September 30, 2014

Exploration of the Energy and Thermal Behaviors of Emerging
Architectures

Final Report
September 30, 2014

Sudhakar Yalamanchilil and Hyesoon Kim?

1School of Electrical & Computer Engineering and 2School of Computer Sciences
Georgia Institute of Technology

1 Introduction

The goal of this project is to study the energy and thermal behaviors of future
applications executing on emerging architectures at the node level. Our approach is to
construct models of the energy dissipation in candidate node architectures and drive
models with benchmark codes made of representative kernels and applications. Given
that future systems may contain several hundreds to thousands of cores with large
memory footprints, traditional modeling and simulation techniques are impractical.
Our approach builds on several recent developments at Georgia Tech to ensure fast,
high-fidelity models of energy consumption that can scale to the size of future systems.

2 Overview

The project started in May of 2013. The progress to date is best understood in the
context of the larger, long-term vision for the application-driven modeling and analysis
environment for HPC applications. This environment consists of three main
components: i) compiler-based instrumentation tools to acquire implementation-
neutral energy and performance data; ii) an automated data analysis toolset and data
repository for constructing analytic models for energy and time; and iii) a macro-scale
simulation environment for applying the models to large scale (100,000s cores)
system models. This program focuses on developing Part i and extending to Georgia
Tech’s Eiger modeling environment for Part ii, with the final goal of integration with
the SST/Macro architecture modeling environment. The long-term vision for this
project is shown in Figure 1. We wish enable energy/power debugging of applications
in the same vein as performance debugging for HPC applications. Note that several
elements of this vision (Eiger and the SST/Macro components) were supported by, and
continue to be supported by, Sandia National Laboratories (Livermore). Our goal is to
ensure the collective efforts are synergistic.

3 Progress

The primary engineering implementation took the form of extending the scope and
capabilities of LANL’s Byfl compiler-based instrumentation framework. A high level
view is shown in Figure 2. Specific progress to date includes the following.

September 30, 2014

Application 4
Skeleton ’
I% ‘

Compute ﬁ
Archltecture— Architecture Power
» independent . .
. metrics Consumption
metrics

Network
Simulation

JyJeI], YI0MIDN

Congestion Region-specific

models energy models
System-level v
estimates

Figure 1 Long Term Vision

3.1 Front-End Tools:

The first few months of the project constructed x86 and ARM instruction tracing
tools from application binaries executed with full system emulators. These traces drive
instruction level power models being developed in this program. This tool chain
development was set aside for the moment while we worked with extensions based on
LANL’s Byfl infrastructure as described below.

3.2 Statistical Approaches to CPU Power/Energy Modeling:

This part of the project deals with statistically modeling the power behavior of
applications. This phase relies on measuring the on-chip power and correlating it with
other performance metrics collected from hardware performance counters and
compiler instrumentation. We used Intel’s RAPL (Running Average Power Limit)
interface along with the Linux perf tool and PAPI (Performance Application
Programming Interface) for collecting raw data, including power data, from Intel Ivy
Bridge systems. The data is imported into Eiger, an automated framework for creating
models based on regression, principal components analysis (PCA), and other machine
learning techniques. Using a diverse set of applications and their profiled data, we have
created first order models that tie into the larger goal of characterizing energy
behavior of applications to provide insight for programmers and researchers.

We constructed models based on performance counters and compiler generated
instrumented data. As a result, once these models are refined and validated to be
robust, they can be used as building blocks for building application-level models that
abstract away some of the hardware and architecture-dependent details in favor of
compiler-visible performance behaviors. To that end, we have added support for

September 30, 2014

integrating Eiger with
Byfl, enabling Byfl data
to be pushed into
Eiger's database, so
Eiger can create models

Arch-Independent
Metrics
(IR level, dynamic)

8¢

Application

based on architecture- o IS]A Memory HW Characterization
. : : ranslation Hierarchy
1ndepend§nt .appllcatlon e el e
characterization.

We are Currently Workload Memory Access HW Artifact
studylng the process of Characterization Characterization Characterization
generating accurate 1 |

cache models using
Byfl+Eiger, and we are
also in the process of Energy Model

implementing an LLVM
Energy
Estimates

Pass in Byfl that can
interface with RAPL
Figure 2 Key Elements of this Program

directly. Eiger can then
be used to construct
analytic energy models
at code segment granularity. Preliminary work towards this end is in submission to a
SC14 workshop.

Experimental Methodology and Tools used in this phase: (1) RAPL: Intel introduced
the Running Average Power Limit (RAPL) features with the Intel microarchitecture.
Although primarily intended to control or limit power usage on chip, this feature can
also be used for measuring power and energy consumed by the processor. RAPL
interfaces consist of non-architectural model specific registers (MSRs). (2) PAPI and
perf: The Performance APl (PAPI) project specifies a standard application
programming interface (API) for accessing hardware performance counters available

on most modern 21.7 29

microprocessors 10

including RAPL =HIPC

counters. The linux LS _

perf tool also mSHOC1 —
B SHOC2

provides access to
the same counters.
PAPI provides more
fine-grained control
for measuring
counters in code
sections, whereas i
the perf tool is more eu-2005 italy rgg n_2_18_so
convenient for
measuring

application-wide or

Relative Energy
(normalized to the minimum energy)
o =N w (62 BN o) N o Ne)

Figure 3 Impact of Input Data Sets on the Energy Behavior of BFS

September 30, 2014

system-wide counters.

Applications that are used in this study: Mantevo Mini App Suite, SPLASH2,
OmpSCR, SSCAv2, and PARSEC.

3.3 High-Level Power Modeling for Accelerators:

We have set up a power measurement infrastructure to measure the power of a
NVIDIA K-40 GPU. We have measured power for several graph algorithms (BFS, SSSP,
MST, etc.), especially focusing on different implementations of BFS algorithms. We
discovered that the power efficiency for the same functionality varies significantly
depending on implementations and input sets—see Figure 3. We plan to investigate
this issue in more detail. This relationship between algorithms and energy/power
efficiency of architectures will be used to understand the energy behavior of irregular
algorithms on accelerators (in this case GPUs) as a prelude to the development of high-
level energy models for different types of accelerators.

3.4 Energy Auditing of Applications:

We have implemented a tool for associating application functions with their energy
consumption. Analogous to time profiling tools like gprof, this tool breaks down the
overall energy consumption of an application at the function granularity. We use two
techniques for associating energy counts with functions: (1) we inject the
measurement functions at the beginning and end of every function call, precisely
measuring energy; (2) we sample the execution, periodically halting and associating
energy for the sample with the current function. The first technique, while more
accurate, has a higher execution-time overhead. The second is lighter weight, but it
may alias the energy counts for short-lived functions. This tool leverages the Byfl
infrastructure for injecting instrumentation into applications at compile-time and the
PAPI interface for reading the RAPL energy counters.

4 Summary

We are currently completing the integrated Byfl-Eiger infrastructure that will add
analytic models for energy developed here and demonstrate the ability to audit the
energy expenditures of an application, e.g. by function or procedure. This capability
can be used to provide compile time feedback to developers on the energy
consequences of algorithm and data structure decisions.

This year the research has focused on measurement based approaches to
energy/power modeling, and integrating this capability into the existing
infrastructures (Byfl and Eiger). Longer term we wish to create a comprehensive
energy auditing/debugging infrastructure that parallels that of performance debugging
developed over the last few decades. At the moment our vision for achieving this is
captured in Figure 1.

