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17 A global Poincaré section for Kuramoto-Sivashinsky system. . . . . . . . . . 77
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SUMMARY

The term spatiotemporal chaos refers to physical phenomena that exhibit irregular oscil-

lations in both space and time. Examples of such phenomena range from cardiac dynamics

to fluid turbulence, where the motion is described by nonlinear partial differential equations.

It is well known from the studies of low-dimensional chaotic systems that the state space,

the space of solutions to the governing dynamical equations, is shaped by the invariant

sets such as equilibria, periodic orbits, and invariant tori. State space of partial differential

equations is infinite-dimensional, nevertheless, recent computational advancements allow us

to find their invariant solutions (exact coherent structures) numerically. In this thesis, we

try to elucidate the chaotic dynamics of nonlinear partial differential equations by study-

ing their exact coherent structures and invariant manifolds. Specifically, we investigate

the Kuramoto-Sivashinsky equation, which describes the velocity of a flame front, and the

Navier-Stokes equation for an incompressible fluid in a circular pipe.

An important aspect of the problems studied in this thesis is the presence of continuous

symmetries, which complicates the state space by allowing solutions to have infinitely many

symmetry copies. Therefore, the main problem addressed in the thesis is the symmetry

reduction, i.e. a transformation to new coordinates where each symmetry-related solution

is represented by one. We solve this problem for continuous translation and discrete reflec-

tion symmetries by the method of slices and invariant polynomials respectively. Reducing

symmetries allows us to study unstable manifolds of high dimensional exact coherent struc-

tures such as relative equilibria and relative periodic orbits. Our visualizations of unstable

manifolds unveil the structure of the state space in the vicinity of exact coherent structures.

Besides understanding the state space geometry, periodic orbits can also be used for

predicting the long term behavior of chaotic systems by utilizing periodic orbit theory. We

show with examples that these techniques successfully extend to systems with continuous

xi



symmetries, when relative periodic orbits are used in calculations. We argue with examples

that the methods developed in this thesis can contribute towards devising a theory of

turbulence with predictive capabilities.
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CHAPTER I

INTRODUCTION

In this thesis, we study spatiotemporally chaotic systems with the methods of dynamical

systems theory. In particular, our goal is to find the exact coherent structures in these

systems and understand their roles in shaping dynamics. Ultimately, we would like to use

this understanding to make quantitative predictions about the long term behavior of these

systems. As it will be clear further in the thesis, this is an ambitious goal, hence the study

that we present here is part of a longer research program. Specifically, we are going to

focus on the systems with continuous symmetries and construction of symmetry invariant

descriptions.

The term “spatiotemporal chaos” covers a wide range of phenomena in physics and

chemistry, whenever a physical observable exhibits irregular patterns in both space and time

while the underlying laws of dynamics are deterministic. Arguably, the most extensively

studied problem of spatiotemporal chaos is the fluid turbulence, in which the laws of motion

is governed by Navier-Stokes equation. In the next section, we are going to introduce the

turbulence problem and the dynamical systems approach to it in an informal way to motivate

the reader for the rest of the thesis.

1.1 Turbulence

Navier-Stokes equation

uτ + u · ∇u = −∇p
ρ

+ ν∇2u + f (1)

is purely classical statement of momentum conservation known since the 19th century. In

(1), u(x, τ) is the velocity of the fluid as function of space x and time τ , p(x, τ) is pressure,

f(x, τ) is external forcing, ρ and ν are respectively the density and the kinematic viscosity

of the fluid. While it is possible to write Navier-Stokes equation on a single line, its solutions

can be as complicated as the turbulent water waves in Figure 1. Understanding the nature
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of solutions u(x, τ) to (1) is a big challenge for mathematicians and physicists. In the purely

mathematical setting, existence and smoothness of solutions to the Navier-Stokes equation

is listed as one of the millennium problems by the Clay Mathematics Institute [36]. In

physics and engineering, one asks questions such as “under which conditions turbulence

occurs?”, “is turbulence transient or persistent?”, “how are the physical observables effected

by turbulence?”, “are the turbulent solutions of Navier-Stokes equation organized in a

certain way?”... The question, to which we will seek an answer in this thesis is the last one

and the method we are going to follow to this end is the dynamical systems approach to

turbulence.

Figure 1: Turbulent water waves (photo by Marcus Ranum).

From the dynamical systems viewpoint, turbulence is viewed as a motion in the infinite-

dimensional state space, where the solutions of the Navier-Stokes equation (1) are defined.

Let us try to explain what do we mean by this with a thought experiment: Suppose we

marked the center of Figure 1 as x0 and measured the 3-dimensional fluid velocity at this

point u(x0, τ) for a time interval [τi, τf ]. Then we can plot our measurements on a 3D

graph and obtain a trajectory similar to the blue curve sketched in Figure 2 (a). Now let

us pick three more points on Figure 1 and repeat our measurements to obtain Figure 2 (b).

While we can look only at three dimensions due to our visual limitations, we can think of

Figure 2 (b) as a single trajectory in 4×3 = 12 dimensions. If we continue picking more and

more points to cover entire Figure 1 and below it to until we reach the bottom of the ocean,

the data we are going to collect would correspond to a trajectory in an infinite-dimensional
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space. Furthermore, if we know boundary conditions for the velocity field u(x, τ) at the ends

of Figure 1, the layers below it, and on the bottom of the ocean; then we can, in principle,

compute the shape of the water waves after time τf by solving Navier-Stokes equation (1)

with incompressibility and free-surface conditions, using our final measurement u(x, τf ) as

the initial condition. In other words, the turbulent dynamics of fluid can be thought as a

motion in an infinite-dimensional space.

(a) (b)

Figure 2: (a) Sketch of the fluid velocity measured at a single point x0 for a time interval.
(b) Sketch of the fluid velocity measured at a points x0,1,2,3 for a time interval.

Now that we established the dynamical notion of turbulence as a trajectory in an infinite-

dimensional space, we can repose the question of “How are the turbulent solutions orga-

nized?” as “What is the geometry of the state space of turbulence?”

In order to build an intuition, let us ask the same question for a much simpler problem

with chaotic dynamics. An extensively studied nonlinear system of ordinary differential

equations is the Lorenz equations

ẋ = σ(y − x) ,

ẏ = ρx− y − xz , (2)

ż = xy − bz ,

which were derived as an extreme simplification of the Rayleigh-Benard problem by Edward

Lorenz [74]. When parameters of (2) set to σ = 10 , β = 8/3 , ρ = 28, solutions of (2) yields

the famous “butterfly” attractor shown in Figure 3 (a). The equilibria E0,1,2 (points for

which the RHS of (2) is 0) and the unstable manifold of E0 are also shown in Figure 3 (a).

As can be seen from Figure 3 (a), the borders of the Lorenz attractor is set by the unstable

3



manifold of the equilibrium E0 at the origin. Dynamics on two sides of the attractor is

similar to the “spiral-out” dynamics in the neighborhood of equilibria E1 and E2. Thus, we

observe that the equilibrium solutions play an important role in shaping the 3-dimensional

state space of the Lorenz system.

(a)

E2E1

E0

x

y

z

(b)

Figure 3: (a) Lorenz attractor (blue), its equilibria Ei, and the unstable manifold (brown
and green) of the equilibrium E0 . (b) 10 periodic orbits of the Lorenz system.

In Figure 3 (b), we show 10 periodic orbits of the Lorenz system (2), which we computed

using the data provided in ref. [109]. Periodic orbits are trajectories that close onto them-

selves after a certain amount of time, and they seem to be embedded in the chaotic attractor

as can be seen from Figure 3. In fact, we can use periodic orbits of a system to predict its

long-term behavior using periodic orbit theory. Foundational ideas behind the periodic or-

bit theory goes as far back as Poincaré’s geometric approach to the three body problem [86],

and Birkhoff’s proof of the ergodic theorem [10]. The key developments following them are

seminal works of Smale [105], Sinai [102], Bowen [11], and Ruelle [98]; where the mathemat-

ical foundations of thermodynamic approach to the deterministic chaotic dynamics can be

found. Following a different path Gutzwiller arrived at the periodic orbit sum formulas for

the energy spectrum of the quantum mechanical systems [51, 52]. The long-term goal of the

research program that this thesis is a part of is to extend these techniques for turbulence.

The dynamical approach to turbulence, which we tried to describe in this section, was

first articulated in 1948 by Hopf [61]. However, it took more than 40 years for researchers

4



to start to numerically find invariant solutions of Navier-Stokes equation [82]. Since then,

many groups started to compute equilibria, traveling wave, periodic, and relative periodic

solutions of plane Couette flow [67, 83, 110] and pipe flow [34, 113, 114]. In fluid dynamics

literature, these solutions are usually referred to as ‘exact coherent structures’ [112] (we

avoid the term ‘exact coherent states’ [111], as that has a well established and different

meaning in quantum mechanics). We adopt this terminology in this thesis when we talk

about these solutions in fluid dynamics context. In addition to computation of the exact

coherent structures, Gibson et al. [45] discovery and low-dimensional visualizations of het-

eroclinic connections in the plane Couette flow is one of the most significant developments

in the dynamical description of turbulence.

1.2 Idealized geometries and symmetries

Our thought experiment of the previous section was too ambitious for a real life implemen-

tation. In reality, one studies the turbulence in much simpler geometries; such as water

flowing through a circular pipe (pipe flow, Figure 4 (a)), or between walls that move in

opposite direction (plane Couette flow, Figure 4 (b)). In these settings, fluid velocity at

the bounding walls, relative to the wall vanishes and if the experiment is carried out on a

computer, one typically imposes periodic boundary conditions in the unbounded directions.

(a) (b)

Figure 4: (a) Schematic of the pipe flow with the sketch (blue) of the laminar velocity
profile. (b) Schematic of the plane Couette flow with the sketch (blue) of the laminar
velocity profile.

Navier-Stokes equation (1) does not have an explicit dependence on space coordinates,

which is a confirmation of the fact that governing laws of physics does not change if you

move in space. Therefore, the turbulence problem in simple geometries such as the ones

5



illustrated in Figure 4 admits symmetries of the system. This, however, does not mean that

all the solutions of Navier-Stokes equation must have the symmetries of the problem. In

fact, turbulent structures, such as the ones in Figure 1 never have symmetries. The fact

that problem has symmetries only implies that one can obtain new solutions by applying

symmetry transformations to the known ones. This distinction and its implications are of

central importance for this thesis and we are going to study them in depth. As an example,

consider the pipe flow, in which one applies a net pressure gradient in z direction to sustain

a constant mean flow, thus all of its solutions drift in z direction. This physical constraint

disallows having stationary solutions such as those of the Lorenz system in Figure 3 (a);

thus the simplest nontrivial exact coherent structure one could obtain in this setting is a

traveling wave (relative equilibrium) that is a steady wave profile drifting in z direction at a

constant speed. Similarly, roles of periodic orbit in pipe flow are also taken over by relative

periodic orbit, which are wave forms that recur exactly after a certain period at a shifted

location.

According to Cushman, Bates [19] and Yoder [120], an early study of relative equilibria

was the work of Huyghens’ [63] on the spherical pendulum. Vierkandt [108] showed that all

solutions of the rolling disk are periodic, if the continuous symmetry of the system is reduced.

According to Chenciner [17], Poincaré [86] was first to propose finding relative periodic

solutions of the three body problem. In more recent mathematics literature, foundational

works on the dynamical systems with symmetries are those of Smale [106], Field [40], and

Ruelle [97]. In plane Couette flow, Nagata [83] was first to find a non-trivial traveling

wave solution and Viswanath [110] was first to find a relative periodic orbit numerically.

Traveling waves in pipe flow were first discovered by Faisst and Eckhardt [34] and relative

periodic orbits of the pipe flow was first found by Duguet et al. [32]. These developments

and many others that followed significantly improved our understanding of turbulence at

transitional Reynolds numbers, which we will review in Chapter 6.

Presence of continuous symmetries add a “redundant” degree of freedom to the state

space, since almost all solutions have continuously many symmetry copies. Such a redundant

degree of freedom is undesirable for us since our objective is to find dynamical relations
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between exact coherent structures in order to understand the geometry of the state space.

For this reason, the main problem to be addressed in this thesis is the ‘translation symmetry

reduction’, that is, finding symmetry-invariant representations for systems with translation

symmetry.

1.3 Overview of this thesis and its results

This thesis is divided into seven chapters including the current one. The next chapter is a

very brief summary of the theory of nonlinear dynamics that will be applied to the problems

in the rest of the thesis. A reader who is familiar with nonlinear dynamics and periodic

orbit theory may safely skip Chapter 2. If you are familiar with nonlinear dynamics, but

have never seen Perron-Frobenius operator and trace formulas, then you may find it useful

to review Sect. 2.2. Chapter 3 is devoted to the main problem of this thesis. In this chapter,

we introduce the SO(2) symmetry reduction problem, in a system-independent way, and

describe its solution via method of slices. Following three chapters presents applications

of the symmetry reduction to the problems of increasing difficulty. Our first application,

the two-modes system (Chapter 4), is a toy problem that has the same symmetry structure

with the problems to follow. In this example, we carry out all steps, including finding

all periodic orbits and computing dynamical averages with them, that one should apply

to spatiotemporally chaotic systems. The second example is the Kuramoto-Sivashinsky

system, where in addition to the translation symmetry, we also have a reflection symmetry.

In Chapter 5, we introduce reflection-invariant polynomials that take care of the remaining

symmetry of the Kuramoto-Sivashinsky system, and within its fully-reduced state space we

study Kuramoto-Sivashinsky system’s transition to chaos via torus-breakdown. Finally in

Chapter 6, we introduce the pipe flow, explain how its stream-wise translation symmetry is

reduced, and what one learns afterwards. We summarize our conclusions and outline some

future directions in Chapter 7
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CHAPTER II

NONLINEAR DYNAMICS AND THE PERIODIC ORBIT THEORY

In this chapter, we introduce the essential concepts of nonlinear dynamics and periodic

orbit theory; and set up the notation for the rest of the thesis. The material covered in

this chapter is summary of the first 22 chapters of the ChaosBook.org [21], which as of

this writing, spans 412 pages with figures, examples, and exercises. In other words, the

purpose of this chapter is not to teach reader the periodic orbit theory, but to provide a

quick reference for rest of the thesis.

2.1 Basics of dynamics

As a mathematical abstraction, a dynamical system is defined by its state space M ∈ RD

and evolution rule f τ (a) that maps every point in the state space (or a state vector) a(0) ∈

M to a(τ) ∈ M after some time τ . A dynamical system for which τ takes discrete values

is called a map, whereas the one for which τ takes continuous values is called a flow. Our

main interest in this thesis will be flows that can be described by a set of first order ordinary

differential equations (ODEs):

ȧ = v(a) . (3)

Elements of a and the form of v depend on the underlying problem and physical laws.

For example, when (3) describes a classical mechanics problem, then a consists of position

and momenta of the particles involved, and v(a) reflects Newton’s laws of motion. Whereas

if (3) describes an electrical circuit, then a has voltages across capacitors and currents

flowing through the inductors and v(a) is determined by Kirchoff’s laws and the terminal

relations of components.

2.1.1 Linear versus nonlinear

If (3) can be brought into the following form

ȧ = Aa , (4)

8
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where A is a d× d matrix, the flow is said to be linear, since its velocity function is linear

in a . In this case, the solution is immediately given by the matrix exponential:

a(τ) = eAτa(0) , where eAτ =
∞∑
n=0

(Aτ)n

n!
. (5)

Thus, if A is diagonalizable, understanding the dynamics is equivalent to finding eigenvalues

(λi) and eigenvectors (vi) ofA. Suppose that they satisfyAvi = λiv, and the initial condition

can be decomposed into a(0) =
∑

i civi, then we can rewrite (5) as

a(τ) =
∑
i

cie
λiτvi . (6)

From (6), it is clear that as time advances, the flow will expand in directions ve with

Re[λe] > 0 and components in directions vc with Re[λc] < 0 will vanish. The former are

said to be unstable directions and the latter are called the stable directions. While (4) can

describe only a small portion of what actually happens in nature, as we shall see, this notion

of linear stability is essential in understanding general, nonlinear systems.

2.1.2 Equilibria, periodic orbits and their linear stability

2.1.2.1 Equilibria

ODE form of a flow given in (3) is sometimes referred to as the Eulerian description of the

flow. We can write an equivalent description, so-called Lagrangian description of the flow

by integrating (3):

a(τ) = f τ (a0) , where f τ (a0) = a0 +

∫ τ

0
v(a(τ))dτ (7)

An equilibrium is a special point such that its trajectory satisfies f t(aeq) = aeq, equivalently

v(aeq) = 0. For the linear dynamical system described by (4), we described stable and

unstable directions, in order to construct a similar notion for a nonlinear system, we consider

the time evolution of small perturbations around a state space point a and expand (3) up

to first order perturbations in every direction in the state space:

ȧi + δ̇ai = vi(a) +
∑
j

∂vi(a)

∂aj
δaj . (8)
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We define the partial derivatives of velocity function as the stability matrix

Aij(a) =
∂vi(a)

∂aj
. (9)

For an equilibrium, by definition, ȧeq = v(aeq) = 0 , hence the time evolution of the small

perturbations around the equilibrium is described by the linear relation

δ̇a = A(aeq)δa (10)

In analogy with the linear case we described above, eigenvalues of A(aeq) determine the

stability of the equilibrium aeq . If all eigenvalues of A, have negative real parts, then the

equilibrium is called a sink ; if some of them has negative and some of them has positive real

parts, then the equilibrium called a saddle; and if all eigenvalues have positive real parts,

then the equilibrium is called a source.

2.1.2.2 Periodic orbits

If every state space point on an orbit closes onto itself after evolving for a non-zero period

Tp, then such an orbit is called a periodic orbit. In other words, if ap is on a periodic orbit

with period Tp then

ap = fTp(ap) . (11)

Similar to the equilibrium, we study the stability of a periodic orbit again by investigating

the time evolution

f τ (ap + δa)i = f τ (ap)i +
∑
j

∂fTp(a)i
∂aj

∣∣∣∣
a=ap

δaj . (12)

of a slightly perturbed trajectory. Second term in (12) determines the expansion of nearby

perturbations to an orbit. We define the Jacobian of the flow as

Jτij(a0) =
∂f τ (a)i
∂aj

∣∣∣∣
a=a0

. (13)

Since for a periodic orbit, fTp(ap) = ap stability of perturbations to the periodic orbit is

determined by the Jacobian of the periodic orbit Jp = JTp(ap), which has a special name:

the Floquet matrix. Eigenvalues Λi and eigenvectors Vi of the Floquet matrix, which we

will refer as Floquet multipliers and Floquet vectors respectively, determines the stability

10



of a periodic orbit. For every state space point on a periodic orbit, the Floquet matrix

has at least one Floquet vector with unit multiplier, at the same direction with the flow

velocity. In other words, velocity field evaluated at a state space point on a periodic orbit

is an eigenvector of Floquet matrix with unit eigenvalue:

Jpv(ap) = Λmv(ap) ,where Λm = 1. (14)

This simply states that if one perturbs the periodic orbit along the orbit itself, the flow stays

on it. Directions with unit Floquet multipliers (Λm = 1) are called marginal. Directions

with Floquet multipliers greater (Λe > 1) and lesser (Λc < 1) than 1 are respectively called

expanding and contracting. As the names suggest, periodic orbit is unstable against the

perturbations towards the former whereas it is stable against the perturbations towards the

latter.

We shall now explain how we compute the Jacobian (13) numerically. For infinitesimal

time δτ , (13) becomes

Jδτij (a0) =
∂(a0,i + v(a0,i)δτ)

∂aj
,

= δij +Aij(a0)δτ , (15)

from which we see that J0(a0) = 1. By definition (7), flows satisfy the semi-group property

f τ1(f τ2(a0)) = f τ1+τ2(a0) . (16)

Using which we can divide the evaluation of the perturbed flow into two steps

f τ1+τ2(a0 + δa) = f τ1(f τ2(a0) + Jτ2(a0)δa) ,

= f τ1+τ2(a0) + Jτ1(f τ2(a0))Jτ2(a0)δa . (17)

We again kept terms up to first order in perturbations and showed that along the trajectory,

the Jacobian is multiplicative from the left: Jτ1+τ2 = Jτ1Jτ2 . Now we can divide a finite

time trajectory into infinitesimal pieces and write the Jacobian using its multiplicative

property as

Jτ (a0) = lim
m→∞

Jδτ (am−1)Jδτ (am−2) . . . Jδτ (a1)Jδτ (a0) where,m = τ/δτ . (18)
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Substituting the definition of the short time Jacobian into (18), we get

Jτ (a0) = lim
m→∞

(1 +A(am−1)δτ)(1 +A(am−2)δτ) . . . (1 +A(a0)δτ) ,

= lim
m→∞

eA(am−1)δτeA(am−2)δτ . . . eA(a0)δτ ,

= Te
∫ τ
0 dτA(a(τ)) , (19)

where in the last step, we took the m → ∞ limit and obtained the time-ordered integral.

In practice, we solve

J̇τ (a0) = A(a(τ))Jτ (a0) , where a(0) = a0 , J
0(a0) = 1 , (20)

numerically along with the ODEs (3). One can easily check that (19) is the solution of (20).

2.1.3 Time-invariant sets

Since time evolution satisfies the semi-group property (16), we can talk about invariants of

this semi-group action. The orbit of a state space point a0 is the set of points Ma0 , that

can be reached from a0 by the flow mapping (7)

Ma0 = {f τ (a0) | τ ∈ [0,∞)} . (21)

The orbit (21) is by definition time invariant, that is if we act on the members of set (21)

with the flow mapping (7) the new set of points we obtained are contained in (21). Equi-

libria and periodic orbits we defined in the previous section form “compact” time-invariant

sets. Relative equilibria and relative periodic orbits, which we will introduce in the next

chapter, also form time-invariant sets. In several places in this thesis, we call these states

“invariant solutions” in reference to their time-invariance property.

2.2 Densities and averages

When a system is chaotic, numerical solutions of the equations of motion (3) describe

trajectory of a state space point, with exponentially decreasing accuracy; hence they by

themselves are not very useful for long-term predictions. However, as we shall see, we can

think in terms of collection of state space points, densities, and define long-term expectation

value of an observable as the average over an “invariant density”. We are going to start

with a few words on need for this way of thinking.
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2.2.1 Chaos

Set of ODEs (3) which define a dynamical system are by definition time-invariant, hence we

say that the system is deterministic. Laws of physics underlying the motions of streams in

oceans or a double rod pendulum are also deterministic, yet, knowing them is not enough

to predict how much energy will the waves dissipate this year, or how many full turns will

the double pendulum make in a certain amount of time. The reason is chaos, which is the

extreme dependence on the initial conditions. We can state this in mathematical terms as

follows: Let δa0 be an infinitesimal perturbation to the initial condition a0. After some

time τ , let us denote the image of the original and perturbed trajectory as

a(τ) = f τ (a0) and a(τ) + δa(τ) = f τ (a0 + δa0) . (22)

For every a0 in a bounded volume of the state space, if the magnitude |δa0| of the initial

separations grow as

|δa(τ)| ≈ eλτ |δa0| with λ > 0 , (23)

we say the dynamics is chaotic with the leading Lyapunov exponent λ.

Above statements of chaos tells us that it is impossible to predict much about a chaotic

system by just solving equations of motions since no computer has infinite precision, or no

measurement device can provide us a perfectly accurate initial condition. We thus, move

from thinking in terms of points in the state space to thinking in terms of collection of

them.

2.2.2 Evolving densities

A density ρ(a, τ) is a function of state space coordinates and time, which satisfies the

normalization condition ∫
M
daρ(a, τ) = 1 . (24)

at all times. We think of a density as a continuous collection of state space points, each of

which evolves according to the evolution rule (7). A density will also evolve in time, which
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we will describe by the action of Perron-Frobenius operator as

ρ(a, τ) = [LτPF ρ](a) (25)

=

∫
M
da0δ(a− f τ (a0))ρ(a0, 0), (26)

=
ρ(a0, 0)∣∣∣∣det ∂fτ (a)
∂a

∣∣∣
a=a0

∣∣∣∣ , where a = f τ (a0)

=
ρ(a0, 0)

|det J t(a0)|
, where a = f τ (a0) , (27)

where the last two steps followed from the integration over the delta function in (26) and

we assumed every state space point a has only one pre-image. Since our attention here is

restricted to deterministic flows, this assumption is valid.

In order to develop some intuition, we can think of the kernel

LτPF (a, a0) = δ(a− f τ (a0)) . (28)

of the Perron-Frobenius operator (26) as a matrix with continuous indices a and a0 that

runs over all state space. In this sense, Perron-Frobenius operator is an infinite dimensional

transition matrix with a continuous time variable.

An invariant density or an invariant measure is a density that stays unchanged, in other

words, ρ(a) is called an invariant measure if it is an eigenfunction of Perron-Frobenius oper-

ator with unit eigenvalue

[LτPFρ](a) =

∫
M
da0δ(a− f τ (a0))ρ(a0) = ρ(a) . (29)

It is possible to construct many invariant measures. Take, for example, a set ofNeq equilibria

aeq, then ρ(a) = (1/Neq)
∑

eq δ(a−aeq) by definition is stationary. Another invariant set can

be a uniform density over all the points on a periodic orbit. An invariant measure that will

be important for what comes next is the so-called natural measure, or Sinai-Bowen-Ruelle

measure:

ρ0(a) = lim
τ→∞

1

τ

∫ τ

0
dτδ(a− f τ (a0)) , (30)

where a0 is some initial point in M. If the natural measure limit (30) exists, it is by

definition an invariant measure since evolving it for finite time will not have an effect on

infinite time limit.
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2.2.3 Averages

As we stated earlier, state space coordinates of a system completely specifies its physical

state and carries all relevant information at a certain instance. With this in mind, it is

reasonable to assume that we can define observables as functions of state space coordinates.

Let ω(a) be an observable that we can define on a system, then its average over a certain

density is given by

〈ω〉ρ =

∫
M
daρ(a)ω(a) . (31)

We dropped in (31) the time dependence of density ρ(a) since it is of no importance, and

assumed that it is normalized as in (24). Now let us evaluate (31) using the natural measure

(30)

〈ω〉ρ0 = lim
τ→∞

1

τ

∫ τ

0
dτ

∫
M
daδ(a− f τ (a0))ω(a) ,

= lim
τ→∞

1

τ

∫ τ

0
dτω(f τ (a0)) . (32)

We obtained in (32) that average of an observable over the natural measure (30) is its long

time average. Existence of the limit (32) and its independence from the arbitrary initial

point a0 are important questions that we do not attempt to answer in this thesis. However,

as we will show in our examples, this is not an unreasonable assumption.

In what follows, our goal is to develop a formalism to evaluate the integral

〈ω〉 =

∫
M
daω(a)ρ0(a) , (33)

which is the space average of the observable a over the natural measure, or as we have

shown in (32), long time average of a.

We restrict our attention to scalar observables which are additive along an orbit and

define the evolution operator

[Lτ ρ](a) =

∫
M
da0δ(a− f τ (a0))eβΩτ (a0)ρ(a0, 0). (34)

Here, β is an auxiliary variable and Ωτ (a0) is the integrated value of the ω observable

along the orbit f τ (a0), namely

Ωτ (a0) =

∫ τ

0
ω(a(τ ′))dτ ′ , a(0) = a0. (35)
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Note that when β → 0, the evolution operator becomes Perron-Frobenius operator (25).

Since we required the observable ω to be additive along an orbit, the kernel

Lτ (a, a0) = δ(a− f τ (a0))eβΩτ (a0) (36)

of the evolution operator (34) satisfies

Lτ2+τ1(a, a0) =

∫
M
da1Lτ2(a, a1)Lτ1(a1, a0) . (37)

Hence the evolution operator itself satisfies

Lτ2+τ1 = Lτ2Lτ1 . (38)

Multiplicative, or semi-group property (38) of the evolution operator allows us to study

its action in infinitesimal pieces as we can divide every trajectory into smaller and smaller

steps and add them together. Let us consider the action of evolution operator (34) on a

density for an infinitesimal time:

[Lδτρ](a) =

∫
da0e

βΩδτ δ(a− f δτ (a0))ρ(a0)

=

∫
da0e

βδτω(a0)δ(a− a0 − δτv(a0))ρ(a0)

=

∫
da0(1 + βδτω(a0))δ(a− a0 − δτv(a0))ρ(a0)

= (1 + βδτω(a))
ρ(a− δτv(a))∣∣∣∣det

(
1 + δτ ∂v(a0)

∂a0

∣∣∣
a0=a

)∣∣∣∣ . (39)

Denominator of (39) requires some care. We start by applying the identity ln detM =

tr lnM and expanding the logarithm to the linear order as

ln det

(
1 + δτ

∂v(a0)

∂a0

∣∣∣∣
a0=a

)
= tr ln

(
1 + δτ

∂v(a0)

∂a0

∣∣∣∣
a0=a

)

= tr δτ
∂v(a0)

∂a0

∣∣∣∣
a0=a

= δτ
∑
i

∂vi(a0)

∂a0i

∣∣∣∣∣
a0=a

. (40)

We exponentiate both sides and expand again to the linear order in δτ to obtain the de-

nominator of (39) as 1 + δτ∂ivi(a0)|a0=a. Expanding the numerator also to the first order
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in δτ we obtain

[Lδτρ](a) = (1 + βδτω(a))
ρ(a)− δτvi(a0)∂iρ(a0)

1 + δτ∂ivi(a0)

∣∣∣∣
a0=a

. (41)

Multiplying and dividing RHS of the above equation by 1 − δτ∂ivi(a0) and keeping terms

up to the linear order in δτ we get

[Lδτρ](a) = (1 + βδτω(a))[ρ(a)− δτ∂i(vi(a0)ρ(a0))|a0=a]

= ρ(a) + βδτω(a)ρ(a)− δτ∂i(vi(a0)ρ(a0))|a0=a . (42)

The final trick is to express the evolution operator in terms of its infinitesimal generator.

Since it satisfies the semi-group property (38), we can express evolution operator formally

as exponential of its infinitesimal generator A,

Lτ = eAτ . (43)

Eigenfunctions of the evolution operator are also the eigenfunctions of its generator, and

corresponding eigenvalues are related by S(τ) = eτs, where s is the eigenvalue of A. Now

if we expand the infinitesimal-time evolution operator (42) in terms of its infinitesimal

generator we obtain

ρ(a) + δτAρ(a) = ρ(a) + βδτω(a)ρ(a)− δτ∂i(vi(a0)ρ(a0))|a0=a , (44)

which simplifies as

Aρ(a) = βω(a)ρ(a)− ∂i(vi(y)ρ(y))|y=a . (45)

Now we are going to restrict our consideration to the eigenfunctions ofA, which are functions

of β satisfying,

Aρ(a, β) = s(β)ρ(a, β) . (46)

Note that ρ(a, 0) = ρ0(a) and s(0) = 0. Plugging the eigenfunction ρ(a, β) in (45) we get

s(β)ρ(a, β) = βω(a)ρ(a, β)− ∂i(vi(a0)ρ(a0, β))|a0=a . (47)

This is the equation that we are going to use for relating long term average of the observable

ω to the eigenvalue s(β). We are going to carry out this calculation step-by-step, starting
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with differentiating (47) with respect to β:

s′(β)ρ(a, β) + s(β)
∂ρ(a, β)

∂β
= ω(a)ρ(a, β) + βω(a)

∂ρ(a, β)

∂β
− ∂i

(
vi(a0)

∂ρ(a0, β)

∂β

)∣∣∣∣
a0=a

.

(48)

We now set β → 0 and use s(0) = 0 and ρ(a, 0) = ρ0(a) to obtain

s′(0)ρ0(a) = ω(a)ρ0(a)− ∂i((vi(a0)
∂

∂β
ρ(a0, β))|a0=a,β=0) , (49)

finally we integrate over a dropping the divergence term (assuming the ρ(a, β) vanishes on

the surface at infinity) and get

s′(0) =

∫
daω(a)ρ0(a) = 〈ω〉 . (50)

We have found that we can generate the long time average of an observable by differen-

tiating eigenvalues of the corresponding infinitesimal evolution operator. Before moving

onto developing techniques to find these eigenvalues, let us see if we can extract any more

information from s(β).

We arrived at (50) by assuming the system in consideration produces the natural mea-

sure from all physically important initial distributions; and hence, the long term average of

observables exist. For (50) to be valid, as t→∞, expectation value 〈eβΩτ 〉 must grow like

〈eβΩτ 〉 ∝ ets(β) , (51)

thus we can define s(β) in terms of 〈eβΩτ 〉 as

s(β) = lim
τ→∞

1

τ
ln〈eβΩτ 〉 . (52)

Let us first confirm (50)

∂s(β)

∂β

∣∣∣∣
β=0

= lim
τ→∞

1

τ

〈ΩτeβΩτ 〉
〈eβΩτ 〉

∣∣∣∣
β=0

,

= lim
τ→∞

1

τ
〈Ωτ 〉 ,

= 〈ω〉 . (53)

The second derivative

∂2s(β)

∂β2

∣∣∣∣
β=0

= lim
τ→∞

1

τ

〈ΩτΩτeβΩτ 〉〈eβΩτ 〉 − 〈ΩτeβΩτ 〉〈ΩτeβΩτ 〉
〈eβΩτ 〉2

∣∣∣∣
β=0

,

= lim
τ→∞

1

τ
(〈ΩτΩτ 〉 − 〈Ωτ 〉〈Ωτ 〉) . (54)
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gives us growth rate of the variance. We can obtain higher order moments by continuing

taking derivatives but we stop here.

Equations (50–54) relate statistical moments of an observable to the leading eigenvalue

of corresponding evolution operator (34). Thus, if we can find s(β), we can generate long-

term averages of observables from it. For this purpose we construct the resolvent of the

infinitesimal evolution operator A, by taking Laplace transform of Lτ = eAτ∫ ∞
0

dte−sτLτ =
1

s−A
, (55)

trace of which peaks at the eigenvalues of A. Hence, we are going to compute Laplace

transform of the trace of the evolution operator (34)∫ ∞
0

dτe−sτ trLτ =

∫ ∞
0

dτe−sτ
∫
daLτ (a, a) ,

=

∫ ∞
0

dτe−sτ
∫
daδ(a− f τ (a))eβΩτ (a) . (56)

We see that periodic orbits will contribute to the trace (56).1 We also know that integral over

delta function in (56) will produce terms that are inversely proportional to det (1−Jτ (ap)) =∏
k(1−Λk), which may cause a problem since every periodic orbit has one marginal (Λm = 1)

Floquet multiplier corresponding to the perturbations along the orbit. In order to deal with

this, for every periodic orbit we carry out (56) in a local coordinate frame. We transform

from (a1, a2, ..., ad) to (a‖, a⊥,1, a⊥,2, ..., a⊥,d−1), where a‖ is always parallel to the flow and

a⊥,i are transverse. In this coordinate frame, we can write the contribution from a prime

cycle2 p to the trace (56) as∫ ∞
0

dτe−sτ tr pLτ =

∫ ∞
0

dτe−sτ
∫
da‖da⊥δ(a‖ − f τ (a)‖)δ(a⊥ − f

τ (a)⊥)eβΩτ (a) . (57)

Let us start with the integration along the orbit and the Laplace transform. By definition,

velocity field v(a) is parallel to the a‖, and its value on the periodic orbit is completely

specified by a‖ hence, we can parametrize both of them by a flight time τf satisfying

1 There can be contributions to the trace (56) from other invariant objects, such as equilibria and invariant
tori. For a trace formula for an equilibrium, as well for tori generated by relative periodic orbits, see ref. [21].

2A periodic orbit that is not a repeat of a shorter one.
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da‖ = dτf |v(a)| as∫ ∞
0

dτe−st
∮
da‖δ(a‖ − f τ (a)‖) =

∫ ∞
0

dτe−sτ
∫ Tp

0
dτf |v(τf )|δ(a‖(τf )− a‖(τf + τ)) . (58)

Note that the integral over a‖ is a loop integral, hence its time parametrization runs for only

one period. Note also that a‖ is a cyclic coordinate, hence, τ -integral will get contributions

at every repeat of the periodic orbit:∫ ∞
0

dτe−sτ
∮
da‖δ(a‖ − f τ (a)‖) =

∫ Tp

0
dτf |v(τf )|

∫ ∞
0

dτe−sτδ(a‖(τf )− a‖(τf + τ)) ,

=

∫ Tp

0
dτf |v(τf )|

∞∑
r=0

e−sTpr
1

|∂a‖/∂τ |τ=rTp

,

= Tp

∞∑
r=0

e−sTpr , (59)

where we have used |∂a‖/∂τ |τ=rTp | = |v(τ)| and in the last step, τ integration simply gave

us the period of the prime cycle. Finally we compute the contribution from the transverse

integral for the rth repeat of the prime cycle p:∫
r
da⊥δ(a⊥ − f rTp(a)⊥) =

1∣∣det
(
1−M r

p

)∣∣ . (60)

Where Mp is the transverse monodromy matrix, eigenvalues of which are those of the

Jacobian Jp except the marginal eigenvalue corresponding to the velocity field direction.

Summing over all the prime cycles, we obtain the classical trace formula

∞∑
α=0

1

s− sα
=
∑
p

Tp

∞∑
r=1

er(βAp−sTp)∣∣det
(
1−M r

p

)∣∣ , (61)

where sum over α runs over the eigenvalues of the evolution operator. Classical trace formula

(61) is the fundamental relation that will allow us determine the leading eigenvalue of the

evolution operator (34) and hence the dynamical averages via its derivatives (50–54).

It is important to note that the classical trace formula (61) is independent of the choice

of coordinates, since Floquet multipliers that will appear in the expansion of
∣∣det

(
1−M r

p

)∣∣
are invariant under smooth changes of coordinates (see e.g. ref. [21] for a proof). Hence,

long term averages of observables are independent from the particular parametrization of a

problem.
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Computationally, it is more convenient to search for zeros of a function, rather than its

poles; for this purpose, one defines the spectral determinant

det (s−A) = exp

(
−
∑
p

∞∑
r=1

1

r

er(βAp−sTp)∣∣det
(
1−M r

p

)∣∣
)
, (62)

logarithmic derivative of which yields (61). Computational aspects and convergence of (61)

and (62) are non-trivial and require case-by-case attention. We will come back to these

issues in Sect. 4.3 and Sect. 6.3.6.
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CHAPTER III

CONTINUOUS SYMMETRIES

We mentioned in Sect. 1.2 with heuristic arguments that the spatiotemporally chaotic sys-

tems with continuous symmetries have redundant degrees of freedom. We start this chapter

by restating this in mathematical terms and introducing the concept of “equivariance” and

its implications. We then move on to the symmetry reduction by method of slices and

present the central result of this study: SO(2) symmetry reduction by the first Fourier

mode slice. For simplicity, we are going to present the techniques in this chapter for a one-

dimensional scalar field with translation symmetry. We then generalize the first Fourier

mode slice to higher spatial dimensions and direct products of SO(2).

3.1 Fields

In the preceding chapter, we introduced nonlinear dynamics and the periodic orbit theory

for ODEs, but in this thesis we are interested in fields, dynamics of which is determined by

nonlinear PDEs. For concreteness, let us consider a real valued scalar field u(x, τ) defined

over a finite one-dimensional space x ∈ [0, L] and time τ . Assume that its dynamics is

determined by a PDE of the following form

uτ = N (u, ux, uxx, uxxx, . . .) , (63)

where subscripts τ and x indicates partial derivatives with respect to time and space respec-

tively and N (.) is a general nonlinear functional of the field itself and its spatial derivatives.

We will assume that the solutions of (63) exist, are unique, and evolve smoothly.

When we defined the dynamical system in Sect. 2.1, we stated that the state space

vector contains all the necessary information regarding the physical state of a system at a

time τ ; the velocity vector contains the information of laws, which describes the evolution

of the state space coordinates. Let us assume that we construct a state space vector which
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contains the value of the field u(x, τ) everywhere in space at a time τ

a(t) = (u(0, τ), u(x1, τ), u(x2, τ), u(x3, τ), . . .)T , xi ∈ [0, L] . (64)

We can then, in principle, construct a velocity vector that would describe the evolution of

(64) by looking at the PDE (63). This, however, is not a trivial task since the space is

continuous and as a result the state space vector (64) is infinite-dimensional. Nevertheless,

we can think of a PDE as an infinite-dimensional dynamical system. This correspondence

can be made explicit if we expand the field u(x, t) as a sum over basis functions, which

satisfy the boundary conditions of the problem and form a complete set. In particular, let

us assume that we have periodic boundary conditions

u(x+ L, τ) = u(x, τ) , (65)

then the natural choice is an expansion in Fourier basis

u(x, τ) =
∞∑

k=−∞
ũk(τ)eiqkx , where qk = 2πk/L . (66)

By plugging (66) in (63), we obtain an ODE for each Fourier mode ũk, since all partial

derivatives with respect to x will be replaced by multiplications by iqk. Furthermore, in

diffusive systems that we consider in this thesis, higher Fourier modes (short wavelengths)

are subjected to strong damping, hence a finite number of Fourier modes is typically enough

to study dynamics numerically. Thus we reduce the state space dimension from infinite to

a large, but finite number.

Our recipe for transforming a PDE to a set of ODEs is straightforward, however, im-

posing periodic boundary conditions comes at a cost: Since the value of the field u(x, τ) is

subjected to the same boundary conditions at every point in [0, L], each solution of the PDE

(63) will have translation copies, namely, if u(x, τ) is a solution to (63) then the shifted

field u(x+ δx, τ) is also one. In other words, the system is symmetric under translations

u(x, τ)→ u(x+ δx, τ) . (67)

This symmetry operation shows itself as U(1) group action on the Fourier modes

ũk → eikθũk , where θ = 2πδx/L . (68)
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To be more explicit, let us construct a state space vector for this system. For simplicity,

let us assume that u(x, τ) is real valued, hence ũ−k = ũ∗k, and 0th Fourier mode has no

dynamics and decoupled from the rest. Hence we can set ũ0 = 01. In this case, we can

construct a real valued state vector

a = (b1, c1, b2, c2, . . . , bN , cN ) , bk = Re ũk , ck = Im ũk . (69)

In this state space, the continuous translation symmetry is represented by the SO(2) action

g(θ) =



R(θ) 0 · · · 0

0 R(2θ) · · · 0

...
...

. . .
...

0 0 · · · R(mθ)


, (70)

where

R(nθ) =

cosnθ − sinnθ

sinnθ cosnθ

 (71)

are 2×2 rotation matrices. The groups U(1) and SO(2) are isomorphic, that is there is a

one-to-one correspondence of their elements: Complex phases eikθ (68) act on the subspace

of the k-th complex Fourier mode ũk while rotation matrices R(kθ) (71) act on the real

valued two-dimensional subspace (bk, ck) = (Re ũk, Im ũk).

In the next section, we will set up the terminology for the properties of dynamical

systems with continuous symmetries.

3.2 Equivariance under a continuous symmetry

A dynamical system is said to be equivariant under G if its evolution rule (7) commutes

with g(θ)

a(τ) = g−1(θ)f τ (g(θ)a) , (72)

where g(θ) is a member of the symmetry group G, θ ∈ [0, 2π) is a real number that

parametrizes the continuous symmetry action, which we assume to be compact, i.e. g(2π) =

1.

1For the discussion of translation symmetry, this assumption does not cause a loss of generality since ũ0

is invariant under translation.
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We are going to refer (72) as equivariance condition. For flows, (72) can be equivalently

stated in the Eulerian description as

ȧ = g−1(θ)v(g(θ)a) . (73)

The equivariance property (72) implies that dynamics of state space points that are related

by symmetry operations are equivalent, that is one can be obtained from the other by a

symmetry operation. For a state vector a, the set of all such dynamically equvialent points

Mg(θ) a = {g(θ) a | θ ∈ [0, 2π)} (74)

is called the group orbit of a.

Assuming the action of g(θ) is smooth, we can define its infinitesimal action as

g(δθ) = 1 + Tδθ , (75)

where T is called the generator of infinitesimal transformations, or the Lie algebra element.

We can express a finite transformation as a matrix exponential

g(θ) = lim
n→∞

(
1 +

θ

n
T

)n
= eθT . (76)

The direction, towards which an infinitesimal group action moves the state vector a

t(a) = Ta (77)

is called group tangent of a.

We can now express the equivariance condition (73) for infinitesimal transformations by

expanding (73) for small θ → δθ � 1 to the first order

v(a) = (1− δθT )v((1 + δθT )a) ,

= (1− δθT )(v(a) +A(a)δθTa) ,

keeping terms up to linear order in δθ and canceling common terms we obtain the infinites-

imal equivariance condition as

A(a)t(a)− Tv(a) = 0 (78)

With these definitions, we can now investigate some of the consequences of continuous

symmetries, starting with the relative exact coherent structures and their stability.
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3.2.1 Relative equilibria and relative periodic orbits

3.2.1.1 Relative equilibria

In Sect. 2.1.2, we introduced equilibria, periodic orbits and the notion of linear stability.

Dynamical systems with continuous symmetries have relative equilibria and relative peri-

odic orbits, which are equilibria and periodic orbits with additional dynamics in symmetry

directions. A relative equilibrium’s trajectory follows its group orbit:

atw(τ) = g(θ(τ)) atw(0) . (79)

Using Lagrangian description of the flow (7) and expanding (79) for small times δτ we find

atw(0) +

∫ δτ

0
v(atw(τ ′))τ ′ = eδθTatw(0) ,

atw(0) + v(atw(0))δτ = (1 + δθT ) atw(0) ,

v(atw(0)) = (δθ/δτ) t(atw(0)) (80)

that the velocity field and the group tangent are parallel for a relative equilibrium. Since

we consider orthogonal (length preserving) group actions here, the proportionality constant

δθ/δτ in (80) is a constant along the orbit. Thus, we define the phase velocity of the relative

equilibrium as

c = lim
δτ→0

δθ

δτ
(81)

Multiplying the infinitesimal equivariance condition (78) with c for the relative equilibrium,

we obtain

(A(atw)− cT )v(atw) = 0 , (82)

which tells us that the velocity field v(atw) is in the null space of (A(atw) − cT ). Later in

this chapter, we are going to find that (A(atw) − cT ) is the stability matrix in the frame

that moves with the relative equilibrium.

3.2.1.2 Relative periodic orbits

Second type of relative exact coherent structure is a relative periodic orbit whose trajectory

intersects its group orbit after a finite time

arpo(Tp) = g(θp)arpo(0) , (83)
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where Tp and θp respectively are period and phase shift of the relative periodic orbit. We

determine the linear stability of a relative periodic orbit by rewriting (83) as

arpo = g(−θp)fT(arpo) . (84)

Expanding RHS to the linear order in perturbations to arpo as in (12), we obtain the Floquet

matrix for a relative periodic orbit as

Jrpo = g(−θp)JTp(arpo) . (85)

Spectrum of (85) determines the linear stability of the relative periodic orbit. State space

points on the orbit (21) and group orbit (74) of arpo satisfy (84). Let us write (84) for a

small perturbation arpo + εv(arpo) towards the orbit of arpo and expand to linear order

arpo + εv(arpo) = g(−θp)fT(arpo + εv(arpo)) ,

arpo + εv(arpo) = g(−θp)fT(arpo) + εJrpov(arpo)

v(arpo) = Jrpov(arpo) . (86)

We found that v(arpo) is an eigenvector of Jrpo with unit eigenvalue. The same steps follow

for a small perturbation arpo + εt(arpo), hence Jrpo has at least two marginal eigenvectors,

namely v(arpo) and t(arpo).

3.3 Symmetry reduction

Symmetry reduction is a coordinate transformation â = S(a) such that

S(a) = S(a′) if a′ = ga , g ∈ G

S(a) 6= S(a′) if a′ 6= ga , g ∈ G (87)

i.e. reduced coordinates â are symmetry invariant. In such a representation, the relative

equilibria and relative periodic orbits respectively become equilibria and periodic orbits,

hence the theory of previous chapter becomes directly applicable. First question to ask is

whether if such a transformation exist or not. For compact Lie groups, the answer is given

by the Hilbert-Weyl theorem
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Theorem 3.1 (Hilbert-Weyl) For a compact group G there exist a finite G-invariant

homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d such that any G-invariant polynomial

can be written as a multinomial

h(a) = p(u1(a), u2(a), . . . , um(a)) a ∈M (88)

for proof of the Hilbert-Weyl theorem 3.1, see ref. [48]. What Hilbert-Weyl theorem tells us

is that there exists a finite set of polynomials, with which all G-invariant information inM

can be represented. Hence such polynomials can serve as a basis for a transformation like

(87). What Hilbert-Weyl theorem does not tell us is how to find such polynomials. For low-

dimensional systems, such as the Lorenz model (2), invariant polynomial methods are very

useful and studied in detail, see for example [46]. For higher-dimensional systems, however,

computation of the polynomial invariants becomes a harder task, and the computer algebra

methods become impractical at dimensions larger than 12 [44]. We need a different strategy

to attack this problem, if we want to apply it to turbulent flows with ∼ 105-dimensional

discretizations. The method of slices, which we introduce next, does the job.

3.3.1 Method of slices

Geometrical idea behind the method of slices is simple and intuitive: Since the action of the

symmetry group at consideration is smooth, the group orbits (74) of the nearby points in

the state space look alike. In mathematical terms, group orbits of infinitesimally close state

space points are also infinitesimally close. Imagine such a fiber bundle of nearby group orbits,

and a co-dimension 1 submanifold M̂ ∈ M that is cut by these group orbits transversally

as sketched in Figure 5 (a). Now if we take the intersections of group orbits with the slice as

their “representatives”, then we obtain a “local” symmetry reduced representation within

the slice M̂.

Cartan [16] used method of slices in differential geometry. In dynamical systems lit-

erature, slicing techniques appears in many places under different names, with various

applications. Therefore, we are going to list some examples from different sides of the

early literature as an incomplete review. Works of Field, [41] Krupa, [70] and Ashwin

and Melbourne, [7] are notable examples from the mathematics literature, where slicing
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M̂

(a) (b)

M̂

a(τ)

â(τ)â′

t′

â(0)

Figure 5: (a) A sketch of nearby group orbit segments and a slice that is cut by them
transversally. (b) The slice hyperplane M̂, which passes through the template point â′

and is normal to its group tangent t′, intersects all group orbits (dotted lines) in an open
neighborhood of â′. The full state space trajectory a(τ) (solid black line) and the reduced
state space trajectory â(τ) (solid green line) belong to the same group orbit Mg(θ)a(τ) and
are equivalent up to a ‘moving frame’ rotation by phase θ(τ).

methods were used to prove rigorous results. Fels and Olver [37, 38] compute symmetry

invariant polynomials with the help of method of slices. In Hamiltonian dynamics, Haller

and Mezić [54] used the method of slices, under the name “orbit projection map”. Rowley

and Marsden [96] used slicing methods in the reduced-order modeling of PDEs, and Beyn

and Thümmler [9] used slicing methods to “freeze” spiral waves in the reaction-diffusion

systems. Our formulation of the slice hyperplanes will closely follow that of ref. [96].

3.3.2 Slice hyperplane

We are now going to define a slice and formulate the symmetry reduced dynamics on it.

The conceptual definition of the slice as a codimension-1 submanifold does not say much

about its shape. The simplest choice one can think of is the set of points â satisfying the

hyperplane condition

〈â− â′, t′〉 = 0 , (89)

in an open neighbourhood

||â− â′|| < α , (90)

where â′ and t′ = T â′ respectively are “slice template” and the “slice tangent”, which

together defines a hyperplane as the one sketched in Figure 5 (b). For orthogonal groups,
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〈a, Ta〉 = 0 by definition thus the first condition in (89) simplifies to

〈â, t′〉 = 0 . (91)

Our textual definition of the slice relied on the assumption that the nearby group orbits are

similar to each other, hence we can find a surface that is locally cut by them transversally.

This notion of locality is included in the inequality condition of (89), where we ask for â to

be in the α neighborhood of the template â′ such that the transversality is not lost.

Full state space dynamics a(τ) can be brought to the slice hyperplane (89) by finding

parameters θ(τ) such that

â(τ) = g(−θ(τ))a(τ) (92)

satisfies the slice condition (89) as illustrated in Figure 5 (b). In order to find the dynamics

within the slice, we take a time derivative of (92)

v̂(â(τ)) =
dâ(τ)

dτ

= g(−θ(τ))v(a(τ))− θ̇(τ)T g(−θ(τ)) a(τ) ,

= v(â(τ))− θ̇(τ) t(â(τ)) , (93)

where the last step followed from the commutativity of the group action and the velocity

field (73). Reduced velocity field v̂(â(τ)) (93) satisfies the slice condition (91), thus we plug

it into (91) to find the phase speed θ̇ as

θ̇(τ) =
〈v(â(τ)), t′〉
〈t(â(τ)), t′〉

. (94)

As it is of central importance for everything follows, we are going to rewrite (93) and (94)

dropping the time arguments for clarity as

v̂(â) = v(â)− θ̇(â)t(â) , (95)

θ̇(â) = 〈v(â), t′〉/〈t(â), t′〉 . (96)

Equations (95) and (96) have a nice geometrical interpretation: In (95) we subtract from

the full state space velocity v(â), its component in the direction towards the group tangent
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t(â); and the proportionality constant θ̇(â) is found in (96) by projecting the full state space

velocity onto the group tangent direction and dividing by a normalization factor.

The locality of the slice hyperplane also becomes apparent from the phase velocity (96),

which becomes singular if the inner product on its denominator is 0. The vanishing inner

product 〈t(â), t′〉 exactly corresponds to the “loss of transversality”, that is if the group

tangent at a point does not have a component perpendicular to the slice hyperplane, then

the corresponding group orbit cannot pierce it. Froehlich and Cvitanović [43] defined such

codimension-2 set of points â∗ as the slice border, which satisfy

〈t(â∗), t′〉 = 0 . (97)

Froehlich and Cvitanović [43] studied what happens to the nearby reduced trajectories in

detail. The slice border (97) rigorously sets the border of a slice and if the trajectories cross

it, one has discontinuities.

Let us take a break and remember why we were concerned about the continuous sym-

metries in the first place. Our purpose in this thesis is to understand the chaotic dynamics

of nonlinear PDEs, by charting their infinite-dimensional state spaces. Our strategy was to

understand exact coherent structures in such systems and their dynamical relations. How-

ever, the presence of continuous symmetries in these problems brought a huge complication

due to the fact that the state space had infinite amount of redundant data, which we would

like to get rid off. Furthermore, the relative invariant solutions, which we introduced in

Sect. 3.2.1, had dimensions larger than their regular counterparts, which would make their

study much more challenging, if not impossible. For this reason, we attempted to trans-

form the dynamics to a symmetry-invariant representation, where we would quotient out

the symmetry copies. Finally, we ended up with a reduced description, which would only

be applicable in an open neighborhood of the state space, border of which is set by (97).

A strategy to overcome this difficulty was suggested in ref. [43] as using multiple slices,

glued together to cover the strange attractor avoiding the border of each slice. This idea

was applied to the complex Lorenz equations in ref. [22] and to the pipe flow in ref. [114].

However, finding such intelligent templates is never straightforward and requires a careful
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investigation of each problem at hand. In the course of this thesis study, we asked a different

question: Can we define a single slice hyperplane such that its border never visited by the

generic dynamics? The answer turned out to be affirmative for the SO(2) symmetry [14].

3.3.3 First Fourier mode slice

In previous section, we introduced method of slices for a general continuous symmetry.

Let us now focus on the specific problem we have: We would like to reduce the SO(2)

symmetry that we have as the result of studying a nonlinear PDE (63) under periodic

boundary condition (65). Notice that in the real-valued state space representation (69),

the projections of the group orbits onto the first Fourier mode subspace (b1, c1) are circles.

Therefore, we can think of transforming to polar coordinates in this subspace to quotient

out the SO(2) symmetry by the following transformation

â(τ) = g(−θ(τ)) a(τ) θ(τ) = arg(b1(τ) + i c1(τ)) (98)

as depicted on Figure 6.

a(τ2)

a(τ1) θ(τ1)

b1â(τ1) â(τ2)

c1

θ(τ2)

a(τ0)

Figure 6: A sketch of the state space trajectory a(t) (blue and red) projected onto the
first Fourier mode subspace (b1, c1), and the rotation phases θ(τ1,2) (98) at times τ1 and τ2.

We are now going to cast this into slicing language. For that, we first need the generator

of infinitesimal SO(2) transformations, which for the representation (70) reads

T =



T1 0 · · · 0

0 T2 · · · 0

...
...

. . .
...

0 0 · · · Tm


, where Tk =

0 −1

1 0

 . (99)
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If we now choose a slice template as

â′ = (1, 0, 0, . . . , 0)T , (100)

we find the corresponding template tangent as

t′ = (0, 1, 0, . . . , 0)T , (101)

these render the hyperplane condition (91) for state vectors (69) as c1 = 0. Moreover, the

slice border condition (97) for this choice becomes b1 = 0. As can be seen from Figure 6

each circular group orbit in the (b1, c1) plane would cut c1 = 0 line twice and the slice

border b1 = 0 lies between the two intersections. Therefore, we need to pick one side of

b1 line in order to uniquely define our slice; the choice that agrees with the phase fixing

transformation of (98) is b1 > 0. We can now express the dynamics directly within the first

Fourier mode slice. Expressing (96) for the slice template (100) and plugging into (95) we

obtain

v̂(â) = v(â)− ċ1

b̂1
t(â) , (102)

where ċ1 and b̂1 respectively denotes the second element of v(â) and first element of â. We

see that the reduced dynamics (102) is singular when b̂1 = 0. We regularize this by defining

the slice time as

dτ̂ = dτ/b̂1 , (103)

which regularizes this singularity as the reduced dynamics with respect to the slice time is

defined by

dâ/dτ̂ = b̂1v(â)− ċ1(â) t(â) , (104)

dθ(â)/dτ̂ = ċ1(â) . (105)

We call this method first Fourier mode slice, since the effect of this transformation is fixing

the phase of the first Fourier mode to 0 as in (98).

The first Fourier mode slice is a valid SO(2) symmetry reduction method as long as

the amplitude of the first Fourier mode is non-zero. Moreover, if the first Fourier mode

amplitude is small, then the flow can be regularized by adapting the time steps as (103).
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As we shall demonstrate in the applications of the following chapters, we found that this

method works for state space regions of interest.

3.3.4 Stability in the symmetry-reduced state space

3.3.4.1 Stability of relative equilibria

Since the relative equilibria become equilibria after symmetry reduction, we treat them as

equilibria in the slice, and compute the corresponding stability matrix similar to (10) by

computing partial derivatives of the reduced velocity (95) as

∂v̂(â)i
∂âj

=
∂

∂âj

{
v(â)i −

〈v(â), t′〉
〈t(â), t′〉

t(â)i

}
,

Â(â)ij = A(â)ij −
t(â)i {(〈t(â), t′〉A(â)T − 〈v(â), t′〉T T )t′}j

〈t(â), t′〉2

−〈v(â), t′〉
〈t(â), t′〉

Tij . (106)

We can express this in the matrix notation as

Â(â) = A(â)− t(â) [ (〈t(â), t′〉A(â)T − 〈v(â), t′〉T T )t′]T

〈t(â), t′〉2

−〈v(â), t′〉
〈t(â), t′〉

T . (107)

We stated the reduced velocity gradient matrix (107) for an arbitrary point and a slice

template and this is the formula one should indeed use when applying the first Fourier

mode slice. However, it is informative to check what happens when (107) is expressed

using a relative equilibrium itself as the template. Since for a relative equilibrium we have

v(atw) = c t(atw), when we substitute â′ = atw in (107), expression in the brackets in the

second term becomes (82), hence vanishes. We then obtain a much simpler form

Â(atw)|â′=atw = A(atw)− cT , (108)

which we know from (82) to have v(atw) as an eigenvector with zero eigenvalue, as it should.

3.3.4.2 Stability of relative periodic orbits

We have shown in Sect. 3.2.1 that the Floquet matrix for a relative periodic orbit is Jrpo =

g(−θp)JT (arpo). We are now going to show that its eigenvalues are invariant in a symmetry
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reduced representation, except the marginal one corresponding to the continuous symmetry

direction. We will present this result in a representation invariant way, since the topological

invariance of the Floquet multipliers is essential for periodic orbit theory.

In a symmetry-invariant representation obtained by a transformation like (87), a relati-

ve periodic orbit becomes a periodic orbit since both initial and final points on its orbit is

mapped to the same point

ârpo = S(g(θ)arpo) , ∀θ ∈ [0, 2π) . (109)

Now if we consider a small perturbation δa to the relative periodic orbit in the full state

space, and expand (83) to the linear order, we obtain

arpo + δa(Tp) = g(−θp)fTp(arpo + δa(0)) ,

= g(−θp)fTp(arpo) + Jrpo δa(0) , (110)

hence

δa(Tp) = Jrpo δa(0) . (111)

If we transform arpo + δa(Tp) to the symmetry reduced coordinates, we obtain

ârpo + δâ(Tp) = S(ârpo + δa(Tp)) ,

= ârpo + Γ(a)Jrpoδa(0) , (112)

where Γij(a) = ∂Si(a)/∂aj is the Jacobian of the symmetry reducing transformation. There-

fore, if δa(0) is an eigenvector Vi 6= const. t(arpo) of Jrpo with eigenvalue Λi, then the sym-

metry reduced relative periodic orbit would also have the same Floquet multiplier, with

corresponding eigenvector V̂i = ΓVi. From the definition of the symmetry reduction (87),

we must have Γ(a)t(a) = 0, hence this marginal eigenvector disappears after symmetry

reduction.

The periodic orbit formulas (61) and (62) both have
∣∣det

(
1−M r

p

)∣∣ terms, which can

be expressed in terms of Floquet multipliers. Therefore, the topological invariance of the

Floquet multipliers is crucial for these formulas to make sense. In this section, we have

confirmed that the non-marginal Floquet multipliers of relative periodic orbits are preserved
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in any symmetry reduced representation; hence we can use them to treat the relative periodic

orbits as if they are periodic orbits in the symmetry-reduced state space and apply periodic

orbit theory to these systems.

3.3.5 The first Fourier mode slice in higher spatial dimensions

We introduced the method of slices in a general setting and then made a specific choice

of slice for the SO(2) symmetry, whose effect was essentially to fix the phase of the first

Fourier mode to 0 as shown in Figure 6. We can state this phase fixing transformation for

Fourier modes (66) as

ûk(τ) = e−ikφ1(τ)ũk(τ) , (113)

where ûk is the kth symmetry reduced Fourier mode and φ1 is the phase of the first Fourier

mode. It is straightforward to check that ûk is invariant under (68) and û1 is purely real.

We could have also formulated the first Fourier mode slice in the physical space without

transforming to the Fourier representation. Notice that the slice template (100) and tem-

plate tangent (101) correspond to the flow fields 2 cos(2πx/L) and 2 sin(2πx/L). Thus, for

the flow field u(x, τ), we can find the slice fixing phase as

φ1(τ) = arg(〈u(x, τ), cos(2πx/L)〉+ i〈u(x, τ), sin(2πx/L)〉) . (114)

Thus the symmetry reduced field û(x, τ) is given by

û(x, τ) = u

(
x− Lφ1(τ)

2π
, τ

)
. (115)

The physical space formulation can be convenient if the data is not represented as a Fourier

expansion. In addition, it will be helpful to understand the generalization of the first Fourier

mode slice for vector fields.

3.3.5.1 Scalar field in two dimensions

Let us now consider a scalar field u(x, τ) defined over a two-dimensional space x = (x, y)

with dynamics equvariant under translations

g(`x, `y)u(x, y; τ) = u(x+ `x, y + `y; τ). (116)
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If periodic boundary conditions

u(x, y; τ) = u(x+ Lx, y; τ) , u(x, y; τ) = u(x, y + Ly; τ) (117)

are imposed, then it is natural to express u(x, τ) in a Fourier expansion

u(x, τ) =
∑
kl

ũkl(τ)ei(qkx+qly) , where qk = 2πk/Lx , ql = 2πk/Ly . (118)

The symmetry action (116) on the Fourier modes (118) is

g(`x, `y)ũkl = ei(kθx+lθy)ũkl , where θx,y = 2π`x,y/Lx,y . (119)

Thus we can write the phase fixing condition analogous to (113) for Fourier modes ũkl as

ûkl(τ) = e−i(k φ10(τ) + l φ01(τ))ũkl(τ) , (120)

where ûkl is the klth symmetry reduced Fourier mode and φkl is the phase of the Fourier

mode ũkl.

We could have also found the slice fixing phases φ10 and φ01 from flow fields as

φ10(τ) = arg (〈u(x, τ), cos(2πx/L)〉+ i〈u(x, τ), sin(2πx/L)〉) ,

φ01(τ) = arg (〈u(x, τ), cos(2πy/L)〉+ i〈u(x, τ), sin(2πy/L)〉) . (121)

Then the symmetry reduced flow field is

û(x, y; t) = u

(
x− Lx

φ10(τ)

2π
, y − Ly

φ01(τ)

2π
; τ

)
. (122)

Finally, in the two dimensions, we have two conditions for the slice border

|ũ10| = |〈u(x, τ), cos(2πx/L)〉+ i〈u(x, τ), sin(2πx/L)〉| = 0 ,

|ũ01| = |〈u(x, τ), cos(2πy/L)〉+ i〈u(x, τ), sin(2πy/L)〉| = 0 . (123)

Thus the slice time can be defined as

dτ̂ =
dτ

|ũ10||ũ01|
. (124)
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3.3.5.2 Vector field in two dimensions

Generalization of the first Fourier mode slice for a two-dimensional scalar field on a periodic

box was straightforward. We shall now take one step further and consider a vector field

u(x, t) = u(x, y; t) x̂ + v(x, y; t) ŷ (125)

equivariant under

g(`x, `y)u(x, y; τ) = u(x+ `x, y + `y; τ) , (126)

and satisfying the periodic boundary conditions

u(x, y; τ) = u(x+ Lx, y; τ) , u(x, y; τ) = u(x, y + Ly; τ) . (127)

When we write the Fourier expansion for u(x, y; τ) as

u(x, t) =
∑
kl

[ũkl(τ)x̂ + ṽkl(τ)ŷ]ei(qkx+qly) , where qk = 2πk/Lx , ql = 2πk/Ly (128)

we see that we now have four modes (two for each continuous symmetry direction), namely

ũ01, ũ10, ṽ01, ṽ10 that we can fix the phase of, in order to obtain a symmetry reduced repre-

sentation. For instance, we can define a symmetry reducing transformation as

ûkl(τ) = e−i(k φu,10(τ) + l φv,01(τ))ũkl(τ) , (129)

where φu(v),kl is the phase of the Fourier mode ũ(ṽ)kl. In fact, our choices are infinitely

many since we are allowed to express the flow field (125) as

u(x, t) = u′(x, y; t) x̂′ + v′(x, y; t) ŷ′ , (130)

where x̂′ and ŷ′ are linearly independent (not necessarily orthogonal) unit vectors that span

the 2D physical space. We can express the general first Fourier mode slice templates for

the two-dimensional vector field as

u′x(x) = f cos(2πx/Lx) ,

u′y(x) = g cos(2πy/Ly) , (131)
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where f and g are two-dimensional vectors that can be same or different. With (131), we

can express the slice-fixing phases as inner products

φ10(τ) = arg
(
〈u(x, τ),u′x(x)〉+ i〈u(x, τ), g(Lx/4, 0) u′x(x)〉

)
,

φ01(τ) = arg
(
〈u(x, τ),u′y(x)〉+ i〈u(x, τ), g(0, Ly/4) u′y(x)〉

)
(132)

and the symmetry reducing transformation as

û(x, y; t) = u

(
x− Lx

φ10(τ)

2π
, y − Ly

φ01(τ)

2π
; τ

)
. (133)

The choice for f and g in (131) should be specific for the problem at hand such that the

slice border conditions

|ũ10| =
∣∣〈u(x, τ),u′x(x)〉+ i〈u(x, τ), g(Lx/4, 0) u′x(x)〉

∣∣ = 0 ,

|ũ01| =
∣∣〈u(x, τ),u′y(x)〉+ i〈u(x, τ), g(0, Ly/4) u′y(x)〉

∣∣ = 0 . (134)

are avoided. Finally, we can define the slice time for this case as

dτ̂ =
dτ

|ũ10||ũ01|
. (135)

3.3.5.3 Vector field in three dimensions

Final case we are going to consider is a three-dimensional vector field u(x, τ) with dynamics

equivariant under

g(`x, `y)u(x, y, z; τ) = u(x+ `x, y + `y, z; τ) , (136)

satisfying periodic boundary conditions

u(x, y, z; τ) = u(x+ Lx, y, z; τ) , u(x, y, z; τ) = u(x, y + Ly, z; τ) , (137)

and some Dirichlet boundary condition

u(x; τ)|z∈∂Ω = d(x) . (138)

In this case, the slice templates that we are allowed to chose are in the following form

u′x(x) = f(z) cos(2πx/Lx) ,

u′y(x) = g(z) cos(2πy/Ly) , (139)

39



where f(z) and g(z) are three dimensional vector functions of z. The rest of the formulation

is the same with that of the two-dimensional vector field case, and the functions f(z) and

g(z) should again be picked in order to avoid slice borders (134).

Notice that the case we consider here covers axially periodic pipe flow and stream-

wise and span-wise periodic plane Couette flow. In pipe flow (see Figure 4 (a)), periodic

directions are z and θ and the Dirichlet boundary condition (138) is ur=R = 0, where R is

the pipe radius. Similarly, in plane Couette flow(see Figure 4 (b)), the periodic directions

are x and z and the Dirichlet boundary condition (138) is uy=±D/2 = ±v, where D is the

distance between walls.

3.4 Conclusions

In this chapter, we introduced continuous translation symmetry that frequently appears in

the studies of spatiotemporal chaos, its implications, and symmetry reduction by method

of slices. In Sect. 3.3.3 we presented the main contribution of this thesis: first Fourier mode

slice method for reducing the SO(2) symmetry for Fourier expansion of a field in one space

dimension. The main idea was to fix the phase of the first Fourier mode in order to reduce

the SO(2) symmetry and to regularize the singularity of the reduced flow by defining a

rescaled slice time. Finally, in Sect. 3.3.5, we presented different formulations of the first

Fourier mode slice in terms of flow fields, and its generalizations to the higher dimensional

settings. In the rest of this thesis, we are going to present three applications of the first

Fourier mode slice in problems with increasing difficulty.
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CHAPTER IV

THE TWO-MODES SYSTEM

We are now going to apply the theory we presented to a simple problem that has the

symmetry structure described in the previous chapter with only four dimensions, which is

just enough to have chaotic dynamics. The work presented in this chapter is published in

ref. [13].

4.1 Two-modes SO(2)-equivariant flow

Dangelmayr, [27] Armbruster, Guckenheimer and Holmes, [2] Jones and Proctor, [64] and

Porter and Knobloch [88] (for more detail, see Sect. XX.1 in Golubitsky et al. [48]) have

investigated bifurcations in 1:2 resonance ODE normal form models to third order in the

amplitudes. Here, we use this model as a starting point from which we derive what may

be one of the simplest chaotic systems with continuous symmetry. We refer to this as the

two-modes system:

ż1 = (µ1 − i e1) z1 + a1 z1|z1|2 + b1 z1|z2|2 + c1 z1 z2

ż2 = (µ2 − i e2) z2 + a2 z2|z1|2 + b2 z2|z2|2 + c2 z
2
1 , (140)

where z1 and z2 are complex and all parameters are real-valued. The parameters {e1, e2}

break the reflectional symmetry of the O(2)-equivariant normal form studied by Dangel-

mayr [27] leading to an SO(2)-equivariant system. This complex two mode system can

be expressed as a 4-dimensional system of real-valued first order ODEs by substituting
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z1 = x1 + i y1, z2 = x2 + i y2, so that

ẋ1 = (µ1 + a1r
2
1 + b1r

2
2 + c1x2)x1 + c1y1y2 + e1y1 ,

ẏ1 = (µ1 + a1r
2
1 + b1r

2
2 − c1x2)y1 + c1x1y2 − e1x1 ,

ẋ2 = (µ2 + a2r
2
1 + b2r

2
2)x2 + c2(x2

1 − y2
1) + e2y2 ,

ẏ2 = (µ2 + a2r
2
1 + b2r

2
2)y2 + 2c2x1y1 − e2x2 ,

where r2
1 = x2

1 + y2
1 , r2

2 = x2
2 + y2

2 . (141)

The large number of parameters (µ1, µ2, a1, a2, b1, b2, c1, c2, e1, e2) in this system makes

full exploration of the parameter space impractical. Following in the tradition of Lorenz, [74]

Hénon, [55] and Rössler, [95] we have tried various choices of parameters until settling on

the following set of values, which we will use in all numerical calculations presented here:

µ1 µ2 e1 e2 a1 a2 b1 b2 c1 c2

-2.8 1 0 1 -1 -2.66 0 0 -7.75 1
(142)

This choice of parameters is far from the bifurcation values studied by previous authors, [2,

27, 64, 88] so that the model has no physical interpretation. However, these parameters yield

chaotic dynamics, making the two-mode system a convenient minimal model for the study

of chaos in the presence of a continuous symmetry: It is a 4-dimensional SO(2)-equivariant

model, whose symmetry-reduced dynamics are chaotic and take place on a three-dimensional

manifold.

It can be confirmed by inspection that eqs. (140) are equivariant under the U(1) trans-

formation

(z1, z2)→ (eiφz1, e
i2φz2) . (143)

In the real representation (141), the U(1) group action (143) on a state space point

a is given by the SO(2) action (70) with the Lie algebra element (99) both truncated at

m = 2. One can easily check that the real two-modes system (141) satisfies the equivariance

condition (78).

From (140), it is obvious that the equilibrium point (z1, z2) = (0, 0) is an invariant
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subspace and that z1 = 0, z2 6= 0 is a 2-dimensional flow-invariant subspace

ż1 = 0 , ż2 = (µ2 − i e2 + b2|z2|2) z2 (144)

with a single circular relative equilibrium of radius r2 = ‖ z2 ‖ =
√
−µ2/b2 with phase

velocity c = −e2/2. At the origin the stability matrix A commutes with T , and so, can

be block-diagonalized into two [2× 2] matrices. The eigenvalues of A at (0, 0, 0, 0) are

λ1,2 = µ1 with multiplicity 2 and λ3,4 = µ2 ± ie2. In the (x1, y1, x2, y2) coordinates, the

eigenvectors with eigenvalues λ1 and λ2 are (1, 0, 0, 0) and (0, 1, 0, 0) and the eigenvectors

with eigenvalues λ3 and λ4 are (0, 0, 1,±i).

In contrast, z2 = 0 is not, in general, a flow-invariant subspace since the dynamics

ż1 = (µ1 − i e1) z1 + a1 z1|z1|2 , ż2 = c2 z
2
1 .

take the flow out of the z2 = 0 plane.

4.1.1 Invariant polynomial bases

Before applying the first Fourier mode slice, we briefly discuss the symmetry reduction of

the two-modes system using invariant polynomials. While representations of our model

in terms of invariant polynomials and polar coordinates are useful for cross-checking our

calculations in the full state space a> = (x1, x2, y1, y2), their construction requires a bit

of algebra even for this simple 4-dimensional flow. For very high-dimensional flows, such

as Kuramoto-Sivashinsky and Navier-Stokes flows, we do not know how to carry out such

constructions. As discussed in refs. [2, 27, 88], for the two-modes system, it is easy to

construct a set of four real-valued SO(2) invariant polynomials

u = z1z1 , v = z2z2

w = z2
1z2 + z2

1z2 , q = (z2
1z2 − z2

1z2)/i . (145)

The polynomials [u, v, w, q] are linearly independent, but related through one syzygy,

w2 + q2 − 4u2v = 0 (146)

that confines the dynamics to a 3-dimensional manifold M̂ =M/SO(2), which is a symmetry-

invariant representation of the 4-dimensional SO(2) equivariant dynamics. We call this the
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reduced state space. By construction, u ≥ 0, v ≥ 0, but w and q can be of either sign. That

is explicit if we express z1 and z2 in polar coordinates (z1 = |u|1/2eiφ1 , z2 = |v|1/2eiφ2), so

that w and q take the form

w = 2 Re (z2
1z2) = 2u|v|1/2 cosψ

q = 2 Im (z2
1z2) = 2u|v|1/2 sinψ , (147)

where ψ = 2φ1 − φ2.

The dynamical equations for [u, v, w, q] follow from the chain rule, which yields

u̇ = z1ż1 + z1ż1 , v̇ = z2ż2 + z2ż2

ẇ = 2 z2z1ż1 + 2 z2z1ż1 + z2
1 ż2 + z2

1ż2

q̇ = (2 z2z1ż1 − 2 z2z1ż1 + z2
1 ż2 − z2

1ż2)/i (148)

Substituting (140) into (148), we obtain a set of four SO(2)-invariant equations,

u̇ = 2µ1 u+ 2 a1 u
2 + 2 b1 u v + c1w

v̇ = 2µ2 v + 2 a2 u v + 2 b2 v
2 + c2w

ẇ = (2µ1 + µ2)w + (2a1 + a2)uw + (2b1 + b2) v w

+ 4c1 u v + 2c2 u
2 + (2e1 − e2) q (149)

q̇ = (2µ1 + µ2) q + (2a1 + a2)u q

+(2b1 + b2) v q − (2e1 − e2)w .

Note that the O(2)-symmetry breaking parameters {e1, e2} of the Dangelmayr normal form

system [27] appear only in the relative phase combination (2e1 − e2), so one of the two can

be set to zero without loss of generality. This consideration motivated our choice of e1 = 0

in (142). Using the syzygy (146), we can eliminate q from (149) to get

u̇ = 2µ1 u+ 2 a1 u
2 + 2 b1 u v + c1w

v̇ = 2µ2 v + 2 a2 u v + 2 b2 v
2 + c2w (150)

ẇ = (2µ1 + µ2)w + (2a1 + a2)uw + (2b1 + b2) v w

+ 4c1 u v + 2c2 u
2 + (2e1 − e2)(4u2v − w2)1/2

44



This invariant basis can be used either to investigate the dynamics directly or to visualize

solutions computed in the full equivariant basis (140).

4.1.2 Equilibria of the symmetry-reduced dynamics

The first step in elucidating the geometry of attracting sets is the determination of their equi-

libria. We shall now show that the problem of determining the equilibria of the symmetry-

reduced two-modes (149) system can be reduced to finding the real roots of a multinomial

expression. First, we define

A1 = µ1 + a1 u+ b1 v , A2 = µ2 + a2 u+ b2 v (151)

and rewrite (149) as

0 = 2A1 u+ c1w , 0 = 2A2 v + c2w

0 = (2A1 +A2)w + 2 (c2 u+ 2 c1 v) u

+(2e1 − e2) q (152)

0 = (2A1 +A2) q − (2e1 − e2) w

We already know that [0, 0, 0, 0] and [0,−µ2/b2, 0, 0] are the only roots in the u = 0 and

v = 0 subspaces, so we are looking only for the u > 0, v > 0, w, q ∈ R solutions; there could

be non-generic roots with either w = 0 or q = 0, but not both simultaneously, since the

syzygy (146) precludes that. Either w or q can be eliminated by obtaining the following

relations from (152):

w = −2u

c1
A1 = −2 v

c2
A2

q =
2(−2e1 + e2)u v

c2 u+ 2 c1 v
. (153)

Substituting (153) into (152) we get two bivariate polynomials whose roots are the equilibria

of the system (149):

f(u, v) = c2 uA1 − c1 v A2 = 0 ,

g(u, v) =
(
4A2

1u
2 − 4 c2

1 u
2v
)

(c2 u+ 2 c1 v)2

+ 4 c2
1 (−2e1 + e2)2 u2 v2 = 0 . (154)
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We divide the common multiplier u2 from the second equation and by doing so, eliminate

one of the two roots at the origin, as well as the [0,−µ2/b2, 0, 0] root within the invariant

subspace (144). Furthermore, we scale the parameters and variables as ũ = c2 u, ṽ = c1 v,

ã1 = a1/c2, b̃1 = b1/c1, ã2 = a2/c2, b̃2 = b2/c1 to get

f̃(ũ, ṽ) = ũ Ã1 − ṽ Ã2 = 0 , (155)

g̃(ũ, ṽ) =
(
Ã2

1 − c1 ṽ
)

(ũ+ 2 ṽ)2 + e2
2 ṽ

2 = 0 , (156)

where Ã1 = µ1 + ã1 ũ+ b̃1 ṽ and Ã2 = µ2 + ã2 ũ+ b̃2 ṽ.

Solving coupled bivariate polynomials such as (155) and (156), is not, in general, a

trivial task. However, for the choice of parameters given by (142), Eq. (155) yields ṽ =

(µ1 + ã1ũ)/(µ2 + ã2ũ). Substituting this into (156) makes it a fourth order polynomial in

u, which we can solve. Only the non-negative, real roots of this polynomial correspond to

relative equilibria in the two-modes state space since u and v are the squares of first and

second mode amplitudes, respectively. Two roots satisfy this condition, the equilibrium at

the origin

pE = [0, 0, 0, 0] , (157)

and the relative equilibrium

pTW = [0.193569, 0.154131,−0.149539,−0.027178] . (158)

Note that by setting b2 = 0, we send the relative equilibrium at [0,−µ2/b2, 0, 0] to infinity.

Thus, (158) is the only relative equilibrium of the two-modes system for our choice of

parameters. While this is an equilibrium in the invariant polynomial basis, in the SO(2)-

equivariant, real-valued state space this is a 1-dimensional relative equilibrium group orbit.

The point on this orbit that lies in first Fourier mode slice is (see Figure 9 (c)):

(x1, y1, x2, y2) = (0.439966, 0,−0.386267, 0.070204) . (159)

We computed the linear stability eigenvalues and eigenvectors of this relative equilibrium,

by analyzing the stability matrix within the first Fourier mode slice Âij(â) = ∂v̂i/∂âj |â

(107), resulting in linear stability eigenvalues

λ1,2 = 0.05073± i 2.4527, λ3 = −5.5055, λ4 = 0 . (160)
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The 0 eigenvalue corresponds to the direction outside the slice. We expect this since the

reduced trajectory evolution equation (95) keeps the solution within the slice. The imag-

inary part of the expanding complex pair sets the ‘winding time’ in the neighborhood of

the equilibrium to Tw = 2π/Im (λ1) = 2.5617. The large magnitude of the contracting

eigenvalue λ3 yields a very thin attractor in the reduced state space, thus, when looked at

on a planar Poincaré section, the two-modes flow is almost one-dimensional, as shown in

Figs. 10(a) and 10(b).

4.1.3 No chaos when the reflection symmetry is restored

Before finishing our discussion of invariant polynomials, we make an important observation

regarding the case when both of the reflection symmetry breaking parameters, e1 and e2

are set to 0. In this case, z1,2 → z̄1,2 symmetry is restored and the evolution equations for

u, v, and w in (149) become independent of q. Furthermore, the time evolution equation

for q becomes linear in q itself, so that it can be expressed as

q̇ = ξ(u, v)q . (161)

Hence, the time evolution of q can be written as

q(τ) = e
∫ τ
0 dτ ′ξ(u(τ ′),v(τ ′))q(0) . (162)

If we assume that the flow is bounded, then we can also assume that a long time average of

ξ exists. The sign of this average determines the long term behavior of q(τ); it will either

diverge or vanish depending on the sign of 〈ξ〉 being positive or negative respectively. The

former case leads to a contradiction: If q(τ) diverges, the symmetry-invariant flow cannot

be bounded since the syzygy (146) must be satisfied at all times. If q(t) vanishes, there are

three invariant polynomials left, which are still related to each other by the syzygy. Thus,

the flow is confined to a two-dimensional manifold and cannot exhibit chaos. We must

stress that this is a special result that holds for the two-mode normal form with terms up

to third order.
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4.1.4 Two-modes system in the first Fourier mode slice

Reduction of SO(2) symmetry of the two-modes system via first Fourier mode slice is

straightforward as described in Sect. 3.3.3. We choose the slice template as â′ = (1, 0, 0, 0)T ,

which defines the first Fourier mode slice as the half-hyperplane

y1 = 0 , x1 > 0 . (163)

Reduced velocity field for the two-modes system in the first Fourier mode slice is given by

v̂(â) = v(â)− ẏ1 (â)

x̂1
t(â) , (164)

where we substituted the phase velocity θ̇ = ẏ1(a)/x̂1. The slice border condition (97) for

the two-modes system corresponds to x̂1 = |z1| = 0, however, in this particular problem, this

condition is never satisfied since z1 = 0 is a flow-invariant subspace (144) of the two-modes

system.

Figure 7: SO(2) group orbits of state space points (0.75, 0, 0.1, 0.1) (orange),
(0.5, 0, 0.5, 0.5) (green) (0.1, 0, 0.75, 0.75) (pink) and the first Fourier mode (163) slice hyper-
plane (blue). The group tangents at the intersections with the slice hyperplane are shown as
red arrows. As the magnitude of the first Fourier mode decreases relative to the magnitude
of the second one, so does the group tangent angle to the slice hyperplane.

Figure 7 shows visualizations of the slice half-hyperplane (blue, transparent), three

group orbits (yellow, green, and pink), and group tangents (red arrows) at the intersection

of group orbits with the first Fourier mode slice as projections onto (x1, y1, x2). In Figure 7,
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the slice hyperplane appears two-dimensional as a result of its definition (163), however, one

should keep in mind that it has a third dimension y2 that is not shown in this projection.

For the group orbits, we have chosen three points in the slice with decreasing first Fourier

mode amplitude in order to illustrate the following: When the magnitude of the first mode

is small relative to that of the second (pink curve), the group tangent at the representative

point for the group orbit (i.e., where the group orbit and the slice hyperplane intersect) has

a larger component parallel to the slice hyperplane. If the magnitude of the first mode was

exactly 0, the group tangent would lie entirely on the slice hyperplane, satisfying the slice

border condition (97).

4.1.5 Visualizing two-modes dynamics

(a) (b) (c)

(d) (e) (f)

Figure 8: The relative equilibrium TW in (a) the scalar field representation becomes an
equilibrium of (d) the symmetry-reduced field. Two cycles of the relative periodic orbit 01
of (b) the symmetry-equivariant field become a periodic orbit of (e) the symmetry-reduced
field. (c) A typical ergodic trajectory of the two-modes system in the symmetry-equivariant
field representation, (f) in the symmetry-reduced field representation. The color scale used
in each figure is different to enhance contrast.

We now present visualizations of the dynamics of the two-modes system in four different

representations: as 3D projections of the four-dimensional real-valued state space, as 3D

49



(a)  x 1
  
−1.5

0.0
1.5 x2   

−1.5
0.0

1.5

y
2    

−1.5   

 0.0  

 1.5  

(b)  u  
    
0.0

2.0
4.0 v    

0.0 2.0
4.0

w
   

−10.0    

 −5.0    

 0.0 

(c)  x̂ 1
    

  
0.0 

1.0 
2.0  x̂2     

−1.8 −0.9 0.0

ŷ
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Figure 9: The relative equilibrium TW (green), two repeats of the relative periodic orbit
01 (red), and a chaotic trajectory (blue) of the two-modes system (a) in a 3D projection
of the 4-dimensional state space, (b) in a terms of 3 invariant polynomials, (c) in the
3-dimensional first Fourier mode slice hyperplane. Note that in the symmetry reduced
representations (b and c), the relative equilibrium TW is reduced to an equilibrium, the
green point; and the periodic orbit 01 (red) closes onto itself after one repeat. In contrast
to the invariant polynomial representation (b), in the first Fourier mode slice hyperplane
(c), the qualitative difference between shifts by ≈ π and ≈ −π in near passages to the slice
border is very clear, and it leads to the unimodal Poincaré return map of Figure 10.

projections in the invariant polynomial basis, as dynamics in the 3D slice hyperplane, and

as two-dimensional spacetime diagrams of the color-coded field u(x, τ), which is defined as

follows:

u(x, τ) =

2∑
k=−2

zk(τ) eikx , (165)

where z−k = z̄k , z0 = 0 , and x ∈ [−π, π]. We can also define the symmetry reduced field

û(x, τ), as the inverse Fourier transform of the symmetry reduced Fourier modes:

û(x, τ) =

2∑
k=−2

ẑk(τ)eikx , (166)

where ẑ−k = ¯̂zk , ẑ0 = 0 and x ∈ [−π, π]. (165) defines an analogous physical space

representation for the two-modes system as a scalar field in one space dimension, similar

to the one we discussed in Sect. 3.1. In this representation, we expect SO(2) group action

to become translations in space coordinate x. Figures 8 (a) and 8 (d) show the sole rela-

tive equilibrium TW of the two-modes system as color coded amplitude of the symmetry-

equivariant and symmetry-reduced fields, respectively. After symmetry reduction, the rela-

tive equilibrium becomes an equilibrium. Figures 8 (b) and 8 (e) show the relative periodic

orbit 01 again respectively in the symmetry-equivariant and symmetry-reduced scalar field

representations. Similar to the relative equilibrium, the relative periodic orbit becomes

a periodic orbit after symmetry reduction. Finally, Figures 8 (c) and 8 (f) show a typical
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ergodic trajectory of the two-modes system in symmetry-equivariant and symmetry-reduced

scalar field representations. Note that in each case, symmetry reduction cancels the ‘drifts’

along the symmetry (x) direction.

As can be seen clearly in Figure 9 (a), these drifts show up in state space as SO(2) rota-

tions. The relative equilibrium TW traces its SO(2) group orbit (green curve in Figure 9 (a))

as it drifts in space. The relative periodic orbit 01 (red) and the ergodic trajectory (blue)

rotate in the same fashion as they evolve. Figures 9(b) and 9(c) show a three-dimensional

projection onto the invariant polynomial basis and the 3-dimensional trajectory on the slice

hyperplane for the same orbits. In both figures, the relative equilibrium is reduced to an

equilibrium and the relative periodic orbit is reduced to a periodic orbit.

4.2 Periodic orbits

The simple structure of the symmetry-reduced dynamics allows us to determine the relative

periodic orbits of the two-modes system by means of a Poincaré section and a return map.

We illustrate this procedure in Figure 10. Starting with an initial point close to the TW,

we compute a long, symmetry-reduced ergodic trajectory by integrating (95) and record

where it crosses the Poincaré section, which we define as the plane that contains TW and

is spanned the imaginary part of its unstable stability eigenvector and ŷ2. We then project

these points onto a basis (v1, v2), which spans the Poincaré section and fit cubic splines to the

data as shown in Figure 10 (b). This allows us to construct a return map along this curve,

which can be expressed in terms of the distance s from TW as measured by the arc length

along the cubic spline fit. The resulting map, which is shown in Figure 10 (c), is unimodal

with a sharp cusp located at its critical point. Note that the region s ∈ (0, 0.6) corresponds

to the neighborhood of the relative equilibrium and is only visited transiently. Once the

dynamics fall onto the chaotic attractor, this region is never visited again. Removing this

region from the return map, we obtain the return map shown in Figure 10 (d), which we

can then use to determine the accessible relative periodic orbits with their respective binary

symbol sequences.
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Figure 10: (a) A Symmetry-reduced ergodic trajectory within the slice hyperplane (blue).
Green arrows indicate the real and imaginary parts of the complex eigenvectors vu that
span the linear unstable manifold of TW. The Poincaré section, which contains TW and
is spanned by Im [vu] and ŷ2, is visualized as a transparent plane. Points where the flow
crosses the section are marked in red. (b) A closer look at the Poincaré section shows that
the attractor is very thin. Note that the vertical axis, which corresponds to the direction
parallel to ŷ2 is magnified by 100. All (blue) points are located relative to the TW, which is
at the origin. The black curve is a cubic spline interpolation of the data. (c) By measuring
arclengths s along the interpolation curve, a return map of the Poincaré section can be
constructed. Note that once the flow exits the neighborhood of the TW (s < 0.6) it stays
on the attractor and never comes back. Thus the data up to this point is transient. (d)
The return map without the transient points framed by orbit of the critical point. Dashed
lines show the 3-cycles 001 (red) and 011 (cyan).

52



The unimodal return map of Figure 10 (d) diverges around s ≈ 0.98 and this neigh-

borhood is visited very rarely by the flow. We took the furthest point that is visited by

the ergodic flow, sC = 0.98102264 as the critical point of this map and coded points to the

left and right hand sides of this point as ‘0’ and ‘1’ respectively, and constructed a binary

symbolic dynamics. This encoding is going to allow us to find all accessible periodic orbits

of the two-modes system as we shall explain next.

4.2.1 Determining admissible cycles

We would like to find all relative periodic orbits of the two-modes system up to a certain

period in order to carry out periodic orbit theory calculations. For unimodal maps such

as Figure 10 (d), we can achieve this by kneading theory. In this section, we are going to

state the symbolic dynamics methods we use in this chapter and for a general pedagogical

introduction to these topics, we refer the reader to refs. [21, 30].

Let s1, s2, s3, . . . be the orbit of an initial point s0 under a unimodal return map sn+1 =

f(sn), such as Figure 10 (d), then the future itinerary I+(s0) = .i1i2i3 . . . of s0 is given by

in =


0 if sn < sC

C if sn = sC

1 if sn > sC

. (167)

Unimodal maps that contain all possible itineraries are said to have complete binary

symbolic dynamics. A canonical example of such maps is full tent map

f (γ) = 1− 2|γ − 1/2| , γ ∈M = [0, 1] , (168)

which has a critical point at γ = 1/2 as shown in Figure 11 (a). Figure 11 (a) also shows

partitions of the unit interval according to the first iterate of the map. This partition should

not be mistaken with the future itinerary in (167): Labels in spatial partition of the unit

interval starts from the initial point i.e. 00 corresponds to the initials points on the LHS of

the γC that stays on the same side after iteration, 01 means initial points on the LHS of

the γC that goes to the RHS after one iteration, and so on. One can obtain finer partitions

of the unit interval by considering longer symbol sequences, doubling the precision at each
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step. This yields the relation between the future itinerary I+(γ0) = .i1i2i3 . . . of a point γ0

and its image γ1 = f (γ0) that can be computed via the following algorithm

wn+1 =

 wn if in+1 = 0

1− wn if in+1 = 1
, w1 = i1

γ(I+) = γ1 =

∞∑
n=1

wn
2n

. (169)

(a) 00 01 1011

0

1

γn+1

γnγC

(b)

κ = f(γC)

prunedκ/2

Figure 11: (a) Full tent map (168) and its partition M00,M01,M10,M11 according
to symbolic dynamics. (b) The dike map is obtained by slicing off the top portion of the
tent map in (a). Any full tent map orbit that visits the primary pruning interval (κ, 1] is
inadmissible.

Since we can compute binary future itinerary of every point on a unimodal map, such

as the one in Figure 10, we can compute their counterparts on the full tent map via (169).

This defines a topological conjugacy between all unimodal maps and the full tent map,

hence γ(I+) is called (future) “topological coordinate”.

It can be confirmed by inspection that the topological coordinate of the critical point

of the tent map is γ(I+(γc)) = 1 as expected. However, this is not the case for any

unimodal map. In fact, this would be only true if the map had complete binary symbolic

dynamics, that is all possible itineraries are accessible in the system. Generically, topological

coordinate of the critical point κ = γ(I+(sC)) is different from 1. As a canonical example,
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consider the dike map

f (γ) =


f0(γ) = 2γ γ ∈M0 = [0, κ/2)

fc(γ) = κ γ ∈Mc = [κ/2, 1− κ/2]

f1(γ) = 2(1− γ) γ ∈M1 = (1− κ/2, 1]

, (170)

which is obtained by modifying the tent map (168) by setting images of γ ∈ [κ/2, 1−κ/2] to

κ. It can be seen from Figure 11 (b) that this modification disallows any orbit to reach γ > κ

part of the unit interval. Consequently, periodic orbits of the tent map, which visit γ > κ

part of the unit interval are “pruned” in the dike map (170). This is the main topological

correspondence that we are going to use to determine accessible periodic orbits. Due to

their particular importance, future itinerary and the corresponding topological coordinate

of the critical point have special names: K = I+(sC) is called the “kneading sequence” and

κ = γ(K) is called the “kneading value”.

We are now ready to explain how admissible periodic orbits are determined. Let us

assume the future itinerary I+(sp) = .i0i1i2 . . . in−1 belongs to a periodic orbit of discrete

period n and define the shift operator σ as

σI+(sp) = .i1i2 . . . in−1i0 = I+(f (sp)) . (171)

The maximal value of a future itinerary is given by

γ̂(I+(sp)) = sup
m
γ(σmI+(sp)) (172)

In any unimodal map, if the maximal value γ̂(I+(sp)) of a periodic orbit p is smaller than

the kneading value κ, then this orbit is admissible. By checking this for all possible binary

itineraries, we determine all admissible cycles of the two-modes system.

4.2.2 Finding relative periodic orbits

We are now going to summarize the procedure of locating relative periodic orbits in the

state space: Suppose the binary itinerary i0i1i2 . . . in−1,where ij = 0, 1 corresponds to

an admissible ‘n-cycle’, a relative periodic orbit that intersects our Poincaré section n-

times. We first find arc-lengths {s0, s1, . . . sn−1} that constitute this cycle on the return
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map Figure 10 (d) from the fixed points of the nth iterate of the return map. We then

find corresponding reduced state space points {â0, â1, . . . ân−1}. Finally, we integrate the

reduced flow (95) and the phase (96) starting from each point âj until it returns to the

Poincaré section, and divide this trajectory into N small pieces. As a result, we obtain n×N

state space points, durations and phase shifts {a(0)
i , τ

(0)
i , θ

(0)
i }, where i = 1, 2, . . . n×N ,

which we feed into the multiple shooting Newton solver (see Appendix A) to precisely

determine the relative periodic orbit, its period and the associated phase shift. After finding

n×N state space points (ai), flight times (τi), and phase shifts (θi) associated with the n

cycle, we can compute the stability of the orbit. We do this by computing the Jacobian

associated with each segment of the orbit Jτi(ai), so that the Jacobian associated with the

relative periodic orbit is then

Ĵ = g(−θn×N )Jτn×N (an×N ) . . .

g(−θ2)Jτ2(a2)g(−θ1)Jτ1(a1) . (173)

This construction (173) of the Jacobian is equivalent to our definition in (85), since the

group action g and the Jacobian J are both multiplicative and commute with each other

as a consequence of g-equivariance of the flow. The form (173) is essential in determin-

ing its eigenvalues (Floquet multipliers) precisely, since it allows us to use periodic Schur

decomposition, as described in Appendix B.

Table 1: Itinerary, period (T ), phase shift (θ), Floquet multiplier (Λ), and Floquet
exponent (λ) of the found two-modes relative periodic orbits with topological lengths up to
n = 5, more (up to n = 12) available upon request.

Itinerary T θ Λ λ

1 3.64151221 0.08096967 -1.48372354 0.10834917
01 7.34594158 -2.94647181 -2.00054831 0.09439516
001 11.07967801 -5.64504385 -55.77844510 0.36295166
011 11.07958924 -2.50675871 54.16250810 0.36030117
0111 14.67951823 -2.74691247 -4.55966852 0.10335829
01011 18.39155417 -5.61529803 -30.00633820 0.18494406
01111 18.38741006 -2.48213868 28.41893870 0.18202976

We found the admissible cycles of the two-modes system up to the topological length 12.

We listed binary itineraries of shortest 7 relative periodic orbits (with topological lengths
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up to 5), along with their periods, phase shifts, leading (expanding) Floquet multipliers,

and corresponding Floquet exponents in Table 1. Remaining three Floquet multipliers of

the relative periodic orbits are two marginal ones corresponding to continuous symmetry

and velocity field directions and a strongly contracting one corresponding to the direction

pointing outside the attractor. In Figure 12 (a) we show shortest 4 of the relative periodic

orbits of the two-modes system within the first Fourier mode slice hyperplane. As seen from

Figure 12 (a), trajectories of 001 (red) and 011 (cyan) almost overlap in a large region of the

state space. This behavior is also manifested in the return map of Figure 10 (d), where we

have shown cycles 001 and 011 with red and cyan respectively. This is a general property of

the two-modes cycles with odd topological lengths: They come in pairs with almost equal

leading (largest) Floquet exponents, see Figure 12 (b). Floquet exponents (λj) characterize

the rate of expansion/contraction of nearby perturbations to the relative periodic orbits

and are related to Floquet multipliers (Λj) by

λp̃,j =
1

Tp̃
ln |Λp̃,j | , j = 1, 2, . . . , d , (174)

where the subscript p̃ associates λp̃,j and Λj with the ‘prime relative periodic orbit’ p and

its period Tp̃. Having computed periods, phase shifts, and Floquet multipliers of relati-

ve periodic orbits, we are now ready to calculate dynamical averages and other statistical

moments of observables using cycle averaging formulas.

(a)  x̂ 1
      

0.0
1.0

2.0 x̂2     
−1.8 −0.9 0.0

ŷ
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Figure 12: (a) The shortest four relative periodic orbits of the two-modes system: 1
(dark blue), 01 (green), 001 (red), 011 (cyan). Note that relative periodic orbits 001 and
011 almost overlap everywhere except x̂1 ≈ 0 (b) Distribution of the expanding Floquet
exponents of all two-modes cycles with topological lengths n from 2 to 12. .
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4.3 Cycle Averages

We finished Chapter 2 by writing down the spectral determinant (62), zeros of which were

located at the eigenvalues of the infinitesimal evolution operator A. This formula consist

of an exponential of sums of all periodic orbits of the system and their repeats and it is not

obvious at all how can we evaluate it using our numerically found relative periodic orbits

of the two-modes system. We begin this section by introducing the cycle expansions, which

will tell us how to order terms in the spectral determinant.

4.3.1 Cycle expansions

In order to understand the convergence properties of the spectral determinant, we are going

to make an approximation that greatly simplifies its form. The term
∣∣det

(
1−Mp

)∣∣ that

appears in the spectral determinant can be expanded as follows∣∣det
(
1−Mp

)∣∣ = |(1− Λe,1)(1− Λe,2)...(1− Λc,1)(1− Λc,2)...| ,

=

∣∣∣∣∣
(∏

e

Λe

)
(Λ−1

e,1 − 1)(Λ−1
e,2 − 1)...(1− Λc,1)(1− Λc,2)...

∣∣∣∣∣ , (175)

where we labeled expending |Λe,k| > 1 and contracting |Λc,k| < 1 Floquet multipliers of

the periodic orbit p with subscripts e, c and in the second line we rewrote the expansion

by separating the product of expanding eigenvalues. Assuming that we do not have any

near-marginal (Λ ≈ 1) Floquet multipliers, all terms in (175) except the product are order

O(1) or smaller, hence the dominant term of this expansion is the product at the front.

Defining |Λp| ≡
∏
e |Λe| we approximate (175) for periodic orbit p and its repeats as follows∣∣det

(
1−M r

p

)∣∣ ≈ |Λp|r . (176)

The spectral determinant within this approximation is called dynamical zeta function

1/ζ = exp

(
−
∑
p

∞∑
r=1

1

r

er(βΩp−sTp)

|Λp|r

)
. (177)

Notice in (177) that the terms inside the sum are all powers of r divided by r. Defining

tp ≡ e(βΩp−sTp)/|Λp|, inner sum becomes
∑∞

r=1 t
r
p/r = − ln(1 − tp), hence the dynamical

zeta function can be brought to the Euler product form

1/ζ =
∏
p

(1− tp) (178)
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Cvitanović [20] realized that if one has complete binary symbolic dynamics, the Euler

product (178) can be expanded in the following form

1/ζ = 1− t0 − t1 − (t01 − t0t1) (179)

−[(t011 − t01t1) + (t001 − t01t0)]− ...

= 1−
∑
f

tf −
∑
n

ĉn, (180)

where we labeled each prime cycle by its binary symbol sequence. In (180) we separated

the contributions to the zeta function into two groups: ‘fundamental’ contributions tf

and ‘curvature’ corrections cn. The curvature correction terms are denoted explicitly by

parentheses in (179) and correspond to ‘shadowing’ combinations where combinations of

shorter cycle weights, also known as ‘pseudocycle’ weights, are subtracted from the weights

of longer prime cycles. Since the cycle weights in (178) already decrease exponentially with

increasing cycle period, the cycle expansion (179) converges even faster than exponentially

when the terms corresponding to longer prime cycles are shadowed.

The cycle expansion (179) of the dynamical zeta function completes the theoretical

exposition of Chapter 2 by telling us that we should order cycle contributions according to

their topological lengths. Ref. [5] studied the properties of (180) in detail, and ref. [6] carried

out cycle averages in several low-dimensional dynamical systems. These papers concluded

that the cycle expansions is an effective method for computation of long term averages of

dynamical systems if one has a good understanding of the topology (symbolic dynamics)

and cycles are hyperbolic, i.e. they do not have marginal (|Λ| = 1) Floquet multipliers.

Following refs. [5, 6], Rugh [99] showed that if the symbolic dynamics is a subshift of finite

type, [21] with the grammar of admissible sequences described by a finite set of pruning

rules, and the flow is uniformly hyperbolic, cycle expansions of spectral determinants are

guaranteed to converge super-exponentially.

A generic unimodal map symbolic dynamics is not a subshift of finite type. However,

we have shown in Sect. 4.2 that the Poincaré return map for the two-modes system (Fig-

ure 10 (d)) diverges at s ≈ 0.98 and approximated it as if its tip was located at the furthest
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point visited by an ergodic trajectory. This brings the question of whether we can approx-

imate the map in Figure 10 (d) in such a way that corresponding symbolic dynamics has a

finite grammar of pruning rules? The answer is yes.

4.3.2 Finite grammar approximation

As shown in Figure 10 (d), the cycles 001 and 011 pass quite close to the tip of the cusp.

Approximating the map as if its tip is located exactly at the point where 001 cuts gives us

what we are looking for: a single grammar rule, which says that the symbol sequence ‘00’

is inadmissible. This can be made rigorous by the help of kneading theory, however, the

simple result is easy to see from the return map in Figure 10 (d): Cover the parts of the

return map, which are outside the borders set by the red dashed lines (the cycle 001) and

then start any point to the left of the tip and look at images. You will always land on a

point to the right of the tip, unless you start at the lower left corner, exactly on the cycle

001. As we will show, this ‘finite grammar approximation’ is reasonable since the orbits

that visit outside the borders set by 001 are very unstable, and hence, less important for

the description of invariant dynamics.

The binary grammar with only rule that forbids repeats of one of the symbols is known

as the ‘golden mean’ shift, [21] because it has a topological entropy of ln
((

1 +
√

5
)
/2
)
.

Binary itineraries of golden mean cycles can be easily obtained from the complete binary

symbolic dynamics by substitution 0→ 01 in the latter. Thus, we can write the dynamical

zeta function for the golden mean pruned symbolic dynamics by replacing 0s in (179) by

01:

1/ζ = 1− t01 − t1 − (t011 − t01t1) (181)

−[(t0111 − t011t1) + (t01011 − t01t011)]− ...

Note that all the contributions longer than topological length 2 to the golden mean dynam-

ical zeta function are in form of shadowing combinations. In Sect. 4.4.1, we will compare

the convergence of the cycle averages with and without the finite grammar approximation,

but before moving on to numerical results, we explain the remaining details of computation.
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4.4 Cycle expansions the of spectral determinant

While dynamical zeta functions are useful for investigating the convergence properties, they

are not exact, and their computational cost is same as that of exact spectral determinants.

For this reason, we expand the spectral determinant (62) ordered in the topological length

of cycles and pseudocycles. We start with the following form of the spectral determinant

(62)

det (s−A) =
∏
p

exp

− npr<N∑
r=1

1

r

er(βΩp−sTp)∣∣det
(
1−M r

p

)∣∣znpr
 , (182)

where the sum over the prime cycles in the exponential is taken out as product. We also

inserted the order tracking term z, which we will set to 1 at the final step, and truncated

the sum over cycle repeats at the expansion order N . For each prime cycle, we compute the

sum in (182) and expand the exponential up to order N . We then multiply this expansion

with the contributions from previous cycles and drop terms with order greater than N .

This way, after setting z = 1, we obtain the spectral determinant truncated to cycles and

pseudo-cycles of topological length up to np ≤ N ,

FN (β, s) = 1−
N∑
n=1

Qn(β, s) , (183)

where we denoted the Nth order spectral determinant by FN and nth order term in its

cycle expansion by Qn. In what follows, we shall drop the subscript, FN → F , but actual

calculations are always done for a range of finite truncation lengths N . Remember that we

are searching for the eigenvalues s(β) of the operator A in order to compute the moments

(50) and (54). These eigenvalues are located at the zeros of the spectral determinant, hence

as function of β they satisfy the implicit equation

F (β, s(β)) = 0 . (184)

By taking derivative of (184) with respect to β and applying chain rule we obtain

ds

dβ
= − ∂F

∂β

/
∂F

∂s
. (185)
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Higher order derivatives can be evaluated similarly. Defining

〈Ω〉 = −∂F/∂β ,

〈T 〉 = ∂F/∂s , 〈T2〉 = ∂2F/∂s2 , (186)

〈Ω2〉 = −∂2F/∂β2 , 〈ΩT 〉 = ∂2F/∂β∂s ,

we write the cycle averaging formulas as

〈ω〉 = 〈Ω〉/〈T 〉 , (187)

∆ =
1

〈T 〉

(
〈Ω2〉 − 2

ds

dβ
〈ΩT 〉 +

(
ds

dβ

)2

〈T2〉

)
=

1

〈T 〉
〈(Ω− T 〈ω〉)2〉 , (188)

with everything evaluated at β = 0, s = s(0).

By probability conservation, we expect that for an invariant measure ρ0(a), the eigen-

value s(0) is 0. However, we did not make this substitution in cycle averaging formulas since,

in practice, our approximations to the spectral determinant are always based on a finite

number of periodic orbits, so that the solution of FN (0, s(0)) = 0 is small, but not exactly

0. This eigenvalue has a special meaning: It indicates how well the periodic orbits cover the

strange attractor. Following this interpretation, we define γ = −s(0) as the ‘escape rate’:

the rate at which the dynamics escape the region that is covered by the periodic orbits.

Specifically, for our finite grammar approximation; the escape rate tells us how frequently

the ergodic flow visits the part of the Poincaré map that we cut off by applying our finite

grammar approximation.

We defined 〈T 〉 in (186) as a shorthand for a partial derivative, however, we can also

develop an interpretation for it by looking at the definitions of the dynamical zeta function

(178) and the spectral determinant (62). In both series, the partial derivative with respect

to s turns them into a sum weighted by the cycle periods; with this intuition, we define 〈T 〉

as the ‘mean cycle period’. We are now ready to present our numerical results and discuss

their quality.
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4.4.1 Numerical results

We constructed the spectral determinant (183) to different orders for two observables: phase

velocity θ̇ and the leading Lyapunov exponent. Remember that Ωp appearing in (182) is the

integrated observable, so in order to obtain the moments of phase velocity and the leading

Lyapunov exponent from (187) and (188), we respectively put in Ωp = θp, the phase shift

of the prime cycle p, and Ωp = ln |Λp,e|, the logarithm of its expanding Floquet multiplier

of Λp,e.

In Sect. 4.1.5, we explained that SO(2) phase shifts correspond to the drifts in space.

We define the corresponding diffusion coefficient as

D =
1

2d
lim
τ→∞

1

τ
〈θ(τ)2 − 〈θ(τ)〉2〉 , (189)

where d = 1 since the analogous physical space is one-dimensional.

Tables 2 and 3 respectively show the cycle averages of the escape rate γ, mean period

〈T 〉, leading Lyapunov exponent λ, mean phase velocity 〈θ̇〉 and the diffusion coefficient D

with and without the finite grammar approximation. In the latter, we input all the relative

periodic orbits we have found into the expansion (182), whereas in the former, we discarded

the cycles with symbol sequence ‘00’.

In Sect. 4.3.2, we motivated the finite grammar approximation by claiming that it would

lead to faster convergence of dynamical averages due to the nearly exact shadowing com-

binations of the golden mean zeta function (181). This claim is supported by the data in

Tables 2 and 3. Take, for example, the Lyapunov exponent. This converges to 7 digits for

the 12th order expansion when using the finite grammar approximation in Table 2, but only

converges to 4 digits at this order in Table 3. Other observables compare similarly in terms

of their convergence in both cases. Note, however, that the escape rate in Table 2 converges

to γ = 0.000727889, whereas in Table 3 it gets smaller and smaller with an oscillatory

behavior. This is due to the fact that in the finite grammar approximation, we threw out

the part of attractor that corresponds to the cusp of the return map in Figure 10 (d) above

the point cut by 001.

In order to compare with the cycle averages, we numerically estimated the leading
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Table 2: Cycle expansion estimates for the escape rate γ, average cycle period 〈T 〉, Lya-
punov exponent λ, average phase velocity 〈θ̇〉, and the diffusion coefficient D, using cycles
up to length N in the golden mean approximation (181) of the symbolic dynamics.

N γ 〈T 〉 λ 〈θ̇〉 D

1 0.249829963 3.6415122 0.10834917 0.0222352 0.000000
2 -0.011597609 5.8967605 0.10302891 -0.1391709 0.143470
3 0.027446312 4.7271381 0.11849761 -0.1414933 0.168658
4 -0.004455525 6.2386572 0.10631066 -0.2141194 0.152201
5 0.000681027 5.8967424 0.11842700 -0.2120545 0.164757
6 0.000684898 5.8968762 0.11820050 -0.1986756 0.157124
7 0.000630426 5.9031596 0.11835159 -0.1997353 0.157345
8 0.000714870 5.8918832 0.11827581 -0.1982025 0.156001
9 0.000728657 5.8897511 0.11826873 -0.1982254 0.156091
10 0.000728070 5.8898549 0.11826788 -0.1982568 0.156217
11 0.000727891 5.8898903 0.11826778 -0.1982561 0.156218
12 0.000727889 5.8898908 0.11826780 -0.1982563 0.156220

Table 3: Cycle expansion estimates of the escape rate γ, average cycle period 〈T 〉, Lya-
punov exponent λ, average phase velocity 〈θ̇〉, and the diffusion coefficient D using all cycles
found up to length N .

N γ 〈T 〉 λ 〈θ̇〉 D

1 0.249829963 3.6415122 0.10834917 0.0222352 0.000000
2 -0.011597609 5.8967605 0.10302891 -0.1391709 0.143470
3 0.022614694 4.8899587 0.13055574 -0.1594782 0.190922
4 -0.006065601 6.2482261 0.11086469 -0.2191881 0.157668
5 0.000912644 5.7771642 0.11812034 -0.2128347 0.168337
6 0.000262099 5.8364534 0.11948918 -0.2007615 0.160662
7 0.000017707 5.8638210 0.12058951 -0.2021046 0.160364
8 0.000113284 5.8511045 0.12028459 -0.2006143 0.159233
9 0.000064082 5.8587350 0.12045664 -0.2006756 0.158234
10 0.000093124 5.8536181 0.12035185 -0.2007018 0.158811
11 0.000153085 5.8417694 0.12014700 -0.2004520 0.158255
12 0.000135887 5.8455331 0.12019940 -0.2005299 0.158465
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Lyapunov exponent of the two-modes system using the method of Wolf et al. [119] This

procedure was repeated 100 times for different initial conditions, yielding a numerical mean

estimate of λ = 0.1198 ± 0.0008. While the finite grammar estimate λFG = 0.1183 is

within 0.6% range of this value, the full cycle expansion agrees with the numerical estimate.

This is not surprising since in the finite grammar approximation, we discard the most

unstable cycles to obtain faster convergence, and so can expect a slight underestimate of

the Lyapunov exponent.

4.5 Conclusions

In this chapter, we studied a simple dynamical system that exhibits chaos and is equivariant

under SO(2) symmetry as the first application of first Fourier mode slice. Our presentation

covers all steps that need to be taken in the study of equivariant systems: (1) reduction

of symmetries, (2) understanding of qualitative dynamics on Poincaré maps, (3) finding

exact coherent structures numerically using guesses from Poincaré maps, and (4) predicting

dynamical averages using periodic orbit theory. Relative simplicity of the two-modes sys-

tem’s strange attractor allowed us to carry out steps (2-4) in a straightforward manner, and

confirmed one of the main objectives of our approach: Relative periodic orbits can indeed

be used to predict the long-time averages of observables in chaotic systems with continu-

ous symmetries. Furthermore, improved convergence of cycle expansions within the finite

grammar approximation of Sect. 4.3.2 demonstrated the strong relation between qualitative

understanding of chaotic systems and quantitative predictions of their long term behavior.
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CHAPTER V

KURAMOTO-SIVASHINSKY SYSTEM

In the previous chapter, we showed that the relative periodic orbits of a chaotic system with

a continuous symmetry, can indeed be used to predict the long term behavior of the system.

However, the four-dimensional two-modes system is very easy compared to the applications

we have in mind and it also lacked the physical motivation for its study. Here, we take one

step further, and as soon as we do, we face new difficulties.

Originally derived as a simplification of the complex Ginzburg-Landau equation [71]

and in the study of flame fronts [103], the Kuramoto-Sivashinsky equation is perhaps the

simplest spatially extended dynamical system that exhibits spatiotemporal chaos. Similar in

form to the Navier-Stokes equation, but much easier computationally, the Kuramoto-Siva-

shinsky partial differential equation (PDE) is a convenient sandbox for developing intuition

about turbulence [60].

In one space dimension with periodic boundary condition, the Kuramoto-Sivashinsky

equation is equivariant under both discrete reflection and continuous translations. In order

to avoid dealing with complications due to the continuous symmetry, a number of earlier pa-

pers [18, 73, 91, 92, 93] study the Kuramoto-Sivashinsky equation within the flow-invariant

subspace of solutions antisymmetric under the reflection. However, such restrictions to

flow-invariant subspaces miss the physics of the problem: any symmetry invariant subspace

is of zero measure in the full state space, so a generic turbulent trajectory explores the state

space outside of it. Lacking continuous-symmetry reduction schemes, earlier papers on the

geometry of the Kuramoto-Sivashinsky flow in the full state space were restricted to the

study of the smallest invariant structures: equilibria [49], their invariant stable/unstable

manifolds, their heteroclinic connections [23], and their bifurcations under variations of the

domain size [3, 68].

In this chapter, we are going to study the state space geometry of Kuramoto-Sivashinsky
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system in the symmetry reduced representation, which will enable us to study the invariant

manifolds of the relative equilibria and relative periodic orbits. We begin by introducing

the Kuramoto-Sivashinsky system.

5.1 Kuramoto-Sivashinsky system and its symmetries

We study the Kuramoto-Sivashinsky equation in one space dimension

uτ = −1
2(u2)x − uxx − uxxxx , (190)

with periodic boundary condition u(x, τ) = u(x+L, τ). The real field u(x, τ) is the “flame

front” velocity [103]. The domain size L is the bifurcation parameter for the system, which

exhibits spatiotemporal chaos for sufficiently large L: see Figure 13 (e) for a typical spa-

tiotemporally chaotic trajectory of the system at L = 22.
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Figure 13: Examples of exact coherent structures in the Kuramoto-Sivashinsky system
and the ergodic flow visualized as the color coded amplitude of the scalar field u(x, τ): (a)
Equilibrium E1, (b) Relative equilibrium TW1, (c) Pre-periodic orbit with period T = 32.4,
(d) Relative periodic orbit with period T = 33.5 . (e) Ergodic flow. Horizontal and vertical
axes correspond to space and time respectively. System size L = 22. The exact coherent
structures and their labels are taken from ref. [23].

We discretize the Kuramoto-Sivashinsky system by Fourier expanding the field u(x, τ) =∑
k ũk(τ)eiqkx , and expressing (190) in terms of Fourier modes as an infinite set of ordinary

differential equations (ODEs)

˙̃uk = (q2
k − q4

k) ũk − i
qk
2

+∞∑
m=−∞

ũmũk−m , qk =
2πk

L
. (191)

Kuramoto-Sivashinsky equation is Galilean invariant : if u(x, τ) is a solution, then

v + u(x − vτ, τ), with v an arbitrary constant velocity, is also a solution. In the Fourier
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representation (191), the Galilean invariance implies that the zeroth Fourier mode ũ0 is

decoupled from the rest and time-invariant. Hence, we set ũ0 = 01 and exclude ũ0 from the

state space and represent a Kuramoto-Sivashinsky state u = u(x, τ) by the Fourier series

truncated at k = N , i.e., a 2N -dimensional real valued state space vector (69). One can

rewrite (191) in terms of this real valued state space vector, and express the truncated set

of equations compactly as

ȧ = v(a) . (192)

In our numerical work we use a pseudo-spectral formulation of (192), as described in Ap-

pendix C.

Spatial translations u(x, τ)→ u(x+ δx, τ) correspond to SO(2) rotations a→ g(θ) a in

the Kuramoto-Sivashinsky state space, with the matrix representation (70). The Kuramo-

to-Sivashinsky dynamics commutes with the action of (70), as can be verified by checking

that (192) satisfies the equivariance relation (73). By the translation symmetry of the Ku-

ramoto-Sivashinsky, each solution of PDE (190) has infinitely many dynamically equivalent

copies that can be obtained by translations (70). Hence, Kuramoto-Sivashinsky system has

relative exact coherent structures such as relative equilibria (79) and relative periodic orbits

(83), examples of which are visualized in Figure 13 (b) and (d), respectively.

The Kuramoto-Sivashinsky equation (190) has no preferred direction, and is thus also

equivariant under the reflection symmetry u(x, τ) → −u(−x, τ): for each solution drifting

left, there is a reflection-equivalent solution which drifts right. In terms of Fourier compo-

nents, the reflection σ acts as complex conjugation followed by a negation, whose action

on vectors in state space (69) is represented by the diagonal matrix which flips the real

components bi to −bi,

σ = diag [−1, 1, −1, 1, . . . , −1, 1] . (193)

Due to this reflection symmetry, the Kuramoto-Sivashinsky system also can also have strictly

non-drifting equilibria and (pre-)periodic orbits. An equilibrium is a stationary solution

1 We do not loose generality by this choice since each solution with nonzero mean velocity v can be
obtained from zero mean velocity (ũ0 = 0) solution by transforming to the moving frame x′ = x− vτ .
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aeq(τ) = aeq(0) . A periodic orbit p is periodic with period Tp, ap(0) = a(Tp) , and a pre-

periodic orbit is a relative periodic orbit

appo(0) = σ appo(Tp) (194)

which closes in the full state space after the second repeat, hence we refer to it as ‘pre-

periodic’.

In Figure 13 (a) we show equilibrium E1 of Kuramoto-Sivashinsky equation (so labelled

in ref. [23]). If we were to reflect Figure 13 (a) with respect to x = 0 line, and then

interchange red and blue colors, we would obtain the same solution; all equilibria belong

to the flow-invariant subspace of solutions invariant under the reflection symmetry of the

Kuramoto-Sivashinsky equation. Figure 13 (b) shows a pre-periodic solution of the Kura-

moto-Sivashinsky system: The dynamics of the second period can be obtained from the

first one by reflecting it. Both equilibria and pre-periodic orbits have infinitely many copies

that can be obtained by continuous translations, symmetric across the shifted symmetry

line, g(θ)σg(−θ). Due to non-commutativity of reflection σ and translations g(θ), (σ g(θ) =

−g(θ)σ , or, in terms of the generator of translations, the reflection reverses the direction

of the translation, σ T = −T σ). Let f τ (a) denote the finite time flow mapping induced by

(192) and appo belong to a pre-periodic orbit defined by (194). Then the dynamics of the

shifted point a′
ppo

= g(θ) appo satisfies

fTp(a′
ppo

) = g(θ)σg(−θ) a′
ppo
.

In contrast, a relative periodic orbit (83) also has a distinct reflected copy a′
rpo

= σarpo with

reversed phase shift:

a′
rpo

(0) = g(θp) a
′
rpo

(Tp) .

In order to carry out our analysis, we must first eliminate all these degeneracies. This we

do by symmetry reduction, which we describe next.

5.2 Continuous symmetry reduction

Similar to the two-modes system of the previous chapter, we reduce the continuous SO(2)

symmetry of the Kuramoto-Sivashinsky system by the choosing the first Fourier mode slice
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template â′ = (1, 0, 0, . . . , 0)T (100), which implies the symmetry reduced dynamics

v̂(â) = v(â)− ċ1

b̂1
t(â) (195)

in the symmetry reduced state space

â = (b̂1, 0, b̂2, ĉ2, . . . b̂N , ĉN ) . (196)

as we described in Sect. 3.3.3. The two-modes system had a flow invariant subspace z1 =

0, z2 6= 0 (144), which prevented the flow from entering the slice border x1 = 0 (97); hence

the first Fourier mode slice was guaranteed to be valid for generic trajectories. We have

no such guarantee here, and in fact, when we reduce the SO(2) symmetry via first Fourier

mode slice, the trajectories appear to be discontinuous.

In Sect. 3.3.3, we showed that the reduced velocity field (102) is singular if the am-

plitude of the first Fourier mode b̂1 vanishes and we proposed that this singularity can

be regularized by rewriting symmetry reduced dynamics in terms of a rescaled slice time

(103). As illustrated in Figure 14 for a traveling wave and an relative periodic orbit of the

Kuramoto-Sivashinsky system at L = 22, apparent fast jumps of the symmetry reduced

flow are well-resolved when the dynamics is sampled in slice time. Note also that when the

symmetry is reduced, the relative equilibrium and the relative periodic orbit respectively

becomes an equilibrium and a periodic orbit as expected.

5.2.1 State space visualization

While the physical space visualizations of spatiotemporal chaos such as Figure 13 and

Figure 14 are intuitive, they do not tell much about the general organization of solutions

in the state space. It is not obvious how to effectively visualize the infinite-dimensional

state space of partial differential equations. Gibson et al. [45] addressed this problem for

Plane-Couette flow, where they captured dynamics within the neighborhoods of equilibria

by constructing projection frames from their stability eigenvectors. In this section, we are

going to show that this approach can be extended to the relative equilibria within the first

Fourier mode slice.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Traveling wave TW1 with phase velocity c = 0.737: (a) the full state space
solution, (b) symmetry-reduced solution with respect to the lab time, and (c) symmetry-
reduced solution with respect to the slice time. Relative periodic orbit Tp = 33.50: (d) the
full state space solution, (e) symmetry-reduced solution with respect to the lab time, and
(f) symmetry-reduced solution with respect to the slice time. The exact coherent structures
and their labels are taken from ref. [23].

The exact coherent structure that we are going to study is TW1 (Figure 14 (a-c)), found

in ref. [23] for the system size L = 22. We compute the linear stability properties of TW1 by

computing eigenvalues and eigenvectors of Â(âTW1) (107). TW1 has 4 stability eigenvalues

with positive real parts

λ1,2 = 0.11562± i0.81729 , λ3,4 = 0.03366± i0.41891 , (197)

which renders its unstable manifold four-dimensional. However, since the real part of λ1 is

3.4 times bigger than that of λ3, we observed that the local expansion of dynamics nearby

TW1 is exponentially dominated in the directions of the stability eigenvector V1 correspond-

ing to λ1. Complex eigenvalue λ1 with positive real part tells us that the dynamics in the

71



hyperplane spanned by real and imaginary parts of V1 has spiral-out behavior within the

linear approximation. Unstable manifolds of fixed points in nonlinear systems are in gen-

eral curved objects, that are not confined to this hyperplane. However, Hartman-Grobman

theorem [50] tells us that the linear and nonlinear unstable manifolds of a hyperbolic fixed

point are topologically conjugate to each other, that is one can be smoothly deformed to

the other. Furthermore, real unstable manifold converges to its linear approximation as one

gets closer and closer to the fixed point. Therefore, if we start trajectories that cover the

linear unstable manifold of the fixed point in close proximity to it, we expect to numerically

resolve its real unstable manifold by integrating these trajectories forward in time. Let ε

be a small number, n be an integer, µ1 = Reλ1, ω1 = Imλ1, and ê1 = ReV1, perturbations

â(δ) = âTW1 + ε eδ2πµ1/ω1 ê1 , where δ ∈ [0, 1) , (198)

cover the two-dimensional subspace of the four-dimensional unstable manifold of TW1 to

the linear approximation, since after 2π/ω1 (one return), â(0) comes to the initial location

of â(1). We set ε = 10−6, took 20 equidistant values in [0, 1) for δ and integrated these

trajectories for τF = 115 within the slice and the full state space and plotted the outcomes

in Figure 15. The coordinate axes are projections (e1, e2, e3) onto three orthonormal vectors

(ê1, ê2, ê3) constructed from ReV1, ImV1, and ReV3 via Gram-Schmidt orthogonalization.

(a) (b)

Figure 15: Kuramoto-Sivashinsky system (a) in the full state space: Group orbit (also
the time orbit) of TW1 (magenta) and its unstable manifold (blue) traced out by integrating
nearby points given by (198) (b) In the symmetry reduced state space TW1 is reduced to
a single point, and the unstable manifold is a smooth 2D surface.

It is clear from Figure 15 that without continuous symmetry reduction, dynamics nearby
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TW1 is dominated by the drifts in the symmetry direction, and thus the continuous sym-

metry reduction is crucial to extract the physical (symmetry invariant) part of the unstable

manifold.

While the first Fourier mode slice eliminates infinitely many symmetry copies of the

solutions, within the slice, we still have a reflection copy for each solution that is not

invariant under it. We reduce this symmetry in the next section.

5.3 Discrete symmetry reduction

Our next challenge is to devise a transformation from (196) to discrete-symmetry reduced

coordinates, where the equivariance under reflection is also reduced. Consider the action of

reflection on the symmetry-reduced state space. In general, a slice is an arbitrarily oriented

hyperplane, and action of the reflection σ can be rather complicated: it maps points within

the slice hyperplane into points outside of it, which then have to be rotated into the slice.

Fortunately, the action of σ on the first Fourier mode slice is particularly simple. Action

σâ of (193) on (196) flips the sign of the first element, i.e., makes the phase of the first Fourier

mode π. Rotating back into the slice by (98), we find that the reflection within the first

Fourier mode slice acts by alternating the signs of even (real part) and odd (imaginary part)

Fourier modes:

σ̂ = g(−π)σ

= diag [ 1, −1, −1, 1, 1, −1, −1, 1, 1, . . .] . (199)

The action on the slice coordinates (where we for brevity omit all terms whose signs do not

change under reflection) is

σ̂(b̂2, ĉ3, b̂4, ĉ5, b̂6, ĉ7, . . .) = (−b̂2,−ĉ3,−b̂4,−ĉ5,−b̂6,−ĉ7, . . .) , (200)

Our goal is to find a transformation from (196) to some new, reflection-invariant coordi-

nates. We could declare a half of the symmetry-reduced state space to be a ‘fundamental

domain’ [21], with segments of orbits that exit it brought back by reflection, but such

symmetry reduction makes orbits appear discontinuous and hard to visualize.
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Miranda and Stone [46, 80] reduction of the C2 symmetry of the Lorenz system (or the

‘the doubled-polar angle coordinates’ of ref. [21]) into a smooth flow by a nonlinear coor-

dinate transformation into an invariant polynomial basis suggests our next step. Squaring

(or taking absolute value of) each sign-flipping coordinate in (200) is not an option, since

such coordinates would be invariant under every individual sign change of these coordinates,

and that is not a symmetry of the system. We are allowed to impose only one condition to

reduce the 2-element orbit of the discrete reflections subgroup of O(2). Here is our proposal:

in order to achieve the desired 2−to−1 symmetry reduction, we construct the first coordi-

nate from squares, and ‘twine’ the successive sign-flipping terms into a quadratic invariant

polynomial basis set

(p2, p3, p4, p5, . . .)

= (b̂22 − ĉ2
3, b̂2ĉ3, b̂4ĉ3, b̂4ĉ5, . . .) . (201)

The original coordinates can be recovered recursively by the 1−to−2 inverse transformation

b2 = ±

√
p2 +

√
p2

2 + 4p2
3

2

c3 = p3/b2 , b4 = p4/c3 , c5 = p5/b4 , · · · .

To summarize: we first reduce the group orbits generated by the continuous SO(2)

symmetry subgroup by implementing the first Fourier mode slice (95), and then reduce the

group orbits of the discrete 2-element reflection subgroup by replacing the sign-changing

coordinates (200) with the invariant polynomials (201). The final O(2) symmetry-reduced

coordinates are

ã = (b̂1, 0, b̂
2
2 − ĉ2

3, ĉ2, b̂3, b̂2ĉ3, b̂4ĉ3, ĉ4, b̂5, . . .) . (202)

Here pairs of orbits related by reflection σ are mapped into a single orbit, and ĉ1 is identically

set to 0 by continuous symmetry reduction, thus the symmetry-reduced state space has one

dimension less than the full state space.
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5.4 Kuramoto-Sivashinsky system at L = 22

In our initial studies of the Kuramoto-Sivashinsky system, we followed the work of ref. [23],

where authors succeeded to find over 30000 relative periodic orbits of the Kuramoto-Siva-

shinsky system as well as 3 equilibria and 2 traveling waves at L = 22.0. In ref. [23],

authors also find heteroclinic connections between equilibria by visualizing their unstable

manifolds. With the symmetry reduction, we were able to study unstable manifolds of

relative equilibria as we illustrated in Figure 15, however, we observed that these manifolds

directly connect to the strange attractor. Furthermore, we have also searched for recurrent

dynamics in these neighborhoods by studying them on local Poincaré sections, but we have

not succeeded identifying such locally low dimensional dynamics.

In order to develop a better intuition about the problem, we decided to try a data driven

approach for visualization of global dynamics. For this purpose, we adopted principal

component analysis (PCA), a statistical method for extracting directions of the largest

variations of a given data set.

PCA is widely used and has different names in different fields. In turbulence studies,

it is usually referred to as “proper orthogonal decomposition” (POD) [60] or “Karhunen-

Loève expansion” [96]. Here, we preferred to use the term PCA, because our application

of the method is different from the general use in turbulence literature in one important

aspect: POD basis is generally defined in L2-space of the turbulent velocity field, where the

L2-norm of the velocity field (or l2-norm of its Fourier modes) is the “energy norm”. In

our symmetry-reduced state space (202), while we still have entire physical information of

the system, l2-norm no longer corresponds to the energy of the state. We treat the ergodic

flow in (202) as a statistical sample set, and hence we adopted the common terminology

in statistics. We refer the reader to ref. [60] for an introduction to POD in the turbulence

context; for a general introduction to PCA, see ref. [118].

In order to obtain principal components Pi, we first generate the data set from a very

long simulation (tFinal = 2× 105) of the Kuramoto-Sivashinsky equation sampled at every

0.1 time units, and transform the outcome to the reduced state space coordinates (202). Pi

are the normalized eigenvectors of empirical covariance matrix XTX, where X is the data
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matrix. Rows of X are the samples ak−〈a〉, where ak are the data from the long simulation

and 〈a〉 is their empirical mean. In computations, these eigenvectors are found by singular

value decomposition

X = UΣW T , (203)

where U is a unitary matrix, Σ is rectangular diagonal with singular values σi of X and

columns of W are the principal components Pi. We utilized pca function of MATLAB for

this calculation. Principal components Pi are ordered by decreasing principal component

variances σ2
i > σ2

i−1, i = 1, 2, 3, . . . Figure 16 (a) shows three projections of the ergodic data

(gray) and 10 periodic orbits of the Kuramoto-Sivashinsky system onto the three leading

principal components.

(a) (b)

Figure 16: Samples (separated equally in time) from a long simulation (gray) with
(a) the two shortest pre-perodic orbits (green and cyan) and the shortest relative periodic
orbit(red) of the Kuramoto-Sivashinsky system, (b) the shortest 10 relative periodic orbits
of the Kuramoto-Sivashinsky system, projected onto leading three principal components.

In Figure 16 (a), we show the two shortest pre-periodic orbits (green and cyan) and one

relative periodic orbit (red) of the Kuramoto-Sivashinsky system along with the samples

from ergodic trajectory (grey dots). Note the overlap of RPO1 (red) and PPO2 (cyan)

in Figure 16 (a); this is an example of how symmetry reduction reveals relations between

trajectories, which are otherwise very hard to detect. In Figure 16 (b), we show the shortest
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10 periodic orbits (6 pre-periodic and 4 relative periodic orbitin full state space) of the Ku-

ramoto-Sivashinsky system, which appear to be “filling out” the ergodic cloud.

Variations of the density of ergodic data in Figure 16 already reveal some qualitative

properties of the chaotic attractor of Kuramoto-Sivashinsky system. In order to extract

more detailed information, we construct a Poincaré section from the hyperplane condition

and the directional constraint

〈ã− 〈a〉, P3〉 = 0 and 〈ṽ(ã), P3〉 > 0 . (204)

Figure 17 shows intersections of 479 periodic orbits (blue) and an ergodic trajectory (green)

with the Poincaré section (204), projected onto the (P1, P2) plane. The blue and green dots

appear to populate the same overlapping structures, indicating a surprisingly thin strange

attractor whose “backbone’ is formed by the relative periodic orbits.

Figure 17: Intersections of the long ergodic trajectory (green) and 479 periodic orbits
(blue) with the Poincaré section which contains the origin of the PCA coordinates (empirical
mean) and is parallel to (P1, P2) plane.

Strikingly similar structures of ergodic trajectories and periodic orbits on the Poincaré

section Figure 17 motivated us to study unstable manifolds of the periodic orbits. However,
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we have not succeeded in identifying one important relative periodic orbit (out of 479!)

whose invariant manifolds form the shape of this attractor. For this reason, we decided to

first investigate the system by varying its size and study its bifurcations, in order to see

whether one of these orbits plays the key role in shaping the strange attractor.

5.5 Transition to chaos via torus breakdown

We now investigate the transition to chaos in the neighborhood of a short Kuramoto-Siva-

shinsky pre-periodic orbit, focusing on the system sizes L ∈ [21.0, 21.48]. Our method

yields a symmetry-reduced velocity field ṽ(ã) = ˙̃a and a time-forward flow f̃ τ (ã(0)) = ã(τ)

in the symmetry-reduced state space (202). Although we can obtain ṽ(ã) by chain rule,

we find its numerical integration unstable, hence in practice we obtain ṽ(ã) and f̃ τ (ã) from

the first Fourier mode slice by applying the appropriate Jacobian matrices, as described in

Appendix C.

At L = 21.0, we found that the Kuramoto-Sivashinsky system has a stable periodic orbit

p0 (pre-periodic in full state space), which satisfies ãp0 = f̃Tp0 (ãp0) for any point on the

periodic orbit p0. We have also observed that trajectories of random (outside an invariant

subspace) initial conditions converge to this orbit after sufficiently long time; indicating

that p0 has a large basin of attraction at L = 21.0. Linear stability of a periodic orbit is

described by the Floquet multipliers Λi and Floquet vectors Ṽi which are the eigenvalues

and eigenvectors of the Jacobian matrix J̃p of the time-forward flow f̃Tp(ãp)

J̃pṼi = ΛiṼi .

Each periodic orbit has at least one Floquet multiplier Λv = 1 corresponding to the

velocity field direction. When L < 21.22, all other Floquet multipliers of p0 has absolute

values less than 1. At L ≈ 21.22, leading Floquet multiplier Λ1 crosses the unit circle,

and the corresponding eigenplane spanned by the real and imaginary parts of Ṽ1 starts to

have ‘spiral out’ dynamics that connects to a 2-torus, as illustrated in Figure 18 (b). In

Figure 18 and the rest of the state space projections of this paper, projection bases are

constructed as follows: Real and imaginary parts of the Floquet vector Ṽ1 define an ellipse

Re [Ṽ1] cosφ+Im [Ṽ1] sinφ in the neighborhood of ãp0 , and we pick the principal axes of this
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ellipse as the first two projection-subspace spanning vectors. As the third vector we take the

velocity field ṽ(ãp0), and the projection bases (e1, e2, e3) are found by orthonormalization

of these vectors via the Gram-Schmidt procedure. All state space projections are centered

on ãp0 , i.e., ãp0 is the origin of all Poincaré section projections.

In order to study dynamics within the neighborhood of p0, we define a Poincaré section

as the hyperplane of points in an open neighborhood of ãp0 , orthogonal to the tangent ṽ(ãp0)

of the orbit at the intersection point,

〈ã− ãp0 , ṽ(ãp0)〉 = 0 and ||ã− ãp0 || < α , (205)

where ||.|| denotes the Euclidean (or L2) norm, and the threshold α is empirically set to

α = 0.5 throughout. From here on, we study the discrete time dynamics induced by the

flow on this hyperplane, as visualized in Figure 18 (a). As an example, we follow a single

trajectory starting from ãp0 + 10−1Re [Ṽ1] as it connects to the 2-torus surrounding the

periodic orbit in Figure 18 (b). For system size L = 21.25 the magnitude of the complex

unstable Floquet multiplier pair is nearly marginal, |Λ1,2| = 1.00636, hence the spiral-out

is very slow.

(a) (b)

Figure 18: (a) Pre-periodic orbit p0 (red), its velocity field ṽ(ãp0) at the starting point
(green), orthogonal vectors that span the eigenplane corresponding to the leading Floquet
vectors (blue) and the Poincaré section hyperplane (gray). (b) Spiral-out dynamics of a
single trajectory in the Poincaré section projected onto (e1, e2) plane, system size L = 21.25.
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5.5.1 Interlude: Discrete time dynamical systems

As illustrated in Figure 18, continuous time flow in the state space induces discrete time

dynamics on the Poincaré section. In order to be able to explain the unstable manifold

calculations of the next section, we need to cover some basic results of the discrete time

linear dynamical systems. For our purposes here, it is sufficient to describe the 1 and 2-

dimensional cases. An autonomous discrete time linear system is defined by a difference

equation

a[n+ 1] = Aa[n] , (206)

where A is a matrix, a is a state space vector and n is the integer time variable written in

square brackets to imply its discreteness. For an initial condition a[0] = a0, the solution is

a[n] = Ana0 (207)

and if the system is one-dimensional, then (207) is all one needs.

Now let us assume that A is 2×2, has complex eigenvalue/eigenvector pairs Λ1,2 =

|Λ1|e±i arg Λ1 and V1,2 = ReV1 ± iImV1 and Vi are normalized, i.e. |ReV1|2 + |ImV1|2 = 1.

Since, ReV1 and ImV1 are linearly independent, an initial condition a0 in the state space

can be written as

a0 = c1ReV1 + c2ImV1 , (208)

and the corresponding solution is

a[n] = Ana0

= An
c1

2
(V1 + V2) +An

c2

2
(V1 − V2)

=
c1|Λ1|n

2

(
ein arg Λ1V1 + e−in arg Λ1V2

)
+
c2|Λ1|n

2i

(
ein arg Λ1V1 − e−in arg Λ1V2

)
,

=
c1|Λ1|n

2
[(V1 + V2) cos(n arg Λ1) + i(V1 − V2) sin(n arg Λ1)]

+
c2|Λ1|n

2i
[(V1 − V2) cos(n arg Λ1) + i(V1 + V2) sin(n arg Λ1)] ,

= c1|Λ1|n[ReV1 cos(n arg Λ1)− ImV1 sin(n arg Λ1)]

+c2|Λ1|n[ReV1 sin(n arg Λ1) + ImV1 cos(n arg Λ1)] . (209)
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It is instructive to re-express (209) compactly by defining a matrix W = [ReV1, ImV1] with

real and imaginary parts of V1 on its columns, and a coefficient vector c = (c1, c2)T . Then

the solution (209) can be written compactly as

a[n] = |Λ1|nWR(−n arg Λ1)c , (210)

where R(θ) is the 2×2 rotation matrix (71). Without loss of generality, we can also define

c(1) = (1, 0)T and express c = rR(θ)c(1) and rewrite (210) as

a[n] = |Λ1|nrWR(θ − n arg Λ1)c(1) . (211)

While ReV1 and ImV1 are linearly independent, they are not necessarily orthogonal. Hence,

(211) describes elliptic trajectories, spiraling or steady, depending on |Λ1|.

5.5.2 Unstable manifolds of periodic orbits

We are now ready to compute two-dimensional unstable manifold of p0 on the Poincaré

section (205). Assume that δã(0) is a small perturbation to ãp0 that lies in the plane

spanned by (Re [Ṽ1], Im [Ṽ1]). As we explained in the previous section, we can express this

initial condition as

δã(0) = δrWR(θ)c(1) , (212)

where W = [Re [Ṽ1], Im [Ṽ1]] has real and imaginary parts of the Floquet vector Ṽ1 on

its columns and δr is the magnitude of small perturbation. In the linear approximation,

discrete time dynamics δã(nTp0) is given by

δã(nTp0) = |Λ1|nδrWR(θ − n arg Λ1)c(1) , (213)

which can then be projected onto the Poincaré section (205) by acting from the left with

the projection operator

P = 1− ṽ(ãp0)⊗ ṽ(ãp0)

||ṽ(ãp0)||2
,

where ⊗ denotes the outer product. Defining ãP ≡ Pã, discrete time dynamics of a pertur-

bation δãP in the Poincaré section is given by

δãP [n] = |Λ1|nδrWPR(θ − n arg Λ1)c(1) , (214)
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where WP = [Re [Ṽ1,P ], Im [Ṽ1,P ]]. On the Poincaré section, the solutions (214) define

ellipses which expand and rotate by a factors of |Λ1| and arg Λ1 respectively at each re-

turn. In order to resolve the unstable manifold, we start trajectories on an elliptic band

parameterized by (δ, φ), such that the starting point in the band comes to the end of it

on the first return, hence totality of these points cover the unstable manifold in the linear

approximation. Such set of perturbations are given by

δãP(δ, φ) = ε|Λ1|δWPR(φ)c(1) , where δ ∈ [0, 1) , φ ∈ [0, 2π) , (215)

and ε is a small number. We set ε = 10−3 and discretize (215) by taking 12 equidistant points

in [0, 1) for δ and 36 equidistant points in [0, 2π) for φ and integrate each ãp0 + δãP(δ, φ)

forward in time. Figure 19 (a) shows the unstable manifold of p0 resolved by this procedure

at system size L = 21.30, for which the torus surrounding p0 appears to be unstable. In

Figure 19 (b) we show initial points that go into the calculation, and their first three returns

in order to illustrate the principle of the method.

(a) (b)

Figure 19: (a) Unstable manifold (gray) of p0 on the Poincaré section (205) and an
individual trajectory (red) within, system size L = 21.30. (b) Initial points (black) on the
Poincaré section for unstable manifold computation and their first (red), second (green),
and third (blue) returns. Inset: zoomed out view of the initial points and their first three
returns.

As we continue increasing the system size, we find that at L ≈ 21.36, the invariant torus

is completely destroyed and two new periodic orbits p1 and p2 emerge in the neighborhood
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of p0. Both of these orbits appear as period 3 cycles in the Poincaré map. While p1 is

unstable, p2 is stable with a finite basin of attraction. The unstable manifold of p0 connects

heteroclinically to the stable manifolds of p1 and p2. As we show in Figure 20 (a), resolving

the unstable manifold of p0 enables us to locate these heteroclinic connections between the

pre-periodic orbits. Note that one-dimensional stable manifold of p1 separates the unstable

manifold of p0 in two pieces. Green and blue orbits in Figure 20 (a) appear to be at two

sides of this invariant boundary, while one of them converges to p2, the other leaves the

neighborhood following the unstable manifold of p1.

(a) (b)

Figure 20: (a) Unstable manifold (gray) of p0 on the Poincaré section (205) at L = 21.36.
Colored dots correspond to different individual trajectories within the unstable manifold
with qualitatively different properties. Diamond shaped markers correspond to the period-
3 orbits p1 (magenta) and p2 (cyan). (b) Unstable manifold of p0 (gray) and two orbits
(black and green) within at L = 21.48. Red points lie on the one-dimensional unstable
manifold of p1.

As the system size is increased, p2 becomes unstable at L ≈ 21.38. At L ≈ 21.477 the two

complex unstable Floquet multipliers collide on the real axis and at L ≈ 21.479 one of them

crosses the unit circle. After this bifurcation, we were no longer able to continue this orbit.

At L = 21.48, the spreading of the p0’s unstable manifold becomes more dramatic, and its

boundary is set by the one-dimensional unstable manifold of p1, as shown in Figure 20 (b).

We compute the unstable manifold of p1 similar to (215) by integrating

ã(δ) = ãp1 ± εΛδ1Ṽ1,P , where δ ∈ [0, 1) . (216)
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Λ1 and Ṽ1 in (216) are the unstable Floquet multiplier and the corresponding Floquet vector

of ãp1 , and the initial conditions (216) similarly cover the unstable manifold of ãp1 in the

linear approximation.

5.6 Conclusions

In this chapter, we presented the first application of first Fourier mode slice on a PDE, Ku-

ramoto-Sivashinsky equation in one space dimension under periodic boundary condition.

We showed in Sect. 5.2 that the generic dynamics of this system can indeed come close to

the border (97) of the first Fourier mode slice, and rescaling time as in (103) regularizes

apparent discontinuities of the dynamics. In Sect. 5.2.1, we showed that continuous sym-

metry reduction allows us to visualize unstable manifolds of relative equilibria by canceling

symmetry drifts of these solutions. In addition to the continuous translation symmetry,

Kuramoto-Sivashinsky system was also equivariant under reflections and we reduced this

symmetry by constructing polynomial invariants in Sect. 5.3. In Sect. 5.4, we described our

attempts of studying invariant solutions found in ref. [23] in our symmetry-reduced rep-

resentation, which suggested that periodic orbits (relative periodic orbits and pre-periodic

orbits) are embedded in the strange attractor. In order to find which periodic orbits play

important roles in shaping the chaotic attractor, we decided to reduce the system size to

L = 21.0 and found a stable periodic orbit p0 at this size. As we increase the system size,

we found that this p0 undergoes a torus bifurcation which gives birth to a stable torus in

the periodic orbit’s neighborhood, and the chaotic dynamics follow the breakdown of this

torus as the system size is further increased. We visualized the unstable manifold of this

periodic orbit, through this bifurcation sequence, which yielded the first dynamical relation

between periodic orbits of the system: heteroclinic connections between p0 and period-3

orbits p1 and p2 that emerge in its neighborhood.

We presented two new methods in this chapter: 1) a new method for reducing the O(2)-

symmetry of PDEs, and 2) a symmetry-reduced state space Poincaré section visualization

of 1- and 2-dimensional unstable manifolds of Kuramoto-Sivashinsky periodic orbits.
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Our method for the computation of unstable manifolds is general and can find appli-

cations in many other ODE and PDE settings. The main idea here is a generalization of

Gibson et al. [45] method for visualizations of the unstable manifolds of equilibria, originally

applied to plane Couette flow, a setting much more complex then ours here. Our projections

are 2-dimensional, but as all computations are carried out for the full Kuramoto-Sivashin-

sky equation (190), in 30 dimensions, it is remarkable how much information is captured

by 2- and 3-dimensional projections of the O(2) symmetry-reduced Poincaré section - none

of that structure is visible in the full state space.

Invariant polynomials similar to (201) can be constructed for any problem where the

symmetry operation is the sign flip of a set of coordinates. Generalizations of this approach

to richer discrete symmetries, such as dihedral groups, remains an open problem, with

potential application to systems such as the Kolmogorov flow [85].

An interesting feature of the bifurcation scenario studied here is the apparent destabiliza-

tion of the invariant torus before its breakdown. Note that in Figure 19 (a) the trajectories

within the unstable manifold of p0, diverge in normal direction from the region that was

inhabited by a stable 2-torus for lower values of L. This suggest that the invariant torus has

become normally hyperbolic [39]. This torus could be computed by the method of ref. [72],

but that would be a new, technically demanding computation, beyond the scope of this the-

sis. Note also that the stable period-3 orbit p2 in Figure 20 has a finite basin of attraction,

and the trajectories which do not fall into it leave its neighborhood. In typical scenarios

involving generation of stable - unstable pairs of periodic orbits within an invariant torus

(see e.g. ref. [4]), the torus becomes a heteroclinic connection between the periodic orbit

pair. Here the birth of the period-3 orbits appears to destroy the torus.
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CHAPTER VI

PIPE FLOW

We now turn to the last, and the most challenging problem investigated in this thesis, the

turbulent fluid flow in a circular pipe. This is a vastly complicated phenomenon that has

been of experimental and theoretical interest for more than a century. From the standpoint

of this thesis, pipe flow is a dynamical system that exhibits chaotic dynamics. However, it

is worth noting that there many other reasons to study pipe flow, not least of which are

real life applications in engineering settings.

Our strategy for studying pipe-flow is going to be similar to the preceding chapters:

We are going to identify exact coherent structures and try to reveal their dynamical roles.

However, in contrast to the two-modes and Kuramoto-Sivashinsky systems, it is believed

that turbulent pipe flow does not have a strange attractor, but that it is organized around

a strange repeller (or a chaotic saddle). Moreover, the conditions that cause the fluid flow

to become turbulent are highly non-trivial and understanding them is crucially important

for the study of pipe flow turbulence. Therefore, before diving into the mathematical

description, we are going to review some well known facts of the turbulence transition in

pipes.

6.0.1 Subcritical transition to turbulence

Parabolic velocity profile of the laminar flow in a circular pipe was identified experimen-

tally by Hagen in 1839 [53] and Poiseuille in 1840 [87]. In his seminal 1894 experimental

study [94], Osbourne Reynolds investigated the conditions at which the laminar flow in the

pipe become “sinuous”. He showed that the appearance of “eddies” is controlled by a single

dimensionless parameter, which we now call the Reynolds number, Re = UD/ν, where U is

the mean velocity, D is the pipe diameter, and ν is the kinematic viscosity. While Reynolds

reported the critical value of the Re , above which the flow is inevitably turbulent, as 12000,

he also mentioned that the eddies may appear way below this value (∼2000) given that the
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incoming water has a sufficiently large disturbance. In modern experiments [84], laminar

flow was maintained at Re as high as 105. These observations contradict a typical “linear

instability of the laminar state” type of explanation for the transition to turbulence. As of

this writing, there is no analytical proof of the linear stability of Hagen-Poiseuille flow for all

Re . However, Meseguer and Trefethen [79] conclude on the basis of numerical computation

of the eigenvalues of the linearized Navier-Stokes operator that the laminar state of the pipe

flow is linearly stable for Re up to 107, i.e., for all practical cases that can be observed in

laboratory experiments.

Linear stability of the laminar solution implies that the laminar-turbulent transition

has to be triggered by a finite-amplitude perturbation [57, 77, 101]. In addition, both

laboratory and numerical experiments suggest that the pipe flow turbulence is a transient

phenomenon [59], namely, that regardless of the mean flow speed, turbulent fluid eventually

relaminarize. These two results together suggest that turbulent and laminar regions of the

state space are dynamically connected. This brings us to the first partitioning of the state

space: (1) turbulent saddle, (2) basin of laminarization, and (3) something in between,

which goes by the name “edge of chaos”.

6.0.2 Edge of chaos

Physical observables, such as dissipation rate, laminarization time, or pressure drop are

completely different between laminar and turbulent flows. In order to identify the “edge of

chaos” that separates laminar and turbulent regions of the state space, Skufca et al. [104]

suggested tracking dependence of decay lifetimes on the amplitudes of perturbations to the

laminar state as illustrated in the sketch of Figure 21. They proposed a numerical scheme

for locating the edge states by bisecting between fast and slow laminarizing solutions with

respect to perturbation amplitudes and demonstrated these ideas on a reduced order model.

Skufca et al. computations also showed that the edge of chaos had a “folded” structure,

that is one can find edges not only one threshold amplitude but also at larger amplitudes

as sketched in Figure 21. Their methods were applied to the pipe flow by Schneider et

al. [100], who observed that the edge of chaos is a chaotic set, unstable directions of which
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connect either to the laminar state, or to the turbulence. Duguet et al. [33] showed that

relative equilibria (traveling waves) are embedded within the edge by combining Newton-

Krylov searches with edge tracking methods. Moreover, they also showed that if the flow

is restricted to azimuthally doubly symmetric subspace of solutions, then the edge of chaos

can be a traveling wave, rather than a chaotic set.

Amplitude

L
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e

Figure 21: A sketch of dependence of decay lifetimes on the amplitude of perturbations.
Dashed lines indicate the intervals where the perturbations appear to land on the edge of
chaos.

6.0.3 Bifurcation scenario

Several earlier studies [34, 89, 90] of travelling waves in pipe flow found that some of these

solutions come in pairs associated with a saddle-node bifurcation. The ones which have

higher dissipation rates and physical properties similar to those of the turbulence are referred

to as “upper branch” (UB) solutions, and their counterparts are referred to as “lower

branch” (LB). Duguet et al. [33] travelling waves embedded in the edge of chaos belonged

to the lower branch family. These developments had motivated detailed bifurcation studies

of these solutions in both pipe [75, 76] and plane Couette flows [69]. Common findings

of these studies can be summarized by the qualitative bifurcation diagram of Figure 22:

Lower and upper branch solutions are born out of a saddle node bifurcation. While the UB

is stable for an initial interval of Re values, it goes unstable through a set of period-doubling

bifurcations [69], which give birth to a small attracting set. After further bifurcations, this

set reaches the lower branch solution (boundary crisis), which connects it to the laminar

state; hence the chaotic set becomes transient. Thereafter, the only attracting object in the

state space is presumed to be the laminar solution and the turbulence is a “chaotic saddle”.
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Figure 22: A sketch of the subcritical transition to turbulence through a saddle-node
bifurcation with increasing Reynolds number.

Refs. [75, 76] studied pipe flow in small computational domains. Recently, Avila et

al. [8] showed that when double periodicity in azimuthal direction and reflection invariance

were imposed, localized solutions of a longer pipe also follow a similar bifurcation scenario,

however, with roles of upper and lower branch solutions taken over by relative periodic

orbits.

We should emphasize that bifurcation sequences of the sketch of Figure 22, with the

edge states given by exact coherent structures, were obtained only when the pipe flow was

restricted to symmetry invariant subspaces. We already know from refs. [33, 100] that if

such a condition is not imposed, than the edge of chaos itself is chaotic. Thus, the actual

transition scenario may have many more features not sketched in Figure 22. Nevertheless,

this bifurcation scenario sketch gives an useful mental picture by providing us the first,

and coarsest, partitioning of the state space. In the rest of this chapter, we are going to

demonstrate that the relative periodic orbits embedded in the turbulent set represent its

internal structure.
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6.1 Problem formulation

We start by writing incompressible Navier-Stokes equation (1) without external forcing

uτ + u · ∇u = −∇p
ρ

+ ν∇2u , ∇ · u = 0 . (217)

Velocity field u vanishes at the pipe wall, and is periodic in azimuthal and axial directions:

u(r = R, θ, z) = 0 , (218)

u(r, θ + 2π, z) = u(r, θ, z) , (219)

u(r, θ, z + L) = u(r, θ, z) . (220)

Let us denote radial, azimuthal, and axial components of velocity field u by u, v, and w

respectively. Hagen-Poiseuille flow uHP corresponds to a steady (∂uHP /∂τ = 0) flow profile,

drifting only in the axial direction (uHP = vHP = 0), and depending only on the radial

coordinate (∂uHP /∂z = ∂uHP /∂θ = 0). Rewriting (217) with these assumptions

0 = −∇p
ρ

+ ν∇2uHP , (221)

tells us that the pressure gradient ∇p may not have azimuthal and radial components.

Writing partial derivatives explicitly we have

ν
1

r

∂

∂r

(
r
∂wHP
∂r

)
=

1

ρ

∂p

∂z
, (222)

which we can integrate as

wHP (r) =
1

4ρν

∂p

∂z
r2 + c1 ln r + c2 . (223)

For the solutions to be finite at the pipe center, c1 has to be 0. We find c2 from the no-slip

boundary condition (218) as c2 = −(4ρν)−1(∂p/∂z)R2, hence the axial velocity is given by

wHP (r) = − 1

4ρν

∂p

∂z

(
R2 − r2

)
, (224)

which depends on the radial coordinate parabolically. As we can see from (224), in order to

sustain the Hagen-Poiseuille flow we need a pressure gradient, which we will assume to be
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constant −Π = ∂p/∂z. We can now compute the mean axial speed of the Hagen-Poiseuille

flow

U =
1

πR2

∫ R

0
wHP (r)2πrdr =

ΠR2

8ρν
. (225)

In summary, the base flow (Hagen-Poiseuille) solution of pipe flow is given by

uHP (r, θ, z) = 2U (R2 − r2)ẑ , (226)

where U is the mean axial speed (225). We can now nondimensionalize quantities in (217)

by picking a length scale as the diameter D = 2R of the pipe and a time scale as D/U .

Denoting dimensionless quantities with primes, we have

u′ = u/U, τ ′ = τ(U/D), p′ = (p/ρ)U−2 . (227)

After substituting these definitions into (217) we obtain

U2

D
u′τ ′ +

U2

D
u′ · ∇′u′ = −U

2

D
∇′p′ + ν

U

D2
∇′2u′ . (228)

If we now multiply above equation by D/U2, define the Reynolds number Re = DU/ν, and

drop primes, we obtain

uτ + u · ∇u = −∇p+
1

Re
∇2u . (229)

This result confirms Osbourne Reynolds’ observation that the transition to turbulence in

the pipe flow depends on the value of a single parameter, i.e., the Reynolds number. In the

dimensionless variables, Hagen-Poisouille (226) flow becomes

uHP (r, θ, z) = 2(1− (2r)2)ẑ . (230)

Let us now express the velocity and pressure fields as sum of “base flow fields” and deviations

u = uHP + u′ , ∇p = −Πẑ +∇p′ , (231)

and plug these into Navier-Stokes equation (229) to obtain

u′τ + uHP · ∇u′ + u′ · ∇uHP + u′ · ∇u′ = −∇p′ + 1

Re
∇2u′ . (232)

When the flow becomes turbulent, it experiences pressure drops and mean mass flux de-

creases from its value for the laminar state. However, in experiments (see e.g. refs. [57, 81]),
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one typically controls the mean mass flux. In order to account for that, we add an addi-

tional axial pressure gradient and drop the primes again to obtain our final form of the

Navier-Stokes equation for fluctuations from the base flow

uτ + uHP · ∇u + u · ∇uHP + u · ∇u = −∇p+ 32
β

Re
ẑ +

1

Re
∇2u , (233)

where β = β(τ) is a time dependent parameter to be adjusted to ensure the mean mass flux

is equal to that of the Hagen-Poiseuille flow (230).

In (233) and hereafter, velocity field u = [u, v, w](r, θ, z) and the pressure p = p(r, θ, z)

correspond to their deviations from their base flow values (230). We use a primitive variable

version of the Openpipeflow.org [116] for numerical integration of u(r, θ, z). Details of this

implementation is outside the scope of this thesis, however, before moving onto presenting

our results, we need to explain the representation of data in this implementation, and norms

to be used in the numerical results of the following sections.

6.1.1 Discretization and the state space

For the Kuramoto-Sivashinsky system in one space dimension under periodic boundary

condition, Chapter 5.1, discretization of the flow field as a Fourier series was the obvious

choice. However, we now have a three dimensional vector field defined over a three dimen-

sional space and time. Openpipeflow discretizes flow fields in Fourier series in periodic

directions (axial and azimuthal) and uses finite difference methods for the radial direction,

u(rn, θ, z) =
∑
|k|<K

∑
|m|<M

unkme
i(αkz+m0mθ) , (234)

where α = 2π/L is the axial wave number, m0 = 1, 2, 3, . . . imposes a higher azimuthal

periodicity condition if its value is other than 1, and indices n, k and m respectively denote

elements in radial, axial, and azimuthal discretizations. Decomposition (234) corresponds

to the values of flow fields u, v, w at a particular radial position rn (n = 0, 1, . . . , N). To

develop a sense for the dimension of the state space, let us make a rough estimate. If we

were to pick N = 2M + 1 = 2K + 1 = 10, we would need to store 3 × 103 data points

to represent each state. This is a large number and this fact by itself makes this problem

orders of magnitude harder than the examples we studied in previous chapters.
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While (234) is in fact how the data is represented in our integrator, we can still think of

the state of a fluid u(x, τ) at the time instant τ as a vector a(τ) in the state space. For the

most parts of the following sections, we are going to use state space notation for presenting

our results, however, the reader should keep in mind that a state space vector corresponds

to the N velocity fields (234). Most of our results are going to be in terms of inner products

in this state space, which we describe next.

6.1.2 Inner products and norms

As we have visualized for several examples in the previous two chapters, strange sets have

complex geometries and “closeness” of two points in a given projection of the state space can

be very misleading. Take, for example, the return map Figure 10 of the two-modes system

and consider two points on left and right hand sides of its cusp. These points are very

close to each other in the Euclidean distance that was used to parametrize the arclengths in

the Poincaré section, yet, their forward time dynamics are completely different. However,

given the difficulty of the current problem, our choices are limited and inevitably, norms

will appear in our calculations and visualizations. In this section we introduce the norms

that we will use here and explain the motivations for our particular choices. In the following

sections, we will try to avoid the dangers associated with using a given norm by presenting

our results in different norms and visualizations.

Let a1 and a2 denote state vectors that correspond to velocity fields u1 and u2 respec-

tively, we define the L2 distance between these vectors by the inner product

〈a1, a2〉L2 =
1

2EHP

∫
V

u1 · u2 dV , (235)

=
1

EHP

∫ 1/2

0
rdr

∑
k,m

u∗1,km(r) · u2,km(r) , (236)

where V is the volume of the pipe and EHP is the kinetic energy of the Hagen-Poiseuille flow.

In (236), we wrote the integral explicitly in terms of Fourier modes and radial integration,

which in practice is approximated numerically. The factor 1/2 in (235) is included so that

the norm square of a state in L2 metric yields its kinetic energy

E(a) = ‖a‖2L2 = 〈a, a〉 . (237)
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Hence in literature, the L2 norm is frequently referred to as the “energy” norm.

As we will illustrate in our numerical results, we found that it is sometimes informative

to use a metric that emphasizes larger scale structures in continuous symmetry directions.

For this reason, we define the “low pass” metric, where we penalize the higher Fourier modes

(short wavelengths) as follows

〈a1, a2〉LP =
1

V

∫ 1/2

0
rdr

∑
k,m

1

1 + (αk)2 + (m0m)2
u∗1,km(r) · u2,km(r) . (238)

In the axial and azimuthal directions this is a variant of a Sobolev H−1 norm [1, 15, 107]:

the weights are smaller for larger values of k and m, hence shorter wavelengths are de-

emphasized.

6.2 Symmetries of the pipe flow

In infinite space, Navier-Stokes equation (1) are equivariant under translations, rotations,

and reflections [42]. Pipe walls disallow translations in radial direction and permit rotations

only in azimuthal direction. Moreover, the net pressure gradient in the axial direction

breaks z → −z reflection symmetry, and thus the remaining symmetries are translations in

axial direction and rotations and reflections about the pipe axis. We are going to denote

continuous symmetries by g(φ, `) and reflection by σ; their actions on flow fields are

g(φ, `) [u, v, w, p](r, θ, z) = [u, v, w, p](r, θ − φ, z − `) ,

σ [u, v, w, p](r, θ, z) = [u,−v, w, p](r,−θ, z) . (239)

The symmetry group of stream-wise periodic pipe flow is thus SO(2)z × O(2)θ: a generic

state of fluid (no symmetry) has infinitely many copies with respect to both translations

and rotations. In this thesis, we are not going to tackle this problem in full, but will for

pedagogical reasons focus on dynamics restricted to a flow-invariant subspace of SO(2)z

solutions with no drift in the azimuthal direction.

6.2.1 Shift-and-reflect invariant subspace

There are many ways one can construct a flow-invariant subspace using symmetries of the

pipe flow. Our choice is the so-called “shift-and-reflect subspace” of flow fields invariant
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under a half domain axial translation and the reflection

a = σg(0, L/2)a , (240)

[u, v, w, p](r, θ, z) = [u,−v, w, p](r,−θ, z − L/2) . (241)

While restriction of dynamics is to this subspace is not physical in the sense that it cannot

be realized experimentally, all solutions that satisfy (240) are also solutions of the full

Navier-Stokes equation, and laboratory experiments [58] observe flow fields rather similar

to the traveling wave solutions found in this subspace [34].

We are now going to show that the solutions satisfying (240) define a flow-invariant

subspace of Navier-Stokes equation (217). Let us denote the shift-and-reflect operation by

σ̄ = σg(0, L/2). Since azimuthal reflections and axial shifts commute, σ̄ is its own inverse

1 = σ̄2. Therefore we can define projection operators

P± =
1

2
(1± σ̄) , (242)

with which we can decompose velocity fields u into symmetric and antisymmetric parts as

u± = P±u . (243)

Note that each velocity field can be expressed as sum of its symmetric and antisymmetric

parts

u = u+ + u− (244)

and the action of σ̄ on symmetric and antisymmetric fields is

σ̄u± = ±u± . (245)

We can decompose the pressure field similarly and express each term in Navier-Stokes

equation (217) in terms of sum of their symmetric and anti-symmetric parts. With this

separation, each term will separate into the sum of two components, except the nonlinear

term u · ∇u

u · ∇u = (u+ + u−) · ∇(u+ + u−)

= u+ · ∇u+ + u+ · ∇u− + u− · ∇u+ + u− · ∇u− . (246)
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Action of P± on the nonlinear term (246) yields

P±(u · ∇u) =
1

2

[
u+ · ∇u+ + u+ · ∇u− + u− · ∇u+ + u− · ∇u−

±u+ · ∇u+ ∓ u+ · ∇u− ∓ u− · ∇u+ ± u− · ∇u−
]
. (247)

If we now act Navier-Stokes equation (217) from the left with P±, we obtain the following

decomposition

u+
τ = −(u+ · ∇u+ + u− · ∇u−)−∇p+ +

1

Re
∇2u+ . (248)

u−τ = −(u+ · ∇u− + u− · ∇u+)−∇p− +
1

Re
∇2u− . (249)

If we set u− = ∇p− = 0, then all terms on RHS of (249) vanish, and an initial condition in

the shift-and-reflect symmetric subspace u+ stays within it; the subspace is flow-invariant.

Setting u+ = ∇p+ = 0, however, does not keep u within the shift-and-reflect antisymmetric

subspace u−.

We next show that the shift-and-reflect invariance (240) fixes the azimuthal rotation

symmetry to discrete rotations by π. Consider the rotated solution

a′ = g(φ, 0)a , (250)

[u, v, w, p]′(r, θ, z) = [u, v, w, p](r, θ − φ, z) (251)

where a satisfies (240) and is thus in shift-and-reflect subspace. If we require (251) to satisfy

(241), we get

[u,−v, w, p]′(r,−θ, z − L/2) = [u, v, w, p]′(r, θ, z) ,

[u,−v, w, p](r,−θ − φ, z − L/2) = [u, v, w, p](r, θ − φ, z) . (252)

Now the question of which azimuthal shifts are allowed becomes which values φ can take,

such that (252) is satisfied given (241). We can simplify the notation as follows. Given (i)

f(θ) = f(−θ), (ii) f(θ + n2π) = f(θ) , n ∈ Z, and (iii) θ ∈ R, what values can φ take for

f(θ−φ) = f(−θ−φ) to be true? Since θ is arbitrary we can shift it as θ → θ+φ, then the

condition becomes f(θ) = f(−θ − 2φ), and from (i) and (ii) we find

φ = nπ . (253)
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Figure 23: (a) Sketch of a shift-and-reflect symmetric state on (θ, z) ∈ [−π, π] × [0, L].
(b) If the state in (a) is rotated by an angle φ other than π, the shift-and-reflect symmetry
is broken. (c) State in (a) rotated by π, hence shift-and-reflect symmetric.

In other words, shift-and-reflect invariance (240) allows for azimuthal rotations only by π.

We illustrate this property in Figure 23.

To summarize, the symmetry group G of the pipe flow in the shift-and-reflect subspace

is

G = {gθ, gz(l)} , (254)

where gθ = g(π, 0) and gz(l) = g(0, l).

Before moving on, we should state what shift-and-reflect invariance implies for our data

representation (234). Action of shift-and-reflect operation (241) on flow fields u,w, p are

same, while v picks up an extra minus. Consider the shift-and-reflect invariant flow field,

u(rn, θ, z) = u(rn,−θ, z − L/2), in the computational basis:∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
kz+m0mθ) =

∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
k(z−L/2)−m0mθ) ,

∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
kz+m0mθ) =

∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
kz−πk−m0mθ) ,

∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
kz+m0mθ) =

∑
|k|<K

∑
|m|<M

(−1)kunkme
i( 2π

L
kz−m0mθ) ,

∑
|k|<K

∑
|m|<M

unkme
i( 2π

L
kz+m0mθ) =

∑
|k|<K

∑
|m|<M

(−1)kunk(−m)e
i( 2π

L
kz+m0mθ) , (255)

where in the last step we replaced m with −m on the right hand side, which we are allowed

to, as m is summed over. Since the Fourier modes are orthogonal, (255) implies that

[u, v, w, p]nkm in shift-and-reflect invariant subspace has to satisfy

[u,w, p]nkm = (−1)k[u,w, p]nk(−m) ,

vnkm = (−1)k+1vnk(−m) , (256)
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where we have an extra minus sign for v, as v picks up extra minus sign under the shift-

and-reflect operation.

6.2.2 Exact coherent structures

Since all solutions of the pipe flow drift in the axial direction, the simplest exact coherent

structures are relative equilibria (traveling waves)

aTW (τ) = gz(cTW τ)aTW (0) , (257)

whose sole dynamics is drifting along the axial direction with constant phase speed cTW .

Given the symmetry group (254), we are allowed to have two types of relative periodic

orbits: those recur after one period with a stream-wise shift lRPO,

aRPO(TRPO) = gz(−lRPO) aRPO(0) , (258)

and those recur after one period with a stream-wise shift by lRPO and azimuthal rotation

by π

aRPO(TRPO) = gθ gz(−lRPO) aRPO(0) . (259)

6.3 Turbulent pipe flow

We are now ready to present results of our turbulent pipe flow collaboration [115]. Ashley

Willis is the author of the Openpipeflow.org code used in all our numerical Navier-Stokes

calculations [116]. Kimberly Short had determined most of the exact coherent structures

listed in Table 4; several were contributed by Ashley Willis and Mohammad Farazmand.

As a result, some of the implementation details are skipped in this chapter and appropriate

references are provided. Emphasis is on the results contributed by the author of this thesis,

presented in Sect. 6.3.1 and Sects. 6.3.4 to 6.3.6.

We have explained in Sect. 6.2.1 that the solutions we are going to present belong to

the shift-and-reflect invariant subspace, with only one continuous symmetry in the system.

In addition, we also set m0 = 4 in (234), thus all states we are going to study will be

azimuthally 4-fold symmetric. Other parameters that go into simulations are the wave

number α = 1.7 and Re = 2500, which corresponds to a periodic pipe of length L =
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π/α = 1.85D with empirical turbulent lifetimes that can go up to 1000D/U . In simulations,

Fourier expansions (234) were truncated at K = 17 in stream-wise and M = 11 in azimuthal

directions; and N = 64 points were used for radial discretization, which corresponds to a

3× (2× 17 + 1)× (11 + 1)× 64 = 80640-dimensional state space. Here modes with m < 0

are excluded from the state space since unkm = u∗n−k−m.

(a)

0 L/2 L

(b)

Figure 24: (a) A snapshot of a turbulent state in a pipe flow simulation. Red and blue
respectively correspond to fast (0.1U) and slow (−0.1U) stream-wise velocity isosurfaces.
(b) TW2.04, the grandmother relative equilibrium of the ‘first family’ (see Figure 28). The
color shows the averaged streamwise vorticity ω̄z. The arrows show (ūr, ūθ) where ūr and
ūθ are averaged radial and azimuthal velocities, respectively. Only a quarter of the tube is
shown.

In this setting, a typical turbulent state looks like Figure 24 (a), where we visualized

the slow (−0.1U) and fast (0.1U) stream-wise velocity isosurfaces of the flow (relative to

the base flow). Note also that fast structures are closer to the pipe walls, while slower

ones concentrated in the middle; this is a typical feature of the pipe flow turbulence. As

we have imposed m0 = 4 symmetry, the flow structures come in four identical copies in

the pipe cross section. In addition, due to the imposed shift-and-reflect symmetry (254),

the fundamental domain is restricted to z ∈ [0, L/2] and is thus 1/8 of the computational

cell. For example, this tiling by 8 copies of a fundamental tile is manifest in the streamwise

averages of any solution we consider, such as the relative equilibrium of Figure 24 (b).

The reader my wonder: surely 1/8th of a very stubby, periodic cylinder has nothing

to do with generic turbulence in a pipe of infinite length? And the reader is right. It is

just that with the existing methods we are not able to find sets of physically important

exact coherent structures even in only a slightly longer pipe [114], with L = 2.5, with
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all the same imposed symmetries. Our purpose here is more modest, but apparently still

computationally challenging: to show that we can triangulate the state space of any variant

of pipe flow in terms of exact coherent structures and their invariant manifolds.

6.3.1 Continuous symmetry reduction

One can approach symmetry reduction from two radically different points of view: global,

group-theoretical viewpoint, or local, dynamical ‘moving frame’ viewpoint. Neither is per-

fect. In the group-theoretical viewpoint, since the symmetry and dynamics commute, the

reduction of the full state space stratification by group orbits to a symmetry-reduced state

space, where each orbit is a point, is a purely group theoretic exercise, to be solved without

any reference to the dynamics. An example is the invariant polynomials approach of the

Hilbert-Weyl theorem 3.1, beautiful, but due to proliferation of invariant polynomials and

the syzygies relating them, useless for the problem at hand. That was realized almost im-

mediately by Cartan [16] who took a local, differential geometry point of view. Unlike the

invariant polynomials approach, here the symmetry-reduced state space has one dimension

less for every continuous parameter, and remains embedded in the original state space. For a

fluid dynamicist, Cartan’s notion of ‘moving frames’ is very intuitive: if the flow has a trav-

elling wave solution, one immediately uses the continuous symmetry to change coordinates

to the co-moving frame, and bring the study of the bifurcations (infinitesimal neighborhood

of the solution) to the standard equilibrium setting. That goes by the name ‘the Equivari-

ant Branching Lemma’ [47, 62]. The method of slices then takes the particular, physically

important solution as a ‘template’ [9, 96] and then tries to extend its neighborhood to as

large a set as possible of nearby solutions that qualitatively resemble the template. In gen-

eral, one expects that a slice covering the dynamically interesting region of the state space

(‘inertial manifold’) requires a set of overlapping charts [22] whose construction appears to

be largely a dark art.

Our first Fourier mode slice (handcrafted to fit only SO(2) and its abelian extensions)

is a happy combination of the two approaches: it is purely group-theoretical, based on the

eigenfunctions of the symmetry (Fourier modes), but prefered dynamically, by establishing
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that the border of the corresponding slice is optimal, in the sense that a generic dynamical

orbit does not cross it. It comes at its own price, by distorting the dynamics close to the

slice border. In Sect. 3.3.5 we outlined the procedure for extending the first Fourier mode

slice to higher-dimensional settings, which included three-dimensional vector fields that are

equivariant under SO(2)× SO(2), i.e. the case of pipe and plane Couette flows.

The pipe flow project had started in 2009 and in its first phase [114] symmetry reduction

was implemented by the method of slices, with as many as 12 templates needed to capture

one relative periodic orbit. That has since been brought down to a single, judiciously

chosen template [115]. The second phase [117] was a hybrid, based on implementing our first

Fourier mode slice [14] in the axial direction, but using a ‘generic’ turbulent state template

in the azimuthal direction. As a consequence, implementation of the first Fourier mode slice

for the axial SO(2) symmetry of the pipe flow that we used in results to be presented in

upcoming sections is slightly different from our prescription in Sect. 3.3.5. Before describing

this approach, we will show how extend the first Fourier mode slice method to the current

problem, as defined in Sect. 3.3.5.

6.3.1.1 A first Fourier mode slice template from geometry

We begin by rewriting the slice templates (139) required for reducing SO(2)×SO(2) for the

pipe geometry

u′z(x) = f(r) cos(2πz/L) , (260)

u′θ(x) = g(r) cos(2πθ) . (261)

Our problem is now to find an f(r), such that the flow does not visit the slice border. In

Sect. 6.2.1, we found the conditions (256) that flow fields in the shift-and-reflect invariant

subspace must satisfy. We also know that unkm = u∗n(−k)(−m) since u is real valued. If we

rewrite (256) using this property, we obtain

[u,w, p]nkm = (−1)k[u,w, p]∗n(−k)m ,

vnkm = (−1)k+1v∗n(−k)m . (262)
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The template (260) corresponds to Fourier modes with (k = 1,m = 0). If we write (262)

explicitly for these modes, we obtain

[u,w, p]n10 = −[u,w, p]∗n(−1)0 ,

vn10 = v∗n(−1)0 . (263)

From the property of u being real valued, we also now that (k = 1,m = 0) modes should

satisfy

[u, v, w, p]n10 = [u, v, w, p]∗n(−1)0 . (264)

Hence, from (263) and (264), we conclude that [u,w, p]n10 = 0. This leaves us with only

one choice among the flow fields, namely v-component, for constructing a first Fourier mode

slice template (260).

We still need to determine the r-dependence of our template. Motivated by the fact

that the Bessel functions are eigenfunctions of Laplacian in polar coordinates, we decided

to try the following slice template

v′(x) = J0(2α1r) cos(2πz/L) , (265)[
u′, w′, p′

]
(x) = 0 ,

where J0 is the 0th Bessel function of the first kind and α1 = 2.4048 is the first root of J0,

thus (265) satisfies the no-slip boundary condition (218) on the pipe wall r = 1/2.

With the slice template â′ corresponding to the flow fields (265), for each state a finding

the slice-fixing shifts accounts to computing

`(τ) = L
arg (〈a(τ), â′〉L2 + i〈a(τ)) , gz(L/4)â′〉L2

2π
, (266)

and the axial translation symmetry reduced state â can be found by

â(τ) = gz(−l)a(τ) . (267)

as illustrated in Figure 25.

In order to test this approach, we ran two numerical experiments. We applied the

symmetry reduction method to a relative periodic orbit RPO26.06 to verify that it becomes
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Figure 25: Group orbit (dashed line) of a state a projected on the hyperplane spanned
by the slice template â′ and its quarter-domain translation gz(L/4)â′. A similar group orbit
exists for every point on the orbit (green) of a, unless it intersects the slice border â∗ (red
dot). In this 2-dimensional projection the entire symmetry-reduced state space projects
onto the horizontal half-line, and the slice border projects onto the origin. Adapted from
ref. [117].

a periodic orbit within the slice. Figure 26(a) shows one period of the RPO26.06 orbit within

the slice defined by the template (265) (projected on arbitrary basis, details of which are

irrelevant for the current discussion). The symmetry-reduced relative periodic orbit closes

onto itself after one period, as it should. The second thing we need to check is whether

ergodic trajectories cross the slice border. As we explained in Sect. 3.3.2, if a trajectory

visits the slice border (97), the phase velocity (96) diverges. For this reason, we reduced

the translation symmetry of an ergodic trajectory for 200 time units using the template

(265) and measured d`/dτ . Figure 26(b) shows the result of this experiment, where time

sampling points of simulation are marked with red + signs. While we do see two peaks in

Figure 26, these instances are still well resolved, and corresponding trajectory segments do

not appear discontinuous.

For the chronological reasons we mentioned in the beginning of this section, results we

show in Figure 26 are the only ones in this thesis that uses (265) as the slice template.

However, since validation of this approach is crucial for the extendibility of the first Fourier

mode slice method to direct products of SO(2), we decided to present this treatment here.
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(a) (b)

Figure 26: (a) In the first Fourier mode slice Relative periodic orbit RPO26.06 becomes a
periodic orbit. (b) A numerical experiment showing time derivative of the slice fixing shifts
for a long ergodic trajectory.

6.3.1.2 A first Fourier mode slice template from dynamics

We shall now explain the adaptation of first Fourier mode slice in ref. [117], which we

used in the results of the remaining of this chapter. Prior to the work presented in the

previous two chapters of this thesis, Willis et al. [114] used method of slices in pipe flow by

setting multiple slices and transition rules between them, such that individual slice borders

are avoided by the symmetry reduced flow. These slice templates were typically found in

state space regions corresponding to low energy solutions, motivated by the experimental

observation that such slices had larger region of applicability. This approach was also

followed at the early stages of this project. After we formulated first Fourier mode slice

in ref. [14] , Willis et al. [117] adopted our method to the pipe flow by taking one of the

slice templates of the previous approach, and setting all of its discretization elements (234),

except the real parts of the ones with k = ±1. Such a construction corresponds to a flow

field of the following form

u′(r, θ, z) = f(r, θ) cos(2πz/L) . (268)

For the shift-and-reflect invariant case at hand, the flow field (268) is a valid first Fourier

mode slice template, and procedure of finding slice fixing shifts (266) and reducing stream-

wise translation symmetry (267) is exactly same as we described earlier in this section.

The weakness of this approach is if we use a slice template in the form of (268) without
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shift-and-reflect restriction, then the azimuthal rotation operation might take translation

symmetry-reduced states outside the slice, since f in (268) depends on θ. Therefore, it is

hard to imagine the extendibility of this approach to the case of two commuting continuous

symmetries. Nevertheless, at the current stage, we use this slice template to present our

results. Applicability of this method was demonstrated in ref. [117] where the authors

carried out numerical experiments, similar to ours in Figure 26(b), which showed that the

flow rarely visits the vicinity of the slice border constructed this way.

6.3.2 Traveling waves and relative periodic orbits

In Chapter 4, we found all relative periodic orbits of the two-modes system by guessing

their locations from a Poincaré return map. For the Kuramoto-Sivashinsky system, in

Chapter 5, we had a globally stable relative periodic orbit for small system sizes, and we

numerically followed this orbits’ bifurcations and found longer orbits. Strategy adopted

here is completely different, which we will summarize in this section.

Our starting hypothesis was “the state space of turbulence is shaped by the exact coher-

ent structures”. Assuming this is correct, then one would expect to see similarities in the

behavior of turbulent trajectories if they are in the vicinity of an exact coherent structures.

For example, if a trajectory visits neighborhood of an equilibrium, then we would expect

it to slow down, or if it visits neighborhood of a periodic orbit of period T, then we would

expect it to approximately repeat itself after T. Such information is encoded in recurrence

function

f(τ, τR) =
‖â(τ)− â(τ − τR)‖

‖â(τ)‖
(269)

for relative equilibria and relative periodic orbits since they respectively become equilib-

ria and periodic orbits after continuous symmetry reduction. Willis et al. [117] found

guesses for relative periodic orbits and relative equilibria from the minima of (269) obtained

from turbulent trajectories â(τ). These guesses were fed into a Newton-Krylov-hook step

solver [110], which yielded the discovery of 8 relative equilibria and 38 relative periodic

orbits of the pipe flow. In addition, by picking points on the unstable manifolds of different

short relative periodic orbits and feeding them into multi point shooting Newton solver,
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8 new relative periodic orbits were found [115]. Finally, the m0 = 4 upper/lower branch

(N4U/L) traveling waves of ref. [33] are numerically continued to the current domain, adding

two more exact coherent structures to the list. A summary of the currently known exact

coherent structures and their properties is given in Table 4.

6.3.3 Global visualizations - Principal Component Analysis

Arguably, the biggest difficulty in the study of infinite-dimensional the systems is the mere

fact that humans can see only three dimensions at once. It is therefore crucial to have

well-thought visualization methods. In Chapter 5, visualizing the unstable manifold of a

relative periodic orbit enabled us to extract important dynamical information about the

flow, and to find longer periodic orbits. Here, we take, again, an experimental approach

to find coordinates where most of the dynamical information is contained using principal

component analysis (PCA), which we already introduced in Sect. 5.4.

Here, the principal components pi are found by the following procedure: We first gen-

erate N = 2000 data points ai from different simulations of the turbulent dynamics; and

then we take their discrete symmetry copies gθai and reduce their continuous symmetry

as described in Sect. 6.3.1 to obtain the data set âk. Consider the data matrix X with

âk − 〈â〉 on its rows, where 〈â〉 is the empirical mean of the data, then X has a singular

value decomposition

X = UΣW T , (270)

where U is a unitary matrix, Σ is rectangular diagonal with singular values σi of X and

columns of W are the principal components pi. pi are ordered in decreasing principal

component variances σ2
i > σ2

i−1, i = 1, 2, 3, . . ., therefore, they align at directions where the

variance of the data is largest. A solutions is then projected on these coordinates by

âpi(τ) = 〈â(τ)− 〈â〉, pi〉L2 . (271)

Projection of the relative periodic orbits, 5 traveling waves, and an ergodic trajectory

found onto the first three principal components is shown in Figure 27. The reason we

avoided showing remaining 5 traveling waves in these figures is because they appear to sit
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Table 4: Summary of the exact coherent structures found so far. Travelling waves are
labeled by their dissipation rates and relative periodic orbits labeled by their period T.
Average rate of dissipation D̄, average down-stream phase velocity c̄, dimension of the
unstable manifold dU , real part of the largest stability eigenvalue / Floquet exponent µmax is
shown. Last column corresponds to the imaginary part ω of the leading stability eigenvalue
for travelling waves and phase θ of the leading Floquet multiplier for relative periodic orbits.
The family of relative periodic orbits which appear to have similar physical properties are
grouped together and labeled with subscript F .

D̄ c̄ dU µmax ω or θ D̄ c̄ dU µmax ω or θ

TWN4l/1.38 1.38 1.238 3 0.1809 0 TW1.578 1.578 1.108 9 0.2877 0

TW2.039 2.039 1.091 7 0.1159 0 TW1.845 1.845 1.039 11 0.5166 0.891

TW1.968 1.968 1.105 9 0.1549 0.259 TW1.783 1.783 1.035 8 0.323 1.119

TW1.885 1.885 1.073 8 0.4568 0.206 TW2.041 2.041 1.095 8 0.1608 0

TWN4U/3.28 3.279 1.051 30 0.9932 1.89 TW1.926 1.926 1.096 8 0.2504 0.414

RPOF/6.668 1.805 1.12 3 0.0534 1.69 RPOF/33.81 1.805 1.128 5 0.0471 1.727

RPOF/13.195 1.839 1.117 5 0.0581 2.038 RPOF/33.968 1.806 1.127 5 0.0588 1.671

RPOF/20.427 1.809 1.128 5 0.0771 0 RPOF/40.609 1.814 1.125 5 0.0505 0.315

RPOF/26.861 1.84 1.121 5 0.0679 π RPOF/47.449 1.826 1.126 5 0.0586 π

RPOF/26.964 1.826 1.124 6 0.0493 0.986 RPOF/53.876 1.83 1.124 6 0.0457 1.253

RPOF/27.299 1.815 1.126 4 0.0678 0.961

RPO4.954 2.015 1.084 3 0.1509 1.643 RPO14.045 1.903 1.107 6 0.1403 π

RPO5.468 2.003 1.091 6 0.1452 1.351 RPO14.544 2.015 1.102 6 0.1846 0

RPO6.119 1.875 1.081 7 0.1912 0 RPO14.646 1.776 1.133 5 0.1473 π

RPO6.134 1.86 1.086 7 0.1596 0 RPO15.081 2.06 1.081 8 0.1392 0

RPO6.18 1.865 1.091 5 0.211 0 RPO15.46 1.781 1.146 7 0.1166 0

RPO6.359 1.769 1.054 11 0.2614 0 RPO15.798 1.869 1.125 6 0.1089 π

RPO6.458 2.117 1.074 7 0.2055 0 RPO15.915 1.951 1.106 8 0.1547 π

RPO7.246 1.982 1.105 5 0.209 0 RPO15.972 1.956 1.097 7 0.1473 π

RPO7.272 2.015 1.1 5 0.1852 0 RPO16.271 1.978 1.09 7 0.1454 1.977

RPO7.423 1.838 1.109 6 0.1195 0.387 RPO16.878 1.969 1.099 5 0.1219 π

RPO7.741 1.707 1.138 5 0.0983 0 RPO17.21 1.999 1.098 7 0.1523 π

RPO9.735 2.05 1.086 7 0.1872 π RPO17.46 1.917 1.121 6 0.0842 0.205

RPO11.696 1.961 1.108 9 0.1129 π RPO21.704 1.868 1.12 7 0.0951 π

RPO12.026 2.09 1.088 6 0.1476 0 RPO22.063 2.032 1.101 7 0.1352 1.723

RPO12.566 2.053 1.083 10 0.1677 π RPO23.047 1.874 1.12 6 0.1848 0

RPO12.706 2.156 1.07 6 0.1692 1.083 RPO23.356 1.98 1.112 6 0.101 1.249

RPO13.592 1.987 1.099 7 0.1072 0 RPO26.049 2.028 1.097 8 0.1635 π
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(a) (b)

Figure 27: Relative periodic orbits and 5 traveling waves (marked with black dots) and
an ergodic trajectory (gray, τF = 360) of the pipe flow projected onto first three principal
components from two different viewing angles.

far from the turbulent set and relative periodic orbits, and make it harder to see the relevant

orbits if included. First thing to note in Figure 27 is that there appears to be two clouds

where relative periodic orbits are located. Ergodic trajectory spends most of its time in one

of them, occasionally switching to the other; 4 times in the example shown from a simulation

of 360 time units. This is not a coincidence and two clouds are related by the discrete gθ

symmetry of the system. While, we show all relative periodic orbits and traveling waves on

the side where they were numerically found; each of them have gθ symmetry copies on the

other side of the cloud, except the upper branch traveling wave TWN4U/3.28. The reason

that TWN4U/3.28 does not have a gθ-copy is because it is invariant under it; we emphasize

this in the viewing angle of Figure 27 (b), where TWN4U/3.28 is located at p1 = p3 = 0.

Our motivation for using PCA for visualizations was to capture as much dynamical

information as we can in three dimensions, but we ended up finding 2 out of 3 principal

components aligned in the symmetry plane. This, of course, is not a good deal, and thus

our next step is discrete symmetry reduction.
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6.3.4 Fundamental domain

In Chapter 5, after SO(2) symmetry reduction, we reduced the remaining discrete symmetry

of the system by introducing invariant polynomials. In principle, we can take a similar

approach here, and first find the representation of discrete symmetry within the slice, and

then transform to new coordinates that are invariant. However, we would have to face

several difficulties in the process: Firstly, the representation of azimuthal half-rotation

within the slice is not simple. Since the slice template is experimentally picked from a

turbulent simulation, one would expect the action of gθ to break the slice condition and the

transformation that would bring the state back to the slice is presumably non-trivial. We

could have overcome this by revising our slicing scheme, and picking a rotation-invariant

slice template, which would then make the representation of rotations within the slice same

as in the full state space. Second difficulty has to do with our representation of data

(234) in Openpipeflow, where we have finite difference points in radial direction. If we

produced polynomial invariants just as we did in Chapter 5 by multiplying adjacent state

space coordinates directly, then the resulting polynomials would correspond to our specific

representation of data, which would not be reproducible by other researchers, unless they

use the same computational scheme. The last difficulty we should mention is that most

of our results in this chapter depend on particular norms, which we have some physical

interpretation for. These insights would have been lost if we produced quadratic polynomials

from our Fourier modes. For these reasons, we take a different approach in this sections

that has its own issues, which are easier to overlook.

As it is clearly seen from Figure 27, p1 = 0 hyperplane separates two discrete symmetry

related halves of the state space. We define p1 > 0 half of the state space as the fundamental

domain [24] and bring all of our traveling wave, relative periodic orbit, and ergodic solution

data to this region by transforming each state with p1 < 0 by acting on them with gθ. Using

the same procedure we described in the previous section, we compute principal components

from the data in the fundamental domain, and use these bases for visualizations.

Figure 28 (a) shows 45 relative periodic orbits listed on Table 4 in fundamental domain,

projected onto first three principal components computed within the fundamental domain.
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(a) (b)

Figure 28: (a) Relative periodic orbits projected onto first three fundamental domain
principal components. (b) 11 orbits, which appear to fill out a region of the state space.

Notice that in Figure 28 (a) a subset of orbits appear very close to each other; we show

these 11 orbits in Figure 28. We listed these in Table 4 separate from the rest with a

subscript F , which stands for ‘first family’. Besides their striking similarities in the state

space projections, these orbits also have similar physical properties such as the mean rate

of dissipation and mean drift speeds. Moreover, their leading Floquet exponent is roughly

an order of magnitude smaller then the rest of the relative periodic orbits, suggesting that

these orbits may have a significant influence on the turbulent dynamics. We are going to

present more results involving these orbits in the upcoming sections.

Before moving on, we should explain the shortcoming of the present discrete symmetry

reduction scheme. Since gθ is a discrete transformation, when the trajectories that cross

p1 = 0 hyperplane are brought back to the fundamental domain p1 > 0, they become

discontinuous. For the particular case at hand, we ignore this problem, since the switchings

of ergodic trajectories between symmetry related saddles are rare, see Figure 27 (b). In

addition, since we have not found any (259) type relative periodic orbit that connects one

cloud to the other, we do not need to worry about discontinuities that they will have either.

We should emphasize that the fact that we could not find any relative periodic orbits that

satisfies (259) does not mean that they do not exist. In fact, it is merely a consequence of
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our experimental approach of searching orbits nearby close recurrences. Since switchings

between two symmetry-related saddles are quite rare, we did not have any seeds to search

for relative periodic orbits in these occurrences.

6.3.5 Numerical experiments

We have found quite a few exact coherent structures, but what are they good for? In

this section, we present results of simple numerical experiments to further develop our

intuition about dynamical roles of exact coherent structures in the pipe flow turbulence.

For this purpose, we are ran a long ergodic trajectory, until it laminarizes at the final time

τF = 681.0D/U . We then computed its minimum distance to all exact coherent structures

for its lifetime. Let ã(τ) and ãc(τ
′) respectively denote the ergodic trajectory and an exact

coherent structure in the fundamental domain; then the minimum distance function is

d(τ) = min
τ ′
‖ã(τ)− ãc(τ ′)‖ . (272)

In (272), we did not specify, which metric we are going to use in computing the distances

because we are going to use both L2 and low pass norms which we introduced in Sect. 6.1.2.

6.3.5.1 Switchings between symmetry copies

Within the shift-and-reflect invariant subspace, once the continuous symmetry is quotiened,

the turbulent pipe flow consist of two chaotic saddles that are related to each other by a

discrete half-domain rotation about the pipe axis. All the relative periodic orbits and the

relative equilibria we found by searching nearby the close recurrences of the flow belonged

one of these two saddles and had a symmetry copy on the other. Upper and lower branch

traveling waves TWN4U/1.38 and TWN4L/3.28 are exceptions to this description. They were

found as upper and lower branch solutions in a ref. [33] with an extra azimuthal half-rotation

symmetry and numerically continued to the current domain. Therefore, they are invariant

under rotation symmetry that relates two chaotic saddles and located in between them.

In order to investigate possible dynamical roles of these orbits, we computed the mini-

mum distance (272) of ergodic trajectories from these orbits and the results are shown in

Figure 29. For the most parts, these orbits are further away from the ergodic trajectory
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Figure 29: Distances from TWN4L/3.28 (blue) TWN4U/1.38 (green) and instances corre-
sponding to the switchings between symmetry copies marked with vertical dashed lines.

than relative periodic orbits; compare typical numbers to Figure 30. However, at certain

instances, there are dips and/or bumps in the distances; which are more pronounced in

the low pass norm. We found that these events coincide with episodes, in which ergodic

trajectory leaves the fundamental domain and brought back by the discrete symmetry op-

eration. We marked these instances with vertical dashed lines in Figure 30. Moreover, note

at τ > 600 in Figure 29, distance from the upper branch is very large, but the lower branch

has a dip. This is because this is right before the laminarization of the system, which is

mediated by the unstable manifold of the edge, to which the lower branch solution belongs.

6.3.5.2 Minimum distance from relative periodic orbits

Let us now turn our attention to the relative periodic orbits . We expect them to play

an important role in describing turbulent dynamics, as they should be embedded in the

chaotic set. However, when we look at the distances from all found relative periodic orbits

for the lifetime of an ergodic trajectory, the outcome (Figure 30) is not very informative.

The distance between the ergodic trajectory and almost all relative periodic orbits peaks at

the same instances, which is against the description of chaotic dynamics as transient visits
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Figure 30: Minimum distance between ergodic trajectory and relative periodic orbits .

to the neighborhoods of different orbits. Notice, however, that the peaks that dominate the

axes scales in Figure 30 corresponds to instances, at which the ergodic trajectory travels

from one chaotic saddle to its symmetry copy. As we mentioned earlier, these excursions

could have been captured by relative periodic orbits, which satisfies (259); however we do

not have such a solution. Therefore, the peaks in Figure 30 corresponds to flow behavior,

that is not captured any of the found relative periodic orbits .

Since we know that our relative periodic orbits are unable to capture dynamics that

connects two chaotic saddles, we decided to restrict our attention to an episode, during

which the dynamics stays within one. Figure 31 (a) shows 8 relative periodic orbits of

the pipe flow and the ergodic trajectory for τ ∈ [0, 165]D/U projected onto fundamental

domain principal components and Figure 31 (b) shows the minimum distances from these

orbits. Figure 31 is too crowded to make a detailed observation, however, note that in

Figure 31 (b), curves with different colors have minima at different instances throughout

the evolution of turbulent dynamics. This suggests that the flow may indeed be bouncing

between the neighborhoods of relative periodic orbits .

Our final example correspond to a much shorter time segment τ ∈ [135, 165], which illus-

trates a striking example of “shadowing”. In Figure 32 (a), we show RPOF/6.668, RPO6.458,
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(a) (b)

Figure 31: (a) Ergodic trajectory (gray dots) and 8 different relative periodic orbits (var-
ious colors) of the pipe flow projected on to the fundamental domain principal components.
(b) Minimum distance of ergodic trajectory from the relative periodic orbits shown in (a).

and the ergodic trajectory segment; and in Figure 32 (b) we show the minimum distance

of ergodic trajectory from the relative periodic orbits shown. While the distance from

RPO6.458 is initially larger than that from RPO6.668, this changes at about τ ≈ 150 and

the ergodic trajectory appears to enter to the neighborhood of RPO6.458. Notice also the

similarities between the ergodic trajectory and RPO6.458 on Figure 32 (a) after time 150,

which is an indication of shadowing of ergodic trajectory by RPO6.458.

Results of the numerical experiments presented in this section suggest that as long as

flow stays in one of the symmetry related chaotic saddles, the relative periodic orbits within

that saddle captures some portion of that dynamics. However, we should emphasize that

these observations should be taken no serious than being suggestive. As we have mentioned

in Sect. 6.1.2, the “distance” in any metric in the state space of a chaotic system might be

very misleading.

Finally, we would like to make a general remark about the difference between L2 and

low pass norms. Notice that in all distance figures of this section, L2 distances have more

fluctuations compared to their low pass counterparts. Assuming that the small scale flow

structures fluctuate more than the larger ones, this observation is consistent with our def-

inition of the low pass metric (238), where large wave numbers (small wavelengths) are
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(a) (b)

Figure 32: (a) Ergodic trajectory (gray), RPO6.668 (blue), and RPO6.458 (green) of
the pipe flow projected on to the fundamental domain principal components. Instances
τ = 140, 150, 160 are marked on the ergodic trajectory with red, green, and blue respectively
to indicate the direction of the flow. (b) Minimum distance of ergodic trajectory from the
relative periodic orbits shown in (a).

penalized. Note also that the differences between distances from traveling waves are more

pronounced in the low pass norm in Figure 29, while in Figure 33 it appears to be the other

way around. These, at first glance, might seem as two conflicting observations; however,

they are in fact consistent with the definitions of norms. Upper and lower branch solutions,

from which the distances are shown in Figure 29 have completely different physical proper-

ties, see Table 4, hence they are likely to have large scale differences. On the other hand,

relative periodic orbits shown in Figure 32 have relatively similar physical properties, there-

fore their differences are more emphasized in L2 norm, in which the small scale structures

are not suppressed.

6.3.6 Periodic orbit theory

In Chapter 4, we explained that the convergence of cycle expansions heavily relies on the

topological organizations of cycles and grammar rules of symbolic dynamics. For the two-

modes system, we obtained this information from a Poincaré return map, and showed that

symbolic dynamics with finite grammar rules yields quickly converging spectral determi-

nants.
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In the present problem, we do not have a Poincaré section that captures topological

properties of periodic orbits, or a return map that yields grammar rules. We do not even

now whether we have found all periodic orbits up to a certain period or not. However,

we do have a set of orbits, namely the first family, which appear close by in visualizations

of Figure 28 and have very similar physical properties as can be seen at Table 4. Having

periods that are approximately integer multiples of the smallest 6.7, these orbits seem to

belong to a fractal set that may be result of a local Smale horseshoe [105]. Motivated with

these observations we propose the following: Sets of exact coherent structures such as the

first family describe certain regions that has similar physical properties in the state space

of turbulence. Each such family has to be a strange repeller, possibly connected to other

families via longer relative periodic orbits .

An important quantity in the proposed description is rate of escape from strange re-

pellers and we can use periodic orbit theory to predict this. In fact, we have already

computed an escape rate for the two-modes system in Sect. 4.4.1. In the finite grammar

approximation Sect. 4.3.2, we considered a subset of two-modes periodic orbits that had

golden mean symbolic dynamics; and in Sect. 4.4.1, we found a finite escape rate for the

state space region represented by these orbits.

In order to compute cycle expansions without knowing the topological ordering of the

periodic orbits, we are going to adopt the stability ordering method. This was introduced

by Dahlqvist and Russberg in studies of classical [25] and quantum [26] billiards. Dettmann

and Morriss [29] used stability ordering for cycle expansions of strong-field Lorentz gas and

Dettmann and Cvitanović [28] used the method to investigate intermittent diffusion. We

start with rewriting (178) as a power series

1/ζ =
∏
p

(1− tp) = 1−
∑

p1,p2,...pk

(−1)k+1tp1tp1 . . . tpk , (273)

where the sum is carried over all distinct combinations of prime (non-repeating) cycles pi.

We define each such combination as a pseudo-cycle with label π = p1 + p2 + . . . + pk and

pseudo-cycle weights

tπ = (−1)k+1 e
(βΩπ−sTπ)

|Λπ|
, (274)
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where

Λπ = Λp1Λp2 . . .Λpk ,

Tπ = Tp1 + Tp2 . . .+ Tpk ,

Ωπ = Ωp1 + Ωp2 . . .+ Ωpk . (275)

With the definition (274), we can now express the dynamical zeta function (273) compactly

as

1/ζ = 1−
∑
π

tπ . (276)

In stability ordering, one orders the terms in dynamical zeta function (276) in increasing

|Λπ| and discards terms with |Λπ| > ΛC

1/ζ = 1−
∑

|Λπ |<ΛC

(−1)k+1 e
(βΩπ−sTπ)

|Λπ|
. (277)

Physical motivation behind the stability ordered zeta function (277) is the emphasis on the

cycles that are less unstable. For example, if a system has a highly-unstable short cycle,

the flow is unlikely to stay within its neighborhood, hence it will appear as a higher order

correction in (277).

We computed the stability ordered cycle expansions (277) with the first family relative

periodic orbits listed in Table 4 for ΛC ∈ [10, 103]. We find the leading zero of the zeta

function by solving

1/ζ(β = 0, s0) = 0 . (278)

Figure 33 (a) shows the cycle expansion estimates of the escape rate γ = −s0 against the

stability cut-off ΛC . All members of the first family except RPOF/53.876, enters into the

zeta function at ΛC = 103. Up to this value, escape rate have a converging trend around

γ ≈ 0.095. For larger values of ΛC , we observed large fluctuations of γ, which indicates

that we are missing cycles with |Λp| > 103.

An escape rate of γ ≈ 0.095 tells us that turbulent trajectories within the neighborhood

of the first family leaves this region of the state space after γ−1 ≈ 10.5D/U . However, it is

not clear how to test this number, since it is not obvious how to determine a boundary in the
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(a) (b)

Figure 33: (a) Cycle expansion estimates of the escape rate γ from the neighborhood of
the first family. (b) Minimum distances from first family relative periodic orbits.

state space that sets the borders of the neighborhood of these orbits. To have an indicative,

we turn our attention back to the minimum distance experiments. In Figure 33(b), we show

the minimum distance of the ergodic trajectory to the first family relative periodic orbits

in L2 and low pass norms for τ ∈ [0, 160]. In order to have a time scale for the oscillations

in the minimum distance experiments, we took Fourier transform of these measurements,

which we show in Figure 34.

(a) (b)

Figure 34: Fourier transforms of the time-dependent distance measurements shown in
Figure 33(b) shown for f ∈ (0, 10)U/D (a) and f ∈ (0, 0.8)U/D (b).

We see from Figure 34 that both time-dependent minimum distance measurements
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that in both metrics, highest-amplitude oscillations lie within the frequency range f ∈

(0, 0.2)(U/D), which contains our escape rate prediction γ ≈ 0.095. We should stress that

this is just a sanity check, based on a single, non-exhaustive numerical experiment.

6.4 Conclusions

In this chapter, we presented a study of the turbulent pipe flow, with shift-and-reflect

symmetry, which disallows for continuous rotations in the azimuthal direction. As we have

mentioned earlier, the results we presented was part of a collaborative effort, and we tried

to emphasize our own contributions to the project. These were analysis of the system’s

discrete symmetry in Sect. 6.2.1, applying fundamental domain method for reduction of

this symmetry in Sect. 6.3.4, and tests of several hypotheses by numerical experiments in

Sect. 6.3.5 and by a periodic orbit theory calculation in Sect. 6.3.6. In addition to these, we

have also shown in Sect. 6.3.1 that the first Fourier mode slice can be applied to the pipe

flow by setting a slice template with a Bessel function dependence in the radial direction.

With our symmetry analysis, and PCA visualizations in Sect. 6.3.3, we understood that

the turbulent pipe flow in the shift-and-reflect subspace has two chaotic saddles that are

related by azimuthal rotation by π. Our numerical experiments in Sect. 6.3.5 showed some

indication that as long as the ergodic trajectory stays in one of these chaotic saddles, relative

periodic orbits embedded in the chaotic set influences the dynamics. Finally, in Sect. 6.3.6,

we carried out a periodic orbit theory calculation with a subset of relative periodic orbits

that appear to have similar physical properties, and predicted an escape rate for their

neighborhood. Since, as of now, we do not have a way of designing an experiment to test

this calculation, all we could do to make a sanity check of the predicted escape rate verified

that it falls into the timescales that are observed in the system. We would like to emphasize

that this calculation is only suggestive and the reason we presented it in this thesis is not

to draw a strong conclusion from it, but to suggest new directions for turbulence research.
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CHAPTER VII

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we asked the following question: Can we understand spatiotemporal chaos

by studying exact coherent structures embedded in the chaotic sets? While we do not have

a certain answer yet, we are optimistic. We believe the methods we presented in this thesis

can help towards a deeper understanding of fluid turbulence and ultimately establishing a

theory of turbulence with predictive power.

7.1 Summary of findings

Developments we presented in this thesis lie within the ongoing research program of studies

of spatiotemporal chaos in terms of exact coherent structures. The contributions of the

work presented in this thesis to the existing literature are:

• We developed first Fourier mode slice method for reducing SO(2) symmetry and its

direct products, which are present when PDEs are studied in periodic domains.

• In our study of the two-modes system, we verified that periodic orbit theory extends

to the systems with continuous symmetries when relative periodic orbits are used in

calculations.

• For Kuramoto-Sivashinsky system, we combined invariant polynomials with the first

Fourier mode slice to reduce the O(2) symmetry.

• We computed and visualized 1- and 2-dimensional unstable manifolds of periodic

orbits in the symmetry reduced state space of the Kuramoto-Sivashinsky system.

• We applied the first Fourier mode slice to the pipe flow in a minimal computational

cell and presented analysis that suggests relative periodic orbits play an important

role in shaping the state space geometry of the turbulence.
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The main message to be taken from the results of all three applications in this thesis

is that the symmetry reduction is absolutely necessary for understanding the state space

geometry of chaotic systems with continuous symmetries. The first Fourier mode slice can

be used for this purpose when the symmetry group is SO(2).

7.2 Future work

Throughout this thesis, we applied first Fourier mode slice problems with only one contin-

uous symmetry. For pipe flow, this meant the study of system in an invariant subspace,

such that continuous symmetry in azimuthal direction is restricted to discrete rotations by

π. While this study thought us many interesting aspects of the problem, this construc-

tion has little experimental relevance due to the fact that laboratory experiments cannot

be designed in invariant subspaces. Therefore, a natural next step for our research is the

simultaneous reduction of SO(2)z × O(2)θ symmetry of the pipe flow. We have described

how one can reduce axial and azimuthal symmetries SO(2)z × SO(2)θ simultaneously in

Sect. 3.3.5, and reduced the axial translation symmetry of the shift-and-reflect symmetric

pipe flow in Sect. 6.3.1.

For the remaining reflection symmetry, we can try to construct polynomial invariants for

the pipe flow just as we did for the Kuramoto-Sivashinsky system in (201). However, since

we multiply adjacent sign changing elements while constructing our invariants, such polyno-

mials would depend on our particular discretization of the problem, and hard to reproduce

in different numerical schemes. Therefore, before determining invariant polynomials, it

makes sense to represent the data in a fully spectral form, such as

u(r, θ, z) =
∑
n,k,m

unkmsn(r)ei(αkz+mθ) , (279)

where sn(r) are some functions that form a complete orthonormal basis for the radial

expansion, satisfying pipe’s boundary condition sn(1/2) = 0. As it is irrelevant for the

present discussion, we do not specify sn(r), but candidates are solenoidal (divergence-free)

functions [78] or Bessel functions. One can convert data to the form (279) by post processing

regardless of their numerical scheme.
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Let us now write down the action of σ on discretization elements explicitly

σ[u, v, w](r, θ, z) =
∑
n,k,m

[u,−v, w]nkmgn(r)ei(αkz−mθ) ,

=
∑
n,k,m

[u,−v, w]nk−mgn(r)ei(αkz+mθ) , (280)

where in the second line, we replaced m→ −m since it is summed over. This gives us the

action of reflection in spectral representation as

σ[u, v, w]nkm = [u,−v, w]nk−m , (281)

which is different than sign changes that we had in the Kuramoto-Sivashinsky system. As

of this writing, finding an invariant basis for (281) remains an open problem.

7.3 Potential applications

We believe that the techniques we developed in this thesis can find applications in various

studies of spatiotemporal chaos. The most obvious one is the continuous symmetry reduc-

tion in studies of PDE s under periodic boundary conditions. An important application

that is not immediately obvious is the symmetry reduction of experimental data as it is

uncommon to have experiments with periodic boundary conditions.

In ref. [35] Fedele, Abessi, and Roberts applied the first Fourier mode slice and another

continuous symmetry reduction method based on fixing phase of a higher Fourier mode to

the turbulent pipe flow experiments. They measured the fluid velocity in a finite region

of the pipe in one dimension and took Fourier transform of their data and demonstrated

that the symmetry reduction cancels stream-wise drifts of the turbulent structures. This

approach can be extended to the three-dimensional velocity measurements to investigate

roles of exact coherent structures in turbulence.

Bifurcation scenarios similar to that of the Kuramoto-Sivashinsky system that we stud-

ied in Sect. 5.5 are ubiquitous in high-dimensional systems. For example, Zammert and

Eckhardt’s study of the plane Poiseuille flow [121] and Avila et al. [8] study of transition

to turbulence in pipe flow, both report torus bifurcations of relative periodic orbits along

transitions to chaos. Avila et al. [8] also showed that a localized, reflection invariant rela-

tive periodic orbit of the pipe flow has strikingly similar features to turbulent puffs. In the
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reflection-invariant subspace, this localized relative periodic orbit is initially stable, then

undergoes a torus bifurcation, followed by chaotic dynamics as the Reynolds number is

increased. Methods of Sect. 5.5 combined with the symmetry reduction of the pipe flow can

lead to a detailed understanding of the state space geometry of turbulent puffs. Hence, we

are planning to study these solutions in near future.
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APPENDIX A

MULTIPLE SHOOTING METHOD FOR FINDING RELATIVE

PERIODIC ORBITS OF THE TWO-MODES SYSTEM

Let us assume that we have a set of good guesses for a set of state space points, flight times

and 1D symmetry group parameter increments {a(0)
i , τ

(0)
i , φ

(0)
i } such that the points {a(0)

i }

lie close to the relative periodic orbit p such that

a
(0)
i+1 ≈ g(−φ(0)

i )f τ
(0)
i (a

(0)
i ) cyclic in i = 1, ..., n . (282)

Here, the period and the shift of the relative periodic orbit p are Tp ≈
∑
τi , and φp ≈

∑
φi.

The Lagrangian description of the flow is then a(τ) = f τ (a(0)). We want to determine

corrections (∆ai , ∆τi , ∆φi) so that

ai+1 + ∆ai+1 = g(−φi −∆φi)f
τi+∆τi(ai + ∆ai)

cyclic in i = 1, ..., n . (283)

To linear order in

(∆a
(m+1)
i , ∆τ

(m+1)
i , ∆φ

(m+1)
i ) (284)

= (a
(m+1)
i − a(m)

i , τ
(m+1)
i − τ (m)

i , φ
(m+1)
i − φ(m)

i )

the improved Newton guess (a
(m+1)
i , τ

(m+1)
i , φ

(m+1)
i ) is obtained by minimizing the effect

of perturbations along the spatial, time, and phase directions,

a
′
i+1 − gi+1f

τi(ai)

= gi+1 (Ji+1∆ai + vi+1∆τi − ti+1∆φi) , (285)

where, for brevity, a
(m+1)
i = a

(m)
i + ∆a

(m)
i = a

′
i, a

(m)
i = ai, g(−φi) = gi+1, v(ai(τi)) = vi+1,

Jτi(ai) = Ji+1, t(ai(τi)) = Tai(τi) = ti+1, etc. For sufficiently good initial guesses, the

improved values converge under Newton iterations to the exact values (∆ai , ∆τi , ∆φi)

= (∆a
(∞)
i , ∆τ

(∞)
i , ∆φ

(∞)
i ) at a super-exponential rate.

124



In order to deal with the marginal multipliers along the time and group orbit directions,

one needs to apply a pair of constraints, which eliminate variations along the marginal

directions on the relative periodic orbit’s 2D torus. These can be formulated as a local

Poincaré section orthogonal to the flow and a local slice orthogonal to the group orbit at

each point along the orbit,

〈v(ai),∆ai〉 = 0 , 〈t(ai),∆ai〉 = 0 . (286)

We can rewrite everything as one matrix equation:

A∆ = E , (287)

where

A =



g2J2 g2v2 −Tg2fτ1 (a1) −1 0 0 0 · · · 0 0 0

v(a1) 0 0 0 0 0 0 · · · 0 0 0

t(a1) 0 0 0 0 0 0 · · · 0 0 0

0 0 0 g3J3 g3v3 −Tg3fτ2 (a2) −1 · · · 0 0 0

0 0 0 v(a2) 0 0 0 · · · 0 0 0

0 0 0 t(a2) 0 0 0 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

−1 0 0 0 0 0 0 · · · g1J1 g1v1 −Tg1fτ1 (a1)

0 0 0 0 0 0 0 · · · v(an) 0 0

0 0 0 0 0 0 0 · · · t(an) 0 0


,

(288)

∆ = (∆a1, ∆τ1, ∆φ1, ∆a2, ∆τ2, ∆φ2, . . . , ∆an, ∆τn, ∆φn)T , (289)

E = (a2 − g2f
τ1(a1), 0, 0, a3 − g3f

τ2(a2), 0, 0, . . . , a1 − g1f
τn(an), 0, 0)T . (290)

We then solve (287) for ∆ and update our initial guess by adding the vector of the

computed ∆ values to it and iterate.
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APPENDIX B

PERIODIC SCHUR DECOMPOSITION

Here, we briefly summarize the periodic eigendecomposition [31] needed for the evalua-

tion of Floquet multipliers for two-modes periodic orbits. Due to the non-hyperbolicity of

the return map of Figure 10 (d), Floquet multipliers can easily differ by 100s of orders of

magnitude even in a model as simple as the two-modes system.

We obtain the Jacobian of the relative periodic orbit as a multiplication of short-time

Jacobians from the multiple shooting computation of Appendix A, so that

Ĵ = gnJngn−1Jn−1 ... g1J1 = ĴnĴn−1 ... Ĵ1 (291)

where Ĵi = giJi ∈ R4×4, i = 1, 2, ..., n . This Jacobian is the same as the definition in

(85) since Ji and gi commute with each other and are multiplicative in time and phase,

respectively. In order to determine the eigenvalues of Ĵ , we bring each term appearing in

the product (291) into periodic, real Schur form as follows:

Ĵi = QiRiQ
T
i−1 , (292)

where Qi are orthogonal matrices that satisfy the cyclic property: Q0 = Qn. After this

similarity transformation, we can define R = RkRk−1...R1 and re-write the Jacobian as:

Ĵ = QnRQ
T
n . (293)

The matrix R is, in general, block-diagonal with 1× 1 blocks for real eigenvalues and 2× 2

blocks for the complex pairs. It also has the same eigenvalues as Ĵ . In our case, it is diagonal

since all Floquet multipliers are real for relative periodic orbits of the two-modes system. For

each relative periodic orbit, we have two marginal Floquet multipliers corresponding to the

time evolution direction and the continuous symmetry direction, as well as one expanding

and one contracting eigenvalue.
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APPENDIX C

NUMERICAL INTEGRATION OF KURAMOTO-SIVASHINSKY

SYSTEM

Throughout Chapter 5, we used the 16 Fourier mode truncation of Kuramoto-Sivashinsky

equation (191), which renders the state space 30-dimensional. Sufficiency of this truncation

was demonstrated for L = 22 in ref. [23]. In order to avoid the computational complexity

of the discrete convolution, we rewrite (191) as

˙̃uk = (q2
k − q4

k) ũk − i
qk
2
F [(F−1[ũ])2]k , (294)

where F and F−1 denotes forward and backward Fourier transformations. We then find

the elements of 30-dimensional velocity field as (192) as

v2k−1 = Re ˙̃uk , v2k = Im ˙̃uk , k = 1, 2, . . . , 15. (295)

We compute stability matrix A (9) from partial derivatives of this velocity function.

For the results of Sect. 5.2, we numerically integrated (192) and (102) for Kuramo-

to-Sivashinsky equation using Exponential Time Differencing fourth-order Runge-Kutta

(ETDRK4) method of ref. [66]. The MATLAB/Octave code is openly available at ref. [12].

In Sect. 5.5, we integrate (102) and its gradients (107) numerically, using a general

purpose adaptive integrator odeint from scipy.integrate [65], which is a wrapper of

lsoda from ODEPACK library [56].

Transformation of trajectories and tangent vectors to the fully symmetry-reduced state

space (202) is applied as post-processing. For a trajectory â(τ), we simply apply the reflec-

tion reducing transformation to obtain the trajectory as ã(τ) = ã(â(τ)). Velocity field (95)

transforms to (202) by acting with the Jacobian matrix

ṽ(ã) =
dã(â)

dâ
v̂(â) .

Floquet vectors transform to the fully symmetry-reduced state space similarly, however,

their computations in the first Fourier mode slice requires some care. Remember that
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the reflection symmetry remains after the continuous symmetry reduction, and its action is

represented by (199). Thus, denoting finite time flow induced by (95) by f̂ τ (â), pre-periodic

orbit within the slice satisfies

âppo = σ̂f̂Tp(âppo) ,

with its linear stability given by the spectrum of the Jacobian matrix

Ĵppo = σ̂ĴTp(âppo) ,

where ĴTp(âppo) is the Jacobian matrix of the flow function f̂Tp(âppo). Thus, in order to find

the Floquet vectors in fully symmetry-reduced representation, we first find the eigenvectors

V̂ of the Jacobian matrix Ĵppo and then transform them as Ṽ (ã) = dã(âppo)/dâ V̂ (â) .
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Applications,” Nonlinearity, vol. 3, p. 361, 1990.

[7] Ashwin, P. and Melbourne, I., “Noncompact drift for relative equilibria and rel-
ative periodic orbits,” Nonlinearity, vol. 10, p. 595, 1997.

[8] Avila, M., Mellibovsky, F., Roland, N., and Hof, B., “Streamwise-localized
solutions at the onset of turbulence in pipe flow,” Phys. Rev. Lett., vol. 110, p. 224502,
2013.
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[53] Hagen, G., “Über die bewegung des wassers in engen cylindrischen röhren,” Ann.
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dimensions, illustrated in a turbulent pipe.” arXiv:1504.05825, 2015.

[118] Wold, S., Esbensen, K., and Geladi, P., “Principal component analysis,”
Chemometr. Intell. Lab., vol. 2, pp. 37–52, 1987. Proceedings of the Multivariate
Statistical Workshop for Geologists and Geochemists.

[119] Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., “Determining
Lyapunov exponents from a time series,” Physica D, vol. 16, pp. 285–317, 1985.

[120] Yoder, J. G., Unrolling Time: Christiaan Huygens and the Mathematization of
Nature. Cambridge: Cambridge Univ. Press, 1988.

[121] Zammert, S. and Eckhardt, B., “Crisis bifurcations in plane Poiseuille flow,” Phys.
Rev. E, vol. 91, p. 041003, 2015.

136

http://arXiv.org/abs/1504.05825


VITA

Nazmi Burak Budanur was born in 1988 in Izmir, Turkey. He received bachelor’s degrees in

Electronic Engineering (2010) and Physics (2011) and a master’s degree in Physics (2012)

from Istanbul Technical University. In August 2012, he enrolled in the PhD program in the

School of Physics at Georgia Tech.

137


	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Tables 
	List of Figures 
	LIST OF ABBREVIATIONS 
	Summary
	Chapter 1 — Introduction
	Turbulence
	Idealized geometries and symmetries
	Overview of this thesis and its results

	Chapter 2 — Nonlinear Dynamics and the Periodic Orbit Theory
	Basics of dynamics
	Linear versus nonlinear
	Equilibria, periodic orbits and their linear stability
	Time-invariant sets

	Densities and averages
	Chaos
	Evolving densities
	Averages


	Chapter 3 — Continuous Symmetries
	Fields
	Equivariance under a continuous symmetry
	Relative equilibria and relative periodic orbits

	Symmetry reduction
	Method of slices
	Slice hyperplane
	First Fourier mode slice
	Stability in the symmetry-reduced state space
	The first Fourier mode slice in higher spatial dimensions

	Conclusions

	Chapter 4 — The two-modes system
	Two-modes SO(2)-equivariant flow
	Invariant polynomial bases
	Equilibria of the symmetry-reduced dynamics
	No chaos when the reflection symmetry is restored
	Two-modes system in the first Fourier mode slice
	Visualizing two-modes dynamics

	Periodic orbits
	Determining admissible cycles
	Finding relative periodic orbits

	Cycle Averages
	Cycle expansions
	Finite grammar approximation

	Cycle expansions the of spectral determinant
	Numerical results

	Conclusions

	Chapter 5 — Kuramoto-Sivashinsky system
	Kuramoto-Sivashinsky system and its symmetries
	Continuous symmetry reduction
	State space visualization

	Discrete symmetry reduction
	Kuramoto-Sivashinsky system at L=22
	Transition to chaos via torus breakdown
	Interlude: Discrete time dynamical systems
	Unstable manifolds of periodic orbits

	Conclusions

	Chapter 6 — Pipe flow
	Subcritical transition to turbulence
	Edge of chaos
	Bifurcation scenario

	Problem formulation
	Discretization and the state space
	Inner products and norms

	Symmetries of the pipe flow
	Shift-and-reflect invariant subspace
	Exact coherent structures

	Turbulent pipe flow
	Continuous symmetry reduction
	Traveling waves and relative periodic orbits 
	Global visualizations - Principal Component Analysis
	Fundamental domain
	Numerical experiments
	Periodic orbit theory

	Conclusions

	Chapter 7 — Conclusion and Future Directions
	Summary of findings
	Future work
	Potential applications

	Appendix A — Multiple shooting method
	Appendix B — Periodic Schur decomposition
	Appendix C — Numerical integration of Kuramoto-Sivashinsky system
	References
	Vita

