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ABSTRACT

In this paper, we describe a region-based active contour technique to
perform image segmentation. We propose an energy functional that
realizes an explicit trade-off between the (current) image segmenta-
tion obtained from a curve and the (implied) segmentation obtained
from dynamically thresholding the image. In contrast with standard
region-based techniques, the resulting variational approach bypasses
the need to fit (a priori chosen) statistical models to the object and
the background. Our technique performs segmentation based on ge-
ometric considerations of the image and contour, instead of statisti-
cal ones. The resulting flow leads to very reasonable segmentations
as shown by several illustrative examples.

Index Terms— Variational methods, geometric active contours,
thresholding, level sets, partial differential equations.

1. MOTIVATION AND RELATED WORK

Segmentation involves separating an image into distinct regions, a
ubiquitous task in computer vision applications. The active contour
technique has been proven to be a very valuable tool for performing
this task [1, 2, 3, 4].

Relation to prior work: In the geometric active contour (GAC)
framework, a closed curve is represented implicitly as the zero level-
set of a higher dimensional function, usually a signed distance func-
tion [5]. The implicit representation allows the curve to naturally
undergo topological changes, such as splitting and merging. Dif-
ferent models have been proposed to perform segmentation with
GACs: Some frameworks use local image features such as edges
[6, 7], whereas other methods use regional image information such
as intensity statistics, color or texture [8, 1, 9, 10]. Region-based
approaches usually yield more robust performances than techniques
based on local information. Many of the region-based models have
been inspired by the region competition technique proposed in [11].

In region-based frameworks, intensity statistics are usually es-
timated from the segmenting curve using parametric [1, 8, 10] or
non-parametric [9] methods. Most of the region-based techniques
previously proposed measure discrepancies between the statistics of
the pixels located inside and outside the segmenting curve.

Motivation: However, segmentation can be regarded as the prob-
lem of finding a certain shape in an image and the statistics of pixels
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intensities are only a means to this end. Based upon this observa-
tion, we propose a novel region-based segmentation technique using
GACs. We present a variational formulation, in which we minimize
an energy functional that compares two shapes: The shape of the
segmenting contour and a shape extracted from the image via a dy-
namic thresholding operation. Our methodology does not require
one to fit a priori chosen statistical models of regions.

This paper is organized as follows: In the next section, we de-
scribe the proposed approach, the novel energy functional and flow.
We then present experimental results that highlight the specificities
of the novel approach as well as its improved performance over stan-
dard techniques, on challenging artificial and real images. Finally,
we summarize our work and make some conclusions.

2. PROPOSED APPROACH

2.1. Notation and Problem Formulation

We consider the problem of segmenting an image I : Ω �→ Z ,
where Ω ⊂ R

2 is the image domain and Z ⊂ R
n is the space of

pixel intensity values. The area element of Ω will be denoted dΩ
and x ∈ Ω will specify the coordinates of the pixels in the image I .
We assume that I is composed of two (unknown) regions, referred
to as “Object” and “Background.” The goal of segmentation is to
capture these two regions.

To do so, we evolve a closed curve C, represented as the zero
level-set of a signed distance function φ : Ω �→ R, such that φ > 0
inside C and φ < 0 outside C. Our goal is to evolve the contour C
(through φ) so that its interior matches the Object, and its exterior
matches the Background: the curve C would then match the bound-
ary ∂Ω separating Object and Background. The region inside C
(respectively, outside) will be denoted R (respectively Rc = Ω\R).

Let us denote by H : R �→ {0, 1} the Heaviside step function,

H(χ) =

{
1 if χ ≥ 0;

0 if χ < 0.

The derivative of H is given by δ(χ) = δχ = dH
dχ

.

In this paper, a shape S ⊂ Ω is characterized by a characteristic
function SS : Ω �→ {0, 1} such as

SS(x)

{
= 1 if x ∈ S;

= 0 if x ∈ Ω\S.

The function H described above can be used as a characteristic func-
tion to describe shapes. For instance, the shape defined by the inte-
rior of the contour C can be characterized by the characteristic func-
tion Hφ.
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Let G (τ, I(x)) = 1 or 0 denote the result of thresholding
the image using the threshold(s) τ = (τ1, ..., τN ) and with the con-
vention that pixels such that G (τ, I(x)) = 1 correspond to pixels
deemed to belong to the Object (see e.g., [12, 13], for more details
about image thresholding). From the definition of shape above, the
functional G can be interpreted as a shape extracted from the image.

2.2. Energy Functional

In most of the region-based segmentation techniques, the assumption
is made that the Object and Background are characterized by certain
statistical properties, which are visually consistent and distinct from
each other. From this hypothesis, most of the region-based tech-
niques that do not assume prior knowledge of intensity distributions,
work directly with the densities Pin and Pout (the conditional dis-
tributions of the pixels inside and outside the curve, respectively)
to increase their difference in the hope of converging towards the
“true” densities PO and PB (the distributions of the pixels belong-
ing to the Object and the Background, respectively). Typically, an
energy functional that measures the similarity between Pin and Pout

(or simply statistical moments) is defined and minimized. Thus, the
differences among approaches mainly resides in the choice of the
measure of similarity among intensity statistics or densities.

In this work, we propose to minimize the following energy in
order to perform the segmentation:

Eim(C, τ) = ‖Hφ(C) − G(C)‖2

=

∫
Ω

(
Hφ(x) − G (τ, I(x))

)2
dΩ

=

∫
R

(
1 − G (τ, I(x))

)
dΩ +

∫
Rc

G (τ, I(x)) dΩ

.

(1)

In contrast with standard region-based approaches, this energy
does not necessarily involve pixel statistics inside and outside the
curve. Minimizing such an energy can be beneficial when statisti-
cal models cannot properly distinguish between regions of interest.
Furthermore, one can note that regions in two given images can have
very similar statistics but represent very different objects. As a re-
sult, the segmentation task can be regarded as the problem of finding
a certain shape in an image, and the statistics of pixels intensities
are only one possible means to this end. Thus, focusing on statistics
alone may not be sufficient.

As can be noted from Equation (1), the energy Eim is the L2

distance between two shapes: the shape of the region defined by
the interior of the curve C and the shape G extracted from the im-
age. This is in accordance with the intuition that segmentation is
about extracting shapes, the functional G has been formulated in a
natural manner for learning the shape of the object of interest on-
line. Furthermore, minimizing Eim effectively amounts to realizing
a trade-off between the segmentation obtained from the curve C and
the segmentation obtained from thresholding the image. (The thresh-
olding operation is taken as a function of the curve C in this work.
In particular, G varies when C varies).

This set-up allows us to take advantage of the flexibility of the
thresholding technique, see for example [13], while ameliorating
some of its typical weaknesses such as lack of locality (thresholding
is a global operation, and supervision is usually required to choose
parts of interest in the thresholded image). Here, the locality of the
active contour is exploited. Also, meaningful geometric constraints
can be imposed to the curve C to improve segmentation results. For
instance, the smoothness of the results can be controlled by using a

curvature term (such regularization is difficult to impose on thresh-
olding: approaches)

ET (C, τ) = Eim(C, τ) +

∫
C

ds. (2)

In what follows, we study the flows that are obtained when the
function G is constructed by using optimal thresholds for Eim. This
allows the exploitation of geometric information in the image, with-
out necessitating one to fit statistical models to the image data.

2.3. Gradient Flow

In Equation (1), the unknowns are the curve C and the threshold(s)
τ . We now present the details of the flow obtained when one solves
optimally for both C∗ and τ∗ for gray-scale images in which Z is
a closed interval of positive real numbers. (The general case for
vector valued images will be detailed elsewhere.) In this case, one
has a joint minimization problem of the form

(C∗, τ∗) = arg min
C,τ

(Eim(C, τ)) . (3)

Hence, when optimal threshold(s) are computed, the energy Eim

compares the two shapes Hφ and G based only on geometric con-
siderations: it is minimal when the graphs of the label maps Hφ and
G coincide in a maximal fashion over the entire domain Ω.

2.3.1. Thresholding with one threshold

The elementary way of thresholding the gray-scale image I with the
threshold τ is to compute

G(τ, x) = H
(
I(x) − τ

)
(4)

when the object of interest is lighter than the background, or

G(τ, x) = 1 − H
(
I(x) − τ

)
= H

(
− (I(x) − τ)

)
(5)

when the object of interest is darker than the background.
For the definition of G in Equation (4), one can compute

E′
im(τ) = ∂Eim

∂τ
from Equation (1)

∂Eim

∂τ
=

∫
R

δ
(
I(x) − τ

)
−

∫
Rc

δ
(
I(x) − τ

)
. (6)

Using the scaling property of the Dirac delta function generalized to
multidimensional functionals (co-area formula), one gets

∂Eim

∂τ
=

∫
Γ ∩ R

ds′

‖∇xI‖ −
∫

Γ ∩Rc

ds′

‖∇xI‖ (7)

where ∇xI denotes the gradient of the image with respect to the
spatial (Euclidean) coordinates, and the curve Γ, parameterized with
arclength s′, represents the isolines in I such that I = τ , i.e.:

Γ = {x ∈ Ω s.t. I(x) = τ}

Hence, the curve Γ = ∂G corresponds to the edges of the thresh-
olded image G. One notes that Equations (6) and (7) are defined if
and only if ∇xI 	= 0 on Γ. This condition can be easily enforced on
quantized images, as described in the sequel.

Considering the function E′
im(τ) in Equations (6) or (7), one

can compute the optimal threshold τ∗(C) for the energy Eim, given

the curve C. This optimal threshold is such that ∂Eim
∂τ

(τ∗(C)) = 0,
∂Eim

∂τ
(τ∗+(C)) > 0, and ∂Eim

∂τ
(τ∗−(C)) < 0.
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Once the threshold τ∗(C) is computed, the energy Eim can be
minimized with respect to C using gradient descent, with

∇CEim(x) =
(
1 − 2G(τ∗(C), x)

)
.N(x) (8)

where N(x) is the outward normal to the curve at the point x. The
flow minimizing the Energy ET , is then

dC

dt
= −

(
1 − 2G

)
.N − κ.N (9)

where κ(x) is the curvature of the curve C at x.
One then iterates the process described above, alternating be-

tween the computation of τ∗(C) and the evolution of C, until the
convergence of both τ∗(C) and C to τ∗ and C∗, respectively.

In practice, and from an initial guess τ∗
t=0

1 for τ∗, one can detect
changes in the sign of E′

im(τ) = ∂Eim
∂τ

, for quantized values of the
thresholds τ (i.e., values of τ ∈ Z 1

2
= {−0.5, 0.5, 1.5, ...254.5}).

Let τa and τb = τa + 1 be the threshold values, closest to τ∗
t=0,

such that E′
im(τ) changes sign. One can then choose τ∗(C) to be

the threshold between τa and τb that leads to the lowest energy Eim.

τ∗(C) = arg min
τa,τb

Eim(C, τ) (10)

N.B. 1: The computations of τa, τb and τ∗(C) above are valid for
G computed using Equation (4). However, one can note that the ex-
pression of E′

im(τ) simply changes sign when G is computed using
Equation (5). Hence, one can first perform the computations of τa, τb

and τ∗(C) using the expression of E′
im(τ) in Equation (6), and then

compute G using Equation (4) if E′
im(τa) < 0 and E′

im(τb) > 0 or
using Equation (5) if E′

im(τa) > 0 and E′
im(τb) < 0.

N.B. 2: The derivative E′
im(τ) is well defined, for the thresholds

τ ∈ Z 1
2

since I(x) ∈ Z and, thus, necessarily ∇xI 	= 0, ∀x ∈ Γ

2.3.2. Thresholding with multiple thresholds

Thresholding the gray-scale image I with multiple thresholds τ =
(τ1, . . . , τN ) may be undertaken by computing

G(τ, x) = H

(
±

N∏
i=1

(
I(x) − τi

))
= H (Tm(x, τ)) . (11)

We compute the derivative of Eim with respect to a particular
threshold τi0:

dEim

dτi0
=

∫
R

δ
(
Tm(x, τ)

) ⎛
⎝±

∏
i �=i0

(
I(x) − τi

)⎞⎠ dΩ

−
∫

Rc

δ
(
Tm(x, τ)

) ⎛
⎝±

∏
i �=i0

(
I(x) − τi

)⎞⎠ dΩ

(12)

Similar to preceding section, we define the curve Γi0, parame-
terized with arclength s′ as

Γi0 = {x ∈ Ω s.t. I(x) = τi0}.
Also, one can compute the gradient of Tm with respect to spatial
coordinates as

∇xTm = ±
N∑

k=1

⎛
⎝∏

i �=k

(
I(x) − τi

)⎞⎠∇xI. (13)

1Typically one can take the average of the mean intensities inside and out-
side C for τ∗

t=0, at the very first step of the contour evolution. For successive
steps, the value τ∗

t=0 is taken to the value τ∗ found in the preceding step.

For x ∈ Γi0, one has

∇xTm(x) = ±
∏
i�=i0

(
τi0 − τi

)
∇xI. (14)

Assuming again that ∇xI 	= 0 and using the scaling property of the
Dirac delta function, one gets

dEim

dτi0
= sign

⎛
⎝±

∏
i �=i0

(
τi0 − τi

)⎞⎠×

{∫
R∩Γi0

ds′

‖∇xI‖ −
∫

Rc∩Γi0

ds′

‖∇xI‖

} (15)

Considering the function

β(τi0, C) =

{∫
R∩Γi0

ds′

‖∇xI‖ −
∫

Rc∩Γi0

ds′

‖∇xI‖

}

of the variable τi0 (for a given curve C), one can detect the values
of τi0 for which the derivative dEim

dτi0
(τi0) = 0. In practice, this

can be done similarly as in the section above by detecting the sign
changes of β(τi0), for quantized values of the thresholds τi0 (e.g.,
values of τi0 ∈ Z 1

2
). Let N be the number of sign changes detected.

Let τa,j and τb,j = τa,j + 1 (for j ∈ [1, N ]) be quantized values
such that β(τi0) changes sign (i.e., β(τa,j)β(τb,j) < 0). For each
1 ≤ j ≤ N , one defines

τ∗
j (C) = arg min

τi0=τa,j ,τb,j

(
|β(τi0)|

)
. (16)

One can compute the thresholded image G∗(C), using τ =
τ∗(C) = (τ∗

1 (C), . . . , τ∗
N (C)) in Equation (11) (Choosing the sign

of the argument of the Heaviside function that leads to the minimum
of the energy Eim.) This thresholded image G∗(C) is the optimal
thresholded image corresponding to the global minimum of Eim,
given C (this can be proven studying the function Eim(τi0) and us-
ing the definition of the thresholds τ∗

j (C)).

N.B.3: The procedure described above to compute G∗ allows us
not only to compute the optimal thresholds τ∗

j (C), but also their
number N . Knowing the number of thresholds to use a priori is
a challenging problem for most standard thresholding techniques.
Here, the information embedded in the shape of the curve C is used
to determine the optimal number of thresholds. This is an interesting
and valuable feature of the proposed method.

3. EXPERIMENTS

We now present some experiments that illustrate the performance of
the proposed framework that uses geometric information only.

Figure 1 presents comparative segmentation results on a syn-
thetic image and a magnetic resonance (MR) image of a heart. Our
method was applied on both images using a single threshold as pre-
sented in Section 2.3.1. Note that the word “Yellow” is accurately
segmented using our technique in the artificial image. Also, the left
ventricle is accurately segmented in the MR image. One can com-
pare to the results obtained when two purely statistical methods, as
presented in [1] and [10], are run on the same two images for iden-
tical initializations. The two methods fit Gaussian models to the re-
gions inside and outside the curve to perform segmentation. For both
images, the two statistical methods fail to lead to satisfying segmen-
tations, and end up capturing much bigger regions than the regions
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Fig. 1. Segmentation of an artificial and an MR image. Top row:
Initializations; Middle row: Typical result with the methods in [1]
or [10]; Bottom row: Result with the proposed method, using a
unique optimal threshold.

of interest (even if the contours are initialized very close to the ven-
tricles). These two images are typical cases where statistical models
do not properly distinguish between regions of interest and where
our proposed geometric approach leads to superior results.

In Figure 2, an image of a toy monkey under complex lighting
conditions is successfully segmented by the proposed method using
multiple thresholds. At initialization, 6 optimal thresholds are found,
whereas 5 thresholds are determined later on during the evolution.

4. CONCLUSIONS

In this work, we presented a novel region-based approach that per-
forms segmentation using geometric information in images. No sta-
tistical model needs to be fit to the regions inside and outside the seg-
menting curve. This can be beneficial when statistical models cannot
describe regions in a satisfying manner. In addition, our approach
requires less supervision than the standard region-based paradigm
since no choice needs to be made on the part of the operator con-
cerning which statistical model to use to perform segmentation.

Our approach has a strong shape interpretation and is based on
dynamically computing the best thresholded image as a function of
the segmenting curve at each step of the contour evolution. The
thresholding operation can be undertaken using a single or multiple
threshold(s). The number of optimal thresholds can also be com-
puted automatically. Finally, the proposed methodology performed
quite well compared with standard region-based techniques on chal-

Fig. 2. Segmentation of an image with complex illumination, using
multiple optimal thresholds. Left: Initialization - 6 optimal thresh-
olds used; Right: Result - 5 thresholds used.

lenging artificial and real-world images.
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