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SUMMARY

Studying the zeros of a parameter dependent operator f defined on a Hilbert space
H is a fundamental problem in mathematics. When the Hilbert space is finite di-
mensional, continuation provides, via predictor-corrector algorithms, efficient tech-
niques to numerically follow the zeros of f as we move the parameter. In the case
of infinite dimensional Hilbert spaces, this procedure must be applied to some finite
dimensional approximation which of course raises the question of validity of the out-
put. We introduce a new technique that combines the information obtained from the
predictor-corrector steps with ideas from rigorous computations and verifies that the
numerically produced zero for the finite dimensional system can be used to explic-
itly define a set which contains a unique zero for the infinite dimensional problem

f:HXxR—=Im(f).

We use this new validated continuation to study equilibrium solutions of partial differ-
ential equations, to prove the existence of chaos in ordinary differential equations and
to follow branches of periodic solutions of delay differential equations. In the context
of partial differential equations, we show that the cost of validated continuation is

less than twice the cost of the standard continuation method alone.
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CHAPTER 1

INTRODUCTION

Mathematical models arising in biology, chemistry, finance and physics involve pa-
rameters. Many fundamental questions concerning these models can be reduced to
the problem of finding the zeros of a specific function. Hence, a central problem in

applied mathematics is the following: given a nonlinear parameter dependent function
f:HXR—Im(f) (1)

defined on a Hilbert space H, find £ := {(z,v) | f(z,v) = 0}. For many specific
problems this can only be done using numerical methods. In particular, continuation
provides an efficient technique for determining elements on branches of £ by means
of predictor-corrector algorithms: under the assumption that we have a numerical
zero xo at the parameter value 1y, we consider a parameter value v; close to 1y, we
get a predictor 7, at 14 and using a Newton-like corrector, we finally obtain another
numerical zero x; at v;. It is important to keep in mind that the corrector step relies
on the convergence of an iterative scheme. If the Hilbert space H is low dimensional
and if we can get a good enough representation of the function f, we have confidence
about the approximate zeros coming from the continuation method. However, when
the Hilbert space H is infinite dimensional, the problem of finding and continuing
the zeros of (1) as we move the parameter v is more subtle, as a finite dimensional
approximation must first be considered before starting the computation. That raises
the natural question of the validity of the output. To address this problem, we will
introduce the concept of walidated continuation. In reality for many applications,
researchers are often interested in investigating a variety of models at a multitude

of parameter values to gain scientific insight rather than an answer to a particular



question. This places a premium on minimizing computational cost, often leading to
acceptance of the validity of numerical results simply based upon the reproducibility
of the result at different levels of refinement. As we shall argue, the results presented
in this thesis suggest that this dichotomy need not exist and we provide examples
in Chapter 4 wherein it is demonstrated that by judicious use of the computations
involved in the continuation method it is cheaper to wvalidate the results than to re-
perform the continuation at a more refined level. The concept of validation is quite
simple: once we have a numerical zero of the finite dimensional projection, we embed

it in H and construct around it a compact set of H on which we can apply the

Banach Fixed Point Theorem: Let (2,d) be a complete metric space. Consider
W C Q and a function T : W — W. If there is a constant q with 0 < q < 1 such that

d(Tw, Tw") < q-d(w,w") for all w,w" € W then T has a unique fized point in W.

Hence, in order to verify the hypotheses of the fixed point theorem, we need to
construct two objects: the function T' and the set W. As far as T is concerned,
we propose an infinite dimensional adaptation of the finite Newton-like map of the
corrector part of the continuation algorithm. The fundamental problem then becomes
the construction of the set W. Many people worked on similar constructions before
(e.g. see [9], [13], [42] and [43]), but their methods to build the sets W were most of
the time ad hoc. What we propose here is quite different: we solve for the sets. At a
given parameter value v, we restrict our investigation to compact sets in the Hilbert
space of radius r > 0 and centered at the embedded numerical zero . We denote such
sets by Wz(r). The strategy is to solve for the sets Wz(r) by considering their radius
as a variable and look for » > 0 such that the hypotheses of the Banach fixed point
theorem are satisfied in a given Banach space §2. Note that the norm of the Banach
space €2 will depend on the particular choice of Wz(r). Denote it by ||-||w, (). Details

about the construction of the Banach space (€, ]| - ||w,()) are found in Chapter 2.



In order to show that 7' : Wi(r) — Wz(r) is a contraction in (€, |- |lw), we
construct a set of polynomials {py}r>o and show that a sufficient condition for the
existence of the desired set W3 (r) is that py(r) < 0 for all £ > 0. These polynomials,
that we call the radii polynomials, are the heart and the soul of this thesis. They
represent sufficient conditions for the function 7" to act as a contraction on the set
Wz(r). Finding a positive r making all of them simultaneously negative implies by
the Banach fixed point theorem the existence of a unique fixed point of 7' in the
set Wxz(r) and therefore a unique zero of f in Wx(r) at the parameter value v, by
construction of T'. Hence, for each of the applications presented in Chapters 4, 5
and 6, the main work is the construction of the coefficients of the radii polynomials
which is essentially an analytic question. Indeed, their construction requires analytic
estimates. General estimates will be presented in Chapter 3. Once the theoretical
construction of the polynomials is done, we encode and solve them using the computer.
Note that there are different types of arithmetic that can be used. We chose to use
two of them, namely floating point arithmetic and interval arithmetic. The floating
point arithmetic, being widely used, is extremely efficient and fast to use. Interval
arithmetic, on the other hand, is slower to use, but it can lead to mathematical proofs.
Based on interval arithmetic simulations, we will see in Chapter 4 that the floating
point errors involved in the computation of the coefficients of the radii polynomials are
many orders of magnitude smaller than the magnitude of the center of the interval
coefficients of the radii polynomials. This strongly suggests that solving the radii
polynomials using floating-point arithmetic provides considerable confidence about the
validity of the numerical output. Therefore, recalling the necessity of computational

efficiency in applied mathematics, we define the notion of wvalidation as follow

Definition 1.0.1 Consider Z a numerical zero and let {py} r>o the radii polynomials
computed using floating-point arithmetic. If there exists » > 0 such that pg(r) < 0

for all £ > 0, then we say that 7 is validated by the set Wz (r).



This being said, note that for many results presented in this thesis, we are inter-
ested in mathematical proofs, meaning that we will use the interval arithmetic version
of the coefficients of the polynomials. Before introducing the different applications of
validated continuation, we recall the basic notions of parameter continuation of zeros

of functions defined on finite dimensional vector spaces.

1.1 Continuation in Finite Dimension

Suppose that the Hilbert space H is finite dimensional and that f in (1) is continuously
differentiable. Continuation methods have been extensively developed in recent years
(e.g. see [12], [23], [31]), as they provide an efficient way to numerically follow branches
of zeros on € = {(z,v) | f(x,v) = 0}. Recall that these methods involve a predictor
and corrector step: given, within a prescribed tolerance, a zero xy at parameter value
vy, the predictor step produces an approximate zero x; at a nearby parameter value
vy, and the corrector step, often based on a Newton-like operator, takes Z; as its
input and produces, once again within the prescribed tolerance, a zero x; at v;. For

a geometrical interpretation, see Figure 1. Suppose that at the parameter value vy,

T,V
Predictor (-1' Y

. Corrector

flz,v)=0

|||

(Io, V(l)

1%

Figure 1: Continuation Method

an approximate zero ry and an approximate tangent vector = are found. Letting



vy = vy + U, define the predictor by
5)1 = xg + VT . (2)

For sake of simplicity of the presentation and to get the idea across, we will assume
throughout this thesis that the Jacobian operator D f will always be invertible along
branches of £. By the implicit function theorem, we then have that branches on £
can be thought as functions of v. This does not mean that we will not go through
bifurcations in the applications of validated continuation. It only means that we
will not wvalidate near bifurcations. This being said, suppose now that we have a
good numerical approximation of Df (il)_l that we denote by A. The iterative
scheme of the corrector part consist of computing iterations of the Newton-like map
x—x—A- f(x, 1)
xgjﬁ—l) _ xgj) _A. f(x(lj)’ )

(0)

(3)

and the stopping criteria is when || f (xgj“’l), 11)|| < tol for some a priori fixed tolerance
tol > 0 and for some j;,; € N. We then let 1 = mgjt‘”).

Note that presented like this, continuation only returns numerical zeros on a dis-
crete set of parameter values. Hence, the purpose of this thesis is to not only to
generalize the ideas of parameter continuation to infinite dimensional problems, but

also to develop it to get continuous range of parameter values. In order to do so, we

need the notion of radii polynomials.



1.2 Validated Continuation: Radit Polynomzials

Suppose now that the Hilbert space H is infinite dimensional. Suppose also that the
original function (1) is continuously differentiable and can be expressed component-

wise 1.e.

fo(z,v)

fam - | M.

fg(l’, V)

where x = (g, z1,--- )T € H. We require that xy, fx(x, ) € R". In this thesis, we will
only deal with the cases n = 1,2. We first consider a finite dimensional approximation
of (1). We use the subscript (-)r to denote the nm entries corresponding to k =
0,---,m — 1. We use the notation Oy, to denote (0,,0,,-- )T, where 0, is the zero
in R™. Let 2p = (20, -+ ,Zm_1)? and fr = (fo, -, fm_1)? so that we can define the

nm - dimensional Galerkin projection of f by
FMR™ xR — R (2p,v) = f (zp,v) = fr([zp, 0s], V) . (4)

We now use the finite dimensional continuation method introduced in Section 1.1 to
find numerical zeros of (4). At the parameter value vy, assume we have numerically

found an hyperbolic zero Zp € R™™ of f(™ i.e.
F™(Zp, 1) = 0 and Df™ (Zp, 1) is invertible.

Hence, we can uniquely define the tangent 2 € R™ by

_ ) o
Df(m)(xF, ) ITp = —aJ; (Zp,1p).
We then embed T and Zr in H defining
Tp Tp
T = € H and 2= € H.
0so Oco



For k > m, we consider Ay, = Ay(Z, 1) € R" ™ to be such that

~ Ok - nxn
Ak ~ a—‘rk(l’,I/{]) eR . (5)

Let Jpyr the computed numerical inverse of D f") (zp, vy) and

Jrxr 0
A—l
0 A

For a parameter value v > 1, define the operator T, by
T(z)=x—J f(z,v) (7)
and considering v := v — vy > 0, define the predictor z, by
r,=T+v-2€H. (8)
Consider the set centered at 0 € H

W(r) = [ [ [=uwn(r),wi(n)]", (9)

where wy () > 0 eventually have a power decay in k and define the set W, () centered
at z, by
Wa, (r) =z, + W(r). (10)

For the different applications of validated continuation, we have different sets W (r).
Example: We present three examples of W (r), where r is the radius left as a variable.
The first set is the one used in Chapter 4, the second set is the one we use in Chapter 5
and the third set is the one used in Chapter 6. For the first two examples, n =1 and

for the third one, n = 2. Note that in the second example, we have that the product



technically begins at k = —1. Fiz two real numbers s > 2, As > 0.

1. W(r) = ﬁ[—r,r] X li_O[ {—%,%} : (11)
2W@r) = [—rr]x ([—r,r] xﬁ[—kikiD (12)
S W) = [—r? xf[[—kikir (13)

Remark 1.2.1 We note that the sets defined by (11), (12) and (13) all have the
property that they eventually have a power decay. The theoretical justification for this
choice of sets comes from the fact that in all the applications we consider, the zeros we
are looking for are analytic. More precisely, the xy are the coefficients of the Fourier

expansion of an analytic function.

Recall again that the goal is to validate i.e. to prove that sets of the form (10) will
uniquely contain zeros of the original problem (1) for a continuous range of parameter

values v € [V, Vmax). To handle the cases n > 1, we introduce the following notation.

Definition 1.2.2 Let u,v € R". We denote the component-wise inequality by <.,
(reps. <ew) and say that u <., v if u; < v; (resp u; < wv;), foralli=1,--- n.
For k € N, we define Yy (v), Zx(r,v) € R™ to be such that

[T () — 2]| Sew Yi(v) € R (14)

and

sup |[DT,(z, + w)w'],| <ew Zi(r,v) € R™ (15)

w,w' €W (r)

It is important to remark that since the Y, and the Z; are upper bounds, they are

not uniquely defined.

Definition 1.2.3 DefineI,, = (1,---,1)T € R™. For every k € N, choose Y}, Z; € R"

satisfying respectively (14) and (15). We define the radii polynomials by

pr(r,v) = Yi(v) + Zi(r,v) — wi(r)l,, k> 0. (16)



For all applications of validated continuation we introduce in this thesis, there exist

M € N and a polynomial ¢y (r,v) € R such that for all £ > M, we can choose
1. Y, =0¢eR",
2. Zi(r,v) <ew Gu(r, v)wg(r)L,.

Therefore the radii polynomials of (16) corresponding to the cases k > M satisfy

p(rv) = Yi(v)+ Zi(r,v) —we(r)L,

<ew [Gu(r,v) — 1 wg(r)L,.

Hence, if we can find » > 0 such that gp(r,v) —1 < 0, then pg(r,v) <., 0 € R™ for
all k > M. We are now ready for the central ingredient of this thesis, which is proved

in Chapter 2.

Theorem 1.2.4 Let r > 0 and consider a set W, (r) centered at the predictor x,,.
Suppose that the first nM radii polynomials {py}r—o,... m—1 defined in equation (16)
satisfy pr(r,v) <ew 0 for all k € {0,--- , M — 1} and for all v € vy, Vimas|. Suppose
also that Ga(r,v) — 1 < 0 for all v € [V, Vimaz]. Then for every fized v € [V, Vinaz),

the set W, (r) contains a unique zero of (1).

For a geometrical interpretation, you may refer to Picture 2.

Definition 1.2.5 The positive r from Theorem 1.2.4 (if it exists) is called a validation

radius. We also say that the z, are validated for all v € [V, Vnax]-

In order to get some upper bounds on the Z;, we need some fundamental analytic
estimates. This is the content of Chapter 3. In the next sections, we introduce three
different applications of validated continuation in the field of dynamical systems and

differential equations.



1ed]

Y

IZ0) )4

max

Figure 2: Validated Continuation

1.3 Equilibrium Solutions of PDEs

The first step in understanding the dynamics of a nonlinear parameter dependent
partial differential equation

u = F(u,v) (17)

on a Hilbert space is to identify the set of equilibria & := {(u,v) | F(u,v) = 0}. To
be more precise, assume that (17) takes the form

d

u = L(u,v) + Z cp(v)uP (18)

p=0
where L(-,v) is a linear operator at parameter value v and d is the degree of the
polynomial nonlinearity. Typically, ¢;(v) = 0 since linear terms are grouped under
L(-,v). Expanding (18) using an orthogonal basis chosen appropriately in terms of the
eigenfunctions of the linear operator L(-, v), the particular domain and the boundary
conditions, results in a countable system of differential equations on the coefficients

of the expanded solution:

d
g = fi(u,v) = pruy + Z Z (Cp)kotny - -ug, k=0,1,2,... (19)
p=0 ZkiZIC

10



where py, = ug(v) are the parameter dependent eigenvalues of L(-,v) and {u} and
{(¢p)x} are the coeflicients of the corresponding expansions of the functions u and
¢p(v) respectively with wy, = u_y and (¢,)r = (¢p)—y for all & € N. Define f = (fi)ken-
By the a priori known regularity of the equilibria of (17), we let H = 2. The problem

of finding equilibrium solutions of (17) reduces to the one of finding zeros of
f:HXxR—Im(f). (20)
1.3.1 Computational Cost

As mentioned earlier, a traditional way of studying the zeros of (17) is to consider a
finite dimensional projection of (18) on which we run a predictor-corrector algorithm.
This method has a computational cost that can be quite high, especially when one
wants to detect bifurcations along the branch of equilibria we are following. As
a strong motivation to the concept of validation, we provide a rough comparison
of the cost of the traditional way of doing continuation with the cost of validated

continuation for PDEs of the form
uy = L(u,v) —u® . (21)
The polynomial nonlinearity of (21) is of degree d = 3 with coefficient functions

—1 p=3andn=0
(Cp>n =
0 otherwise.

In this context, (19) then becomes

fre(u,v) == ppuy — E U Upy Uy bk =0,1,2,... (22)
k1+ko+k3=k
ki€Z

where the py’s are the parameter dependent eigenvalues of L(-, v).
Results in Chapter 4 suggests that asymptotically the ratio of the cost of validated
continuation to the cost of traditional continuation is

26 + 3k
20 + 3k~
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where k is the number of iterations performed in the corrector step. We tested this
hypothesis against two fourth order partial differential equations with cubic nonlin-
earities, Swift-Hohenberg and Cahn-Hilliard that we introduce in the next sections.
The results of the computations done are summarize in Figure 3, where m represents

the dimension of the projection on which the computation was done.

PDE m % Experimental Ratio | Estimated Ratio ggig’]z
Swift-Hohenberg | 27 1.96 1.156 1.232
Cahn-Hilliard 60 1.65 1.173 1.219

Figure 3: Comparison of the asymptotic ratios.

1.3.2 Results for Swift-Hohenberg

The Swift-Hohenberg equation

82\’ 3 9 27
ut{y—(l—i—@) }U—U, U(,t)GL (O,L—0>,

Wz t) = u (:c + i-jt) Cwemt) —u(mt), w0, (23)

was originally introduced to describe the onset of Rayleigh-Bénard heat convec-
tion [35], where Ly is a fundamental wave number for the system size 27/Ly. The
parameter v corresponds to the Rayleigh number and its increase is associated with
the appearance of multiple solutions that exhibit complicated patterns. For the
computations presented here we fixed Ly = 0.65. For this problem, the linear
operator is L(-,v) = v — (1 + 8‘9—;)2 and the eigenvalues of L(-,v) are given by
pr = (v —1) + 2k*L? — k*L*. In Figure 4, 5, 6 and 7, we present some validated
results for the Swift-Hohenberg PDE (23).

1.3.3 Results for Cahn-Hilliard

The Cahn-Hilliard equation was introduced in [5] as a model for the process of phase

separation of a binary alloy at a fixed temperature. On a one-dimensional domain it

12



Figure 4: Bifurcation diagram for the Swift-Hohenberg equation (23) for some v €
[0,5.4]. The dots indicate the points at which a numerical zero was validated.

v=253 v =5.3665 v=5.0533 v =5.3436
; 3 3 a5
/
2 2t \ / r\\
\ [\ / 3
0.5 \ / \ /
! T / \ /
\\ / \ / 2.5
Bl S0 S0 / \ / B
\ / \\ / 2
- N/ \/
-05 \ / \ 15
N TN V4
] 2 4 6 8 10 0 2 1 3 8 10 "o 2 4 6 8 10 Yo 2 4 6 8 10
T T x T
v=5.1754 v =5.2526 v =5.2074 v =5.3071
3 3 2.5 25
2] 2\ / 2| 2|
\
1 1 \ ,‘/ 1.5] 1.5|
N\ /
3 o So | / 0\ // 3 S 1
\
\ /
1 -1 \ / \ / 05| 05|
\ / \ /

2| 2 \\/ / \/ of o

0 2 4 6 8 10 0 2 4 6 8 0 % 2 4 6 8 0 0% 2 4 6 8 10

x T x x

Figure 5: Equilibria of (23) corresponding to the last points of each of the branches
depicted in Figure 4. The colors are matching.

takes the form

1
Uy = —(“Upe + U —u)pe , x€[0,1]
v
Uy = Upee =0, at x=0,1. (24)
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Figure 6: Some of the branches of equilibria of (23) for 0 < v < 10%. The dots
indicate the points at which a numerical zero was validated. For the values 0 < v <
10* the validation was done using interval arithmetic and hence at these points we
have a mathematical proof of the existence and uniqueness of these solutions in the
sets Wy (r). The color coding of the branches in this figure matches that of Figure 4.
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Figure 7: Some solutions along the blue branch of the diagram on Figure 6.
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The assumption of an equal concentration of both alloys is formulated as

/0 ) dz = 0 (25)

Note that when looking for the equilibrium solutions of (24) restricted to (25), it is
0.71
0.6

0.5

%" 200 400 600 800 1000

Figure 8: Bifurcation diagram for (24).

sufficient to work with the Allen-Cahn equation

1 3
—Ugye +U— U
v

=c¢, ceR (26)
u, =0 atzx=0,1.
Letting ¢ = 0, we performed validated continuation on (26). Re-writing (26) in the

form of (18), the linear operator is L(-,v) = %8‘9—; + 1. In Figure 8 and 9, we present

validated results for the Allen-Cahn equation (26) when ¢ = 0.

1.4 Forcing Theorems and Chaotic Dynamics for Ordinary
Differential Equations

Getting analytic solutions of nonlinear parameter dependent ordinary differential

equations is in general an extremely difficult task, most of the time impossible. The
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0.1 r
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Figure 9: Solutions along the lower branch of the diagram on Figure 8.

use of numerical techniques then becomes a useful path to adopt in order to under-
stand the dynamics of a given nonlinear ODE. People have recently realized that the
numerical outputs could be used to rigorously extract coarse topological information
from the systems, forcing at the same time the existence of complicated dynamics.
In particular, proving the existence of chaos in nonlinear dynamical systems in such
a way has become a popular topic (see [1], [10], [14], [25], [36], [37] and [38]). In
some sense, we can see these results as forcing-type theorems, since a finite com-
putable number of objets can be used to conclude about the existence of infinitely
many other objets. We propose a new way to prove existence of chaos for a given
class of problems, namely Lagrangian dynamical systems with a twist property. The
philosophy of our proof is similar to the proofs in the above mentioned results as a
finite amount of computations will be used, together with a forcing-type theorem, to
prove the existence of chaos. The main difference here is that we are not doing any
integration of the flow. A common feature of the proofs in [1], [14], [25] and [38] is
the use of interval arithmetic to integrate the flow over sets and look for images of
these rigorously integrated sets on some prescribed Poincaré sections. In contrast,
our proof only requires proving the existence of a single periodic solution of a certain
type. This will be done via validated continuation. A nice consequence of using vali-

dated continuation is that we can prove the existence of chaos for a continuous range

16



of parameter values. We focus our attention on the Swift-Hohenberg ODE
—u" — v +u—uP=0, v>0 (27)

at the energy level &/ = 0, where

1
E(u, V) — u/l/ul o 5(u//)2 _|_

Vone Lo 2
E(u) +Z(u —1)°. (28)

The specific periodic solution @ we are looking for has to satisfy the following geo-

metric hypotheses

(1) @ has exactly four monotone laps and extrema {u;}_,
(H) (2) @y and us are minima and s and Uy are mazrima

(3) ) < —1 <uz <1< ug,ty.

The following forcing result will be proved in Section 5.2.

Figure 10: Sketch of the periodic solution .

Forcing Theorem: Suppose that at the energy level £ = 0, there exists a periodic

solution @ of (27) satisfying (H). Choose any finite, but arbitrarily long sequence
a= {aj}j-V:l, with a; > 2, but not all equal to 2. Then there exists a periodic solution

uga of (27) at E' = 0 that oscillates around the constant periodic solutions +1 as follow:
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Figure 11: Periodic solution u, associated to a = {243}.

one time around —1, a; times around 1, one time around —1, as times around 1, one
time around —1, --- | ay times around 1 and finally comes back to close at —1.
Once we have, at a given parameter value v > 0, the existence of all these periodic

orbits, we can show the following.

Corollary 1.4.1 Suppose that at the energy level E = 0, there exists a periodic
solution @ of (27) satisfying (H). Then the Swift-Hohenberg equation (27) is chaotic
on the energy level E = 0 in the sense that there exists a two-dimensional Poincaré
return map which has a compact invariant set on which the topological entropy is

positive.

The definitions of topological entropy and chaos will be given in Section 5.1. The
proof of Corrolary 1.4.1 will be given in Section 5.3.

It is important to note that the only hypothesis that needs to be verified in order
to prove the existence of chaos in (27) at E = 0 is the existence of the periodic solution
@. Hence, we transform the problem of finding periodic solutions of (27) at £ = 0
into the problem of finding the zeros of a specific parameter dependent function.
We restrict our investigation to 2%-periodic solutions satisfying u(y) = u(—y). This

implies the symmetry u(7 —y) = uw(f + ), hence v'(0) = v/ () = 0, and similarly

18



for all odd derivatives. Defining

o 3

gu,v) = —u"" —vu" +u—u

and combining this restriction with the fact that the energy F is constant along the

orbits of the ODE, we have the following problem to solve

g(u’ V) = " ) oy — US — 07

uly + 3) = uly), «/(0)=u"(0)=u(})=u"(F) =0 (29)

=5 (W(0))" + § (u(0) — 1)* = 0.

Hence, we consider the expansion of the periodic solution
u(y) = ap + 2 Z ay cos kLy.
k=0
Plugging the expansion in (29) and taking the inner product with each cos kLy, we

obtain

=0

2
- 1 - 1
—2L7 Pa; — — |ag + 2 a| +—
L+ Dk — DR ay — Y agagae, =0, k>0,
kq+kotkg=k
ki €Z

since we look for solutions satisfying u(0) < —1 and «”(0) > 0 (see Figure 10). Letting

x:=(L,ag,ay, a9, ), we define

2
G 1 S 1
e(r) = —2L? E Paj— —= |ag+2 E a| +—=,
I=1 V2 =1 V2

ge(z,v) = [14+vL*k* — L'k ax — Z Ak, g, Qky, k> 0.

k1+ko+kz=k
ki€Z

Letting f = (e, go, 91, ) and H = (?, we then look for zeros of

f:HXxR—Im(f). (30)

This is where validated continuation is used to get, at different parameter values v,

a set Wz(r) containing a periodic solution @ of (27) at £ = 0. While performing
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validated continuation on the infinite dimensional problem (30), we need to prove
that the periodic solutions we find satisfy the hypotheses in (H). If the validation
radius r > 0 is small enough, then we have a good control on @’ and #” which means
that we can rigorously verify the hypotheses (H). More details will be presented in

Section 5.5. We are ready to state the main result.

Theorem 1.4.2 For every v € [1,2], the Swift-Hohenberg ODE (27) is chaotic at

the energy level at E = 0.

1.5 Periodic Solutions of Delay Equations

Another application of validated continuation is the rigorous study of periodic solu-

tions of parameter dependent functional differential delay equations of the form
y(t) = afly@),y(t —1)], a € R. (31)
For instance, consider the famous Wright’s equation
y(t) = —ay(t = DI +y(1)], a >0 (32)

a generalization of
§(t) = —(log 2)y(t — 1[1 + y(1)]

that was brought to the attention of E.M. Wright, a number theorist, in the early
1950s because it played a role in probability methods applied to the distribution of
prime numbers. In 1955 Wright published a paper [39] in which he studied the
existence of bounded non trivial solutions of (32), for different values of o > 0. Since
then, equation (32) has been intensely studied by many mathematicians, among them,
Kakutani and Markus [20], Jones [18, 19], Kaplan and Yorke [21, 22] and Nussbaum
28, 29, 30]. In particular, the following solutions of (32) have been extensively studied

since the beginning of the 1960s.
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Definition 1.5.1 A slowly oscillating periodic solution (SOPS) of (32) is a periodic
solution y(t) with the following property: there exist ¢ > 1 and p > ¢ + 1 such that,
up to a time translation, y(t) > 0 on (0,q), y(t) < 0 on (¢,p), and y(t + p) = y(t) for

all ¢ so that p is the minimal period of y(t).

[
ul
-un\*\
-1
u

Figure 12: Slowly oscillating solution of the Wright’s equation at a = 2.4756.

t

In 1962, G.S. Jones proved in [19] that slowly oscillating solutions of (32) exists and

remarked the following in [18]:

The most important observable phenomenon resulting from these numer-
ical experiments is the apparently rapid convergence of solutions of (32)
to a single cycle fixed periodic form which seems to be independent of the

initial specification on [—1,0] to within translations.

The single cycle fixed periodic form he was referring to is in fact a slowly oscillating
periodic solution. After this, people started to investigate the uniqueness of SOPS in
(32). Using asymptotic estimates for large o, Xie [40, 41] proved that for a > at :=
5.67, (32) has a unique slowly oscillating periodic solution up to a time translation.

Here is a remark he made after he stated his result on p. 97 of his thesis [41]:

The result here may be further sharpened. However, |[...] the arguments
here can not be used to prove the uniqueness result for SOP solutions of

(32) when o is close to 7.
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It is known from [6] that there is an continuum of slowly oscillating periodic
solutions that bifurcates (forward in ar) from the trivial solution at a = 7. We denote

this branch by Fy. An open conjecture is then the following.

Conjecture 1.5.2 For every o > 5, (32) has a unique slowly oscillating periodic

solution.

Fo
|y

7

T Qa
2

Figure 13: Two ways that would make the conjecture false: (1) the existence of
folds on Fo, (2) the existence of isolas like F;.

A result from [32] implies that there cannot be any secondary bifurcations from F.
Hence, Fy is a curve in the (o, y)-space. Conjecture 1.5.2 could hence fail because
of: (1) the existence of folds on Fy (as depicted in Figure 13), (2) the existence of
isolas i.e. curves of periodic solutions disconnected from Fy (like F; in Figure 13). In
this thesis, we propose to use validated continuation to rule out (1) from happening
for o € [§ 4 ¢, 4], for some € > 0 and a1 > § +¢. The long term goal is to get to

a; = at :=5.67. Here is a result. For a geometrical interpretation, see Figure 14.

Validated Result 1.5.3 Let ¢ = 3.418 x 107*. The part of Fy corresponding to

o€ [% + €, 2.4} does not have any folds.
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Figure 14: Rigorous study of a part of Fy.

We obtained this result doing validated continuation on the infinite dimensional con-

tinuation problem f : ¢* x R — I'm(f) given component-wise by

(
ag + 2 22021 Qp k _ 0
a [ao + a2 + 2 > p_q(coskiL) (ail + bil)}
fk(x7a) =
ajg gy Ay — g, by,
Rk(La a) + azk1+k2=k @k1 (L) s o ) k>1
by, ez aklbk2 + bkla’kz
\
where x = (zg, 21, , Tk, -+ )! is given by
[L, (lo] s k’ = 0
T = 5
[ak, bk] , k>0
and
acos kL —kL + asin kL
Rk<L,Oé) =
kL —asinkL acoskL
coskiL sink;L
@kl (L) =
—sink{L cosk;L

In Section 6.1, we show how f is constructed and why its zeros can help us proving
Theorem 1.5.3. The construction of the radii polynomials is quite involved. It is

presented in Section 6.2.
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CHAPTER 11

RADII POLYNOMIALS

The work presented in this chapter comes from joint work and helpful discussions with

Jan Bouwe van den Berg, Sarah Day, Marcio Gameiro and Konstantin Mischaikow.

2.1 Radw Polynomaials
Recall that our goal is to study rigorously the zeros

f:HXR—= Im(f)
(x,v) — f(x,v)

(33)

for a continuous range of parameter [Vo, Vmax]. The theoretical justification for the
radii polynomials is based on a minor modification of a result of Yamamoto [42,
Theorem 2.1]. A similar formulation can also be found in [13]. Recall that to apply
the Banach fixed point theorem one must have a contraction mapping 7 : W — W.
With this in mind, we can state that it is appropriate to view our approach as a
method by which the Newton-like iteration of the corrector step in the continuation
process is used to construct a set W and some analytic estimates are used to verify that
an appropriate generalization of the Newton-like operator is in fact a contraction in a
specific Banach space (€, || - [lw). Some of these general estimates will be presented
in Chapter 3. In this section, we show how solving the radii polynomials inequalities

prove that zeros of (33) can uniquely be enclosed in sets of the form

W, (r) =z, + W(r), (34)

where W(r) = Ig[—wg(r), w(r)]"” and wg(r) have an eventual power decay to 0.

From Chapter 1, recall the predictor z, from (8) and the operator T, from (7). For
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k € N, recall the Y. (v), Zy(r,v) € R™ satisfying
[T () = 2]i] <ew Yi(v) € R" (35)

and

sup |[DT,(z, + w)w'],| <cw Zi(r,v) € R™ (36)
w,w' €W (r)

From Chapter 1, recall the fundamental existence of M: M is such that there exist a

polynomial Gy (7, v) € R such that for all £ > M, we can set
1. Y, =0eR"
2. Zp(r,v) <cw Gu(r, v)we(r)l,.

Based on this, we define the following.

Definition 2.1.1 Define I, = (1,---,1)T € R*. For every k € {0,---, M — 1},
choose Yy, Zr € R" satisfying respectively (35) and (36). We define the finite radii

polynomials by
pr(r,v) =Yi(v) + Zy(r,v) — wi(r)l,, k€{0,--- , M —1} (37)
and the tail radii polynomial by
pu(r,v) = qu(r,v) — 1. (38)

We are now ready to prove the following result. Note that the proof is based on the

results of Yamamoto in [42].

Theorem 2.1.2 Fizn € {1,2}. Let r > 0 and consider a set W, (r) centered at the
predictor z,,. Suppose that the finite radii polynomials {p }x=o... m—1 defined by (37)
satisfy pe(r,v) <ew 0 for all k € {0,--- , M — 1} and for all v € vy, Vimaz]. Suppose
also that the tail radii polynomial pyy is such that py(r,v) < 0 for all v € [Vo, Vimag)-

Then for every fixed v € [V, Vinas|, the set W, (1) contains a unique zero of (1).
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Proof. The idea of the proof is to show that for v € [vy, Vmax], 1), contracts W, (r).

For W(r) = [[,[—wx(r), w(r)]", let

|bk|oo
Q=14b=(by.by,... <00, where [bylo = bl
{ (bo; by, --.) | sup o) S 0p Where [Brloo = max [(br)il
Then ||blw(r) = sSupey % is a norm on . Furthermore, (€2, || - [lw ) is a Banach

space and W(r) is a closed set under | - |lw(). In this norm, W(r) = B(0,1) is the
unit ball around 0, and W, (r) = z, + W(r) = B(x,, 1) is the unit ball around z,.

Fix v € [Vy, Vmax)- For z,y € W, (r) and for i = 1,...,n, let

gri(s) = AT [sv + (1 - s)yl},, € R

Applying the mean value theorem to gy ;, there exists s;,; € [0, 1] such that gx;(1) —
9r.i(0) = ¢'(s¢;). The set W, (r) being convex, we get that zx; := s @+ (1 —sg;)y €
W, (r). Hence, using the component-wise absolute value vector notation, we have

that

DIL), . (20n) - (@ — )

DIL), ,(z4s) - 2t

) ||I*y||W(r)

= : lz = yllwa

D[Tl/]k,n (2k,n) L

" Te=yllw

Supw,w’GW('I’) [DTV<‘IV + w)w/]k,l

Supw,w’eW(r) [DTV<xV + w)w/]k,n
<ew Zk(rv)llz = yllwe), (39)
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since by construction of || - |lw(), —re— € W(r). Let x € W, (r). Then |z —

xT
) Te=yllw

Tyllwy < 1 and for each k,

[T,(z) = T, (z) + T, () — 2]k

[T () — ]l
e |[To(x) = To(@)]wl + [T (20) — 201l
cw Ze(r V)l =z llwey + Ye(v)
= pr(r,v) + wi(r)l,
<ew Wi(r)ly

for all v € [y, Vimae]. Hence

[T, () — T ()],
wg(r)

|7, (z) — l‘u||W(7~) = Sug © < 1.

ke

Since in the norm ||||w ), B(z,,1) = Wy, (1), we just showed that for all v € {1y, Vimaz)
and for all z € W, (r), T,(z) — x, € W(r). In other words, we proved that given a

S [y07 Vmax]?

T, W, (r)] € W, (r).

Now define
| Zo(r, V)| [ Zy—1(r, V)] }
r,V)=max{ ————— ..., ———————— ). 40
i(r.) = max { 22 D o) (40)
Then
q(r,v) < 1. (41)
Zy(r,v)

Indeed, since for k = 0,..., M — 1, pp(r,v) <e 0, then <ew I,. This implies

w(T)

that for each £ = 0,...,M — 1, % < 1. Also pp(r,v) < 0 implies that
Gu(r,v) < 1. That proves that q(r,v) < 1. Let z,y € W, (r). Then combining (39),
(41) and the fact that for all k > M, Zy(r,v) <ew Gu(r, v)we(r)L,, we have that

[T0(%) = T, (9)]]

ITo(@) = LWllwey = suwp

keN wy(r)
1 Z1(7, V)| oo
Scw Sup — || — T
i wk(r) || y”W( )

Scw q(’l“, V)H'I - yHW(T)
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Hence, T, : W, (r) — W, (r) is a contraction. Thus, the result follows from Banach’s

fixed point theorem.
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CHAPTER II1

ANALYTIC ESTIMATES

3.1 Background

In this chapter, we introduce the fundamental estimates that will be used through-
out this thesis. We present here an improvement of general estimates for infinite
convolution sums with power decay of the form

1
oo (42)

k4 +kp=k
ki€Z
introduced in [7] and used in [9], [10], [11] and [15]. Most of the estimates used in the

above papers are corollaries of Lemma 5.8 in [7]:

Lemma 3.1.1 [7] Let A > 0 and s > 2. Let {ar}rez be such that a_y = ay,

ap € A[—1,1] and a;, € ﬁfor all k € Z\{0}. Let o = 25 +2+3.5-2°. Then

A1) kA0

E anl...anpg

aPLAP[—1,1] k=0.

Observe that the bounds provided by Lemma 3.1.1 grows exponentially in s since 2°
appears in the a. One reason in being interested in getting tighter analytic estimates
for sums of the form (76) came from the work introduced in Chapter 5, where we use
s > 5. Note that since a_;, = ay, for all k£ € Z, we have that

1 1
S 0 d@®= 3 o

kit t+hp=—k k1+-+kp=k
k,€Z k,€Z

Hence, we only consider the cases k € N. Before introducing the new general esti-

mates, we first need the following result.
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Lemma 3.1.2 Let s > 2 and for k > 2, define

PSRN I I Y (43)
=S EETE 6| % ‘
Then
kZ‘i SL < - (44)
A (= )

Proof of Lemma 3.1.2. First observe that

2 =
= kS 1
Z ki (k—kp)® Z ki (k — k)

k1=1

Now define

IN
o
v
e

Hence,

2 s—2
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where

lk‘
—_
?lT‘
—_

k-1

k 1 1
2 [ e —
on = kil = k)2 g:kw ki) ;;%—kﬁ
k—1 k—
2 1 1 2 2
= E E k‘_ E: —% El‘"loge(k}—l)]‘FF

We can finally conclude that

k-1

]{:S 2 8—2
= 2 <2 |21
2 Wh—hy — 0= [;ﬁ ]

ki=1

< 2Eu+m@—1»+§]ﬁ+q&a

= Yk .1

Note that the estimates will be given via a recurrent definition in p i.e. the power
of the nonlinearity. Hence, we begin by getting explicitly the estimates for the case

p = 2. Throughout this chapter, we use M > 5 as a computational parameter.

3.2 FEstimates for the Quadratic Nonlinearity

Lemma 3.2.1 (Quadratic Estimates) Let s > 2 and M > 5. Define

A+ sy k=0

(2) _
Oék - 2|:2+25+3S+35131:|+Zk1lkskk57k€{]- _1} (45)

2[2+2%+3%+m]+’)/k, k> M

Let Ay, Ay > 0 such that a(()i) € A;[—1,1] and al(:) € gil=1,1], for all k # 0 and for

1=1,2. Suppose that a% = ag). Then

P A1 A,

E Clkl ak2

k1+ko=k

kieZ al! A Ay[-1,1) k=0,
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Proof. Let k= 0. Then

1 1
Z a,(ﬁ)a,(w) = Za,(ﬁ) (_) —l—ao ao —i—Zak a k1

k1 +ko=0 k1<0 k1>0
ki€Z
2
= ao aé)+22aklakl
ki=1
€ A 1+22k2] ~1,1]
ki=1
C MAy |4+ —— | [-1,1] = alP A1 Ay[~1,1] .
C 12{—’_223—1(25—1)}[ ] =y Ay Ap[—1,1]

Now consider k € {1,--- ,M — 1}. Then

-1 k—1
2 1 2
> el = D0 a)aly +a’al + 3 el

k1+ko=k k1=—o00 k1=1
ki€Z

—l—ak aO E akl ak Ky

—k+1
2 1 — K
e AA | —+2 — + — | |—-1,1
R s ]ﬁz_lkf(k+k1)s klz_lk:f(k:—kl)s [=1,1]
(2)
C M[_L” )
k.s
For the case k > M, we do the same analysis as in the case k € {1,--- M — 1} and

we use the upper bound 7, from Lemma 3.1.2. 1

Remark 3.2.2 For any k > M > 5, we have that a,(f) < 045\24). This fact will be of

fundamental importance for the general estimates.

3.3 Estimates for a General Nonlinearity p > 3

Let p > 3 to be the degree of the nonlinearity, s > 2 the decay of the coefficients and

M > 5 a natural number. We compute the general estimates recursively. Hence, we
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first suppose that for every k > 0, we know explicitly a,(f Y > 0 such that

(p—1)
akp

o (02 A) 1,1 k#0

D R

k1+m+kp_1:k

o™ (I A) (F11] k=0

and such that 04,(5’ -b < agﬁfl) for all £ > M. We first define

b (p—1)

1) 2c
p —|— QZk‘ -1 ]Z%s + (M 1)218”1(2871)7 k = 0

)k.s
M—k—1 O‘k+k (p—l) 1 1 1

( >k:5 (F 1>k:5

(p 1) (p 1) M-1 %
(p) + ka 1 ks k k )s + ka 1 kfkp sks
Ofk. == < ag\g} 1)
+ e ke{l,--- ,M—1}

(r—1) 1
oy [2 + 2—5 + 3_5 + 3871(5_1) + ooy T Vk]

(P*U
+(]{(p 1)_}_2]{:71 5 |:]_—’—|: ]:|7k32M
M

\

Theorem 3.3.1 For¢ =1,---,p let A; > 0 such that aéi) € A;j[-1,1] and ag) €

|k|s[ 1,1], for all k # 0. Suppose that al k = ak . Then

P
o ([T, A) 1.1 k#0

1
> e

ki+--+kp=k

ki€Z o (T, 4) [-1,1] k=0.

=1
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Proof. Throughout the proof, we use several time the fact that a(p V< af v Y for all

k> M. For k =0,

-1

1) 1 1
S oled = Nl X e

kq+-+kp=0 kp=—o00 k4 +kp_1=—kp
ki, €Z ki, €Z
1 1 1
—}-a(()p) Z a,(ﬂ) ak + Z ak Z a,(ﬁ) a,(cp )
ki+-+kp,_1=0 kp=1 ky+-tky_1=—kp
ki€Z ki€Z
P 0 a(p 1) ) (p 1)
(p—
< HAi st + g + Z k?s —1,1]
i=1 kp=1 p kp=1 4
P M-1 _(p—1) (p—1)
_ « 2¢
C AZ Oé(p 1) 2 ke M
= (H ) 0 T Z 25 ™ (M —1)25-1(25 — 1)
i=1 kp=1 p
P
— oY) (H Al-) [—1,1]
i=1
For any k > 1,

S o S| X

ky+--+kp=k kp=—00 etk =k—kp
ki, EZ k,€Z
k—1
1 1 1 —1
+aép) Z a}(ﬂ) al(ep ) + Z al(f;) Z a}(ﬁ) . 'a/(ci,l)
ki+-tky,_1=k kp=1 ky+-tky_1=k—kp
ki€Z ki€Z
(p) (1) -1 1 —1
+akp Z A, - a’(fzfl) - Z &’(fi) Z a’(ﬂ) o a’(fifl)
k1+<--+kp,1 =0 kp:k+1 k1+-~-+k’p,1:k—kp
k‘iEZ kiGZ
P 0o P (p—1) k-1 (p—1) (p—1) 0o (p—1)
Otk Qy, ay, Qg Qg
€ Az - + + L + + —r
() | S S
— o= o=
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Consider now k € {0,--- , M — 1}. Since 04,(C V< aM , for all k, > M, then

O‘kzji-kl) Mkt Oéi(ﬁrkl) Oégikl)
> r © & B Y By
k—1kpk+k = k: k—f—k k’ k—i—k)
M—k—1 l(cpkl)
D P RS
k—1kk+k kpMkkpk+k
M—k—1 pl)
Qpik 1)
DD ] . -
k,lkk+k kilkpkﬁtk

M—k—1 (p— l)ks

1 Xkt (p—1) ( 1 1 )
< = — 4 aq I+ =4
ks kzzl ks(k+kp)s M 25 3% 3l(s—1)
Similarly,
f: O‘](gp 1) M- al(cp 1)]{7 0456[71)
2 v byl > e+ Tyl (M= 1) s — 1)
Recalling the definition of ak) for the cases k € {1,- — 1}, we get that

Consider now k£ > M. Then

ak+k ak 5
P < 2 . _
Z e L S SR L S T

(p—1) (r—1) (r—1) 1 1 1
3 l(s—1)]
Recalling the definition of v, from (43), we get that

(r—1) (r—1) (p—1
I L S PP
ks _ k.s _ ks ]{38 _
kp=1 p p—l p
(r—1) (p 1) k-
O!k a
< _ P
- Z ]{35 . 5 + ks Z ks k; k s
kp=1 p
M-1 (r—1)
1 o
{=nEs
kp=1 D M
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o [t
— s s _ s—1 _
S ot hyyhy ~ b | =y (M=) 1)



Combining the above inequalities, we finally have that

S e
ki+-+kp=k
ki€Z
1 1 1 1
A; 2
(H )( [+ +3”38—1@—1)+<M—1>8—1<s—1>+’”“]

p
+a0p U—l—Z

kp=1

1) 1 a(p) p
m [—1,1] = k’“ (HA> [—1,1].

3.4 Comparison of the General Estimates

We now compare the new estimates with the ones given by Lemma 3.1.1 for different
values of p and s. Since the only difference in the estimates are a?~! and Oé,(cp ), these are
the quantities we will compare. Hence, suppose that {a }rez is such that ag € [—1, 1]

and ay, € 1,1], for all k£ € Z \ {0}. For the computation, we fixed M = 100. In

)

Ikls[

the case p > 3, increasing M would make the o, ) oven smaller.

p | s k aP~! oz,(cp)

21471 10 58.6667 7.9266

341 30 | 3.4418 x 10° 45.7357

3 ] 4 1100 3.4418 x 10° 37.6551

3 5] 30 | 1.3110 x 10* 43.5641

3171 30 | 2.0280 x 10° 43.0569

3 [10] 30 | 1.2861 x 107 44.7318

3 1251 30 | 1.3792 x 10° 65.1059

4 | 4110 [ 2.0192 x 10° 370.3203

4 [ 5] 10 | 1.5011 x 10° 369.0572

4 | 7110 | 9.1328 x 107 441.7748

5 [ 10 ] 10 | 1.6541 x 10™ | 6.5345 x 103

5 [ 20| 10 | 1.8141 x 10%6 | 7.4986 x 10°

10 [ 25 | 20 | 4.2497 x 1072 | 5.2619 x 108

20 | 50 | 100 | 2.0691 x 1026 | 3.5032 x 10™
Figure 15: Comparison of the estimates.

3.5

Refinement of the Estimates

We now present a corollary of Theorem 3.3.1.
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Corollary 3.5.1 Let p > 3 the degree of the nonlinearity, s > 2 the decay of the
coefficients and M > 5 a natural number. Let k € {0,--- ,M — 1}. Now consider

another computational number My > M. Fori = 1,---.p, let A; > 0 such that

af) € Af-1,1] andak € frl=1.1), for all k # 0. For cach i = 1, .p let

|CL\M1 <|a Ml 1 > RM. Suppose that o = ak Fork €{0,--- M—1},
define
) 204(”71) Mi+k—1 (p—l)
p My
- 48
T M+ R (M — 1) (s — 1) +k§: kSk:—k:) (48)

Then we have that

p
1
(Vs a®) € [(\GM woxlalf) + <HA1'> e,(f’)] 1,1, (49)
=1

where a x b denotes the discrete convolution between two wvectors.

Proof. First notice that

(@ xeona®) = o
kq+-+kp=k
ki€Z
= Z ak1 ak )+ Z ak1 akp :
k4 +hp=k ki+--+hp=k
ki | <My max{[k1,-[kp|}> M1

Without loss of generality, suppose that in the second sum, |ky| > M;. Now

—M;
1) (») 1 (»—1)
S - Y X e
ki+-+kp=k kp=—o00 ki+-+ky,_1=k—kp
max{|k;|}>M; max{|k1], -, kp|} =M1
2w > A el
kp=DM1 kq+- +kp 1=k— kp
max{|k1],,|kp[} =M1
D 0o (r—1) (1)
Xt ke Xgp—k
= AZ s p s + - s [_1’ 1]
(11 > k:ZM [kp(k k) K (ky — F)
P [ Mitk-1  (p=1)
- A; | 2270 1,1
(H ) O‘Ml Z/{:Sk+k’ +Zk5k3—k3) [ ’]
i=1 kep=DM; o kp=M; o

p 20(5‘1271) Mi+k-1 (pfl)
A, : —1,1] .
11 L + k(M -1 (s —1) | 2. k:Sk:—k) =11]

kp=M1

N
< A
[
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Recalling the definition of 6,(?), we can conclude that

P
(a(l) koo ok a(p))k € [(|a|§\2 koo ok \a!%)k + <H Ai) 51(91))] [—1,1] .

i=1
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CHAPTER IV

VALIDATED CONTINUATION FOR EQUILIBRIA OF

PDES

The work presented in this chapter is a sum of results that came up from collaborations
with Sarah Day, Marcio Gameiro and Konstanstin Mischaikow presented in [11] and

[15].
4.1 Background

The first step in understanding the dynamics of a nonlinear system of differential
equations

u = F(u,v) (50)

on a Hilbert space is to identify the set of equilibria & := {(u,v) | F(u,v) = 0}. For
many applications this can only be done using numerical methods. In particular,
continuation provides an efficient technique for determining elements on branches of
£. With any numerical method there is the question of validity of the output as
compared with the cost of computation. The goal of this chapter is to argue that
for a large and important class of partial differential equations the cost of validating
the existence and uniqueness of equilibria is small when compared to the cost of
identifying potential equilibria by means of a continuation method.

To the best of our knowledge this is the first attempt to integrate the techniques
of rigorous computations with a continuation method, thus we focus on a clear pre-
sentation of the ideas as opposed to presenting the results in the most general possible

setting. We make use of spectral methods as they provide us with considerable control
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on truncation errors. To be more precise, assume that (50) takes the form
d
u = L(u,v) + Zcp(u)up (51)
p=0

where L(-,v) is a linear operator at parameter value v and d is the degree of the
polynomial nonlinearity. Typically, ¢;(v) = 0 since linear terms are grouped under
L(-,v). Expanding (51) using an orthogonal basis chosen appropriately in terms of the
eigenfunctions of the linear operator L(-, ), the particular domain and the boundary
conditions, results in a countable system of differential equations on the coefficients
of the expanded solution.

To simplify the exposition, let us assume the expansion takes the form

d
= fi(u,v) = ppuy + Z Z (Cp)nolng =" Up, k=0,1,2,... (52)

p=0 S n=k
where py, = ug(v) are the parameter dependent eigenvalues of L(-,v) and {u,} and
{(cp)n} are the coefficients of the corresponding expansions of the functions u and
¢,(v) respectively with w,, = u_, and (¢,), = (¢p)—,, for all n. In order to simplify the
notation, for a fixed parameter v, we use f(u) to denote f(u,v). The continuation

method is applied to the m-dimensional system of ODEs of the form

d
=t + Y > (Cplugllny Uy, k=01, ,m—1. (53)

p=0 S n;=k
\m|<m

obtained by performing a Galerkin projection on (52). It is this truncation that
introduces the most substantial concern for the validity of the results of the contin-
uation method. In Section 4.6 we present estimates that provide us with bounds on
the errors. We obtain these bounds under the assumption of power decay rates in
the coefficients {u, }. Of course, such decay rates are directly related to the spatial
smoothness of the equilibria which in turn is governed, at least in part, by the linear

operator L(-,v).
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Let @ be a numerical zero obtained from (53). In the orthogonal basis used to
obtain (52) consider the set X = @+ W(r) of @ where W (r) is of the form
m—1 0
As A
W) = TT-ro < IT |-
k=0

k=m

Section 4.6 provides an explicit set of formulas and steps and the assertion that
their successful implementation leads to the construction of the radii polynomials.
Presenting the formulae in this fashion has two advantages. First, they contain all
the necessary information should the reader wish to independently code and test
the techniques suggested in this chapter. Second, it allows for the presentation in
Section 4.3 of the comparison of the computational costs between traditional and
validated continuation.

It should be emphasized that how one should best compare the costs between
the two methods of continuation is not completely clear. In the standard approach
m, the dimension of the system on which continuation is performed, is fixed. Thus
traditionally, a particular Galerkin projection dimension is chosen and continuation
is performed. The results are checked by choosing a higher dimensional projection,
re-performing the continuation and then deciding if the two calculations agree within
a certain level of numerical tolerance. In validated continuation, m becomes a vari-
able. In particular, if validation fails then one has the option of choosing a higher
dimensional Galerkin projection. Equally important, failure of validation may be an
indication that a higher dimensional projection is necessary. In summary, validated
continuation provides an internal check of consistency on the dimension of truncation
from the infinite to finite dimensional problem a feature which is not present in the
traditional application of continuation methods.

With this in mind we have chosen to compare the computational costs as follows.
First we restrict our attention to cubic nonlinearities. As is made clear by the formu-
lae of Section 4.6 in this case the cost of evaluating the nonlinearities and performing

Newton’s method are both of order m3. Thus, we can obtain a rough bound on the
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ratio of the cost of traditional versus validated continuation by counting the number

of m?

operations which need to be performed. These calculations suggest that for
fixed m the cost of validated continuation is less than twice the cost of traditional
continuation, that is it appears that it is cheaper to perform wvalidated continuation,
than to perform traditional continuation and then check it against continuation per-
formed on a higher dimensional projection. In Section 4.4 this estimate is tested
against actual computations for the Swift-Hohenberg equation and the Cahn-Hilliard
equation. To ensure that these comparisons are fair, we employ standard floating
point computations in both cases.

This last point raises an important distinction: validated continuation versus
rigorous continuation. Using floating point calculations at all steps of the validated
continuation, does not allow one to control for roundoff errors and hence one cannot
rigorously concluded the existence of an equilibrium. Because the current computer
technology treats floating point and interval arithmetic differently we chose not to
make and present timed comparisons between the two for this chapter. However, if
specific steps in the validation argument are performed using interval arithmetic, then

one obtains rigorous results on the existence of equilibria. Results of this type are

presented in Section 4.4 for a branch of equilibria of the Swift-Hohenberg equation.

Remark 4.1.1 For the results presented in this Chapter, we did not do any contin-
uous branches. Hence, we computed the radii polynomials with v = 0 at every step.

Because of this, we will drop the dependence in v in the radit polynomaials.

4.2 Radit polynomzials

Let m be a fixed projection dimension of (53). For up := (uq, ..., un_1) € R™, define
O R™ S R by ) (up) = (f™ (up), -, f0, (up)) where for k=0,...,m—1,

d
£ (up) = e+ 3 (Cpngting -+ tn,

p=0 S n,=k
[n;|<m
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The Galerkin projection can then be written

This is the m-dimensional system to be studied numerically. Intuitively, we expect

that if m is sufficiently large, (54) will capture the essential dynamics for the original

system (52). We now present the formulae for radii polynomials. Let us begin by

explicitly stating the information that is used to construct the coefficients.

d is the degree of the nonlinearity of (51).
m is the number of modes used in the Galerkin projection.

M > m is a computational parameter that allows for the use of explicit values

for coefficients of M —m additional modes to decrease truncation error bounds.

my > m is a computational parameter that allows for the use of additional

structure in the model to get tighter truncation error bounds.

up € R™ is the numerical zero produced by the predictor-corrector step.

Jryr is the numerical inverse obtained from the predictor-corrector step.
(¢p)ns In| < m are the coefficients from the expansion (52).

Uk, k > 0 are the eigenvalues for the linear operator L as expressed in (52) and

fo=inf gyl

n>m.y

Note that if || is monotonically increasing for n > m., then i = |y, |.

s and A, are positive constants that are related to the regularity of the equilibria.

Observe that given this information we can evaluate the vector

Jo(2)
fr(u) =
fm—l(a)
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where

d
fn(a) = Hnlp + Z Z (Cp)noﬂm U, -

p=0 ng+-+np=n
[n1],...,|npl<m

We can also set

Y, > |JF><FfF<l_L>|k Hfo<k<m

- |32 (cp@ )l

I it k> m

where

(Cpap)k = Z (Cp>n0an1 o Upy,
S ni=k
The following constants are all related to asymptotic bounds on the expansions

of the numerical equilibrium u, and the set u + W. As such they are related to the

regularity of the equilibrium and the coefficients of (51). Define

2
a = +2+35-2°
s—1
Cp = max{|(cy)ol: [(cp)el[F|"}
A = max {|ol, [Tk[|k["}
A=A(r) = max{As;,r(m—1)°}
d d
— p -
CAA) = > > z( l)apcpAp LA(r)!
=1 p=max{2,l}
oA S e 1) arC, AP Al if Yy, Ry = 0 for all k > m,
+ ) = _ _
ZZ:O aPCL AP + 34 Zﬁ:max{z’l} [(?)arC,AP' AL otherwise
1
1
Véo) = |Jrxr|Rp Vél) = |Ipxr — Jpxr - Df(m)(ﬂFM
1
where | - | denotes entry-wise absolute value and for k£ € {0,--- ,m — 1},

o)

d
As
Rk = Z Zp Z (Cp>n0’an1 c. .’I_an_l m .

n=—o00 p:]_ n.=n
lk—n|>m 2
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Note that if all ¢, have finite expansions, then V}O) requires only a finite computation.
Observe also that the above implies that uy € ];i;[—l, 1] and wy, C £ [-1,1] for all k.
The validation procedure also requires bounds on the errors due to truncating

modes k > m. These bounds come in the following form:
d d

€n = ZZ[(?)en(p,l,M) (56)
=1 p=l

where

en(p, 1, M) == (57)

) paP~1C, AP~ Al 1 1 aPC, AP Al
min + ) )
(M —1)sYs—1) [ (M —n)* (M+n)* ns
and
- Al
Z ‘ Z (Cp)nounl T unp—l) Z |n |S A |TL|S
A<G-Dm-D+M T Snotamn L ’
Ingl<M m<|ny,...,|nj|<M

|TL1| ----- |npfl‘<m

For notational purposes, we also define m-vectors containing these bounds for modes
n=0,...,m—1 as follows.
€o C()(]?,j,l,M)
€p = : , and Cpg(p,j,l,M) =
€m—1 Cmfl(pLjal?M)

Note that these bounds are computable in that they require only a finite number
of computations. In addition, increasing the computational parameter M has the
effect of increasing the computational work in order to decrease the bounds. This

will be the subject of Section 4.5.

Definition 4.2.1 To simplify notation, the finite radii polynomials, FP,..., P, 1,

are given as an m-vector Pp(r) = (Py(r),..., Pn_1(r))". Define

Pr(r) = Z Crp(n)r" (59)



where the coefficients are

CYr+CE(0) n=0
Cr(n):=4q C4Z1)-1 n=1
C%(n) n=2...,d.

The right hand terms are defined as follows. The individual terms of the vectors CZ(i)

are chosen to satisfy

CZGi) > i iz(@’)(2)|JpxF|CF(p,z—¢,z,M)

l=max{2,i} p=Il

’JFXF|€F -+ Véo) 1=20

+9 v i=1 : (60)
0 otherwise
and similarly
CY =Yp. (61)
where | - | and the bounds are computed component-wise.

Observe, again, that determining these bounds require only a finite number of

computations.

Definition 4.2.2 For k > m, the tail radii polynomial is

po(ep®)kl | C(AAM) A,

Pk(T’) = [ £k | [ s K B > E<my
Ci(AA) A
AL ks k>my

where, again,
(Cpﬂp)k = Z (Cp>n0an1 " Uy,
> ni=k
We now present a procedure for computing a validation radius. In particular, this

procedure describes a natural order for defining the decay constants A, s, and A. The

constants Ag and s reflect regularity properties of the equation and should be chosen
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either from numerical simulations or analysis. In this approach, we choose to treat
A = A(r) as a constant. The rationale for this choice is that from a computational
perspective, we would like to find r > 0 solving simple constructions of the finite radii
inequalities Py(r) < 0,---, P,,—1(r) < 0 without having to simultaneously control the
more complicated effects from A on the coefficients of these polynomials as well as on
the tail polynomials Py, k > m. A practical way to achieve this goal is to set A = A;
at the beginning of the procedure and then check in the end that a solution r > 0 to
Py(r) <0,---, Pp_1(r) < 0 also satisfies r(m — 1)® < Aj.

Here, for the sake of simplicity, we set M = m. If the truncation error bounds
prove too large for the computations, then M should be increased as described in
Remark 4.6.3 in Section 4.6. Finally, we add a condition which reduces the check
of the tail polynomials Py(r) < 0, £ > m to a finite number of computations. The

following procedure outlines this approach.

Procedure 4.2.3 Suppose that the eigenvalues py, are such that |ug| — oo. Suppose

further that we may choose m,my,m € N, m > m, > m, and 1 > 0 such that

1. m is the Galerkin projection dimension used for numerical continuation,
2. my is the parameter used in the computation of C (A, A), and

3. m measures where the tail terms are bounded from below by i1 as follows: for

all k= m, || > 7.

Set M = m.

Remark: m should be chosen to give the expected nonzero modes along the bi-
furcation branch under study and m = m; = (2d + 1)(m — 1) + 1 if (¢,), = 0 for
all n # 0 and the eigenvalues, pj are monotonically increasing in magnitude after
k= (2d+1)(m—1).

Fiz the decay constants

s>2 and As>0. (62)
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Remark: In practice, A; and s should be determined by regularity properties of the
equation.

Set A := As. Using the finite radii polynomials given in Definition 4.2.1, for
k=0,---,m—1, numerically compute I := {r >0 | Py(r) <0} and

T=()I. (63)

k=0

Check that T # ).

Remark: If Z = (), begin the procedure again either by choosing m larger or by
choosing s larger and/or A, smaller in (62).

Check that there exists ¥ € T such that

As

fﬁm.

(64)

Remark: If such an 7 exists, then A = A; = max{A,, 7(m—1)*}. This in turn implies
that component-wise Pr(7) < 0. If 7 does not exist, then begin the procedure again
either by choosing m larger or by choosing s larger and/or A, smaller in (62).

Check the inequalities
C(A, A)

Po(r) <0, -+, Ps_1(7) <0 and ]
0

— A <.

Remark: If any of these inequalities fails, begin the procedure again either by choosing

m larger or by choosing s larger and/or Ag smaller in (62).

4.8 Computational cost

We now provide a rough comparison of the cost of continuation with the cost of

validated continuation for PDEs of the form
uy = L(u,v) —u® . (65)

Since the degree of the polynomial nonlinearity in (65) is cubic and we use a Newton-
like operator in the continuation procedure, the most expensive terms of the compu-

tation involve m? operations, where m is the number of modes used in the Galerkin
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projection

f,gm)(uF, v) = pup(v)u, — Z Upy Uy Uy s k=0,....,m—1 (66)

n1+ng+nz==k
[n;l<m

With this in mind we count the number of m? operations for both approaches to
obtain an estimate for the asymptotic costs and conclude with statistics obtained

from calculations for the Swift-Hohenberg and Cahn-Hilliard equations.
4.3.1 Cost of continuation

A traditional continuation procedure involves iteration of predictor and corrector
steps to trace out branches of equilibria. Under the assumption that at some pa-
rameter ¥ = 1y we have an equilibrium solution for (54), we want to continue the
equilibrium as we vary v. We recall in details the predictor and the corrector steps.
1) Euler predictor: Given an approximate equilibrium zy at vy, the predictor at

vy =1y + Av is x§°) = xo + T9Av, where

fo = — £ (20, v0) " £ (o, 1. (67)

2) Quasi-Newton corrector: We now use the following quasi-Newton iterative

scheme to improve our approximation at 1,

-1

xgn-i-l) _ xgn) _ fx(m) (1.1(0)’ Vl) f(m) (l,g”)’ 1/1) (68)

If k is the total number of iterations of (68), then up := x§k) and f (g, 1) = 0.
We decompose the analysis of the cost of continuation into four steps, assuming
that we begin with an approximate zero xy at vj.
Step 1. In order to get the Euler predictor (67), we need to evaluate the vector

-1
— 1™ (o, v0) £ (w0, o). This requires computing the m by m matrix f™ (2, 1),
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where for 0 < i,5 < m,

(m) (,.(0) S (0) (0)
[fx (2o 7V0)L+1,j+1 = Oijlti 3( Z .[IO ]Iml[x0 ]\n2|
ni+ng+j=i
\m|<m
0 0
+ Z [-75(())]|n1\[37(())]\n2|)'

This involves the evaluation of 2m? sums demanding 2m — 1 multiplications and

2m — 2 additions each. Therefore, determining fém) (x(()o), 1p) requires 8m? operations.

Next, we compute the LU decomposition of fém) (az(()o), V) in order to compute the

2

3m3 operations. In our case,

action of its inverse on f;sm)(flj'g,yo). This involves
fy(m) (xo, ) = g, requiring no additional cost. The predictor is then

~1
x§°’ =10 — Ayfa(;m)(:xo, ) To

v, = vy + Av.

Step 2. We now start the corrector. To construct the quasi-Newton operator
(68), we need the action of the inverse of fz(m) at the predictor (asgo), v1). As seen
before, it costs 8m? to evaluate fi™ (z\”),11) and 2m?® to compute its inverse using
LU decomposition. Note that we need to compute the LU decomposition only at the
first step.

Step 3. At the j* iteration of (68), we need to evaluate f™(zY™) 1) Its ith

component is

T m), = )Y,

—1 —1 j—1
- Z 2 )]\nu[f”gj )]\naﬂ‘”gj )]\nsl

ni+ng+nz=i
[njl<m

which requires at least 3m? operations to evaluate. Since f(™ has m components, we
get a total of 3m3. If k is the total number of iterations of the corrector, then this
step requires 3km? operations.

Step 4. The corrector ends when || f(™ (xgk), 11)|| < tolerance. Let ap := 2.
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Evaluating the function at (g, ) is another 3m?. Now, note that we have to com-
pute the action of the inverse of fém)(ﬂp, 1) to get the predictor for the next step.
Recall JpyF is the numerical inverse of fém) (g, 1) computed as before using an LU
decomposition. Explicitly computing all the coefficients in fgﬁm) (up,v1) requires an
extra 2m? operations. We do not count the m? involved to get the next predictor,
since that is part of the next predictor-corrector step.

Combining the costs of the four above mentioned steps suggests that the cost of
one application of the predictor-corrector algorithm is on the order of (20 + 3k)m?,

where k is the number of iterations in the quasi-Newton corrector.
4.3.2 Cost of validation

We now show that the extra cost of performing validation for a cubic function (d = 3)
with constant function coefficients is of the order of 6m? operations where m is the
projection dimension used for continuation. The additional cost comes primarily from
computing the coefficients of the radii polynomials. In the following, we construct
my =d(m—1)+1=3m — 2 polynomials P, ..., Ps,_3 using Procedure 4.2.3 and
calculate the associated computational cost. Both to simplify the presentation and
because this is what is used to perform the computations presented in Section 4.4,
we set m = my = d(m — 1) + 1, with |ug| > |um| for all & > m, and M = m. As
described in Procedure 4.2.3, A = A, and we consider fixed s > 2 and A, > 0.

The only nonlinear term of (65) is a monomial of degree 3. Thus, if p # 3,
then Ck(p,7,l, M) = 0. In addition, we have set M = m. Hence, if j # 0, then
Cr(p, 7,1, M) = 0 (see Remark 4.6.3). Therefore, the only nonzero terms of this form
are

Ck(g, 0, l, m) - Z Ia’nl e E’I’L37l * (69)

ni+ng+ng==k
In1l,|nzl,Ing|<m
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Hence, by (60) we set
CE0) 2 (Tpcrler)s + Vi (70)

for 0 < k < m and | - | denotes the component-wise absolute value. Note that it
is possible to get an analytic upper bound on Vk(o) using Lemma 4.6.2 in which case
computing V,C(O) doesn’t require any m? operations. Hence, all necessary computations

for CZ(0) are of order less than m?3. Using (60),
iz v

for 0 < k < m and evaluating V}” does not require any m? operations.

Finally, combining (60) and (69)
CE(2) > 6Jpxrp|Cr(3,0,2,m)
where C),(3,0,2,m) = |u,| and
C7(3) = 3|Jrxr|Cr(3,0,3,m)

where C,,(3,0,3,m) = 1.

The last coefficient to compute to get all the finite radii polynomials (61) is
C}T/ 2 ’JFfoF(ﬁ”

where again |- | denotes the component-wise absolute value. This comes with no extra
m? cost since fr() = f (g, 1) was computed in Step 4 of the predictor-corrector
algorithm.

The next step in Procedure 4.2.3 is checking for the existence of a validation radius
r > (0. This requires finding the numerical zeros of each of the cubic polynomials
Py, -+, Py_1, constructing Iy, --- , [,,_1 where [} are closed intervals such that I}, C
{r > 0|Py(r) < 0}, and finally checking for a non-empty intersection Z = N};""'Iy.

All of these steps are of order less than m?.
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Assuming there exists a positive 7 € Z such that 7(m—1)° < A, we construct and
evaluate the tail radii polynomials P,,, -, Ps,_1 at 7. We compute Y} using (55)
which requires 6m? operations since we need to evaluate fi, () for k = m,--- ,3m —3.

Using Definition 4.2.2 and the assumption that A = A, we compute
3
C(AA) = Z l (?) B ATAL = 303 A (A + A
=1

This latter step and the remaining computations for Procedure 4.2.3 are all of order
less than m?.
In summary, the m? cost of computing the coefficients of the radii polynomials is

6m?3. Thus the additional cost of validation is on the order of 6m?3 operations.

4.3.3 Relative cost

Combining the results of Sections 4.3.1 and 4.3.2 suggests that asymptotically the

ratio of the cost of validated continuation to the cost of traditional continuation is

26 + 3k
20 + 3k~

where £ is the number of iterations performed in the corrector step. We tested this
hypothesis again two fourth order partial differential equations with cubic nonlin-
earities, Swift-Hohenberg and Cahn-Hilliard. The results are discussed in greater
detail in Section 4.4. For the moment we are only interested in the relative times of
computation.

We performed validated continuation for 46 predictor-corrector steps involving
a total of 90 quasi-Newton iterations for the cubic Swift-Hohenberg equation. We
repeated the computations without validation. The ratio of elapsed time for validated
continuation to the time used for continuation alone was ~ 1.156. Given that we had

an average of 90/46 iterations per predictor-corrector step, this is close to the rough

f 26+3-90/46

estimate o m

~ 1.232 given by the above arguments.
Similarly, we performed validated continuation for 15 predictor-corrector steps in-

volving a total of 37 quasi-Newton iterations for Cahn-Hilliard. Again, we repeated
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the computations without validation. The ratio of elapsed time for validated con-
tinuation to the time used for continuation alone was ~ 1.173. Given that we had

an average of 37/15 iterations per predictor-corrector step, the asymptotic ratio is

264+3-37/15
204+3-37/15 ~ 1.219.

The results of these computations are summarize in Figure 16.

PDE | m | #leations T pyierimental Ratio | Estimated Ratio 26H3E

# steps 2042k
S-H | 27 1.96 1.156 1.232
C-H | 60 1.65 1.173 1.219

Figure 16: Comparison of the asymptotic ratios.

4.4 Sample results with M =m

To demonstrate the practical applicability of validated continuation we turn to two
model problems, Cahn-Hilliard and Swift-Hohenberg. In both cases we follow a
branch of equilibria and validate at each parameter value of the continuation. In
the case of Swift-Hohenberg we also use interval arithmetic to evaluate the radii
polynomials, thus allowing us to rigorously verify the existence and uniqueness of the

equilibria.
4.4.1 Cahn-Hilliard

The Cahn-Hilliard equation was introduced in [5] as a model for the process of phase
separation of a binary alloy at a fixed temperature. On a one-dimensional domain it

takes the form

1
up = —(;um T ug)m , x€]|0,1]

Uy = Upge =0, at x=0,1. (71)

The assumption of an equal concentration of both alloys is formulated as
1
/ u(zx,-)dxr =0
0

o4



Note that when looking for the equilibrium solutions of (71), it is sufficient to work

with the Allen-Cahn equation

1
Uy +u—u® =0 (72)
14

u, =0 atxz=0,1.

Re-writing (72) in the form of (51), the linear operator is L(-,v) = .25 +1 and

v Ox2

the polynomial nonlinearity is of degree d = 3 with coefficient functions

—1 p=3andn=0
(cp)n =
0 otherwise.

Applying Procedure 4.2.3 with M = m = 60, s = 3, and A, = 0.01, results in
the branch of equilibria indicated in Figure 17 where each point represents the center
of the infinite dimensional validation set of the form @ + W (7), containing a unique
equilibrium of (71). These are the points used to obtain the cost estimates presented

in Figure 16. To avoid drowning the reader in large lists of numbers, we only provide

the detailed numerical output at one parameter value.
Validated Result 4.4.1 Let v = 43.57415358799057. Then,
7 = 4.846104201261526 x 10~®

1s a validation radius for the numerical zero ur given in Figure 18. Thus, there exists

a unique equilibrium for (71) in the validation set

(uF,O)+ﬁ[—r,r} x ﬁ [—%,%} _

k=0 k=60

4.4.2 Swift-Hohenberg

The Swift-Hohenberg equation

2 2
Uth(u,V)z{v—<1+%> }u—u3, u(-,t)eL2(0,2L—7T>,
L 0
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Figure 17: Validated continuation in v for the Cahn-Hilliard equation on [0, 1].

was originally introduced to describe the onset of Rayleigh-Bénard heat convec-
tion [35], where Lj is a fundamental wave number for the system size 27/Ly. The
parameter v corresponds to the Rayleigh number and its increase is associated with
the appearance of multiple solutions that exhibit complicated patterns. For the com-
putations presented here we fixed Ly = 0.65.

Re-writing (73) in the form of (51), the linear operator is L(-,v) = v — (1 + 68_;2)2
and the polynomial nonlinearity is of degree d = 3 with coefficient functions

—1 p=3andn=0

(Cp ) n =
0 otherwise.

Applying Procedure 4.2.3 with M = m = 27, s = 4, and A, = 0.002, results in
the branch of equilibria indicated in Figure 19 where each point represents the center
of the infinite dimensional validation set of the form u + W (), containing a unique
equilibrium of (73). Again, these are the points used to obtain the cost estimates
presented in Figure 16.

As in the case of the Cahn-Hilliard equation, we only include the output at one

point on the branch of the Figure 19.
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k Uk

1 1.773844149032812 x 10~ T
3 —7.601617928785714 x 10~*
5

7

3.271672072176762 x 1076
—1.408100160017936 x 108
9 6.060344382471457 x 10~ 11
11 | —2.608320515803233 x 1013
13 1.122598345048980 x 1015
15 | —4.831561184682242 x 10~18
17 | 2.079457485469691 x 10~20
19 | —8.949770271275235 x 1023
21 3.851880360024139 x 10~25
23 | —1.657801422354123 x 10~27
25 7.134947464114615 x 1030
27 | —3.070770234245256 x 1032
29 1.321605495419571 x 10—34
31 | —5.687926883858248 x 1037
33 | 2.447955395983479 x 1039
35 | —1.053537452697732 x 104!
37 | 4.534120813401209 x 10~
39 | —1.951337823193323 x 1046
41 8.397842606319005 x 10~49
43 | —3.614086242431264 x 10~51
45 1.555336697148314 x 1053
47 | —6.693373497802139 x 106
49 | 2.880447985844179 x 10~°8
51 | —1.239563989182517 x 10~60
53 | 5.334225825486573 x 1063
55 | —2.295445428599939 x 10~
57 | 9.877687199770852 x 1098
59 | —4.250458946966345 x 10~70

>60 0

Figure 18: The numerical zero up obtained by continuation for the Cahn-Hilliard
equation at v = 43.57415358799057. Note that all even coefficients are 0.

Validated Result 4.4.2 Let v = .6674701641462312. Then
7= 1.998167170445973 x 107°

is a validation radius for the numerical zero up whose coefficient values are indi-
cated in Figure 20. Thus, there exists a unique equilibrium solution for (73) in the
validation set v
(@r,0) + [ JI=7.7 x T {—%,%} .
k=0 k=27

Observe that in all the above mentioned calculations floating point round-off errors

have not been controlled, thus at this point one cannot claim that the validation
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Figure 19: Validated continuation in v for the Swift-Hohenberg equation at Lo =
0.65.

k U

1 —3.359998711939212 x 10T
3 4.824376413178060 x 103
5 —1.761066797314072 x 10~°
7 7.535865329757206 x 108
9 | —2.790895103063484 x 1010
11 | 9.411109491227775 x 1013
13 | —3.113936321690645 x 10~1°
15 1.007016979585499 x 10~17
17 | —3.200410295859874 x 10~20
19 1.003878817132397 x 10~ 22
21 | —3.114244522738206 x 10~25
23 | 9.573156964813860 x 1028
25 | —2.920394630491221 x 10~3°
>26 0

Figure 20: The numerical zero @ obtained by continuation for the Swift-Hohenberg
equation at v = .6674701641462312 and Lo = 0.65. All even coefficients are 0.

results presented above are rigorous. However, with additional computational effort
a computer-assisted proof can be obtain. To be more precise, our technique relies on
the existence of a validation radius 7 making all radii polynomials strictly negative.
Hence, rigorous validation follows if the inequalities are satisfied when one includes
bounds to control the possible of floating point errors. The first step in checking these
inequalities on this level is to obtain floating point outer bounds for the coefficients

of the polynomials. This can be done by defining each entry of
aFv f(m)(ﬂ'Fv U)a JFXFa fl(’m)(aF7 V)? /JJk:(V)7 AS? and s
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to be an interval and then computing (60), (61) and the quantities in Definition 4.2.2
using interval arithmetic. The resulting radii polynomials, which we denote by P,
have interval coefficients. Let 7 be the smallest representable number such that using
interval arithmetic, the corresponding finite radii polynomials may be shown to be
strictly contained in (—o00,0). Assume such an 7 exists. If, again using interval
arithmetic, 7(m — 1) — A; C (—00,0) and the intervals obtained from evaluating tail
radii polynomials at 7 are strictly contained in (—00,0), i.e. Py(7) C (—o0,0) for all
k > m, then the radii polynomials are simultaneously satisfied and we obtain a proof.

The above mentioned computations were performed using the interval arithmetic

package in Matlab. Thus, we can state the following theorem.

Theorem 4.4.3 FEach point in Figure 19 represents the center of an infinite dimen-
sitonal set of the form

26 00
~ - 0.002 0.002
up + | I[—Tﬂ"] X | | [—777]

k=0 k=27
containing a unique equilibrium to (73).

The actual values for the various numerical zeros and validation radii are of limited
interest and thus not presented. Of greater interest is understanding how large are
the errors induced by the floating point computations as opposed to the magnitudes
of the floating point computations of P (7), k > 0, where 7 is the validation radius.

Let us restrict our attention to the equilibrium described by Validated Result 4.4.2.
Following Procedure 4.2.3 at this parameter value, beginning using radii polynomials
with interval coefficients and performing the computations with interval arithmetic

leads to an interval of potential validation radii
T = [3.373873850437414 x 10~%,9.003755731999980 x 10~4].

Hence, we choose 7 = 3.373873850437415 x 10~°. There are 53 inclusions that need
to be satisfied, those arising from the 2m — 2 = 52 tail radii polynomials with in-

terval coefficients and the one associated with the inequality (64). The fact that the
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inclusions are satisfied leads to the conclusion of Theorem 4.4.3 at this parameter
value. Again, rather than listing all 53 inclusions let us focus on the two extremes,

the interval closest to 0
Py (F) = —3.191484496597115 x 1071 + 7.037497555236307 x 10~
and the interval the farthest from 0
—1.973098298147102 x 10~* + 8.673617379884037 x 10~ "

corresponding to the inequality (64). Observe that in both cases, the width of the
interval induced by the floating point errors is more than ten orders of magnitude
smaller than the value of the center. Furthermore, this behavior is typical for all the
validation computations that were performed. This suggests that it is reasonably safe

to assume that a validated equilibrium is a true equilibrium.

4.5 Sample Results using M > m

We turn to two of these issues in this section.

1. As is mentioned above, the truncation of Wy (r) to [ [} [~7, ] introduces errors
that must be overcome in order to solve for a validation radius. The simple
assumption that |uy| < 2‘— for all & > m provides a computationally cheap,
but large, bound on the error. Though computationally more expensive, the
bounds can be improved by using explicit constraints on |ug| for k =m, ..., M
for some M > m. For the sake of clarity the computations performed in earlier
sections were restricted to M = m. In this section we exploit the computational
parameter M to carry out continuation for large ranges of parameter values. In

Section 4.5.1 we provide a lower bound on the choice of M.

2. Observe that if (51) has a polynomial nonlinearity of order d, then straight-

forward evaluation of the nonlinear term in (53) involves on the order of m?
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operations. This computational cost can be reduced by making use of Fast
Fourier Transform (FFT) techniques. This is the subject of Section 4.5.2. We

will use this theory to compute all sums defined in (58).
4.5.1 Lower Bounds for M

The reason why we can get an a priori lower bound for M comes from the fact that
the tail term is independent of the wvalidation radius r > 0. Indeed, supposing that
M > d(m — 1) the tail term inequality of Procedure 4.2.3

¢4 _ A, = c.4) A, <0 (74)
|l ||

Rather than obscuring the point in an abstract computation, observe that in the

context of the Swift-Hohenberg equation (73), we have

C(A, A) = 3a(s)*A(A + A)?

and
My, =V — (1 — MQLQ)2 .
Since A = As, (74) becomes
Ba(s)’ Af(A+ A)* < Ay lv — (1 — MPL?)| .
Supposing that (1 — M2L?)?2 > v and dividing on both sides by A, > 0, we get that

(M?L* —1)* > 3a(s)*(A+ A +v .

Finally, supposing M2L? > 1, we get

M > ~(L,v,s,up, Ag) := %\/1 + \/V +3a(s)* (A(ap) + Ay)? (75)

Note that this lower bound only depends on the a priori information. Indeed, before
starting the validation, we get all the quantities : Ly, v and ur from the continuation
and s and A, a priori given. Hence, before starting the validation process, we fix M

to be at least 7.
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4.5.2 Computing Sums Using the Fast Fourier Transform

In this section, we address the use of the FFT algorithm to compute sums of the form

Z otll1 » -af; , (76)

ll+"‘+lp:l
[Lplsesllpl<M

where a' := (a4, - ,a)_y), - aP = (a¥ 4, ah,_y) € R*MTL Note that
we are not the first to use the FFT to compute sums of the form (76). In [17], the
authors gave an explicit way to compute (76) for the cases p = 3 and p = 5. Here,

we present the theory for a general p € N.

Definition 4.5.1 Let b = (bg, - ,baps_2) € R*M~L Its Discrete Fourier Transform

F(b) is given by

2M—2 _
al = F(b)h = Z bj6—27ri<21\g[l71) s for l e {_M+ 17‘ .. ’M _ 1}
=0
Definition 4.5.2 Let a = (a_pr41,- - ,ap—1) € R*M~ Tts Inverse Discrete Fourier

Transform F~'(a) is given by

M-1
bj=F )= > (=) forje {0, 2M 2}
I=—M+1
Let 6 := 221 if p is odd and 6 := E£2 if p is even. Given a’ = (a’ 1, -+ ,a}; ;) €

R?M=1 " define @' € R?M-1 by
L a;'. for —M<j<M
i = (77)
0 for —OM+1<j<-M and M <j <M -1

For j € {0,--- ,20M — 2}, set

SM—1 ‘
bo=Fl @)= Y aerilmi) (78)
I=—6M+1
Forl = —6M+1,--- ,6M —1,
26M—2 _
FE s = Y g}jl...g}?@*?”i(ﬁ)
j=0
20 M —2 OM—1 OM—1

. gl o _dlp ) .
= § § ngl e””(m) ... E gbx;v 627T1<26M71 6727"(
1 P

=0 Lij=—0M+1 lp=—8M+1
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where

Defining

P SM—1 N )
S(j) = H Z a’ e%i(%iﬁ) 6_27&(251{4771)

U
i=1 [l;=—0M+1

1 E 1
— a . e ap + a “ .. ap
§ : I Ip i lp
I+ Hlp=l k=1 L+ +lp=l£k(26 M —1)
[Elesllpl<M [l lipl<M

2 P
+ E al --aP 627“( S5 )3

1 lp ’
L+t lp @ {1k (26 M —1)|k=0,-- ,p}
[l llpl<M

==

we obtain

. 26 M —2
FO s P = D S()
§=0

= (20M —1) Z a' ---ad
U+ Hlp=l ! P

[Lplseslipl<M

p

+(26M —1)) > at ---aP (80)

k=1 I 4 +lp=lFk(26M 1)
[tal, llpl<M

, 20M —2 27ri(11+m+lpil)j
...qP 25M —1
+ E al1 a E e .

Li4-+lp ¢ {I£k(26M—1)|k=0,-- ,p}
1], lipl<M

Euler’s formula gives that for iy +---+1, — [ # 0 mod (20M — 1),

20M —1 27ri(11+m+lpil>j
E e 260 —1 —0.
Jj=0

Hence, the third sum in (80) is zero. Turning to the second sum in (80), observe that

1l < and [ € {0,---, — implies that
], ,|l,| < M and I € {0,--- , M — 1} implies th

h+- -+l —le{-(p+H(M-1),--- ,p(M —-1)} .
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Hence, given the above mentioned choice of d, the second sum of (80) is zero. There-

fore, we can conclude that

1 - ~
al a? = —— F(b e x BP)); (81)
11+§:lp—l 31 lp 20M — 1

[Lq], lpl<M

The discrete Fourier transforms required in the computations of (78) and (81) are

computed using the FFT algorithm (e.g. see [4]).
4.5.3 Results

In this section we present some computations for the one-dimensional Swift-Hohenberg
and the one-dimensional Cahn-Hilliard equations. This is meant both to show the
practicality of the method of validated continuation and to highlight its current lim-
itations.

The starting point for our computations is the trivial solution, ug = 0, at a
particular value of the continuation parameter, and an arbitrarily chosen Galerkin
projection dimension.

The iteration of validated continuation proceeds as follows. As is indicated in
the Introduction, we use a standard predictor-corrector numerical method to find a
numerical solution at the next parameter value. That is, given a numerical zero of
the Galerkin projection at 1, we find a new numerical zero ur at the parameter value
v, = 1y + Av. We then proceed with the validation step. We choose M to be the

smallest integer satisfying
M > max {d(m —1),2v} , (82)

where v is given by (75), and check the inequalities of Procedure 4.2.3 . If the
inequalities are satisfied, then Procedure 4.2.3 applies, we have validated the solution
up at vy, and we proceed to the next step; that is, we increment v and repeat the
process. If validation fails we increase m by 2, recompute the numerical zero up at v

and try to validate it. This procedure is repeated until the numerical zero ur at vy is
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validated or a maximum number of trials is reached. We remark for future reference
that for Swift-Hohenberg our procedure always resulted in validation of the numerical
zZero.

At each step we monitor the determinant of the Jacobian to detect bifurcations.
So starting with the trivial branch (u = 0) we find branches that bifurcate from it, and
then find branches that bifurcate from the newly found branches, and so on. In the
case of Swift-Hohenberg we followed multiple branches. In each case we started with
a low dimensional Galerkin projection, m = 7, and allowed the validation procedure
to determine an appropriate value for m.

It is important to mention that we do not compute continuous branches of equi-
libria. The dots on Figures 21, 22, and 26, represent the points were we computed
and validated equilibrium solutions. Notice also that the step size from one step to
the next is not constant, but changes along each branch according to the formula
Av = 20-R/3 Ay where k is the number of iterations needed for the Newton method
during the continuation step.

2.57

0.5

0

Figure 21: Bifurcation diagram for the Swift-Hohenberg equation (73) for 0 < v < 5.
The dots indicate the points at which a numerical zero was validated.
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4.5.3.1 Swift-Hohenberg

1200
1000
800

600

gl

4001

200

x10

Figure 22: Some of the branches of equilibria of (73) for 0 < v < 10°. The
dots indicate the points at which a numerical zero was validated. For the values
0 < v < 10* the validation was done using interval arithmetic and hence at these
points we have a mathematical proof of the existence and uniqueness of these solutions
in the sets W5(r). The color coding of the branches in this figure matches that of
Figure 21.

As is indicated in the Introduction, we view the set Wy (r) as a function of r. This
implies that s and Ag are considered to be constants. For (73) we set s = 4 and
Ay =1.

We computed what we believe are all the branches of equilibria for 0 < v < 5
and followed some of the branches up to v ~ 10° The diagrams are shown on
Figure 21 and Figure 22. We validated all the branches up to v ~ 10* in Figure 22
using interval arithmetic to control floating point errors and thus rigorously verified
that the inequalities of Procedure 4.2.3 are satisfied. This implies that we have
mathematically proven the existence and uniqueness within the sets Wy (r) of the
equilibria for Swift-Hohenberg at those values of v < 10* indicated by the dots in

Figure 22.

66



To describe some of the details and implications of these computations we focus
on a branch from Figure 22. We choose the blue one and note that the results for
the other branches are similar. Plots of some of the solutions along the blue branch
are presented in Figure 23. The computational cost of validating these branches are
determined by m and M. Observe that m plays a significant role in the cost of the
continuation step - the Newton step requires an approximation of the inverse of the
Jacobian. The use of the FFT implies that the size of M determines the cost of the
computation of the coefficients of the radii polynomials. Figure 24 indicates how m
and M varies as a function of v, though the reader should recall that in this setting

given m, M is chosen according to (82).

v =1.2627 v =4345.2728
0.54 80
60
0.53
40
0.52
3 S 20
0.51
0
05 20
0.49 . : . . . -40
(] 2 4 6 8 10 0 2 4 6 8 10
xr X
v =108301.2842 v =1017394.3278
400 1200
1000
300 [
800
200 600
400
3 100 S
200
0 0
-200
-100
-400
200, 2 4 6 8 0 8% 2 4 6 8 10
X X

Figure 23: Some solutions along the blue branch of the diagram on Figure 22.

At the risk of being redundant, what Figure 22 indicates are the points in param-

eter space at which we have found a set of the form

Walr) = @+ Zi:]:[—r, r] x g {—% %}
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Figure 24: Plots of m and M along the blue branch of the diagram on Figure 22.

in which there exists a unique equilibrium of (73). @ is determined by the continuation
method. m as a function of v is given in Figure 24 and r as a function of v is given in
Figure 25. Observe that the knowledge that the equilibrium lies inside of W5 (r) gives
very tight bounds. In particular, the true equilibrium of (73) at v = 1017394.3278
differs from that shown in Figure 23 by less than 107! in the L? norm. Thus, the
peaks in the solution are not numerical artifacts.

-4

10
10° 1
10° 1
~
107" 1
1077 :
"‘A"""’"—O—O—o—o—o—._.
-14
10 1 1 1 1
0 2 4 6 8 10
v x 10°

Figure 25: Plot of r along the blue branch of the diagram on Figure 22.

The computation time for the blue branch for v up to v ~ 10* was 6.5 minutes
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without interval arithmetic and 9.19 hours with interval arithmetic. The computation
for the whole branch (up to v ~ 10°) was 11.67 hours without interval arithmetic.

The computation times for the other branches were similar.
4.5.3.2  Cahn-Hilliard

For this equation we use A = 1/€? as the continuation parameter. For (72) we use

the Fourier basis {cos(knrz) | k =0,1,2,...}, then

u(z,t) = up(t) + 2 Z u(t) cos(kmz).

k=1
So (72) takes the form
Up = fply — Z Uy Uy Uy
ke +ha-+ha=k
where
p=1-— WQF, (83)

is the eigenvalue of the linear operator in (72). Choosing s = 3 and Ay = 0.01 led
to the branches indicated in Figure 26. In particular, equilibria associated with the
black branch are indicated in Figure 27.

The branches in Figure 26 terminate because the above mentioned procedure
failed. To be more precise, we declare that our method fails when validation fails
for 40 consecutive times at the same value of A (recall that each time validation
fails we increase m by 2, recompute the equilibrium and try to validate it again).
Figure 28 indicates the rapid increase in m as a function of A for the black branch
in Figure 26. Observe that trying to validate a solution for 40 consecutive times is
equivalent to increasing the dimension of the Galerkin projection by 80, recomputing
the equilibrium and trying to validate it. In all the cases the reason for failure was
that we were unable to find an r satisfying condition (1) of Procedure 4.2.3 . In

fact, it appears that the failure is due to the fact that at least one of the finite radii
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Figure 26: Bifurcation diagram for (71).

A = 89.4977 A =902.0465
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Figure 27: Solutions along the lower branch of the diagram on Figure 26.

polynomials fails to have any positive roots. Since P,(0) > 0, this implies that there
is no positive solution to P (r) < 0.

As is indicated at the beginning of Section 4.5, there are only a few free constants
involved in the definition of the radii polynomials: m, the dimensional of the Galerkin
projection; M, a computational parameter; s, the decay rate; and A, an a priori bound
on the size of the Fourier coefficients. As is described above, failure of the procedure
implies that m has been increased by 80. As one may expect and as the results in

Figure 28 corroborates, this implies values of u; for k close to m are essentially zero.
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Thus, further increase of the Galerkin projection at this point has little effect on the

validation procedure.

6X 10°

50

a4t

0 . . . . . . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000

A A

Figure 28: (Left) The dimension of the Galerkin projection m as a function of A
along the lower branch of the diagram on Figure 26. (Right) The value of |u,, 2| as
a function of A along the same branch.

We tried to increase the value of M, since this results in better control on the tail
errors. In particular, all the results indicated in Figure 26 were obtained using M
equals twice the lower bound given by (75). We tried the same computations, from
the beginning, using M equals four, six and ten times the lower bound in (75). In
each case we were able to continue the branches in Figure 26 a bit further. However,
in each case the procedure failed in the same way as before; there was no positive
solution to the finite radii polynomial inequalities. This suggests that just increasing
M does not provide an adequate solution to the problem.

We have no good heuristics for the choice of s and A;. Random choices did not

produce any significantly better results than s = 3 and Ay = 0.01.

4.6 Construction of the the Radii Polynomaals

In order to construct the radii polynomials, we need Y, and K, as defined by (14)
and (15) respectively. Let Jpyp be the numerical inverse of D f™ (g, ;) and define

the Newton-like operator T by

T(u) = u— Jf(u) (84)
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where
J FxF O

Hom

-1
Merl

is the block diagonal matrix which we expect to be close to (D f(u,v;))!. Note that
T, J, and f all depend on the parameter v. Using a Taylor expansion of the Newton-
like operator T'(u) = u — J f(u) around the numerical equilibrium @ = (up,0,0,...)

leads to

DT(a+w)w = [I—J -Df(a+w)w

_ ([ —J (Df(a) + D f(a)(w') + - + (l_—la)!(w/)“ T a

= [[-J-Df(@w—1J (Z e @/)l—l) w

— U —J Df@)]w— J<Zzpl'c_ufl w')i- 1>w
= [I-J Df(a)]w— J(ZZZ( >cpupl )“>w.

=2 p=l

In the rest of the section, we will make use of the discrete convolution of bi-infinite
vectors i.e. considering two bi-infinite vectors (a;) ez, (b;);ez, we define their convo-

lution by

o0

(@*b)e= Y aubpn= > anby, , kEZL.

n=—oo kq+ko=k
ki €Z

Expanding into Fourier modes, we can write the nonlinear part in terms of con-

volution
d d
DT(i+w)w = [I—.J Df(a (ZZZ( )cp@p l(w)z_1> * W
=2 p=l
d d
= [[—J Df(a)]w J( Zl( )(Cpﬁp_l)*(w')l_l*w> (85)
=2 p=I



Thus,

(e () o = | 35 D0 (dngtiny T, | | DD wny e wl
nl Sni=n S ni=n—n

n

Here, [-], denotes the bi-infinite vector indexed by n € Z and (-); denotes the entry

at index k. We use this expansion to compute the bounds

Zi(r) > max |[(DT(u+ w')w)l

T ww eW(r)

> max |[I —J- Df(a)w — J<ZZZ(>CPUPZ *wl>‘ .

=2 p=l

The block-diagonal structure of J allows us to decompose (85) into a finite, m-
dimensional piece and the infinite dimensional tail terms. For the following, we adopt
the notation || to denote the m-vector whose nth entry is computed at index value
n—1 for 1 < n < m, the subscript F to denote the bi-infinite vector in which the kth
entries for |k| > m are set equal to 0, and the subscript I to denote the bi-infinite
vector in which the kth entries for |k| < m are set equal to 0. We begin with the

following decomposition of the finite part of the linear term.

{l -J-Df(@]w}p = wp—[J-Df(w)w]p
= wp — Jpxr [Df(0)w],
= wp — Jpxr - Dfp(a)w
= wp — Jper - (D" () wp + Rp(t, w)]
= [Irxr — Jpxr - DF™(p)] wp
—Jpxr - Rp(w,w) , (86)

where for k € {0, - - ,m—l},

o] d AS
n=-00 =1 Zni:ﬁ
|k—n|>m



It follows that for all w,w’ € W (r),

[DT(l_JJ -+ w’)w]p Q [IFXF — JF><F . Df(m)(ﬂF)] Wp — JF><F . RF(I_I,, U))
(JFXpZZl< ) (cpuf™ l *WZ]F>. (88)

For k > m,

d d
(DT (i + w'w)y € —J(k, k) Z z() ((cpuP™") * why. (89)
=1 l

p=

We now focus on finding bounds on the terms given in (88) and (89). First consider

((Cpap_l) * Wl)k - Z Z (Cp)noam e anpfl Z Wy o r Wiy (90)

n Z?’Li:ﬁ Zni-‘rﬁ:k‘
where p is the degree of the original monomial term of f and [ € {1,...,p} is the
order of the derivative being taken. One upper bound for (90) is given in the following

lemma.

Lemma 4.6.1 Let o = 22 +2+3.5-25, @ € A[-1,1], (¢,)r € 2[~1,1], and

wy C £[-1,1] for all k. Then

aPCp AP—LAL
CGATA 1] k0

((cpa"™) * wi C

aPCLAPTA—1,1] k=0.
Proof. Note that

Z Z (Cp)noanl U anpfl Z Wny oo Wy,

T\ msn ¥ ni+a=k
c Z (Cp)noum unpflwnp,prl Wnp
S ni=k
c, A A A A
) e R e TR e v B
ool LTl LU (T (RS T (

The remainder of the proof is a modification of [7, Lemma 5.8].
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In most cases, especially when [ is small relative to p, this bound will be too large
to use for the low modes. In particular, @ may be far from zero, resulting in a large
constant A. By taking k sufficiently large, the contraction given by J(k,k) =~ !
will overcome the large bound. A more practical approach for obtaining bounds for
the low modes is given by the following lemma. For flexibility in balancing numer-

ical computations (requiring a finite number of operations) with analysis (to obtain

truncation bounds), we choose M > m to be the dimension used to split these sums.

Lemma 4.6.2 For M > m,

(e, !y % ), C (Z (j) Cr(p, g, 1, M)r'=7 + ek(p,l,M)> [—1,1].

j=0
Proof. This lemma is a modification of [7, Lemma 5.10] combined with Lemma 4.6.1.

In [7, Lemma 5.10], the bound is split into finite sums and the tail term, bounded by

partC, AP LAl 1 ]
(M —1)Y(s—1) [(M —k)s + (M + k)sl [—1,1].

We obtain a polynomial in r by rewriting the finite sums as follows:

Z( 3 (cp)noﬂm...anp_l)< S Wm"'Wnl>

n don;=n >onj+n=k
|ni| <M |ng| <M
= < E : (Cp)noum o 'unp—z> < E Wny o 'Wnl>
n Sn;=n >Yonj+n=k
[n1lseeslng,_gl<m [n;|<M
|TLO|<M

n Sn;=n 7=0 S ni+n=k
[n1leslng_yl<m m<|nyl,...|nj|<M
|no|<M [P 415e|n|<m

= Z, (Cp)nglin, -~ n, i(j)r”[—l,l] > ﬁ

n Sn;=n 7=0 Sn;+a=k
[nq],e.es \np_l|<m m<|nyl,..., \nj\<1w
|no|<M [ 41,00 <m
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j=0 [n|<(p—=1)(m—1)+M > n;=n > nit+i=k
nal,lng _l<m m<|ny ... |nj|<M
‘TLO|<M |TLj+1| ..... |nl|<m

Remark 4.6.3 Note that in Lemma 4.6.2, Cy(p, j, I, M) captures the contribution to
the (I — j)th polynomial coefficient from the l-th derivative of the p-th monomial term

of f in the Taylor expansion. If M = m, then Cy(p,j,l, M) =0 for all j >0 and

Ck<p7 07 l7 m) = E (Cp>n0an1 e ﬁnp,l
n0+---+np_l:k
ITLU‘ 7777 |np—l‘<m

For M > m there is also a (small) contribution to the coefficients of higher degrees
of r in the polynomials, while simultaneously decreasing the €, term. This offers a
method for using additional computations to decrease the bound €, if this bound proves

to be too large for the validation procedure.

For notational purposes, set ex, Cr(p, j,{, M), V;O) and Vlgl) to be the m-vectors
as defined in Section 4.2. For 0 < k < m, we substitute the bounds from Lemma 4.6.2

into (88),

(DT(a+WW), € VI [=1,1+v9-1,1
d

( Jeer Y dl () (Z () Cxtvgit ane +eF<p,z,M>>) [—1,1])

=2 p

= ([Jpxrler), =1, 1] + VI [=1,1] + O [-1,1)

<ZZir” (p) ( )quFwF(p J,J,M>>k —1,1]

=2 p=l j=
(

0
_ <|JFXp|eF+vF°>k —1,1]+ V=1,

NI SRS SRS | B D e

Xd:” Z Zl@(§>|JFxF|OF(p,l—z',l,M) ~1.1]

=0 I=max{2,i} p=I

where | - | denotes entry-wise absolute value. For 0 < k < m, set

= RO > s (DTG

w,w' €W (r)
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where C7 (i) satisfies (60).
To finish the construction of the radii polynomials, we need the bounds for Yj.

Recall that

Y

v

|(T'(@) — @)kl

= |[=Jf (@)l

d
—J | pntln + Z Z (Cp)noﬂm i, : (91)

p:O ng+-+np=n

[n1l,..s|npl<m ) K

Therefore, for k < m, set Y = C} where CY. is given by (61). Note that these
terms involve the Galerkin projection of f at @ onto the first m modes and, therefore,
are expected to be small.

For 0 < k < m, we now combine our bounds for Y, with the bounds for Z; to
compute the coefficients of the polynomials Py(r). This leads us to the definition of
the finite radii polynomials presented in Definition 4.2.1.

In modes k > m, we use Lemma 4.6.1 and (89) to obtain that for every w,w’ €

w(r),

N

(DT (i + w')w), C —J(k,k)

l

C umi i l(ll))apCAp LA -1,1].

PN (D) w2

1 p=max{

Therefore, set Zx(r), k > m, such that

C(A, A)

Zi(r) = TR (93)
Recall (91). For k > m, choose Y}, (Compare with (55)) such that
Vi = [(T(a) — )yl
= |=J(k, k) (fi(@))]
d P
>N o

‘Nk|
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Using Lemma 4.6.1,

c d
Zpesler?) Cy UGy 0

|| =2

These bounds are overestimates and should only be used for large k. In fact, if the
coeflicient functions ¢, have finite Fourier expansions (as in the examples we consider
in Section 4.4) then Y) = 0 for k sufficiently large.

Suppose the bounds Y} are numerically or analytically computed for m < k < m.

Then for k& > m, the tail radii polynomial (see Definition 4.2.2) satisfies

Pk(T> = Yk—FZk(T)—é

k-s
d =D -
_olCpW
1> p—2(cpTP )| C(A,/z) S A <k < my
_ lik] lprc |k k -
A k= m.

Checking that P, < 0 for £k > m reduces to checking the inequalities P,, <

0,..., Py, -1 <0 and, by rearranging terms,
Ci(A,A) < |plAs. (96)

Therefore, the assumption that || is growing in k ensures that (96) may be verified
for all £ > m with only a finite number of checks. More explicitly, computing a lower
bound on |u|, k > my would allow us to verify all inequalities of type (96), k > m,,

in one step. Indeed, since +&4) _ 4 < 0 and fr(@) = 0 and |ux| > |p| for all

||
kE>m>my,
Pr) = Vit Zi— %
C+(A,A) As
ks ke
_ GAA) A
— |plke ke
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CHAPTER V

FORCING THEOREMS AND CHAOTIC DYNAMICS
FOR ORDINARY DIFFERENTIAL EQUATIONS

The work presented in this chapter is joint work with Jan Bouwe van den Berg.

5.1 Background

As mentioned in the introduction, we introduce here a new way to prove the existence
of chaos in nonlinear ordinary differential equations. In some sense, this new result
belongs to the class of forcing theorems. An example of a forcing theorem in discrete

dynamical systems is given by Sarkovskii’s theorem [34]

Theorem 5.1.1 Consider a continuous function h : R — R and consider the follow-

ing ordering of the natural numbers

3<5<T7<9<...<2:3<2:5<2.7T<...<22.3<22.5<22.7

<3< F s T <P <2 <2<,

If h has a periodic point of period p and p < q in the above ordering, then h has also

a periodic point of period q.

Example: Consider h : [0,2] — [0,2] defined by h(z) = —22%+ 32+ 1. Observe that
h(0) =1, k(1) = 2 and h(2) = 0. This means that 2o = 0 is a periodic point of period
3. By Sarkovskii’s theorem, h has periodic orbits of all period. With a little more
work, we can show that h : [0,2] — [0, 2] is chaotic in the sense that it has positive
topological entropy. The notion of topological entropy will be defined in Section 5.3.
Observe that proving the existence of a single periodic orbit of a certain type forces

the existence of chaos.
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! = Chaos

» X

56 1 >
Figure 29: The function h : [0,2] — [0,2] defined by h(z) = —32? 4+ 22 + 1 has
periodic orbits of all period.

We adopt the philosophy of the above example to prove the existence of chaos in

the Swift-Hohenberg equation

o m

u" —vu fu—ut=0, v>0 (97)

at the energy level £/ = 0, where

1
E(u,v) :=u"u — 5(1/’)2 +

Vo Lo 2
§(u) +4I(u —1)° (98)

As mentioned earlier, we look for a particular solution. The periodic solution we are

looking for has to satisfy the following geometric hypotheses

(1) @ has exactly four monotone laps and extrema {;}?_,
(H) (2) 4y and a3 are minima and Uy and Uy are mazxima

B < —1<az3 <1<,y

Recall from the introduction that

f:(e7g(]791>"'>7 (99>

where for z := (L, ag, a1, az,---),

2
+1
\/§7

ag + 22&1
=1

- 1
e(r) = —2L? Z Pa; — —
= V2

80



ge(z,v) = [14+vL*k* — L'k ax — Z g, g, agy , k> 0.

k1+ko+kz=k
ki€Z

From what was done in the introduction, we rewrite the forcing theorem as follows

Theorem 5.1.2 (Forcing Theorem) Suppose that at the parameter value v > 0,
there exist v = (L, ag, a1, a9, ) such that f(z,v) =0 and @ given by u(y) := ap +
2> 02 aicos(kLy) satisfies the geometric hypotheses (H). Choose any finite, but
arbitrarily long sequence a = {aj}ﬁ-v:l, with a; > 2 not all equal to 2. Then there
exists a periodic solution u, of (97) at E = 0 that oscillates around the constant
periodic solutions +£1 as follow: a; times around 1, one time around —1, as times

around 1, one time around —1, --- , ay times around 1 and finally one time around

—1.

The proof will be presented in Section 5.2. We now define the notions of topological

entropy and chaos. The following definition is taken from [8].

Definition 5.1.3 Consider X C R™ compact and d a distance in R™. Let f : X — X
be a continuous map. A set W C X is called (n, ¢, f)-separated if for any two different
points z,y € W there is an integer j with 0 < j < n so that the d[f’(z), f7(y)] >
e. Let s(n,e, f) be the maximum cardinality of any (n,e, f)-separated set. The

topological entropy of f is the number

hiop(f) = lim lim sup w. (100)

e—=0 5 oo n

We say that a map f: X — X is chaotic if hy(f) > 0.
The following will be proved in Section 5.3

Corollary 5.1.4 Suppose that at the parameter value v > 0, there exist

x = (L,ap,a1,as, ) such that f(x,v) =0 and @ given by

a(y) = ag + 2, agcos(kLy) satisfies the geometric hypotheses (H). Then the
Swift-Hohenberg equation (97) is chaotic on the energy level E = 0 in the sense that

there exists a 2-D Poincaré return map T such that hy,(T) > 0.
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Figure 30: Periodic solution forcing the existence of chaos.

The hypotheses of Corollary 5.1.4 imply that we need to study the zeros of the
parameter dependent function (99). As pointed out in the introduction, we do this
via validated continuation. Hence, we have to construct the radii polynomials. This
will be done in Section 5.4. The details of how rigorously verify the hypotheses (H)
are given in Section 5.5.

We combine validated continuation and Corollary 5.1.4 to get the main result.

Theorem 5.1.5 For every v € [1 2], the Swift-Hohenberg ODE (97) is chaotic at

2

the enerqgy level at E = 0.

5.2 Proof of the Forcing Theorem

Suppose that at the parameter value v > 0, there exist z = (L, ag, a1, as, - - - ) such that
f(xz,v) = 0 and @ given by u(y) := ag + 2> -, axcos(kLy) satisfies the geometric
hypotheses (H). The idea of the proof is that we will code (discretize) periodic
solutions u of (97) at E = 0 by their extrema (see Figure 31). If v/ = 0 then by (98),
u’ = j:\%(?ﬂ — 1). Hence extrema are nondegenerate except at u = £1, and we are
going to avoid those values, so we may for the moment assume all extrema to be non

degenerate.

Lemma 5.2.1 Let v > 0. There exist nonlinear functions R; : R> — R such that

Riy2 = R (so there are really only two different functions in play) and R; € C*(Q;; R)
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Figure 31: Left: sketch of the solution . Right: discretized version {;}7 ; and a
shift {ﬁi+2}?:1.

with domains
Q; = {(u,v,w) € R3 \ (—1)iu < (—1)%, (—1)iw < (—1)%, and u,v,w # £1}

satisfying the following two properties:

(1) Consider any (non degenerate) periodic solution of (97) at E = 0 and discretize
it to get a sequence of non degenerate extrema {u;}icz, where u; represents a local
minimum for odd i and a local mazimum for even i. Then R;(u;—1, u;, uir1) = 0.

(2) (Ri)icz is a parabolic recurrence relation, i.e. it has the monotonicity property

Ou;_ Ri >0 and 0

Ui41

Ri > 0. (101)

Proof. See [3] for all details. The idea is that there is a unique monotone solution
with energy E = 0 going from the extremum wu; to the next extremum wu;,;. The
functions R; can then be defined/constructed with the help of a return map, which
turns out to have the Twist property. &

For convenience we define

Q = {(wi)iez | (wi-1,u;, uis1) € Q; for all i}.
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The connection between the functions R; and the original ODE is that (see [3] and

[16, Th. 37]) any 2p-periodic sequence (u;);ez € €2 that satisfies
Ri(wi—1,ui, uip1) =0 for all 7,

corresponds to a periodic solution w at energy level £ = 0 with extrema u;. We
want to exploit the fact that {E£ = 0} contains the equilibria v = £1. However,
these solutions do not correspond to a proper sequence of extrema. The linearisation
around the equilibria is going to help us resolve this issue. Namely, for —v/8 < v < /8
the equilibria +1 are saddle-foci, and this leads to the following fact (formulated here

for the equilibrium +1).
Lemma 5.2.2 Let —/8 < v < /8. For any € > 0 there exists a sequence {us},,
0< (=1)(ui —1)<e

which satisfies

Ri(ugflvu;;?u;:+1) =0 fO’l”i > 2.

Note that it obviously does not hold that R4 (uf, uj, u5) = 0, since we did not even
define ug.

Proof. The idea is that the u; are the extrema of an orbit in the stable manifold of
+1. The fact that u; — 1 alternates sign follows from the fact that the equilibrium +1
is a saddle-focus: it is easy to check that for —V/8 < v < /8 the linearised equation

(ie., u =1+ v with v + vv" 4+ 2v + O(v?) = 0) has solutions of the form
1+ Ce " cos( N + @),

with C' and ¢ arbitrary (with A\, and \; depending on v). In particular, the stable

manifold intersects the hyperplane {u’ = 0} in the line

0 ={(1+v,0,—v2v,vV2\0) |v € R}
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For the nonlinear equation we need to invoke the stable manifold theorem. Let
us denote the stable manifold by W#(+1) and the local stable manifold by W} . =
W#(+1) N B, (+1) for eg > 0 chosen sufficiently small for the following arguments to
hold. We conclude that the local stable manifold intersects the hyperplane {u’ = 0}

in a curve tangent to ¢, and thus
Wi N {u' =0} € {(1+v,0,—v20 + 0(v?),V2\v + O(v?)) |v € R} N B, (+1).

In particular, in the local stable manifold, if &' = 0 and u > 1 then v” < 0, whereas if
v’ =0and u < 1then u” > 0. This shows that all solutions in the local stable manifold
have successive extrema on either side of u = 1. Now pick one orbit in the local stable
manifold and denote its extrema by {u:°}2,. Then 0 < (—1)"(u® — 1) < &g, and

€0

U;

— 1 as i — oo (exponentially fast in fact). For all ¢ < gy we may choose
u; = ugl,, ) for some n(e) € N sufficiently large.
Obviously, we can use the symmetry to obtain an analogous result near —1. To

be explicit, @ = —u,, satisfies 0 < (—=1)"(a5 + 1) < . For “technical” reasons to

become clear later, we will need to shift this solution, modulo the 2p-periodicity:

= __ -—¢
Ui = U2 mod 2p -

See Figure 32 for an illustration of u; and ;. Notice that u; does not “close” at
1 = 3. Nevertheless, this will not stop us from putting it to use below.

To study solutions of R; = 0 we introduce an artificial new time variable s and
consider u;(s) evolving according to the flow u, = R;. Clearly, we want to find
stationary points, and we are going to construct isolating neighborhoods for the flow
(any p € N)

wy = R (Uim1, Uiy Uitr), i=1...2p, (102)

where we identify uy = ug,. The monotonicity property (101) implies that this flow

has the decreasing-intersection-number property: if two solutions are represented as
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Figure 32: The “up-down” setting including the oscillating tails in the local stable
manifolds of £1.

piecewise linear functions (as in most of the figures), then the number of intersections
can only decrease as time s increases.
Consider now the solution u associated to the parameter value v € S. In partic-

ular, we have that

Ri(t, Uy, Uz) = 0,
R (i, Uz, ui3) = 0,
Ri(T, Uy, Uz) = 0,
Ro(tsg, U, u1) = 0.

Next, we choose

1
g = §maX{—1 — ’&1,’&2 — 1, 1-— ’&3}

Although not strictly necessary for understanding the arguments that follow, it is
worth mentioning that in the setting of discretized braids described in [16], we are
going to use a skeleton consisting of four strands (see Figure 31, right, and Figure 32):
v} = @; and v? = U;49, and v} = uf and v} = uS. To be precise, both v! and v? are

defined for all i € Z and are 4-periodic. Furthermore, v* is defined for all i > 1

(though not periodic), while v* is defined for i = 0,...2p + 1, with v5 = v3, and
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vgp +1 = vi. All four strands satisfy

Ri(vi_l, vi)”i—f—l) =0 for ¢ = 1, ey 2]?,

with the exception of v* at i = 2,3 and v® at i = 1. In the construction below we will
make sure that these points do not come into play in the construction of isolating

neighborhoods. Recall the finite, but arbitrarily long sequence

a= {aj}é'v:h a; > 2,

with at least one of the a; satisfying a; > 2. Let the period of the sequences (u;) be

p= Zjvzl a; and define the set of partial sums

A= {"231 a;
=1

Note that 0 € A. Now define the neighborhood U C R?? as a product of intervals

nzl,...,N}.

Ua: {uz S 1172: 1a72p}
where the intervals are given by

I; = [u;, o] if ¢ is even,
1—1
2
~ - o 1 —1
I; = [uy,u;] if 7 is odd and —5 € A.

¢ A,

I; = [us, u;] if 7 is odd and

Notice that U, is contained in the domain of definition €2 of R;, since 41 are not in
any of the intervals I;, and the “up-down” criterion is also satisfied, since the intervals
I; for odd 7 are strictly below those for even ¢. It is useful to review the intervals in
the context of Figure 32, and to look at Figure 33 for an example with a = 243.

We now prove that every U, contains an equilibrium of (102). It follows from the
general theory in [16] that U, is an isolating block for the flow in the sense of the

Conley index and that the flow points outwards everywhere on the boundary. In fact,
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a = 2 4 3 Iis

I

Figure 33: The set U, = I; X --- X I3 associated to a = 243.

it is easy to check this on the co-dimension 1 boundaries of U,, i.e., exactly one of the
u; lies on the boundary of [;, while all the others are in the interior (for the higher
co-dimension boundaries, see [16]). For the following arguments it may be helpful for
the reader to consult Figure 34.

Let us consider one of the sides of the 2p-cube U,, for example u; = u; for some
even i, i.e., u; is on the lower boundary of I;. Since w;—; < u;_;, and u;41 < u,; on

the co-dimension 1 piece of this side, we infer from the monotonicity (101) that

wp = Ri(ui1, uiy uia) < Ri(ui_y, uf, vz, ) = 0.

Hence the flow points outwards. And when u; = 4y for some even i (the upper
boundary point of I;), then, since a; > 2, either 52 ¢ A or 2+ ¢ A, or both. Let us
consider the case % ¢ A (the other case is analogous), then u; 1 > @z and w; 11 > Uy

(assuming again that (u;)>”, is in a co-dimension 1 boundary), hence
w; = Ri(ui—1, ui, wig1) > Ry(Us, U, Ur) = 0,

and thus the flow points outwards again. All other (co-dimension 1) boundaries can be
dealt with analogously. We should note that, by construction of the neighborhoods
in combination with the definition of u* and u°, we avoid the three points where
the skeleton does not satisfy the recurrence relation. In particular, no part of the

boundary 90U, lies in the hyperplanes u; = uj (since u; < —1) or us = u§ or uz = u§
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VooV

Figure 34: The thin (black and grey) lines denote the skeleton, where we represent
u® and @® by constants for convenience. The thick free strand is in U, for a = (4),
p = 4. One can check that on the boundary of U, the number of crossings with
at least one of the skeletal strands decreases, hence the flow points outwards on the
boundary OUs,.

(since a; > 2, hence ug, ug > u3). We leave the remaining details to the reader. As
said before, for the higher co-dimension boundaries we refer to [16, Prop. 11, Th. 15].
We can now conclude that since U, is a 2p-cube and the flow points outwards on
0U,, its Conley index is homotopic to a 2p-sphere, and the non-vanishing of its Euler
characteristic implies that there has to be a stationary point inside [16, Lem. 36].
This in fact follows because the invariant set of a discrete parabolic flow consists

of stationary points, periodic orbits, and connecting orbits only (i.e., no strange

attractors). That concludes the proof of the forcing theorem.

5.3 Topological Entropy and Chaos

In this section, we give the proof of Corollary 5.1.4. Suppose that at the parameter
value v > 0, there exist © = (L, ag, a1, a,- -+ ) such that f(z,v) = 0 and @ given by
u(y) == ap+ 2 o, ar cos(kLy) satisfies the geometric hypotheses (H).

By Forcing Theorem 5.1.2, we know that given any finite, but arbitrarily long

N

sequence a = {a;} i=1, with a; > 2 not all equal to 2, there exists a periodic solution

ua of (97) that oscillates around the constant periodic solutions +1 as follow: a;
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times around 1, one time around —1, a, times around 1, one time around —1, --- ,
ay times around 1 and finally one time around —1.

To examine the entropy of the system, we first we look at an alternative coding.

N
=0

To any sequence a = {a;} with a; > 2 not all equal to 2 will correspond a unique
new sequence b defined on two symbols, say 0 and 1. Such a sequence consists of 1’s
interspersed by 0’s, i.e., a 0 can only be followed by a 1, but a 1 can be followed by
a 0 or al. Consider a p-periodic sequence b = b;b, ... b, of this form, then it can be
written as b = 01401920 ... 019 for some dy, . ..dy > 1, with periodic extension, and
p=N +Zi]\il d;. There is a one-to-one correspondence between sequences a described

above and b via the identification a; = d; + 1. We denote this correspondence a ~ b.

In terms of b the intervals are given by

I; = [u3, us) if i is even,
I; = [us, us) if i is odd and bip =0,
I; = [ay, 5] if 7 is odd and bix1 = 1.

2

For any sequence b (~ a), let up, = u, be the solutions of (97) at E = 0 corre-
sponding to the stationary points in U, = U,. The sets of all orbits (varying over
all possible a ~ b) is uniformly bounded. Taking the closure of this set, we obtain
a compact invariant set C C {E = 0} C R* for the ODE (note that it may include
u = +1 as well as @). Let us now look at the entropy of a return map associated to
the flow in this invariant set.

The sequence b codes the position of the minima w; of the stationary point in Uy,.
The energy level {E = 0} is a three-dimensional subset of the phase-space R*. A
local minimum in {E = 0} is defined by the values of u and u", since u” = \/i§|u2 —1].

Let us consider the map T going from one minimum to the next (it may degenerate
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a= 2 4
Uz
%vﬂ—FvAVAvZHvAvAr“M
ug
ul ~ —1
V }
(41

: !
b=0 1 0 1 11

Figure 35: A schematic example of a pattern in U,, with at the top the coding a,

and below the corresponding coding b.

at u = £1, but that is not important here). It is thus a return map on the two-

dimensional subset
1 2 " m 4
lu® — 1, u") Ju,u” € R} C{F =0} C R,

73 - u’ O’
(w0,
By construction, the return map 7', defined on P, has an invariant set A = PNC

We will show that the map 7" : A — A is such that h,,(T) > 0

Define the adjacency matrix

Moo Mot 0 1
M prm— =
mio Mi1 11
and consider the symbol space
Y= A{s=(sos152- ) | mys,,, = 1, for all k}.

Consider now the shift map o : Xpg — 2aq defined

om(s) =5, where s; = s;,1.

A theorem from [33] implies that (o) = log(sp(M)), where

sp(M) = max {|A| | A is an eigenvalue of M}
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is the spectral radius of the adjacency matrix M.
By construction of A, we have that to any z € A corresponds a unique b, € ¥ 4.
Define then p : A — ¥, by p(x) = b,. Note that p : A — ¥, is a continuous

surjective map.

Definition 5.3.1 A continuous map p : X — Y is a topological semi-conjugacy

between f: X — X andg:Y — Y if po f =gopand if pis surjective.

T
A > A

Figure 36: Topological semi-conjugacy between T': A — A and o : Xp — 2

Proposition 5.3.2 hyp(T) > hiop(om).

Proof. First note that p : A — X\, is a topological semi-conjugacy between 7" : A — A
and o 1 Xy — Y. Hence, the result follows from Theorem 2.6 in [8]. »
— V5

Finally, since sp(M) = “5%, we can conclude by Proposition 5.3.2 that h,,(T") >

hiop(o 1) = log (HT\@>, and hence that the ODE is chaotic at energy level E = 0.

5.4 Construction of the Radit Polynomzials

To construct the radii polynomials, we need the Y from (14) and the Zx from (15).
Since we use rigorous numerical methods to find (x,v) such that f(x,v) = 0, we need

to consider a finite dimensional projection of (99). Define

92



Tp = ([E_l,l'(), e 7xm—1) - (L7a07 e aam—l) € Rerl?

m—1 2
1
ag + 2 Z a; + —
=1 \/§

m—1
1
(m) _ 2 2
e\"(xp) = —2L Fa — —
o) 2t
and
g(m)<xF7V) = [go(fL'F,l/), e 7gm—1($FaV>]T

The Galerkin Projection of (99) is defined by

e™ (xp)

f (xp,v) = . (103)
g(m) (xFa V)
Suppose now that at the parameter vy, we found numerically Zp, 2 € R™*! such
that

o f(m
£ @) % 0 and DI, w)ir + o (2, 1) 0.

Denote Zp = (L, ag, a1, -+ ,am_1) and define (L, v) = 1+ vL2k% — L*k*, Jpxm the

computed numerical inverse of D f(™) (Zy, v) and

Jme O

A= . (104)

Denote 0y = (0,0,---) € R™®. Letting T = (T, 0x),Z = (Tr,0x) and fixing s > 4,

we define
st ror
W) ==l x I -5 5] - (105)
k=1
Recall that z, = 7 + vz.

5.4.1 Upper bounds for Y (?)

Recalling (7) and (14), we have
Yi(0) 2 [[=A- fzw, V)] -
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Define

m—1 m—1 m—1 m—1
6 = —20*Y Pa—4LLY  Pa -2 (do+22@1> <&0+2Zdl> !
=1 =1 =1 1=1
m—1 m—1 1 m—1 2
ér = —4LLY Pay -2 Pa - —= (do +2)° al> :
=1 =1 V2 =1
m—1
& = —2L*) Iy
=1
and é4 = é5 = 0.
Given ap = (ag, -+ ,am-1), bp = (b, -+ ,bym—1) and cp = (co, -, Cm_1), We use

the discrete convolution notation

(CLF ES bF * CF)k = E aklkaCkg 5

kq+ko+ky=k
k| <m

where we consider a_p = ag, b_p = b, and c_p = ¢, in evaluating the sum. Let

ZLF:(&Q,"' ,dm_l) and &F: (do,"' ,dm_1). FOI"I{JZO,"- ,m—l, define

g = (WL +K2L2 — ALPLKY) @ + (1+ voLk® — LK) ax — B(ap + ap + ar),
Gra = <2k:2y0m ORI - 4E3£k:4> i + <k:21/0f)2 v ok2LI — 6Z2i2k4) Gy — 3(ar * ar * ap),
oy = (k:%oﬁ 4 ok?LL — 6E2£2k4> ap + (K212 — ALLP K ay — (ap * ap % ar)e,

Gra = (K2L? — ALL*KYay, — L*k*ay,

gk,5 = —I:4l€4&k.
For j =1,--- .5, define
fi= Goj - Grj - Gmory) €R™L (106)

Hence,

fz(:’m)(%, v+ D) = fN(Tp, ) + 0fL 4+ Do+ P s+ P+ 00 fs (107)
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For the cases k € {—1,0,1,--- ;m — 1}, we then let

YF(I;> = ’Jmef(m)(j:F7V0)|+7>|Jm><mf1’+ﬁ2’Jm><mf2|

+ﬁ3|Jm><mf3|+ﬁ4|Jm><mf4|+ﬁ5|<]mxmf5| . (108)
Since for k > m,

fr(zy,v) = —(ap*xap*ap) — 30(ap * ap * ap)k

—3192((711: * &F * &F)k — 193(&1: * dF * &F)k 5

we let
| (L, vo)| b (L, o)
|k (L, o) (L, o)
Note that if & > 3m — 2, then Y, = 0.
5.4.2 Upper bounds for Zp(r, 1)
In this section, we fix M > 3m — 2, we define 1 = [—1,1] and for j > 1 we define
v/ = [—r?,r/], where r comes from W(r). Fix s > 4. Let w,w’ € W(r). Fix

ke{-1,0,---,m— 1} and let hy(t) = [DT,(z + t(w' + 0Z))w]g. By the mean value
theorem, there exists ¢ € [0, 1] such that hg(1) — hg(0) = h)(tx). Hence,

(DT, (w" + z,)w]y = [DT,(T)w] (110)

+ [D’T,[Z + ty(w' + 0&)|(w' + D2)w]

e

Recall that the subscript F' denotes the entries k € {—1,0,1,--- ,m — 1}. Define Rp
such that

Dfp(f, I/)’w = Df(m)(ii‘p, VD)wF + RF .

We then have from (104) that
(DT, (t)wlp = [(I = A-Df(z,v))wlr
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= wp — Jmxm - [Df(Z,v)w]p
= wp — Jmxm - Dfe(Z,v)w
= wp — Joxm - [Df ™ (Zp, vo)wp + Rp)
= [Lnxm = Jmxm Df ™ (@2 p, 0)|wp = s - R
It’s important to note that since .J,,,, is the numerical inverse of DF ™) (Zr, 14), the
Matrix Lysm — Jmxm D f ™ (ZF, 1) should be close to 0 € RM+DX(m+1) " The quantity

left to compute is then Rp € R™™!. For k = —1, we have

fol('fayﬁu = Zaafx_l

i=—1

_ Of-1 of-1,_ - Of-1,_ '
= 37 (Z,v)w_1 + Das (z, V)wo—kizl 2, (T, v)w;

m—1 m—1
—4E Z lQC_Ll] w_1 — \/5 C_L() + 2 Z C_Ll] Wo
=1 =1

[e’e) m—1
+3 | 2L - 2v2 (ao +2) al>] w;
i=1 =1

= DfEnf) (.CT?F, Vo)’LUF =+ R_l s

(Z, v)w;

where
o) m—1
Ro=Y [—2E2@'2 — 22 (ao +2)° al>] w; .
i=m =1
To simplify the presentation, let
; M1 . 1
57 = — 181 =
! L T (M =1 (s 1)
; - M1 - 1
BT L T M 1) 3(s-3)
It’s clear that
i l <187 and f: L < 18
. 78 1 ' 352 2
i=M i=M

Therefore, we have that for every w € W (r)

m—1
a0+22ak

k=1

R_, € <2E2(f82 + iSQ) + 2\/§

(fs1 +i31)> r.
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Define ‘a’M == (‘ELO'a 7’am71’707"' 70)7v0,{m,M} = <O7 707 77157"' 7@) €

RM. Fixing k € {0,---,m — 1} and recalling that v = vy + 7,

_ afk afk
ka(m,y)w = aL UJ 1+Z aaZ

= [2(w+0)LE* — 4L3k4}akw_1 + [1 + (v + D) L*K* — Lk wy,

-3 E C_Lklc_Lk2’UJk3

k1+ko+kz=k
= Df’im) (ZfF, Vo)UJF + Rk s

where
Rk = -3 Z c‘zkl%wkg + v [2Ek2dkw,1 -+ E2k2wk] .
k1+ko+kg=k
[k, k2| <m<|ks|<M
Hence, recalling that wo = [—r, 7| and that wy = [— s k} for k> 1, we get that

R() - 3(|d|§\4 ES U07{m7M})0r

and for k € {1,--- ,m —1}

- - L
Ru € [30aft xvogman e+ oILIR? (2] + ) |

Define vl(wo), vg) € R™*! by

" 2L (fso +isa) +2v2 a0+ 230 | (fs1+is1) , k=—1

Uk‘ =
3(lal3; * vogmary)k , k€{0,--- ,m—1}

and
0, k=-1,0

LI (2l + ) L ke {1l m -1}

o =

Defining Ip = [1,1,--- ,1]T € R™"! let

Vfg‘O) = |[m><m - JmeDf(m) (EF7 VO)’ ]IF + ‘Jme’ ’ v}(’))

VY = Tt
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Hence, for every w € W (r)

(DT, ()w]r € {v}‘” + av}”} r.

(111)

We now need to compute a set enclosure of [D?*T, [z + tx(w' + 02)](w' + 02)w], for

every k € {—1,0,--- ,m — 1}. We begin by considering the case k = —1.

Lemma 5.4.1 Define

Then

M-1 1 m—1 m—1 M—1 1

_ 2 _ 20 _
ZP—_Qa fsa=)Y _Plal, fss=>_ Plal, fSG—Zl_S
=1 =1 =1 =1
12(fs3 +is2)
4 ([fs4 + 0 fss) + DL (fs3 + 2'32)) 4 8(fs5 + iso) <|E| + zam)
+\/§ []. + 4(f86 + Z'81) + 4(f86 + 2.81)2}

AD|L|[fsa + 0 fs5] + 8(fs3 +iso) (|L] + #|L]) #|L]

m—1
o] +2) |ai|]

=1

+0V2(1 4 2f s + 2isy)

P — (‘3@895]
D% . A
= W[m +t_y(w 4 02)|(w + vL)w_4
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The result follows from computing upper bounds for each of the three sums in the
above expansion and by expressing the resulting upper bounds in powers of r. Indeed
92
(9L2[

€ A(fsy+is)r’ + 4 ([fss+ 0 fss) + DILISss + i) ) 1% + 40| L[ s + 0 fss]e

T4ty (w + v@))(w' | + vL)w_

zzam% 7 +t_y(w' + 02)](w' | 4 VL)w;
€ 8(fsy+iss) [r3 + (|E| + 2a|z|) r? + (|I| + 9|L)) 19|ﬁ|r]

and

ZZ 8@ (W, + Da;)w; € V2 [L+4(fsg +is1) +4(fsg +is1)?] r°

m—1
ol +2) |a,.|] r. 1

=1

+0V2(1 + 2f 56+ 2isy)

Consider k € {0,--- ,m — 1} and recall that v = vy + v. Then

=< 92
ZZ f’“ (T + tp (W' + 02), v) (W, + 02w,

= O0x;0x;

0? R
- 8Lf§ (T +t (W +02),v)(w' ; +0L)w_4

x 52
+2 Z 515 fk T+t (v + 02),v) (v, + vL)w;

+3 N @ (' + D), v) (W) + Dag)w;

=0 j=0 8a1~6’a3

_ ~\ 2 ~
_ [zka ~12 <L Tt (g + ﬁL)) k4] [ + t(wl, + Day)] [wL o+ ﬁL] w1
_ ~ _ A~ \3 ~
+2 [21/ (L +tp(w + ﬁL)) K24 (L (', + ﬁL)) k4] [w’,l + ﬁL} Wy

—6 E [dk‘1 + tk (w;€1 + ﬁdkl)} [wfcz + ﬁd@} Wiy -
ki+ko+kg=Fk
ki€Z

Denote 0, = (0,---,0) € R", 0, = (0,0,---) € R> and let

1,1 L L 1,1 L !
v = —_— e e —_ e e . v — —_ e e _
) 7287 7ks7 sy UM ) 7287 ’(M—l)s

99



|a| = (|a0|7"' >|a’m—1|’000) ) |EL|M - (|d0|7"' ’|am—1|70M—m)

‘d’ = (‘d0|a R ’dmflyaooo) ) ’&‘M - (‘&0‘7 Tty |dm71‘70M7m)
A = k:f{‘.?’;fn,l{|@0|> jak|k*}, A= k:f}é}éq{’%" |y |k}

(»)

Remark that for all & > —1, wy, € vir. For the case p = 3, recall e, = g,(f) from (48).

By Corollary 3.5.1,

D law + e (g, + 0aw,)] [, + Pax, ] w,
ki +ko+kg=k
ki€Z

€ (V)r’® + [(|la] % v*)i + 20(|a] * v*)i] r?
+ [o(Jal «[a] o)+ P2(Jaf 5 v)a] v
C [(U?M)k + 51(63)] r’
+ [(\EL|M x 3 )k + 20(|alar * v3)n + (fl + Qﬁfi) 5,(:’) r’

+ [’)(|a|M s |l ar % van)k + D262, % var)k + (PAA + ;)2/12> 6](63)] r

Hence, for k = 0,

- 3fk b b
Z > Dz, (7 + (W' + 02), v)(w; + D2 )w;

i=—1j=-1
€ [(v3))o + 6(()3)] r’

+ (ya|M*UM)0+2u(|a|M*UM>O+(A+2y,4) D] 2

+ [D(|alar = |alar = var)o + 72 (|al3y = var)o + <ﬁ/_1/1 T ,;242) 5550] .
Let C(()) = 084) =0, ¢ (3) = (v31)o + 6(()3) and

c((f) = (|a|ar * v3)o + 20(|a|ar * v3))o + <A+ ﬁfl)
c((]l) = (|a|ar * |alar * var)o + D2 (|al3, % var)o + (19/_1/1—1—&2/12) €5
Now, for k € {1,--- ,m — 1}, let & = |L| + #|L|, 62 = |ax| + P|ax| and define

20
5
Cl(c) T 4
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486, + 20| L|
fs—4 )

, 1
o) = 12k, (9IL]+200) +

o = 2wk + 120000k (5 + 2011

(4) 4
Cp = 12k 62 -+
[fm? + 3602k + 48&61k4]ﬁ]] + (W3 + e
1
_'_

W
(b = w3 )i+ 20((al o+ v+ (A+204) o

[m? (251 + 3&@) + Akis? (251 + 9&@;)]

. .1
AV = 0 (2wk® + 12k162) 6| L] + 25119|L|E (2vk? + 4K*67)

iJalar * lalar + var)i + P2l 5 oan)i + (PAA+ 924%) )

Then we have that for k € {0,--- ,m — 1}

f: f: i (7 + tp(w' + 02), v) (W, + Dd;)w;
89@8% k ’ ¢ ! J

i=—1j=—1

€ c§€5)r5 + c,(€4)r4 + c,(f’)r3 + c,(f)r2 + c,(:)r .

m—

(i ) D) M\
Let e® = e® = 0. For i = 1,2,3,4,5, define ¢, = (e(z),coZ e e 1) . Let
C’l(?l) = V}O) + QVIQ) + |mem|cgf) and for ¢ = 2,3,4,5 define C’l(,i) = |mem|cg). We

then proved that
(DT, (w' + z,)w]p € CPr° + Ot + OPr® + CPv? + OV
Definition 5.4.2 For the cases k € {—1,0,1,--- ,m — 1}, we define

Zp(r,0) = CPr° + Crt + O + O + O (113)
5.4.3 Upper Bound for Z;(r,7) when k > m

Now consider £ > m. Then
[DT,(w' + z,)wly = w, — ————Dfi(w' +z,,v)w ,
where

ka(w/+$uay)w = ,uk(w/—l +Z+VL7V)wk



-3 Z (W' + 2k, (W + 2y Wiy -

k1+ko+kg=k
ki€Z
Define
pr = (' + L+ 0L, v) — (L, o) -
Then
woe Kt [4(@1 + ﬁ|ﬁ|)k4} ré 4 [ka +6(|L| + a\ﬁ\)k,ﬂ r?
+ [20k3( | + PIL]) + 4k* (L] + #|L)] x
+ [ﬁkQ (2y|ﬁi| + L%+ w?|ﬁ|>
+ ||k (4yi|3 +6L%0|L| + 4|L|0*L% + aﬂﬁ\?’)] 1.
Note that
DT, (w' + z,)w]p = __ [ewy + 3 (W' + 2,)* xw),]
1k (L, 1) k
Now,

(W' +a,)?xw), € ()’ +2][(la] xv*)x + o(la] * v*)i] r°

+ [(\ELP * 0) + 20(|al * |a| * v) + 0*(|a)? * v)k] r

Consider now the cases k € {m,---, M — 1} and recall that w; € ;5r. Consider the

case p = 3 and recall the definition of 5,(57 ) = 5123) from (48). By Corollary 3.5.1,

(W' + )% w)lC € [(vi/[)k + 51(5))] r
+2 [(Jalar * vix + #(1aln + 03 + (A+74) ] 1?
+(|al3s * var)e + 20(|alas * |alar * var)n
+ 0%(|al?, * vk + ([1 + ﬁA)Q]r .
Recall that 0; = (|L| + #|L|). For every k € {m,--- , M — 1}, define

1

0(5) _ _ :
k ks =4 g (L, vo)|
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46,

0(4) _ _ ’
g k=4 (L, vo)
\ 1 vk? + 66, k4 ;
C]g L= | (L, )| l ks + 3(vi )k + 3»3,(C ) ,
0(2) . 1 |i2V/{32(51 + 4]€4(5:13
* (L, o) ks
+2((alas * 03+ 20(lalas 03s +2 (A+9A) ]
1 D2 /.o )
L PRVATS] { o (ILLL+ I+ vl )
oLk /- o . .
+”|ks| <4yL|3 + 6L20|L| + 4| L|p2L% + 193\L\3)

3(1al2, * var)e + 69([alar * |alar * var)e + 352(|af2, % var)s + 3 ([1 + aA>2 5550] .
We then proved that for every k € {m,--- , M — 1},
(DT, (' + z,)w], € COr% + Vet + 0P + e + cVr
Definition 5.4.3 For k € {m,--- ,M — 1}, define
Zy(r,v) = C,Es)r‘r’ + C,g4)r4 + C,gg)r:s + C’,£2)7“2 + C,El)r . (114)
Choose M large enough so that, given L, 1, > 0, we have that

IZ0) 1

_— = < =
L2k2 LAk — 27

for all k > M. In this case, |up(L, o) = L*k* [1 — (%% — 73)], for all k > M.

Hence, we have that
1 2

7 S T
lpe(L,vo)| = LAk

and then

Mzwk 1 2 5 8 _ s . ) v ~ " \

L) -k {-—r + = (IL1+ 21L) r* + o 6 (I +7IL) | x
= ~ - ~\ 3

[L (121 + 211) +2 (121 + #1L1) } 2

2% o
+ [E4M2 <2y|LL| 412 +VV|L|>
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20| L|
L4

+ (4]E]3+6E2ﬁ|ﬁ| +4\E\ﬁ2ﬁ2+ﬁ3\£\3>] r} .

Recall Theorem 3.3.1 and (46) for p = 3. Then, for k > M, we get that

((w’ +2,)% % w)k € (VP)r®+2 [(|a] x 02 + 0(|al] * vz)k} r’

[ |a|2>|<v )i +20(|a| * |al *v)k+ﬁ2(|a|2*v)k} r
3) . B )
i [r +2<[H—0A> r? + (A+ﬁA> ]

C =
1 _ N _ N 2
C E{afyr +2a{) (A+04)r* +af) (A+7A) r} .
Define
0(5) o 2 0(4) 851 0(3) 2 1% 65 20(5\?/’[)
I 2 TE 78l BV PRl I T VT
3)
@ _ 4[v 3] 4 0 (5154
1 2v
O (2nyL|+L2+W|L|>
21/|L| - o a o . 2a%) A\ 2
= (4|L|3+6L2V|L|+4|L|V2L2 3|L|) o (A—l—I/A) .

We then proved that if M is large enough, then for every k > M

1
(DT, (w'" + z,)w], € pr [C](\j)ﬁ + oWt 1 03 4 022 C}\})r} ‘

Definition 5.4.4 For k > M, define

1
Zk(T’, l)) = -

e [C'](\?vj + C](\j)r‘l + CE)T?’ + C’J(\j)r2 + C'](\})T} ) (115)

Note that defined like this the Z; satisfies

Zu(r, ) < Zag(r,0) , k> M (116)

5.4.4 Definition of the Radii Polynomials

We are finally ready for the following.
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Definition 5.4.5 Recalling (108), (109), (113) and (114), we define the finite radii

polynomials {py }k=—1,.. m—1 by

1
pr(r,v) = 0125»5 + 0124)74 + (1123»3 + 0122)7»2 + {sz;l) _ E} r+ YD) . (117)

We define the tail radii polynomial py; by
pyv(r,v) = C’](\Z)r4 + C](\j)r?’ + 01(\3)7“2 + C’](\?r + C](Vl[) —-1. (118)

Combining (115) and (116), we have that

r

pM<7“, ﬂ) <0)= Yk(ﬁ) + Zk(T, ﬁ) < s

kE>M.

5.5 Verification of the Geometric Hypotheses (H)

For a fixed s > 4, suppose that using the radii polynomials, we found a set

REET (RS (B3

such that for each v € [vy, vy + 7], W,,(r) contains a unique zero of (99) at the

parameter value v. Recall that

(1) @ has exactly four monotone laps and extrema {;}7_,
(H) (2) w1 and a3 are minima and Uy and U4 are mazxima
B)u < —1<uz<1<iy="dy.
We need to make sure that the unique zero of f in W, satisfies the hypotheses of

(H). The following will help simplifying the verification.

Proposition 5.5.1 Suppose that u,, is a periodic solution of (97) at the energy level
E =0 when v = vy. Suppose also that @, satisfies (H). If the set {u,|v € [Vo, Vmax] }
is a continuous branch of periodic solutions of (97) at E' = 0, then automatically, i,

satisfies (H) for all v € [1y, Vmax]-
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Proof. Denote by wy(r) the moving local maximum as we change v > vy and such
that 4s(19) = @g. Then Uy(v) does not cross the line u = 1, since otherwise we
would get the existence of v € [, Vmax] such that @) (v) = @4(v) = 0 (since E = 0)
and u5'(v) = 0 (otherwise it is no longer the maximum) which would lead to a
contradiction since uniqueness of the initial value problem for the ODE then says
that u(y) = 1 for all y (which it isn’t). Similarly the minima @;(v) and @3(v) cannot
cross u = —1 or u = 1, since then ' = 0, v’/ = 0 (since £ = 0), and «"” = 0 (by
symmetry) and the contradiction follows again. At these extrema, we have that ' = 0
and hence, the energy is F(u,v) = —1(u”)* + 1(u* — 1)> = 0. Since @; # +1, then
@ # 0 and by the implicit function theorem, we get that extrema vary continuously
as we move v € [y, Vmax] and, as already said, they cannot cross +1.

We now prove that there can’t be any other extrema popping up at some v €
(10, Vmax]. We argue by contradiction. Suppose for some v there is an additional
extremum. Then there is a smallest v, > 1 for which there is an additional extremum.
In particular, there are no additional extrema for v < v,.

For v = v,, there is a point y, € (0,7/L) with u], (y.) = 0, and not one of the
usual extrema (uy,ug, ug). If u”(y.) # 0 then by the implicit function theorem this
extremum persists for v < v, a contradiction. Hence it must be that «”(y.) = 0, and
thus u(y.) = £1 since £ = 0. Finally, u"(y.) # 0 for the same reason as before. Let
us consider the case u(y.) = 1 and u"(y.) > 0, All other (three) cases are analogous.

We thus have

() =1, w, (y) =0, wu, (y.)=0, wuy (y) > 0. (119)

Clearly u;, (y) > 0 for y sufficiently close to y.. Let v, = v, —1/n be a sequence
approaching v, from below. Then by the implicit function theorem, for large enough
n, there exists points y,, such that lim, .o y, = y and u;, (y,,) = 0, and u;, (y,) # 0 by
the assumption that v, is the smallest value for which there is an additional extremum,;

in fact, for the same reason it follows that u;, (y,) > 0.
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We conclude from £ = 0 and u;, (y,) = 0 that

[u;’; (yn) + %ULn(yn)]ULn(yn) = —i(uyn(yﬁ —1)%

Since wu;, (y,) > 0, this means that
n Vn /
Finally, take the limit n — oo in the above inequality to obtain

uy, (ys) + %U’V* (y:) <0,

which contradicts (119). Hence, for all v € [vg, Vmax], we have that (H) is always
satisfied. u

Hence, we only need to show that (H) is satisfied at v = 1. Consider z and
denote by T = (i, do, ay, - - - ) the unique element of W; such that f(z,1y) = 0. The

corresponding periodic function u is defined by

u(y) = ap + 2 Z ar cos(kLy).

k=1
Also, we have that
W(y) = —2L)  kagsin(kLy)
k=1
i'(y) = —2L? Z k2ay, cos(kLy).
k=1
Note that L € L := [L —r, L + r] and
ag:=lap—r,ap+r], k=0
ake ék::[dk—;—s,dkjtg—s}, k:zl,...,m—l

ay = [—#,II—S}, k> m.

Consider y € y := [y, yt] C [O, %} Let 1 = [—1,1]. Then using interval arith-
metic, we can compute rigorous interval enclosures of @(y), @'(y) and @”(y):
— 2r
U € uly|:=apg+?2 a kL 1
U(y) U[Y] ap + ; ak COS( y) + (m _ 1)371(8 _ 1) )
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N -— 2r ~
u'(y) € Z ay sin(kLy) + R 2)L,

m—1

~/ ~ /! 9T 2r T2
i'(y) € u'ly]:= 2L 2 k2ay cos(kLy) + (=19 3(s = 3)L

Note that we a priori know that @ is symmetric in the lines y = 0 and y =

will be useful in the following procedure:

Procedure 5.5.2 To check that (H) is verified at vy, we proceed as follows.

1. Verify that 0[0] C (—oo, —1). That implies that 4; < —1.

That

2. Find the largest yo > 0 such that 0"[0,yo] C (0,00). Hence, there is a unique

extremum in [0, yo] namely the minimum u; = 0.

3. Find the largest y; > yo such that W' [yo,y1] C (0,00). Hence, the interval [yo, y1]

does not contain any extremum.

4. Verify that ufy] C (1, 00).

5. Find the largest yo > y; such that Uy, ya] C (1,00) and @"[y1, y2] C (—00,0).

6. Verify that @'[ys] C (—o00,0). That implies that there is a unique extremum in

[y1, Y] namely the mazimum @y > 1.

7. Find the largest y3 > yo such that @'|ys,ys] C (—o00,0). Hence, the interval

(Y2, y3] does not contain any extremum.

8. Verify that ulys] C (—1,1).

9. Find the largest ys > y3 such that Qlys,ys] C (—1,1) and @"[ys, y4] C (0, 00).

10. Verify that yy, > 7. That implies that there is a unique extremum in [ys, yu]

namely the minimum —1 < ug < 1.
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Figure 37: Procedure to make sure that the periodic solution @ satisfies (H).

By symmetry of the periodic solution with respect to the line y = 7, we can stop the
procedure. Hence, if all steps of Procedure 5.5.2, then @ satisfies the hypotheses (H).
Therefore, if Procedure 5.5.2 succeed at 1, then combining Proposition 5.5.1 with

Corollary 5.1.4, we get that for all v € [y, Vmax|, the Swift-Hohenberg equation (97)

is chaotic at the energy level ' = 0.
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CHAPTER VI

PERIODIC SOLUTIONS OF DELAY EQUATIONS

The work presented in this chapter was strongly motivated by helpful discussions

with John-Mallet Paret and Roger Nussbaum.

6.1 Background

Consider the Wright’s equation

y(t) = —ay(t = DI +y(1)]. (120)

The goal of this section is to transform the study of periodic solutions of (120) into
the study of the zeros of a parameter dependent infinite dimensional problem. Since
we look for periodic solutions of (120) on an a priori unknown time interval [0, 2%],

we consider the expansion of the periodic solution y in Fourier series

y(t) = Y e, (121)

k=—o0

where the ¢ are complex numbers satisfying ¢_, = ¢, since y(-) € R. Let ¢ = {¢ }rez-

Substituting

(e o]

y(t—1) = Z cre” FEeREt and g(t) = Z crik Le™™

k=—00 k=—o00

in (120), we get that

Z [ile + ae_ile} cr e P 4o

ki=—o0

(o ¢] [o.¢]
E Ck26—zk‘2Lelk’2Lt E Ck3 e’Lk:;th — 0

ko=—00 ks=—o00

ikLt

Taking the inner product with each """, we get the following countable system of

equations to be satisfied

gi(L,c,@) == [ikL + ae"*] ¢, + Z e~ *le e, =0, keEZ. (122)
ki1+ko=k
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Since g_ = gr and c_; = ¢, we only need to consider the cases k € N when solving
for (122). Since we will not a priori know the period L of (120), we leave L as a
variable. Denoting the real part and the imaginary part of ¢, respectively by a; and
bi, we get that an equivalent expansion for (121) is given by

y(t) =aog+ 2 Z lag cos kLt — by sin kLt] . (123)
k=1

Note that ap = a_; and by = —b_;. Hence, we get that by = 0. Given k£ € N, the real

and the imaginary parts of (122) are respectively given by

(krag + Bibr) + o Z (cos ki L) (ag, agy, — by, br,) + (sin k1 L) (ag, by, + b, ar,) = 0,
k1+ko=k

(—Brax + kkbe) + Y —(sin ki L)(ax,ar, — br,b,) + (cos ky L) (ax,br, + bryax,) = 0,
ki1+ko=k

where K, := acoskL and (B := —kL + asin kL. Define

[L, ao] y k=0
T —
[ak, bk] , k>0
and let * = (zg, 21, -+ , Tk, -+ )7. We impose scaling condition y(0) = 0. Hence,

define
foa(z) =y(0) =ag+2 ay.
k=1

Define fj2(z, ) to be the real part of go(x, a)

foo(z,a) = a |ag + ai + 2 Z(COS kiL) (a;, + b))

ki=1
Define
Joa(z)
fo(z,a) = (124)
f0,2($a 04)
For k € N strictly positive, let
Ke DBk acoskL —kL + asinkL
Rk(L, Oé) = =
0Ok Kg kL — asinkL acoskL
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and for k| € Z, let
coskiL sinkL

®k‘1 (L) =
—sinkiL coskiL
For k > 1, define
fk,l(xa O[)
frlz,a) = (125)
fk,Q(l’7 O[)
a g Ak, — bi. b
_ Rk(L,a) k ta Z @kl(L) k1 Wko k1Yk2
bk k1+ko=k Afy bk2 + bk1 Ay

ki€Z

Finally, define the function f : ¢ x [2,00) — Im(f) : (z,@) — f(z,a) component-

wise by
.
ap+2> 2 a
0 Zk_l k k=0
« [ao + a3 + 2 szzl(cos kiL) (az1 + bzl)}
fk(xa Oé) = )
ag Ay Qfy — bk1 ka
Rk(L7 Oé) + Zlﬂ+k2:’C @k1 (L) ) k >1
by, heL Ay bkz + bkl ks

\

(126)
Hence, the problem of finding periodic solutions of (120) is equivalent to finding zeros
of (126). Since the periodic solutions of (120) are analytic (see [27]), it means that
the Fourier coefficients a; and b, have a very fast decay. We are ready to do validated

continuation on the infinite dimensional problem
f(z,a) =0. (127)
We now have to construct the radii polynomials.

6.2 Construction of the Radit Polynomaials

Since we want to do numerics on (127), we first consider a finite dimensional approx-

imation on which we compute. Throughout this section, we use the subscript (-)r to
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" (@r, q)

denote the 2m entries corresponding to k =0,--- ,m — 1. Let 2p = (2, -+ , p_1)7

and fr = (fo,+, fm_1)? so that we can define the Galerkin projection of f by
fM R xR — R*™ : (zp,a) — f™(2p,a) = fr([zp,0],a). (128)

To be more explicit, we get that

¢

a0+ 2305 a b0
o [ao + a2 + 2 Zz;ll(cos kiL) (ail + bzl)}
ay g, Agy — biy by,
Ri(L, ) +a> kimer Ok (L) T k=1, m— 1.
bk |k1],) k2| <m aklka + bk1ak2

\

Suppose that at the parameter value ap, we computed using the classical contin-
uation method introduced in Section 1.1, a hyperbolic zero Zp € R*™ of f(™ ie. a

point such that
f"(Zp, ap) = 0 and Df™(Zp, ag) is invertible.

We then define the tangent £ € R?>™ by

Df"™(zp, 00) - ip = —%(5@,0&0)

Let

T z

T = F and T = r e r?

0 0o

For k > m, define Ay, = Ay(Z, ap) by
0
Ay = a—j;i(x, )
_ _ ap 0 _ _ dor  box
= Rk(L, Oéo) + « [@k<L) + @0] + [@,k([/) + @gk(L)] -
0 ao bop  —agy
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since for k > m, Gop = bop, = 0. Let Jpyp the computed numerical inverse of

Df(m) (ZE'F, Oéo) and

Afl
0 ALl

For every parameter value a > «p, we define the operator T, by
To(x)=2—J- f(z,«a)

and the predictor x, by

where

~

a:=a—ay>0.

Fixing s > 2, we define the following set centered at z,

W, (r) = xo+W(r)
_ ENIREIN S IR
— xa—i—{[ 7] XH[ ks’kzs} }
k=1
so that a point w € W(r) can be expressed component-wise like

T
w = ([wngg]a [w(llvwllj]v”' 7[wl(<l:7wll::]7"') .

6.2.1 Computation of the Y;(«)

(129)

(130)

(131)

(132)

(133)

Recalling the definition of Y} in (14) and equations (129) and (130), we get that

Yi(a) 2 [T f(za, @)];] € R%

Definition 6.2.1 Let u,v € R™. We define the component-wise inequality by <.,

and say that u <., v if u; < v;, forallt=1,--- ,m.
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For the cases k € {0,--- ,m — 1},
Yr(a) 2 |Trxr [fr(wa, @)]] € R*™ (134)

and for a fixed m < k <2m — 2,
Vi(@) > [A (2,00) 7"+ fr(za, )| € R2. (135)

Now, remark that since [z,];, = (0,0)” for & > m then fi(z4,a) = (0,0)T for k& >
2m — 1. For k > 2m — 1, we then let Y;(a) = (0,0)7. In order to construct an upper
bound for Y}, we need to compute fi(z,, ), for & > 0.

Let

g = «

1
_l_
_ N _ N 2
+2a > cos (k1 L+ &L]) ([a,ﬂ + aag, ) + [bkl + dbkl} )

m—1

Then, we get that

for(za) = [aog+ daao] +2 ) [ax + day]

and

fo2(Ta, @) = fo2(Zr, ap) + Fop.

Let

m—1

+ Y (kiaol LI+ 1) (af, +57,) ,

k1=1

m—1
ap + 2 E ag
k=1

3
L

o = ‘dkldkl + by, by

3 T
Ll

~2 72
oy = (ak1 —+ bkl) , 03 =

I

=
Il
—_
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By the mean value theorem, we get that
Fop] < &% [ag + 202] + & [|ao| + awag + 2]aodo| + 401 + 20002
—f-d |:|a,0| + Ojold0| + dg + 2a0|d0d0| + 40[00'1} .

Define

0, a2 + 202)T ,
0, |ao| + apag + 2|agao| + 40, + 2@002)T,

) =

(7o,
~(2) (
T

(03, lao| + aolao| + ag + 2a|aoaol + 4oy )

Hence, we get that

Fol@a, @) = f (g, 00) + 7o and |fo| <ew &P + a2AY + arlY.

For k € {1,--- ,2m — 2}, define

e = fru(Ta, @) — fi(Z, )
| agag, —byb
— 4 Y ey@+aly| MM
kq+ko=Fk g, ka + bk1 A,
|k1],|k2|<m

_ . _ Qg

n [Rk (L ¥ aL,a> _ Ry (L,ao)} ]

by,

+avg Z [@kzl(i +al) — @kl@)} Ay Ak, — bk, Oy

i b + i
1;|R2|<M

_ .| Gkyak, + ag,Gry — bk, b, — bry by,

E @kl (L + aL) . _ _ R

ky+ko=k akl bk2 —+ &kl bk2 —+ bklde + bklde
|k, |k2|<m
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N = - dkl&b - bkl bkz
+a’a g O, (L + aL)
kq+ko=Fk Ak, ka + bkl Ay
‘k1|,|k2|<m

For k € {1,---,2m — 2}, let

" (1 + aok|Z|) Jax] + (1 + (1 + ao)k|Z]) B]
(1+ (14 ap)k|L]) |ax| + (1 + aok|L]|) |bk]|
@ FILbi| + ao (Jawl + [l
Vk - _ . R 3
FlLan] -+ ao (lin] + ]
. (3) k| Lbx| + || + (bl
Vk - . . R 5
k}|L6Lk| + |6Lk| + |bk|
oW = Z [1 + a0|k1£y] (|, @y — brybrs | + |Gy bry + iy iy |) I,
k1+ko=k
[k, k2| <m
\A/’(€5) = Z ‘C_Lklde + dklc_l/kg — Bkli)kg — l;klgkz I,
ki +kg=k
et |, [kea <m
+ ) ’dkli?l@ + iy Dy + Dy iy + Dy Ay | T,
kq+ko=Fk
‘k1|,|k2|<m
W= 3 (‘a,ﬂakQ by by | + (akl b + by | ) T
kq+ko=k
|k1],|k2|<m

By the mean value theorem, we get that

7] <ew @ (%,(j) +92 + 0 + aoﬁ,ﬂf’))

02 (¥ + 90 + aotl?) + a7,

Note that for k € {m,---,2m — 2}, we have that G,ﬁ” = \7,(62) = \7,(63) = (0,0)T. For

every k € {1,---,2m — 2}, define

Ty = Vi
i = Y+ + aghy)
A = 9 9D 9 ey,

117



Recalling (134), we have that

[rar fr(@asa)l = [Jowr [£87@r 00) + ) |
Scw JFxF-fém)(j’Ozo)’—|—|JF><F.7?F|

<ew JFxF'fl(wm)(f,C%o) +OAK|JF><F‘7§1([71)

62 | Tpup| P2+ 6% [Ty p| 7.
Hence, we let
Ye(a) = ‘JpxF ez, ao)] b & T 7Y 4 @2 | Tpr] 72 4 63 | Tper| 7D, (136)

For a fixed m < k <2m — 2,

—14(1)

| A (2, o) fr(2a, a)| < |Mk(z, o)~ fu(Z, ao)| + a ‘Ak (Z, a0)" 7
+6% A4 (7, 00) 7 + 62 A (7, 00) 1)

Hence, for k € {m,--- ,2m — 2}, we let

Yi(a) = }Ak(f,aorlfk(f,aon+a]Ak(:z,a0>—1f,9> (137)

4 ‘Ak (7, ap) 7P

4 a8 ‘Ak (z, a0>—1f,§3>( |

Remark 6.2.2 Notice that we built the 7, component-wise monotone increasing in «
which then imply that all the Yy, defined in (136) and (137) are also component-wise

monotone Increasing in .
6.2.2 Computation of the Z.(r, «)

Recall that for s > 2 fixed, we defined

W, (r) = xo+W(r)

= x4+ {[—r,r]2 X ,f[l [—%,%r}
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Let w,w" € W(r). Recall that in order to compute an upper bound on Z(r, «), we
need to compute [DT,(x,+w)w'];, and recall that the subscript F' denotes the entries
ke{0,---,m—1}. We then have from (129) and (130) that

(DT (2o + w)w'r = [{I—J-Df(xe+w,a)}w]r
= wp — Jpxr - [Df (2o +w,a)w']p
= Wy — Jpxr - Dfp(2e +w, a)w’ (138)
= Wy — Jpwp - [DF™(Zp, o)W + 75
= [Ir — Jpar D" (ZF, ao)|wr — Jrxr - TF,
where rr will be computed later. It’s important to note that since Jpyp is the nu-

merical inverse of D ™ (Zp, ag), the matrix Ir — Jpyp D f"™ (Zp, ) should basically

be 0. For k£ > m, we have that

[DTo (20 + W'y = [{I—J-Df(xe+w,a)}tw]

= w) — A,:l “[Df(xo +w,a)w']y

= wj, — A" Dfi(ra +w, 0)w’ (139)
/ 1 | Ofk

—1
= _Ak Tk,

where the r, will be computed later. In order to compute the Z,, we first need to
compute D fp(z, + w,a)w’. Recalling (132) and (133), we get that for w € W (r),

when k£ > 1. Define £ := az + w so that x, +w =

wy € [—r,7]? and wy, € [—&, =],

T + £. Denote
rx = (_Z & all,bl [am lab —1]7[070]’[0 O} )T
T
i = ([Laol,[an bl o+ [ b, 0,00,[0,0], )
T
’LU/ = <w0 ,wo ;w/lb]u"' 7[w;ca7w;€b}7"'>
§ = <§0>§0 [S§ 51 7[513’512]7"')T
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Throughout the rest of the section, we will use the notation 1 = [~1,1] and 1’/ =
[—r7 7).

Recalling that fo1(z) = ag+2> ;- ar, we get that
= / 8f01 /
Dfor(z +&w = Z@x (T +£)wi=w0 +2Zw +2Zw
= Df ( F)WE + 70,1 (140)

where ro1 :=2> 77 w,.". Define

M-—1
1 1
_ . (1) _ :
fs1= ];:m e Rl iy gy H 2(fs1 +is1). (141)

Then we get that

ro1 € riqr. (142)

Recalling that foo(z, @) = a [ag 4+ af +2> 7 _; cos(k1L) (af, + b7, )], we get

0
(522 = 2« Z kysin(kq L) akl + bil) .
k=1
Define
S(()}%,L = =2 Z ki Sin(klf’) (&21 + Ei1) w6L7
k=1
m—1
8(()2,1: = -2 Z ki cos(s,) (ay, + b;,) wy,
klfl
sé?%L = -2 Z k1 sin(t, ) ( i >
k=1
SE)%%,L = =2 Z k1 sin(t,) ( ak, g, + Qbklbkl + 2ap, wy, + Qbklwkl) w{)L,
k=1
sé‘j’%,L = -2 Z v sin(ty, ) (2ag,wi, + 20 wh, + (w§)? + (wh))?) wy”,
k=1
Toor = o?s&%i + oz(df/ + wé)s((f%’,: + &QQS@L + &asff%’,; + ozs((f%’L.
Hence,
dfo2 /L
o8 (5 1 €, )l
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m—1
= —2(0{0 —|— OAC) Z kl Sln(k1.i) (akl + b ) -~
k1=1
m—1
—2a )k [sin(ki L+ k&) —sin(kiL)] (ai, +B7,) wj

k1=1

—2a Y " kysin(k L + ki) [2ak, 65, + 205,80, + (607 + (€)% wp”
k1=1
Ofyy

= (‘9le (Tp, ap)w, —QQZklsm (kL) ak1+b ) -
k=1

L

m—1

—2a Z k1&g cos(sy, ) (ay, +b;,) wh*

k1=1

_206 Z kl Sln(tkl) [26—1‘]61&-]?1 + 2(_)]615](;1 + (5;611)2 + (52‘1>2i| w/L
ki1=1
0fy

= = (T, Oéo)wf)L + ro,2,L-

oL

Let

m— m—1
Star = 23 k(@ +B) . S0, =23 K (a +8)

k1=1 k1=1

m m—1
9, = 2%k (azl + bi1> C = =4k ‘akla,ﬂ + by b,

kll kll

Y

5 |k, |+ |bi, | 6) |y, | + |b, |
Z((),%,L = Z 1ks 1 =, éZL_4Z 1ks 1 =,

kll kll

M-1 1 1
f32 == 51 ng = — (143)
2 (M —1)~2(s —2)

and define

roas 4a(fsg +isg) (144)

(2) (2) A 5(5) (6)
T0,2,L 0420,2 Lt CWZOQ,L + aZO,Q,L

1 3 -
T((),2),L = Eé : or T aa|L|Eo ot O‘Eé,%,L + O‘O‘Eé,%,L-

Then

To2,L € T(()32) 4 T(()?Q),LFQ + T((JT2)7L1'- (145)
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Now ags(’f (r,a) = afl

+ 2agp). Define

7’0’2@0 = [20(0108 -+ (3[ (20&0&0 -+ 1 + QC_L() + 2w8) —+ 662 (2&0)] U}E)a
g = 200, Toaa = &1+ 2ao|) + 2ad]dol. (146)
Hence
8 a A — a
8{?72 (Z+ & a)wy” = (o + &)(1 4 2a0 + 255)wy
0
ofes a
= 8a70 (Zr, a0)wy” + 702,00
and
702,00 € r((f%,aorQ + ré}%’aor. (147)
For i > 1, we have that %(m, a) = 4accos(iL)[a;, b;]. By the mean value theorem,
there exist s;,t; € [0,1] such that
i 0oz (z+ & a)w, = 4o i cos(iL + i&h) [di + £ b + Eb]
‘ axl (2 . (2 1
=1 i=1 w;
m—1 w{a
= 4 g L+ i&)) [ai , b '
(oo + &) ; cos(iL +i&)) [a; , bi .
o] U),-a
+4a cos(iL + igk) [en | & ‘
iz:; ( 50) [ 7 61} w{b
m—1
= 4(ap + Q) Z cos(iL) [aiw;“ + l_),-wgb}
i=1
m—1 B
+4a Z [cos(iL + i&l) — cos(iL)] [aiw;“ + biw;b]
i=1
+4a Z cos(iL + i&}) [{fwga + £fw;b]
i=1
m—1 (m)
afO 2 /
= Zz:; a:)jl (ZL‘F, ao)wi + 7“072700.
where 79  is defined by the following
m—1 m—1
sé}% = Z cos(iL) [diwga - Biwgb} , s((f% = —isin(s;) [diwga + Biwgb]
i=1 i=1
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m—1
sgg = Z cos(t;) [&iwga + 8¢w§b] , 584% = Z cos(t;) [w?wga - wfw;b] ,
=1 —1

Tozeo = 4asy+da(@L +wk)sl) + dadssy + dasyy.
Let
m—1
1 \azH!b\ a |+\b| Iaz|+|b!
5 = z 59 = : 62—2
=1
F le 1 1 (148)
S = -, 1S3 =
T e T M1 (s - )
and define
s = 8a(fss+iss) +4aSi) (149)

e = 46505+ 4ad|L|EF) + 4065,

Then

To200 € T9,00T2 + T59 soT (150)

Defining

To,2 = T0,2,L + 70,2,a0 T 70,2,00

and combining (145), (147) and (150), we get that

D foa(xe +w,a)uw’

Ofoz,_ L. Ofo2,_ R Ofos
= L @+&au + 5 EE+ & aJup +; fo (@& Q)]
8f(m) f(m
= 801,/2 (fF,Oto)wo + 102, + Dag (xF,Oéo)wg + 70,2,a0
m—1 m)
0
+Z fo,? (T, o) w; + 702,00
i=1 ¢

= Dfo2(Tr, ao)wp +702.
Recalling (141), (144), (146) and (149), we let

(1) (1)
1

_ T _ iy 1) 1
o = (7‘0,177’0,2) » To —<7“o,

7’( + 7“( + 7’( !
» 10,2,L 0,2,a0 0,2,00
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(2)

2
+ rO,Z,ao ¥

2 2
7"(()) = (0: r((),%,L + 702,00

we get that

Dfo(zq +w,a)w’ = Dfém)

and

ro € 7“(()3)1"3 + r(()z)

In what follows, we will need the following.

I'2

Lemma 6.2.3 Suppose that k> M > 5 and let s > 2. Then

k-1
1 2 2
5 < — |1+ In(M
kN (k — k) T ke [M [ Inf

ki=1

Proof. See the proof Lemma 3.1.2. 1

Consider now k£ > 1 and recall that in this case

ag
fk(l’,Oé) = Rk + « Z @k1
by, k1 +ko=k
where
acosklL —kL + asinkL
Rk(L, Oz) =
kL — asin kL acos kL
For k > 1, denote
—aksin kL
R.(L,a) =
k — akcoskL
and for k; € Z, denote
—kysin kL
(L) =
—kycoski L
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T T
) , 1 = (0, r[g?;L) , (151)
(Zp, ag)whp + 1. (152)
+r{Vr, (153)
71'2 9 s—2
-1 — | |—=+1 ) 154
1+ 5] | +1] (151)
akla;@ — bkz1bk2 c RQ
g, b, + bp, A,
coskiL sink;L
) @k1(L) =
—sink;L coskiL
—k + akcoskL
: (155)
—aksinkL
ki coskiL
(156)
—Fkysink, L



Lemma 6.2.4 LetI, = (1,1)", ky € Z, a,b,L € R, &, L > 0, ag > 7/2, a = g + &,
wy, € 5o, £ = &L + wl with wh € v = [—r,7]. Let M > 2m — 1 and recall that

1=[-1,1]. Forke{l,...,M — 1}, define

Sp = > kal (1, Gy — by bra| + [k, iy + by i |) T
k1+ko=k
Zl(f,}/ = Z k% (|&k1ak2 - Bkll;kQ‘ + |ak16/€2 + Z)kla’k2|) I
k1+ko=k
o= Y. ki (!dkl?)kz — by by | + |k, b, + ?)kl&kz!) I
k1+ko=k
EIE:A%)L = Z |k1| (|ak1dk2 + g, Ay — 5k16k2 - [;k1l_)k2|) I
k1+ka=k
+ Z |/<?1| <|dk1l;k2 + dklng + Bklde + Bk1@k2|> I
ki1+ko=k
m—1
5 ko] + [k —Kaf 7, ;
2= Y e (faw b ) I
ki=—m+1 ’k - klls
m—1
6 \k1| 4+ |k — k| [, _
Sip = Y == (lan|+ b)) I
ki=—m+1 ’k - k1|3
M—-1 k
k+ 2k, 1 1
2(7) = + — + - — I[Q.
[ Bk + k)" [b(M = 1)+ (M =127 (s = 1) Z B (E— k)
Forke{l,...,m— 1}, define
/(T L /T Ok 1 L /(T L gg 1 L
by, &
o Gy Gy — iy bk L
+ Z (L + &) — 005, (L)] Wy (157)

k1+ko= Ay bk2 + bklak?

aklggg + ggl C_LkZ + 6]?151?2 - bklgzg - 52:1 ka - 5’21522 L

+a Y 6L (L+&) i} ] Wo
ki+ko=k aklgzz + 5;611 bk? + églggz + bklggz + £/I<):1 C_Lk2 + gzlggg
and
rY = a3 (158)
R 20+ 1 N -
r,(fz = ZQQZS)L + —I + QQEIE)L + ag | (|aw] + |bk]) K35 + Z,(f)L (159)

ks
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r) = a2an® +aan!) + a2 <]ak\+\bk\>ﬂg+a2(l)—i—aao\L\Ez

R _ . [ aolan] + (1 + ao) byl
(|| + [Be]) (aok?| ] + B)T + ik (160)

(1 + ao)|ax| + aolbr|

Then, for k € {1,...,m — 1}, we have that

?Z“( +& a)up” ?; (@r, ao)wy” + ir (161)
and
Tk € 7“/,(3)Lr3 + r,(jj):rz + r,(gT)Lr. (162)
For k€ {m,...,M — 1}, we have that
01 L (1) L a2050) | o ()
5L — (T +¢ 0w, € [ozEk’L—i—a aZk’L—kaaEk’L] r (163)

20 + 1
+ {Qdc@;ﬂ +2a00) + 225 1[2} r? 4 4axi) r®,

ks—l

For k> M, define

m—1
1 1 . ~
S = [MZM <1+—[l_kl]s (16w ] + b1 (164)
1

(|dk1| + |l_?k1|) (165)

(|aw, | + !%D] I,

—_
+
—
—_
|

SR
—

»

L
N——

2+ —+ SL +2 [%[1 +In(M —1)] + %2] {% + 1] 8_2] I,(166)

Then for k > M, we have that

O fr
oL

ZE (T + & o))"

1
€ = |10z + (2605, + (20 + D + 20, )| . (167)
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Proof. Consider any k£ > 1.

6 ag a’k‘l a’kz - bkl bk}g
a—j[}j(x,oz) = R(L, ) +a Z oy,
by, ki+ky= gy by + by iy
Hence
o _ ar + fa
Dz = L +eha | T gt
by, + 512
Y Z oL (L +¢b) (an, + & Maw, + &) — [or + &2, 1[0k, +€7,] w'
0 _ _ 0
ki+ko=k [dlﬂ + ggl][bkz + 522] + [bkl + le][de + Slccbg]
_ Qg _ @
= R(L+ea)| | wlf R+l )| | wyt
by v
_ G, G, — i, b
I I AT B P
k1+ko=k akn ka + bklak2

— a a = a ca 7 b b T b b
—I—O[ Z (—) L + 50 a/klék‘Q + §k1 iLkQ + gkjlgk;z - Ejklé_k? - gk'l ka — fklka
btk A&, + €D+ €L €L + Dl + &k, + €6

Consider the case k € {1,...,m — 1}.

Afw

/L
5 (& T & a)uwy
)= ay, P ak1ak2 _Bklgkz ) L
= | R (L,a0) | + ap Z O, (L) B B Wy + TkL
by, key+ho=k g, b, + bi, ag,
0
8]% (:Bp,ao)ng + kL.

In order to compute a set enclosure of 7y 1, it is sufficient to observe that
[RL(L+ &5, 0) — Ry(L, a)]
€ & |(arl + 1Bul) (aok? L] + F)| x + (fan] + ul)cok?s?,
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_ &
RL+&ka)| 7 |wt e @a+1)

&

ksfl

A A R A aolan| + (1 + )|y
+ a2k <|ak| +|bk|>ﬂg+ak ) r,
(1 + Oéo)‘dk| + Oé(]’bk’

o s gy Gy — bpy by |
Z (a0}, (L + &) — a®, (L)] wp”

k1 +ko=k g, b, + bp, G,

€ [ E,&};+aag|L|E,(€)L} r+a02,(€2)Lr2

o Z @ L + 5 aklé'zg + 5]?1 C_LkZ + gglggz - Bklgzg - 521 BkZ - 521522 w, L
0 _ _ 0
k1+ka=k aklgzz + f]?-l bk2 + 5]?15122 + bklggz + 52’1 C_Lk2 + 5218@12

c [dQ@ZIS}, + OACCVEI(;,%] r+ [2&0&25’)}1 + 2@21(;2] r2 + 40(2;:}/['3

Consider now the case k € {m,..., M — 1}. Then

0
@“?j (T + & a)wy / L
(T L wy, Ay Ay — Bk16k’2 )L
= R(L+¢ka) o Z 0 (L+¢&) o A
’LUZ k1+ko= A, bkz + bk1 A,
+a Z @ L + 5 a/klgzg + 5;’51 ak2 + ggl §g2 - Bklgzg - §Z16k2 - 521522 w, L
0 _ _ 0
k1+ko=k dklgllég + le bk2 + gglézg + bklggz + 521 dk? + 512161(912
20+ 1
{Wﬂg} I'2 + CYE](:}/I'

+ 2%, + aaxil) | v+ 2605 + 2050 | v + dan{l)r’.
Consider finally the case k > M. Then

a / ! (T wa /
Do vyt = REreho)| |

b
Wy,
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i a a = a ,,a 1 b b7 b ,,b
aklwkz + wk‘l akQ + wk‘lwkg - bklwkg - wk:l ka - wk:l wkz

+a Z O, (L+&) wh*

o b A b} b = b
k1+ka=k g, Wy, + Wy, by, + wi wy, + b wy, + wy, ax, + wy, Wi,

2 1 - 7
Z+ 2 4 94 Z 1A [(|C_lk1| + |bk1\) Wi, + Wi, (|C_Lk2| + |bk2|) + 2Wk1Wk2} Ibr

ki1+ko=k
+206 3 |kl [ (k| + [bra ) W, + Wi (liks] + 1] )| Tor.
k1+ko=
Now,
>kl [(1k] + Bro]) Wy + Wiy ([8k,| + Brs )]
k1+ko=k
m—1 r m—1 r
= |k1|(|ak |+|l_?k |>7+ |k—k2‘7(‘@k ’+|l_7k |)
Zn R =R ; k—hols
1 r _
= Ey (|ag, | + bk, + r+ —— (|ao| + |b
klzl (el + ) {<k+k> (k—k’l)s} gt ol 1ol

+ Z (|@k1| + |Bk1|) |:(k; + 21)8—1 * (k’ — ]1111)5_1:| '

Zh(w[ }>(raklr+rbkl|)

kll

m—1
_ 1 _

k1=1 M

Using in part Lemma 6.2.3, we get that

oo

k
Z |Ki [ Wi, Wi, = Z(Qlﬁ + k)W, Wik, + Z K1 Wi, Wk,

ki1+ko=k ki=1 ky=1
o) k—1
%y + k 1 1 ,
= : teat 2 e e | T
> R L ]

1 2 1 2 721 T2 52
C 24+ — 4+ —— 42 1+In(M -1 —|=+1 2,
= k5—1[+M+ " [M[+n( )]+6}[M+] ]r

Hence, we finally get that

Afr
oL

1
rargawy’ € 5 [102rt + (2005, + Qo+ D+ 208, ) r?] 0
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Lemma 6.2.5 For ke {1,--- ,m — 1}, define

~ T T k ’a
Tkay = (600 + aOk(L+£&7) — k(L)) Wy

by,
— @&k + wf a
+a [0g + Ok(L + &) X "ol wy
éébk —|—w,’;
and let
(2) a
Thay = k—ﬂ2+aok(|ak\+|bk|)
N R 2{ax| + |bxl
k,ag R N
|ak| + 2|
[ lax] L
+a 3 +(1+a0k\L|)(\ak|+|bkl)H2
|0 |
Then,
afk ko, — a
8ao(x+€’ a)wy” = a—ao(l"F,Oéo)wf) + Thao
and

rk,“o S TIEJ?()ZOI'Q + rlg(ior'
For k > m, define
3
T,(CQ) = a—l.

;@0 kz

We get that

Ofk
8(1,0

Proof. For any k > 1, we have that

2
—(z + &, a)w)” Eréio

gfk(l’ a) = a [0 + O(L)] o
Qo bk

Consider the case k € {1,...,m — 1},

_ ai + & Ja
a0 +0u(L+&N] | g wy,
b + &

(2 + & a)uwg

8&0
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T k /a A~ T T Ak /a
= ap [60 + @k(L)} ; wy + (a@o + a0 (L + &) - Oég@k(L)) ; wy
k k
_ aag + wf
tal@ oL+ | T |y
@bk + w,’;
0 fr

Jas —(z +¢&, a)wo + Tkoag-

To obtain the set enclosure of 7y ,,, it is sufficient to notice that

Qg

[d@o + Of@“fz + f(f) — Oéo@k(fz)} B wéa
by
) || SN . _ )
€a R + <1 + a0k|L|) (lax| + |bx])I2 | r + aok(|ak| + |bg|)Ior
|b|
and
_ Qi + W 2)ay| + |b 3
al@+orl+ed)] | T |up € aa 4] ‘f“' e ol
aby, +wb |ax| + 2|0y

Lemma 6.2.6 Let I, = (1,1)”, a,b,L € R, &, L > 0, ap > 7/2, @ = o + @&,
wy, € 5l fork>1, &= &L 4wk with wl € v = [—r,r]. Recall that 1 = [—1,1]. For
ke{l,...,m—1}, define

k4+m—1 . . k+m—1 _ 7
n _ itk =, @ (|@—i| + |br—il)
Ek - Zzl: is (|ak—z| + |bk—z|) ]127 Zk - Zz; i ]12,
k+m—1 ¢~ 7 m—k—1
|Gg—i| + |br—i k:+2z _
21(433) = ;n ( Zs ]I27 ; ‘ak+i’ + |bk+7,|) ]:[2,
k k+m—

akz+bkz 1<|ak Z|+|bk Zl)
EES’=Z'+"+ S .

=1 =1

m_k-1 (‘&kﬂl + |bk+i’)
21(67) = Z . ]IQa

=1 v
k—1 M-1
1 1 2 2
2(8) _ I + I.
k LZI ik —ky)® ke kzl k(k+ k) (k+M)ys(M —1)1(s—1)| °
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Consider k € {1,...,m — 1} and define in this case

pe = [R(L+&,a)— Ru(L,o0)] wy

e B _ Q_; —b —
tad [0l +e) + oL +eh] | |
i1 br—i  Qp—;
m—1 B C_Lk—z _Ek—z
—ao Y [0i(L) +Ori(D)] | v
=1 bkfz akfz
00 . Akti —Bk+1;
+« Z [@—z(L + 50 ) + ®k+z(L + 50 )} _ W;
i—1 biti Qi
i _ - kg —Drys
— O Z [@_z(L) + @k+z(L)] _ w;
i=1 biti  Qpgs
* _ I — L gg—z _gll::—l 12
+a Z [6i(L + &) + Ou—i(L + &)] Wi
i=1 & i &
£g+i _€2+i /
+a Z L + fo + @k+z(L + & )] W

b
£k+i gllﬁlJri

Then

l‘F,Oéo w; + P

Zgika:—i—fa Z

Still for the case k € {1,...,m — 1}, lettmg

2 (200 +1) 1 4 8
A0 = T+ 200 50 + 5] + 80z,
1
P = &[(2a0+ )k|L|+2] k—ﬂz+2a0a|m( +2<4>)

+1a (3 +50) + 4050 + 406 (50 + 20)

we get that

o € pr2 4+ o0y

Consider now k > m. Define
pr = [Re(L+&), @) — Ri(L, ap)] wy,
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Qf—; +£I(§—i _bk i gkz )

+ag Y [0l +E) + O (L+ED] | wj
i=1 bpi + & ar—i + &
+agdo [Ok(L + &) — Oo(L)] wy,
_ & =& .
tap [OkL+EN +0u()] [ 7 " | wh
& &
p-i + & —bri — &,
on 3 (0L 4 ) + o (L ehy) | TS T TS,
=kt 1 i +&0_; A &,

Qi + &y —bri — &,
+aZ (Lreyro(L+eh) | " g
bp—i + f;l;_i ap—; + &5,

Wi, —wiﬂ ,
+a§ O_i(L+&) + Oppi(L+&)] w,.
w? wy
k+i kti

Then for k > m, we have that

Z a)w; = Agwy, + pg. (179)
For k€ {m,...,M — 1}, define
2000 + 1 209 |a 3av
Pf) - kz Lt k2| 10|]12 k:_H2 (180)

+8«

k— 1 M-—1 1 1
kZ:: k—h)oky Z (k+ ki)ky T RF MM =1 (s = 1)] L

m—1

© & 1 1

A0 = |24 a0+ DILIK| 112+4akzl ik, | + 1B ) {(k_kl)ﬁ(ww}ﬂg
1

m—1
. 1 1
F 06 S (fing | + b [ T ]ﬂ (181)
;( ) (k—k)* " (k+k)e]”

/\

5 ol + o)) o
Then for k € {m,...,M — 1}, we have that

pr € p0r? 4 ot (182)
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3
05\24) — {(2@0 + 1) + 2ap]ao| + Ma} I,
4320 20 1)]+7T2 2 1 5_2]1 (183)
M | 6| |7 2

+8a 1+1-|—1+ L I
s 3s 35— 1( _1) 2

M
m—1
1 |2 - dov
pgw) — Oz|:M+(2Oéo—|— )’L’:|]IQ+M (\ak1\+\bk1]) [<1 k_)3+1 Iy
k=1 M
m—1
4o | . A 1
7@ 3 (Jaw |+ bl | s +1| T (184)
ki=1 (1 B M)
A 3o, _ .
+ 20&0|CLO|O¢|L|H2 + M(|CL0| + Oé‘ao‘)]lg
Then for k > M,
1 2 1
— |+ ] (185)
Proof. For all k > 1, we have that
O ak—j  —bp—; Ui bij
%(ZL‘, a) = (5;@7ij+04 [@j + @k—j] +a [@_j + @k-i-j]
j b j i bty —Qkij

Hence, recalling that £ = a2 + w and still considering any k£ > 1,

— O fi
1 3@

= Rk(]_; + 50L, O./)”LU;C

(Z + €&, a)w;

i + &8 —bpi — &,
+az L+ +e(L+eb)] | ‘ W
bi—i + élg—z ap—i + 5/?—1

ki + &by _Eki_gbi
+az O L+ +ou(L+eh] | IR

b —
breyi + &y Qryi + &y

Consider now the case k € {1,...,m — 1}. Hence

Z 3fk
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= Ry(L,a0)wy + [Ri(L+ &5, a) — Re(L, ag)] wy,

0 B B Qp—; —b —q
rad [0+ o Ered] | T T |
i—1 bkfz Qk—;
o0 3 ak+z 6k+’L
+az [O_i(L+ &)+ Ouni(L+ &) w
i1 bk+i Ao+
0 _ I I 5](41 i gk % /
+a Z [©:i(L+ &) + Oui(L +&)] Wi
=1 52—1 Sk i
0 _ I §g+1 ka /
+a Y (0L +&) + Ol L+E] [ i
=1 £k+i ngrz
m—1 (m)
0
= Z gl; ({L‘F,Oé())wz"’pk

In order to compute a set enclosure of p;, we apply the mean value theorem several

times.
_ _ wp”
[Re(L + &5, ) — Ry(L, )]
w;b
1, . . 1
€ 200+ 1) Ir” + [(mo KL+ 2] L,
> I L a i _l_)k—z
ad [0l +&)+0ri(L+EN] | w!
=1 bk—z ak‘—z
m—1 = 7
= = A—; _bk:fz
—ap Y [6:(L) +Ori(D)] | w
=1 bkfz Qf—;
e 200n0r? + [2a0d|z|z§j) +4a5® + 4a02,§3)] r
and

Ari —bryi
aZ O_(L+&) +Or(L+N] | w
biti  Qrgd
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Apti  — bk
i=1 biti  Grgd

e 20o5{"r? + [2004| L5 + 45 | r

Finally,
S —&oi |
az (L4 &)+ Oni(L+ &) w!
S G
Eii —Cai |,
—l—az (L + &) + Orpi(L + &) w;

b
ék-&-i gl?:-&-i

¢ 406 (2 + 30 ) r + saxr®

Now consider £ > m. Then

ng (T4 & a)w

= Rk(L, Oé[))wk + Oé()do [@kz([_/) + @0()} w}c

+ [Rkui’ + f(%? a) - Rk(z7 Oéo)} wllf

k—1 B - ak—i + &, —by_; — fb_i
+a Y [Oi(L+&5) + Opmi(L + &) - ' ' '
i=1 bpi + &0y @i + &,
+aodo [Ok(L + & - Or(L)] wy, + dag [Ok(L + &) + Oo(-)] wj
_ & —&
tra[OL++0,0)] | " " | w
& &
o9 B _ ag—; + 5“,1 _B -1 gbfi
+a Z [0i(L + &5) + Oni(L + &) _k ’ ' '
i=kt1 br—i + & i + &
- - = oL Wiy Wiy /
a3 [0 (L + )+ OlL+ €D i
i=1 wngri Wi
= Akw; + Pk
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Still considering k£ > m, observe that

[Rie(L +

k-1
az (L4 &) +Ori(L+&)]
i=1

—I—ozz

&) — Ri(L, )] wy, €

i=k+1

m—1

L"‘fo )+ O Z(L"‘fo)} w;

2&0 + 1
ksfl

11
Lr? + & [2 + (200 + 1)|L|k] =L,

ap—; + &, —by_; — f/’i_i ,
w;

br_i + & . ari +&,

i + & —bi — &,

~

br_i + & . api + &,

€ da ) (jawl + b {(k —1k1)8 M0 +1k1>5] e

k1=1

m—1

+ad Z <|ak1| + |bk1|>

+8a

and

Hence, for

Pk€<

ki=1
k—1

Z(’f kl

k1=1

Oéoc_lg [@k<l_/ + SOL) -

+a [Ok(L + €5) + 6y

20éo|(_lo| 30[

az _ L—I—§0 +@k+z(L+§0)]

> 1
€8 E — T
ak 1 (k + kl)skf 2
=

k>m,

k—1
20&0 -+ 1

+ ([2 + (200 + 1)|i|k]

[( 1) <k+1k1>]ﬂ2r
i k+k ] Lr?,

Ok(L)] wy + ado [Ok(L + &) + Oo(+)] wy

& —&
o T
g &
2cv 3& R
£+ |25 52 (ol + o |

a b
Wiy Wy ,
w

b a
Wy Wiy

m—1
N _ 1 1
Y| ag, | + |b
1 + 4o E (\ak1| | k1|> |:(k3—k'1)8 (k+k1)*

ki=1
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m—1
N 1 1
daea a b
+ aaz <|ak1|+| k1|> {(k—kl)s + (k—l—k‘l)s]

ki=1

2a NPT 16 .
+ petalalLl + 35 ool + alaol) ) T
Hence, for k € {m,...,M — 1}, we get that

or € pPr? 1 pUr.

Consider now k > M. Then first observe that by Lemma 6.2.3,

k—1 s

k-1 ks—l

pu— 2 —_—m

2 =Ry ki(k —kp)® g::lkf(k—kl)s
4{2
M

o

1=1

WQ 2 s—2
—[1+1n(M—1)]+—] [—+1] :
Hence, for k& > M,

k-1 5—2
1 1 4 | 2 2 2
< c— | =14+ In(M -1 — | [—+1 .
5y = e [ 2] [0

Therefore, we finally get that for every k > M

1
L1 [PS\?IQ +PS\14)I'] -

For k € {1,--- ,m — 1}, recall (157), (168), (174) and define
Tk = Tk, T Tkao T Pk- (186)

Then
Dfi(xq +w,a)w’ = Df,im) (T, ap)wWy + 1 (187)

Recalling (158), (159), (160), (169), (170), (176) and (177), we define

@ _ .03

Ty = TkrL
2 2 2 2
D = o+l
1 1 1
A= ol

138



Recalling (162), (172) and (178), we have that

e € r,(f')r?’ + 7“,(92)r2 + r,(gl)r.

Combining (151) and (186), we define
e = [TOa Ty, 7rm—l]T € RQW‘

Hence,

Dfp(zy,+w)w' = Df(m)(jp, ap)Wr + Tp.

Also, for ¢ = 1,2, 3, we define

rg) = [réi),rgi), e ,rﬁ)_l]T € R?™,

Hence, by (153) and (188), we get that

(2)..2 (1

rr € rg’)r?’ +rgr +7‘F)r.

Define

o= [0 (gg) o (Gt )] <

Recalling (138), we have that

DTy (20 +w)w']p = [Ir — JoxpDf™ (Zp, a0)Jwp — Jpxr - 17
€ |IF — JrxrD f7 (2, Oéo)} Upr

+ | Jexr| (7’?)1‘3 + rl(f)r2 + rg)r) )
Definition 6.2.7 For k € {0,...,m — 1}, we define Zy(r,«) by

Zp(r,a) = |:|JFXF|T§§):| r 4+ |:|JFXF|T§_3):| r?

+ [’[F — JFXFDf(m)(fF,Oé()” Vp + ‘JFXF’T;})] T.
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For k > m, define

9] 0 a
ne= ez g gy + L@ a)uy + e (194)
Hence,
Dfi(tq +w,a)w’ = Dfi(z+¢ a)u’
0 0
- aJZ“(:Hg a)wy +a—f’;( +Za£’“ (T + € a)w
— Mwh+ | P+ g +a—f< FE
= Apwl, + 7 (195)

Consider now k € {m,...,M —1}. By (163), (173) and (182), we get that

2c
re € 4aX)r’ + [204@2,(2 +2a%) + k 2oty o T p,?)]
+ [042,(:72 +a ozE,(C)L + aaE,(g)L + p(l)
Combining (139) and (195), we get that for k € {m,..., M — 1}
(DT, (20 +w)w']y = —A'rg

A [4ax)] v

- A 200+ 1
+ !Ak 1} |:2(ICYZI(€E:)L + 204252 + = I, + T](jc)lO i ng)} 2

A [oxh) + a2z + qaxnfl) + ol | x
Definition 6.2.8 For k€ {m...,M — 1}, we define Zy(r,a) by

Zi(r.a) = || |40} ]

- A 2x + 1
+ A7 [zaaz:,f)p%az,f)pu L+ 2 +P§f)} 2

+]AgY [azgi +a%ax®) +aanl’) + pf! >] r (196)

Consider now k£ > M. In order to compute the Zy(r, a), we need the following.
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Lemma 6.2.9 Let L,y > 0 and ag € R. Firm € N, s > 2 and let M € N such

that M > aLHgiO‘ and M > 2m — 1. Define

M
Cy = —= >0
MTUML = aoll + aof
and
2 ~
v oo (Jaol + |1 + aol) Cu
M — 9
Cur it o (o + 1 + aol)

Then for all k > M, we have that
_ 1
‘Ak 1‘ Scw E\IJM .
Proof. First observe that

A, = Rk(i, Oé()) + Oéod()[@k([:) + @0]

ap cos kL —kL + apsinkL coskL +1
= B B _ + Oéo@o B
kL — agsin kL o cos kL —sinkL

oo + ap(1 + dg) cos kL  —kL + ag(1 + ag) sin kL

kL — ap(1 +dg)sinkL  apag + (1 + @) cos kL

Tk 5k

—5k Tk

where 71, 1= adg + ao(1 + @g) cos kL and 6y, := —kL + ag(1 + dg) sin kL. Then

1 Tk, —Ok

Ayt —_—

Tk

Recalling that M > M and that £ > M, we have that

|0k = kL — ap(1 + ag)sinkL

> ki-&o’l—i-c_lo‘
= Oéo|].+(io|
= k(L=
(=5
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Therefore, we get that

1 _Cy
0kl = K
which implies that
O |0k 1 1
ok DRl = < 2.
202 T 82 (&% T i

Finally, since |7,| < ag (|ao| + |1 + ao|), we get that

Tk

ao (|ao| +[1 +aol) _ ao([ao| + |1 + o)
T2+ 0%

Vi + 0} - o
Chrao (Jaol +[1+aol) _ 1[Gy (Jaol + |1 + aol)
- k? ~ k M '

Recall (164), (165), (166), (183) and (184). By (168), (173) and (185), we get that
for all £ > M,

—1 A 3o
"L € o1 [40425\2”3 + <2aa2§\?¢ + (2a+ DIy + QaZE\(})’L 4 MEZ + pﬁ)> e pf\})r] _

Combining (139), (195) and Lemma 6.2.9, we have that for any & > M

(DT, (26 + w)w']y = —A; 7y

1 . 3o
€ [AY e [4@25\2Lr3 + <2aa2§\3)7L + (2a+ 1), + 20425\?@ + M]IQ + pf}) 24 ps\z)r}

a A 3a
- E\I/M {4@25\2112 + (20(0425\54),1; + (2a+ 1), + 20@5\?@ + M]Iz + pg\?) r+ pg\})l] '

Definition 6.2.10 For k > M, we define Z(r,«) by

Zi(r.a) = %\DM [4az§;{Lr2 (199)

. 3a
4 (zaazgi{L + 2o+ 1)l + 205, + 20l + pﬁ?) r p(ﬂ?} -

6.2.3 Radii Polynomials of the Wright equation

Recall Yr from (136). For a fixed m < k < 2m — 2, recall Y}, given by (137). Recall
also that we fixed Y, = 0, for any k£ > 2m — 1. Consider now M > 2m — 1 and recall

the definition of the Z(r, ) given by (193), (196) and (199).
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Definition 6.2.11 Consider k € {0,..., M — 1}. The finite radii polynomials of the

Wright equation are given by
pr(r, &) = Vi + Zi(r, @) — %1[2. (200)
Consider k > M. The tail radii polynomials of the Wright equation are given by

. r
pr(r, &) = Zy(r,a) — E]Ig. (201)

Remark 6.2.12 Suppose that we found an ro and & such that

N T
pM(T(),Oé> = ZM<T[),O[) — ﬁos]b <cw 0.

Then for any k > M, we have that

. T
pk(ro,a) = Zk(r()aa) - k—2H2
— k—\I/M [4 (0 12

Sa T
* (2&042%54)]4 + Q2o+ Dl + 20‘25\/1)1: + M]IQ + P( )) + Ps\if)} - k—Z]b
M? {

\I]M [4042( )LTS

ks UMs
3o
+ <2aa2§W)L + (2a+ 1)L, + 20425\4)L + MHZ + o )) T+ 05\14)1 - J\r;sﬂ?}
M? .
- ks pM(r(b Oz) <ew 0.

When solving for the tail radii polynomials, we only need to study py;. Define
= - (M) ] ,.2
pyu(r, @) == Wy [40(2M,L] r
(5) 6 3o 2)
+War 260X, + (20 + 1) + 2037y, + M]I 2+ pif
Since we look for (r,&) such that py(r,&) < 0, we can modify py observing that

r

pu(r, &) = EPM( Q).

Therefore, par(r, &) <ew (0,0)7 implies that pi(r, &) <ew (0,0)T for all k > M.
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CHAPTER VII

CONCLUSION

The purpose of this thesis is to communicate the essential ideas of our proposed
validation continuation method. As such we have presented it in a somewhat lim-
ited setting. Thus, we conclude with a range of comments, beginning with obvious

generalizations, describing ongoing work, and ending with some open questions.

o We first believe that generalizing this technique to pseudo-arclength continua-

tion should be fairly straightforward.

e As is pointed out in Section 4.4, the floating point errors are many orders of
magnitude smaller than the magnitude of the radii polynomials evaluated at
the validation radius. This suggests that it might be possible to compute a
priori bounds on the floating point errors from which one could conclude that
the validation computations are in fact rigorous computations. The techniques

in [26] might prove useful for this purpose.

e The particular choice of the abstract expression for the expansion of the partial
differential equation (52) was chosen because it was appropriate for the appli-
cation to Cahn-Hilliard (71) and Swift-Hohenberg (73). Hopefully it is clear
that a different choice of boundary conditions or symmetries does not affect the
essential estimates. It is expected, but remains to be checked, that the form of
the estimates can be lifted to parabolic PDEs on rectangular domains (see [?]
where similar estimates were used to study the equilibria of the Cahn-Hilliard

equation on the unit square) and to systems of such PDEs.

e In all the applications of validated continuation presented in this thesis, we used
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Fourier expansion. We would like to develop the theory of validated continuation

for problems where the discretization comes from finite element methods.

e In Chapter 6, we presented an example of rigorous continuation of periodic
solution of a scalar delay equation with a state independent delay. We would
like to try to apply the idea of validated continuation to delay equations with

multiple delays and to delay equations with state dependent delays.
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