User Interface Software Tools

by

James D. Foley

GIT-GVU-91-29
November 1991

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA 30332-0280

USER INTERFACE SOFTWARE TOOLS

James D. Foley
Graphics, Visualization and Usability Center
College of Computing, Georgia Institute of Technology
Atlanta, GA 30332-0280

Developing high-quality user interfaces is becoming the critical step in bringing many
different computer applications to end users. Ease of learning and speed of use typically
must be combined in an attractively-designed interface which appeals to application-
oriented (not computer-oriented) end users. This is a complex undertaking, requiring skills
of computer scientists, application specialists, graphic designers, human factors experts,
and psychologists.

User interface software is the foundation upon which the interface is built. The quality of
the building blocks provided by the software establishes the framework within which an
interface designer works. The tools should allow the designer to quickly experiment with
different design approaches, and should be accessible to the non-programmer designer.

In this paper we discuss important directions in software tools for building user interfaces:
« Unified representation serving multiple purposes;
» Integration with software engineering tools:

« Interactive programming and by-example creation of interfaces and interface
components.

Most of our focus is on the first two areas.
1. Background on User Interface Software Tools

Figure 1 shows the various levels of user-interface software, and suggests the roles for
each. The application program has access to all software levels; programmers can exploit
the services provided by each level, albeit with care, because calls made to one level may
affect the behavior of another level. In this paper we discuss just the interaction technique
toolkit and user interface management system layers. See [FOLE9SQ] for discussions of the
window manager and graphics layers.

Application

UIMS

Interaction Technique Toolkit

Interactive
Design
Tools

Window Manager System & Graphics Package

Operating System
Hardware

Fig. 1 User interface software. The application program

has access to the operating system, window manager system

and graphics package, toolkit, and UIMS. The interactive design
tools allow non-programmers to design windows, menus,
dialogue boxes, and dialogue sequences.

1.1. INTERACTION-TECHNIQUE TOOLKITS

Interaction techniques are the means by which users interactively input information to a
computer system. A typical set of interaction techniques includes a dialogue box, file—
selection box, alert box, help box, list box, message box, radio-button bank, radio button,
choice-button bank, choice button, toggle—button bank, toggle button, fixed menu, pop-up
menu, text input, and scroll bar. Interaction—technique toolkits are subroutine libraries of
interaction techniques which are made available for use by application programmers.
Widely used toolkits include the Andrew window-management system's toolkit
[PALASRZ], the Macintosh toolkit [APPL85], OSF/Motif [OPEN89] and InterViews
[LINT8&9] for use with X Windows [SCHER6], several toolkits that implement OPEN
LOOK [SUNZ&9] on both X Windows and NeWS, and Presentation Manager [MICR89].
In the X Window system, interaction techniques are called widgets, and we will often use
this term.

The look and feel of a user—computer interface is determined largely by the collection of
interaction techniques provided for it. Designing and implementing a good set of
interaction techniques is time consuming, requiring experimentation with users to ensure
ease of learning and speed of use. This toolkit approach, which helps to ensure a
consistent look and feel among application programs, is clearly a sound and well-accepted
software engineering practice. Considerable programmer productivity is gained by using
an existing toolkit. The interaction technique toolkit is used in the user interface of both
applications programs and the window manager itself.

Notice that the previous list of widgets includes both high- and low-level items, some of
which are composites of others. For example, a dialogue box might contain several radio—
button banks, toggle-button banks, and text input areas. Hence toolkits include a means of
composing widgets together, typically via subroutine calls.

Creating composites by programming is tedious. Interactive editors allow composites to be
created and modified quickly, facilitating easy changes to user interface details based on
user feedback to the design team. Commercially available dialogue box editors include
Developer's Guide from Sun Microsystems [SUN90] and UIMX from Visual Edge

[VISU90].

DIALOG - Degree Information &=—x=]

® Undergrad

O Grad {n?
(O Non-Degree

@ Full-time ([ok]
QO part-time
O 0n Leave (Cancel)

[H'IJI+DM@®HH@O@I|I"|

|

Fig. 2 The Now Software (formerly SmethersBarnes) Prototyper dialogue-box editor
for the Macintosh. A scrolling-list box is being dragged into position. The menu to the
left shows the widgets that can be created; from top to bottom, they are buttons, icons,
pictures, static text, text input, check boxes, radio buttons, scrolling lists, rectangles
(for visual grouping, as with the radio-button banks), lines (for visual separation),
pop-up menus, and scroll bars. (Courtesy Now Software.).

The output of these editors is a representation of the composite, either as data structures that
can be translated into code, as code, or as compiled code. In any case, mechanisms are
provided for linking the composite into the application program. Programming skills are
not needed to use the editors, so the editors are available to user—interface designers and
even to sophisticated end users. These editors are typical of the interactive design tools.
Figure 2 shows an example of such an editor.

Another approach to creating menus and dialogue boxes is to use a higher-level
programming-language description. In MICKY [OLSES89], an extended Pascal for the
Macintosh, a dialogue box is defined by a record declaration. The data type of each record
item is used to determine the type of widget used in the dialogue box: enumerated types
become radio-button banks, character strings become text inputs, Booleans become check

boxes, and so on. Figure 3 shows a dialogue box and the code that creates it. An
interactive dialogue—box editor can be used to change the placement of widgets.

Text Style...

lGeneva Point Size: |10

(cancer] ok)

type
Str40 = string[40]
textStyle = record
Sfont : Str40;
points (*Name = 'Point Size'): integer
end

Fig. 3 A dialogue box created automatically by MICKY from the extended Pascal
record declaration. (Courtesy Dan Olsen, Jr., Brigham Young University.)

Peridot [MYER86; MYERS§] takes a radically different approach to toolkits. The interface
designer creates widgets and composite widgets interactively, by example. Rather than
starting with a base set of widgets, the designer works with an interactive editor to create a
certain look and feel. Examples of the desired widgets are drawn, and Peridot infers
relationships that allow instances of the widget to adapt to a specific situation. For
instance, a menu widget infers that its size is to be proportional to the number of items in
the menu choice set. To specify the behavior of a widget, such as the type of feedback to
be given in response to a user action on a menu item, the designer selects the type of
feedback from a Peridot menu, and Peridot generalizes the example to all menu items.

1.2, User Interface Management Systems

A user-interface management system (UIMS) is built on top of an interaction technique
toolkit, and provides additional functionality in implementing a user interface. All UIMSs
provide some means of defining admissible sequences of user actions and may in addition
support overall screen design, help and error messages, macro definition, undo, and user
profiles. Some recent UIMSs also manage the data associated with the application.

UIMSs, like toolkits, can increase programmer productivity, speed up the development
process, and facilitate iterative refinement of a user interface as experience is gained in its
use. The more powerful the UIMS, the less the need for the application program to interact
directly with the operating system, window system, and interaction-technique toolkit.

In some UIMSs, user—interface elements are specified in a programming language that has
specialized operators and data types. In others, the specification is done via interactive

graphical editors, thus making the UIMS accessible to non-programmer interface
designers. The former approach tends to be more powerful; the latter, more accessible.

Applications developed on top of a UIMS are typically written as a set of subroutines or, in
contemporary object-oriented environments, as methods. The UIMS is responsible for
calling appropriate methods in response to user inputs. In turn, the methods influence the
dialogue—for instance, by modifying what the user can do next on the basis of the
outcome of a computation. Thus, the UIMS and the application share control of the
dialogue—this is called the shared-control model. The key concept here is that of a user—
interface szate and associated user actions that can be performed from that state. The state
can be affected by user actions and by methods.

If a context-sensitive user interface is to be created, the system responses to user actions
must depend on the current state of the interface. System responses to user actions can
include invocation of one or several methods, state changes, and enabling, disabling, or
modifying interaction techniques or menu items in preparation for the next user action.
Help can also be made dependent on the current state.

Sequencing and state dependencies can be specified using a variety of linguistic
approaches, such as state diagrams, augmented transition networks, and event languages.
Green [GREER7] surveys event languages and all the other sequence-specification methods
we have mentioned, and shows that general event languages are more powerful than are
transition networks, recursive transition networks, and grammars. He also provides
algorithms for converting these forms into an event language. ATNs that have general
computations associated with their arcs are also equivalent to event languages.

A quite different way to define sequencing is by example. Here, the user interface designer
places the UIMS into a "learning" mode, and then steps through all acceptable sequences of
actions (a tedious process in complex applications, unless the UIMS can infer general rules
from the examples). The designer might start with a main menu, select an item from it, and
then go through a directory to locate the submenu, dialogue box, or application-specific
object to be presented to the user in response to the main menu selection. The object
appears on the screen, and the designer can indicate the position, size, or other attributes
that the object should have when the application is actually executed. The designer goes on
to perform some operation on the displayed object and again shows what object should
appear next, or how the displayed object is to respond to the operation; the designer repeats
this process until all actions on all objects have been defined. This technique works for
sequencing through items that have already been defined by the interface designer, but is
not sufficiently general to handle arbitrary application functionality. User-interface
software tools with some degree of by-example sequencing specification include Menulay
[BUXT83], TAE Plus [MILL88] and the SmethersBarnes Prototyper [COSS89]. Peridot,
mentioned earlier, builds interaction techniques (i.e. hardware bindings) by example.
Another way to define user interfaces consisting of interconnected processing modules is
with data-flow diagrams. For instance, the NeXT Interface Builder [NEXT90] allows
objects to be interconnected so that output messages from one object are input to another
object. Type checking is used to ensure that only compatible messages are sent and
received.

Further background on UIMSs can be found in [HART89; MYERS89; OLSES87].

2. The User Interface Management System - Data Base Management
System Analogy

User

Interaction devices and
techniques

User Interface Management
System (UIMS)

Application program
(methods)

Data Base Management
System (DBMS)

Data storage devices and
access methods

Figure 4. Symmetry between User Interface Management Systems (UIMS) and
Data Base Management Systems (DBMS).

There is a useful analogy and symmetry between UIMS concepts and those found in data
base management systems (DBMS) as suggested in Figure 4. Just as a DBMS manages
data, a UIMS manages the interface. A DBMS hides the user from details of storage
organizations, just as a UIMS hides the programmer from details of interaction devices and
techniques. A DBMS has one or more specialized languages with which the programmer
defines views, report formats, and queries. So too a UIMS may have specialized
languages for specifying sequencing, state dependencies and changes, screen
organizations, and menu designs.

Driving this analogy further, a key to the success of DBMSs is the use of a unifying
representation. In the relational world, the conceptual data base design serves this role.
This representation is used at design time and at run time in a variety of important ways,
which we list here without elaboration.

Design time uses:

+ Form creation for data input using the form-fill-in dialogue style (Form Builder)
+ Report template generation for printing/displaying reports (Report Formatter)

» Definition of multiple views of the data

+ Generation of diagrams of the conceptual data base organization

Run time uses:

+ Helping user by displaying prompts and error messages as the user specifies a
query or an update, and in forms-oriented approaches such as Query-by-
Example (QBE)

Integrity checking

Alerting/triggering

Processing queries and updates

Mapping from views into actual relations

Query optimization -- deciding how most efficiently to access information
Generating reports

3. Unified Representation for User Interfaces

In UIMS research, the values of a unified representation are only now coming to be
recognized. Some of the types of information found in such a representation are typified
by UIDE, the User Interface Design Environment [FOLE88, FOLES9, FOLE91A]. The
representation provides:

The class hierarchy of objects which exist in the application
Properties of the objects

Actions which can be performed on the objects

Units of information (parameters) required by the actions
Pre- and postconditions for the actions.

UIDE is implemented in an expert system shell, using seven types of schemata: object
schema, action schema, parameter schema, pre-condition schema, post-condition schema,
attribute schema, and attribute type schema. (In the following description, slots, or
information contained with a schema, are given in italics).

Instances of the Object Schema represent the objects defined as part of the user interface
design. Within this schema, a Description slot is a textual description of the object (created
by the user interface designer) which can be provided to the user at run time in response to
a help request. Actions on object is a relation linking an object schema instance to the action
schema instances for those actions which can be applied to the object class. The object
schemata makes the UIMS aware of the data model assumed by the application.

There is an instance of the Action Schema for each action defined in the user interface.
Actions can affect an attribute, an object, or an object class action. Description is available
for run-time help. The Action routine name provides the link to the run-time procedure
which actually carries out the action. (In object-oriented programming, this would be the

method name.) The Actions mutually-exclusive with slot refers to all actions which cannot
be available at the same time as this action. This slot can be used to organize menus:
mutually exclusive commands, such as "turn x on" and "turn x off", can be assigned the
same menu slot. /nverse action is the name of the action which is the inverse of this action,
if such an action exists. This assists in implementing an undo command. Parameters, Pre-
conditions, and Post-conditions, refer to schema instances which further describe the
action. For each action there is a Parameter Schema instance for each parameter, or unit of
information, required by the action.

Pre-conditions are predicates which must be true in order for an action to be enabled and
thus available to the user for selection. Arbitrary predicates can be used, along with pre-
defined predicates having to do with the number of instances of different types of objects.
Post-conditions, implemented as add-lists and drop-lists, change the values of predicates.
Pre- and post-conditions specify just enough of the application's semantics to encode the
state of the interface, to allow context-sensitivity in presenting menus, to give context-
sensitive help, and for the very limited understanding of the semantics which is necessary
for transformations of interface styles.

A Pre-condition Schema is instantiated for each action. A Descriprion explains what the
pre-condition means. The actual Expression of the pre-condition is represented in a form
which can be conveniently evaluated at run-time, to determine whether the pre-condition is
true or false. A Post-condition Schema contains the Add-list and Drop-list of predicates.

The types of information encoded by predicates and used in the pre- and post-conditions
include:

» The number of objects of a particular object class which are in existence. A
creation command increments this number as a post-condition; a deletion
command decrements the number.

» The number of objects of different object classes which have been selected as
belonging to the Currently Selected Set.

» The existence of a currently selected command.

+ The existence of a value for a parameter.

* Any predicates established by the interface designer as being important to
defining the context of the interface.

Each attribute of an object is described by an instance of the Attribute Schema, which
includes an optional Default value for the attribute. The Attribute Type Schema records the
attribute Data type as being integer, real, enumerated, etc., and gives other information
which is specific to the data type.

This unified representation is evolving with time; in its present form, it is not sufficiently
robust to serve all of the purposes we have in mind, and it continues to evolve
[FOLE91b]. However, it is already quite useful. The following list indicates things that
we would like to be able to do with the representation; items indicated with an * have
already been developed:

Design time uses:
* Test properties of the interface, such as functional completeness, consistency

and reachability [FOLE89, BRAU90]
* Automatically organize menus and dialogue boxes [KIM90, DEBA91]

* Support application of correctness-preserving transformations to the interface
specification, allowing the designer to quickly explore a space of design
alternatives [FOLE87]

* Automatically create an interface to the application, using menus, dialogue
boxes, and direct manipulation [FOLE91a]

* Evaluate the interface design with respect to speed of use, using a key-stroke
model type of analysis [CARD80, SENAS§9]

» Optimize the interface design for speed of use

 Predict learning times and error rates using cognitive models [KIER85]
integrated with the representation

* Generate a parser which accepts natural-language commands to the application
[KOVA90] -

Run time uses:

Explain why a command is disabled [FOLE89]

Explain (partially) what a command does [FOLE89]

Explain what information is needed before a command can be performed

Provide procedural help, via animation, taking into account the current

application context [SUKA8S8, SUKA90]. Also show, via animation, what

sequence of commands must be performed before a currently-disabled

command can be performed.

» Generate a guided tour of the application for new users

+ Adapt to individual users based on their demonstrated knowledge of and usage
of the application

» Provide an undo capability

* Control actual execution of the application, including enabling and disabling of

menus items, as well as display of menus, dialogue boxes, and windows

[FOLE91a, GIES91]

* %X *

Because the unified representation includes aspects of data base schemata as well as those
of traditional user interface representations, the situation of Figure 5 is more evocative of
the state of affairs which becomes possible with this approach.

User

Interaction devices and
techniques

User Interface Management
System (UIMS)

Integrated Definition Application program
of Interface and Data (methods)

Data Base Management
System (DBMS)

Data storage devices and
access methods

Figure 5. Unified definition driving/controlling UIMS and DBMS.

Because the unified representation includes aspects of data base schemata as well as those
of traditional user interface representations, the situation of Figure 5 is more evocative of
the state of affairs which becomes possible with this approach.

4. Integration with Software Engineering / Data Engineering Tools

The software and data engineering community has already developed a variety of tools for
describing information about applications in general, without any real focus on the user
interface. In the meantime, the user interface software community has been developing
tools, as discussed above, which include some of the very same information, plus more
specialized user interface information. This means that some information has to be
specified twice, once by the software engineer and once by the user interface designer.
These tools should clearly be merged to speed up the design process, avoid duplication of
efforts, and avoid potential inconsistencies between the dual specifications.

As a start in this direction, we have coupled the data modeler component, called D2M2 Edit
of the Delft Direct Manipulation Manager (D2M2) [BEEK90] with Sun's DevGuide
[SUN90]. Once an object-oriented data model has been created using D2M2's interactive
design tool, the user interface designer selects attributes or actions (i.e. methods) of one or
more objects, and drags them into DevGuide. We have augmented DevGuide with a rule
base developed from the Open Look Style Guide [SUN89] utilizing application semantic
information in the specifications, so that a control panel, complete with menus and possibly
other widgets, is automatically created [DEBA91]. The designer can then use DevGuide's
interactive design capabilities to fine-tune the design, changing either the specific selection
of controls or the positioning of controls in the window.

5. Conclusions

We have presented the concept of a unified user interface representation which can be used
for a variety of run time and design time purposes, and have drawn analogies to data base
management systems. A specific unified model has been overviewed, and current and
projected uses have been described. Much work is needed to realize the full potential of
this concept; in the meantime, some of the promises of the approach have already been
realized.

Acknowledgements: The Graphics and User Interface Research Group at George
Washington University and later the Graphics, Visualization, and Usability Center at
Georgia Tech provided the intellectual environment supporting this work. Direct
contributors to UIDE include D. DeBaar, M. Frank, C. Gibbs, D. Gieskens, M. Gray, W.
Kim, S. Kovacevic, L. Moran, K. Murray, H. Senay, J. Sibert and P. Sukaviriya.
Financial support has been provided by the National Science Foundation, Sun
Microsystems, Inference Corporation, Software Productivity Consortium, Siemens
Corporation, the GWU Dept. of EE & CS Industrial Liaison Program, and Georgia
Institute of Technology. Thanks to Martin Frank, Mark Gray, Srdjan Kovacevic, Joan
Morton, and Piyawadee Sukaviriya for technical assistance in preparing this paper.

REFERENCES

APPLS85S Apple Computer, Inside Macintosh, Addison-Wesley, Reading, MA, 1985.

BEEK90 Beekman, W., D2m2edit, Master's Thesis, Delft University of Technology,
July 1990.

BRAU90 Braudes, R., A Framework for Conceptual Consistency Verification, DSc
dissertation, Dept. of Electrical Engineering and Computer Science, The
George Washington University, 1990.

BUXTS3 Buxton, W. et al., Towards a Comprehensive User Interface Management
System, Proceedings 1982 SIGGRAPH Conference, published as
Computer Graphics, 17(3), July 1982, pp. 35-42.

CARDSO Card, S., T. Moran, and A. Newell, The Keystroke-Level Model for User
Performance Time with Interactive Systems, Communications of the ACM,
23(7), July 1980, pp. 398-410.

COSS89 Cossey, G., Prototyper, Now Software, Portland, Oregon, 1989.

DEBASY1

FOLES7

FOLES88

FOLES9

FOLESO

FOLES1a

FOLE91b

GIES91

GREES7

HARTS9

KIER&S

KIM9S0

KOVAS0

DeBaar, D. and J. Foley, Coupling Application Design and User Interface
Design, Report GIT-GVU-91-10, Graphics, Visualization and Usability
Center, Georgia Institute of Technology, Atlanta GA 30332-0280, 1991.

Foley, J., W. Kim, and C. Gibbs, Algorithms to Transform the Formal
Specification of a User-Computer Interface, Proceedings INTERACT ‘87,

2nd IFIP Conference on Human-Computer Interaction, Elsivier Science
Publishers, Amsterdam, pp. 1001-1006.

Foley, J., C. Gibbs, W. Kim, and S. Kovacevic, A Knowledge Base for a
User Interface Management System, Proceedings CHI ‘88 - 1988 -
SIGCHI Computer-Human Interaction Conference, ACM, New York,
1988, pp. 67-72. '

Foley, J., W. Kim, S. Kovacevic, and K. Murray, Designing Interfaces at
a High Level of Abstraction, IEEE Software, 6(1), January 1989, pp. 25—
32.

Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics —
Principles and Practice, Addison-Wesley, Reading, MA, 1990.

Foley, J., W. Kim, S. Kovacevic and K. Murray, UIDE - An Intelligent
User Interface Design Environment, in J. Sullivan and S. Tyler (eds.)
Intelligent User Interfaces, Addison-Wesley, Reading MA, 1991.

Foley, J., D. Gieskens, W. Kim, S. Kovacevic, L. Moran and P.
Sukaviriya, A Second-Generation Knowledge Base for the User Interface
Design Environment, GWI-IIST-91-13, Dept. of Electrical En gineering and
Computer Science, The George Washington University, 1991.

Gieskens, D. and J. Foley, Controlling Interface Objects Through Pre- and
Postconditions, GIT-GVU-91-09, Graphics, Visualization and Usability
Center, Georgia Institute of Technology, Atlanta GA 30332-0280, 1991.

Green, M. A Survey of Three Dialog Models, ACM Transactions on
Graphics, 5(3), July 1987, pp. 244-275.

Hartson, R. and D. Hix, Human—Computer Interface Development:
Concepts and Software, ACM Computing Surveys, 21(1), March 1989,
pp. 5-92.

Kieras, D. and P. Polson, An Approach to the Formal Analysis of User
Complexity, International Journal of Man-Machine Studies, 22, 1985, PD-
365-394.

Kim, W. and J. Foley, DON: User Interface Presentation Design Assistant,
Proceedings of the SIGGRAPH Symposium on User Interface Software
and Technology, Snowbird, Utah, October 1990.

Kovacevic, S., A Compositional Model of Human-Computer Dialogues,
GWU-IIST-90-36, Department of Electrical Engineering and Computer
Science, The George Washington University, Washington DC 20052,
1990.

LINTg9

MICR&9

MILIL 88

MYERS86

MYERS8

MYERS9

NEXT90
OLSES7

OLSES9

OPENg9
PALAB8

SCHES6

SENAZg9

SUKAS8S

SUKA90

Linton, M., J. Vlissides, and P. Calder, Composing User Interfaces with
InterViews, IEEE Computer, 22(2), February 1989, pp. 8-22.

Microsoft Corporation, Presentation Manager, Microsoft Corporation,
Bellevue, WA, 1989.

Miller, P., and M. Szczur, Transportable Application Environment (TAE)
Plus Experiences in 'Object'ively Modernizing a User Interface
Environment, Proceedings OOPSLA’88, pp. 58-70.

Myers, B., Creating Highly-Interactive and Graphical User Interfaces by-
Demonstration, Proceedings 1986 SIGGRAPH Conference, published as
Computer Graphics, 20(4), August 1986, pp. 249-257. ’

Myers, B., Creating User Interfaces by Demonstration, Academic Press,
New York, 1988.

Myers, B., User-Interface Tools: Introduction and Survey, IEEE Software,
6(1), January 1989, pp. 15-23.

NeXT, Interface Builder, NeXT Inc, Sunnyvale, CA 1990.

Olsen, D., ed., ACM SIGGRAPH Workshop on Software Tools for User
Interface Management, Computer Graphics, 21(2), April 1987, pp. 71—
147.

Olsen, D., A Programming Language Basis for User Interface
Management, Proceedings of CHI, 1989, ACM, New York, 1989, Pp-
171-176.

Open Software Foundation OSF/MOTIF manual, Cambridge, MA, 1989.

Palay, A. et al., The Andrew Toolkit: An Overview, Proceedings 1988
Winter USENIX, Feb. 1988, pp. 9-21.

Scheifler, B., and J. Gettys, The X Window System, Transactions on
Graphics, 5(2), April 1986, pp 79-109.

Senay, H., P. Sukaviriya, L. Moran, Planning for Automatic Help
Generation, Proceedings of Working Conference on Engineering for
Human Computer Interactions, Napa Valley, California, August 1989.

Sukaviriya, P., Dynamic Construction of Animated Help from Application
Context, Proceedings of ACM SIGGRAPH 1988 Symposium on User
Interface Software and Technology (UIST '88), 1988, ACM, New York,
NY.

Sukaviriya, P and J. Foley, Coupling a UI Framework with Automatic
Generation of Context-Sensitive Animated Help, Proceedings of ACM
SIGGRAPH 1990 Symposium on User Interface Software and Technology
(UIST '90), Snowbird, Utah, October, 1990, in press.

SUNS89 Sun Microsystems, Inc., pen Look Graphical User Interface Application
Style Guidelines, Mountain View Ca, December 1989.

SUN90 Sun Microsystems, Inc., Open Windows Developer's Guide 1.1, Reference
Manual, Part No 1. 800-5380-10, Revision A of June 1990.

VISU90 Visual Edge, UIMX User's Manual, Ville St. Laurent, Quebec, Canada,
1990.

