
Batch Scheduling of Two-machine Limited-buffer

Flowshop with Setup and Removal Times

A Thesis
Presented to

The Academic Faculty

By

Jianbin Dai

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
November 2003

Batch Scheduling of Two-machine Limited-buffer

Flo\vshop with Setup and Removal Times

Approved by:

Dr. Chen Zhou, Chairman

_3f. Jane Ammons

Dr. Mark Ferguson

Dr. Spyros Reyelioti,s.-,

,, I
/ :

v·

Dr. MahifrB?velsbepgh '

Date Approved __ I 1_-_z_t_-_c_'3 ___ _

Acknowledgements

First, I would like to take this opportunity to express my sincere appreciation to Dr. Chen

Zhou, who is my advisor during this research work, for his unreserved guidance, support,

and encouragement. I will always be grateful for his tutoring in all aspects of my life

during the past years.

I wish to thank Dr. Jane Ammons, Dr. Mark Ferguson, Dr. Sypros Reveliotis, and Dr.

Dr. Martin Savelsbergh for serving on my committee and for advice and constructive

comments throughout my Ph.D. program. Especially thank Dr. Ammons for her

unreserved instruction on PCB assembly applications.

Thanks must also go to Dr. Hayriye Ayhan and Dr. Anton K.leywegt. They served my

first-two-year advisors at Georgia Tech. I really appreciate their guidance in my new life

of this country.

I would also like to express my sincere thankfulness to my friends at Georgia Tech in

the past years: Junxia Chang, Yonggang Guan, Wei Hua, and Kaiwei Li. I really

appreciate their help and friendship.

I cannot overstate the gratitude to my parents and my brothers who encourage and

support me every step of the way. Finally, I cannot express with words my deep

appreciation and gratitude to Nancy. Her support, patience, encouragement, and sacrifice

will forever be appreciated.

iii

Table of Contents

Ack:riowledgements .. iii

Table of Contents ... iv

List of Tables .. vii

L. fp· ... 1st o 1gures .. v111

Notation ... x

Summary ... xii

Chapter 1 Introduction···'··· 1

1.1 Background ... 1

1.2 Problem Definition .. 2

1.3 Previous Work .. 4

1.4 Organization .. 7

Chapter 2 Steady State Optimization .. 8

2.1 Outline ... 8

2.2 Makespan Evaluation .. 9

2.3 Converting to a TSP .. 15

2.4 Sufficient Conditions for the Steady State .. 20

Chapter 3 Lower Bounds and Upper Bounds ... 24

3 .1 Outline ... 24

3.2 Processing Time Reduction Lower Bound ... 25

3.3 Infinite Buffer Lower Bound .. 26

iv

3 .4 Upper Bounds ... 31

Chapter 4 A Branch and Bound Algorithm .. 32

4.1 Definitions and the Fathoming Rules .. ~ .. 32

4.2 Updating SP0 and T0 ••• 35

4.3 Computation of SP"'(U) ... 43

4.4 Lower Bounds of SP"'(U) .. 45

4.5 A Branch and Bound Algorithm ... 50

4.6 An Example .. 52

Chapter 5 Numerical Experiments .. 54

5 .1 Outline ... 54

5.2 Numerical Experiments .. 55

5.3 Best-First Search: .. 57

Chapter 6 A Case Study .. 67

6.1 Background ... 67

6.2 Case Study .. 71

6.3 Discussion ... 74

Chapter 7 Conclusions .. 75

7.1 Summary ... 75

7.2 Contributions ... 76

7 .3 Future Research .. 77

Appendix A: Gilmore and Gomory Algorithm ... 79

Appendix B: Case Study Data .. 83

v

Bibliography .. ~ 87

Vitae .. 91

vi

List of Tables

Table 4.1 Data of the example··· 52

Table 6.1 Experiment results ··· 72

vii

List of Figures

Figure 2.1 The steady state, (a) pu < p;2, (b) Pu ~ p;2 .. 10

Figure 2.2 SP;(u) evaluation whenpu <p;2,ph1 <Ph2························~·························· 11

Figure 2.3 SP;(u) evaluation whenpu <p;i,phl ~ Ph2 ... 12

Figure 2.4 SP,{ u) evaluation when pu ~ p;2, Phi< Ph2 ... 13

Figure 2.5 SP,{u) evaluation whenpu ~ p12,ph1~p112 ... 14

Figure 2.6 The tail of the schedule u ... 16

Figure 2.7 Negative-length tail ... ~ 16

Figure 2.8 A two-machine blocking flowshop .. 18

Figure 2.9 The steady state of batch B1 (pu < Pi2) in the "worst" case 21

Figure 2.10 The steady state of batch B; (pu > p;2) in the "worst" case 22

Figure 2.11 Th~ steady state of batch B; (pu = p;2) .. 23

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Single batch scheduling .. 28

Single batch scheduling when jobs are scheduled as late as possible 28

Insertion of job J12 into the schedule .. 31

Span and tail of a partial schedule, (a) Tcr > o, (b) Tcr < o 33

Updating of the span SPcr and tail Tcr .. 36

The steady state batch size when T;. s p11 and p11 < p12 •• ~ 37

The steady state batch size when p11 < T;. < (c+ l)pil and p11 < p12 37

The steady state batch size when T~. ~ (c+ I)p,1 and p11 < p12 :·· 38

viii

Figure 4.6 The steady state batch size when T~. < p
11

and p
11

> p,
2

•••••••••••••••••••••••••••••••• 39

Figure 4.7 The steady state batch size when p 11 < T~. < (c+l)p,1 and p
11

> p
12

••••••••••••••••• 40

Figure 4.8 The steady state batch size when T~. ~ (c+ 1)p
11

and Pi! > p
12

••••••••••••••••••••••• 40

Figure 4.9 The steady state batch size when T~. s p
11

and p
11

= p,
2

•••••••••••••••••••••••••••••••• 41

Figure 4.10 The steady state batch size when Pit< T~. < (c+1)p11 and Pi1 = p,2 ••••••••••••••••• 42

Figure 4.11 The steady state batch size when T~. ~ (c+l)p
11

and p,1 = p12 •••••••••••••••••••••••• 42

Figure 4.12 Four possible resulting schedules of the Infinite Buffer algorithm 48

Figure 4.13 The maximal time length d; .. 50

Figure 4.14 The enumeration tree of the example ... 53

Figure 5 .1 Solution time corresponding to batch number of batches 60

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Solution time corresponding buffer capacity ... 61

Makespan corresponding to buffer capacity ... 62

Solution time corresponding to percentage of batches that reach the steady

state .. ~ 63

Makespans of the heuristic algorithms ... 64

The enumeration tree of the best-first search ... 65

Computation Requirements for Algorithms: Depth-first vs. Best-first 66

A PCB assembly line .. 67

Two-machine flow shop with limited buffer .. 69

Operations for each PCB assembly line ... 73

Identical setup and removal times .. 7 4

ix

Notation

Batch i

Batch size of batch B;

b~
I

The steady state batch size for batch B;

c The intermediate buffer size

The makespan for a single batch B;

The optimal makespan of the

The makespan of a sequence u

Machine i

N The set of all batches

n The number of batches

The processing time of batch B; on machine M.i

The removal time of batch B; on machine Mj

s The subset of all scheduled batches

The setup time of batch B; on machine M.i

SP(h,i) The coupling cost between batch Bh and batch B;

SR0
I

The fixed cost of batch B;

SP*(U) The optimal makespan for unscheduled batch set U

x

SP;(a)

u

The span of batch B; in a sequence u

The span of a sequence u

The tail of a sequence u

The subset of all unscheduled batches

A scheduled sequence

xi

Summary

This research investigates the batch scheduling problem for a two-machine limited-buffer

flowshop with setup and removal times considered. Different from most previous

research, this thesis includes key features of real-life applications. In reality, machine

setup is a significant element that cannot be neglected in many situations. Different setup

strategies may have different impacts on flowshop scheduling. The intermediate buffer

usually has a limited capacity, som{'.times rather small. In many cases, similar jobs are

grouped together as a family such that no machine setup is required between jobs within

the same family. All jobs in the same family must be processed consecutively. Our·

objective is to find the sequence of jobs on the machines such that the overall completion

time is minimized.

In this dissertation, we show that under the steady state conditions, the batch

scheduling problem can be converted to a special. structured traveling salesman problem

(TSP) that can be optimally solved in O(nlogn) time. We develop two approximation

algorithms, both of which provide lower bounds for the value of the optimal solution. A

branch and bound algorithm is developed to find an optimal solution for the general case.

We also perform a case study for a specific electronic assembly application. Finally,

various numerical experiments show the effectiveness of our algorithms.

xii

Chapter 1

Introduction

1.1 Background

A flowshop consists of a set of machines arranged in series, and a set of jobs visiting

machines in a fixed order. At each machine, a specified task is being performed. Each

machine can handle only one job at a time. Preemption of operations is not allowed. If all

jobs are processed in the same order on each machine, such a schedule is a permutation

schedule. In a simple conveyorized system, which applies the first-come-first-served

(FCFS) principle, a permutation schedule is the only feasible schedule. The problem of

flowshop scheduling with makespan minimization is to find a sequence of jobs on the

machines of the line such that the overall completion time for all jobs is minimized.

Makespan minimization is one of the most commonly considered criteria in scheduling

literature, and in the context of repetitive assembly, to some extent, makespan

minimization is equivalent to cycle time minimization [Crama, 2000]. As we will show in

the following chapter, in a two-machine flowshop, makespan minimization is equivalent

1

to minimizing the total idle and blocking times on two machines, and hence maximize the

utilization of the machines.

Flowshop scheduling problems have been extensively studied over the past decades.

One of the most significant results was Johnson's rule in optimally solving the two­

machine unlimited-buffer flowshop scheduling problem with makespan minimization. It

has also been _shown that two-machine blocking flowshop with makespan minimization

can be optimally solved in polynomial time. Unfortunately, most of other flowshop

scheduling problems turned out to be NP-hard. A large number of heuristic algorithms

have been developed in recent years to find approximate solutions of various flowshop

scheduling problems. However, only a few of them considered real-life application

systems. In reality, machine setup is a significant element that cannot be neglected in

many situations. Different setup strategies may have different impacts on flowshop

scheduling. The intermediate buffer usually has a limited capacity, sometimes rather

small. In many cases, similar jobs are grouped together as a family such that no machine

setup is required between jobs within the same family. All jobs in the same family must

be processed consecutively. In this thesis, we consider a two-machine flowshop

scheduling problem that arises in a specific electronics assembly circumstance.

1.2 Problem Definition

Consider a flowshop with two machines M1 and M2 and an intermediate storage buff er of

capacity c, that is, the buffer can host at most c parts. There are n batches of jobs, B 1,

2

B2, ... , Bn to be processed. All batches are available at time zero. Each batch B1 consists

of b; identical jobs. Each job in batch B; requires processing times pu and p;2 on machines

M 1 and M 2 respectively. These processing times are usually calculated by specific

software. We assume that all processing times are given, and do not depend on batch

sequence. All jobs from the same batch must be processed consecutively, that is, batches

cannot be split. If machine M1 completes processing on a job and the buffer is full, then

the part keeps M1 blocked until there is room in the buffer. A setup time Su is required to

install component feeder into machine Mj (j = 1,2) before a batch B; being processed on

that machine, and a removal time Rhj is required to unload the feeder from machine Mj

after a batch Bh completes its processing. Setup time Sij and removal time Ru are only

determined by batch B;. The setup of batch B; on machine M2 can be done before

completion of the operation of the first job of batch B; on machine M1, ifthere exits some

idle time on machine M2. Our objective is to minimize the makespan of all batches. A

formal definition of the problem is as follows:

Definition 1.1 (Batch Scheduling Problem) Given a two-machine jlowshop with an

intermediate buffer of capacity c and a set of n batches B1, B2, ... , Bn, (batch B; of size b;

and job processing times pil and Pn on two machines respectively, for i = 1, 2, ... , n)

requiring sequence independent setup times (Su and S;2) and removal times (Ru and Ri2)

on both machines, we want to find a sequence u of all batches so that the makespan }s

minimized.

3

1.3 Previous Work

As in many textbooks, we use a triplet a I fJ Ir to describe a scheduling problem.

The a field describes the machine environment and contains a single entry. Typical

machine environments specified in the a field include: single machine (J), parallel

machines (Pm), flowshop (Fm), open shop (Om), and job shop (Jm). The fJ field provides

details of processing characteristics and contains zero, single or multiple entries. Possible

entries in the fJ field are: release dates (rj), preemptions (prmp), precedence constraints

(prec), blocking (block), no-wait (no-wait) and so on. The third field r contains the

objectives to be optimized and contains one or multiple entries. Common objectives to be

minimized include: makespan (Cmax), maximum lateness (Lmax), total weighted

completion time (L w1C1), and total weighted tardiness (L w1T1). In the following

literature review, we focus on related flowshop scheduling problems.

Flowshop scheduling problems have been extensively studied for decades. In

particular, makespan minimization is the objective that has received significant attention

in literature. Two-machine infinite-buffer flowshop with makespan minimization

(F2 llCma.J was optimally solved by Johnson [1954] in O(nlogn) time. However, it has

been shown that Fm II Cmax is strongly NP-hard when m ~ 3 [Gary et al., 1976].

Williamson and Hoogeveen [1997] proved that unless NP = P, there is no polynomial

time approximation algorithm with a worst-case performance guarantee better than 514

for the problem Fm II Cmax with an arbitrary number of machines.

4

Two-machine flowshop with infinite buffer and sequence-independent setup times

was first solved by Yoshida and Hitomi [1979]. Sule [1982] extended the problem with

both sequence-independent setup ·and removal times. The problem of two-machine

flowshop with batch setups was shown to be NP-hard if batches are allowed to be split

[K.leinau, 1993]. However, if the number of batches is fixed and processing orders on the

two machines are constrained to be identical, the problem is polynomial solvable by

dynamic programming [Potts and_Wassenhove, 1997].

The aforementioned research work of the flowshop scheduling problem assumes that

the buffer capacity between machines is unlimited. However, in many real-life systems,

the intennediate storage between machines is limited, or even relatively small. Blocking

occurs when the intennediate buff er is full and the upstream machine cannot to release a

job into the buffer after its processing. There are two makespan minimization scheduling

problems closely related to the limited buffer flowshop: the blocking flowshop

scheduling problem (Fm I block I Cmax) and no-wait flowshop scheduling problem

(Fm I no - wait I Cmax). In a blocking flowshop, there is no storage between machines.

Actually, any limited buffer flowshop can be formulated as a blocking flowshop since

each storage space capable of containi~g one job may be regarded as a machine on which

the processing times of all jobs are equal to zero. In a no-wait flowshop, there is also no

storage between machines. Differing from blocking, a job when it goes through the

system is not allowed to wait at any machine. That is, whenever it has completed its

processing on one machine, the next machine has to be idle so that the job does not have

to wait. In contrast to the blocking case, where jobs are pushed down the line by

5

machines upstream that have completed their processing, in a no-wait flowshop, jobs are

pulled down the line by machines that have become idle. When a flowshop only consists

of two machines, if we release all jobs to the first machine as late as possible while at the

same time, keep the makespan unchanged, the blocking flowshop turns into a no-wait

flowshop, that is, the problem F2 I block I Cmax is equivalent to F2 I no - wait I Cmax .

Both F2 I block I Cmax and F2 I no - wait I Cmax problems can be formulated as a

special structured traveling salesman problem {TSP}, which was optimally solved by

Gilmore and Gomory [1964] in O(n logn) time. However, when m;::: 3, Fm I block I Cmax

cannot be described as a TSP and has been shown to be strongly NP-hard. In contrast,

Fm I no - wait I Cmax can always be formulated as a TSP, but this TSP is known to be

strongly NP-hard when m ;::: 3 [Pinedo, 1995].

The problem becomes extremely difficult when both the batch setups and limited

buffer are considered. Only a few of research papers have been found to address on this

topic. Agnetis et al. [1997] have proved that batch scheduling of a two-machine. flowshop

with limited buffer is strongly NP-hard even without considering setup times. They also

showed that the problem is solvable only when all batches satisfy a steady state condition,

which will be explained later. However, they did not give out a practical solution to solve

a general case. Several heuristic approaches have been presented in recent years. Bloat

[1997] implemented a dynamic program to minimize total blocking time. Leisten [1990]

presented a method that seeks to keep the intermediate buffers filled in order to avoid

starving the following machines. The heuristic method of tabu search has been used in

6

[Noman, 1999], [Weng, 2000] and [Nowicki, 1999]. Their results showed that this local

search strategy is rather effective in some cases.

To our knowledge, our problem of the two-machine limited-buffer flowshop

scheduling with sequence-independent setup and removal times has not been extensively

explored in the previous literature.

1.4 Organization

This dissertation is organized as follows: In Chapter 2, we are going to show that under

some circumstances, the Batch Scheduling Problem is equivalent to F2 I block I Cmax ,

which can be optimally solved by the Gilmore & Gomory algorithm [Pinedo, 1995]. In

Chapter 3, we present two approximation approaches, and both of them provide lower

bounds of the optimal solution. In Chapter 4, we are going to detail a branch and bound

algorithm that optimally solves the problem in theory. In Chapter 5, we apply our

algorithm on a specific electronic assembly scheduling problem. Chapter 6 provides some

numerical experiment results to show the effectiveness of our approach. Finally, in

Chapter 7, we develop some conclusions from our research.

7

Chapter 2

Steady State Optimization

2.1 Outline

Generally, flowshop batch scheduling problem with limited buffers is NP-hard even

without considering batch setups and removals. However, Agnetis et al. [1997] have

shown that the problem is solvable if all batches satisfy a certain condition, that is, all

batches can reach the steady state, which will be defined later. Since the term of "steady

state" was first defined by Agnetis, we still use this term throughout our dissertation

without confusion. In this chapter, we are going to extend the problem with both setup

and removal times considered. We find that the problem can still be formulated as a TSP

under the corresponding steady state condition and this special structured TSP be can be

solved in O(n logn) time.

8

. 2.2 Makespan Evaluation

In this section we are going to show that, for a given feasible sequence u of all batches,

the value of the makespan can be expressed as the sum of two terms if all batches can

reach the steady state. The first term of the makespan is a fixed cost, which does not

depend on the sequence of the batches. The second term is a coupling cost, which

depends on the batch sequence u ; in fact, this is the part we want to minimize. In this

section, we assume that b1 ~ c + 1 for all i = 1, 2, ... , n. This condition is easily satisfied in

our real applications since the buffer capacity usually is much smaller than a batch size.

This condition implies that at any time at most two batches are being processed on the

two machines.

Agnetis identified that, for a batch B; with Pit < pi2, if the batch size is large enough,

blocking on machine M1 happens when the intermediate buffer is full. A new job is

released into the system only when a job completes its processing on machine M2 and

leaves the system. From that point on, batch B; reaches the steady state as shown in

Figure 2.1 (a). On the contrary, if P;i ~ Pn, starving on machine Mi occurs when the

intermediate buffer is empty. A new job is released into the system only when a job

completes its processing on machine M1 and enters machine Mi. From that point on,

batch B; also reaches the steady state as shown in Figure 2.1 (b). Then the steady state

condition is defined as following.

Definition 2.1 (Steady State) A batch. B; re:aches the steady state at time t if, from then

on, the two machines start processing a new part at the same time, and this occurs every

9

max(p ;1, p ;2) time units as shown in Figure 2.1. In other words, after time t, the schedule

of the batch repeats identically over time.

t
(b)

Figure 2.1 The steady state, (a) Pu <p11, (b) Pu ;;::: P12

Now we define another tenn that will be frequently used throughout this thesis.

Definition 2.2 (Span) Given a sequence a, the span of a batch B; in a is defined as the

time interval that machine Mi is busy with batch B;. And the span of the sequence a is the

sum of spans of all batches in sequence a.

In other words, the span of B; equals the time length from the beginning time of the

initial setup of B; on machine Mi, denoted as time ti, till the ending time of removal of B;

on machine Mi, which is also called cleaned-up time, and we denote it as time t3, as

shown in Figure 2.2. In general, this quantity depends on the sequence a , and hence we

denote the span of B; as SP;(a), then SP;(a) =t 3-t1 • The span of the sequence a, SPa,

is calculated by

10

SPa = LSP;(a) (2.1)
B1ea

Suppose that batch B; is scheduled immediately following some other batch Bh, and

both batches reach the steady states. In the following, we calculate SP; (a) in the

following four possible cases.

In this case, we define time ti as the starting time of batch B; being processed on

machine Mi. Since we have Pit < P;2 , the second machine Mi is never idle after time ti,

as shown in Figure 2.2. The value of (t3 -t2) equals the total processing time of the first

(b1 - c -1) jobs plus batch B;'s removal time Ru on the first machine M1, that is,

S~(a)

Figure 2.2 SP,{ a) evaluation when Pu< P12, Phi <Ph2

The time length (t2 -t1) equals the maximum of (c+l)ph2 +Rh2 +812 -Rh1 and

S11 + p 11 • Therefore,

11

In this case, we define time t2 as the starting time of batch B; being processed on

machine M2 just as it is in the previous case. Machine M2 keeps busy after time t2, and

again t3 -t2 = (b; -c-1)p;2 +Rn. The buffer is empty at time ti, then (t2 -t1) equals the

maximum of S;1 + p 11 and ph2 + Rh2 + S;2 -Rh1 as shown in Figure 2.3. Therefore,

SP,(u)

IVl2 =up~~~h]JJ~EIITfilfilIIT§lli"ZEIIfill=pe;;_,IEP~,=r1p~,JJ&~2i~[Ejill__....
t2 t3

Figure 2.3 . SP;(u) evaluation when Pu< P;2, Phi ~ Ph2

(2.3)

In this case, we define time t2 as the starting time of the (c+l)th job of batch B; being

processed on machine M1 as shown in Figure 2.4. Then machine M1 is never idle after

12

time 12, and 13 -12 = (b; -c-1)p;1 +Rn. The time value of (12 -11) equals the maximum

of (c+l)ph2 +Rh2 +Si2 -Rh1 and Sn +(c+l)p;1 • Therefore,

SP;(cr) = (t2 -t1)+(t3 -t2)

= (b; -c-l)Pn +Rn +max{S;i +(c+l)p;p(c+l)ph2 +Rh2 +S;2 -Rh1}

= (b; -c-l)p;1 + Si2 +Rn

+max{(c+l)p11 +Sn -S;2 ,(c+l)ph2 +Rh2 -Rh1}

S~(a)

Mf]=t~~{Effjfilill]fu§ELI~~I~~~I&_ULI~[

(2.4)

M2
--1..---.::....u&..~J.--..=..L!J14---....J.--=...JW..--...l---=.~--J~~--..........;;:..uu.~::...LC.J~i::.LLL:;...L&.MCLL.LLL;..J.~~_....

12

Figure 2.4 SP1(a) evaluation when Pu ~ P12, Phi< Phi

4) Pn ~ Pn, Pht ~ Ph2

In this case, the time 12 is still defined as the starting time of the (c+l)th part of batch

B; being processed on machine M1 just as it is in the previous case. Then machine M1 is

never idle after time 12, and 13 -12 =(b;-c-l)Pn +R;i· The time length (t2 -ti} equals

themaximumofSn +(c+l)p;1 and ph2 +Rh2 +S;2 -Rh1 asshowninFigure2.5. Then,

SP;(a) = (12 -11) + (t3 -t2)

= (b; -c-l)p11 +Ril +max{S;1 +(c+l)pn,Ph2 +Rh2 +S;2 -Rh1}

=(b1 -c-l)p11 +S12 +Rn +max{(c+l)p11 +S;1 -S;2 ,ph2 +Rh2 -Rh1} (2.5)

13

S~(a)

Figure 2.5 SP;(a) evaluation when Pu ;:: P12, Phi ;:: Ph2

Based on the above four cases, we found that the value of SP; (a) is composed of two

terms. The first term is a fixed cost for batch B ;, which does not depend on the sequence

a , and we denote it as SP;0 , that is, for the case of p ;1 < p 12 ,

(2.6)

and for the case of p 11 ~ Pi2,

SP;0 = (b; -c-1)p11 + Si2 + Ril (2.7)

The second term is a coupling cost, which depends on both batch B; and the previous

batch Bh. but not any other batches in the sequence. We define the following two

coupling cost values:

E, =Pit (1 + co(pil - p 12)) + S,1 -Sn

~ = P12 (1 + co(P12 - Pi1)) +Rn - Ril

where the function o(x) = 1 if x ~ 0 and o(x) = 0 if x < 0.

Then we can generalize the calculation of SP; (a) in the following equation:

SP;(a) = SP;0 +max{Fh,E;}

14

(2.8)

(2.9)

(2.10)

In the above equation, the value Fh only depends on batch Bh, which is the batch

immediately preceding batch B1, and the value E; is determined by batch B1 itself. We

denote the coupling cost as

(2.11)

The above discussions can be concluded in the following theorem.

Theorem 2.1 Suppose that batch Bh immediately precedes batch B1 in a feasible solution

a. If both Bh and B,. reach the steady state, then the span of batch B1 is given by

SP;(a)= SP;0 + SP(h,i) (2.12)

where SP;0 is a fixed cost of batch B,., and SP(h,i) is a coupling cost between batch B1

and Bh. The value of SP;(a) does not depend on the other batches.

2.3 Converting to a TSP

In this section, we are going to show that if all batches can reach the steady state in any

feasible sequence a, the calculation of makespan can be converted to a special structured

travelling salesman problem (TSP). And for that particular TSP, an optimal solution in

O(nlogn) solving time is available.

Suppose that a is a feasible sequence of all batches, and in that sequence, all batches

reach the steady state. The makespan Cc:1 equals the sum of all the spans SP;(a) plus a

tail Tc:1 of the whole schedule, as shown in Figure 2.6. For a feasible schedule a, the tail

15

Tu is the time elapsed from the cleaned-up time of the last scheduled batch B ucn> on

machine M1 to the cleaned-up time on machine M2• Notice that, in some cases, when the

removal time on the first machine is much longer than that on the second machine, the

value of tail Tu can be negative as shown in Figure 2. 7.

Figure 2.6 The tail of the schedule u

Figure 2.7 Negative-length tail

Then we have the following makespan calculation:

n

Cu= SPu +max(O,Tu) = l:SP;(a)+max(O,Tu) (2.13)
l=l

In order to calculate the length of the tail Tu , we regard it as the span of a dummy

batch Bn+J, consisting of b;+i = c + 1 jobs having zero processing times and zero setup and

removal times on both machines. Then the value of max(O, Tu) is exactly the same as the

16

time the dummy batch blocked on M1. We can rewrite the makespan in following

equation:

n+l n+l n

Ccr = LSP;(a) = LSP;0 +LSP(a(i),a(i+1)) (2.14)
i=l /c] ,...,o

In the above equation, the value of SP,,~1 equals zero, and the batch of a(O) is the

dummy batch Bn+J· Since the first part of the equation is a constant, the optimal

makespan is given by:

{

n+l } n { n } · C:Wx = mJn frSP;(O-) = frSP;
0

+ mjn ~SP(a(i),a(i + 1)) (2.15)

Now we consider a TSP with (n + 1) nodes. Node 1, 2, ... , n stands for batch B1,

B2, ••• , Bm respectively, and the distance from node i to node j is equal to

SP(i,j) = max(F;,Ei), for any 1 ~ i,j ~ n. Node n + 1 stands for the dummy batch. The

distance from node n + 1 to any other node j (1 ~ j :::; n) is SP(n + 1, j) = E i , and the

distance from node i (1 :::; i :::; n) to node n + 1 is SP(i, n + 1) = F; . Then to find a shortest

cyclic path linking all n + 1 nodes is equivalent to minimize the second part of the

equation (2.15). In particular, notice that the batch scheduled first in the sequence is the

one following the dummy batch in the cyclic path, and the batch scheduled last is the one

prec.eding the dummy batch in the cyclic path. We conclude the above discussions in the

following theorem.

Theorem 2.2 If all batches reach the steady state in any feasible sequence a , the

makespan minimization of Batch Scheduling Problem is equivalent to a TSP with n + 1

17

nodes, in which the distance from node i to node j is given by SP(i, j) = max(~, E i),

1~i,j~n+1. The optimal makespan c:mx equals the total length of the minimal cyclic

n

path of the TSP plus a constant 2:SP;0
•

i=l

Generally, a TSP problem is still hard to solve. However in our case, from equation

(2.11), we find that the cost function becomes identical to that of a two-machine blocking

Flowshop. This special case of TSP has been solved optimally by Gilmore and Gomory' s

algorithm in time 0(n log n) [Gilmore and Gomory, 1964]. In the remaining part of this

section, we are going to explore this case.

Consider the F2 I block I Ctmx problem with two machines in series and zero

intermediate storage in between. Notice that in this flowshop, whenever a job starts its

processing on the first machine M 1, the preceding job starts to be processed on machine

M2• Then the time length that job j spends on machine M1, in process or blocked, is

max(p j,1 , p i-t,2), as illustrated in Figure 2.8.

Figure 2.8 A two-machine blocking flowshop

The makespan Ctmx equals the total time of all jobs spending on machine M1, either in

process or blocked, plus the processing time of the last job on machine M2, that is

18

n

crnax = L max(p 1.1'P1-1.2) + P n,2
j=l

(2.16)

where Po,2 = 0. Then this two-machine blocking flowshop with makespan minimization

problem is equivalent to a TSP with n + 1 nodes, with the distances between every two

nodes defined as following:

d,o = P12

du= max{p11 ,p,2)

This TSP is exactly the same in the form as the one we defined for the Batch

Scheduling Problem. Therefore, the Batch Scheduling Problem, when all batches reach

the steady state, is equivalent to F2 I block I Crnax .

Furthermore, as we can see in Figure 2.8, the following equation holds:

n

2Crnax = L<Pil + Pn) + idle times (2.17)
i=l

Since the processing times are fixed constants, makespan minimization problem is

equivalent to minimize the sum of all idle times. This result can be generalized in the

following statement:

Proposition 2.3 In a flows hop scheduling problem, makespan minimization is equivalent

to minimizing the total idle time.

The idle time on one of the machines when job j starts on machine M2 and job k starts

on machine M1 is IP 12 - pkt j . If p 12 ~ Pkt , job k will be blocked for that time difference

19

on machine Mb and else if pi2 < Pki, machine M1 will remain idle for that time

difference. Hence, minimizing the sum of all idle times is equivalent to the following

TSP with n + 1 nodes;

doi =Pi•

d;o = P;2

du = jpi• - P12I

For this particular structured TSP, Gilmore and Gomory' s algorithm solves it optimally

in time O(nlogn) [Gilmore and Gomory, 1964]. For the details of the algorithm, please

refer to Appendix B.

2.4 Sufficient Conditions for the Steady State

As we have seen in the previous sections, the steady state is the key condition for the

results in section 2.2. In this section, we are going to develop a sufficient condition under

which batch B; is guaranteed to reach the steady state. In the following, Bh still denotes

the batch immediately preceding batch B;.

Theorem 2.4 A batch B;, with Pit :t:. P;2 , reaches the steady state in any feasible

sequence a, if

(2.18)

Proof. We prove the theorem in the following two cases.

20

1) P11 < P12

In this case, the steady state is reached only when the buffer is filled up to its capacity.

Hence the tail of the previous batch Bh helps batch B1 to reach the steady state. The

''worst" case arises when the batch Bh leaves the buffer empty as shown in Figure 2.9.

Figure 2.9 The steady state of batch B1 <Pu< p12) in the "worst" case

The steady state is reached when any job is blocked on the first machine. Then we

have

that is,

b, ~ CP12 /(p12 - P;i)+ 1

which is in accordance with (2.15). If the batch Bh leaves the buffer not empty, the

batch B1 can reach the steady state even sooner.

2) P11 > P12

In this case, the steady state is reached only when the buffer is completely empty.

This happens when, for the first time, the part completed on M1 can be moved to the

machine Mi without waiting in the buffer. The tail of the previous batch Bh slows

down B1 to reach the steady state. The worst case arises when the batch Bh leaves the

21

buffer full as shown in Figure 2.10. The steady state is reached when any job is idle

on the second machine. Then we have

that is,

h; 'C. cpil /(pil - Pn)+ 1

which is in accordance with (2.15). If the batch Bh leaves the buffer not full, the batch

B; can reach the steady state even sooner. D

Figure 2.10 The steady state of batch B1 <Pu> p12) in the "worst" case

When . p ;1 = p ;2 , whether the batch B; can reach the steady state depends on the tail of

the previous batch Bh. As shown in Figure 2.11 (a), if the setup on machine M2 is finished

earlier than the first job of batch B; completes its processing on machine M1, batch B;

always reaches the steady state. Otherwise, it never reaches the steady state no matter

how large the batch size is, as shown in Figure 2.11 (b).

Note that the setup times do not appear in the equation (2.15). This should be not too

surprising because the number of parts needed to enter in the steady state in the worst

case is not affected by the setup times. Also note that equation (2.15) only gives the

sufficient condition to guarantee the steady state, but not a necessary one. In many cases,

batches still can reach the steady state even though the condition of (2.18) is not satisfied.

22

M2=11P~h2~[EP~h2JJ~g~~·1~YE: ~fil]~m=P~1~211P~u]"2.P,~2JI?2:B-M·~~0l: ~
(a)

t

Figure 2.11 The steady state of batch B, (p11 =pd

23

Chapter 3

Lower Bounds and Upper Bounds

3.1 Outline

In Chapter 2 we have proven that the Batch Scheduling Problem, if all batches reach the

steady state in any feasible sequencing a , is equivalent to the two-machine blocking

flowshop with makespan minimization problem, which can be optimally solved in

O(nlogn) time. However, from equation (2.18) we can see that the steady state

condition can be a stringent one when a batch has close processing times on the two

machines.

In this chapter, we are going to ;solve the batch scheduling problem in the following

two special circumstances:

1) The processing times on two machines are of much difference for each batch. From

equation (2.18) we can see that the threshold value of the batch size is relatively small

in this case, and a batch is mme likely to reach the steady state. This is easy to

24

understand since, . the difference of the processing times on two machines tends to

induce blocking on either machine, which causes the batch to enter the steady state.

2) On the other hand, if all batches have rather close processing times and setup times on

both machines, blocking is not likely to happen, which implies the capacity of the

intermediate buffer is no longer a constraint to our problem. Consequentially, we can

assume that the buff er capacity is unlimited. We are going to provide an optimal

solution to this case.

Based on these two points, we are going to design two approximation algorithms,

both of which provide lower bounds of the optimal solution. We also provide two upper

bounds at the end of this chapter.

3.2 Processing Time Reduction Lower Bound

For convenience, we write here the sufficient condition of the steady state for batch B;

again.

(3.1)

If for some batch, the actual batch size b; is smaller than b;, we reduce the smaller

processing time between Pn and Pn of an amount sufficient to meet the condition (3.1).

For an instance, suppose b; <b;, and P;i Sp;2 • We set p;1 = Pn -fcp;i/(b;-1)1. We

can always guarantee that the new processing time p;1 is non-negative since we have the

assumption that b; ~ c + 1. After reducing the processing times, the condition of (3.1) is

25

satisfied for all batches. Then we can apply the approach described in the previous

chapter, and get an optimal solution for this processing time reduced problem. Since the

modified problem has reduced processing times, this solution is a lower bound of the

original Batch Scheduling Problem. The detailed algorithm is as follows:

Algorithm 3.1 (Time Reduction Algorithm)

begin

end;

for i: = 1 to n do

begin

b; := f cmax(p;i,Pn)/jP;1 - Pnll+ 1;

if h; < b; tlien

if p ;1 :5 p ;2 tlien

end;

P;t := P12 -f cP;2/(b;-lJl:

else p;2 :=Pit -f cp;J(b,-JJl:

solve the F2 I block I Cmax'.

3.3 Infinite Buffer Lower Bound

In this section, we assume that the intermediate buffer capacity is unlimited. With this

assumption, machine M1 is never idle until all jobs have been processed on it. Suppose

26

that the minimal makespan of this unlimited buffer problem is c~ ' and the optimal

solution of the original Batch Scheduling Problem is c:mx , then we have C~ ~ c:mx

since we have removed a constraint of the original problem; that is, if we can find an

optimal solution of this problem, it provides a lower bound of the original problem.

For a two-machine flowshop without setup times, the makespan minimization

problem was first solved by Johnson [1954]. In our problem, each batch has to be

processed consecutively. However, this constraint does not bring too much difficulty to

the problem since, according to Johnson's rule, all jobs in the same batch are scheduled

consecutively. But when the setup and removal times are considered, the problem

becomes much more complicated. We are going to develop an algorithm to optimally

solve this problem in O(n logn) time.

We consider a single batch B; scheduled at time zero as shown in Figure 3.1. Denote

C; the optimal makespan for this single batch scheduling, then

where C;0 is the optimal makespan of the batch B; without setup and removal times, that

is,

if P;i < Pi2

if ~ P11 P;2
(3.3)

If we schedule jobs on the second machine M2 as late as possible while keeping the

position oflast scheduled job in batch B; unchanged, as shown in Figure 3.2, the resulting

27

schedule is still feasible and optimal. In Figure 3.2, a;, P; and Y; are defined as

following:

M 1 ::::::;:::$/}::::::::: P11

Mz

a1 = C1 - (S12 + R12 + b1p 12)

P1 = c, - (S;1 + Ril + b;P11)

Pu Pu

Figure 3.1 Single batch scheduling

Figure 3.2 Single batch scheduling when jobs are scheduled as late as possible

(3.4)

(3.5)

(3.6)

In this delayed schedule, machine M2 is idle for the first a 1 time units, and machine

M1 is idle for the last p1 time units. Both machines are simultaneously busy for y1 time

units. When all batches are considered, we need to arrange the a1 'sand p1 's so that the

total idle time is minimized, but we can do nothing on the y1 portion .. If you regard each

28

batch B; as a single job J; with processing times a; on machine M1 and P; on machine

M2, This problem is equivalent to the typical two-machine flowshop scheduling problem,

which can be optimally solved by Johnson's rule. We provide the unlimited buffer

algorithm as follows.

Algorithm 3.2 (Infinite Buffer Algorithm)

begin

end;

for i: = 1 to n do

be gill

calculate C; as in equation (3.2);

calculate a; and P; as in equations (3.4) and (3.5) respectively;

define a job with processing time a; on machine one, and processing time P;

on machine two;

end;

solve the F 2 II Cmax with the job set {(a;,f3;),i = 1,2, ... ,n) by Johnson's rule, and

get an optimal sequencing a;

schedule the batches according to the sequencing a;

29

Theorem 3.1 Algorithm 3.2 is optimal for the batch scheduling problem of two-machine

unlimited-buffer flowshop with setup and removal times.

Proof. First, we denote c:mx the optimal makespan of the batch scheduling of two­

machine unlimited-buffer flowshop with setup and removal times. For each batch B;, we

create two jobs: Ju with processing times (a1,f3;), and J;2 with processing times (rpr;).

a;, /3; and Y; are defined in equations (3.4) - (3.6). Now we have a typical F2 II Cmax

problem with 2n jobs to be scheduled: {J1.,J12,J2.,J22 , ••• ,Jn.,Jn2 }. Suppose the optimal

makespan for this new problem is c~x' then we have.

However, since each job J;i (i= 1,2, ... ,n) has the same processing times on two

machines, all these jobs can be scheduled anytime and will not change other batches'

states. The optimal sequence for the job set {J11J 2., ... ,Jn1} is achieved by Johnson's rule.

Now we insert ~ach job J;2 (i = 1,2, ... , n) into the schedule as follows. On machine M 1,

the load of y1 is scheduled right after a;, and on machine M2, the load of Y; is scheduled

right before /)p as illustrated in Figure 3 3. Then the resulting schedule is feasible and

exactly the same as Algorithm 3.2 described. Then we have C~x ~ C:00x.

Based on the above two points, we have C~x = C:00x , then Algorithm 3 .2 is optimal.O

30

M1 a,

M2 P; ...
(a)

M1 a; r,

Ma r, p, ...
(b)

Figure 3.3 Insertion of job J12 into the schedule

3.4 Upper Bounds

Any feasible sequence provides an upper bound for the optimal solution of the batch

scheduling problem. In our research, we have two approaches to find upper bounds.

1) Although the approach described in Chapter 2 does not guarantee an optimal solution

if some batches cannot reach the steady state condition at any feasible sequences, it

still provides a feasible solution. When most ofbatches can reach the steady state, this

approach provides a good upper bound, as will be illustrated in Chapter 5.

2) If we assume that the intermediate buffer capacity is unlimited, we can apply the

infinite buffer algorithm, and get another upper bound. This approach is a good upper

bound when most batches have close processing times on two machines. This will

also be illustrated in Chapter 5.

31

Chapter 4

A Branch and Bound Algorithm

4.1 Definitions and the Fathoming Rules

In this chapter, we are going to develop a branch and bound algorithm that implicitly

enumerates all possible sequences for the batch scheduling problem, in which not all

batches can reach the steady state. At each step of the enumeration tree, S is a subset of

all batches which have been assigned to the first positions in the schedule. We denote the

partial schedule of S as a . U ~s the subset of all batches which have not been assigned in

the schedule, that is, U = N - ,s , where N is the set of all batches. Then, each node of the

enumeration tree is associated with a pair (a,U).

As in Chapter 2, cleaned-up time is defined as the time point at which a batch finishes

its removal on a machine. As illustrated in Figure 4.1, t1 and t 2 are cleaned-up times of

the partial schedule a on machine M1 and M1 respectively. The span of the partial

schedule a , denoted as SP"", is the time lapse from time zero to the cleaned-up time of

32

the last batch of u on machine M1, that is, SPu =ti as shown in Figure 4.1. We also

define Tu = t2 - ti the tail of the partial schedule u. Notice that the value of Tu can be

negative when the removal time on M1 is much longer than that on Mi as shown in Figure

4.1 (b).

s~ Tu

M1 p

M2 p :::::::::::::;{;/::::::::

(a) 11 12

s~

M1 p

M2 p p, ::::Jl?'.::::

(b) 12 -T 11 a

Figure 4.1 Span and tail of a partial schedule, (a) Tu> 0, (b) Tu < O

For the set of unscheduled batches U, we denote its minimum makespan as sp· (U) ,

which is the minimum time length from ti to the end of entire schedule. Notice that since

there is a tail Tu left from the scheduled batches, which may be positive or negative, the

value of sp• (U) can be different from the optimal makespan of U when only the

unscheduled bathes U are considered. Although not all batches can reach the steady state

in our problem, it is still possible that batches in the unscheduled batch set U can reach

33

the steady state. In this case, we can apply the optimal approach described in Chapter 2 to

find the value of sp• (U) . Otherwise, we need to calculate a lower bound for sp• (U) .

After these definitions, we design the following fathoming rules for the branch and

bound algorithm:

1) We use the Depth-First Search (DFS) algorithm to form an enumeration tree. DFS

performs a deep probe, creating a path as long as possible, and backs up one node

to initiate a new probe when it can mark no new node from the tip of the path.

One of the advantages of the DFS is that we can always get a feasible solution,

most of time, a rather good solution, even when the number of nodes to be

searched is extraordinarily large. For details of Depth-First Search algorithm,

please refer to the reference [Ahuja et al., 1993].

2) At node (a,U), if the .value of sp• (U) can be calculated exactly, no need to

further from this node. If sp• (U) plus SPU is less than the best known upper

bound, the best known upper bound is updated by this value. Otherwise, this node

can be eliminated.

3) At node (a,U), if the best available lower bound of sp• (U) plus SPu exceeds

the best known upper bound, this node cannot be optimal, and hence can be

eliminated.

34

4) At node (er,U), if an upper bound of SP* (U) plus SPa is less than the best­

known upper bound, the best-known upper bound is updated.

The detailed algorithm will be presented in section 4.5.

4.2 Updating SP a and Ta

In our branch and bound algorithm, we need to calculate SPa and Ta in a large number

of times. A straightforward way to calculate SPa and Ta is to build the Gantt chart of the

partial schedule er . However, this approach is not efficient since the computation time is

proportional to the batch size. Fortunately, in the branch and bound algorithm, we do not

have to compute the span and tail at each node from the very beginning. Given a partial

schedule er , having a span SPa and end with a tail of length Ta , we only need to update

the new value of SPa' and Ta', when a new batch B; is appended to er, that is,

er'= (er,B;). hi what follows, we are going to show that the updating of SPa and Ta is

much easier than building the Gantt chart from the very beginning.

Suppose that SPa and Ta are the span and tail for a partial schedule er respectively,

and batch B; is scheduled to follow er, then the span and tail are updated as in the

following equations when the setups of batch B; have been done on two machines as

shown in Figure 4.2.

35

(4.1)

(4.2)

In Figure 4.2, SP;, and r;. are the span and tail when batch B; have completed its

processing on two machines. Again, we have

SPa' = SP;. + R;1

Ta' = r;. + Ri2 - Rn

(4.3)

(4.4)

We denote SP,2 the time length of batch B; spending on machine M1 with no setup and

removal included as shown in Figure 4.2. Then,

SP;. = SP~. + SP/ (4.5)

Now the remaining problem is how to calculate SP/ and r;. when SP~. and T~. are

given. In what follows, we are going to calculate these two values in different cases.

Figure 4.2 Updating of the span SPa and tail Ta

1) Pn < Pi2

The values of SP/ and r;. have different expressions depending on whether batch B;

reaches the steady state or not. We need to compute the values of the steady state batch

size in different situations.

36

(a) T~, ::::;; Pn

In this case, as shown in Figure 4.3, the tail T~, does not have any contribution to the

value of SP/ . The value of the steady state batch size h;• is the same given by

expression (2.15):

Figure 4.3 The steady state batch size when T~. S pil and pil < p12

(b) Pit < T~. < (c + l)P;1

r;.
Figure 4.4 The steady state batch size when p11 < T~. < (c+ l)pil and p11 < p12

In this case, as shown in Figure 4.4, the steady state is reached when

b1pi1 ST~. + (b1 - (c + 1))p12

Then we have

37

(c) T~. ~ (c + 1)p11

In this case, as shown in Figure 4.5, the steady state is reached after the first (c + 1)

parts, that is,

b; = c+l

The steady state is always reached in this case since we have the assumption

h; ~c+l.

M1 ~P......._,~........,;;.........-~;;....u_~~.-...-'-''-'-'--.1<.LL"'!

M2

Figure 4.5 The steady state batch size when T~. ~ (c+ 1)p11 and P;i < Pn

The calculations of SP/ and r;. are in the following expressions:

If h; ~ b;'

Else if h; < b;,

SP;2 = max(T~.,p;1) + (b;-(c+ l))P;2

T;, = (c + l)p;2

SP;2 =h;P11

T;. = max(T;.,p;i)+b;(P;z - Pn)

38

(4.6)

(4.7)

(4.8)

(4.9)

2) Pit > P;2

As in the case of p ii < p 12 , we need to compute the values of the steady state batch size

in different situations.

(a) T~. '5: P11

In this case, as shown in Figure 4.6, the tail T~. does not have any contribution to the

value of SP/, and batch B; always reaches the steady state. Then

Figure 4.6 The steady state batch size when T~. < p11 and p
11

> p12

In this case, as shown in Figure 4. 7, the steady state is reached when

Then we have

39

Figure 4.7 The steady state batch size when P;i < T~. < (c + l)P;i and p11 > p12

(c) r;. ;;:::: (c + l)pil

In this case, as shown in Figure 4.8, the steady state is reached when

Then we have

··

SP.2
I

?'.:::;:::::::;:::::::::::::::::::::'.:}:'.:/:::::;:::::::::::::::::::::::::::::::::::::;:/: P12 P12 P12 P12 P12 P12

Figure 4.8 The steady state batch size when T~. 2: (c+ 1)p11 and p11 > p12

For any b;, we have

SP/ = max(T;.,(c + l}pil) + (b;-(c + l}}p;1

The calculation r;. is in the following expressions:

40

(4.10)

r;. = P;i (4.11)

Else if h; < b;,
(4.12)

3) Pit = Pi2

(a) T~. '5: Pit

In this case, as shown in Figure 4.9, the tail T~. does not have any contribution to the

value of SP/ , and batch B; always reaches the steady state. Then

Figure 4.9 The steady state batch size when r;. ~ p
11

and p 11 = p12

(b) P;i < T~. < (c+ l)p;1

In this case, as shown in Figure 4.10, the steady state will never be reached no matter

how large the batch size is, that is,

b~ =oo
I

41

Figure 4.10 The steady state batch size when p
11

< T~. < (c+ l)p11 and p11 = p12

(c) T~. ~ (c + l)p;i

In this case, as shown in Figure 4.5, the steady state is reached after the first (c + 1)

parts, that is,

The steady state is always reached in this case since we have the assumption

SP,2

P12 P12 P12

r;.

Figure 4.11 The steady state batch size when T~. ~ (c + l)p11 and p11 = p12

The calculations of SP/ and r;. are in the following expressions:

(4.13)

(4.14)

42

4.3 Computation of SP*(U)

At node (a,U), if the value of sp• (U) can be calculated exactly, there is no need to

continue branching from this node. Though not all batches in the set N satisfy the steady

state condition (2.18), batches in the subset U may meet this condition. In this case, we

still can apply the Gilmore & Gomory algorithm discussed in the Chapter 2 to obtain the

optimal sequencing of U. But there is one thing different from the previous situation. As

shown in Figure 4.1, the machine Mi may not be "cleaned up" at the time the first batch

in the subset U enters the system. In order to consider the tail left from the scheduled

batches, we define a dummy batch Bn+1' consisting of h;+1 = c + 1 parts having zero setup

and removal times on both machines. The processing times on two machines are defined

as following:

Pn+1,1 = 0 (4.15)

Pn+l,2 =Tu /(c + 1) (4.16)

Else if Tu < 0,

Pn+l,1 =-Tu /(c + 1) (4.17)

Pn+1,2 = 0 (4.18)

43

According to expression (2.6) and (2. 7), in either case, the fixed cost SP,,~1 is zero. And

according to expression (2.8) and (2.9), the coupling cost values are:

Else if Tu < 0,

En+1 =-Tu

(4.19)

(4.20)

(4.21)

(4.22)

Then from expression (2.11), the switching cost between the dummy batch and the

following batch B; is

SP(n + l,i) = max{Fn+1,E;} (4.23)

which is exactly the idle time of the first scheduled batch of U. The switching cost

between the preceding batch Bh and the dummy batch is

SP(h,n + 1) = max{Fh ,En+t}

which is the tail of the batch schedule.

(4.24)

After applying the Gilmore & Gomory algorithm, the batch scheduled first in U is the

one following the dummy batch in the cyclic path, and the batch scheduled last is the one

preceding the dummy batch in the cyclic path.

44

4.4 Lower Bounds of sp* (U)

At node (CT,U), if not all batches in the subset of U can satisfy the steady state condition

(2.18), the Gilmore & Gomory algorithm as stated in section 4.3 does not guarantee an

optimal solution. In this case, we need to find a lower bound of sp• (U) . If the lower

bound of sp• (U) plus SPu exceeds the best-known upper bound, node (CT,U) cannot be

optimal, and hence can be eliminated. In Chapter 3, we have already described two

approaches in finding lower bounds of sp• (U). However, as in section 4.3, one thing

different from the previous situation is that machine M2 is still being occupied by a tail of

the scheduled sequence CT when the first batch of U enters the system. In what follows,

we are going to adjust t~e two algorithms to this situation.

1) Time Reduction Lower Bound

If some batch B1 e U cannot satisfy the steady state condition (2.15), we reduce the

smallest processing time of p,1 and p 12 until

The tail of the scheduled sequence CT can be substituted by a dummy batch that has been

defined in section 4.3. After these alterations, we apply the Gilmore & Gomory algorithm

to obtain a sequence of U. The makespan of this sequence is a lower bound of sp• (U) .

45

2) Infinite Buffer Lower Bound

Another way to find a lower bound of sp• (U) is to relax the buffer limitation condition.

If we suppose that the intermediate buff er has unlimited capacity, the Infinite Buffer

algorithm described in Chapter 3 optimally sequences the unscheduled subset U. We

denote this sequence a' . When the tail Tu of the scheduled sequence a is considered,

two different situations arise.

In this case, the tail is defined as a dummy job B n+t with processing times

Pn+1,1=0 (4.25)

Pn+1,2 =Tu (4.26)

We claim that the sequence (Bn+1,a') is optimal for the batch set {Bn+il UU since,

according to Johnson's rule, a job with processing time zero on the first machine is

always scheduled first in the sequence. Therefore, in this case, we do not need to

make any change on our Infinite Buffer algorithm in solving the unscheduled subset

u.

(b) Tu< 0

In this case, the tail of the scheduled sequence a is the same as a dummy job Bn+t

with processing times

Pn+t,t =-Tu (4.27)

46

Pn+1,2 = 0 (4.28)

However, in this case, the Infinite Buff er algorithm may be not optimal since the

dummy job, which is supposed to be scheduled last in the sequence according to the

Johnson's rule, is now in the first position of the sequence. We cannot move the

dummy job to the last position of the schedule since, in reality, the dummy job is the

tail of the scheduled sequence a , whose first position is fixed. In this case, we need

to make some alteration on our Infinite Buffer algorithm.

For the unscheduled batch set U, after applying the Infinite Buffer algorithm, we

obtain a sequence a' and a makespan SPu' . This sequence is optimal when no

previous tail and no buffer limitation are assumed. In the sequence a', there is no

idle time between batches on the machine M1• If we schedule jobs on the second

machine Mi as late as possible while keeping the position of last scheduled job

unchanged, the resulting schedule is still optimal. After that, four possible resulting

schedules are shown in Figure 4.12. In both figure (a) and figure (b), there are idle

times on the second machine Mi before the setup of the first batch in U. In this

situation, the negative tail Tu cannot help to shorten the makespan SPu' . Hence the

Infinite Buffer algorithm is optimal in both (a) and (b). In figure (c), there is no idle

time on the second machine, but the ending tail of the whole schedule Tu' is negative.

In this case, though the negative tail of the scheduled sequence a may help to make

the completion time of all batches on machine Mi earlier, it is not able to shorten the

47

makespan SPa' , which is determined by the busy time on machine M1 in this case.

Hence the Infinite Buffer algorithm is also optimal in (c).

I
, -T

a
'i' idle 'I

,

(a)

SP. ,, a
'

:" "

I
,,, ',, ,, ,,

' ,,

-T ,, idle 'I '
,

-
(b)

' , -T
a

,

(c)

SP. ,,. a
' I' ,

,,
' ; ' ,, . ' " -T a

(d)

Figure 4.12 Four possible resulting schedules of the Infinite Buffer algorithm

48

However, in figure (d), by occupying the negative tail T" , earlier scheduling of

the first batch in U on machine Mi may cause a shorter makespan. In this situation,

the Infinite Buffer algorithm does not guarantee an optimal solution. Some

alterations are needed to determine the optimal sequence a' of the subset U so that

the negative tail T" is maximally "utilized".

Suppose batch B; is assigned to be in the first position following the scheduled

sequence a. Again, we schedule jobs of B; on the second machine Mi as late as

possible as shown in Figure 3.2. Suppose that a; > 0, as we discussed before, there

is an idle time on the second machine, and the negative tail T" has not been utilized.

In other words, only batches with a; = 0 can possibly reduce the idle time left by the

previous scheduled batch on the second machine. According to the Johnson's rule,

batches with a;= 0 are assigned to be in the first positions of the whole schedule. If

there are more than one batches with a;= 0, we need to rearrange the positions

among them so that the total idle time is minimized.

For a batch B; with a1 =0, the maximal time length that could possibly fill the

negative tail left by the previous scheduled batch is constrained by the fact that a job

can start its processing on machine Mi only after it finishes its processing on the first

machine. As shown in Figure 4.13, we denote that maximal time length as d;. Then

(4.29)

49

Else if P;i ~ P;2 ,

(4.30)

Now an optimal sequencing for the subset U is obtained by scheduling batches

with a;= 0 in non-increasing order of their d; 's, and keeping all other batches in

the same order as the result of the Infinite Buff er algorithm.

(a)

Pu Pu Pu Pu

p., p,

(b)

Figure 4.13 The maximal time length d1

4.5 A Branch and Bound Algorithm

hegi11

obtain a sequence a by applying Gilmore & Gomory algorithm;

upper_bound := C(a);

wltile not all nodes have been searched do

hegi11

determine the next node (a, U) to be valued,·

50

e11d;

e11d;

if all batches in U reach the steady state the11

begi11

find sp• (U) by applying Gilmore & Gomory algorithm;

if SPa + sp• (U) <upper_ bound the11

upper_ bound := SPa +SP* (U) ;

delete this node;

e11d;

else

begil'1

e11d;

find SP1 (U) by applying Time Reduction algorithm;

find SP2 (U) by applying Infinite Buffer algorithm;

if SPa + max(SP1 (U), SP1 (U)) > upper_ bound the11

delete this node;

else

find SP3 (U) by applying Gilmore & Gomory algorithm;

if SPa + SP3 (U) < upper_ bound then

upper_ bound := SPa +SP* (U) ;

51

4.6 An Example

In this section, we are going to present a numerical example to illustrate the procedure of

the branch and bound algorithm described in the previous sections. The example data is

described in Table 4.1. In this example, we have six batches to be processed, and the

buff er size is three. The enumeration tree is shown in Figure 4.14. At the root node, we

apply the Gilmore and Gomory algorithm to obtain a feasible sequence B1, B4, B3, B5, B6,

B2, and a corresponding upper bound of 1683. After applying of the Time Reduction

algorithm and Infinite Buffer algorithm, we obtain two makespans, and the maximum of

them is our starting lower bound. In Figure 4.14, each node is associated with a partial

schedule and a lower bound. The optimal solution is obtained at the sequence B1, B3, B5,

B6, B4, Bi, with a corresponding makespan of 1677.

B; 1 2 3 4 5 6

b, 14 13 6 5 8 16

piJ 9 16 20 18 24 35

Pi2 11 16 16 21 43 28

Sil 23 32 73 23 5 21

S12 34 32 56 21 8 22

Ril 43 73 12 14 13 7

R;2 41 14 23 27 12 9

c 3

Table4.1 Data of the example

52

Vi
w

1,3,4,5,2 1,3,4,5,6
1701 1703

1,3,5,6,2 1,3,5,6,4 1,4,3,5,2 1,4,3,5,6
1723 1677 1681 1683

Figure 4.14

Starting Lower Bound: 1654
Starting Upper Bound: 1683

The enumeration tree of the example

5,6,4,3,l 5,6,4,3,2
1693 1706

Chapter 5

Numerical Experiments

5.1 Outline

In this chapter, we report the results of a series of numerical experiments performed to

analyze the effectiveness of the branch and bound algorithm developed in the previous

chapters. There are several parameters characterizing the batch scheduling problem: the

number of batches, intermediate buffer capacity, batch sizes, and the values of processing

times. As we can see in the following section, the time needed to find an optimal solution

is the most sensitive to number of batches. The intermediate buffer capacity affects both

the running time and the optimal value. The batch sizes and the values of processing

times affect the performance of the program by their contributions to the percentage of

batches that reach the steady state. Whether a batch reaches the steady state or not is

decided by the buff er capacity as well. Therefore, in our experiments, we need to

examine the performance of the program by: (a) the number of batches; (b) buffer

capacity; (c) the percentage of batches that reach the steady state.

54

In this chapter, we also compare the branch and bound algorithm with some ·other

heuristic approaches to show how much improvement our method gains in various cases.

Our branch and bound algorithm uses the depth-first search strategy in searching all

nodes of an enumeration tree. In this chapter, we also develop .another algorithm, which

applies best-first search strategy to branch the enumeration tree. We present a

performance comparison between these two search approaches.

In the following experiments, processing times are random numbers between 10 and

150, setup and removal times are random numbers between 50 and 600, and batch sizes

are random numbers between 8 and 200. All random numbers are generated by computer

in pseudo-uniform distribution. All experiments are performed on a Dell Dimension 4550

personal computer with Pentium 4 processor at 2.53GHZ speed and 640 M RAM. Better

performance is expected if a higher-speed computer is available.

5.2 Numerical Experiments

1) The effect of the number of batches

In this experiment, we fix the buffer size at five. We divide the experiment in five

categories: the percentages of batches that reach the steady state are 10%, 30%, 50%,

70% and 90% respectively. In each category, we begin with the problem of one batch,

and increase one more batch at each step. We select five groups of data that satisfy the

percentage of that category at each step, and get an average running time. For a problem

with fourteen batches or less, the running time is below one minute for any input data.

55

But when the number of batches is larger than fourteen, the running time grows

exponentially as shown in Figure 5.1.

2) The effect of buffer capacity

In this experiment, the number of batches and processing times are fixed. We begin

with the problem of zero-buffer, and increase capacity by one buffer position at each step.

In the case of zero-buffer, the problem is equivalent to the two-machine blocking

flowshop, which can be solved in O(nlogn) time. The running time grows as the buffer

size increases, as shown in Figure 5.2. This is because, from equation (2.18), batches are

likely not to reach the steady state condition as the buffer size increases. The running

time drops fast after the buffer capacity reaches a certain number, since from that point

on, the buffer size is large enough so that blocking on the first machine is not likely to

happen. The Johnson's algorithm provides an optimal solution in that case. The value of

makespan decreases as the buffer size enlarges, and after a certain point (thirteen in this

case), the value keeps constant since no blocking occurs thereafter, as shown in Figure

5.3.

3) The effect of the percentage of steady state

In this experiment, we fix the buffer size at five and the number of batches at eighteen.

We run the program at various processing times and setup and removal times, and

calculate the running time and the percentage of batches that reach the steady state at

each run. When all batches reach the steady state condition, the branch and bound

algorithm terminates right at the root node. The running time grows as the number of

56

batches that can reach steady state condition decreases. Around the point of forty percent,

the running time drops because from that point on, Johnson's algorithm provides good

upper bound. As shown in Figure 5.4, for batches at the two ends of the diagram, the

branch and bound algorithm can find the optimal solution quickly.

4) Comparison with other heuristic approaches

This experiment is desigried to show how much improvement that our method gains

over the other heuristic approaches. Again, we fix the number of batches at 18 and the

buffer size at 5. We run the program at various processing times and setup and removal

times, and calculate the makespans and the percentage of batches that reach the steady

state at each run. As shown in Figure 5.5, for batches with low percentage of steady state,

the Johnson's algorithm is close to the optimal solution, while the steady state algorithm

has as much as thirty-two percent higher than the optimal value. For batches of high

percentage of steady state, the steady state algorithm tends to be optimal, while the

Johnson's algorithm has as much as thirty-six percent higher than the optimal value. On

average, both heuristic algorithms have about fifteen percent higher values in makespan

than the optimal solution. Based on this information, we can see that heuristic approaches

can be "good" only in some particular situations.

5.3 Best-First Search

We apply depth-first strategy to search the enumeration tree. Depth-first performs a deep

probe, creating a path as long as possible, and backs up one node to initiate a new probe

57

when it can mark no new node from the tip of the path. On the contrary, breadth-first

strategy expands all possible branches from a node in the search tree before going deeper

into the tree. Besides these two commonly used search strategies, another one is best-first

search, which always select the node that seems most promising. In our problem, at each

step of the branch and bound algorithm, we select the node corresponding to the partial

schedule for which the lowest value of lower bound has been found. When several nodes

have the same lower bound, the deepest among them was chosen. We develop another

branch and bound algorithm based on best-first search strategy. The mechanism of the

strategy is shown in the following example.

Example

In this example, we still apply the example data Table 4.1 in Chapter 4. As shown in

Figure 5.6, the procedure of the best-first search is developed in the following way. At

the root node, a lower bound of 1654 and an upper of 1683 has been found. The first node

to be searched is node 1, which also has a lower bound of 1654. Since node 1 is deeper

than the root node in the enumeration tree, we search the nodes derived from node 1.

Node 1-2 has a lower bound of 1693, which is larger than the upper bound of 1683. Then

node 1-2 is eliminated. At node 1-2, we find a new upper bound of 1677, therefore, the

upper bound is updated at this value. Since the lower bound (1674) of node 1-2 is larger

than current lowest lower bound (1654), we continue to search other nodes derived from

node 1. At node 1-4, we also find a lower bound of 1654. Since node 1-4 is deeper than

node 1 in the enumeration tree, the next nodes to be searched are derived from node 1-4.

The same procedure is developed until we found the optimal solution at node 1-3-5-6-4.

58

In this example, total 57 nodes have to be searched to find the optimal solution, compared

with the depth-first search algorithm, which only searches 18 nodes.

A comparison of two search algorithms is shown in Figure 5.7. We run the best-first

search algorithm under same conditions as in example 1. For batch scheduling problems

with small batch number, the depth-first search has better performance than the best-first

search. The reason is that the best-first search spends much more time in storing the

enumeration tree structure, which trades off the gain of ''wise" search policy. For

problems with batch number of twenty, the best-first search runs faster, about seventeen

percent improvement over the depth-first search on average. However, for problems with

twenty-one batches, the depth-first algorithm may take a couple of days to obtain an

optimal solution, but the best-first search runs out of memory on the computer.

Generally, the best-first search can have a better performance than the depth-first

search for a problem with large batch number. However, since it needs to memorize the

structure of the enumeration tree, more memory is required for this search strategy. It

may become impractical for a large-scale problem. On the contrary, the depth-first search

has the following advantages: (1) we can always get a feasible solution, even when the

number of nodes are to be searched is extraordinarily large; (2) For practical problems,

the optimal solution usually occurs deep in the tree; (3) The search scheme is easy to be

applied, since we do not need to memorize the structure of the tree.

59

300

250

~

5 200

1: 30% Batches reach the steady state
2: 30% Batches reach the steady state
3: 70% Batches reach the steady state
4: 10% Batches reach the steady state
5: 90% Batches reach the steady state

-------- --/--_ l _ --------------

Figure 5.1 Solution time corresponding to batch number of batches

360

300

240 -E -'~ 180
t=

.120 .1-- - - ---- - ------------ - ------ - - ----- - - ---- -- ---- - --7- --- -- - - --- ----- --- ---- --- - -- --··\------ -- - --------- - - - ·- - ------I

60
°' - 0 ---------~~---.----.-~-.----.----~---.---.--.=..r--..._-f

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Buffers

Figure 5.2 Solution time corresponding buffer capacity

°' N

6500

6300

6100

5900

ffi 5700
0.

gs. 5500--
~

~ 5300
5100

4900

4700

4500
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Buffer Capacity

Figure 5.3 Makespan corresponding to buffer capacity

°' w

300

240

-E
~ 180
E
F
c:
0

~ 120
0
U)

60

0
0 10 20 30 40 50 60 70 80 90 100

Percentage of Batches that Reach the Steady State(%)

Figure 5.4 Solution time corresponding to percentage of batches that reach the steady state

40 -~ 35 0 -Q)
::::s

30 ro
>
ro

25 E
+:i
0.

Steady State Algorithm

20 0
Q)

>
0

15 .c
ca 0\

~
Q)

10 O>
ca
c:
Q)

5 (.)
L.
Q)

Cl..
0

0 10 20 30 40 50 60 70 80 90 100

Percentage of Batches that Reach the Steady State (%)

Figure 5.5 Makespans of the heuristic algorithms

0\
Vt

1-3-4-S-2 1-3-4-5-6
1701 1703

1-3-S-6-2 1·3-5-6-4 1-4-3·5·2 1-4-3·5-6
1723 1677 1681 1683

Starting Lower Bound: I 6S4
StartingUpperBound: 1683

Figure 5.6 The enumeration tree of the best-first search

5-6-4-3-1 5-6-4-3-2
1693 1706

300

Depth-first Search
240 -E -

~ 180.
i=
c: Best-first Search
.Q 120
:J

0\ 0
0\ en

60

0
12 13 14 15 16 17 18 19 20 21 22

Number of Batches

Figure 5.7 Computation Requirements for Algorithms: Depth-first vs. Best-first

Chapter 6

A Case Study

6.1 Background

PCB assembly is a complex task involving the placement of up to hundreds of electronic

components in different shapes and sizes at specific locations on the board. The process

of PCB assembly can be carried out in an automated flow line with several stages, which

include printing, placement, heating and testing, as illustrated in Figure 6.1. Since

placement machines are usually . much more expensive than other equipment in the

assembly line, the component placement is often the bottleneck of the production line,

and consequently it becomes the focus of efforts to improve production flow.

Figure 6.1 A PCB assembly line

67

Although placement machines have various configurations, most of them consist of

three components: a table on which the PCB is attached, a feeder carriage that holds

components, and a head that picks components from the feeder and places them on the

PCB. There are four operational decisions to be made during the process of placement.

Machine assignment decides which components to be placed on which machine. Feeder

assignment settles which components to be installed in which feeder for each machine.

Placement sequencing decides the order of components to be placed on a given board for

each machine. Board sequencing determines the processing order of different types of

boards on the production · 1ine. In this dissertation, our research focuses on the board

sequencing problem, that is, we assume that all other operational decisions have been

given, and we try to optimize the board sequence on machines. A comprehensive review

of the literature in PCB assembly optimization problems can be found in [McGinnis et al.,

1992], [Ammons et al., 1997], [Leon and Peters, 1998], [Ahmadi and Kouvelis, 1999]

and [Ellis et al., 2001].

Usually there is more than one placement machine in a PCB assembly line. A popular

line configuration consists of two different types of placement machines: one type of

machine places commonly used components, such as resistors and capacitors, at high

speed; the other type of machine is more flexible but at a lower speed. Large chips and

other irregular components are usually placed on this type of machine. This research

considers an assembly line with two placement machines. The two machines are

connected by a synchronized conveyor. The placement machines and conveyor form a

two-machine flowshop with limited capacity intermediate buffer, as shown in Figure 6.2.

68

The capacity of the buffer is the same as the number of board positions on the

synchronized conveyor.

Figure 6.2 Two-machine flow shop with limited buffer

In PCB assembly, boards are usually grouped in batches. We assume that boards in

the same batch are all identical. Since setup times between boards in a same batch can be

regarded as a part· of processing times, for simplic!ty, we assume that no setup is required

between boards in the same batch. However, we assume that there is a changeover

between two different batches. This changeover includes the activities associated with the

removal and installment of components in feeder slots and machine adjustment for a

given board type. The changeover time is often large relative to the placement time of a

single board. And furthermore, the changeover time is greatly influenced by the PCB

production sequence. Ammons et al. [1997] categorize the strategies for setup

management as follows:

1. Single setup in which a group of machines is configured to produce a family of PCBs

using a single setup. There are two possible single setup strategies:

a) Unique setup in which the family contains only one product type.

b) Family setup in which the family comprises several product types.

2. Multiple setup in which because a limited component staging capacity on the

placement machines prohibits applying the single setup strategy, some additional

69

setups must be performed within a family. There are two possible multiple setup

strategies:

a) Decompose and sequence in which the family is divided into sub-families which

are then sequenced to minimize the incremental setups between the subsets.

b) Partition and repeat in which the required components are partitioned into

subsets restricted by machine capacity.

In our case study, we assume a unique setup strategy. The advantage of the unique setup

strategy is that the placement time can be minimized for each board. Also the makespan

is not affected by the board sequence when using unique setups [Leon and Peters, 1998].

The changeover times can be large since all components from the previous product are

removed before starting the setup of a new product. However, this can be compensated

by offline setups. An operator can set up the required components for a product in an

offline feed bank while the machine is building a different product. The operator then

trades the offline feeder bank for the online feeder bank, and can start building the new

product immediately [Palm, 1996]. An offline setup usually takes a couple of minutes to

load the feeder bank into the machine.

Another setup strategy to improve the machine utilization is sequential changeover.

In a sequential changeover, a placement machine starts to change over to a new batch as

soon as it finishes the last board of the current batch, which means two different PCB

types may be on the assembly line at the same time [Rowland, 2003]. We apply

sequential changeover strategy in this research.

70

6.2 Case Study

National Instruments (NI) assembles printed circuit boards for their customers. On an

average, NI produces 10 types of boards each day. The number of boards for each type

varies from 5 to hundreds, with an average of 60. These numbers feature a low-volume

high-mix manufacturing. The boards are built to stock following a min-max policy. A

push system is applied for most non-urgent batches. The operations people schedule 2-

day release of boards and WIP each day to push the products towards the finished goods

stock. NI would like to know what, if any, impact different scheduling strategies may

have on the production flow.

NI has four PCB assembly lines in operation. Three of these are surface mount lines

that contain identical machine configuration. Another line has a through-hole machine

right after SMT machines. Each production line has two different SMT placement

machines. The first placement machine is a chip-shooter, and most passive components

are placed on this machine. The second one is a flexible machine, and !Cs are placed on

this machine. The operation flow for each PCB through an assembly line is illustrated in

Figure 6.3. Two SMT machines are the bottlenecks of each production line, and hence

they are the focus of efforts to be optimized.

NI applies unique setup. strategy, that is, a single setup is perfonned for one type of

product. All setups are perfonned off-line. On estimation, it takes 30 seconds to

load/unload a feeder into/from an SMT machine. Rolling changeover is also applied. A

machine begins to perfonn a setup for the next batch as soon as the last job of the current

batch leaves the machine.

71

In this experiment, we schedule twenty batches for each production line which take

about 24 hours in continuous production time. We calculate the makespans by our branch

and bound algorithm, and compare them with NI' s scheduling. The experimental data and

results are in Appendix C. Table 6.1 shows that our approach provides approximately 6-

7% improvement over current schedules.

Line 1 Line2 Line3 Line4
NI Scheduling (h) 26.4 23.7 29.8 21.3

Optimal Scheduling (h) 24.7 22.3 28.1 19.8
Percentage of Improvement (%) 6.5 6.1 5.7 7.1

Table 6.1 Experiment results

72

.....:J w

OPl

SCR

SMT Operations

OP2
SMrl

OP3

SMT2

Operation
OPl
OP2
OP3
OP4
OPS
OP6
OP7
OPS
OP9
OPlO
OPll

OP4

REFLOW
OPS
THR

Solder screening

OP6
PRE

OP7
WAVE

Details

Placement of passive components
Placement ofICs
Reflow oven

OP8

FIN

Insertion of thru-hole components (optional)
Hand placement of components
Wave solder
Final Assembly
.Tests
Final Inspection
Board packaging

Figure 6.3 Operations for each PCB assembly line

OP9
TEST

OPlO

FI

OPll

PKG

6.3 Discussion

In this case, the setup times and removal times are all identical. For a more general case,

suppose that both setup and removal times are identical for each batch (but can be

different between batches), as shown in Figure 6.4, R1 = R2 , S1 = S2 , then we have

Ti = T2 , which implies the setup· and removal times do not have any impact on the

optimality of the overall sched~le. Therefore, if we do not consider the setup and removal

times for all batches, the optimal sequence of all batches is the same as when setup and

removal times considered.

Figure 6.4 Identical setup and removal times

74

Chapter 7

Conclusions

7.1 Summary .

In this dissertation, we study the flowshop batch scheduling problem for the two machine

case. Based on previous research, we develop a steady state optimization algorithm,

which takes both sequence-independent setup and removal times into consideration. We

also develop two heuristic algorithms that provide lower bounds of the optimal solution.

A branch and bound algorithm is designed to find the optimal solution for any general

case. Theoretically, the branch and bound algorithm can always obtain an optimal

solution for any general cases (on our personal computer, we can solve a 20-batch

problem within several hours). Even for instances with large numbers of batches, our

algorithm can always obtain feasible solutions, and most of time, rather good solutions.

Finally, we perform a series of numerical experiments to show the effectiveness of our

approach. Compared with the depth-first search algorithm, a best-first search algorithm is

75

also developed, and a perfonnance comparison between these two approaches has been

perfonned.

7.2 Contributions

This research finds an optimal batch sequence in a PCB assembly line such that the total

flow time of all jobs is minimized. The main contributions include:

1) We extend the steady state optimization approach of the previous research work. In

our model, we include batch setups and removals. Since the tail Tu can be negative in

our case, we solved the problem in a higher complexity.

2) We develop an optimal algorithm for the batch scheduling problem of a two-machine

· flowshop with unlimited buffer. We also extend the algorithm for the situation in

which one of the two machines is not available at time zero (this is the same situation

with a tail Tu left from the partial schedule a as described in Chapter 4). This

algorithm provides a good lower bound when most of batches to be scheduled have

'•
clo~e processing times on two machines. We also develop the time-reduction

algorithm, which provides good lower bound when most of batches to be scheduled

can reach the steady state.

3) Our algorithm is designed for one type of PCB assembly scheduling problems. More

specifically, the problem has the following features:

a. The flowshop has two SMT machines, possibly non-identical ;

b. Unique setup policy is applied;

76

c. Rolling changeover strategy is applied;

d. A group of orders is available to be scheduled with no due date specified;

e. The objective is to minimize makespan.

Since the conditions of PCB assembly can vary a great deal, there are many different

PCB scheduling problems. The percentage of the PCB assembly systems that meet all

these features would be rather small. However, the electronics industry has been

growing rapidly since decades ago. Nakahara [1999] indicated that the annual growth

rate of worldwide PCB production has exceeded 20% since 1984, to a total value of

roughly $35 billion in 1998. The total value saved by improving machine utilization

by using our approach can still be high.

7.3 Future Research

There are several points to be explored in the future research.

1) The efficiency of our branch and bound algorithm is based on input data. The running

time increases as the number of small size batches (for example, smaller than buffer

size c) grows, since in that case, the steady state optimization algorithm cannot

eliminate nodes on the enumeration tree quickly. Some other methods in finding new

lower bounds for small batch size cases should be one of our further studies.

2) Contrary to time-reduction algorithm, another approximation approach is to increase

the smaller processing time between Pit and Pi2 of an amount such that no blocking

happens for that batch B;. When no blocking happens for all batches, the problem can

77

be solved by the infinite-buffer algorithm we developed. The difficulty of this

approach is to find out how much to increment of the processing time for each batch.

This approach can be called the time-increment algorithm. The approximation result

provides an upper bound of the optimal solution.

3) This research investigates a limited-buffer flowshop with two machines. In reality,

some PCB production lines have more than two machines in series. Our model can be

applied in any situation where each bottleneck is composed of two machines. If there

are three or more machines in ·series to be considered, our flowshop model needs to

be extended. However, since a general case of three-machine flowshop with

unlimited buff er is already NP-hard, this brings a significant hardness to the problem.

Both our steady state optimization approach and heuristic algorithms need to be

further explored.

4) In reality, all machines are subject to random breakdowns. How the stochastic nature

of the system affects the performance of our approaches should be another research

topic.

78

Appendix A: Gilmore and Gomory Algorithm

This section is from reference [Hall and Sriskandarajah, 1996]. The algorithm was first

developed by Gilmore and Gomory [1964]. The algorithm described below solves the

two-machine blocking flowshop with makespan minimization problem. The intuition

behind the algorithm is that, ideally, the shortest processing time on machine 1 would be

concurrent with that on machine 2, similarly for the second shortest processing times on

the two machines, and so on. If this is not possible, a dual improvement step moves the

current schedule towards feasibility at minimum cost. Let <l>(j) denote the job that

follow job j in the sequence found.

Algorithm (Gilmore and Gomory 1964)

Step 1 Number the jobs such that Pz,j S Pz,j+1,j = 1, ... , n - 1. Initialize G1 = G2 = 0.

Step 2 Find a function </J{j) ,j = 1, ... , n, such that Pi,;w S Pi.;u+i> ,j = 1, ... , n - 1.

Step 3 Define a graph with n nodes (each representing a job) and no edges. The lengths

C j,j+t of edges (j, j + 1), j = 1, ... , n - 1 that may be added later are given by

Cj,j+t =max {O, (min {Pz,j+t Sp1,;u+o} -max{p2,p Pi,;w})} forj= 1, ... , n-1.

Step 4 Setj = 1.

Step 4.1 If the undirected edge {j,</J(j)) is not in the graph and j ¢ </J{j), add it.

Setj=j+l.

Step 4.2 If j s n, go to step 4.1.

79

Step 5 If the graph has only one connected component, go to Step 7. Otherwise, let k =

argmin { Ci'j+t I j andj + 1 are in different components}, breaking ties arbitrarily.

Step 6 Add the undirected edge (k, k + 1) to the graph. If Pi,;ck> "C:. p 2,k, set Gt =Gt u

{(k, k+ l)}. Otherwise set G2 = G2 u {(k, k+ l)}. Go to Step 5.

Step 7 If Gt = 0, let s = 0. Otherwise, let the elements of G1 be {(ri, r 1 +

1), ... , (rs, rs+ l)}, where r1 "C:. ••• "C:. rs.

Step 7.1 If G2 = 0, let t = 0. Otherwise, let the elements of G2 be {{ki, kt +

Step 8 Define for 1:::;; e,g,h:::;; n a function ae,g (h) as follows: ae,/e) = g, ae,g (g) = e,

and ae,/h) = h if h :t: e,g. Setj = 1.

Step 8.1 If t = s = 0, set <I>(k) = ¢(k), k = 1, ... , n, and stop.

Step 8.2 Set y = j. If t = 0, set i = s and go to Step 8.5. Otherwise, set i = t.

Step 8.4Ifi~1, go to Step 8.3. Otherwise, ifs= 0, go to Step 8.6. Otherwise, set i = s.

Step 8.5 Set y = ar. 'r.+t (y) and i = i-1.
i I ,

Step 8.6 If i "C:.1, go to Step 8.5. Otherwise, set <I>(j) = ¢(y) andj = j + 1.

Step 8. 7 If j:::;; n , go to Step 8.2. Otherwise, stop.

80

This algorithm can be implemented in O(n logn) time. Now consider the following

example.

Example

Jobj 1 2 3 4 5 6 7 8
P12t 10 12 3 5 6 11 9 4
p2,; 7 8 2 3 9 12 13 6

Step 1 gives:

Jobj 1 2 3 4 5 6 7 8
l!.2il 2 3 6 7 8 9 12 13

Pt.t 3 5 4 10 12 6 11 9

Step 2 and 3 give:

Jobj P2,j Pi.;u> t/J(j) max {p2,j,P1,;u>} min {P2,j' P1,;U)} c. '+1 J,J

1 2 3 1 2 0
2 3 4 3 4 3 1
3 6 5 2 6 5 0
4 7 6 6 7 6 1
5 8 8 9 8 0
6 9 10 4 10 9 1

12 11 7 12 11 0

8 13 12 5 13 12

At Step 4, the edges in the graph are (2, 3), (4, 6), and (5, 8).

At Step 5, the graph has components {l}, {2, 3}, {4, 6}, {5, 8}, and {7}.

At Step 6, edges (1, 2), (3, 4), (5, 6), and (7, 8) are added, G1 = {(1, 2), (5, 6)}, G2 = {(3,

4), (7, 8)}.

At Step 7, ri = 5, r2 = 1, kt= 3, k2 = 7.

81

At Step 8, for j = 1 we have: y = a 7,8 (1) = 1 , a3,4 (1) = 1 , a 1•2 (1) = 2 , a5,6 (2) = 2 ,

Cf>{l) = </J(2) = 3. The steps are similar forj = 2, ... , 8.

The optimal sequence, with a makespan of 64, is given by:

Jobj 1 2 3 4 5 6 7 8
<l>*{j) 3 1 6 2 4 8 5 7

82

Appendix B: Case Study Data

Line 1

Part Number Batch Size Pl (s) P2 (s)
Setupl Setup2

(s) (s)
1 187620A-05 8 25 30 180 180
2 185652C-Ol 77 94 75 180 180
3 187128A-Ol 55 113 111 180 180
4 187801A-Ol 80 25 36 180 180
5 184946C-02 26 78 54 180 180
6 185030F-Ol 33 102 83 180 180
7 186623B-05 7 67 163 180 180
8 1830840-05 14 55 63 180 180
9 185453D-02 60 98 125 180 180
10 186104C-Ol 77 so 39 180 180
11 184359B-01 169 119 149 180 180
12 183087H-03 14 61 60 180 180
13 183087H-04 22 155 183 180 180
14 185608B-01 45 33 51 180 180
15 181525K-Ol 85 46 35 180 180
16 186914B-Ol 12 80 80 180 180
17 184164F-02 51 48 59 180 180
18 1841640-01 50 68 87 180 180
19 181925C-ll 50 54 75 180 180
20 181500F-Ol 90 73 90 180 180

Makespan according to NI scheduling (as sequenced) is 26.4 hours.

Optimal Makespan is 24. 7 hours.

Optimal sequence:

1 - 20 - 5 - 17 - 13 3-18 12-14-11-2 19-10-4-9-16-7-6-8-15

Improvement 6.5%

83

Line2

Part Batch Size Pl P2 Setupl Setup2
Number

1 184177D-01 105 40 39 180 180
2 182481D-01 83 63 51 180 180
3 186695B-01 15 54 71 180 180
4 184466C-Ol 30 115 91 180 180
5 183550B-Ol 108 44 48 180 180
6 183262F-01 103 70 63 180 180
7 182880H-Ol 100 45 51 180 180
8 182750D-01 36 101 30 180 180
9 183381E-Ol 53 69 44 180 180
10 160461A-Ol 10 132 143 180 180
11 182880H-Ol 70 49 54 180 180
12 184182B-01 26 61 68 180 180
13 183262F-01 84 70 63 180 180
14 182435G-Ol 77 53 45 180 180
15 182887C-01 165 48 56 180 180
16 182459G-05 79 83 65 180 180
17 183442D-01 51 62 73 180 180
18 182770K-Ol 26 98 47 180 180
19 182465H-01 40 60 45 180 180
20 183442D-01 37 55 68 180 180

Makespan according to NI scheduling (as sequenced) is 23.7 hours.

Optimal Makespan is 22.3 hours.

Optimal sequence:

5 19 - 3 - 18 - 20 - 16 - 1 - 7 - 2 - 12 - 6 - 10 - 4 - 14 - 11 - 9 - 15 13 - 17 - 8

Improvement 6.1 %

84

Line 3

Part Number Batch Size Pl P2 Se tu pl Setup2

1 183628E-01 30 64 50 180 180
2 183628E-01 40 94 47 180 180
3 183628E-01 40 64 50 180 180
4 183628E-02 100 74 56 180 180
5 183628E-02 100 74 40 180 180
6 183628E-02 100 74 76 180 180
7 183628E-02 125 104 86 180 180
8 183873A-02 72 36 49 180 180
9 183884C-01 20 43 52 180 180
10 184435A-01 80 61 93 180 180
11 184436B-Ol 60 56 46 180 180
12 184438A-01 216 77 41 180 180
13 184674C-Ol 34 51 81 180 180
14 184723B-01 26 69 44 180 180
15 184726C-Ol 100 76 46 180 180
16 185151A-01 120 54 71 180 180
17 185152B-01 70 58 54 180 180
18 185715A-01 20 78 41 180 180
19 185849A-01 10 87 78 180 180
20 186385B-01 20 63 78 180 180

Makespan according to NI scheduling (as sequenced) is 29.8 hours.

Optimal Makespan is 28.1 hours.

The optimal sequence is:

8 - 4 - 1 - 17 - 3 - 11 - 16 - 12 - 13 - 2 - 6 - 18 - 9 - 15 - 20 - 19 - 14 - 10 - 7 - 5

Improvement 5. 7%

85

Line4

Part Number Batch Size Pl P2 Setupl Setup2

1 181460-0lC 32 33 35 180 180
2 181525K-02 50 38 48 180 180
3 181700J-01 80 109 95 180 180
4 181925C-01 132 37 36 180 180
5 181925C-ll 120 40 34 180 180
6 181925C-12 40 39 47 180 180
7 182346E-01 40 138 85 180 180
8 182348C-1 l 40 78 55 180 180
9 182368F-Ol 46 70 63 180 180
10 182368F-Ol 33 81 93 180 180
11 182610D-01 61 139 79 180 180
12 182610D-02 16 89 59 180 180
13 182610D-03 12 44 62 180 180
14 182685H-01 175 68 80 180 180
15 1830870-06 20 67 55 180 180
16 184366D-Ol 5 74 87 180 180
17 186135C-01 35 87 91 180 180
18 186136C-01 24 67 83 180 180
19 186138D-02 24 37 56 180 180
20 186131F-02 20 89 104 180 180

Makespan according to NI scheduling (as sequenced) is 21.3 hours.

Optimal Makespan is 19.8 hours.

The optimal sequence is:

1 - 17 - 3 - 10 - 7 - 16 - 12 - 13 - 15 - 6 - 20- 11 - 14 - 9 - 18 - 8 - 2 - 4 - 19 - 5

Improvement 7 .1 %

86

Bibliography

[1] Agnetis, A., D. Pacciarelli and F. Rossi, Batch scheduling in a two-machine flow
shop with limited buffer, Discrete Applied Mathematics, v 72, p 234-260, 1997.

[2] Ahmadi, R.H. and P. and Kouvelis, Design of electronic assembly lines: An
analytical framework and its application, European Journal of Operational
Research, v 115, p 113-137, 1999.

[3] Ahuja, R., T. Magnanti and J. Orlin, Network Flows, Theory, Algorithms, and
Applications, NJ: Prentice Hall, 1993.

[4] Ammons, J.C., M. Carlyle, L. Cranmer et al., Component allocation to balance
workload in printed circuit card assembly systems, /IE Transactions, v 29, p 265-
275, 1997.

[5] Bloat, A., Sequencing jobs for an automated manufacturing module with buffer,
European Journal of Operational Research, v 96, p622-635, 1997.

[6] Brah, S. and A. Loo, Heuristics for scheduling in a flow shop with multiple
processors, Eur J Oper Res, v 113 n 1, p 113-122, 1999.

[7] Caraffa, V. and S. lanes, Minimizing makespan in a blocking flowshop using
genetic algorithms, International Journal of Production Economics, v 70 n 2, p 101-
115, 2001.

[8] Chakravarthy, K. and C. Rajendran, Heuristic for scheduling in a flowshop with the
bicriteria of makespan and maximum tardiness minimization, Production Planning
and Control, v 10 n 7, p 707-714, 1999.

[9] Cheng, T.C. G. Wang, Scheduling the fabrication and assembly of components in a
two-machine flowshop, /IE Transactions, v 31, n 2, p 135-143, 1999.

[10] Chung, S. and D. Liao, Scheduling flexible flow shops with no setup effects, IEEE
Trans Rob Autom, v 10 n 2, p 112-122, 1994.

[11] Coffinan, E., M. Garey and D. Johnson, An application of bin-packing to
multiprocessor scheduling, SIAM Journal of Computing, v 7, p 1-17, 1978.

[12] Crama, Y, J. Klundert and F. Spieksma, Production planning problems in printed
circuit board assembly, Discrete Applied Mathematics, v 123, p 339-361, 2002.

87

[13] Guenther, H.0., M. Gronalt and R. Zeller, Job sequencing and component set-up on
a surface mount placement machine, Production Planning and Control, v 9, n 2, p
201-211, 1998.

[14] Ellis, K., F. Vittes and J. Kobza, Optimization the performance of a surface mount
placement machine, IEEE transactions on Electronics Packaging Manufacturing, v.
24, n 3, p 160-170, 2001.

[15] Garey, M., D. Johnson and R. Sethi, The complexity of flowshop and jobshop
scheduling, Mathematics of Operations Research, v 1, p 117-129, 1976.

[16] Gilmore, P .C. and R.E. Gomory, Sequencing a one state-variable machine: a
solvable case of the travelling salesman problem, Operations Research, v 12, p
655-679, 1964.

[17] Gupta, J. and V. Neppalli, Minimizing Total Flow Time in a Two-machine
Flowshop Problem with Minimum Mak:espan, International Journal of Production
Economics, v 69 n 3, p 323-338, 2001.

[18] Hall, L., Approximation algorithms for scheduling, in D. Hochbaum,
Approximation Algorithms for NP-hard Problems, PWS Publishing Company,
Boston, p 1-45, 1997.

[19] Hall, L., Approximability of Flow Shop Scheduling, Mathematical Programming, v
82, p 175-190, 1998.

[20] Hall, N. and C. Sriskandarajah, A survey of machine scheduling problems with
bloking· and no-wait in process, Operations Research, v 44, n 3, p 510-525, 1996.

[21] Hardin, J., Resource-Constrained Scheduling and Production Planning: Linear
Programming-Based Studies, PhD thesis, Georgia Institute of Technology, 2001.

[22] Hong, T. and C. Wang, Heuristic Gupta-based flexible flow-shop scheduling
algorithm, Proc IEEE Int Conj Syst Man Cybern, v 1, p 319-322, 2000.

[23] Johnson, S.M., Optimal two- and three-stage production schedules with setup times
included, Naval Research Logistics Quarterly, v 1, p 61-68, 1954.

[24] Kleinau, U., Two-machine shop scheduling problems with batch processing,
Mathematical and Computer Modeling, v 17, p 55-66, 1993.

[25] Lancia, G., Scheduling jobs with release dates and tails on two unrelated parallel
machines to minimize the makespan, European Journal of Operational Research, v
120 n 2, p 277-288, 2000.

88

[26] Lee, C and L. Lei, Current Trends in Deterministic Scheduling, Annals of
Operations Research, v 70, p 1-41, 1997.

[27] Leisten, R., Flowshop sequencing problems with limited buffer storage.
International Journal of Production Research, v 28, p 2085- 2100, 1990.

[28] Lenstra, J. and D. Shmoys, Approximation algorithms for scheduling unrelated
parallel machines, Mathematica/Programming, v 46, p 259-271, 1990.

[29] Leon, V. J. and B. A. Peters, A comparison of setup strategies for printed circuit
board assembly, Computers & Industrial Engineering, v 34, p 219-34, 1998.

[30] Liu, C. and S. Chang, Scheduling flexible flow shops with sequence-dependent
setup effects, IEEE Trans Rob Autom, v 16 n 4, p 408-419, 2000.

[31] McGinnis, L.F., J.C. Ammons, M. Carlyle et al., Automated process planning for
printed circuit card assembly, /IE Transactions, v 24, p 18-30,1992.

[32] Nakahara, H., PCB output 1998, Printed Circuit Fabrication, June 1999.

[33] Nemhauser, G. and L. Wolsey, Integer and Combinatorial Optimization, New York:
Wiley, 1999.

[34] Noman, B, Scheduling flowshops with finite buffers and sequence-dependent setup
times, Computers and Industrial Engineering, v 36, p 163-177, 1999.

[35] Nowicki, E., The permutation flow shop with buffers: a tabu search approach,
European Journal of Operational Research, v 116, p 205-219, 1999.

(36] Palm, R., Reducing setup time for printed circuit assembly, Hewlett-Packard
Journal, August 1996. ·

[37] Papadimitriou, C.H. and P.C. Kanellakis, Flowshop scheduling with limited
temporary storage, Journal of ACM, v 27, p 533-549, 1980.

[38] Pinedo, M., Scheduling: Theory, Algorithms, and Systems, NJ: Prentice Hall, 1995.

[39] Potts, C. and L. Wassenhove, Integrating scheduling with batching and lot-sizing: a
review of algorithms and complexity, Journal of the Operational Research Society,
v 43, p 395-406, 1992.

[40] Reeves, C., Modern Heuristic Technique for Combinatorial Problems, Oxford:
Blackwell Scientific, 1993.

89

[41] Rios-Mercado, ·R. and J. Bard, Enhanced TSP-based heuristic for makespan
minimization in a flow shop with setup times, Journal of Heuristics, v 5 n 1, p 53-
70, 1999.

[42] Rossetti, M.D. and K. Stanford, Group sequencing a PCB assembly system via an
expected sequence dependent setup heuristic, Computers and Industrial
Engineering, v 45, n 1, p 231-254, 2003.

[43] Rowland, R., Rapid setup and changeover, Surface Mount Technology, July, 2003.

[44] Ruiz-Torres, A., E. Enscore and R. Barton, Parallel machine scheduling for
minimizing the makespan and the average flow-time, Industrial Engineering
Research - Conference Proceedings, Norcross GA USA, p 186-191, 1997.

[45] Shapiro, J., Mathematical Programming Models and Methods for Production
Planning and Scheduling, in S. Graves, Handbooks of Operations Research and
Management Science, v 4: Logistics of Production and Inventory, North Holland, p
371-443, 1993.

[46] Sule, D., Sequencing n jobs on two machines with setup, processing and removal
times separated, Naval Research Logistics Quarterly, v 29, n 3, p 517-519, 1982.

[47] Tadei, R. and J. Gupta, Minimizing makespan in the two-machine flow-shop with
release times, Journal of the Operational Research Society, v 49, n 1, p 77-85, 1998.

[48] Uetake, T. and H. Tsubone, Production scheduling system in a hybrid flow shop,
International Journal of Production Economics, v 41n1-3, p 395, 1995.

[49] Vakharia, A.J. and B. Catay, Integrating family formation and scheduling in PCB
manufacturing, Annual Meeting of the Decision Sciences Institute, v 3, p 1222,
1998.

[50] Weng, M., Scheduling flow-shops with limited buffer space, Proceeding of the
2000 Winter Simulation Conference, p 1359-1363, 2000.

[51] Wittrock, R., Scheduling Algorithms for Flexible Flow Lines, IBM Journal of
Research Development, v 29, p 401-412, 1985.

[52] Williamson, D, L. Hall and J. Hoogeveen, Short Shop Schedules, Operations
Research, v 45, p 288-294, 1997.

[53] Wolsey, L., Integer Programming, New York: Wiley, 1998.

[54] Yoshida, T. and K. Hitomi, Optimal two-stage production scheduling with setup
times separated, A/IE Transactions, v 11, n 3, p 261-263, 1979.

90

