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Summary 

This research investigates the batch scheduling problem for a two-machine limited-buffer 

flowshop with setup and removal times considered. Different from most previous 

research, this thesis includes key features of real-life applications. In reality, machine 

setup is a significant element that cannot be neglected in many situations. Different setup 

strategies may have different impacts on flowshop scheduling. The intermediate buffer 

usually has a limited capacity, som{'.times rather small. In many cases, similar jobs are 

grouped together as a family such that no machine setup is required between jobs within 

the same family. All jobs in the same family must be processed consecutively. Our· 

objective is to find the sequence of jobs on the machines such that the overall completion 

time is minimized. 

In this dissertation, we show that under the steady state conditions, the batch 

scheduling problem can be converted to a special. structured traveling salesman problem 

(TSP) that can be optimally solved in O(nlogn) time. We develop two approximation 

algorithms, both of which provide lower bounds for the value of the optimal solution. A 

branch and bound algorithm is developed to find an optimal solution for the general case. 

We also perform a case study for a specific electronic assembly application. Finally, 

various numerical experiments show the effectiveness of our algorithms. 

xii 



Chapter 1 

Introduction 

1.1 Background 

A flowshop consists of a set of machines arranged in series, and a set of jobs visiting 

machines in a fixed order. At each machine, a specified task is being performed. Each 

machine can handle only one job at a time. Preemption of operations is not allowed. If all 

jobs are processed in the same order on each machine, such a schedule is a permutation 

schedule. In a simple conveyorized system, which applies the first-come-first-served 

(FCFS) principle, a permutation schedule is the only feasible schedule. The problem of 

flowshop scheduling with makespan minimization is to find a sequence of jobs on the 

machines of the line such that the overall completion time for all jobs is minimized. 

Makespan minimization is one of the most commonly considered criteria in scheduling 

literature, and in the context of repetitive assembly, to some extent, makespan 

minimization is equivalent to cycle time minimization [Crama, 2000]. As we will show in 

the following chapter, in a two-machine flowshop, makespan minimization is equivalent 
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to minimizing the total idle and blocking times on two machines, and hence maximize the 

utilization of the machines. 

Flowshop scheduling problems have been extensively studied over the past decades. 

One of the most significant results was Johnson's rule in optimally solving the two

machine unlimited-buffer flowshop scheduling problem with makespan minimization. It 

has also been _shown that two-machine blocking flowshop with makespan minimization 

can be optimally solved in polynomial time. Unfortunately, most of other flowshop 

scheduling problems turned out to be NP-hard. A large number of heuristic algorithms 

have been developed in recent years to find approximate solutions of various flowshop 

scheduling problems. However, only a few of them considered real-life application 

systems. In reality, machine setup is a significant element that cannot be neglected in 

many situations. Different setup strategies may have different impacts on flowshop 

scheduling. The intermediate buffer usually has a limited capacity, sometimes rather 

small. In many cases, similar jobs are grouped together as a family such that no machine 

setup is required between jobs within the same family. All jobs in the same family must 

be processed consecutively. In this thesis, we consider a two-machine flowshop 

scheduling problem that arises in a specific electronics assembly circumstance. 

1.2 Problem Definition 

Consider a flowshop with two machines M1 and M2 and an intermediate storage buff er of 

capacity c, that is, the buffer can host at most c parts. There are n batches of jobs, B 1, 
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B2, ... , Bn to be processed. All batches are available at time zero. Each batch B1 consists 

of b; identical jobs. Each job in batch B; requires processing times pu and p;2 on machines 

M 1 and M 2 respectively. These processing times are usually calculated by specific 

software. We assume that all processing times are given, and do not depend on batch 

sequence. All jobs from the same batch must be processed consecutively, that is, batches 

cannot be split. If machine M1 completes processing on a job and the buffer is full, then 

the part keeps M1 blocked until there is room in the buffer. A setup time Su is required to 

install component feeder into machine Mj (j = 1,2) before a batch B; being processed on 

that machine, and a removal time Rhj is required to unload the feeder from machine Mj 

after a batch Bh completes its processing. Setup time Sij and removal time Ru are only 

determined by batch B;. The setup of batch B; on machine M2 can be done before 

completion of the operation of the first job of batch B; on machine M1, ifthere exits some 

idle time on machine M2. Our objective is to minimize the makespan of all batches. A 

formal definition of the problem is as follows: 

Definition 1.1 (Batch Scheduling Problem) Given a two-machine jlowshop with an 

intermediate buffer of capacity c and a set of n batches B1, B2, ... , Bn, (batch B; of size b; 

and job processing times pil and Pn on two machines respectively, for i = 1, 2, ... , n) 

requiring sequence independent setup times (Su and S;2) and removal times (Ru and Ri2) 

on both machines, we want to find a sequence u of all batches so that the makespan }s 

minimized. 
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1.3 Previous Work 

As in many textbooks, we use a triplet a I fJ Ir to describe a scheduling problem. 

The a field describes the machine environment and contains a single entry. Typical 

machine environments specified in the a field include: single machine (J), parallel 

machines (Pm), flowshop (Fm), open shop (Om), and job shop (Jm). The fJ field provides 

details of processing characteristics and contains zero, single or multiple entries. Possible 

entries in the fJ field are: release dates (rj), preemptions (prmp ), precedence constraints 

(prec), blocking (block), no-wait (no-wait) and so on. The third field r contains the 

objectives to be optimized and contains one or multiple entries. Common objectives to be 

minimized include: makespan ( Cmax), maximum lateness (Lmax), total weighted 

completion time ( L w1C1 ), and total weighted tardiness ( L w1T1 ). In the following 

literature review, we focus on related flowshop scheduling problems. 

Flowshop scheduling problems have been extensively studied for decades. In 

particular, makespan minimization is the objective that has received significant attention 

in literature. Two-machine infinite-buffer flowshop with makespan minimization 

(F2 llCma.J was optimally solved by Johnson [1954] in O(nlogn) time. However, it has 

been shown that Fm II Cmax is strongly NP-hard when m ~ 3 [Gary et al., 1976]. 

Williamson and Hoogeveen [ 1997] proved that unless NP = P, there is no polynomial 

time approximation algorithm with a worst-case performance guarantee better than 514 

for the problem Fm II Cmax with an arbitrary number of machines. 
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Two-machine flowshop with infinite buffer and sequence-independent setup times 

was first solved by Yoshida and Hitomi [1979]. Sule [1982] extended the problem with 

both sequence-independent setup ·and removal times. The problem of two-machine 

flowshop with batch setups was shown to be NP-hard if batches are allowed to be split 

[K.leinau, 1993]. However, if the number of batches is fixed and processing orders on the 

two machines are constrained to be identical, the problem is polynomial solvable by 

dynamic programming [Potts and_Wassenhove, 1997]. 

The aforementioned research work of the flowshop scheduling problem assumes that 

the buffer capacity between machines is unlimited. However, in many real-life systems, 

the intennediate storage between machines is limited, or even relatively small. Blocking 

occurs when the intennediate buff er is full and the upstream machine cannot to release a 

job into the buffer after its processing. There are two makespan minimization scheduling 

problems closely related to the limited buffer flowshop: the blocking flowshop 

scheduling problem ( Fm I block I Cmax ) and no-wait flowshop scheduling problem 

(Fm I no - wait I Cmax ). In a blocking flowshop, there is no storage between machines. 

Actually, any limited buffer flowshop can be formulated as a blocking flowshop since 

each storage space capable of containi~g one job may be regarded as a machine on which 

the processing times of all jobs are equal to zero. In a no-wait flowshop, there is also no 

storage between machines. Differing from blocking, a job when it goes through the 

system is not allowed to wait at any machine. That is, whenever it has completed its 

processing on one machine, the next machine has to be idle so that the job does not have 

to wait. In contrast to the blocking case, where jobs are pushed down the line by 
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machines upstream that have completed their processing, in a no-wait flowshop, jobs are 

pulled down the line by machines that have become idle. When a flowshop only consists 

of two machines, if we release all jobs to the first machine as late as possible while at the 

same time, keep the makespan unchanged, the blocking flowshop turns into a no-wait 

flowshop, that is, the problem F2 I block I Cmax is equivalent to F2 I no - wait I Cmax . 

Both F2 I block I Cmax and F2 I no - wait I Cmax problems can be formulated as a 

special structured traveling salesman problem {TSP}, which was optimally solved by 

Gilmore and Gomory [1964] in O(n logn) time. However, when m;::: 3, Fm I block I Cmax 

cannot be described as a TSP and has been shown to be strongly NP-hard. In contrast, 

Fm I no - wait I Cmax can always be formulated as a TSP, but this TSP is known to be 

strongly NP-hard when m ;::: 3 [Pinedo, 1995]. 

The problem becomes extremely difficult when both the batch setups and limited 

buffer are considered. Only a few of research papers have been found to address on this 

topic. Agnetis et al. [1997] have proved that batch scheduling of a two-machine. flowshop 

with limited buffer is strongly NP-hard even without considering setup times. They also 

showed that the problem is solvable only when all batches satisfy a steady state condition, 

which will be explained later. However, they did not give out a practical solution to solve 

a general case. Several heuristic approaches have been presented in recent years. Bloat 

[1997] implemented a dynamic program to minimize total blocking time. Leisten [1990] 

presented a method that seeks to keep the intermediate buffers filled in order to avoid 

starving the following machines. The heuristic method of tabu search has been used in 
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[Noman, 1999], [Weng, 2000] and [Nowicki, 1999]. Their results showed that this local 

search strategy is rather effective in some cases. 

To our knowledge, our problem of the two-machine limited-buffer flowshop 

scheduling with sequence-independent setup and removal times has not been extensively 

explored in the previous literature. 

1.4 Organization 

This dissertation is organized as follows: In Chapter 2, we are going to show that under 

some circumstances, the Batch Scheduling Problem is equivalent to F2 I block I Cmax , 

which can be optimally solved by the Gilmore & Gomory algorithm [Pinedo, 1995]. In 

Chapter 3, we present two approximation approaches, and both of them provide lower 

bounds of the optimal solution. In Chapter 4, we are going to detail a branch and bound 

algorithm that optimally solves the problem in theory. In Chapter 5, we apply our 

algorithm on a specific electronic assembly scheduling problem. Chapter 6 provides some 

numerical experiment results to show the effectiveness of our approach. Finally, in 

Chapter 7, we develop some conclusions from our research. 
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Chapter 2 

Steady State Optimization 

2.1 Outline 

Generally, flowshop batch scheduling problem with limited buffers is NP-hard even 

without considering batch setups and removals. However, Agnetis et al. [1997] have 

shown that the problem is solvable if all batches satisfy a certain condition, that is, all 

batches can reach the steady state, which will be defined later. Since the term of "steady 

state" was first defined by Agnetis, we still use this term throughout our dissertation 

without confusion. In this chapter, we are going to extend the problem with both setup 

and removal times considered. We find that the problem can still be formulated as a TSP 

under the corresponding steady state condition and this special structured TSP be can be 

solved in O(n logn) time. 
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. 2.2 Makespan Evaluation 

In this section we are going to show that, for a given feasible sequence u of all batches, 

the value of the makespan can be expressed as the sum of two terms if all batches can 

reach the steady state. The first term of the makespan is a fixed cost, which does not 

depend on the sequence of the batches. The second term is a coupling cost, which 

depends on the batch sequence u ; in fact, this is the part we want to minimize. In this 

section, we assume that b1 ~ c + 1 for all i = 1, 2, ... , n. This condition is easily satisfied in 

our real applications since the buffer capacity usually is much smaller than a batch size. 

This condition implies that at any time at most two batches are being processed on the 

two machines. 

Agnetis identified that, for a batch B; with Pit < pi2, if the batch size is large enough, 

blocking on machine M1 happens when the intermediate buffer is full. A new job is 

released into the system only when a job completes its processing on machine M2 and 

leaves the system. From that point on, batch B; reaches the steady state as shown in 

Figure 2.1 (a). On the contrary, if P;i ~ Pn, starving on machine Mi occurs when the 

intermediate buffer is empty. A new job is released into the system only when a job 

completes its processing on machine M1 and enters machine Mi. From that point on, 

batch B; also reaches the steady state as shown in Figure 2.1 (b ). Then the steady state 

condition is defined as following. 

Definition 2.1 (Steady State) A batch. B; re:aches the steady state at time t if, from then 

on, the two machines start processing a new part at the same time, and this occurs every 
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max(p ;1, p ;2) time units as shown in Figure 2.1. In other words, after time t, the schedule 

of the batch repeats identically over time. 

t 
(b) 

Figure 2.1 The steady state, (a) Pu <p11, (b) Pu ;;::: P12 

Now we define another tenn that will be frequently used throughout this thesis. 

Definition 2.2 (Span) Given a sequence a, the span of a batch B; in a is defined as the 

time interval that machine Mi is busy with batch B;. And the span of the sequence a is the 

sum of spans of all batches in sequence a. 

In other words, the span of B; equals the time length from the beginning time of the 

initial setup of B; on machine Mi, denoted as time ti, till the ending time of removal of B; 

on machine Mi, which is also called cleaned-up time, and we denote it as time t3, as 

shown in Figure 2.2. In general, this quantity depends on the sequence a , and hence we 

denote the span of B; as SP;(a), then SP;(a) =t 3-t1 • The span of the sequence a, SPa, 

is calculated by 
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SPa = LSP;(a) (2.1) 
B1ea 

Suppose that batch B; is scheduled immediately following some other batch Bh, and 

both batches reach the steady states. In the following, we calculate SP; (a) in the 

following four possible cases. 

In this case, we define time ti as the starting time of batch B; being processed on 

machine Mi. Since we have Pit < P;2 , the second machine Mi is never idle after time ti, 

as shown in Figure 2.2. The value of (t3 -t2 ) equals the total processing time of the first 

(b1 - c -1) jobs plus batch B;'s removal time Ru on the first machine M1, that is, 

S~(a) 

Figure 2.2 SP,{ a) evaluation when Pu< P12, Phi <Ph2 

The time length (t2 -t1) equals the maximum of (c+l)ph2 +Rh2 +812 -Rh1 and 

S11 + p 11 • Therefore, 
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In this case, we define time t2 as the starting time of batch B; being processed on 

machine M2 just as it is in the previous case. Machine M2 keeps busy after time t2, and 

again t3 -t2 = (b; -c-1)p;2 +Rn. The buffer is empty at time ti, then (t2 -t1) equals the 

maximum of S;1 + p 11 and ph2 + Rh2 + S;2 -Rh1 as shown in Figure 2.3. Therefore, 

SP,(u) 

IVl2 =up~~~h]JJ~EIITfilfilIIT§lli"ZEIIfill=pe;;_,IEP~,=r1p~,JJ&~2i~[Ejill__.... 
t2 t3 

Figure 2.3 . SP;( u) evaluation when Pu< P;2, Phi ~ Ph2 

(2.3) 

In this case, we define time t2 as the starting time of the (c+l)th job of batch B; being 

processed on machine M1 as shown in Figure 2.4. Then machine M1 is never idle after 
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time 12, and 13 -12 = (b; -c-1)p;1 +Rn. The time value of (12 -11) equals the maximum 

of (c+l)ph2 +Rh2 +Si2 -Rh1 and Sn +(c+l)p;1 • Therefore, 

SP;(cr) = (t2 -t1)+(t3 -t2 ) 

= (b; -c-l)Pn +Rn +max{S;i +(c+l)p;p(c+l)ph2 +Rh2 +S;2 -Rh1} 

= (b; -c-l)p;1 + Si2 +Rn 

+max{(c+l)p11 +Sn -S;2 ,(c+l)ph2 +Rh2 -Rh1} 

S~(a) 

Mf]=t~~{Effjfilill]fu§ELI~~I~~~I&_ULI~[ 

(2.4) 

M2 
--1..---.::....u&..~J.--..=..L!J14---....J.--=...JW..--...l---=.~--J~~--..........;;:..uu.~::...LC.J~i::.LLL:;...L&.MCLL.LLL;..J.~~_.... 

12 

Figure 2.4 SP1( a) evaluation when Pu ~ P12, Phi< Phi 

4) Pn ~ Pn, Pht ~ Ph2 

In this case, the time 12 is still defined as the starting time of the (c+l)th part of batch 

B; being processed on machine M1 just as it is in the previous case. Then machine M1 is 

never idle after time 12, and 13 -12 =(b;-c-l)Pn +R;i· The time length (t2 -ti} equals 

themaximumofSn +(c+l)p;1 and ph2 +Rh2 +S;2 -Rh1 asshowninFigure2.5. Then, 

SP;(a) = (12 -11) + (t3 -t2 ) 

= (b; -c-l)p11 +Ril +max{S;1 +(c+l)pn,Ph2 +Rh2 +S;2 -Rh1} 

=(b1 -c-l)p11 +S12 +Rn +max{(c+l)p11 +S;1 -S;2 ,ph2 +Rh2 -Rh1} (2.5) 
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S~(a) 

Figure 2.5 SP;( a) evaluation when Pu ;:: P12, Phi ;:: Ph2 

Based on the above four cases, we found that the value of SP; (a) is composed of two 

terms. The first term is a fixed cost for batch B ;, which does not depend on the sequence 

a , and we denote it as SP;0 , that is, for the case of p ;1 < p 12 , 

(2.6) 

and for the case of p 11 ~ Pi2, 

SP;0 = (b; -c-1)p11 + Si2 + Ril (2.7) 

The second term is a coupling cost, which depends on both batch B; and the previous 

batch Bh. but not any other batches in the sequence. We define the following two 

coupling cost values: 

E, =Pit (1 + co(pil - p 12 )) + S,1 -Sn 

~ = P12 (1 + co(P12 - Pi1 )) +Rn - Ril 

where the function o(x) = 1 if x ~ 0 and o(x) = 0 if x < 0. 

Then we can generalize the calculation of SP; (a) in the following equation: 

SP;(a) = SP;0 +max{Fh,E;} 

14 
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In the above equation, the value Fh only depends on batch Bh, which is the batch 

immediately preceding batch B1, and the value E; is determined by batch B1 itself. We 

denote the coupling cost as 

(2.11) 

The above discussions can be concluded in the following theorem. 

Theorem 2.1 Suppose that batch Bh immediately precedes batch B1 in a feasible solution 

a. If both Bh and B,. reach the steady state, then the span of batch B1 is given by 

SP;( a)= SP;0 + SP(h,i) (2.12) 

where SP;0 is a fixed cost of batch B,., and SP(h,i) is a coupling cost between batch B1 

and Bh. The value of SP;(a) does not depend on the other batches. 

2.3 Converting to a TSP 

In this section, we are going to show that if all batches can reach the steady state in any 

feasible sequence a, the calculation of makespan can be converted to a special structured 

travelling salesman problem (TSP). And for that particular TSP, an optimal solution in 

O(nlogn) solving time is available. 

Suppose that a is a feasible sequence of all batches, and in that sequence, all batches 

reach the steady state. The makespan Cc:1 equals the sum of all the spans SP;( a) plus a 

tail Tc:1 of the whole schedule, as shown in Figure 2.6. For a feasible schedule a, the tail 
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Tu is the time elapsed from the cleaned-up time of the last scheduled batch B ucn> on 

machine M1 to the cleaned-up time on machine M2• Notice that, in some cases, when the 

removal time on the first machine is much longer than that on the second machine, the 

value of tail Tu can be negative as shown in Figure 2. 7. 

Figure 2.6 The tail of the schedule u 

Figure 2.7 Negative-length tail 

Then we have the following makespan calculation: 

n 

Cu= SPu +max(O,Tu) = l:SP;(a)+max(O,Tu) (2.13) 
l=l 

In order to calculate the length of the tail Tu , we regard it as the span of a dummy 

batch Bn+J, consisting of b;+i = c + 1 jobs having zero processing times and zero setup and 

removal times on both machines. Then the value of max(O, Tu) is exactly the same as the 
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time the dummy batch blocked on M1. We can rewrite the makespan in following 

equation: 

n+l n+l n 

Ccr = LSP;(a) = LSP;0 +LSP(a(i),a(i+1)) (2.14) 
i=l /c] ,...,o 

In the above equation, the value of SP,,~1 equals zero, and the batch of a(O) is the 

dummy batch Bn+J· Since the first part of the equation is a constant, the optimal 

makespan is given by: 

{

n+l } n { n } · C:Wx = mJn frSP;(O-) = frSP;
0 

+ mjn ~SP(a(i),a(i + 1)) (2.15) 

Now we consider a TSP with (n + 1) nodes. Node 1, 2, ... , n stands for batch B1, 

B2, ••• , Bm respectively, and the distance from node i to node j is equal to 

SP(i,j) = max(F;,Ei), for any 1 ~ i,j ~ n. Node n + 1 stands for the dummy batch. The 

distance from node n + 1 to any other node j (1 ~ j :::; n) is SP( n + 1, j) = E i , and the 

distance from node i (1 :::; i :::; n) to node n + 1 is SP(i, n + 1) = F; . Then to find a shortest 

cyclic path linking all n + 1 nodes is equivalent to minimize the second part of the 

equation (2.15). In particular, notice that the batch scheduled first in the sequence is the 

one following the dummy batch in the cyclic path, and the batch scheduled last is the one 

prec.eding the dummy batch in the cyclic path. We conclude the above discussions in the 

following theorem. 

Theorem 2.2 If all batches reach the steady state in any feasible sequence a , the 

makespan minimization of Batch Scheduling Problem is equivalent to a TSP with n + 1 
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nodes, in which the distance from node i to node j is given by SP(i, j) = max(~, E i), 

1~i,j~n+1. The optimal makespan c:mx equals the total length of the minimal cyclic 

n 

path of the TSP plus a constant 2:SP;0
• 

i=l 

Generally, a TSP problem is still hard to solve. However in our case, from equation 

(2.11 ), we find that the cost function becomes identical to that of a two-machine blocking 

Flowshop. This special case of TSP has been solved optimally by Gilmore and Gomory' s 

algorithm in time 0( n log n) [Gilmore and Gomory, 1964]. In the remaining part of this 

section, we are going to explore this case. 

Consider the F2 I block I Ctmx problem with two machines in series and zero 

intermediate storage in between. Notice that in this flowshop, whenever a job starts its 

processing on the first machine M 1, the preceding job starts to be processed on machine 

M2• Then the time length that job j spends on machine M1, in process or blocked, is 

max(p j,1 , p i-t,2 ), as illustrated in Figure 2.8. 

Figure 2.8 A two-machine blocking flowshop 

The makespan Ctmx equals the total time of all jobs spending on machine M1, either in 

process or blocked, plus the processing time of the last job on machine M2, that is 
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n 

crnax = L max(p 1.1'P1-1.2) + P n,2 
j=l 

(2.16) 

where Po,2 = 0. Then this two-machine blocking flowshop with makespan minimization 

problem is equivalent to a TSP with n + 1 nodes, with the distances between every two 

nodes defined as following: 

d,o = P12 

du= max{p11 ,p,2 ) 

This TSP is exactly the same in the form as the one we defined for the Batch 

Scheduling Problem. Therefore, the Batch Scheduling Problem, when all batches reach 

the steady state, is equivalent to F2 I block I Crnax . 

Furthermore, as we can see in Figure 2.8, the following equation holds: 

n 

2Crnax = L<Pil + Pn) + idle times (2.17) 
i=l 

Since the processing times are fixed constants, makespan minimization problem is 

equivalent to minimize the sum of all idle times. This result can be generalized in the 

following statement: 

Proposition 2.3 In a flows hop scheduling problem, makespan minimization is equivalent 

to minimizing the total idle time. 

The idle time on one of the machines when job j starts on machine M2 and job k starts 

on machine M1 is IP 12 - pkt j . If p 12 ~ Pkt , job k will be blocked for that time difference 
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on machine Mb and else if pi2 < Pki, machine M1 will remain idle for that time 

difference. Hence, minimizing the sum of all idle times is equivalent to the following 

TSP with n + 1 nodes; 

doi =Pi• 

d;o = P;2 

du = jpi• - P12I 

For this particular structured TSP, Gilmore and Gomory' s algorithm solves it optimally 

in time O(nlogn) [Gilmore and Gomory, 1964]. For the details of the algorithm, please 

refer to Appendix B. 

2.4 Sufficient Conditions for the Steady State 

As we have seen in the previous sections, the steady state is the key condition for the 

results in section 2.2. In this section, we are going to develop a sufficient condition under 

which batch B; is guaranteed to reach the steady state. In the following, Bh still denotes 

the batch immediately preceding batch B;. 

Theorem 2.4 A batch B;, with Pit :t:. P;2 , reaches the steady state in any feasible 

sequence a, if 

(2.18) 

Proof. We prove the theorem in the following two cases. 
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1) P11 < P12 

In this case, the steady state is reached only when the buffer is filled up to its capacity. 

Hence the tail of the previous batch Bh helps batch B1 to reach the steady state. The 

''worst" case arises when the batch Bh leaves the buffer empty as shown in Figure 2.9. 

Figure 2.9 The steady state of batch B1 <Pu< p12) in the "worst" case 

The steady state is reached when any job is blocked on the first machine. Then we 

have 

that is, 

b, ~ CP12 /(p12 - P;i )+ 1 

which is in accordance with (2.15). If the batch Bh leaves the buffer not empty, the 

batch B1 can reach the steady state even sooner. 

2) P11 > P12 

In this case, the steady state is reached only when the buffer is completely empty. 

This happens when, for the first time, the part completed on M1 can be moved to the 

machine Mi without waiting in the buffer. The tail of the previous batch Bh slows 

down B1 to reach the steady state. The worst case arises when the batch Bh leaves the 
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buffer full as shown in Figure 2.10. The steady state is reached when any job is idle 

on the second machine. Then we have 

that is, 

h; 'C. cpil /(pil - Pn )+ 1 

which is in accordance with (2.15). If the batch Bh leaves the buffer not full, the batch 

B; can reach the steady state even sooner. D 

Figure 2.10 The steady state of batch B1 <Pu> p12) in the "worst" case 

When . p ;1 = p ;2 , whether the batch B; can reach the steady state depends on the tail of 

the previous batch Bh. As shown in Figure 2.11 (a), if the setup on machine M2 is finished 

earlier than the first job of batch B; completes its processing on machine M1, batch B; 

always reaches the steady state. Otherwise, it never reaches the steady state no matter 

how large the batch size is, as shown in Figure 2.11 (b ). 

Note that the setup times do not appear in the equation (2.15). This should be not too 

surprising because the number of parts needed to enter in the steady state in the worst 

case is not affected by the setup times. Also note that equation (2.15) only gives the 

sufficient condition to guarantee the steady state, but not a necessary one. In many cases, 

batches still can reach the steady state even though the condition of (2.18) is not satisfied. 
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(a) 

t 

Figure 2.11 The steady state of batch B, (p11 =pd 
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Chapter 3 

Lower Bounds and Upper Bounds 

3.1 Outline 

In Chapter 2 we have proven that the Batch Scheduling Problem, if all batches reach the 

steady state in any feasible sequencing a , is equivalent to the two-machine blocking 

flowshop with makespan minimization problem, which can be optimally solved in 

O(nlogn) time. However, from equation (2.18) we can see that the steady state 

condition can be a stringent one when a batch has close processing times on the two 

machines. 

In this chapter, we are going to ;solve the batch scheduling problem in the following 

two special circumstances: 

1) The processing times on two machines are of much difference for each batch. From 

equation (2.18) we can see that the threshold value of the batch size is relatively small 

in this case, and a batch is mme likely to reach the steady state. This is easy to 
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understand since, . the difference of the processing times on two machines tends to 

induce blocking on either machine, which causes the batch to enter the steady state. 

2) On the other hand, if all batches have rather close processing times and setup times on 

both machines, blocking is not likely to happen, which implies the capacity of the 

intermediate buffer is no longer a constraint to our problem. Consequentially, we can 

assume that the buff er capacity is unlimited. We are going to provide an optimal 

solution to this case. 

Based on these two points, we are going to design two approximation algorithms, 

both of which provide lower bounds of the optimal solution. We also provide two upper 

bounds at the end of this chapter. 

3.2 Processing Time Reduction Lower Bound 

For convenience, we write here the sufficient condition of the steady state for batch B; 

again. 

(3.1) 

If for some batch, the actual batch size b; is smaller than b;, we reduce the smaller 

processing time between Pn and Pn of an amount sufficient to meet the condition (3.1). 

For an instance, suppose b; <b;, and P;i Sp;2 • We set p;1 = Pn -fcp;i/(b;-1)1. We 

can always guarantee that the new processing time p;1 is non-negative since we have the 

assumption that b; ~ c + 1. After reducing the processing times, the condition of (3.1) is 
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satisfied for all batches. Then we can apply the approach described in the previous 

chapter, and get an optimal solution for this processing time reduced problem. Since the 

modified problem has reduced processing times, this solution is a lower bound of the 

original Batch Scheduling Problem. The detailed algorithm is as follows: 

Algorithm 3.1 (Time Reduction Algorithm) 

begin 

end; 

for i: = 1 to n do 

begin 

b; := f cmax(p;i,Pn)/jP;1 - Pnll+ 1; 

if h; < b; tlien 

if p ;1 :5 p ;2 tlien 

end; 

P;t := P12 -f cP;2/(b;-lJl: 

else p;2 :=Pit -f cp;J(b,-JJl: 

solve the F2 I block I Cmax'. 

3.3 Infinite Buffer Lower Bound 

In this section, we assume that the intermediate buffer capacity is unlimited. With this 

assumption, machine M1 is never idle until all jobs have been processed on it. Suppose 
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that the minimal makespan of this unlimited buffer problem is c~ ' and the optimal 

solution of the original Batch Scheduling Problem is c:mx , then we have C~ ~ c:mx 

since we have removed a constraint of the original problem; that is, if we can find an 

optimal solution of this problem, it provides a lower bound of the original problem. 

For a two-machine flowshop without setup times, the makespan minimization 

problem was first solved by Johnson [1954]. In our problem, each batch has to be 

processed consecutively. However, this constraint does not bring too much difficulty to 

the problem since, according to Johnson's rule, all jobs in the same batch are scheduled 

consecutively. But when the setup and removal times are considered, the problem 

becomes much more complicated. We are going to develop an algorithm to optimally 

solve this problem in O(n logn) time. 

We consider a single batch B; scheduled at time zero as shown in Figure 3.1. Denote 

C; the optimal makespan for this single batch scheduling, then 

where C;0 is the optimal makespan of the batch B; without setup and removal times, that 

is, 

if P;i < Pi2 

if ~ P11 P;2 
(3.3) 

If we schedule jobs on the second machine M2 as late as possible while keeping the 

position oflast scheduled job in batch B; unchanged, as shown in Figure 3.2, the resulting 

27 



schedule is still feasible and optimal. In Figure 3.2, a;, P; and Y; are defined as 

following: 

M 1 ::::::;:::$/}::::::::: P11 

Mz 

a1 = C1 - (S12 + R12 + b1p 12 ) 

P1 = c, - (S;1 + Ril + b;P11) 

Pu Pu 

Figure 3.1 Single batch scheduling 

Figure 3.2 Single batch scheduling when jobs are scheduled as late as possible 

(3.4) 

(3.5) 

(3.6) 

In this delayed schedule, machine M2 is idle for the first a 1 time units, and machine 

M1 is idle for the last p1 time units. Both machines are simultaneously busy for y1 time 

units. When all batches are considered, we need to arrange the a1 'sand p1 's so that the 

total idle time is minimized, but we can do nothing on the y1 portion .. If you regard each 
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batch B; as a single job J; with processing times a; on machine M1 and P; on machine 

M2, This problem is equivalent to the typical two-machine flowshop scheduling problem, 

which can be optimally solved by Johnson's rule. We provide the unlimited buffer 

algorithm as follows. 

Algorithm 3.2 (Infinite Buffer Algorithm) 

begin 

end; 

for i: = 1 to n do 

be gill 

calculate C; as in equation (3.2); 

calculate a; and P; as in equations (3.4) and (3.5) respectively; 

define a job with processing time a; on machine one, and processing time P; 

on machine two; 

end; 

solve the F 2 II Cmax with the job set {(a;,f3;),i = 1,2, ... ,n) by Johnson's rule, and 

get an optimal sequencing a; 

schedule the batches according to the sequencing a; 
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Theorem 3.1 Algorithm 3.2 is optimal for the batch scheduling problem of two-machine 

unlimited-buffer flowshop with setup and removal times. 

Proof. First, we denote c:mx the optimal makespan of the batch scheduling of two

machine unlimited-buffer flowshop with setup and removal times. For each batch B;, we 

create two jobs: Ju with processing times (a1,f3;), and J;2 with processing times (rpr;). 

a;, /3; and Y; are defined in equations (3.4) - (3.6). Now we have a typical F2 II Cmax 

problem with 2n jobs to be scheduled: {J1.,J12,J2.,J22 , ••• ,Jn.,Jn2 }. Suppose the optimal 

makespan for this new problem is c~x' then we have. 

However, since each job J;i (i= 1,2, ... ,n) has the same processing times on two 

machines, all these jobs can be scheduled anytime and will not change other batches' 

states. The optimal sequence for the job set {J11J 2., ... ,Jn1} is achieved by Johnson's rule. 

Now we insert ~ach job J;2 (i = 1,2, ... , n) into the schedule as follows. On machine M 1, 

the load of y1 is scheduled right after a;, and on machine M2, the load of Y; is scheduled 

right before /)p as illustrated in Figure 3 3. Then the resulting schedule is feasible and 

exactly the same as Algorithm 3.2 described. Then we have C~x ~ C:00x. 

Based on the above two points, we have C~x = C:00x , then Algorithm 3 .2 is optimal.O 
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M1 a, 

M2 P; ... 
(a) 

M1 a; r, 

Ma r, p, ... 
(b) 

Figure 3.3 Insertion of job J12 into the schedule 

3.4 Upper Bounds 

Any feasible sequence provides an upper bound for the optimal solution of the batch 

scheduling problem. In our research, we have two approaches to find upper bounds. 

1) Although the approach described in Chapter 2 does not guarantee an optimal solution 

if some batches cannot reach the steady state condition at any feasible sequences, it 

still provides a feasible solution. When most ofbatches can reach the steady state, this 

approach provides a good upper bound, as will be illustrated in Chapter 5. 

2) If we assume that the intermediate buffer capacity is unlimited, we can apply the 

infinite buffer algorithm, and get another upper bound. This approach is a good upper 

bound when most batches have close processing times on two machines. This will 

also be illustrated in Chapter 5. 
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Chapter 4 

A Branch and Bound Algorithm 

4.1 Definitions and the Fathoming Rules 

In this chapter, we are going to develop a branch and bound algorithm that implicitly 

enumerates all possible sequences for the batch scheduling problem, in which not all 

batches can reach the steady state. At each step of the enumeration tree, S is a subset of 

all batches which have been assigned to the first positions in the schedule. We denote the 

partial schedule of S as a . U ~s the subset of all batches which have not been assigned in 

the schedule, that is, U = N - ,s , where N is the set of all batches. Then, each node of the 

enumeration tree is associated with a pair (a,U). 

As in Chapter 2, cleaned-up time is defined as the time point at which a batch finishes 

its removal on a machine. As illustrated in Figure 4.1, t1 and t 2 are cleaned-up times of 

the partial schedule a on machine M1 and M1 respectively. The span of the partial 

schedule a , denoted as SP"", is the time lapse from time zero to the cleaned-up time of 
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the last batch of u on machine M1, that is, SPu =ti as shown in Figure 4.1. We also 

define Tu = t2 - ti the tail of the partial schedule u. Notice that the value of Tu can be 

negative when the removal time on M1 is much longer than that on Mi as shown in Figure 

4.1 (b). 

s~ Tu 

M1 p 

M2 p :::::::::::::;{;/:::::::: 

(a) 11 12 

s~ 

M1 p 

M2 p p, ::::Jl?'.:::: 

(b) 12 -T 11 a 

Figure 4.1 Span and tail of a partial schedule, (a) Tu> 0, (b) Tu < O 

For the set of unscheduled batches U, we denote its minimum makespan as sp· (U) , 

which is the minimum time length from ti to the end of entire schedule. Notice that since 

there is a tail Tu left from the scheduled batches, which may be positive or negative, the 

value of sp• (U) can be different from the optimal makespan of U when only the 

unscheduled bathes U are considered. Although not all batches can reach the steady state 

in our problem, it is still possible that batches in the unscheduled batch set U can reach 
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the steady state. In this case, we can apply the optimal approach described in Chapter 2 to 

find the value of sp• (U) . Otherwise, we need to calculate a lower bound for sp• (U) . 

After these definitions, we design the following fathoming rules for the branch and 

bound algorithm: 

1) We use the Depth-First Search (DFS) algorithm to form an enumeration tree. DFS 

performs a deep probe, creating a path as long as possible, and backs up one node 

to initiate a new probe when it can mark no new node from the tip of the path. 

One of the advantages of the DFS is that we can always get a feasible solution, 

most of time, a rather good solution, even when the number of nodes to be 

searched is extraordinarily large. For details of Depth-First Search algorithm, 

please refer to the reference [Ahuja et al., 1993]. 

2) At node (a,U), if the .value of sp• (U) can be calculated exactly, no need to 

further from this node. If sp• (U) plus SPU is less than the best known upper 

bound, the best known upper bound is updated by this value. Otherwise, this node 

can be eliminated. 

3) At node (a,U), if the best available lower bound of sp• (U) plus SPu exceeds 

the best known upper bound, this node cannot be optimal, and hence can be 

eliminated. 

34 



4) At node (er,U), if an upper bound of SP* (U) plus SPa is less than the best

known upper bound, the best-known upper bound is updated. 

The detailed algorithm will be presented in section 4.5. 

4.2 Updating SP a and Ta 

In our branch and bound algorithm, we need to calculate SPa and Ta in a large number 

of times. A straightforward way to calculate SPa and Ta is to build the Gantt chart of the 

partial schedule er . However, this approach is not efficient since the computation time is 

proportional to the batch size. Fortunately, in the branch and bound algorithm, we do not 

have to compute the span and tail at each node from the very beginning. Given a partial 

schedule er , having a span SPa and end with a tail of length Ta , we only need to update 

the new value of SPa' and Ta', when a new batch B; is appended to er, that is, 

er'= (er,B;). hi what follows, we are going to show that the updating of SPa and Ta is 

much easier than building the Gantt chart from the very beginning. 

Suppose that SPa and Ta are the span and tail for a partial schedule er respectively, 

and batch B; is scheduled to follow er, then the span and tail are updated as in the 

following equations when the setups of batch B; have been done on two machines as 

shown in Figure 4.2. 
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In Figure 4.2, SP;, and r;. are the span and tail when batch B; have completed its 

processing on two machines. Again, we have 

SPa' = SP;. + R;1 

Ta' = r;. + Ri2 - Rn 

(4.3) 

(4.4) 

We denote SP,2 the time length of batch B; spending on machine M1 with no setup and 

removal included as shown in Figure 4.2. Then, 

SP;. = SP~. + SP/ (4.5) 

Now the remaining problem is how to calculate SP/ and r;. when SP~. and T~. are 

given. In what follows, we are going to calculate these two values in different cases. 

Figure 4.2 Updating of the span SPa and tail Ta 

1) Pn < Pi2 

The values of SP/ and r;. have different expressions depending on whether batch B; 

reaches the steady state or not. We need to compute the values of the steady state batch 

size in different situations. 
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(a) T~, ::::;; Pn 

In this case, as shown in Figure 4.3, the tail T~, does not have any contribution to the 

value of SP/ . The value of the steady state batch size h;• is the same given by 

expression (2.15): 

Figure 4.3 The steady state batch size when T~. S pil and pil < p12 

(b) Pit < T~. < (c + l)P;1 

r;. 
Figure 4.4 The steady state batch size when p11 < T~. < (c+ l)pil and p11 < p12 

In this case, as shown in Figure 4.4, the steady state is reached when 

b1pi1 ST~. + (b1 - (c + 1))p12 

Then we have 
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(c) T~. ~ (c + 1)p11 

In this case, as shown in Figure 4.5, the steady state is reached after the first (c + 1) 

parts, that is, 

b; = c+l 

The steady state is always reached in this case since we have the assumption 

h; ~c+l. 

M1 ~P......._,~........,;;.........-~;;....u_~~.-...-'-''-'-'--.1<.LL"'! 

M2 

Figure 4.5 The steady state batch size when T~. ~ (c+ 1)p11 and P;i < Pn 

The calculations of SP/ and r;. are in the following expressions: 

If h; ~ b;' 

Else if h; < b;, 

SP;2 = max(T~.,p;1 ) + (b;-(c+ l))P;2 

T;, = (c + l)p;2 

SP;2 =h;P11 

T;. = max(T;.,p;i)+b;(P;z - Pn) 
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2) Pit > P;2 

As in the case of p ii < p 12 , we need to compute the values of the steady state batch size 

in different situations. 

(a) T~. '5: P11 

In this case, as shown in Figure 4.6, the tail T~. does not have any contribution to the 

value of SP/, and batch B; always reaches the steady state. Then 

Figure 4.6 The steady state batch size when T~. < p11 and p
11 

> p12 

In this case, as shown in Figure 4. 7, the steady state is reached when 

Then we have 
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Figure 4.7 The steady state batch size when P;i < T~. < (c + l)P;i and p11 > p12 

(c) r;. ;;:::: (c + l)pil 

In this case, as shown in Figure 4.8, the steady state is reached when 

Then we have 

···················································· 

SP.2 
I 

?'.:::;:::::::;:::::::::::::::::::::'.:}:'.:/:::::;:::::::::::::::::::::::::::::::::::::;:/: P12 P12 P12 P12 P12 P12 

Figure 4.8 The steady state batch size when T~. 2: (c+ 1)p11 and p11 > p12 

For any b;, we have 

SP/ = max(T;.,(c + l}pil) + (b;-(c + l}}p;1 

The calculation r;. is in the following expressions: 
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r;. = P;i (4.11) 

Else if h; < b;, 
(4.12) 

3) Pit = Pi2 

(a) T~. '5: Pit 

In this case, as shown in Figure 4.9, the tail T~. does not have any contribution to the 

value of SP/ , and batch B; always reaches the steady state. Then 

Figure 4.9 The steady state batch size when r;. ~ p
11 

and p 11 = p12 

(b) P;i < T~. < (c+ l)p;1 

In this case, as shown in Figure 4.10, the steady state will never be reached no matter 

how large the batch size is, that is, 

b~ =oo 
I 
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Figure 4.10 The steady state batch size when p
11 

< T~. < (c+ l)p11 and p11 = p12 

(c) T~. ~ (c + l)p;i 

In this case, as shown in Figure 4.5, the steady state is reached after the first ( c + 1) 

parts, that is, 

The steady state is always reached in this case since we have the assumption 

SP,2 

P12 P12 P12 

r;. 

Figure 4.11 The steady state batch size when T~. ~ (c + l)p11 and p11 = p12 

The calculations of SP/ and r;. are in the following expressions: 

(4.13) 

(4.14) 
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4.3 Computation of SP*(U) 

At node (a,U), if the value of sp• (U) can be calculated exactly, there is no need to 

continue branching from this node. Though not all batches in the set N satisfy the steady 

state condition (2.18), batches in the subset U may meet this condition. In this case, we 

still can apply the Gilmore & Gomory algorithm discussed in the Chapter 2 to obtain the 

optimal sequencing of U. But there is one thing different from the previous situation. As 

shown in Figure 4.1, the machine Mi may not be "cleaned up" at the time the first batch 

in the subset U enters the system. In order to consider the tail left from the scheduled 

batches, we define a dummy batch Bn+1' consisting of h;+1 = c + 1 parts having zero setup 

and removal times on both machines. The processing times on two machines are defined 

as following: 

Pn+1,1 = 0 (4.15) 

Pn+l,2 =Tu /(c + 1) (4.16) 

Else if Tu < 0, 

Pn+l,1 =-Tu /(c + 1) (4.17) 

Pn+1,2 = 0 (4.18) 
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According to expression (2.6) and (2. 7), in either case, the fixed cost SP,,~1 is zero. And 

according to expression (2.8) and (2.9), the coupling cost values are: 

Else if Tu < 0, 

En+1 =-Tu 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

Then from expression (2.11 ), the switching cost between the dummy batch and the 

following batch B; is 

SP(n + l,i) = max{Fn+1,E;} (4.23) 

which is exactly the idle time of the first scheduled batch of U. The switching cost 

between the preceding batch Bh and the dummy batch is 

SP(h,n + 1) = max{Fh ,En+t} 

which is the tail of the batch schedule. 

(4.24) 

After applying the Gilmore & Gomory algorithm, the batch scheduled first in U is the 

one following the dummy batch in the cyclic path, and the batch scheduled last is the one 

preceding the dummy batch in the cyclic path. 
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4.4 Lower Bounds of sp* (U) 

At node (CT,U), if not all batches in the subset of U can satisfy the steady state condition 

(2.18), the Gilmore & Gomory algorithm as stated in section 4.3 does not guarantee an 

optimal solution. In this case, we need to find a lower bound of sp• (U) . If the lower 

bound of sp• (U) plus SPu exceeds the best-known upper bound, node (CT,U) cannot be 

optimal, and hence can be eliminated. In Chapter 3, we have already described two 

approaches in finding lower bounds of sp• (U). However, as in section 4.3, one thing 

different from the previous situation is that machine M2 is still being occupied by a tail of 

the scheduled sequence CT when the first batch of U enters the system. In what follows, 

we are going to adjust t~e two algorithms to this situation. 

1) Time Reduction Lower Bound 

If some batch B1 e U cannot satisfy the steady state condition (2.15), we reduce the 

smallest processing time of p,1 and p 12 until 

The tail of the scheduled sequence CT can be substituted by a dummy batch that has been 

defined in section 4.3. After these alterations, we apply the Gilmore & Gomory algorithm 

to obtain a sequence of U. The makespan of this sequence is a lower bound of sp• (U) . 
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2) Infinite Buffer Lower Bound 

Another way to find a lower bound of sp• (U) is to relax the buffer limitation condition. 

If we suppose that the intermediate buff er has unlimited capacity, the Infinite Buffer 

algorithm described in Chapter 3 optimally sequences the unscheduled subset U. We 

denote this sequence a' . When the tail Tu of the scheduled sequence a is considered, 

two different situations arise. 

In this case, the tail is defined as a dummy job B n+t with processing times 

Pn+1,1=0 (4.25) 

Pn+1,2 =Tu (4.26) 

We claim that the sequence (Bn+1,a') is optimal for the batch set {Bn+il UU since, 

according to Johnson's rule, a job with processing time zero on the first machine is 

always scheduled first in the sequence. Therefore, in this case, we do not need to 

make any change on our Infinite Buffer algorithm in solving the unscheduled subset 

u. 

(b) Tu< 0 

In this case, the tail of the scheduled sequence a is the same as a dummy job Bn+t 

with processing times 

Pn+t,t =-Tu (4.27) 
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Pn+1,2 = 0 (4.28) 

However, in this case, the Infinite Buff er algorithm may be not optimal since the 

dummy job, which is supposed to be scheduled last in the sequence according to the 

Johnson's rule, is now in the first position of the sequence. We cannot move the 

dummy job to the last position of the schedule since, in reality, the dummy job is the 

tail of the scheduled sequence a , whose first position is fixed. In this case, we need 

to make some alteration on our Infinite Buffer algorithm. 

For the unscheduled batch set U, after applying the Infinite Buffer algorithm, we 

obtain a sequence a' and a makespan SPu' . This sequence is optimal when no 

previous tail and no buffer limitation are assumed. In the sequence a', there is no 

idle time between batches on the machine M1• If we schedule jobs on the second 

machine Mi as late as possible while keeping the position of last scheduled job 

unchanged, the resulting schedule is still optimal. After that, four possible resulting 

schedules are shown in Figure 4.12. In both figure (a) and figure (b), there are idle 

times on the second machine Mi before the setup of the first batch in U. In this 

situation, the negative tail Tu cannot help to shorten the makespan SPu' . Hence the 

Infinite Buffer algorithm is optimal in both (a) and (b ). In figure ( c ), there is no idle 

time on the second machine, but the ending tail of the whole schedule Tu' is negative. 

In this case, though the negative tail of the scheduled sequence a may help to make 

the completion time of all batches on machine Mi earlier, it is not able to shorten the 
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makespan SPa' , which is determined by the busy time on machine M1 in this case. 

Hence the Infinite Buffer algorithm is also optimal in ( c ). 

I 
, -T 

a 
'i' idle 'I 

, 

(a) 

SP. ,, a 
' 

:" " 

I 
,,, ',, ,, ,, 

' ,, 

-T ,, idle 'I ' 
, 

-
(b) 

' , -T 
a 

, 

(c) 

SP. ,,. a 
' I' , 

,, 
' ; ' ,, . ' " -T a 

(d) 

Figure 4.12 Four possible resulting schedules of the Infinite Buffer algorithm 
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However, in figure ( d), by occupying the negative tail T" , earlier scheduling of 

the first batch in U on machine Mi may cause a shorter makespan. In this situation, 

the Infinite Buffer algorithm does not guarantee an optimal solution. Some 

alterations are needed to determine the optimal sequence a' of the subset U so that 

the negative tail T" is maximally "utilized". 

Suppose batch B; is assigned to be in the first position following the scheduled 

sequence a. Again, we schedule jobs of B; on the second machine Mi as late as 

possible as shown in Figure 3.2. Suppose that a; > 0, as we discussed before, there 

is an idle time on the second machine, and the negative tail T" has not been utilized. 

In other words, only batches with a; = 0 can possibly reduce the idle time left by the 

previous scheduled batch on the second machine. According to the Johnson's rule, 

batches with a;= 0 are assigned to be in the first positions of the whole schedule. If 

there are more than one batches with a;= 0, we need to rearrange the positions 

among them so that the total idle time is minimized. 

For a batch B; with a1 =0, the maximal time length that could possibly fill the 

negative tail left by the previous scheduled batch is constrained by the fact that a job 

can start its processing on machine Mi only after it finishes its processing on the first 

machine. As shown in Figure 4.13, we denote that maximal time length as d;. Then 

(4.29) 
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Else if P;i ~ P;2 , 

(4.30) 

Now an optimal sequencing for the subset U is obtained by scheduling batches 

with a;= 0 in non-increasing order of their d; 's, and keeping all other batches in 

the same order as the result of the Infinite Buff er algorithm. 

(a) 

Pu Pu Pu Pu 

p., p, 

(b) 

Figure 4.13 The maximal time length d1 

4.5 A Branch and Bound Algorithm 

hegi11 

obtain a sequence a by applying Gilmore & Gomory algorithm; 

upper_bound := C(a); 

wltile not all nodes have been searched do 

hegi11 

determine the next node (a, U) to be valued,· 
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e11d; 

e11d; 

if all batches in U reach the steady state the11 

begi11 

find sp• (U) by applying Gilmore & Gomory algorithm; 

if SPa + sp• (U) <upper_ bound the11 

upper_ bound := SPa +SP* (U) ; 

delete this node; 

e11d; 

else 

begil'1 

e11d; 

find SP1 (U) by applying Time Reduction algorithm; 

find SP2 (U) by applying Infinite Buffer algorithm; 

if SPa + max(SP1 (U), SP1 (U)) > upper_ bound the11 

delete this node; 

else 

find SP3 (U) by applying Gilmore & Gomory algorithm; 

if SPa + SP3 (U) < upper_ bound then 

upper_ bound := SPa +SP* (U) ; 
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4.6 An Example 

In this section, we are going to present a numerical example to illustrate the procedure of 

the branch and bound algorithm described in the previous sections. The example data is 

described in Table 4.1. In this example, we have six batches to be processed, and the 

buff er size is three. The enumeration tree is shown in Figure 4.14. At the root node, we 

apply the Gilmore and Gomory algorithm to obtain a feasible sequence B1, B4, B3, B5, B6, 

B2, and a corresponding upper bound of 1683. After applying of the Time Reduction 

algorithm and Infinite Buffer algorithm, we obtain two makespans, and the maximum of 

them is our starting lower bound. In Figure 4.14, each node is associated with a partial 

schedule and a lower bound. The optimal solution is obtained at the sequence B1, B3, B5, 

B6, B4, Bi, with a corresponding makespan of 1677. 

B; 1 2 3 4 5 6 

b, 14 13 6 5 8 16 

piJ 9 16 20 18 24 35 

Pi2 11 16 16 21 43 28 

Sil 23 32 73 23 5 21 

S12 34 32 56 21 8 22 

Ril 43 73 12 14 13 7 

R;2 41 14 23 27 12 9 

c 3 

Table4.1 Data of the example 

52 



Vi 
w 

1,3,4,5,2 1,3,4,5,6 
1701 1703 

1,3,5,6,2 1,3,5,6,4 1,4,3,5,2 1,4,3,5,6 
1723 1677 1681 1683 

Figure 4.14 

Starting Lower Bound: 1654 
Starting Upper Bound: 1683 

The enumeration tree of the example 

5,6,4,3,l 5,6,4,3,2 
1693 1706 



Chapter 5 

Numerical Experiments 

5.1 Outline 

In this chapter, we report the results of a series of numerical experiments performed to 

analyze the effectiveness of the branch and bound algorithm developed in the previous 

chapters. There are several parameters characterizing the batch scheduling problem: the 

number of batches, intermediate buffer capacity, batch sizes, and the values of processing 

times. As we can see in the following section, the time needed to find an optimal solution 

is the most sensitive to number of batches. The intermediate buffer capacity affects both 

the running time and the optimal value. The batch sizes and the values of processing 

times affect the performance of the program by their contributions to the percentage of 

batches that reach the steady state. Whether a batch reaches the steady state or not is 

decided by the buff er capacity as well. Therefore, in our experiments, we need to 

examine the performance of the program by: (a) the number of batches; (b) buffer 

capacity; ( c) the percentage of batches that reach the steady state. 
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In this chapter, we also compare the branch and bound algorithm with some ·other 

heuristic approaches to show how much improvement our method gains in various cases. 

Our branch and bound algorithm uses the depth-first search strategy in searching all 

nodes of an enumeration tree. In this chapter, we also develop .another algorithm, which 

applies best-first search strategy to branch the enumeration tree. We present a 

performance comparison between these two search approaches. 

In the following experiments, processing times are random numbers between 10 and 

150, setup and removal times are random numbers between 50 and 600, and batch sizes 

are random numbers between 8 and 200. All random numbers are generated by computer 

in pseudo-uniform distribution. All experiments are performed on a Dell Dimension 4550 

personal computer with Pentium 4 processor at 2.53GHZ speed and 640 M RAM. Better 

performance is expected if a higher-speed computer is available. 

5.2 Numerical Experiments 

1) The effect of the number of batches 

In this experiment, we fix the buffer size at five. We divide the experiment in five 

categories: the percentages of batches that reach the steady state are 10%, 30%, 50%, 

70% and 90% respectively. In each category, we begin with the problem of one batch, 

and increase one more batch at each step. We select five groups of data that satisfy the 

percentage of that category at each step, and get an average running time. For a problem 

with fourteen batches or less, the running time is below one minute for any input data. 
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But when the number of batches is larger than fourteen, the running time grows 

exponentially as shown in Figure 5.1. 

2) The effect of buffer capacity 

In this experiment, the number of batches and processing times are fixed. We begin 

with the problem of zero-buffer, and increase capacity by one buffer position at each step. 

In the case of zero-buffer, the problem is equivalent to the two-machine blocking 

flowshop, which can be solved in O(nlogn) time. The running time grows as the buffer 

size increases, as shown in Figure 5.2. This is because, from equation (2.18), batches are 

likely not to reach the steady state condition as the buffer size increases. The running 

time drops fast after the buffer capacity reaches a certain number, since from that point 

on, the buffer size is large enough so that blocking on the first machine is not likely to 

happen. The Johnson's algorithm provides an optimal solution in that case. The value of 

makespan decreases as the buffer size enlarges, and after a certain point (thirteen in this 

case), the value keeps constant since no blocking occurs thereafter, as shown in Figure 

5.3. 

3) The effect of the percentage of steady state 

In this experiment, we fix the buffer size at five and the number of batches at eighteen. 

We run the program at various processing times and setup and removal times, and 

calculate the running time and the percentage of batches that reach the steady state at 

each run. When all batches reach the steady state condition, the branch and bound 

algorithm terminates right at the root node. The running time grows as the number of 
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batches that can reach steady state condition decreases. Around the point of forty percent, 

the running time drops because from that point on, Johnson's algorithm provides good 

upper bound. As shown in Figure 5.4, for batches at the two ends of the diagram, the 

branch and bound algorithm can find the optimal solution quickly. 

4) Comparison with other heuristic approaches 

This experiment is desigried to show how much improvement that our method gains 

over the other heuristic approaches. Again, we fix the number of batches at 18 and the 

buffer size at 5. We run the program at various processing times and setup and removal 

times, and calculate the makespans and the percentage of batches that reach the steady 

state at each run. As shown in Figure 5.5, for batches with low percentage of steady state, 

the Johnson's algorithm is close to the optimal solution, while the steady state algorithm 

has as much as thirty-two percent higher than the optimal value. For batches of high 

percentage of steady state, the steady state algorithm tends to be optimal, while the 

Johnson's algorithm has as much as thirty-six percent higher than the optimal value. On 

average, both heuristic algorithms have about fifteen percent higher values in makespan 

than the optimal solution. Based on this information, we can see that heuristic approaches 

can be "good" only in some particular situations. 

5.3 Best-First Search 

We apply depth-first strategy to search the enumeration tree. Depth-first performs a deep 

probe, creating a path as long as possible, and backs up one node to initiate a new probe 
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when it can mark no new node from the tip of the path. On the contrary, breadth-first 

strategy expands all possible branches from a node in the search tree before going deeper 

into the tree. Besides these two commonly used search strategies, another one is best-first 

search, which always select the node that seems most promising. In our problem, at each 

step of the branch and bound algorithm, we select the node corresponding to the partial 

schedule for which the lowest value of lower bound has been found. When several nodes 

have the same lower bound, the deepest among them was chosen. We develop another 

branch and bound algorithm based on best-first search strategy. The mechanism of the 

strategy is shown in the following example. 

Example 

In this example, we still apply the example data Table 4.1 in Chapter 4. As shown in 

Figure 5.6, the procedure of the best-first search is developed in the following way. At 

the root node, a lower bound of 1654 and an upper of 1683 has been found. The first node 

to be searched is node 1, which also has a lower bound of 1654. Since node 1 is deeper 

than the root node in the enumeration tree, we search the nodes derived from node 1. 

Node 1-2 has a lower bound of 1693, which is larger than the upper bound of 1683. Then 

node 1-2 is eliminated. At node 1-2, we find a new upper bound of 1677, therefore, the 

upper bound is updated at this value. Since the lower bound (1674) of node 1-2 is larger 

than current lowest lower bound (1654), we continue to search other nodes derived from 

node 1. At node 1-4, we also find a lower bound of 1654. Since node 1-4 is deeper than 

node 1 in the enumeration tree, the next nodes to be searched are derived from node 1-4. 

The same procedure is developed until we found the optimal solution at node 1-3-5-6-4. 
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In this example, total 57 nodes have to be searched to find the optimal solution, compared 

with the depth-first search algorithm, which only searches 18 nodes. 

A comparison of two search algorithms is shown in Figure 5.7. We run the best-first 

search algorithm under same conditions as in example 1. For batch scheduling problems 

with small batch number, the depth-first search has better performance than the best-first 

search. The reason is that the best-first search spends much more time in storing the 

enumeration tree structure, which trades off the gain of ''wise" search policy. For 

problems with batch number of twenty, the best-first search runs faster, about seventeen 

percent improvement over the depth-first search on average. However, for problems with 

twenty-one batches, the depth-first algorithm may take a couple of days to obtain an 

optimal solution, but the best-first search runs out of memory on the computer. 

Generally, the best-first search can have a better performance than the depth-first 

search for a problem with large batch number. However, since it needs to memorize the 

structure of the enumeration tree, more memory is required for this search strategy. It 

may become impractical for a large-scale problem. On the contrary, the depth-first search 

has the following advantages: (1) we can always get a feasible solution, even when the 

number of nodes are to be searched is extraordinarily large; (2) For practical problems, 

the optimal solution usually occurs deep in the tree; (3) The search scheme is easy to be 

applied, since we do not need to memorize the structure of the tree. 
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Chapter 6 

A Case Study 

6.1 Background 

PCB assembly is a complex task involving the placement of up to hundreds of electronic 

components in different shapes and sizes at specific locations on the board. The process 

of PCB assembly can be carried out in an automated flow line with several stages, which 

include printing, placement, heating and testing, as illustrated in Figure 6.1. Since 

placement machines are usually . much more expensive than other equipment in the 

assembly line, the component placement is often the bottleneck of the production line, 

and consequently it becomes the focus of efforts to improve production flow. 

Figure 6.1 A PCB assembly line 
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Although placement machines have various configurations, most of them consist of 

three components: a table on which the PCB is attached, a feeder carriage that holds 

components, and a head that picks components from the feeder and places them on the 

PCB. There are four operational decisions to be made during the process of placement. 

Machine assignment decides which components to be placed on which machine. Feeder 

assignment settles which components to be installed in which feeder for each machine. 

Placement sequencing decides the order of components to be placed on a given board for 

each machine. Board sequencing determines the processing order of different types of 

boards on the production · 1ine. In this dissertation, our research focuses on the board 

sequencing problem, that is, we assume that all other operational decisions have been 

given, and we try to optimize the board sequence on machines. A comprehensive review 

of the literature in PCB assembly optimization problems can be found in [McGinnis et al., 

1992], [Ammons et al., 1997], [Leon and Peters, 1998], [Ahmadi and Kouvelis, 1999] 

and [Ellis et al., 2001]. 

Usually there is more than one placement machine in a PCB assembly line. A popular 

line configuration consists of two different types of placement machines: one type of 

machine places commonly used components, such as resistors and capacitors, at high 

speed; the other type of machine is more flexible but at a lower speed. Large chips and 

other irregular components are usually placed on this type of machine. This research 

considers an assembly line with two placement machines. The two machines are 

connected by a synchronized conveyor. The placement machines and conveyor form a 

two-machine flowshop with limited capacity intermediate buffer, as shown in Figure 6.2. 
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The capacity of the buffer is the same as the number of board positions on the 

synchronized conveyor. 

Figure 6.2 Two-machine flow shop with limited buffer 

In PCB assembly, boards are usually grouped in batches. We assume that boards in 

the same batch are all identical. Since setup times between boards in a same batch can be 

regarded as a part· of processing times, for simplic!ty, we assume that no setup is required 

between boards in the same batch. However, we assume that there is a changeover 

between two different batches. This changeover includes the activities associated with the 

removal and installment of components in feeder slots and machine adjustment for a 

given board type. The changeover time is often large relative to the placement time of a 

single board. And furthermore, the changeover time is greatly influenced by the PCB 

production sequence. Ammons et al. [1997] categorize the strategies for setup 

management as follows: 

1. Single setup in which a group of machines is configured to produce a family of PCBs 

using a single setup. There are two possible single setup strategies: 

a) Unique setup in which the family contains only one product type. 

b) Family setup in which the family comprises several product types. 

2. Multiple setup in which because a limited component staging capacity on the 

placement machines prohibits applying the single setup strategy, some additional 
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setups must be performed within a family. There are two possible multiple setup 

strategies: 

a) Decompose and sequence in which the family is divided into sub-families which 

are then sequenced to minimize the incremental setups between the subsets. 

b) Partition and repeat in which the required components are partitioned into 

subsets restricted by machine capacity. 

In our case study, we assume a unique setup strategy. The advantage of the unique setup 

strategy is that the placement time can be minimized for each board. Also the makespan 

is not affected by the board sequence when using unique setups [Leon and Peters, 1998]. 

The changeover times can be large since all components from the previous product are 

removed before starting the setup of a new product. However, this can be compensated 

by offline setups. An operator can set up the required components for a product in an 

offline feed bank while the machine is building a different product. The operator then 

trades the offline feeder bank for the online feeder bank, and can start building the new 

product immediately [Palm, 1996]. An offline setup usually takes a couple of minutes to 

load the feeder bank into the machine. 

Another setup strategy to improve the machine utilization is sequential changeover. 

In a sequential changeover, a placement machine starts to change over to a new batch as 

soon as it finishes the last board of the current batch, which means two different PCB 

types may be on the assembly line at the same time [Rowland, 2003]. We apply 

sequential changeover strategy in this research. 
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6.2 Case Study 

National Instruments (NI) assembles printed circuit boards for their customers. On an 

average, NI produces 10 types of boards each day. The number of boards for each type 

varies from 5 to hundreds, with an average of 60. These numbers feature a low-volume 

high-mix manufacturing. The boards are built to stock following a min-max policy. A 

push system is applied for most non-urgent batches. The operations people schedule 2-

day release of boards and WIP each day to push the products towards the finished goods 

stock. NI would like to know what, if any, impact different scheduling strategies may 

have on the production flow. 

NI has four PCB assembly lines in operation. Three of these are surface mount lines 

that contain identical machine configuration. Another line has a through-hole machine 

right after SMT machines. Each production line has two different SMT placement 

machines. The first placement machine is a chip-shooter, and most passive components 

are placed on this machine. The second one is a flexible machine, and !Cs are placed on 

this machine. The operation flow for each PCB through an assembly line is illustrated in 

Figure 6.3. Two SMT machines are the bottlenecks of each production line, and hence 

they are the focus of efforts to be optimized. 

NI applies unique setup. strategy, that is, a single setup is perfonned for one type of 

product. All setups are perfonned off-line. On estimation, it takes 30 seconds to 

load/unload a feeder into/from an SMT machine. Rolling changeover is also applied. A 

machine begins to perfonn a setup for the next batch as soon as the last job of the current 

batch leaves the machine. 
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In this experiment, we schedule twenty batches for each production line which take 

about 24 hours in continuous production time. We calculate the makespans by our branch 

and bound algorithm, and compare them with NI' s scheduling. The experimental data and 

results are in Appendix C. Table 6.1 shows that our approach provides approximately 6-

7% improvement over current schedules. 

Line 1 Line2 Line3 Line4 
NI Scheduling (h) 26.4 23.7 29.8 21.3 

Optimal Scheduling (h) 24.7 22.3 28.1 19.8 
Percentage of Improvement (%) 6.5 6.1 5.7 7.1 

Table 6.1 Experiment results 
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6.3 Discussion 

In this case, the setup times and removal times are all identical. For a more general case, 

suppose that both setup and removal times are identical for each batch (but can be 

different between batches), as shown in Figure 6.4, R1 = R2 , S1 = S2 , then we have 

Ti = T2 , which implies the setup· and removal times do not have any impact on the 

optimality of the overall sched~le. Therefore, if we do not consider the setup and removal 

times for all batches, the optimal sequence of all batches is the same as when setup and 

removal times considered. 

Figure 6.4 Identical setup and removal times 
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Chapter 7 

Conclusions 

7.1 Summary . 

In this dissertation, we study the flowshop batch scheduling problem for the two machine 

case. Based on previous research, we develop a steady state optimization algorithm, 

which takes both sequence-independent setup and removal times into consideration. We 

also develop two heuristic algorithms that provide lower bounds of the optimal solution. 

A branch and bound algorithm is designed to find the optimal solution for any general 

case. Theoretically, the branch and bound algorithm can always obtain an optimal 

solution for any general cases (on our personal computer, we can solve a 20-batch 

problem within several hours). Even for instances with large numbers of batches, our 

algorithm can always obtain feasible solutions, and most of time, rather good solutions. 

Finally, we perform a series of numerical experiments to show the effectiveness of our 

approach. Compared with the depth-first search algorithm, a best-first search algorithm is 
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also developed, and a perfonnance comparison between these two approaches has been 

perfonned. 

7.2 Contributions 

This research finds an optimal batch sequence in a PCB assembly line such that the total 

flow time of all jobs is minimized. The main contributions include: 

1) We extend the steady state optimization approach of the previous research work. In 

our model, we include batch setups and removals. Since the tail Tu can be negative in 

our case, we solved the problem in a higher complexity. 

2) We develop an optimal algorithm for the batch scheduling problem of a two-machine 

· flowshop with unlimited buffer. We also extend the algorithm for the situation in 

which one of the two machines is not available at time zero (this is the same situation 

with a tail Tu left from the partial schedule a as described in Chapter 4). This 

algorithm provides a good lower bound when most of batches to be scheduled have 

'• 
clo~e processing times on two machines. We also develop the time-reduction 

algorithm, which provides good lower bound when most of batches to be scheduled 

can reach the steady state. 

3) Our algorithm is designed for one type of PCB assembly scheduling problems. More 

specifically, the problem has the following features: 

a. The flowshop has two SMT machines, possibly non-identical ; 

b. Unique setup policy is applied; 
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c. Rolling changeover strategy is applied; 

d. A group of orders is available to be scheduled with no due date specified; 

e. The objective is to minimize makespan. 

Since the conditions of PCB assembly can vary a great deal, there are many different 

PCB scheduling problems. The percentage of the PCB assembly systems that meet all 

these features would be rather small. However, the electronics industry has been 

growing rapidly since decades ago. Nakahara [1999] indicated that the annual growth 

rate of worldwide PCB production has exceeded 20% since 1984, to a total value of 

roughly $35 billion in 1998. The total value saved by improving machine utilization 

by using our approach can still be high. 

7.3 Future Research 

There are several points to be explored in the future research. 

1) The efficiency of our branch and bound algorithm is based on input data. The running 

time increases as the number of small size batches (for example, smaller than buffer 

size c) grows, since in that case, the steady state optimization algorithm cannot 

eliminate nodes on the enumeration tree quickly. Some other methods in finding new 

lower bounds for small batch size cases should be one of our further studies. 

2) Contrary to time-reduction algorithm, another approximation approach is to increase 

the smaller processing time between Pit and Pi2 of an amount such that no blocking 

happens for that batch B;. When no blocking happens for all batches, the problem can 
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be solved by the infinite-buffer algorithm we developed. The difficulty of this 

approach is to find out how much to increment of the processing time for each batch. 

This approach can be called the time-increment algorithm. The approximation result 

provides an upper bound of the optimal solution. 

3) This research investigates a limited-buffer flowshop with two machines. In reality, 

some PCB production lines have more than two machines in series. Our model can be 

applied in any situation where each bottleneck is composed of two machines. If there 

are three or more machines in ·series to be considered, our flowshop model needs to 

be extended. However, since a general case of three-machine flowshop with 

unlimited buff er is already NP-hard, this brings a significant hardness to the problem. 

Both our steady state optimization approach and heuristic algorithms need to be 

further explored. 

4) In reality, all machines are subject to random breakdowns. How the stochastic nature 

of the system affects the performance of our approaches should be another research 

topic. 
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Appendix A: Gilmore and Gomory Algorithm 

This section is from reference [Hall and Sriskandarajah, 1996]. The algorithm was first 

developed by Gilmore and Gomory [1964]. The algorithm described below solves the 

two-machine blocking flowshop with makespan minimization problem. The intuition 

behind the algorithm is that, ideally, the shortest processing time on machine 1 would be 

concurrent with that on machine 2, similarly for the second shortest processing times on 

the two machines, and so on. If this is not possible, a dual improvement step moves the 

current schedule towards feasibility at minimum cost. Let <l>(j) denote the job that 

follow job j in the sequence found. 

Algorithm (Gilmore and Gomory 1964) 

Step 1 Number the jobs such that Pz,j S Pz,j+1,j = 1, ... , n - 1. Initialize G1 = G2 = 0. 

Step 2 Find a function </J{j) ,j = 1, ... , n, such that Pi,;w S Pi.;u+i> ,j = 1, ... , n - 1. 

Step 3 Define a graph with n nodes (each representing a job) and no edges. The lengths 

C j,j+t of edges (j, j + 1 ), j = 1, ... , n - 1 that may be added later are given by 

Cj,j+t =max {O, (min {Pz,j+t Sp1,;u+o} -max{p2,p Pi,;w})} forj= 1, ... , n-1. 

Step 4 Setj = 1. 

Step 4.1 If the undirected edge {j,</J(j)) is not in the graph and j ¢ </J{j), add it. 

Setj=j+l. 

Step 4.2 If j s n, go to step 4.1. 
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Step 5 If the graph has only one connected component, go to Step 7. Otherwise, let k = 

argmin { Ci'j+t I j andj + 1 are in different components}, breaking ties arbitrarily. 

Step 6 Add the undirected edge (k, k + 1) to the graph. If Pi,;ck> "C:. p 2,k, set Gt =Gt u 

{(k, k+ l)}. Otherwise set G2 = G2 u {(k, k+ l)}. Go to Step 5. 

Step 7 If Gt = 0, let s = 0. Otherwise, let the elements of G1 be {(ri, r 1 + 

1), ... , (rs, rs+ l)}, where r1 "C:. ••• "C:. rs. 

Step 7.1 If G2 = 0, let t = 0. Otherwise, let the elements of G2 be {{ki, kt + 

Step 8 Define for 1:::;; e,g,h:::;; n a function ae,g (h) as follows: ae,/e) = g, ae,g (g) = e, 

and ae,/h) = h if h :t: e,g. Setj = 1. 

Step 8.1 If t = s = 0, set <I>(k) = ¢(k), k = 1, ... , n, and stop. 

Step 8.2 Set y = j. If t = 0, set i = s and go to Step 8.5. Otherwise, set i = t. 

Step 8.4Ifi~1, go to Step 8.3. Otherwise, ifs= 0, go to Step 8.6. Otherwise, set i = s. 

Step 8.5 Set y = ar. 'r.+t (y) and i = i-1. 
i I , 

Step 8.6 If i "C:.1, go to Step 8.5. Otherwise, set <I>(j) = ¢(y) andj = j + 1. 

Step 8. 7 If j:::;; n , go to Step 8.2. Otherwise, stop. 
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This algorithm can be implemented in O(n logn) time. Now consider the following 

example. 

Example 

Jobj 1 2 3 4 5 6 7 8 
P12t 10 12 3 5 6 11 9 4 
p2,; 7 8 2 3 9 12 13 6 

Step 1 gives: 

Jobj 1 2 3 4 5 6 7 8 
l!.2il 2 3 6 7 8 9 12 13 

Pt.t 3 5 4 10 12 6 11 9 

Step 2 and 3 give: 

Jobj P2,j Pi.;u> t/J(j) max {p2,j,P1,;u>} min {P2,j' P1,;U)} c. '+1 J,J 

1 2 3 1 2 0 
2 3 4 3 4 3 1 
3 6 5 2 6 5 0 
4 7 6 6 7 6 1 
5 8 8 9 8 0 
6 9 10 4 10 9 1 

12 11 7 12 11 0 

8 13 12 5 13 12 

At Step 4, the edges in the graph are (2, 3), (4, 6), and (5, 8). 

At Step 5, the graph has components {l}, {2, 3}, {4, 6}, {5, 8}, and {7}. 

At Step 6, edges (1, 2), (3, 4), (5, 6), and (7, 8) are added, G1 = {(1, 2), (5, 6)}, G2 = {(3, 

4), (7, 8)}. 

At Step 7, ri = 5, r2 = 1, kt= 3, k2 = 7. 
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At Step 8, for j = 1 we have: y = a 7,8 (1) = 1 , a3,4 (1) = 1 , a 1•2 (1) = 2 , a5,6 (2) = 2 , 

Cf>{l) = </J(2) = 3. The steps are similar forj = 2, ... , 8. 

The optimal sequence, with a makespan of 64, is given by: 

Jobj 1 2 3 4 5 6 7 8 
<l>*{j) 3 1 6 2 4 8 5 7 
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Appendix B: Case Study Data 

Line 1 

Part Number Batch Size Pl (s) P2 (s) 
Setupl Setup2 

(s) (s) 
1 187620A-05 8 25 30 180 180 
2 185652C-Ol 77 94 75 180 180 
3 187128A-Ol 55 113 111 180 180 
4 187801A-Ol 80 25 36 180 180 
5 184946C-02 26 78 54 180 180 
6 185030F-Ol 33 102 83 180 180 
7 186623B-05 7 67 163 180 180 
8 1830840-05 14 55 63 180 180 
9 185453D-02 60 98 125 180 180 
10 186104C-Ol 77 so 39 180 180 
11 184359B-01 169 119 149 180 180 
12 183087H-03 14 61 60 180 180 
13 183087H-04 22 155 183 180 180 
14 185608B-01 45 33 51 180 180 
15 181525K-Ol 85 46 35 180 180 
16 186914B-Ol 12 80 80 180 180 
17 184164F-02 51 48 59 180 180 
18 1841640-01 50 68 87 180 180 
19 181925C-ll 50 54 75 180 180 
20 181500F-Ol 90 73 90 180 180 

Makespan according to NI scheduling (as sequenced) is 26.4 hours. 

Optimal Makespan is 24. 7 hours. 

Optimal sequence: 

1 - 20 - 5 - 17 - 13 3-18 12-14-11-2 19-10-4-9-16-7-6-8-15 

Improvement 6.5% 
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Line2 

Part Batch Size Pl P2 Setupl Setup2 
Number 

1 184177D-01 105 40 39 180 180 
2 182481D-01 83 63 51 180 180 
3 186695B-01 15 54 71 180 180 
4 184466C-Ol 30 115 91 180 180 
5 183550B-Ol 108 44 48 180 180 
6 183262F-01 103 70 63 180 180 
7 182880H-Ol 100 45 51 180 180 
8 182750D-01 36 101 30 180 180 
9 183381E-Ol 53 69 44 180 180 
10 160461A-Ol 10 132 143 180 180 
11 182880H-Ol 70 49 54 180 180 
12 184182B-01 26 61 68 180 180 
13 183262F-01 84 70 63 180 180 
14 182435G-Ol 77 53 45 180 180 
15 182887C-01 165 48 56 180 180 
16 182459G-05 79 83 65 180 180 
17 183442D-01 51 62 73 180 180 
18 182770K-Ol 26 98 47 180 180 
19 182465H-01 40 60 45 180 180 
20 183442D-01 37 55 68 180 180 

Makespan according to NI scheduling (as sequenced) is 23.7 hours. 

Optimal Makespan is 22.3 hours. 

Optimal sequence: 

5 19 - 3 - 18 - 20 - 16 - 1 - 7 - 2 - 12 - 6 - 10 - 4 - 14 - 11 - 9 - 15 13 - 17 - 8 

Improvement 6.1 % 
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Line 3 

Part Number Batch Size Pl P2 Se tu pl Setup2 

1 183628E-01 30 64 50 180 180 
2 183628E-01 40 94 47 180 180 
3 183628E-01 40 64 50 180 180 
4 183628E-02 100 74 56 180 180 
5 183628E-02 100 74 40 180 180 
6 183628E-02 100 74 76 180 180 
7 183628E-02 125 104 86 180 180 
8 183873A-02 72 36 49 180 180 
9 183884C-01 20 43 52 180 180 
10 184435A-01 80 61 93 180 180 
11 184436B-Ol 60 56 46 180 180 
12 184438A-01 216 77 41 180 180 
13 184674C-Ol 34 51 81 180 180 
14 184723B-01 26 69 44 180 180 
15 184726C-Ol 100 76 46 180 180 
16 185151A-01 120 54 71 180 180 
17 185152B-01 70 58 54 180 180 
18 185715A-01 20 78 41 180 180 
19 185849A-01 10 87 78 180 180 
20 186385B-01 20 63 78 180 180 

Makespan according to NI scheduling (as sequenced) is 29.8 hours. 

Optimal Makespan is 28.1 hours. 

The optimal sequence is: 

8 - 4 - 1 - 17 - 3 - 11 - 16 - 12 - 13 - 2 - 6 - 18 - 9 - 15 - 20 - 19 - 14 - 10 - 7 - 5 

Improvement 5. 7% 
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Line4 

Part Number Batch Size Pl P2 Setupl Setup2 

1 181460-0lC 32 33 35 180 180 
2 181525K-02 50 38 48 180 180 
3 181700J-01 80 109 95 180 180 
4 181925C-01 132 37 36 180 180 
5 181925C-ll 120 40 34 180 180 
6 181925C-12 40 39 47 180 180 
7 182346E-01 40 138 85 180 180 
8 182348C-1 l 40 78 55 180 180 
9 182368F-Ol 46 70 63 180 180 
10 182368F-Ol 33 81 93 180 180 
11 182610D-01 61 139 79 180 180 
12 182610D-02 16 89 59 180 180 
13 182610D-03 12 44 62 180 180 
14 182685H-01 175 68 80 180 180 
15 1830870-06 20 67 55 180 180 
16 184366D-Ol 5 74 87 180 180 
17 186135C-01 35 87 91 180 180 
18 186136C-01 24 67 83 180 180 
19 186138D-02 24 37 56 180 180 
20 186131F-02 20 89 104 180 180 

Makespan according to NI scheduling (as sequenced) is 21.3 hours. 

Optimal Makespan is 19.8 hours. 

The optimal sequence is: 

1 - 17 - 3 - 10 - 7 - 16 - 12 - 13 - 15 - 6 - 20- 11 - 14 - 9 - 18 - 8 - 2 - 4 - 19 - 5 

Improvement 7 .1 % 
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