
A Secure and Highly Available Distributed Store for Meeting Diverse Data
Storage Needs �

Subramanian Lakshmanan Mustaque Ahamad

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332�
subbu,mustaq,venkat � @cc.gatech.edu

H.Venkateswaran

Abstract

As computers become pervasive in environments like the
home and community, data repositories that can maintain
the long term state of applications will become increasingly
important. Because of the greater reliance of people on
such applications and the potentially sensitive nature of the
data manipulated by them, the repository must be highly
available and it should provide secure access to data. Fur-
thermore, many different types of data, ranging from pri-
vate data belonging to a single user to data shared across
different users may be stored in the repository. We present
the design of a distributed data repository, called a secure
store, which can meet the data access needs of diverse ap-
plications. We develop protocols that replicate data at mul-
tiple servers to enhance availability and work even when
a limited number of compromised servers exhibit arbitrary
failure behavior. We also discuss how the nature of the data
that is stored in the secure store impacts the availability and
costs associated with data access.

1 Introduction

As computers become pervasive in the home and com-
munity, a variety of computation engines will be deployed
to enable emerging applications in such environments.
These computers will range from embedded processors to
mobile and hand-held devices. For example, the Aware
Home that has been built at the Georgia Institute of Tech-
nology [8] will support a variety of applications to assist its
residents in their daily activities. Such applications in the
home and others that are deployed across such connected
homes in a community will need to store, access and share a
�
This work was supported in part by NSF grants CCR-9988212 and

ITR-0081276.

variety of information. Several characteristics of computers
that will execute such applications make them unsuitable
for storing such information. First, they may be resource
poor and may not be able to store long-term data. Second,
they can be easily stolen or compromised and hence can-
not be entrusted to maintain data that has confidentiality or
integrity requirements (e.g., medical or financial records).
Third, when data size becomes large, storage management
is expensive and prone to errors. Ordinary home users are
unlikely to deal with long-term management of such data.

The needs of the applications in environments like the
Aware Home motivate a data repository service which is
highly available and secure. In the Aware Home, one of the
applications being explored enables older residents to stay
in the home longer by providing a variety of services, in-
cluding automatically connecting them with external medi-
cal facilities in the event of an emergency. Clearly, the infor-
mation that is used to make such decisions must be highly
available. Also, because of privacy concerns and sensitive
nature of the information, access to it must be secured. We
call the abstraction that provides such highly available and
secure data repository service a secure store.

A secure store that can meet the needs of diverse appli-
cations will have to meet several requirements. First, it will
have to replicate the information to make it highly available
and to provide fast access to distributed clients. If the stored
data may be updated dynamically, clients must access con-
sistent values for data items. Finally, access to private or
sensitive information needs to be controlled. In particular,
confidential information must not be disclosed to unautho-
rized parties, and its integrity should not be compromised
even when some of the server nodes become faulty.

Considerable work has been done in building distributed
stores which range from distributed file systems to object
stores. For example, the Bayou [5] system provides mobile
clients access to information via replicated servers and it

supports several levels of consistency (called session guar-
antees) for the data. Such systems primarily focus on high
availability (e.g., in Bayou a client can access information if
it connects to a single server) and use replication and weak
consistency guarantees to achieve this goal. More recently,
security of replicated servers has been explored by systems
such as Phalanx [1], Fleet [9] and others [3]. However,
these systems assume general read/write sharing and strive
to provide strong consistency guarantees which results in
expensive protocols in wide-area environments.

The main contribution of the paper is the design of a
secure replicated store to meet the needs of diverse appli-
cations. We present a set of protocols that enable clients
to access information securely, with various consistency re-
quirements. The store is implemented by a set of replicated
servers, some of which could be compromised by an ad-
versary. The compromised nodes could behave in arbitrary
manner (e.g., Byzantine faults). The protocols exploit the
nature of the data (e.g, non-shared or shared) and support
weaker consistency levels to improve performance. By con-
sidering weaker consistency protocols, we demonstrate the
cost vs. consistency tradeoffs that are possible. Applica-
tions can consider such tradeoffs and choose protocols de-
pending on their consistency needs as well as the resources
available to them.

Section 2 motivates our work by presenting applications
that require secure and highly available access to differ-
ent types of information with varying levels of consistency.
Section 3 summarizes the considerable amount of related
work that exists in the area. Section 4 defines our system
model and lists the assumptions made by us in the develop-
ment of the protocols. The detailed protocols are presented
in Section 5. Section 6 discusses performance of the proto-
cols. The paper is concluded in Section 7 with a discussion
about future work.

2 Motivation

In this section, we consider three classes of applications
that have security as well as consistency requirements for
stored data. The traditional security requirements include
confidentiality, integrity and availability. A variety of re-
laxed consistency models have been explored in the past
that range from guarantees based on causality to ones that
only require that reads of data items return values that are at
least as recent as those read in the past.

1. First, we consider applications in which a single user
accesses non-shared information. For example, a resi-
dent of the Aware Home may save medical records of
family members or store tax information in the secure
store. Such information is only accessed by the resi-
dent. Under certain conditions, copies may be made

available to others (e.g., tax preparer or a medical fa-
cility) but the information is of non-shared nature.

2. In the second case, we consider applications that in-
volve multiple users. For example, a school may create
and store information which may be accessed by many
families in the community. In this case, the informa-
tion is written by a single user but it could be read by
many others. This application falls in the general class
of applications where a single source disseminates in-
formation that is of interest to many others.

3. Finally, we consider applications that manipulate data
read and written by multiple users. Many collabora-
tive applications that enable asynchronous interactions
across users fall in this category. For example, a group
of citizens may collectively develop a plan to address
problems in the community over a period of time.

In the non-shared case, which is exemplified by the first
class, the private nature of the data clearly implies that
it is of confidential nature. The consistency requirement
is straightforward because the updates are ordered and we
only need to identify the most recent update. High availabil-
ity for the data such as medical records is a must in an emer-
gency situation. In the second class of applications where
data is written by one user and read by others, integrity re-
quirements can be easily seen. In particular, readers must
be assured that the data they receive is from the legitimate
writer and has not been modified by unauthorized parties.
Strong consistency is not necessary. In particular, even if a
reader may not see the latest value in the current read op-
eration, it is sufficient that future reads return successively
more recent data. Application level information can be used
to discern when information may be stale.

For the last application class, where shared data items
may be updated and read by multiple users, both confiden-
tiality and integrity could be important and access to the in-
formation must be controlled. Consistency based on causal-
ity may be sufficient when concurrent updates to shared data
items are not common or when such updates can be merged.
Strong consistency, enforced by some type of synchroniza-
tion may be unnecessary because users may externally co-
ordinate their updates.

Although we have given example applications that come
from the home and community domain, the secure store will
be valuable in addressing the needs of applications from
other domains which share similar security and consistency
needs. Examples of such applications include access to
personal information such as email, inventory management
across distributed locations, collaborative software devel-
opment projects, and educational and entertainment appli-
cations.

3 Related Work

To build a highly available and secure store, data is usu-
ally replicated at several servers. Consistency across multi-
ple replicated copies of data items needs to be maintained in
such an environment. Traditionally, it is assumed that repli-
cation should be transparent and the consistency provided
should ensure the same results that can be obtained from a
single, non-replicated copy. Such strong consistency (e.g.,
one-copy serializability, sequential consistency or lineariz-
ability [10]) could result in expensive protocols that cannot
scale and is not needed by many applications. We primarily
consider applications where weaker notions of consistency
suffice. Thus, we discuss related work that addresses weak
consistency. There has also been considerable work that
deals with malicious servers. We also discuss protocols that
tolerate malicious servers in replicated data systems.

Systems that range from distributed file systems to
shared memory systems have explored weaker consistency
models to enhance performance and scalability. For exam-
ple, a consistency model based on causality can be defined
when shared objects are read and written by distributed
users. The causal consistency model [11] permits more effi-
cient implementations and can meet the needs of many ap-
plications. Although weaker consistency models may be ap-
propriate for some applications, no single model may meet
the consistency needs of all applications. Thus, several con-
sistency levels may have to be provided in the same sys-
tem [5, 17]. The Bayou system best exemplified this ap-
proach. It makes use of replicated servers to provide access
to mobile clients. To provide efficient access, Bayou allows
a client to read or write a data item from a single server.
Once a data item is written at one server, the server can
propagate its value to other servers using an asynchronous
dissemination scheme. Our approach of supporting multiple
levels of consistency is motivated by Bayou-like systems.
However, we differ from such systems in several respects.
We treat servers as passive data repositories. The burden of
maintaining consistency is upon clients that must save and
use meta-data to decide what values can be accessed with-
out violating consistency. This approach allows us to limit
the power entrusted to servers which is useful when they ex-
hibit malicious behavior. Although malicious server behav-
ior was not addressed by Bayou when the project started,
a follow-up paper did address this problem [6]. However,
because of Bayou’s goal of allowing reads and writes with
a single server, this paper explored only safety related con-
cerns (e.g., data corrupted by a malicious server is not ac-
cepted by a client) and denial of service due to malicious
servers was not addressed. The authors did propose log-
ging and auditing of writes and reads to detect and rectify
damage done by malicious servers.

There are two separate approaches that have been ex-

plored for replicated servers. In the state machine ap-
proach [4], all replicated servers receive and process re-
quests in the same order. A request can be completed as
long as certain number of replicas can respond to the re-
quest. Schneider’s survey paper discusses strategies for
tolerating both crash and Byzantine failures [4]. Castro
and Liskov [3] gave a practical implementation based on
this approach. The algorithm uses message authentication
codes and multi-phase protocols to ensure linearizability.
Although this implementation is shown to be efficient in the
common case when clients and servers have high bandwidth
connectivity, the performance of such protocols could suffer
in widely distributed environments.

The quorum approach to replicated data management re-
quires that read and write operations be completed with sets
of servers. Such sets, called quorums, are chosen to overlap
with each other. This ensures that reads return the value of
the most recent write and that write operations are ordered.
Most of the quorum based protocols only dealt with crash
failures. More recently, Reiter and others have considered
malicious servers and have explored what are called Byzan-
tine quorums [12]. The Phalanx and Fleet systems [1, 9] are
designed using such quorum protocols. Byzantine quorums
require more common members than traditional quorums.
For example, to tolerate � malicious server failures, at least� ���	� members must be common between any two quo-
rums. These quorums provide strong consistency (safe se-
mantics for concurrent reads and writes) and do not address
more flexible consistency levels. Although performance of
dissemination protocols is explored by the authors in [13],
they are not specific to any consistency level. Consistency
levels such as causal consistency, coupled with assumptions
about how data is shared, could allow much smaller quo-
rums that could yield improved performance for read and
write operations. Another approach that attempts to reduce
quorum size makes use of techniques to estimate the num-
ber of malicious servers [2]. Thus, the quorum size is dy-
namically adjusted based on the number of servers that are
believed to be faulty at a given time.

Our implementation of a secure and highly available
store could benefit from several other techniques that we
are not using in this paper. For example, Fray et. al. [18]
propose a scheme that fragments the information in a data
item and stores it at several servers. In this case, if fewer
than a threshold number of servers are compromised, the
data item’s value cannot be reconstructed and hence cannot
be disclosed. Others have also explored such fragmentation
based schemes [14, 15].

4 System Model and Assumptions

To meet availability goals in the presence of one or more
compromised servers, the secure store is implemented by

a set of
 replicated servers �
����������� ��� . Together, these
servers offer a data repository service. The secure store
is primarily responsible for safe keeping of data written to
it and to provide values according to consistency require-
ments of clients when reads are requested. Other issues
such as authorization or who should be able to access a
given data item are addressed by additional services.

All requests from clients are authenticated. Hence,
we assume the availability of necessary authentication and
cryptographic mechanisms. All communication channels
between clients and servers are assumed to be secure against
eavesdropping, modification and replay attacks. Also,
clients and servers are assumed to own a secure private key
for which the public key is well known. Key management
issues are not addressed in this paper.

We assume a secure authorization mechanism in place.
A non-faulty server does not accept a write or a read re-
quest from an unauthorized client. This can be effected by
using authorization tokens issued to clients by some secure
authorization service. We ensure confidentiality of certain
kind of data (e.g., data exclusively accessed by a user) but
meta-data associated with a data item that is used for con-
sistency maintenance is not confidential.

We assume an upper bound, denoted by � , on the number
of servers that can fail or be compromised at any time. Fail-
ures could be either crash failures or Byzantine, and faulty
servers can behave arbitrarily while executing the secure
store protocols. Thus, a compromised server can mount
an attack, possibly colluding with other faulty nodes. We
assume that during the period of a client’s read or write,
the system is fairly stable. That is, the set of faulty servers
remains within the assumed bound and does not change ar-
bitrarily.

A server maintains meta-data about each data item it
stores in addition to its value. The meta-data associated
with the copy of a data item at a server depends on the
consistency required by the clients. This meta data in-
cludes the unique identifier of the writer, timestamp asso-
ciated with the current value, consistency-related informa-
tion called ����
������ � of the writer (defined in a later section),
signature of the writer and other relevant information.

Since some servers may not be available at the time a
request is made, we cannot assume that all servers must be
available to handle a read or write request. It is also de-
sirable to complete a request by contacting a small number
of servers from a performance point of view (e.g., response
time perceived by a client). Thus, clients may complete
updates after communicating with a small subset of servers.
We assume that servers keep themselves informed about up-
dates in which they do not directly participate via a gossip
or dissemination protocol [7]. A non-faulty server transmits
all the updates it has seen to at least one other non-faulty
server. A faulty server cannot propagate a non-existent or

forged write to other servers since all writes that are propa-
gated have to be accompanied by the signature of the client
who wrote the value. We do not make any assumption about
the specifics of the gossip protocol and require only that
it allows non-faulty nodes to exchange information about
their updates.

Although the secure store may contain a large number
of data items, we assume that each item belongs to rela-
tively small group of related data items. For example, doc-
uments pertaining to a certain topic may define the group
of related data items. We assume that consistency is only
required across a group of related data items and not across
data items that come from different groups. To access the
secure store, clients establish a session with or connect to
the secure store before they issue read and write requests.
A user may have previously interacted with the store and
he or she must see the effects of requests issued in earlier
sessions. We associate a context with a client to capture
its interaction with the store. The �!��
����"�#� reflects reads or
writes that were completed by the client previously. Such
�!��
����"�#� itself could be stored in and retrieved from the se-
cure store.

4.1 Notation

We use the following notation in the description of our
protocols. ��$ denotes server % , &'$ denotes client % and �($
denotes the name of the data item % . Each data item has
a unique identifier in the system, denoted by)(%+*(,-��$+. . /
denotes a set of data items. 0 is a value written to or read
from a data item. �21 denotes a timestamp. One or more
timestamps are associated with a value created by a write.
A timestamp serves as a unique identifier for a write. In
protocols for non-shared and single-writer applications, a
timestamp is simply a version number. For the multi-writer
applications, timestamps also contain the writers’ unique
identifier and the digest of the value being written. We
use 3 $ and 354 �$ to denote the public and private key of
client & $. 6"*879��7 :�;=<8>? denotes signed digest of data using
private key of client % . * ,@0A. denotes the digest of a value 0
using some agreed-upon digest algorithm. A set of identi-
fiers and timestamps ,2,-)(%B* ,@����.C�2�21D��.C�������E����,@) %B*(,-� FG.!�2�21"F=.H. ,
called the �!��
����"�#� , is maintained by each client locally for
data items in group / . We denote it by I . A ����
������ �
may also appear in the meta-data associated with a value of
a data item. We use IKJ�L $NM@O L to denote the ����
������ � of the
writer at the time the value was written.

4.2 Consistency models

We advocated that the secure store support access to a va-
riety of information with different levels of consistency for
shared information. We consider the following consistency

models that can meet the needs of many of the applications
described earlier.

1. Monotonic Read Consistency (MRC):A client who
accesses data items using this level of consistency al-
ways sees an increasing set of writes to a an object as
time proceeds. More specifically, if a client reads a
value 0 for a data item �($, at a later time when it reads
data item �($ again, it is returned 0 or a value which is
newer than 0 . A value 0QP is said to be newer than 0
if the store orders the write that produced 0RP after the
write which stored 0 . For non-shared data that is ac-
cessed by a single client, MRC implies that the client
will access the most recent copies of its data items. For
shared data, future reads of a reader could return more
recent values but are not guaranteed to return the latest
value of the object. Thus, consistency guarantees pro-
vided by MRC are similar to the monotonic-reads and
read-your-writes session guarantees in Bayou.

2. Causal Consistency (CC): MRC only ensures that for
a given data item, a client never receives values older
than the ones read in the past. It does not impose re-
strictions across related data items. Consider the case
when a client writes value 0 � to a data item � � based
on value 0 � of data item � � that it has read. Informally,
if another client reads value 0S� for �(� , CC ensures that
the client is guaranteed not to read a value for �T� that
is older than 09� . The notion of “older” is precisely de-
fined based on the happens before order for read and
write operations to shared data items [11]. This rela-
tion can order read and write operations across a set of
related data items. In particular, if �9� and �D� are two
writes to data item � which assign values 0A� and 0��
to � respectively, 0 � is said to be causally overwritten
by 0 � , if � � causally precedes � � . A secure server that
supports CC ensures that no read operation returns a
causally overwritten value.

Although we focus on protocols for MRC and CC,
clearly these protocols may not be able to meet the consis-
tency needs of all applications. In particular, some applica-
tions may require strong consistency. In this case, existing
protocols can be used. For example, the replicated state ma-
chine approach based protocol in [3] can be used to ensure
that all client operations appear to execute in a total order.
MRC and CC do not address how quickly values written by
a certain client become available to others. Although mod-
els that address timeliness do exist, their implementation in
an asynchronous distributed system is infeasible. We do as-
sume that MRC and CC will return newer values eventually
when clients continue to read the data.

5 The Protocols

We consider data that is accessed by the three classes of
applications we listed in Section 2. We first present proto-
cols for the first two classes of applications, namely non-
shared and single-writer applications. In these applications,
since a single client is responsible for writing the data, we
assume that the client is honest and follows the protocol as
expected without trying to compromise the integrity of the
service provided by the store. For the third class of appli-
cations which allow data items to be updated by multiple
clients, if there are no malicious clients, the same protocol
works by extending the timestamp to include the) %B* of the
writer. However, the protocol needs to be modified to han-
dle malicious clients.

The secure store not only provides safe storage for long-
term state but also makes data highly available to the clients.
To determine what values are consistent for a given client,
we associate a context IK$ with client &'$ that captures its
past interactions with the store. Such �!��
����"�#� itself can be
stored in the secure store and read when a client starts a ses-
sion. We say that a client connects with the store to initialize
its �!��
����"�#� . Before going off line, by executing a discon-
nect operation, the client writes back its updated �!��
����"�#� .
Writing and reading of �!��
����"�#� require special treatment,
irrespective of the consistency level required by the appli-
cation. We first discuss how �!��
����"�#� is represented and how
clients read and write it. This is followed by the protocols
that are used to read and write other data.

5.1 Context and its management

In replicated data systems, since all copies may not be
identical (an update writes new values only at a subset of the
servers), version numbers or timestamps are used to deter-
mine which copies have the latest values. Such timestamps
must monotonically increase as updates are done. They can
be read either from clocks that advance between successive
updates or can be read from logical clocks that are advanced
as read and write operations are executed. When consis-
tency needs to be ensured across a set of related data items
and a client accesses several such items, timestamps have to
be kept for each of the data items. The �!��
����"�#� of a client
includes the unique identifiers of data items accessed in a
given session and the timestamps associated with the data
items. Although the secure server may potentially store a
large number of data items, in a given session, we assume
that a client only accesses a small number of such items.
This implies that the �!��
����"� � maintained by a client at a
given time will not be large.

Consistency dependencies in the CC model can arise be-
cause of operations that are executed on several data items
that belong to a related group. For example, a client &U$ may

write value 0 to data item � based on the value 0RP of an-
other data item �(P that it read in the past. Another client
that reads 0 for � and then requests a copy of ��P must see
either 0AP or a more recent value of �VP . To ensure this, we
need to associate meta-data with values of data items that
are stored at the servers. Such meta-data for value 0 must
reflect the fact that it potentially has a causal dependency
on the write that produced value 0QP of item � P . In particular,
the meta-data stored with 0 not only has the timestamp of �
but also the timestamps of other related data items to capture
causally preceding updates to them. In fact, the set of times-
tamp values of the data items that are related to � and ��P
is precisely the information that is needed to maintain CC.
This information is captured by a client’s �!��
����"�#� . Thus,
if /XWY6������H� �9����� �(FZ: is a related group of data items, the
�!��
����"�#� associated with data items in / at client & $ is I $
= ,H,-)(%+*(,-� � .!�2�21 � .!�����E������,-)(%B* ,@� F .C�H�21 F .H. . As discussed later,
the ����
������ � evolves as �21�[’s increase when reads and writes
requested by & $ complete. If an � $ is written back to the
store, the client’s �!��
����"�#� associated with / is written with
the data value. Timestamp vectors similar to �!��
����"�#� de-
fined by us are also used in many systems that have been
developed for weakly consistent replicated data [5].

A client’s �!��
����"�#� reflects the accesses it has completed.
Thus, when a new session is initiated by the client, it must
initialize its �!��
����"� � to reflect the interactions it had com-
pleted in the last session. A client may deal with a number
of �!��
����"�#� objects over a period of time. Clients may be
resource poor and information stored at the client site could
be compromised easily. Hence, we choose the approach in
which a client saves its �!��
����"�#� in the secure store along
with a signed digest of the �!��
����"�#� . The signature ensures
that a malicious server cannot alter the ����
������ � information.

To ensure that a read of the �!��
����"�#� returns its latest
value, strong consistency needs to be guaranteed for the
read and write operations that access �!��
����"� � . To ensure
such consistency and availability in the presence of up to �
faulty servers out of a total of
 , we use a quorum based
approach when �!��
����"�#� is read or written. In particular, we
require that the reading or writing of ����
������ � information
be done with at least \�,@
]�^�
�_�".a` �Db servers. This ensures
that at least one non-faulty server, to which the last ����
������ �
information was written, will participate in ����
������ � read.
The client can choose the most recent �!��
����"�#� value that
has a valid signature from the values returned by the servers
in the quorum.

As can be seen in Figure 1, �!��
����"�#� read or write can
be completed as long as \2,-
c�	�d�e��.H` ��b servers partic-
ipate in the quorum. Since a valid signature is required,
faulty servers can only misbehave by either not respond-
ing or sending an old value of the �!��
����"�#� . Given that the
latest value received from a server is chosen as the client’s

Read &'$ ’s �!��
����"�#� on session initiation:
let / be the related group of data items
that &'$ wants to access in the session;
request &K$ ’s ����
������ � associated with / and signature
from all servers;
wait for at least \�,@
f�g�h�i��.H` ��b responses;
check if a �!��
����"�#� is valid by verifying its signature;
I $ W latest valid �!��
����"�#� returned by some server;

Store & $ ’s ����
������ � on completion of its session:
let I $ be & $ ’s current �!��
����"� � for data items in / ;
send 6�I $ �!6DI $:";=<8>? : to \�,@
j�^�h�_�".H` ��b servers;

Figure 1. Context acquisition and storage

�!��
����"�#� , the �!��
����"� � from a non-faulty server that partici-
pated in the most recent write will be chosen. Here, latest
value is that vector which has the highest timestamp for ev-
ery data item in the group. Notice that we require only �#�k�
servers in the intersection of two quorums whereas mask-
ing quorums require � �h�l� servers in the intersection. Our
optimization is possible because we can choose the latest
valid �!��
����"�#� from a single server while masking quorums
require that a value appear in the response of at least �m�n�
servers for it to be chosen.

If a client successfully writes its ����
������ � prior to ses-
sion termination, at least one of the servers that responds to
the next �!��
����"�#� acquisition request will return the client’s
latest �!��
����"�#� . If the client fails either before this is done
or while it is writing the �!��
����"�#� , the quorum intersection
is not guaranteed to return the most recent �!��
����"� � . In
fact, the context stored in the meta-data of data items could
be more recent than the �!��
����"�#� written by the last suc-
cessfully terminated session. In this case, a more expen-
sive protocol is used to reconstruct the context. The client
will have to read the timestamps associated with all data
items in a group / for which �!��
����"�#� needs to be recon-
structed. These items must be read from all servers. Only
the faulty servers may choose not to respond to the client
request. From these values, the latest valid timestamp for
each data item is used to reconstruct the client’s �!��
����"�#�
for data items in / .

5.2 Protocols for non-shared and single-writer ap-
plications

Once a session is started and a client initializes its
�!��
����"�#� , it could issue read and write operations for the data
items that it is authorized to access. The client is responsible
for accessing consistent data based on the �!��
����"�#� . Similar
to the protocol in Figure 1, we assume that the operations
are executed by client &K$. Since this section considers data
that is written by a single client, &�$ is the only one that ex-

ecutes write operation on the data items. Other clients can
read shared data that is written by &�$. We assume that for
a given set of data items, either MRC or CC consistency is
specified at the time of their creation. Thus, the same data
item cannot be accessed with MRC consistency requirement
at one time and CC consistency at another time.

let I $ W	,2,@) %B*(,-� � .C�H� � .!�����E���E����,@) %B*(,-� F .!�2� F .2. ;
Write(�Q[��20):

increment � [in I'$ to current clock value;
if CC is required then

write-message := 6 “write”,)(%B* ,@� [. ,
I'$, 0 , 6�)(%B* ,@� [.C��I'$2�H0#:�;=<8>? : ;

elseif MRC is required then
write-message := 6 “write”,)(%B* ,@�R[�. , �o[, 0 ,
6") %B*(,-� [.!�2� [�H0#:�;=<8>? : ;

endif;
send write-message to at least �p�_� servers;

Read(�R[):
let � [be the timestamp associated with � [in I'$;
send ()(%B* ,@� [. , � [) to �p�_� or more servers;
receive replies from these servers that includes
the meta-data of � [;
let � L be the highest timestamp for data item � [
among the replies ;
if � L=q � [then

choose the server which sent � L in its reply;
send 6 “read”,)(%+*(,-�#[".C�2��L�: to chosen server;
receive r = 6��2L , I'J�L $NM@O L , 0 ,
6") %B*(,-�R[�.!�2��LS�aI'J�L $EM@O LS�20 : ; <8>? :
accept 0 if the signature is valid;
if MRC consistency is required then

update � [in I'$ to � L when � Lts � [;
if CC consistency required

update each timestamp in I $ to max of value
in I $ and the corresponding value in IKJ�L $NM@O L ;

else
contact additional servers or try later

Figure 2. Read and write protocols executed
by client &'$

Figure 2 shows the protocols for reading and writing
when the data is written by a single client. For monotonic
read consistency, only the current version number or times-
tamp of the data item is stored with its value. Since the
timestamp of this data item monotonically increases as val-
ues are read and written, successive reads of a client will
return newer values. Since a client writes its �!��
����"� � at the
end of a session, a future session will also return the most
recent value seen by the client or a newer value.

Since servers simply act as passive stores for signed in-
formation, a faulty server cannot modify either the meta-
data or the value of the data item in an undetectable way.
Thus, it can either not respond to a request, or respond with
old data or data that is corrupted. A client can detect old
or corrupted data by verifying the signature and examining
the associated meta-data. By writing the data to at least
�u�n� servers, we ensure that at least one non-faulty server
receives the data and will store it correctly. However, such
a non-faulty server to which the last data value was written
may not be among the �m�_� servers that are contacted by a
subsequent read operation. In this case, the data supplied by
the non-faulty server may be stale according to the �!��
����"�#�
of the requesting client and it will not be accepted. To in-
crease the likelihood that a client’s read request does include
a non-faulty server with current value of the data item, we
add a dissemination component to the protocol presented so
far. Many dissemination protocols exist [7, 13] that allow
servers to exchange data values. New data values could be
sent to one or more servers at a frequency that can be tuned
according to the needs of the clients or the resources avail-
able to the servers. A server receiving such a message can
verify that the update was signed by an authorized client.
The server receiving the message updates its value if the
timestamp of the received value is greater than the times-
tamp of the data value stored at the receiver. We omit the
details of the dissemination protocol but these details and
a correctness argument can easily be constructed based on
implementations that exist for systems that support shared
objects that provide causal consistency [11].

The protocol presented in Figure 2 may not return a value
with a timestamp that is greater or equal to the data item’s
timestamp in the client’s �!��
����"�#� . Several options exist for
handling this case. For example, additional servers may
be contacted or the client can try the operation at a later
time when the new value may have been disseminated to
the servers that it contacted. Thus, the cost of a read oper-
ation will depend on the dissemination protocol as well as
the frequency with which data items are updated.

The correctness of the protocol follows from two obser-
vations. First, no malicious server can modify any data item
since all data items are signed. Second, consistency is en-
forced by the client accessing the data. Since a single client
writes the data (both non-shared and shared data that others
only read) and the writer monotonically increases the times-
tamps on updates, timestamps in client �!��
����"�#� s or in the
meta-data stored with object values can always be ordered.
In the write protocol, the meta-data is included for comput-
ing the signature and non-faulty servers forward the entire
write message. Thus, a malicious server can neither suc-
cessfully disseminate spurious data values nor can it change
the meta-data associated with values.

Although the protocol discussed does not address confi-
dentiality, it is easy to provide for the data values in the non-
shared case. The owner or writing client can store all its data
items in encrypted form. When the owner changes its key, it
reads the data items, re-encrypts and stores them back. The
meta-data associated with a data item, however, must be in
plaintext because servers must use it to update their values
when the dissemination protocol is run. A malicious server
can thus disclose the meta-data associated with a data item
but not its value. Since the timestamp only needs to increase
monotonically, the writer can increase it on each write by
some random amount. That will ensure that others cannot
guess how many times the data item has been updated. For
the single writer and multiple readers case, confidentiality
can be ensured using a similar scheme. However, the key
that is used to encrypt the data values must be distributed
to readers, perhaps along with the authorization credentials
that are needed to access a data item. Servers do not know
this key and hence, malicious servers cannot disclose any
information to unauthorized clients. If there is a change in
the set of clients that has access to the data, key distribu-
tion and management schemes similar to those discussed in
secure multicast communication [16] have to be employed.

5.3 Protocols for multi-writer applications

We now consider the case when shared data items are
both read and written by multiple clients. Because we only
provide MRC and CC consistency, if the writers generate
ordered timestamps for their updates, the protocol in Fig-
ure 2 will still be correct since the timestamps stored with
data values will define an order that will be consistent with
causality. However, because the writers can generate values
independently, ordered timestamps cannot be guaranteed.
This could create several problems for the earlier protocol.
First, without any coordination between writers, two dis-
tinct values 08� and 0�� for data item � could have the same
timestamp. In the protocol in Figure 2, it is possible for
reads of � by a client to return 08� followed by 0�� and then
09� again. This is clearly undesirable. Servers that partic-
ipate in the dissemination protocols can also get confused
when distinct values of � have the same timestamps.

The protocol in Figure 2 can be adapted for multiple
writer case by changing how timestamps are associated with
data items. In particular, with a time � , we also include the
unique identifier of the client that generated � to create the
timestamp. A malicious client cannot use the timestamp of
a different client. This is because the signature associated
with writes includes timestamps as well, and the key used
to sign should match the)(%B* of the client in the timestamp.
To prevent a malicious client from using one timestamp for
two different values it writes, we also include the digest
of the value written in the timestamp. Thus, a timestamp

becomes a 3-tuple (�B%+vw� ,)(%B* ,o&'$o. , *(,-0Q.). Two timestamps
�21D�xWy,@�H���2)(%B*A�D�H*Q�!. and �21"�zWX,-�����H) %B*8���a*9�". are first or-
dered based on the value of the time associated with the
timestamp. If � � and � � are the same, the timestamps are or-
dered based on the) %B* s of clients contained in them. If the
) %B* s are same as well, the digests should be the same. Oth-
erwise, the writer is deemed to be faulty. In this case, clients
accessing this data item can be informed that the value can-
not be assumed to be correct. The augmented timestamps
are associated with data values and the signed digest reflects
both the timestamp as well as the value.

It should be noted that malicious clients can write
garbage values. This cannot be prevented and must be de-
tected at the application level. However, a malicious client
&�� could include spurious entries in a context as part of a
write. These entries could be arbitrarily high and any client
& � which reads this write would update its local context
with such high timestamps. These timestamps may not cor-
respond to any valid write residing in any of the servers.
Thus client & � would look for values with greater times-
tamps and would not find such values. This could have a
cascading effect if &'� writes values with this corrupted con-
text. Soon the whole set of clients would see this easy denial
of service attack. Clearly such a situation is not desirable.

Hence we make the following modifications to our ear-
lier protocol. A non-malicious server should start report-
ing a write to any requesting client only after the causally
preceding writes, as reflected in the accompanying context,
arrive at the server. A client that does a read should make
read requests to 2b+1 servers and accept a value as valid
only if b+1 or more servers reply with the same value. This
is to mask the effect of malicious servers that may report
a value even before the causally preceding writes have ar-
rived. Finally, we require that non-malicious servers log
the writes and report a set of latest writes for a particular
data item so that a client can choose a common value from
b+1 lists. This makes sure that a value being over-written
is still available while the new value is being disseminated
to atleast b+1 non-malicious servers. Old values could be
erased from the log once a server learns that a new value is
available at atleast 2b+1 servers.

Confidentiality can be achieved as in the case of single
writer case by sharing a key that servers do not know. The
writers must coordinate with each other to acquire this key
and if the key is changed, it must be made available to all
writers after the data stored at the servers is encrypted again
with the new key. Malicious servers might still retain the
old data, encrypted with the old key. If the old key is com-
promised, confidentiality is lost. We are currently exploring
methods to address such confidentiality issues.

6 Performance

The performance of a secure store can be characterized
based on a number of metrics. First, when a client needs
to read or write data items, the communication necessary
with server nodes requires network bandwidth and impacts
the response time of the client operation. The response time
could vary with the number of servers that need to partic-
ipate in the execution of the operation. Second, crypto-
graphic operations such as generation of digests and signing
them could introduce computational overhead. In this Sec-
tion, we discuss both message and computational costs of
our protocols that affect the latency seen by the client while
executing read and write operations and compare them with
those of some of the protocols described in Section 3.

We distinguish operations that are used to acquire and
store �!��
����"�#� data from those to read and write other data
items. The quorum sizes are different in these two cases.
The size of �!��
����"� � data depends on two factors: (1) the
number of related data items in a given group, and (2) the
number of groups from which data items are accessed in a
session. For example, all documents containing tax related
information for a given year could be considered related.
An application may access tax documents as well as docu-
ments that store information about medical bills. Once the
size of �!��
����"�#� data is determined, its acquisition requires
round-trip communication with \2,-
{�|�d�}�".H` ��b servers,
where
 is the total number of servers and � is the constant
bound on the number of servers that could be faulty. The
�!��
����"�#� data also needs to be stored at the same number of
servers when it is written on session termination. Thus, the
message costs and the response time of �!��
����"�#� read and
write operations depends both on the total number of servers
and the number of servers that could exhibit malicious be-
havior. In particular, a total of � � \�,@
t�~�V�c��.H` ��b messages
will be exchanged between the client and the servers to re-
trieve or store the �!��
����"�#� .

Prior to storing the �!��
����"� � , its digest must be computed
and signed with the client’s private key. Non-faulty servers
need to verify the signature to ensure that they do not over-
write their �!��
����"�#� data with spurious information. Thus,
the computational overhead at the time �!��
����"�#� is written
includes one signature and \�,-
G�~�V�c��.H` �Db signature verifi-
cations. When �!��
����"�#� is read, the latest �!��
����"� � is chosen
and only its signature needs to be verified. Thus, in the best
case, ����
������ � acquisition requires just one signature verifi-
cation. It should be noted that �!��
����"�#� is accessed only on
session creation and termination.

The cost of read and write operations for non-context
data depends on both the quorum size as well as on the rate
at which new values are propagated among servers. A write
operation can complete for all types of data (non-shared,
shared with MRC or CC consistency) by communicating

with �m�l� servers. This gives a total of �m�_� messages for
write operation. Since the operations can be completed by
communicating with only �T�g� servers, their response time
will be better than the response time of �!��
����"� � operations.
In the best case, the message cost and response time of read
operations could also be the same as write operations. This
will be the case when one of the server that responds to the
read quorum request has copy of the data item that is consis-
tent according to the client’s ����
������ � . However, if the de-
sired data value has not been propagated to the servers in the
read quorum, either additional servers must be contacted or
read must block until the needed data value is disseminated
to one of the servers in the quorum. The dissemination pro-
tocol would require additional communication between the
servers. The frequency of such communication will depend
on the resources available to servers as well as the read re-
sponse time desired by the applications.

Similar to ����
������ � information, servers store signed data
items. Thus, each write requires the signing of the digest
of the value and the meta data being written by the writer.
Servers in the quorum must verify such signature. For reads,
signature verification is done by the client. Thus, the com-
putational overhead of writes includes �A��� signature verifi-
cation and additional overhead of signing the data value by
the client that writes the value. For a read operation, a client
needs to verify only the signature of the final value it ac-
cepts. Since � will be much smaller than
 , the overhead of
signing and signature verification will be significantly lower
than other quorum based protocols.

The figures in the preceding paragraphs change from
�Z��� to � �Z��� for the malicious clients case. Clients
do not have to do signature verification for a read now
since non-malicious servers do the validation before report-
ing. However, a data value being written is not available
for the clients until the write and the causally preceeding
writes reach atleast b+1 non-malicious servers. The mali-
cious clients case requires additional overhead at the server
side to maintain a history of a limited number of writes for
each data item.

Both the communication and computational overheads
of our protocols are better than the quorum protocols that
provide strong consistency. For example, if majority quo-
rums are used, Byzantine quorums require communication
with \�,@
�� � ���^�".a` ��b servers for both read and write oper-
ations. Although improved quorum design can reduce their
sizes [12], a minimum quorum size of �
 is necessary. We
can achieve lower overhead even for �!��
����"� � operations by
using an improved quorum design. For non-context data,
the message cost of writes is much lower and when writes
are infrequent, most reads will access data that has been
disseminated to all servers. In this case, the average cost
of reads will be close to the costs of writes. Similar to
message overheads, the computational overheads of strong

consistency quorums include signature verifications that are
proportional to the size of the quorums. Thus, by providing
weaker consistency when appropriate, significant commu-
nication and computational savings can be realized.

The state machine based implementation of Byzantine
fault-tolerance reported in [3] provides better performance
than earlier systems. This is primarily due to lower compu-
tational overheads of message authentication codes that are
used in place of signatures. Although this approach offers
computational savings, it has significantly higher message
overhead. For example, the multi-phase protocols require� ,-
 � . messages. This could lead to high response time for
operations, specially in an environment where communica-
tion latencies are high across the server replicas.

In our future work, we plan to explore the performance
of our protocols using both simulations as well as actual
implementations. However, it is clear that flexible consis-
tency levels, which are appropriate for many applications,
can offer significant performance improvements.

7 Conclusions

The pervasive nature of computers, particularly in the
home and community environment, will lead to new appli-
cations that will create and manipulate sensitive informa-
tion about users and the environments in which they work
and live. Secure storage of such information will be a key
requirement. Furthermore, because of increased reliance by
humans on services provided by such applications, the in-
formation that they need must be highly available. Although
consistency requirements will exist, their data access and
sharing needs will differ from traditional applications. We
propose the design of a secure repository to store and access
such data that has a variety of sharing patterns.

We propose an approach in which servers are primarily
repositories of data, and clients are responsible for access-
ing consistent values of data items. Our primary contribu-
tion is the integration of techniques that allow the secure
store to tolerate malicious behavior of some compromised
servers with consistency models that provide weaker but ac-
ceptable guarantees for several classes of applications. This
results in more efficient protocols, leading to improved ac-
cess times for read and write operations.

We are currently working on a large group project that is
addressing a variety of applications in the home and com-
munity. The secure store will be implemented to maintain
information that will be generated and manipulated by these
applications. We plan to build our store using the protocols
discussed in this paper. Such an implementation will allow
us to measure many of the performance improvements that
are possible when only weaker consistency, as permitted by
the sharing patterns of the applications, is provided instead

of strong consistency. We will also explore secure applica-
tions that benefit from such a store in the future.

References

[1] Malkhi D., Reiter M., “Secure and Scalable Replica-
tion in Phalanx”, Proc. 17th IEEE Symposium on Re-
liable Distributed Systems, October 1998.

[2] Alvisi L., Malkhi D., Pierce E., Reiter M., Wright R.,
“Dynamic Byzantine Quorum Systems”, Proc. Inter-
national Conference on Dependable Systems and Net-
works, June 2000.

[3] Castro M., Liskov B., “Practical Byzantine Fault Tol-
erance”, Proc. 3rd Symposium on Operating Systems
Design and Implementation, New Orleans, February
1999.

[4] Schneider F., “Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial”, ACM
Computing Surveys, Vol. 22, No. 4, December 1990.

[5] Terry D., Demers A., Peterson K., Spreitzer J.,
Theimer M., Welch B., “Session Guarantees for
Weakly Consistent Replicated Data”, Proc. Interna-
tional Conference on Parallel and Distributed Infor-
mation Systems, Austin, Texas, September 1994.

[6] Spreitzer J., Theimer M., Petersen K., Demers A.,
and Terry D., “Dealing with Server Corruption in
Weakly Consistent, Replicated Data Systems”, Proc.
3rd Annual ACM/IEEE International Conference on
Mobile Computing and Networking, Budapest, Hun-
gary, September 1997.

[7] Demers A., Greene D., Hauser C., Irish W., Larson
J., Shenker S., Sturgis H., Swinehart D, and Terry D.,
“Epidemic algorithms for replicated database mainte-
nance”, Proc. 6th Symposium on Principles of Dis-
tributed Computing, pp. 1-12,1987.

[8] The Aware Home Research Initiative,
http://www.cc.gatech.edu/fce/ahri/, 2000.

[9] Scalable and Survivable Data Replicatiion : The Fleet
Project, http://www.bell-labs.com/user/reiter/fleet/.

[10] Herlihy M. and Wing J., “Linearizability: A Correct-
ness Condition for Concurrent Objects”, ACM Trans-
actions on Programming Languages,12(3), July 1992.

[11] Ahamad M., Neiger G., Burns J., Hutto P., Kohli
P., “Causal Memory: Definitions, Implementations
and Programming”, Distributed Computing journal,
Springer-Verlag, Aug. 1995.

[12] Malkhi D., Reiter M., “Byzantine quorum systems”,
Proc. 29th ACM Symposium on Theory of Computing,
May 1997.

[13] Malkhi D., Mansour Y., and Reiter M., “On diffusing
updates in a Byzantine environment”, Proc. 18th IEEE
Symposium on Reliable Distributed Systems, October
1999.

[14] Rabin M., “Efficient dispersal of information for secu-
rity, load balancing and fault tolerance, Journal of the
ACM,36(2):335-348, 1989.

[15] Alon N., Kaplan H., Krivelevich M., Malkhi D., Stern
J., “Scalable Secure Storage when Half the System is
Faulty”, Proc. 27th International Colloquium on Au-
tomata, Languages and Programming, 2000.

[16] Wong C., Gouda M., and Lam S., “Secure group com-
munication using key graphs”. ACM SIGCOMM’98,
September 1998.

[17] Yu H. and Vahdat A., “Design and Evaluation of a
Continuous Consistency Model for Replicated Ser-
vices”, Proc. Operating Systems Design and Imple-
mentation, October 2000.

[18] Fray JM., Deswarte Y. and Powell D., “Intrusion-
tolerance using fine-grain fragmentation-scattering”,
Proc. 1986 IEEE Symposium on Security and Privacy,
Oakland (CA), April 1986.

[19] Lakshmanan S., Ahamad M., H. Venkateswaran, “A
Secure and Highly Available Distributed Store for
Meeting Diverse Data Storage Needs”, Tech. Re-
port GIT-CC-00-41, Georgia Institute of Technology,
March 2001.

