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SUMMARY 

 
 
 
Magnetic Resonance Imaging (MRI) is an ideal candidate for diagnostic development 

and drug efficacy studies due to its non-invasive character, deep tissue imaging 

capabilities, and clinical availability.  Currently, there is much interest in developing new 

MRI contrast agents to enhance its imaging ability and detect biological events in vivo.  

Improving MRI contrast agents could lead to earlier diagnosis of pathologies and better 

determination of drug activity.   

 

This work concentrates on engineering a new MRI contrast agent that can detect the 

biologically important molecule, glutathione (GSH).  A GSH-sensitive MRI contrast agent 

was designed and synthesized, which consists of a dysprosium-DTPA (DTPA-Dy) ligand 

conjugated to a 20kDa molecular weight poly(ethylene glycol) (PEG) chain through a 

disulfide bond.  This contrast agent, in the presence of GSH, is expected to undergo a 

disulfide exchange reaction, which will remove the PEG chain from the DTPA-Dy 

resulting in a decrease in its transverse relaxation rate (R2), and an increase in T2.  

 

This design is based on preliminary results presented here, which demonstrate that 

adding a PEG chain to DTPA-Dy increases its contrast ability (R2 is increased).   A PEG 

chain with a molecular weight of 5kDa increases the R2 of DTPA-Dy from approximately 

1mM-1s-1 to about 6mM-1s-1.  If a larger PEG chain (20kDa) is added the R2 of DTPA-Dy 

is further increased to about 12mM-1s-1.   

 

To test the design of the GSH-sensitive MRI contrast agent, several samples were made 

in buffer solution and their T2 values were measured before and at two time points after 



 xii

the addition of GSH.  The control for this experiment was a sample of the contrast agent 

in buffer that was measured at the same time points as the experimental groups without 

the addition of GSH.  The addition of GSH to solutions containing the contrast agent 

produced a 72% change in T2 over a 22% change in the control.  

 

The results of this work demonstrate that the R2 of a Dy-based MRI contrast agent can 

be manipulated by altering the length of the PEG chain conjugated to DTPA-Dy.  This 

new strategy has the potential to be used to design other biologically sensitive MRI 

contrast agents to detect a wide variety of biomolecules.  



 

1 

CHAPTER 1 

INTRODUCTION 

 
 
 

Basic principles of magnetic resonance imaging 

 

Magnetic resonance imaging (MRI) is based on applying an external magnetic field to 

water protons.  When the external magnetic field is applied to these protons, which are 

oriented in random directions, they become aligned with the external magnetic field.  The 

protons can align either with the magnetic field (referred to as the positive z direction, +z) 

or opposite to the field (referred to as the negative z direction, -z).  These oriented spins 

remain constant and form the net magnetization (Figure 1-1) [1]. 

 

 

 

Figure 1-1  Vector representing the net magnetization of the protons in the presence of 
an external magnetic field [2] 
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To collect an MRI signal, a radio frequency (RF) pulse (Figure 1-2) is applied to the 

aligned protons that tips their axis of rotation from the +z direction into the x-y plane.  

This is called the 90º pulse.  When this pulse is removed from the system, the protons 

then emit energy to re-align with the z axis.  It is this emitted energy that the MRI 

machine measures and it decays with time as more and more protons re-align along the 

z axis.   

 

Relaxation is the process by which protons emit the energy that was absorbed from the 

RF pulse and is the primary mechanism for image contrast.  In a MRI scan, two 

relaxation times are gathered, T1 and T2, these variables are the measure of the energy 

emitted by an excited proton. 

 

The longitudinal relaxation time, T1, is the measure of the time required for 63% of the 

protons to re-align along the z axis after the 90º pulse (Figure 1-2).  T1 is also sometimes 

referred to as the spin-lattice relaxation.  Immediately after the 90º RF pulse, the protons 

have no longitudinal magnetization (they are all rotated into the x-y plane), as time 

elapses, an exponential increase in longitudinal magnetization will be observed as the 

protons release their absorbed energy.   For T1 relaxation, it is vital for the protons to 

release their energy to their surroundings.  If there is another entity present in the 

environment of the proton that can absorb this energy, such as a metal, protein, etc., 

then the bulk T1 is altered.  T1 is shortened when this energy transfer is efficient. 
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Figure 1-2  90º RF pulse (A), and longitudinal relaxation, T1 (B) [2] 

 

 

 

The transverse relaxation time (or spin-spin relaxation), T2, is the measure of the time 

required for the transverse component of the net magnetization to decay to 37% of its 

original value (Figure 1-3).  When the protons are rotated into the x-y plane by the 90º 

RF pulse, they lose coherence as they re-gain the z direction.  The value of the net 

magnetization decreases towards zero as the protons’ coherence disappears.  This 

decay occurs through an irreversible process when protons release their energy to other 

nearby protons.  Small variations in a proton’s microenvironment will cause energy loss.  

To remove any coherence loss due to external field inhomogeneity, a second RF pulse 

is applied at a time, τ, after the initial 90º RF pulse.  This is a 180º RF pulse that rotates 

the protons into the negative x-y plane removing any external effects and allows for only 

measuring of the true T2.  The 180º RF pulses are continued until the protons completely 

de-phase [1]. 

 

 

   

A B 
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Figure 1-3  Transverse relaxation, T2 [2] 

 

 

 

The overall MR image is created by combining the T1 and T2 data in the following 

equation: 

M(TE) = M0[1-e^(-TR/T1)]e^(-TE/T2) 

In this equation M0 is the total net magnetization, TR(s) and TE(s) are values input by the 

machine user, and T1 and T2 are the relaxation times of the solution measured [3]. 

 

Agents that alter MR image contrast 

 

The main goal of MRI contrast agents is to improve MR images by adding functional 

data to the morphological information gathered from unenhanced images.  MR images 

are created from proton relaxation times (T1 and T2) and from proton concentrations.  

The presence of a biological marker of interest can be imaged if it alters any of these two 

variables.  Most contrast agents are chosen for their ability to alter T1 or T2 of the protons 

in their local environment.  These protons will experience a varying magnetic field that 

depends on the magnetic moment of the contrast agent, its electronic spin relaxation 
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time, and the nature of the contrast agent’s molecular interactions with the protons.  

These molecular interactions include inner-sphere and outer-sphere coordination and 

diffusional translation.  T1 and T2 can be affected by the various properties of the 

contrast agents, but usually not to the same extent. 

 

There are two major groups of MRI contrast agents.  One consists of paramagnetic 

positive enhancers that increase the MRI signal intensity and the other consists of 

contrast agents that decrease MRI signal intensity by increasing the magnetic field 

inhomogeneity.  Positive enhancers include manganese (II), iron (III), Gd (III), and stable 

free radicals such as nitroxides.  These contrast agents have several unpaired electrons 

that cause them to be highly paramagnetic.  They can be about 1800 times stronger 

than the hydrogen proton, which has only one unpaired electron.  Negative MRI signal 

enhancers include superparamagnetic particles such as iron oxide particles and metal 

ions such as Dy (III).  These particles alter proton relaxation times by creating 

microenvironments of magnetic field inhomogeneity.  Protons located in or near these 

microenvironments will experience this field inhomogeneity, called the outer-sphere 

effect or susceptibility effect, and their spins will rapidly dephase resulting in a decrease 

in T2.  These effects are best seen using T2-weighted and gradient-echo pulse 

sequences [4]. 

 

There are several characteristics of MRI contrast agents that can enhance their ability to 

alter proton relaxation times.  As described above, contrast agents will usually enhance 

either T1 or T2 more significantly than the other.  Therefore augmenting following 

characteristics will usually make the contrast agent a better T1 or T2 contrast agent.  The 

important characteristics (Figure1-4) include water exchange rate, which is the rate of 

the coordinated water molecule exchanging with the bulk (also called inner-sphere 
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effects), rotational correlation time, which is how quickly the contrast agent is tumbling in 

solution, and susceptibility effect, which is the effect of the contrast agent on the bulk 

water (non-coordinated water molecules, also called outer-sphere effect).   

 

 
 
 

Figure 1-4  Rotational correlation time, water exchange rate, and coordinated water 
molecule for DTPA-Gd 
 

 

 

Gd versus Dy 

In this work, two contrast agents will be studied, the first and most well-known is a 

positive enhancer, Gd, and the other is a negative enhancer, Dy.  Gd is currently the 

only MRI contrast agent approved for human use and is therefore more thoroughly 

studied in the literature and will be used as the basis for understanding Dy.     
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Gd is a positive T1 enhancer, even thought it can also alter T2, it is much more efficient 

at changing the longitudinal relaxivity of water protons.  The current FDA approved Gd 

contrast agents are designed from DTPA-Gd and only possess a small percentage of 

the theoretical maximum longitudinal relaxivity (R1).  In a 20MHz field, current contrast 

agents only exhibit a longitudinal relaxivity of approximately 5mM-1s-1.  To design a Gd-

based contrast agent with optimal R1 properties, the molecular tumbling should be 

slowed (increase rotational correlation time) with more inner-sphere water molecules 

coordinated on the metal ion that have relatively short residence times.  All three of 

these properties work “hand-in-hand.”  Usually, by optimizing one of these variables a 

decrease in one of the other variables off-sets the gain in R1 and the overall contrast 

ability changes only slightly.  The outer-sphere or susceptibility effect is very small for 

Gd-based contrast agents and is usually neglected.  An example of the challenges faced 

when designing a Gd-based contrast agent is the attempt by researchers to increase 

their rotational correlation time grafting macromolecules to DTPA-Gd.  Any increase in 

rotational correlation time is usually off-set by a decrease in the water exchange rate, 

which is undesirable for Gd, and therefore the overall effect is a small to modest 

increase in R1 [5].   

 

There have also been several attempts to increase the number of inner-sphere 

coordinated water molecules and shorten their residence times.  These contrast agents 

have been more successful at increasing R1 than the macromolecular Gd contrast 

agents.  They have been able to increase the number coordinated water molecules from 

one in DTPA-Gd to two, as well as speed up the exchange rate of these water 

molecules, effectively increasing R1 [6].   
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There is increasing interest in Dy-based contrast agents, since MRI technology is 

moving towards higher field strengths (>4T) and is rapidly reaching the limit where Gd-

based contrast agents have poor water relaxivity [7].  Dy is a negative enhancer and has 

the most effect on the transverse relaxation (T2) of the surrounding protons, so the 

design of an optimal Dy-based MRI contrast agent follows a different set of rules than 

Gd-based contrast agents.  By increasing the compartmentalization of the Dy-based 

contrast agent, a large increase in transverse relaxivity of the bulk protons is achieved.  

This susceptibility or outer-sphere effect is caused by Dy creating regions of magnetic 

field inhomogeneity through which the water molecules diffuse.  This effect is much more 

pronounced in Dy-based contrast agents than in Gd-based contrast agents.  There have 

been several experiments to illustrate the susceptibility effect of Dy on the bulk 

transverse relaxivity.  Fossheim et. al. injected red blood cells (RBCs) with DTPA-Dy and 

measured the R2 of the solution.  They compared this data to the same concentration of 

DTPA-Dy in solution and found a significantly larger R2 for the solution with the RBCs 

containing DTPA-Dy.  Hemolysis of the RBC suspension removed the 

compartmentalization effect and the R2 decreased to about the same as the 

homogenous DTPA-Dy solution [8].  Wang et. al. used DTPA-Dy to visualize the 

difference between intact tumor tissue, where the DTPA-Dy would be 

compartmentalized around the cells, and areas of necrosis, where DTPA-Dy would be 

distributed homogenously.  The MRI signal around the intact cells had a much lower T2 

signal than the areas of necrosis, allowing the researchers to definitively determine 

extent of necrosis in a colon cancer animal model [9]. 

 

In contrast to Gd-based contrast agents, the optimal condition for Dy-based contrast 

agents is a longer residence time of the coordinated water molecule.  The transverse 

relaxivity of Dy-based contrast agents increases with the square of the external magnetic 



 9

field and the residence time of the coordinated water molecule [7, 10].  Therefore at low 

magnetic field strengths, water residence time has little effect, but increases with 

increasing field strength.  For example, Elst et. al. found that at low field strengths, 

DTPA-Dy has an R2 of less than one, but at higher field strengths it increases to about 

1.5mM-1s-1 at 11.75T.  Even though DTPA is not an optimal ligand, due to its fast water 

exchange rate (29ns), it exhibits this trend [7].   

 

To slow the water exchange rate of the coordinated water molecule, amide bonds have 

been added to the DTPA ligand in a position where the amide oxygen would be one of 

the nine coordinated species on the metal ion.  The amide oxygen is a weaker electron 

donor to the metal ion, which, in the ligand structure with the metal ion, would reduce 

crowding and allow the water molecule to remain bonded longer [11].  In Gd-based 

systems, ligands are designed to increase crowding so that the water exchange rate is 

subsequently increased [6].  The addition of amide bonds causes a decrease in the 

water exchange rate for the contrast agent in comparison to DTPA-Dy; it is hypothesized 

that one amide bond would cause a 3-4 fold decrease and two amide bonds would 

cause a 10 fold decrease in water exchange rate [11].  Elst et. al. demonstrated that at 

the same temperature and magnetic field strength, a Dy ligand with two amide bonds 

has a water exchange rate of 220-225ns while DTPA-Dy (zero amide bonds) has a 

water exchange rate of 29ns [7].  The ligand with the two amide bonds is a more efficient 

Dy contrast agent and has a higher R2  value than DTPA-Dy.  A word of caution, Elst et. 

al. found that if the water exchange rate is slowed too much, there is a deleterious effect 

on R2 [10]. 

 

One other variable that is important in designing an efficient Dy-based contrast agent is 

the number of coordinated water molecules.  Caravan et. al. reports that Dy-based 
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contrast agents need at least one coordinated water molecule to exhibit the quadratic 

increase in transverse relaxivity with magnetic field strength.  They compared two Dy 

ligands, the first had one coordinated water molecule and the other had zero coordinated 

water molecules.  The ligand that lacked the coordinated water exhibited no increase in 

R2 with increasing field strength [12].   

 

Macromolecular MRI contrast agents 

 

Since DTPA-Gd and other small molecule Gd-based contrast agents have low retention 

in the blood (called “blood pool retention time”) due to the fast clearance by the kidneys 

and liver, many researchers have attempted to increase this retention time by grafting 

macromolecules to the Gd ligand.   Longer blood pool retention times are important for 

some imaging scans, especially for the cardiovascular system and tumor imaging.  The 

researchers hoped that by adding a macromolecule to the ligand, there would be an 

increase the longitudinal relaxivity of the contrast agent by increasing its rotational 

correlation time.  For most biocompatible linear polymer chains grafted to DTPA-Gd the 

increase in R1 was far less than expected due to the high flexibility of the chains [11].  

Some of the macromolecules that were successful in increasing the rotational correlation 

time of DTPA-Gd were dendrimers [13, 14], protein-ligand conjugates [15], and 

liposomes [16].  An example of liposomes that were able to increase R1 of DTPA-Gd 

were made of egg lecithin, cholesterol, DTPA-Gd, and PEG and had a particle size of 

205nm.  These liposomes had and R1 of about 17mM-1s-1 at a magnetic field strength of 

10.7MHz, significantly higher than DTPA-Gd (the R1 of DTPA-Gd at 20MHz is 3.7mM-1s-

1) [16].  A dendrimer that was successful at increasing the rotational correlation time of 

DTPA-Gd was designed by Langereis et. al. and had a R1 of 19.7 mM-1s-1 (dendrimer 
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had a molecular weight of 65kDa), which is almost 5 times the R1 of DTPA-Gd (4.2 mM-

1s-1) at 1.5T.  They found a linear relationship between the number of dendrimer 

generations (higher the number of generations, the larger the molecular weight of the 

macromolecule) to the R1 value measured [13]. 

 

Pegylated MRI contrast agents 

One of the highly biocompatible, linear polymers that is well studied and exhibits unique 

properties when used for contrast agents is PEG.  Incorporating PEG either physically or 

covalently to the Gd-based contrast agent will increase the blood pool retention time and 

prevent unwanted liver accumulation of the contrast agent [17].  It is also known that for 

PEG, the optimal molecular weight for blood pool retention is 20kDa or greater [18].   

 

PEG is a FDA approved polymer that can be injected, applied topically and rectally, and 

inhaled into the nasal cavity.  It has been used extensively for drug delivery applications 

to decrease clearance of the agent and protect it from serum proteins.  Chemically 

attaching a PEG moiety to an agent is called pegylation.  Pegylation changes, in a 

desirable fashion, the immunological, pharmacokinetic, and pharmacodynamic 

properties of the agent to which it is bonded.  Some of these advantages are increased 

water solubility, decreased renal clearance, and reduced toxicity.  Pegylation also 

increases the molecular weight of the agent with the effective molecular weight greater 

than the apparent molecular weight, since PEG is heavily hydrated and in constant, 

rapid kinetic motion.  This increase in molecular weight creates a protective barrier 

around the agent, consisting of the polymer and its associated water molecules, that 

protects the agent from immunogenic recognition and degradation by proteolytic 

enzymes [19, 20].  PEG strongly hydrogen bonds to the surrounding water molecules 
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and competes with water-water hydrogen bonding, creating a large hydrodynamic radius 

[21, 22, 23].  PEG can also direct the elimination route of the agent to which it is 

attached; for instance, PEG of molecular weight 6kDa four hours post injection is 92% in 

the excrement, 0.5% in the blood, 2.5% in the liver and 0.3% in the kidneys, while an 

injection of PEG of 20kDa is 42% in the excrement, 19% in the blood, 2.5% in the liver, 

and 0.5% in the kidneys [24].  The elimination rate of PEG moieties can be altered by 

administering via different routes.  Intraperitoneal has the fastest elimination rate 

followed by subcutaneous then intramuscular injection [25]. 

 

Since the addition of PEG to MRI contrast agents provides it with desirable effects such 

as longer blood pool retention times and excretion routes, its effects on the metal ion 

core have been further studied.  Although the molecular weight of the contrast agent is 

increased significantly, very little increase in relaxivity is found [18, 26].  PEG has very 

little effect on the rotation correlation times of the contrast agents to which it is 

conjugated, since it contributes almost no additional rigidity to the structure [11, 27].  If 

PEG is conjugated to a more rigid structure, such as a dendrimer, it will actually reduce 

the T1 relaxivity, so any increase in R1 from an increase in rotational correlation time is 

off-set by some decrease in another variable by PEG [17].  Doble et. al. synthesized a 

new Gd ligand that allows two water molecules to be coordinated on the Gd ion which 

increased R1 significantly.  When the researchers grafted PEG chains of various 

molecular weights to the ligand, the number of coordinated water molecules decreased 

from two to one, reducing the R1 close to that of DTPA-Gd [27].  This is hypothesized to 

be the trade-off when adding PEG to a contrast agent, any minor increase in rotational 

correlation time is off-set by the undesirable effect (for Gd) of longer water residence 

times.  The estimated increase in water residence time is a factor of four for the addition 

of a PEG chain with a molecular weight of 5kDa [5].   
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All the undesirable effects of grafting PEG to a contrast agent, a reduction in coordinated 

water molecules and a reduction in the water exchange rate, are only undesirable for 

Gd-based contrast agents.  Since Dy-based contrast agents are governed by a different 

set of rules, it seems possible that grafting PEG to Dy ligands would actually increase its 

transverse relaxivity.  Dy-based contrast agents would benefit from an increase in 

rotational correlation time, fewer coordinated water molecules, and a reduction in water 

exchange rate.  One of the goals of this work is to test this hypothesis to see if Dy-based 

contrast agents do benefit from the addition of PEG to the metal ligand. 

 

A drawback to macromolecular MRI contrast agents 

One of the drawbacks of grafting macromolecules to a contrast agent is that it is difficult 

for the contrast agent to be eventually (after the scan time) broken down and excreted 

by the body.  Researchers have attempted to attach biodegradable polymers to the 

ligand, but this does not necessarily correct this problem, because the contrast agent 

must still be broken down in the lysosome and will therefore come in contact with the cell 

[28].  The lysosome has an acidic environment (pH 5.0) that can cause the dissociation 

of toxic Gd3+ from its ligand.  Studies have shown that some of the toxic Gd3+ is not 

excreted and incorporated into bone [29].  Two designs were employed to utilize the 

extra cellular concentration of free thiols to degrade the contrast agent over time and 

avoid necessity of cellular uptake.  One design attached the metal ligand to the polymer 

backbone through a disulfide and the other incorporated the disulfide into the polymer 

backbone.  Both of these designs achieved a longer blood pool retention time with 

eventual clearance by the kidneys [30, 31, 32]. 
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Importance of GSH 

 

Living organisms maintain tight control of the extracellular redox state. One mechanism 

by which cells and tissues maintain a specific redox state is through the thiol/disulfide 

reaction of GSH. GSH is a simple molecule comprised of three amino acids, one of 

which is a cysteine that contains a free thiol. The reduced state of GSH is the monomer 

form with the free thiol present, while the oxidized form of GSH is the dimer, or disulfide 

reaction between two GSH molecules (denoted GSSG).  In humans, one third of all free 

thiols present in the body are in the extracellular space such as blood plasma and lining 

fluids like mucus [34].  The majority of extracellular GSH is acquired from food sources 

and is absorbed through in the lumen of the small intestine [33].  Variations in the 

extracellular redox state can alter a cell’s proliferation, differentiation, and apoptosis 

pathways significantly [34].   

 

Figure 1-5  Glutathione structure illustrating the three amino acids that comprise it (A) 
and the structure of the dimer, GSSG (B) 
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The majority of extracellular GSH is in the reduced form with the free thiol present.  In 

the plasma there is 2-4µM of GSH, in the lumen of the intestine there is milimolar 

concentrations and in the lining of the lungs the concentration of GSH is greater than 

400 µM.  Interestingly, in the central nervous system GSH is present in the oxidized, or 

dimer, form and any increase in GSH that leads to a more reduced state is deleterious to 

the surrounding cells [34].   

 

Implications of GSH imbalance 

Any imbalance between oxidants and anti-oxidants produce a condition called oxidative 

stress that contributes to most age-related diseases.  These diseases include 

atherosclerosis, chronic lung disease, Alzheimer’s disease, and Parkinson’s disease 

[34].  A study by Sechi et. al. demonstrated that patients with severe Parkinson’s 

disease have a decreased amount of GSH in the nigra area of the brain and in patients 

with highly advanced Parkinson’s disease GSH was virtually absent from the nigra [35].  

With aging, all extracellular environments become more oxidized from decreased GSH 

levels and lower levels of GSH have been implicated in oxidative stress diseases.  

Treating patients with GSH may minimize the damage to tissues from oxidative stress by 

removing the problematic free radicals [34].   
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CHAPTER 2 

HYPOTHESIS AND SPECIFIC AIMS 

 
  

 

Hypothesis 1 

 

If the molecular weight of the Dy is increased through pegylation, then its T2 relaxivity will 

increase, due to a slower water exchange rate, a greater susceptibility effect and an 

increase in rotational correlation time.  

 

Specific Aim 1 

 

Synthesize Dy-based contrast agents with different molecular weight PEGs and 

measure their T2 values.  Follow the same process to make different molecular weight 

Gd contrast agents for comparison. 

 

Hypothesis 2 

 

If the molecular weight of the Dy is changed from high to low by de-pegylation through 

the disulfide exchange reaction with glutathione, then glutathione concentrations can be 

detected by MRI.  
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Specific Aim 2 

 

Synthesize a contrast agent with 20kDa PEG linked to DTPA-Dy through a disulfide.  

Measure the cleavage of the disulfide linkage in the presence of glutathione through a 

change in T2. 
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CHAPTER 3 

MATERIALS AND METHODS 
 

 
 

Materials 

 

All materials were used as received unless otherwise noted.  The following materials 

were purchased from Nektar: mPEG-NH2-5kDa, mPEG-NH2-20kDa, mPEG-SH-20kDa, 

mPEG-OPSS-20kDa.  The following materials were purchased from Sigma-Aldrich: 

dimethylsulfoxide (DMSO, dried over 4Ǻ molecular sieves), triethyl amine (TEA), 

diethylenetriaminepentaacetic bisanhydride (DTPA-BA), aldrithiol, acetic acid, 

cysteamine, silica gel, dithiothreitol (DTT), glutathione (GSH), trinitrobenzene sulfonic 

acid (TNBS) and glycine-proline (Gly-Pro).  The final materials were purchase from 

various vendors; dysprosium chloride (DyCl3) and gadolinium chloride (GdCl3) were 

purchased form Alfa Aesar,  sodium phosphate salt (PBS) and sodium bicarbonate salt 

were purchased from J.T. Baker, methanol (MeOH) and ethyl acetate were purchased 

from EMD, and finally the PD-10 columns and dialysis bags were purchased from 

Pierce. 

 

Synthesis of contrast agents 1 and 2 

 

For the synthesis of contrast agents 1 and 2 (Figure 3-1 ), 513mg (0.1mmol) of mPEG-

NH2-5kDa was dissolved in 1mL of DMSO by vortexing the mixture in a 5mL round 

bottom flask equipped with a magnetic stir bar.  100µL (0.72mmol) of TEA was added to 

the flask and stirred over a magnetic stir plate for one minute.  After that, 144mg 

(0.4mmol) of DTPA-BA was added to the flask and was dissolved by stirring.  The 
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mixture was sealed with a rubber septum and allowed to react for 24 hours at room 

temperature.  The reaction products were then purified by a PD-10 column, using 

deionized water as the elution solvent, to remove any unreacted DTPA-BA.  The product 

fraction (A) was collected from the PD-10 column and freeze-dried for 24 hours 

(collected 489.2mg, or 95% of original mPEG-NH2-5kDa amount).  To complete the 

synthesis of 1, 63.5mg (0.012mmol) of A was dissolved in 2mL of deionized water in a 

scintillation vial and then 50mg (0.18mmol) of DyCl3 was added to the solution.  The 

mixture was stirred with a magnetic stir bar for 4 hours at room temperature after which it 

was purified by a PD-10 column to remove any unreacted DyCl3.  The product fraction 

was collected and freeze-dried for 24 hours.  63mg (99% of original A amount) of a 

white, fluffy solid was collected.  To complete the synthesis of 2, 50mg (0.009mmol) of A 

was dissolved in 2mL of deionized water in a scintillation vial and then 50mg (0.19mmol) 

of GdCl3 was added to the solution.  The mixture was stirred with a magnetic stir bar for 

4 hours at room temperature after which it was purified by a PD-10 column to remove 

any unreacted GdCl3.  The product fraction was collected and freeze-dried for 24 hours.  

41mg (82% of original A amount) of a white, fluffy solid was collected.  To determine 

reaction yields, a TNBS assay was performed on mPEG-NH2-5kDa and product A.   

 

Synthesis of contrast agents 3 and 4 

 

For the synthesis of contrast agents 3 and 4 (Figure 3-1 ), 507mg (0.025mmol) of 

mPEG-NH2-20kDa was dissolved in 1mL of DMSO by vortexing the mixture in a 5mL 

round bottom flask equipped with a magnetic stir bar.  28µL (0.02mmol) of TEA was 

added to the flask and stirred over a magnetic stir plate for one minute.  After that, 36mg 

(0.1mmol) of DTPA-BA was added to the flask and was dissolved by stirring.  The 
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mixture was sealed with a rubber septum and allowed to react for 24 hours at room 

temperature.  The reaction products were then diluted by the addition of 8mL of 

deionized water and separated into three dialysis bags for purification (3,500 molecular 

weight cut-off).  Deionized water was used as the dialysis solvent, and changed 4 times 

(total water used was 10L), to remove any unreacted DTPA-BA and DMSO.  The 

product solution was collected from the dialysis bags and freeze-dried for 24 hours 

(collected 221.8mg, or 44% of original mPEG-NH2-20kDa amount; one of the dialysis 

bags burst).  To complete the synthesis of 3, 55.4mg (2.7µmol) of B was dissolved in 

2mL of deionized water in a scintillation vial and then 50mg (0.18mmol) of DyCl3 was 

added to the solution.  The mixture was stirred with a magnetic stir bar for 4 hours at 

room temperature after which it was purified by dialysis against deionized water (3,500 

molecular weight cut-off; 4 water changes for a total of 10L) to remove any unreacted 

DyCl3.  The product solution was collected and freeze-dried for 24 hours.  52mg (94% of 

original B amount) of a white, fluffy solid was collected.  To complete the synthesis of 4, 

55mg (2.7µmol) of B was dissolved in 2mL of deionized water in a scintillation vial and 

then 50mg (0.19mmol) of GdCl3 was added to the solution.  The mixture was stirred with 

a magnetic stir bar for 4 hours at room temperature after which it was purified by dialysis 

(3,500 molecular weight cut-off; 4 water changes for a total of 10L) to remove any 

unreacted GdCl3.  The product solution was collected and freeze-dried for 24 hours.  

43mg (78% of original B amount) of a white, fluffy solid was collected.  To determine 

reaction yields, a TNBS assay was performed on mPEG-NH2-20kDa and product B. 
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TNBS assay  

A TNBS assay [36] was performed to determine the reaction yields of products A and B 

(Figure 3-1).  Four samples were measured consisting of products A and B as well as 

the starting materials, mPEG-NH2-5kDa and mPEG-NH2-20kDa.  All samples were 

prepared at a concentration of 1mg per 1mL (0.157mM for product A, 0.051mM for 

product B, 0.167mM for mPEG-NH2-5kDa, and 0.052mM for mPEG-NH2-20kDa) in 0.1M 

sodium bicarbonate (pH 8.5) buffer solution.  Six other samples were prepared, one as a 

control and the others to create a standard curve by which to compare the experimental 

data.  The control was 1mL of buffer (0.1M sodium bicarbonate, pH 8.5) and the five 

standard samples were made from Gly-Pro starting at 0.05mM then diluted by half to get 

a range of concentrations (0.05mM, 0.025mM, 0.0125mM, 0.00625mM, and 

0.003125mM).   

 

A stock solution (prepared fresh) of TNBS was prepared at a concentration of 0.01% 

(w/v) in 0.1M sodium bicarbonate buffer (pH8.5) and 0.5mL of this stock solution was 

added to each of the 10 samples.  The samples were then incubated at 37ºC for 2 

hours.  Before measuring the UV absorbance of each sample, the samples were diluted 

by 10 fold in sodium bicarbonate buffer (pH8.5).  The absorbance at 345nm for each 

sample was then measured and recorded.  The standard values were graphed on a 

chart with the x-axis labeled concentration and the y-axis labeled absorbance.  The 

linear model determined by this data was then used to calculate the percent yield of the 

reactions for products A and B.   
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T2 measurements 

 

All T2 measurements were taken on a 400MHz Varian NMR machine using a Carr-

Purcell Meiboom-Gill T2 (C-P-M-G-T2) pulse sequence at room temperature in the 

standard NMR tubes.  For the T2 measurements of contrast agent 1, 63mg of 1 was 

added to 1mL of PBS buffer (0.2M, pH 7.4) in an eppendorf tube.  The tube was 

vortexed for 30 seconds and then a 0.5mL aliquot was removed and placed in a NMR 

tube.  0.5mL of buffer was added to the remaining solution to dilute it by half.  This 

procedure was repeated for a total of 5 NMR samples (sample concentrations: 9.7mM, 

4.85mM, 2.425mM, 1.2125mM, 0.60625mM).   The same procedure as above was 

followed to measure the T2 of contrast agents 2 (sample concentrations: 6.3mM, 

3.15mM, 1.575mM), 3 (sample concentrations: 2mM, 1mM, 0.5mM, 0.25mM, 0.125mM), 

and 4 (sample concentrations: 1.3mM, 0.65mM, 0.325mM, 0.1625mM, 0.08125mM) with 

41mg, 52mg and 43mg as the starting amounts, respectively.  The T2 data was collected 

and plotted on a graph using the following equation: 

1/T2obs = R2[c] + 1/T2H2O  (Equation 3-1) 

Where T2obs is the T2 measured from the sample, [c] is the concentration, R2 is the slope 

of this line, and T2H2O is the T2 of water (which is 3s at 9.4T).   

 

T2 pulse sequence 

To measure the T2 of all the samples in this work the C-P-M-G-T2 pulse sequence was 

used on a 400MHz Varian NMR machine.  This sequence utilizes a 90º pulse followed 

by a series of 180º pulses that are separated by an array of times set by the user to 

achieve full decay of the signal.  Figure 3-2 is a schematic that illustrates the sequence 

of pulses where pw, p1, and d1 are set by the machine, and d2 is set at 4ms.   
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Figure 3-2  CPMGT2 signal pulse sequence where n represents the number of times 
this section of the sequence is repeated 
   

 

 

For all samples the array was set to give enough time for full signal decay and an error 

margin of less than 10%. 

 

 

Synthesis of contrast agent 5 

 

Synthesis of C 

To make C (Figure 3-3) [37], 180mg (0.82mmol) of aldrithiol was dissolved in a solution 

of 20mL methanol and 0.8mL acetic acid in a 100mL round bottom flask equipped with a 

magnetic stir bar.  In a separate 50mL round bottom flask, 50mg (0.65mmol) of 

cysteamine was dissolved in 10mL methanol. The mixture was then added drop-wise 

with stirring to the solution containing aldrithiol over 30 minutes for a final reaction 

volume of 30mL methanol and then sealed with a rubber septum.  The mixture was 

allowed to react for 4 hours at room temperature.  To purify C from the by-products and 

reactants, silica gel chromatography was performed using 7g of silica gel.  The reaction 
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mixture was concentrated by rotary vacuum distillation to about 1mL and was loaded on 

the silica gel column.  To elute the reactants and the by-product, 100% ethyl acetate was 

used and the collected fractions were discarded.  The product was then eluted using a 

MeOH/TEA (80/20) mixture and the fractions containing the product (determined by thin 

layer chromatography) were collected and vacuum dried for 48 hours.  The final product 

was analyzed by NMR and UV-Vis.  

 

The reaction yield determined by UV-Vis was calculated by measuring the UV 

absorbance of the by-product (pyridyl-2-thione) in the reaction of C with DTT.  For the 

UV-Vis assay, a sample of C (1.5mg) was dissolved in 1mL PBS buffer (0.2M, pH 7.4) 

and buffer alone was used as the control.  UV spectra were taken of each sample before 

and after the addition of DTT (0.5mM final concentration) and the change in absorbance 

at 340nm were measured for each sample.  The control had little change in absorbance 

at 340nm, while the sample containing C had a significant increase in absorbance at 

340nm.  The concentration of pyridyl-2-thione was determined using the following 

equation and compared to the theoretical concentration to obtain the percent yield. 

A = ε[c]d  (Equation 3-2) 

Where A is the UV absorbance of the sample, ε is the extinction coefficient (in this case 

ε = 8.08x103 M-1cm-1), [c] is the concentration of the sample (in M), and d is the light-path 

distance (in this case it’s equal to 1cm). 

 

 

Synthesis of D 

In a 5mL round bottom flask, 100mg (4.7µmol) of mPEG-SH-20kDa was dissolved in 

1mL PBS buffer (0.1M, pH 9).  After the polymer was fully dissolved, 1.3mg (7µmol) of C 
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was added to the reaction flask and sealed with a rubber septum.  The reaction was 

monitored by removing aliquots of the reaction hourly and talking their UV spectrum.  To 

determine the amount of pyridyl-2-thione, a reaction by-product, present in the solution, 

the change in the change in absorbance at 340nm was monitored.  After 3 hours, the 

reaction had come to completion.  An additional 0.43mg of product C was added to the 

reaction flask and after another hour had elapsed, no further increase in the absorbance 

at 340nm was detected, indicating that all the mPEG-SH-20kDa had reacted.  The 

reaction mixture was purified by dialysis (3,500 molecular weight cut-off; 4 water 

changes for a total of 10L) for 24 hours and then freeze-dried for an additional 24 hours. 

 

Synthesis of E 

All of the material recovered from the freeze-drying process in the synthesis of D (see 

above) was re-dissolved in 1mL DMSO and 10µL (0.07mmol) TEA in a scintillation vial 

equipped with a magnetic stir bar.  4mg (0.011mmol) of DTPA-BA was dissolved in 1mL 

DMSO and then added drop-wise to the vial containing D, for a total reaction volume of 

2mL DMSO.  The reaction vial was sealed with the scintillation vial cap and allowed to 

react for 24hours at room temperature.  After 24 hours elapsed, 20mg (0.074mmol) of 

DyCl3 was added to the reaction vial.  The mixture was resealed and stirred for 4 hours 

at room temperature, after which it was placed in a dialysis bag (3,500 molecular weight 

cut-off; 4 water changes for a total of 10L) and dialyzed for 24 hours against deionized 

water.  The product was then removed from the dialysis bag and freeze-dried for 24 

hours.  A total of 54mg (54% of the original mPEG-SH-20kDa weight) was recovered 

from the freeze-dryer.   
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Synthesis of contrast agent 6 

 

To synthesize contrast agent 6 (Figure 3-4), 250mg (0.012mmol) of mPEG-OPSS-

20kDa was dissolved in 2.5mL deionized water in a scintillation vial equipped with a 

magnetic stir bar.  In an eppendorf tube, 11.2mg (0.15mmol) of cysteamine was 

dissolved in 0.5mL deionized water and then added to the scintillation vial for a total 

reaction volume of 3mL.  Over the course of the reaction the amount of pyridyl-2-thione, 

the reaction by-product was monitored by UV (absorbance at 340nm) to determine 

completion time and yield.  The reaction mixture was then placed in a dialysis bag (3,500 

molecular weight cut-off; 5 water changes for a total of 12L) and dialyzed for 24 hours 

against deionized water.  After dialysis, the solution recovered from the dialysis bag was 

placed in a scintillation vial and freeze-dried for 24 hours.  230mg (92% of original PEG 

amount) of a white, fluffy powder was recovered from the freeze-drying process (product 

F). 

 

The next step in the synthesis of 6 was the reaction of 230mg (0.01mmol) of product F 

with 16mg (0.045mmol) of DTPA-BA in a DMSO/TEA (3mL/10µL) solution.  The reaction 

was stopped after 24 hours and then placed in a dialysis bag (3,500 molecular weight 

cut-off; 4 water changes for a total of 10L) and dialyzed against deionized water for an 

additional 24 hours for purification.  The reaction solution, containing product G, was 

then removed from the dialysis bag and placed in a scintillation vial equipped with a 

magnetic stir bar.  40.7mg (0.15mmol) of DyCl3 was added directly to the reaction 

solution and was allowed to stir for 24 hours.  The reaction solution was then again 

dialyzed against deionized water (3,500 molecular weight cut-off; 4 water changes for a 
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total of 10L) to remove any unchelated DyCl3 for 24 hours.  The solution was then 

freeze-dried to remove water from the final product. 
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GSH experiments with 5 

 

To measure the change in T2 of 5 in the presence of GSH, 5 samples were made each 

with a concentration of 0.75mM in PBS buffer (0.2M, pH 7.4).  A total of 40mg of 5 was 

weighed out and added to 2.5mL of PBS buffer in a scintillation vial, vortexed for 30 

seconds and then 0.5mL aliquots were taken and placed in NMR tubes.  A control of 

0.75mM of 3 was used (10.2mg in 0.638mL PBS buffer) to see if GSH could elicit a 

change in T2 without the disulfide exchange reaction occurring.  A solution of GSH was 

made (46mg/0.5mL) in PBS buffer to give a final concentration in the NMR tubes of 3mM 

(4x the concentration of 5).  The T2 measurements were taken on a 9.4 Varian NMR 

machine at room temperature using a C-P-M-G-T2 pulse sequence.  The T2 

measurements of all 6 samples (5 experimental and 1 control) were taken and then 5µL 

of the GSH solution was added to each sample (reaction temperature was 25ºC).  The 

T2 measurements were then repeated at 4 hours and then at 31 hours after the addition 

of GSH. 

 

GSH experiments with 6 

 

To measure the change in T2 of 6 in the presence of GSH, 3 samples were made each 

with a concentration of 0.46mM in PBS buffer (0.2M, pH 7.4).  A total of 15mg of 6 was 

weighed out and added to 1.5mL of PBS buffer in a scintillation vial, vortexed for 30 

seconds and then 0.5mL aliquots were taken and placed in NMR tubes.  A separate 

solution of 6 was used (5mg in 0.5mL PBS buffer; 0.46mM) as a control to determine the 

behavior of 6 under the same conditions without the addition of GSH.  A solution of GSH 

was made (37mg/0.5mL) in PBS buffer to give a final concentration in the NMR tubes of 
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1.84mM (4x the concentration of 6).  The T2 measurements were taken on a 9.4 Varian 

NMR machine at room temperature using a C-P-M-G-T pulse sequence.  The T2 

measurements of all 4 samples (3 experimental and 1 control) were taken and then 10µL 

of the GSH solution was added to each sample except the control and then all samples 

were placed in a water bath at 37ºC.  The T2 measurements were then repeated at 5 

hours and then at 24 hours after the addition of GSH. 
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CHAPTER 4 

RESULTS 

 
 
 

Reaction yields of contrast agents 1, 2, 3, and 4 

 

A TNBS assay was performed on products A (5kDa) and B (20kDa) as well as the 

starting materials (mPEG-NH2-5kDa and mPEG-NH2-20kDa) to determine the reaction 

yields with DTPA-BA.  Using the standard curve generated by the absorbance data of 

the various concentrations of Gly-Pro, it was determined that the synthesis of product A 

(Figure 3-1) had a yield of 97% and product B (Figure 3-1) had a yield of 90.2%.   

 

Interestingly, it was also found that the starting materials had low free amine content by 

weight; mPEG-NH2-5kDa had 24% free amine content by weight and mPEG-NH2-20kDa 

had 33%.  This means that there was a substantial amount of water and PEG chains 

without a free amines contributing to the bulk weight of the starting materials.  This extra 

content would not contribute to the synthesis.  The products cannot be purified from the 

extra PEG and it will remain in the system throughout the T2 measurements, but would 

not contribute to the T2 values measured. 

 

All reactions involving DyCl3 or GdCl3 were assumed to result in 100% chelation due to 

the high affinity of DTPA to the metal ions. 
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T2 measurements of contrast agents 1 and 3 

 

This section will present the results obtained from the T2 measurements taken of 

contrast agents 1 and 3.  These polymers contain Dy and therefore should have a 

lowering effect on the T2 of the solution versus the T2 of water, which is 3s at 9.4T.  All 

measurements were taken in a PBS buffer (0.2M, pH 7.4) at room temperature on a 

9.4T Varian NMR machine.  Each contrast agent was measured at 5 concentrations for 

statistical purposes.   

 

The following tables (Table 4-1 and Table 4-2) gives the concentrations measured, T2 

results, measurement errors, and the 1/ T2 used for graphing purposes for contrast 

agents 1 and 3. 

 

  

 

Table 4-1  T2 data for contrast agent 1 
PEG-DTPA-Dy-5kDa (1) 

Concentration 
(mM) T2 (s) Error 1/ T2 (s-1) 
9.7 0.01808 0.000125 55.30973 

4.85 0.03037 0.00013 32.92723 
2.425 0.07046 0.001486 14.19245 

1.2125 0.1509 0.008728 6.626905 
0.60625 0.2152 0.01497 4.64684 
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Table 4-2 T2 data for contrast agent 3 
PEG-DTPA-Dy-20kDa (3) 

Concentration 
(mM) T2 (s) Error 1/ T2 (s-1) 

2 0.04141 0.001005 24.14876 
1 0.09421 0.002654 10.61458 

0.5 0.1915 0.009936 5.221932 
0.25 0.3292 0.01809 3.037667 

0.125 0.4459 0.03237 2.242655 
 

 

 

To view these results graphically, the following equation was applied to the data:   

 

1/T2obs = R2[c] + 1/T2H2O     (equation 4-1) 

 

Where T2obs (s) is the T2 measured from the sample, [c] is the concentration (mM), R2 is 

the slope of this line (mM-1s-1), and T2H2O is the T2 of water (T2 of water at 9.4T is 3s).  

Since T2 is concentration dependent, R2 is the measure of the effectiveness of the 

contrast agent to lower T2 and the value determined by this experiment. 
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It can be seen from Figure 4-1 that the R2 of 1, which has a molecular weight of about 

5kDa, is 5.87mM-1s-1 with a linear fit of 0.9878.   The R2 of 3, which has a molecular 

weight of about 20kDa, is 11.50mM-1s-1 with a linear fit of 0.9904 (Figure 4-2).  With r2 

values close to 1, it can be assumed that the data fits the equation well and the 

calculated R2 values are very close to the actual solution R2 values. 

 

T2 measurements of contrast agents 2 and 4 

 

The results obtained from the T2 measurements of 2 and 4 are presented in this section.  

These contrast agents contain Gd and should therefore lower T2 as compared to pure 

water (which at 9.4T is 3s).  All measurements were taken in a PBS buffer (0.2M, pH 

7.4) at room temperature on a 9.4T Varian NMR machine.  Each contrast agent was 

measured at several concentrations for statistical purposes. 

 

For comparison to the results obtained with the contrast agents containing Dy, the same 

experiments were performed on 2 and 4.  The following Tables (Tables 4-3 and 4-4) 

display the raw data collected during the T2 measurements and the Figures (Figures 4-3 

and 4-4) display the data using equation 4-1 to determine the R2 values for 2 and 4.   

 

 

 

Table 4-3  T2 data for contrast agent 2 
PEG-DTPA-Gd-5kDa (2) 

Concentration (mM) T2 Error 1/T2 
6.3 0.0246 0.000142 40.65041 

3.15 0.06428 0.00044 15.55694 
1.575 0.1241 0.001236 8.058018 

 



 39

 

Table 4-4  T2 data for contrast agent 4 
PEG-DTPA-Gd-20kDa (4) 

Concentration (mM) T2 Error 1/T2 
1.3 0.1052 0.000788 9.505703 

0.65 0.171 0.003369 5.847953 
0.325 0.374 0.01472 2.673797 

0.1625 0.5436 0.04344 1.839588 
0.08125 0.6137 0.05368 1.629461 
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Results of the synthesis of contrast agent 5 

 

The first step in the synthesis pathway of contrast agent 5 (Figure 3-3) is to make 

product C.  Since this product is a small-molecule, several methods were employed to 

determine if it was made properly and its reaction yield.  The first evidence of product C 

was seen in a NMR spectrum (see Figure 4-5).  All proton peaks are present and at the 

correct ratios. 

 

 

 

Figure 4-5  NMR spectrum of product C in deuterated DMSO, where A-G indicate their 
respective protons 
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The reaction yield of C was calculated from two methods, by UV-Vis absorbance data 

and by weight (comparing actual weight to theoretical weight).  The final reaction yield 

was 78% based on weight and 87.5% based on UV-Vis. 

 

The reaction for the second step (product D) in the synthesis of contrast agent 5 was 

monitored by the UV absorbance of the by-product, pyridyl-2-thione.  This reaction was 

finished after 5 hours and even with further addition of product C, no increase in 

absorbance was measured by UV. 

 

The final steps in the synthesis of contrast agent 5 were not monitored.  The reaction of 

product D with DTPA-BA was assumed to have about 90% reaction yield since this is a 

similar reaction to the one in the synthesis pathway of contrast agents 1, 2, 3, and 4.  

The chelation of Dy3+ to DTPA was also assumed to have a reaction yield of 100%, due 

to the high affinity of DTPA to the metal ion. 

 

GSH T2 experiments with contrast agent 5 

 

To determine if the presence of GSH can be detected by MRI using contrast agent 5, 

five samples (0.75mM each) of contrast agent 5 were prepared in PBS buffer (0.2M, pH 

7.4) and pipetted into NMR tubes.  A control was prepared using contrast agent 3 at the 

same concentration (0.75mM) in PBS buffer (0.2M, pH 7.4) and was also placed in a 

NMR tube.  This control was chosen to determine if GSH changes the T2 of the solution. 
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Table 4-5 shows the T2 data collected for each sample (A-D) and the control.  The 

average and standard deviation were calculated for samples A-D without the control 

data.  Figure 4-6 illustrates the data in a bar graph, with markers indicating the standard 

deviation for each.  The average T2 for the initial data is 0.3189s, then 5 hours after the 

addition of GSH the average T2 drops to 0.2784s, which may indicate an unstable 

system.  After 31.5 hours, the system recovers back to 0.3451s.  Another indication of 

system instability is the relatively large standard deviation for the initial time point, which 

is ±18% versus ±1% for the 5 hour time point and ±5% for the 31.5 hour time point. 

 

The control for this experiment also drifted with time.  This may be due to a small 

alteration of T2 by GSH and some system instability with contrast agent 3.  It changed 

from the initial T2 measurement of 0.1226s to 0.1583s at 5 hours to 0.1838s at 24 hours 

for a total change of 50%. 

 
Table 4-5  T2 data for contrast agent 5 with GSH 

  Time After Addition of GSH 

Sample 
Initial (no GSH) 

T2 (s) 
T2 (s) at 

5hrs 
T2 (s) at 
31.5hrs 

A 0.3458 0.2743 0.3295 
B 0.3657 0.2757 0.3244 
C 0.2422 0.2751 0.3614 
D 0.273 0.2894 0.3677 
E 0.3676 0.2773 0.3424 

Contol 0.1226 0.1583 0.1838 
Average 0.3189 0.2784 0.3451 
Std. dev. 0.0576 0.0063 0.0191 
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Results of the synthesis of contrast agent 6 

 

The fist step in the synthesis of contrast agent 6 was monitored by the increase in UV 

absorbance of the by-product, pyridyl-2-thione, that is formed during the reaction of 

cysteamine with mPEG-OPSS-20kDa.  From this data it was determined that the 

reaction had come to completion in 4 hours and had a 76% yield.  As in the synthesis of 

contrast agent 5, the final two steps in the synthesis of contrast agent 6 were assumed 

to have a high reaction yield and were not measured. 

 

GSH T2 experiments with contrast agent 6 

 

The T2 experiment with contrast agent 6 and GSH was conducted in a similar fashion to 

the one discussed above for contrast agent 5.  Three samples (0.46mM each) of 

contrast agent 6 were made in PBS buffer (0.2M, pH 7.4) and pipetted into NMR tubes.  

A separate solution of 6 at the same concentration (0.46mM) in a NMR tube was used 

as a control.  This control would not have GSH added to the solution to monitor the 

behavior of contrast agent 6 in solution over the duration of the experiment. 

 

Table 4-6 lists the T2 data collected during the experiment for samples A-C and the 

control.  The average and standard deviation were calculated for samples A-C excluding 

the control data.  The bar graph (Figure 4-7) illustrates the average percent change 

between the initial data and the 24hr time point data.  At the initial time-point, before the 

addition of GSH, the average T2 for the samples is 0.1889s ±8%.  Five hours after the 

addition of GSH to each sample solution, the T2 of the samples increased to an average 
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of 0.2763s ±11% and then at 24hours (19 hours later) the average T2 was 0.3230s ±7%.  

These results follow the expected trend of an increasing T2 with time after the addition of 

GSH. 

 

The control (one sample) in this experiment consisted of contrast agent 6 in buffer that 

was treated under the same conditions as the other three samples, only without the 

addition of GSH to the solution.  The control had an initial T2 measurement of 0.3735s 

and then rose to 0.4317s at 5 hours and 0.4561s at 24 hours.  This was a total change 

of 22%. 

 

 

 

Table 4-6  T2 data for contrast agent 6 with GSH 
 Time After Addition of GSH 

Sample 
Initial (no GSH) 

T2 (s) 
T2 (s) at 

5hrs 
T2 (s) at 
24hrs 

A 0.1803 0.2566 0.3156 
B 0.1805 0.261 0.3473 
C 0.206 0.3112 0.3062 

Control 0.3735 0.4317 0.4561 
Average 0.1889 0.2763 0.3230 
Standard 
deviation 0.0148 0.0303 0.0215 
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CHAPTER 5 

 DISCUSSION  

 
 
 

In this work, the effect of covalently bonding two molecular weight PEGs to DTPA, a Dy 

ligand, was studied to determine if the MRI contrast ability of Dy could be enhanced.  

From Figures 4-1 and 4-2, it can be seen that as the molecular weight of the PEG chain 

increases from 5kDa to 20kDa, the R2 of the contrast agents doubles.  The R2 of 

contrast agent 1, which has a molecular weight of 5kDa, is 5.87mM-1s-1 and the R2 of 

contrast agent 3, which has a molecular weight of 20kDa, is 11.50mM-1s-1.  Literature 

values for the R2 of DTPA-Dy are 0.5 mM-1s-1 at 7.05T and 1.5 mM-1s-1 at 11.75T (it can 

be estimated that at 9.4T the R2 of DTPA-Dy would lie within this range), which is 

significantly less than the values resulting from this work [10].  This indicates that by 

increasing the chain length of the PEG covalently bonded to DTPA-Dy, the MRI contrast 

ability of the Dy is enhanced at 9.4T.   

 

The enhancement of the contrast ability of DTPA-Dy through pegylation is due to a 

combination of slower water exchange rates, better susceptibility, and a slower rotational 

correlation time, which are all beneficial in a Dy-based contrast agent.  From the 

literature it is seen that PEG and amide bonds (contrast agents 1 and 3 each have one 

amide bond) can successfully slow the exchange rate of the water coordinated in the 

DTPA-Dy system [5, 10, 11, 27].  It is also possible that DTPA-Dy contrast agents with 

large molecular weight PEGs grafted to them have an increased susceptibility effect due 

to the large hydrodynamic radius provided by the PEG [21].  This large hydrodynamic 

radius could create microenvironments of magnetic field inhomogeneity which would 

increase the effectiveness of Dy to alter the MRI signal [8, 19].  Finally, there could be a 
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small increase in rotational correlation time from the grafted PEG due to the large 

increase in molecular weight [19, 27]. 

 

Since the effect of varying the molecular weight of the PEG chain bonded to DTPA-Dy 

has not been studied prior to this work, the same experiments were performed using Gd 

for comparison.  There are several instances in the literature where the molecular weight 

effect of PEG covalently bonded to DTPA-Gd have been studied.  The general findings 

of these studies are that at 1.5T, DTPA-Gd has a R2 of 5.2 mM-1s-1 and pegylated DTPA-

Gd contrast agents with molecular weights of about 4.3kDa have R2s of 6.6mM-1s-1 and 

7.4mM-1s-1, which demonstrates that there is a minimal molecular weight effect on the 

contrast ability of DTPA-Gd [38].  In this work, T2 studies were performed using the same 

synthesis pathway as contrast agents 1 and 3, substituting Gd for Dy, to repeat these 

literature values.  At 9.4T, contrast agent 2 (5kDa) has an R2 of 6.03mM-1s-1 and contrast 

agent 4 (20kDa) has a R2 of 7.38mM-1s-1, which lie within the literature values. 

 

These experiments were used to validate the R2 results found for the contrast agents 

containing Dy (1 and 3).  Using the same synthesis and experimental methods, only 

changing the metal ion from Dy to Gd, literature values for pegylated DTPA-Gd were 

repeated.  This indicates that the results gathered from the Dy-containing contrast 

agents are due to changing the molecular weight of the PEG and not any other effect. 

 

From the results above, it can be hypothesized that by manipulating the molecular 

weight of the PEG bonded to DTPA-Dy in the presence of a molecule of interest, a 

measurable change in T2 would occur, leading to the detection of that molecule by MRI.  

In this work that molecule of interest is GSH which is an important biomolecule for 

maintaining the redox environment in the body.  A change in the redox environment has 
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been implicated in several age-related pathologies and this contrast agent would allow 

for these diseases to be studied non-invasively.   

 

A MRI contrast agent based on Dy was designed for the detection GSH in vitro.  A 

similar design to contrast agent 3 was used with the addition of a disulfide bond between 

the 20kDa PEG chain and DTPA-Dy.  In the presence of GSH, which contains a free 

thiol, the disulfide bond should undergo an exchange reaction, effectively removing the 

PEG chain.  If the PEG chain is removed, its T2 enhancing capabilities are no longer 

present and a measurable change in T2 should occur (the R2 of the contrast agent is 

expected to decrease from about 12 mM-1s-1 to about 1 mM-1s-1).  The overall change in 

the system should be a significant increase in T2 upon the addition of GSH. 
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Figure 5-1  Expected route of de-pegylation of contrast agents 5 and 6 by GSH leading 
to a change in T2 that can be detected by MRI 
 

 

 

To create a GSH sensitive Dy-based MRI contrast agent, two synthesis pathways were 

proposed (contrast agents 5 and 6 have the same chemical structure) and are outlined 

in Figures 3-3 and 3-4 and discussed in the Results section.  The expected mechanism 

for the detection of GSH with contrast agents 5 and 6 is illustrated in Figure 5-1. 

  

Even though the steps in the synthesis of contrast agent 5 (Figure 3-3) had high yields it 

was ineffective in producing the desired T2 results.  The initial T2 data collected before 

addition of GSH to the system had an average of 0.3189s and a standard deviation of 

±18%.  Five hours after the addition of GSH, the average T2 was expected to increase 

towards the T2 of pure water, which is 3s at 9.4T, instead it decreased to an average T2 
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of 0.2784s ±1%.  The 31.5 hour time-point did show an increase to 0.3451s ±5%, but 

this is not significantly different from the initial average.  The data showing the decrease 

in T2 after 5 hours with GSH (when it theoretically should have increased) and the large 

standard deviation for the initial data (±18%) indicates that the system may have been 

unstable at the beginning and needed some time to reach an equilibrium.  This non-

equilibrium system could be due to the PEG chains needing time to fully dissolve and 

some residual reactive free thiols that were not removed during the synthesis. 

 

The control was designed to see if GSH could alter the T2 of the system by itself, so a 

sample of contrast agent 3 (no disulfide bond) was measured before and after the 

addition of GSH at the same time points as the experimental samples.  Over the course 

of the experiment, the control drifted from 0.1226s to 0.1838s, an increase of 50%.  This 

change in T2 may be due to a combination of a non-equilibrium initial stage, some effect 

of GSH on the T2 signal, or machine error.   

 

The second synthesis pathway (contrast agent 6, Figure 3-4) produced more promising 

T2 results than contrast agent 5.  High synthesis yields were also determined for this 

pathway. 

 

The data followed the expected trend of increasing T2 with time, where the average initial 

T2 was 0.1889s, increasing to 0.2763s at 5 hours after the addition of GSH, and then 

finally increasing to 0.3230s at 24 hours post-GSH addition for a total change of 72%.  

The standard deviations for the initial and final time points were less than 10% indicating 

that the systems were in equilibrium at those time points.  The 5 hour time point has a 

standard deviation a little above 10%, but that is acceptable because the system is still 

changing at this point to reach equilibrium. 
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The control T2 signal also increased with time even though no GSH was added to its 

solution.  The total increase was about 22% for the one control sample, less than the 

72% change measured with samples A-C, but still large enough to be detected on an 

MR image. 

 

There are several possible explanations for the ambiguity in the results of the T2 

experiments with contrast agents 5 and 6.  One possible explanation is that the 

purification steps in the synthesis pathways may not have removed all of the free thiols 

from the system.  Even though great care was taken during the dialysis procedures and 

other purification procedures, un-reacted cysteamine, for example, might have been 

carried along to the final product.  Any residual free thiols in the system would cleave the 

disulfide bond in the same fashion as GSH making it indistinguishable from the reaction 

of the contrast agents with GSH. 

 

The disulfide exchange reaction with GSH can produce numerous species in the 

reaction mixture that can compete with the desired reaction pathway (Figure 5-1).  GSH 

can react with itself forming the oxidized version, GSSG, which decreases the number of 

reactive GSH molecules in the system and slows the formation of the products.  Another 

possible undesirable side-reaction is the reaction of the DTPA-Dy product containing a 

free thiol with the other product, PEG-GSH, reforming the original molecule.  There are 

numerous other side-reactions that can take place in this particular system that would 

either slow the reaction or compete with the desired reaction.  Any of the side-reactions 

described here will alter the T2 of the solution in a manner that is indistinguishable from 

the desired reaction producing ambiguous results.  Many studies of the disulfide 
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exchange reaction have shown that the reaction rates for these side-reactions are often 

similar to the desired reaction resulting a mixture of products [42, 43, 44]. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 
 
 
This work demonstrates that at a magnetic strength of 9.4T, PEG covalently bonded to 

DTPA-Dy increases its T2 relaxation rate and the larger the molecular weight of the PEG 

chain, the higher the relaxation rate.  At 9.4T, the literature value of the relaxation rate 

(R2) for DTPA-Dy is approximately 1 mM-1s-1 [38], with the addition of a 5kDa PEG chain 

the R2 increased to about 6 mM-1s-1 and when the molecular weight of the PEG chain 

was further increased to 20kDa, the R2 of the contrast agent rose to about 12 mM-1s-1.  

This is an important discovery in the field of Dy-based contrast agents, because it 

provides a method for the R2 of the contrast agent to be chemically manipulated. 

 

A GSH-sensitive MRI contrast agent was designed using a 20kDa PEG chain 

conjugated to DTPA-Dy through a disulfide bond.  It was designed so that in the 

presence of GSH, the PEG would be cleaved from the DTPA-Dy resulting in a decrease 

in R2 that can be detected by MRI.  Two synthesis pathways were used to test this 

design, generating contrast agents 5 and 6 (Figures 3-3 and 3-4).  The synthesis 

pathway for contrast agent 5 proved to be ineffective and the T2 results reflected this. 

5hrs after the addition of GSH to the solutions containing 5, the T2 of the solutions 

decreased, which was an unexpected result.  After 31.5hrs had passed, the T2 of the 

solutions increased as expected, but not enough to be significantly different from the 

initial data.  The synthesis and T2 results for contrast agent 6 were more promising than 

the results gathered from contrast agent 5.  For contrast agent 6, the T2 increased as 

expected for each of the time points measured for a total increase of 72%.  The control 

for this experiment also increased over the same time points by 22%.   
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Future Work 

 To further develop upon the promising results of contrast agent 6, several steps can be 

taken to gather more conclusive results.  In future studies, more control samples should 

be used to determine the significance of the experimental results over the controls.  

Also, more powerful purification techniques should be employed to guarantee the 

removal of residual reactants, especially those containing a free thiol.  There may also 

be a possibility of redesigning the contrast agent chemically, so that after it reacts with 

GSH, it is no longer reactive to any free thiols in the solution.   

 

Interestingly, in the literature, it has been found that Dy-based contrast agents in vivo 

perform more robustly than in vitro due to an increased compartmentalization around 

intact cells.  The R2 of a macromolecular Dy-based contrast agent with a molecular 

weight of about 5kDa is 10 to 20 times higher than the R2s measured in this work.  

Future studies with GSH-sensitive MRI contrast agents should move quickly from in vitro 

studies to in vivo studies to take advantage of this large increase [45]. 
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