (m) and 2.07 which are much larger than the

bounds computed by the proposed Methods (ii)–(iv). By only applying the Lyapunov

function without DI methods, the bounds of 𝑒 and 𝜃𝑒 can be convergent. However,

these bounds are very large and may not be useful for safety verification.

To transform the coordinates to the system original coordinates, an easy way is to

augment (6.70) and (6.78) with the original dynamics given by [122]:

�̇� = 𝑣 cos(𝜃𝑑 + 𝜃𝑒),

�̇� = 𝑣 sin(𝜃𝑑 + 𝜃𝑒),

𝜃𝑑 = 𝑐(𝑠)�̇�. (6.82)

Then, we apply Methods (i)–(iv) to compute bounds on the augmented systems. The

inclusion functions of (6.82) can be computed by interval arithmetic by plugging in �̇�

from (6.70) or (6.78). The results given in Figure 6.12 shows that this approach does

not give convergent bounds on vehicle positions, although Method (iv) produces tight

and convergent bounds for the error coordinator system.
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Figure 6.12: Example 3: Bounds on the original coordinates (𝑥, 𝑦) produced by (i)
applying standard DI to (6.70) (blue), (ii) applying redundancy-based DI to (6.70) and
(6.73) with manufactured invariant (6.72) (green) using Algorithm 12, (iii) applying
redundancy-based DI to (6.70) and (6.73) with manufactured invariant (6.72) using
the 𝜅-operator in [117] (red), (iv) applying redundancy-based DI to (6.78) with
manufactured invariants (6.79) and (6.72) using Algorithm 13 (purple) with 500
sampled trajectories (grey).

Now, we introduce a method to directly compute bounds on its original coordinates

using the interval bounds of 𝑒 and 𝜃𝑒 and reference positions 𝑥𝑟𝑒𝑓 and 𝑦𝑟𝑒𝑓 . Since

𝑒 ∈ (−min(|𝑐(𝑠))|, |min(|𝑐(𝑠))|), we have �̇� = 𝑑𝑠
𝑑𝑡

> 0. Then, we multiply 𝑑𝑡
𝑑𝑠

at both

sides of (6.82). The dynamics of the reference trajectory can be obtained by setting 𝑒
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and 𝜃𝑒 to 0:

𝜕𝑥𝑟𝑒𝑓

𝜕𝑠
= cos(𝜃𝑟𝑒𝑓 ), (6.83)

𝜕𝑦𝑟𝑒𝑓

𝜕𝑠
= sin(𝜃𝑟𝑒𝑓 ),

𝜕𝜃𝑟𝑒𝑓

𝜕𝑠
= 𝑐(𝑠).

Thus, the bounds on the original positions can be directly obtained by computing the

Cartesian coordinates of the error 𝑒 along the normal vector of the curvature 𝐶. It

follows that the bounds on the left and right of vehicle trajectories can be computed

as follows

𝑥𝐿/𝑅 = 𝑒𝐿/𝑈 cos(𝜃𝑟𝑒𝑓 + 𝜋/2) + 𝑥𝑟𝑒𝑓 , (6.84)

𝑦𝐿/𝑅 = 𝑒𝐿/𝑈 sin(𝜃𝑟𝑒𝑓 + 𝜋/2) + 𝑦𝑟𝑒𝑓 ,

where (𝑥𝐿, 𝑦𝐿) is the position of the left bounds of trajectories and (𝑥𝑅, 𝑦𝑅) is the

position of the right bounds of trajectories. Let the piecewise inputs be 𝑐(𝑠) = 1/30

for 𝑠 ∈ [0, 80] m and 𝑐(𝑠) = −1/30 for 𝑠 ∈ [80, 160] m. Let the initial condition being

uncertain (𝑒, 𝜃𝑒) ∈ [0.8, 1] m× [𝜋/12, 𝜋/6]. We firstly compute interval bounds of error

states as functions of time. Then, for every time instance 𝑡, we compute 𝑥𝑟𝑒𝑓 and 𝑦𝑟𝑒𝑓

for the interval of 𝑠 corresponding to the time instance 𝑡. Thus, we can compute a

piecewise function for reference path 𝑥𝑟𝑒𝑓 and 𝑦𝑟𝑒𝑓 with respect to time instance 𝑡.

Therefore, by (6.84), we can obtain the bounds of positions 𝑥 and 𝑦 at every time

𝑡. Figure 6.13 samples several time instances 𝑡. Then, the bounds are computed for

every sampled time 𝑡 using Method (iv) (purple). In a path tracking problem, we are

interested in how far the vehicle deviates from the reference path. Therefore, in order

to compute bounds of the positions at a given 𝑠, we need to compute union of the

bounds at every time instance 𝑡, whose corresponding interval of 𝑠 contains 𝑠. This
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adds complexity when applying the algorithm to safety verification.

In order to directly compute bounds on 𝑥 and 𝑦, we propose a coordinate transfor-

mation method by multiplying 𝑑𝑡
𝑑𝑠

= 1
�̇�

at both sides of the equation (6.70). Thus, we

have

𝜕𝑒

𝜕𝑠
= tan 𝜃𝑒(1− 𝑐(𝑠)𝑒), (6.85)

𝜕𝜃𝑒

𝜕𝑠
= (1− 𝑐(𝑠)𝑒)

(︃
−𝑔1𝜃𝑒

𝑣 cos 𝜃𝑒

− 𝑔2ℎ2(𝜃𝑒)𝑒
cos 𝜃𝑒

)︃
,

Let ℒ be defined as in (6.72) and it follows that

𝜕ℒ
𝜕𝑠

= −𝑔1𝜃
2
𝑒(1− 𝑐(𝑠)𝑒)

𝑔2𝑣 cos(𝜃𝑒)
. (6.86)

In order to compute bounds on (6.85) and (6.86) using redundancy-based DI method

with invariant (6.72), we apply Algorithm 14. Algorithm 14 is modified from Algorithm

12. Lines 4–8 in Algorithm 12 are directly applied in Algorithm 14 for refinements

based on (6.77). Finally, the enclosures of the right-hand-side functions in (6.85) and

(6.86) are computed by lines 6–8.

Algorithm 14 An implementation of ℛ for Example 3
1: function ℛ(𝑡, 𝑍, 𝑃 )

2: (𝐸 ×Θ𝑒 × 𝐿)← 𝑍 and 𝑉 ← 𝑃

3: for 𝑖 = 1 to 𝑙 do

4: Apply lines 4–8 in Algorithm 12

5: end for

6: Σ1 ← tan(Θ𝑒)(1− 𝑐𝐸)

7: Σ2 ← (1− 𝑐𝐸)
(︁

−
√

𝑉 2+0.1Θ𝑒
𝑉 cos Θ𝑒

− 𝑔2𝐻2(Θ𝑒)𝐸
cos Θ𝑒

)︁
8: Σ3 ← (1− 𝑐𝐸)

√
𝑉 2+0.1Θ2

𝑒
𝑔2𝑉 cos Θ𝑒

9: return Σ← (Σ1, Σ2, Σ3)

10: end function
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Figure 6.13: Example 3: Bounds on vehicle positions produced by applying standard DI
to (6.85) (blue), applying redundancy-based DI to (6.85) and (6.86) with manufactured
invariant (6.72) (green), and applying redundancy-based DI to (6.78) and (6.82) with
manufactured invariants (6.79) and (6.72) (purple) with 500 sampled trajectories
(grey).

The bounds computed on vehicle positions using the DI with invariant method on

(6.85) and (6.86), the standard DI method on (6.85), and Method (iv) are compared in

Figure 6.13. The standard DI method does not compute effective bounds as expected.

Bounds computed directly on (6.85) are continuous and has slightly improvements to

Method (iv). Moreover, the redundancy-based DI method with invariants on (6.85)

produces very accurate bounds for its original coordinates with the cost of only 0.016

s. This is much more efficient than sampling of 1000 trajectories, which takes more

than 0.35 s.

Finally, we prove that Algorithms 12 and 13 satisfy Assumption 6. The proof for
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Algorithm 14 is a straightforward extension of the same arguments and is omitted

for brevity. Consider the augmented system consisting of (6.70) and (6.73) and let

z ≡ (𝑠, 𝑒, 𝜃𝑒,ℒ) and p = 𝑣 denote generic state and parameter vectors. Similarly, let

𝑍 = 𝑆 × 𝐸 ×Θ𝑒 × 𝐿 and 𝑃 = 𝑉 denote generic state and parameter interval vectors.

Theorem 20. Define 𝐷ℛ ≡ {(𝑡, 𝑍, 𝑃 ) ∈ R × IR𝑛𝑥 × IR𝑛𝑝 : 𝐸 ⊂ (−|1
𝑐
|, |1

𝑐
|), Θ𝑒 ⊂

(−𝜋/2, 𝜋/2)}. Algorithm 12 is well defined for every (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Moreover,

Assumption 6 holds with ℛ(𝑡, 𝑍, 𝑃 ) defined by Algorithm 12.

Proof. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Algorithm 12 is well-defined for (𝑡, 𝑍, 𝑃 ) if and

only if no domain violations occur when evaluating the inclusion functions in lines 4,

5, 6, 7, 8, and 10–13. The only interval operations in lines 4–8 that could possibly lead

to a domain violation (i.e., are not defined for every possible argument) are the −
√

in lines 5 and 7. But by the extended intersections in lines 5 and 7, 𝑆𝑄𝐸 and 𝑆𝑄Θ𝑒

are guaranteed to lie in IR+, which is the domain of −
√. Furthermore, the extended

intersection in line 6 implies that 𝐸 is always a subset of (−|1
𝑐
|, |1

𝑐
|) and hence the

interval 1 − 𝑐𝐸 never contains zero. Thus, there is no domain violation in line 10.

Similarly, the extended intersection in line 8, Θ𝑒 is always a subset of (−𝜋/2, 𝜋/2),

and hence 𝐻2(Θ𝑒) is always well defined in line 12. Therefore, ℛ is well defined on

𝐷ℛ.

To verify Condition 1 of Assumption 6, choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ and let Σ =

ℛ(𝑡, 𝑃, 𝑍) be the output of Algorithm 12. In order to verify the inclusion in (6.5), we

let f denote the right-hand-side functions of (6.70) and (6.72) and argue that

Σ ⊃{f(𝑡, z, p) : (z, p) ∈ 𝑍 × 𝑃, (𝑡, z, p) ∈ 𝐺}, (6.87)

where

𝐺 =
{︂

(𝑡, z, 𝑝) ∈ R6 : ℒ ≥ 0,ℒ = 1
2(𝑒2 + (1/𝑔2)𝜃2

𝑒)
}︂

. (6.88)
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Choose any (z, p) ∈ 𝑍×𝑃 satisfying (𝑡, z, p) ∈ 𝐺 and let (𝑠, 𝑒, 𝜃𝑒,ℒ) = z. Since z ∈ 𝑍,

the following inclusion all hold immediately after line 2: 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸, 𝜃𝑒 ∈ Θ𝑒, and

ℒ ∈ 𝐿. If these inclusions remain valid when line 10 is reached, then (6.87) must hold

because lines 10–13 are direct interval evaluations of the right-hand side functions of

(6.70) and (6.73) (i.e., f). Thus, it suffices to show that these inclusions are maintained

through lines 4–8. By (6.77), for any z, p satisfying (𝑡, z, p) ∈ 𝐺, (z, p) ∈ 𝑍 × 𝑃 , we

have z satisfy that ℒ ∈ 1
2(𝐸2 +(1/𝑔2)Θ2

𝑒), 𝑒2 ∈ 2𝐿− 1
𝑔2

Θ2
𝑒, and 𝜃2

𝑒 ∈ 𝑔2(2𝐿−𝐸2) in lines

4, 5, and 7. Moreover, by the Theorem 9, we have (𝑒, 𝜃𝑒,ℒ) ∈ −
√

𝑆𝑄𝐸 × −
√

𝑆𝑄Θ𝑒 × 𝐿.

By the definition of the extended intersection, (𝑒, 𝜃𝑒,ℒ) ∈ 𝐸 ×Θ𝑒 × 𝐿 after lines 4, 6,

8. Therefore, (6.87) holds for the entire algorithm.

Now, we verify Condition 2 of Assumption 6. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ.

By definition, �̂� ⊂ (−|1
𝑐
|, |1

𝑐
|) and Θ̂𝑒 ⊂ (−𝜋/2, 𝜋/2). By openness of (−|1

𝑐
|, |1

𝑐
|),

(−𝜋/2, 𝜋/2), and the definition of the Hausdorff metric, there must exist 𝜖 > 0 such that

𝐸 ⊂ (−|1
𝑐
|, |1

𝑐
|) and Θ𝑒 ⊂ (−𝜋/2, 𝜋/2) for all 𝐸 ×Θ𝑒 ∈ IR2 satisfying 𝑑𝐻(Θ𝑒, Θ̂𝑒) < 𝜖

and 𝑑𝐻(𝐸, �̂�) < 𝜖. By the definition of 𝐷ℛ, this implies that (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ for all

𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍 ∈ 𝐵𝜖(𝑍).

Finally, we verify Condition 3 of Assumption 6 by arguing that every line of the

algorithm defines its output as a locally Lipschitz continuous function of all variables

on which it depends. It follows that ℛ is a finite composition of locally Lipschitz

functions and is therefore locally Lipschitz.

By Theorem 2.1.1 in [101], the interval operations +, −, ×, 𝑥2, cos, sin, division

by a nonzero constant, and square root of a positive constant are all locally Lipschitz

continuous on their domains. Moreover, by Theorems 10 and 16, −
√ and 𝐻2 are locally

Lipschitz continuous on their domains as well. Finally, the extended intersection ∩̄ is

Lipschitz continuous by Theorem 17. Combining these facts, we conclude that each

of the lines 4–8 and 10–13 defines its output by a composition of locally Lipschitz

functions, and is therefore locally Lipschitz with respect to all arguments, as desired.
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Therefore, the entire algorithm is Lipschitz continuous with respect to (𝑡, 𝑍, 𝑃 ) on all

of 𝒟ℛ, which is a stronger condition than Condition 3 of Assumption 6.

Similarly, consider the augmented system consisting of (6.78) and let p = 𝑣 and

z ≡ (𝑠, 𝑒, 𝜃𝑒,ℒ, 𝜑1, 𝜑2) denote generic state and parameter vectors. Similarly, let

𝑍 = 𝑆×𝐸×Θ𝑒×𝐿×Φ1×Φ2 and 𝑃 = 𝑉 denote generic state and parameter interval

vectors.

Theorem 21. Define 𝐷ℛ ≡ {(𝑡, 𝑍, 𝑃 ) ∈ R × IR𝑛𝑥 × IR𝑛𝑝 : 𝐸 ⊂ (−|1
𝑐
|, |1

𝑐
|), Θ𝑒 ⊂

(−𝜋/2, 𝜋/2), 𝑉 ⊂ (0, +∞)}. Algorithm 13 is well defined for every (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ.

Moreover, Assumption 6 holds with ℛ(𝑡, 𝑍, 𝑃 ) defined by Algorithm 13.

Proof. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. Algorithm 13 is well-defined for (𝑡, 𝑍, 𝑃 ) if and only

if no domain violations occur when evaluating the inclusion functions in lines 4–18 and

lines 20–25. Similar as proved in Theorem 20, we have Algorithm 13 well defined for

(𝑡, 𝑍, 𝑃 ) ∈ R× IR𝑛𝑥× IR𝑛𝑝 until line 5. Now, we prove that lines 5–18 have no domain

violations. To show this is true for the given definition of 𝐷ℛ, choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ

and note that this implies 𝐸 ⊂ (−|1
𝑐
|, |1

𝑐
|), Θ𝑒 ⊂ (−𝜋/2, 𝜋/2), 𝑉 ⊂ (0, +∞). Lines

5, 6, 7 9, 11, and 18 are always evaluated in their appropriate domains. By the

extended intersection operators in lines 7, 9, and 11, functions in lines 8, 10, and

12 are always evaluated in IR+, which is the appropriate domain of the extended

square root function. Since 𝑉 does not contain 0, the extended intersection in line

8 guarantees that the updated 𝑉 does not contain 0 after line 8. Therefore, lines

13 and 15 do not have domain violations. Moreover, the ∩̄ in lines 14, 16, and 18

guarantee that Θ𝑒 ⊂ (−𝜋/2, 𝜋/2). Thus, by the extended intersections in lines 13

and 15, 𝐶𝑂𝑆Θ𝑒 , 𝑆𝐼𝑁Θ𝑒 ⊂ (−1, 1). Therefore, functions ¯arccos and ¯arcsin in lines 14

and 16 have no domain violations. Finally, since Θ𝑒 ⊂ (−𝜋/2, 𝜋/2) and 𝑉 does not

contain 0, 𝑉 cos(Θ𝑒) does not contain 0. Thus, by the extended intersection in line
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5, Φ1 does not contain 0 after line 5. The extended intersection operator in line 10

guarantees that Φ1 does not contain 0. Therefore, there is no domain violation in line

17. Following the proof in Theorem 20, lines 20 – 25 do not have domain violations.

To verify Condition 1 of Assumption 6, choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ and let Σ =

ℛ(𝑡, 𝑃, 𝑍) be the output of Algorithm 13. In order to verify the inclusion in (6.5), we

let f denote the right-hand-side of (6.78) and argue that

Σ ⊃{f(𝑡, z, p) : (z, p) ∈ 𝑍 × 𝑃, (𝑡, z, p) ∈ 𝐺}, (6.89)

where

𝐺 =
{︁
(𝑡, z, p) ∈ R8 : (6.79) and (6.72) hold

}︁
. (6.90)

Choose any (z, p) ∈ 𝑍×𝑃 satisfying (𝑡, z, p) ∈ 𝐺 and let (𝑠, 𝑒, 𝜃𝑒,ℒ, 𝜑1, 𝜑2) = z. Since

z ∈ 𝑍, the following inclusion all hold immediately after line 2: 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸, 𝜃𝑒 ∈ Θ𝑒,

ℒ ∈ 𝐿, 𝜑1 ∈ Φ1, and 𝜑2 ∈ Φ2. If these inclusions remain valid when line 20 is reached,

then (6.89) must hold because lines 20–25 are direct interval evaluations of the right-

hand side functions of (6.78) (i.e., f). Thus, it suffices to show that these inclusions

are maintained through lines 4–18. By the proof of Theorem 20, this inclusion is true

before line 5. By (6.81), for any z, p satisfying (𝑡, z, p) ∈ 𝐺, (z, p) ∈ 𝑍 × 𝑃 , we have

(𝑠, 𝑒, 𝜃𝑒,ℒ, 𝜑1, 𝜑2) = z satisfying 𝜑1 ∈ cos(Θ𝑒)𝑉, 𝜑2 ∈ sin(Θ𝑒)𝑉, 𝑣2 ∈ Φ2
1 +Φ2

2, 𝜑2
1 ∈ 𝑉 2−

Φ2
2, Φ2

2 ∈ 𝑉 2−Φ2
1, cos(𝜃𝑒) ∈ Φ1/𝑉, sin(𝜃𝑒) ∈ Φ2/𝑉, tan(𝜃𝑒) ∈ 𝜑2/Φ1 by (6.81) in lines 5,

6, 7, 9, 11, 13, 15, and 17. Moreover, by Theorem 9 we have (ℒ, 𝜑1, 𝜑2) ∈ 𝑉 ×Φ1×Φ2

at lines 8, 10, 12. Since 𝜑1 ∈ cos(Θ𝑒)𝑉 and 𝜑1 ∈ Φ1, the extended intersection gives

that 𝜑1 ∈ cos(Θ𝑒)𝑉 ∩̄Φ1 at lines 5. Similarly, we have (ℒ, 𝜑1, 𝜑2) ∈ 𝐿× Φ1 × Φ2 after

lines 6, 8, 10, and 12. Therefore, (6.87) holds after line 12. By Theorems 14 and

12, if cos(𝜃𝑒) ∈ 𝐶𝑂𝑆𝜃𝑒 , sin(𝜃𝑒) ∈ 𝑆𝐼𝑁𝜃𝑒 and 𝜃𝑒 ⊂ (−𝜋/2, 𝜋/2), then we have 𝜃𝑒 ∈

¯arccos(𝐶𝑂𝑆Θ𝑒) and 𝜃𝑒 ∈ ¯arcsin(𝑆𝐼𝑁Θ𝑒) after lines 14 and 16. Since 𝜃𝑒 ⊂ (−𝜋/2, 𝜋/2)
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and tan(𝜃𝑒) ∈ 𝑇𝐴𝑁Θ𝑒 , we have arctan(tan(𝜃𝑒)) = 𝜃𝑒 ∈ arctan(𝑇𝐴𝑁Θ𝑒). By the

definition of the extended intersection again, (6.89) holds after lines 14, 16, and 18.

Lines 20–25 are computed by interval arithmetic. As given in the proof of Theorem

20, it follows that Σ1, Σ2, Σ3, and Σ4 before line 24 are inclusions of 𝜎1–𝜎4 in (6.89).

Since 𝜎3 ∈ Σ3, lines 24 and 25 define inclusion function for �̇�1 and �̇�2. Thus, we

have 𝜎5 ∈ Σ5 and 𝜎6 ∈ Σ6 in lines 24 and 25. Therefore, (6.89) holds for the entire

algorithm.

Now, we verify Condition 2 of Assumption 6. Choose any (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ. By

definition, �̂� ⊂ (−|1
𝑐
|, |1

𝑐
|), Θ̂𝑒 ⊂ (−𝜋/2, 𝜋/2). By openness of (−|1

𝑐
|, |1

𝑐
|), (−𝜋/2, 𝜋/2),

and the definition of the Hausdorff metric, there must exist 𝜖 > 0 such that 𝐸 ⊂

(−|1
𝑐
|, |1

𝑐
|) and Θ𝑒 ⊂ (−𝜋/2, 𝜋/2) for all 𝐸 × Θ𝑒 ∈ IR2 satisfying 𝑑𝐻(Θ𝑒, Θ̂𝑒) < 𝜖

and 𝑑𝐻(𝐸, �̂�) < 𝜖. By the definition of 𝐷ℛ, this implies that (𝑡, 𝑍, 𝑃 ) ∈ 𝐷ℛ for all

𝑡 ∈ 𝐵𝜖(𝑡) and 𝑍 ∈ 𝐵𝜖(𝑍).

Finally, we verify Condition 3 of Assumption 6 by arguing that every line of the

algorithm defines its output as a locally Lipschitz continuous function of all variables

on which it depends. It follows that ℛ is a finite composition of locally Lipschitz

functions and is therefore locally Lipschitz.

By Theorem 2.1.1 in [101], the interval operations +, −, ×, 𝑥2, cos, sin, tan,

arctan, division by a nonzero constant, and square root of a positive constant are all

locally Lipschitz continuous on their domains. Moreover, by Theorems 10, 14, 12,

and 16, −
√, ¯arccos, ¯arcsin,and 𝐻2 are locally Lipschitz continuous on their domains

as well. Finally, the extended intersection ∩̄ is Lipschitz continuous by Theorem 17.

Combining these facts, we conclude that each of the lines 4–18 and 20–25 defines

its output by a composition of locally Lipschitz functions, and is therefore locally

Lipschitz with respect to all arguments, as desired. Therefore, the entire algorithm

is Lipschitz continuous with respect to (𝑡, 𝑍, 𝑃 ) on all of 𝒟ℛ, which is a stronger

condition than Condition 3 of Assumption 6.
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6.5 Conclusion

This chapter proposes strategies for manufacturing invariants for vehicle models under

path and trajectory tracking control laws. This allows effective redundancy-based DI

methods to be applied to efficiently compute accurate reachability bounds for these

models. The first key result of this chapter is that the choice of system coordinates

for computing reachable set enclosures is critical. Directly computing reachability

bounds in the coordinates where the controller is derived often causes certain nonlinear

terms to cancel, which can significantly reduce the conservatism of the computed

bounds. The second key result is that adding redundant model equations in the form

of Lyapunov-like functions leads to very effective manufacture invariants for this class

of problems, which enables the proposed DI method to compute tight reachability

bounds. These strategies were applied to three representative path and trajectory

tracking examples. In all cases, we ultimately obtained reachability bounds that are

greatly improved relative to the standard DI method, and appear both accurate and

efficient enough to support many online safety verification tasks. Moreover, custom

refinement algorithms based on algebraic rearrangements of these invariants were also

proposed, which produce much tighter bounds than using the existing refinement

algorithm in [103]. The produced reachable set enclosures can be potentially used for

safety verification during vehicle motion planning.
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Algorithm 10 An implementation of ℛ
1: function ℛ(𝑡, 𝑍, 𝑃 )
2: (𝐸𝑡, 𝐸𝑛, 𝐸𝜃, 𝐾𝛿, 𝑉, 𝐿, 𝐿𝐶 , 𝐸𝛿)← 𝑍
3: for 𝑖 = 1 to 𝑙 do
4: 𝐿𝐶 = 𝐿𝐶∩̄(𝐿 + 0.5𝐸2

𝛿 )
5: 𝐿 = 𝐿∩̄(𝐿𝐶 − 0.5𝐸2

𝛿 )
6: 𝐿 = 𝐿∩̄[𝑘1𝐸2

𝑡 + 𝑘1𝐸2
𝑛 + 𝐸2

𝜃 + (𝑉 − 𝑣𝑟𝑒𝑓 )2]/2
7: 𝑆𝑄𝐸𝛿

= 𝐸2
𝛿 ∩̄2(𝐿𝐶 − 𝐿)

8: 𝐸𝛿 = 𝐸𝛿∩̄ −
√︀

𝑆𝑄𝐸𝛿

9: 𝑆𝑄𝐸𝜃
= 𝐸2

𝜃 ∩̄2(𝐿− 𝑘1𝐸2
𝑡 − 𝑘1𝐸2

𝑛 − (𝑉 − 𝑣𝑟𝑒𝑓 )2)
10: 𝐸𝜃 = 𝐸𝜃∩̄ −

√︀
𝑆𝑄𝐸𝜃

11: 𝑆𝑄𝐸𝑡 = 𝐸2
𝑡 ∩̄ 2

𝑘1
(𝐿− 𝐸2

𝜃 − 𝑘1𝐸2
𝑛 − (𝑉 − 𝑣𝑟𝑒𝑓 )2)

12: 𝐸𝑡 = 𝐸𝑡∩̄ −
√︀

𝑆𝑄𝐸𝑡

13: 𝑆𝑄𝐸𝑛 = 𝐸2
𝑛∩̄ 2

𝑘1
(𝐿− 𝐸2

𝜃 − 𝑘1𝐸2
𝑡 − (𝑉 − 𝑉𝑟𝑒𝑓 )2)

14: 𝐸𝑛 = 𝐸𝑛∩̄ −
√︀

𝑆𝑄𝐸𝑛

15: 𝑆𝑄𝐸𝑣 = (𝑉 − 𝑣𝑟𝑒𝑓 )2∩̄2(𝐿− 𝑘1𝐸2
𝑡 − 𝑘1𝐸2

𝑛 − 𝐸2
𝜃 )

16: 𝐸𝑣 = 𝑉 ∩̄( −
√︀

𝑆𝑄𝐸𝑣 + 𝑣𝑟𝑒𝑓 )
17: Ξ = 𝜅𝑟𝑒𝑓 − 𝑘1[𝐸𝑡𝐻1(𝐸𝜃) + 𝐸𝑛𝐻2(𝐸𝜃)]− 𝑘2𝐸𝜃

18: 𝐸𝛿 = 𝐸𝛿∩̄(𝐾𝛿 − Ξ)
19: 𝐾𝛿 = 𝐾𝛿∩̄(𝐸𝛿 + Ξ)
20: end for
21: Σ1 ← 𝑉 cos 𝐸𝜃 − 𝑣𝑟𝑒𝑓 [1− 𝜅𝑟𝑒𝑓 𝐸𝑛]
22: Σ2 ← 𝑉 sin 𝐸𝜃 − 𝑣𝑟𝑒𝑓 𝜅𝑟𝑒𝑓 𝐸𝑡

23: Σ3 ← 𝑉 𝐾𝛿 − 𝑣𝑟𝑒𝑓 𝜅𝑟𝑒𝑓

24: Ξ̇← �̇�𝑟𝑒𝑓−𝑘1[Σ1𝐻1(𝐸𝜃)−𝐸𝑡Σ3(𝐻2(𝐸𝜃)+𝐻3(𝐸𝜃))+Σ3𝐻2(𝐸𝜃)−𝐸𝑛Σ3𝐻4(𝐸𝜃)]−𝑘2Σ3

25: Σ4 ← −𝐸𝜃𝑉 + Ξ̇− 𝑘4(𝐾𝛿 − Ξ)
26: Σ5 ← �̇�𝑟𝑒𝑓 − 𝑘1𝐸𝑡 − 𝑘3(𝑉 − 𝑣𝑟𝑒𝑓 ) + 𝑘2𝐸2

𝜃 − 𝐸𝜃𝜅𝑟𝑒𝑓

27: Σ6 ← −𝑣𝑟𝑒𝑓 𝑘2𝐸2
𝜃 − 𝑘3(𝑉 − 𝑣𝑟𝑒𝑓 )2

28: Σ7 ← −𝑣𝑟𝑒𝑓 𝑘2𝐸2
𝜃 − 𝑘3(𝑉 − 𝑣𝑟𝑒𝑓 )2 − 𝑘4(𝐾𝛿 − Ξ)2

29: Σ8 ← −𝐸𝜑𝑉 − 𝑘4𝐸𝛿

30: return Σ← (Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7, Σ8)
31: end function
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CHAPTER 7

CONCLUSION

This thesis has proposed a set-based fault detection algorithm based on a new fast and

accurate state estimation method. Specifically, this work firstly developed an effective

reachability analysis method for nonlinear discrete-time systems with uncertainties.

This is a significant step because enclosing reachable sets is a critical step in set-

based state estimation, which is in turn used in a variety of robust control and fault

detection algorithms. This reachability algorithm was then extended to set-based state

estimation. Finally, a set-based fault detection algorithm was proposed based on the

set-based state estimation method. This fault detection method eliminates false alarms

and can effectively mitigate the safety risks associated with abnormal operations, as

well as the associated economic losses caused by off-spec production, maintenance,

and downtime. Moreover, this thesis addressed two more problems as additional

contributions. First, existing zonotope order reduction methods were reviewed and

compared, providing valuable guidance for designing set-based control algorithms using

zonotopes including reachability analysis, state estimation, robust control, and fault

detection. Second, a safety verification method was developed for automated vehicles

under path or trajectory tracking control using rigorous continuous-time reachable set

bounding method.

7.1 Summary of Contributions

Chapter 2 developed a new class of methods for discrete-time reachability analysis

motivated by continuous-time methods based on differential inequalities (DI), which

is a main theoretical contribution of this work. Specifically, Chapter 2 proves that DI

methods can be used to compute reachable sets for discrete-time systems obtained by
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forward Euler discretization. Focusing on this special case, our main results show that,

for any given system, there exists a bound on the discretization step size below which

a discrete-time analogue of the basic DI method provides bounds on the reachable

sets of the discretized system. This bound depends on Lipschitz constants for the

dynamics and can be easily computed in advance. Moreover, this step size is no

more restrictive than the step size required to preserve basic physical properties of

the solution (i.e. non-negativity). Moreover, Chapter 2 proves that the discrete-time

reachability analysis algorithm can be extended to general discrete-time systems as well

under sufficient monotonicity conditions. Next, we show that advanced DI methods

using manufactured invariants are also valid in discrete time under a tighter step size

restriction. Moreover, three refinement operators are proposed for exploiting linear

and nonlinear invariants in a way that effectively balances accuracy with the need to

achieve a small Lipschitz constant. Compared to the algorithm proposed in [26, 96],

the new algorithms result in much smaller Lipschitz constants, which in turn leads to a

reasonable step size upper bound for forward Euler discrete-time systems. Additionally,

the theoretical development is generalized to consider dynamic systems subject to

externally imposed state constraints, where one is only interested in bounding the

feasible trajectories, which is useful in optimal control applications. Finally, we

compare the proposed methods to the standard discrete-time interval method and

two popular methods using zonotopes [22, 23]. The numerical results show that the

proposed DI methods in this chapter offer significant advantages in terms of both

speed and accuracy, especially for highly nonlinear and uncertain systems. Specifically,

Examples 1–4 show that the standard DI method can provide significant gains in

accuracy at lower cost when compared with existing bounding approaches based

zonotopes, while advanced DI methods using refinements based on redundant model

equations provide much more accurate bounds at similar cost. However, Examples

5–6 show that zonotopic approaches are still more effective for some problems. Our
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results suggest that zonotopic methods are more effective when the interval Jacobian

or Hessian matrices used for bounding the linearization errors in these methods have

few uncertain elements. In contrast, the DI approaches appear to be more effective

for highly nonlinear systems with large uncertainties, particularly when nonlinear or

uncertain terms can be canceled through the introduction of appropriate new variables

and manufactured invariants.

Chapter 3 develops a new set-based state estimation algorithm by adapting the DI-

based reachability method in Chapter 2 to provide accurate prediction sets using only

fast interval computations and adding an efficient and accurate correction algorithm.

The prediction step of our algorithm is not quite a direct application of the method

in Chapter 2. The main contribution of this chapter is using output measurements

to modify the prediction step in a simple but nontrivial way, leading to significantly

tighter prediction bounds. It is proved in this chapter that the new algorithm exploiting

the measurement within DI produces valid enclosures for the predictions with the

time step restriction stated in Chapter 3. The numerical results clearly verify the

accuracy and efficiency of the proposed prediction algorithm. Moreover, a correction

step is combined with the prediction method for guaranteed state estimation. The

propose algorithm significantly improves the accuracy of the estimated state sets

and is suitable for online applications. Finally, the numerical results show that this

method produces state estimates with significantly higher accuracy and efficiency than

state-of-the-art zonotopic methods for a challenging nonlinear chemical reactor model.

The major contribution of Chapter 4 is a rapid and accurate guaranteed set-based

fault detection method based on the set-based state estimation algorithm in Chapter

3. The proposed algorithm is compared with one data-based method using principal

component analysis (PCA), one model-based method using the extended Kalman

filter (EKF), and four state-of-the-art set-based algorithms in four numerical case

studies. For each case study, these fault detection algorithms are firstly tested in a
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nominal fault-free scenario. The results show that the FD methods using PCA and

EKF generate a small number of false alarms, especially for highly nonlinear and

uncertain systems, while the set-based methods have no false alarms as expected.

The methods were also tested in fault-free scenarios with large disturbances. In these

scenarios, the FD methods using PCA and EKF both generated many false alarms,

rendering them ineffective for fault detection. In contrast, the set-based methods again

gave no false alarms. Finally, the methods were compared in multiple different faulty

scenarios. The proposed FD method using DI detects faults significantly faster than

the other set-based methods and is competitive with the detection speed of PCA and

EKF for many faults. For systems with large uncertainties, the zonotopic set-based

methods failed to detect most faults due to the conservative bounds computed for the

prediction step.

Chapter 5 reviews and compares four existing zonotope order reduction methods.

This work has two main contributions. First, the order reduction method by [4] is

presented in detail and its validity is established. Second, a comprehensive comparison

of the existing four methods is presented considering both computational cost and

overestimation error for a large test set. The effects of problem dimension, initial

zonotope order, and reduced zonotope order are also investigated. The results provide

valuable guidance for designing set-based estimation and control algorithms that more

effectively balance accuracy with computational cost.

The major contributions of Chapter 6 are strategies for manufacturing invariants

for vehicle models under path and trajectory tracking control laws. This allows

effective redundancy-based DI methods to be applied to efficiently compute accurate

reachability bounds for these models. The first key result of this chapter is that

the choice of system coordinates for computing reachable set enclosures is critical.

Directly computing reachability bounds in the coordinates where the controller is

derived often causes certain nonlinear terms to cancel, which can significantly reduce
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the conservatism of the computed bounds. The second key result is that adding

redundant model equations in the form of Lyapunov-like functions leads to very

effective manufacture invariants for this class of problems, which enables the proposed

DI method to compute tight reachability bounds. These strategies were applied to

three representative path and trajectory tracking examples. In all cases, we ultimately

obtained reachability bounds that are greatly improved relative to the standard DI

method, and appear both accurate and efficient enough to support many online

safety verification tasks. Moreover, custom refinement algorithms based on algebraic

rearrangements of these invariants were also proposed, which produce much tighter

bounds than using the existing refinement algorithm in [103]. The produced reachable

set enclosures can be potentially used for safety verification during vehicle motion

planning.

7.2 Future Work

Chapter 2 developed differential inequalities methods for nonlinear discrete-time

systems. Although these methods show great advantages in terms of both speed and

accuracy, they only produce valid bounds for systems under sufficient monotonicity

conditions, or for forward Euler discretized systems with sufficiently small step sizes.

These limitations prohibit the proposed methods from being applied to general discrete-

time systems, and make their application more cumbersome even for systems where

they do apply. Future work should focus on modifying the proposed methods to

remove these restrictions while retaining the efficiency and accuracy of these methods.

Moreover, while these methods produced the tightest bounds among all compared

methods when applied to highly nonlinear systems, existing zonotopic methods still

produced tighter bounds for some specific examples, as shown by Examples 5 and 6

in Chapter 2. Therefore, combining the proposed DI methods with zonotopes could

potentially lead to significant further improvements.
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The major limitation of the state estimation algorithm in Chapter 3 is the lack of

a refinement operator for nonlinear invariants, which should be considered in future

work. Moreover, the proposed algorithm only applies to discrete-time systems obtained

by forward Euler discretization. Future work to extend the estimation algorithm to

general discrete-time systems should be considered.

This dissertation mainly focuses on passive set-based fault detection. The proposed

algorithm should be extended to fault diagnosis rather than just detection. This

can be done by applying the state estimation algorithm in Chapter 3 to faulty

models in order to test the consistency of measured outputs with each potential fault.

Moreover, although these methods are guaranteed to eliminate false alarms, they are

not guaranteed to detect faults when they occur because sets of normal conditions

and faulty conditions can be intersected. Therefore, active fault detection methods

should be developed to guarantee that no faults are missed. This can be achieved by

computing active inputs to separate sets of normal condition and faulty conditions

using optimization techniques.

Chapter 6 computes rigorous bounds for vehicle trajectories to verify the safety of

automated driving. However, this work does not provide any strategies for changing

the controller or motion plan when the verification algorithm indicates that the current

plan may cause a collision. Future work should focus on computing safe inputs to

avoid potential collisions using backward reachability analysis.
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