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SUMMARY 

 

Hydraulic fracturing is an important and abundant process in both industrial 

applications and natural environments. The formation of hydraulic fractures includes 

nucleation, growth, and termination in numerous rock types and stress regimes, at scales 

ranging from microns to many kilometers. As a result, the fractures show complicated 

geometries, which reflect the complexity of the underlying physical mechanisms. 

Fracture segmentation, commonly observed at all scales and in all materials, contributes 

to this complexity in many ways. In particular, the mechanical interaction of fracture 

segments as well as the interaction of a fracture with other fractures, the Earth’s surface, 

and pre-existing geological discontinuities strongly affect almost all hydraulic fracturing 

processes. 

For more than five decades, hydraulic fracturing techniques have been widely 

used to enhance oil and gas production. Recent observations based on geological 

evidence, laboratory tests, and mineback experiments confirm that complex 

multisegmented hydraulic fractures are common phenomena. However, current hydraulic 

fracture models presume a single fracture, or neglect the interaction between the fracture 

segments. This is despite the fact that the interaction dramatically changes the simulated 

dimensions of the hydraulic fractures and their net pressures. 

The current work is the first systematic quantitative study of the effects of the 

mechanical interaction in and between complex hydraulic fractures at different spatial 

scales. A mathematical model, based on the boundary collocation method, has been 

developed. The model has been employed for a typical field case, a highly segmented 
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vein. This vein is well-mapped, and therefore, represents a well constrained case. The 

computed apertures are compared to the measured apertures. By using the simplest 

constitutive model, based on an ideal elastic material, and including the effect of 

interaction between the segments, it was possible to obtain an excellent match at all 

considered scales. In addition, the concept of the effective fracture, as currently accepted 

in the literature, has been tested for a simple simulation of fractures with closely spaced 

and interacting segments. In the studied field case, the effective fracture model provided 

rather robust and accurate results. It is shown, however, that in general, due to the 

complex interplay between the parameters of segmentation, this concept may not always 

be applicable and may lead to unbounded inaccuracy. 

Unfortunately, in most cases, very little (if any) directly measured data on fracture 

and material properties is available. An important example of such a weakly constrained 

case involving hydraulic fracturing is diking beneath the seafloor at mid-oceanic ridges. 

In this study, it is shown that the conventional scenario of a dike propagating from the 

center of a pressurized magma chamber to the ocean floor is not consistent with 

conventional fracture mechanics due to the fact that the chamber has the shape of a thin 

lens. Even at such a large scale (i.e., a kilometer or more), the mechanical principles of 

elastic interaction appear to be applicable. The dikes that initiate from the subsurface 

magma lens, and the magma lens itself, are considered as mechanically interacting 

fractures in an elastic half-space bounded by the seafloor. Since diking is likely to 

generate a region of high permeability near its margin, in addition to heat, the ongoing 

hydrothermal activity becomes localized. Our modeling suggests the probable positions 

of the propagating dikes. Consequently, comparing the observed locations of 
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hydrothermal sites with respect to that of the magma chamber could be useful for 

constraining the mechanisms of the evolution of magma lenses. 

Hence, the mechanical interaction is likely to have a pronounced effect on the 

behavior of complex natural and industrial hydraulic fractures, and needs to be included 

into the modeling efforts. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 

During the last few decades, hydraulic fracturing has been a widely used 

technology for oil and gas recovery [e.g., Veatch et al., 1983a, 1983b; Economides and 

Nolte, 2000], geothermal heat extraction [e.g., Nemat-Nasser,1983; Murphy, 1983], in-

situ stress measurement [e.g., Haimson, 1978; Hayashi et al., 1997; Shin et al., 2001], 

waste disposal [e.g., Keck et al., 1996; Withers et al., 1996], coal degasification in 

advance of mining [e.g., Diamond and Oyler, 1987; Palmer and Sparks, 1991], and 

remediation of contaminated water [e.g., Hocking and Wells, 2002; Murdoch and Slack, 

2002]. Obtaining proper results by hydraulic fracturing (in the petroleum engineering in 

particular) depends highly on the geometric configuration of the fracture and the stress 

regime in the subsurface. This is why hydraulic fracturing has been a subject of active 

research to clarify the mechanisms of fluid-rock (or sediment) interaction. The geometry 

of the hydraulic fractures is affected by mechanical, thermal, and chemical conditions of 

the surrounding host rock. This can result in complicated structures deep in the 

subsurface or near the surface. Therefore, understanding the fracturing processes by fluid 

injection is of practically great importance for maximizing its effectiveness. 

In nature, hydraulic fractures also appear in a variety of forms, such as sheet 

intrusions (i.e., sills and dikes), veins, and even joints (refer to below). In many aspects, 

the mechanical behavior of natural hydraulic fractures is analogous to that of fracture 
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propagation in industrial hydraulic fracturing since natural hydraulic fractures are created 

in the host rock by opening mode (referred to as dilatant, tensile, or extensional mode by 

different authors) driven by the internal pressure of fluids (e.g., magma, water, gas, or an 

aqueous solution), remote stress (e.g., tectonic stress), or a combination of both. 

These natural opening mode fractures are frequently found in the earth’s crust. 

The formation of these fractures includes nucleation, dilation, propagation and 

termination in a variety of rock types and stress regimes at scales ranging from microns 

to many kilometers. As a result, the fractures show complicated geometrical features such 

as multiple segments. 

Segmentation is indeed one of the most often encountered features contributing to 

the complexity of hydraulic fractures. Recent observations based on geological evidence, 

laboratory experiments, and mineback observations confirm that the occurrence of 

multisegmented hydraulic fractures (MHF) is a common phenomenon. However, current 

hydraulic fracture models presume a single fracture or neglect interaction between 

multiple fractures that dramatically changes hydraulic fracturing parameters such as 

fracture aperture, length, and net pressure [Astakhov, 2000]. In an attempt to gain insight 

into the causes of MHF, the next three sections focus on observations of MHF in nature, 

laboratory experiments, and industrial observations. 
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1.2 Natural multisegmented hydraulic fractures 

 

1.2.1 Sheet intrusions 

Sheet intrusions, such as vertical dikes and horizontal sills, are related to the 

magma fluid. If the magma fluid pressure is sufficiently high to overcome the in-situ 

compressive stress and rock strength, it splits the host rock [e.g., Anderson, 1938; 

Hubbert and Willis, 1957]. It is also possible that magma sometimes can simply be 

emplaced in the pre-existing fracture [Currie and Ferguson, 1970]. 

On the basis of observations of the geometric features of sheet intrusions, 

segmentations with consecutive overlapping are common phenomena for many types of 

rock. Figure 1.1 shows overlapping segments ranging from a few centimeters to several 

hundred meters in a vertical dike. Figure 1.1a shows granitoid dike segments propagating 

through the Glen Mountain gabbro at the scale of a few centimeter scale in Wichita 

Mountains, Oklahoma [Germanovich et al., 1997a]. Figure 1.1b shows pegmatite dike 

segments through older granite at the scale of a few meters in East Quarry of Stone 

Mountain, Georgia, respectively. 

Figure 1.1c shows a part of northeastern minette dike segments found near Ship 

Rock in New Mexico [Pollard, 1978]. The dike has an outcrop length of 2,900 m and 

maximum aperture of 7.2 m, and is composed of 35 distinct segments [Delaney and 

Pollard, 1981]. It is generally known that the single parent dike begins to break into 

several segments when it encounters a region in which the direction of least principal 

stress is rotated about the axis of propagation direction as illustrated in Figure 1.2 

[Delaney and Pollard, 1981]. For this reason, the segments show oblique-segmented 
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geometric features relative to the parent dike, which is called en echelon (Figure 1.1c). 

On the basis of observations of the length of overlapping, large overlapping can be 

probably more often observed at the smaller scale [Germanovich et al., 1997a]. 

Hydraulic fractures are often segmented when the direction of propagation is 

parallel to the bedding planes (i.e., the fracture is perpendicular to the bedding planes). 

Figure 1.3a shows the cross section of eleven dikes exposed in a well-stratified 

sedimentary rock in the Ardon Formation, Makhtesh Ramon, Israel [Baer, 1991]. 

Individual segments have apertures of 0.5 to 3 m and length of 1 to 20 m. Baer [1991] 

stated that the fracture could be segmented because of host rock stratification, that causes 

different in-situ stresses and shear moduli between adjacent layers. Based on the segment 

boundary as well as fingers on the dike wall, as shown in Figure 1.3b, he found that the 

propagation direction of the dike is parallel to the bedding plane. He also stated that the 

stress concentration at the dike tip is affected by adjacent segments, stratification of the 

host rock, and slippage of the bedding plane. 

The segmentation of sheet intrusions usually originates from characteristics of the 

inhomogeneous rock and the stress regime (e.g., change of principal stress direction). 

Hoek [1994] suggested a general classification of segmented igneous dikes based on the 

direction of extension and homogeneity of the host rock (Figure 1.4). 

 

1.2.2 Veins 

Veins are composed of one or more minerals that precipitated from the 

hydrothermal solution that flows through a rock by diffusion, advection, or hydraulic 

fracturing [Fisher and Brantley, 1992; Bons, 2000]. Although the formation of veins is 
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not clearly understood, it is likely to be highly dependent upon the subsurface structures 

such as voids, fractures, and faults. Various types of veins are found in nature. Figure 1.5 

shows overlapping calcite veins in carbonaceous shale having fracture-like sets with side 

splays where the interaction between two veins is expected to change the stress field 

around the tips [Bons, 2000]. En echelon veins are found in rocks as well. Figure 1.6 

shows two types of en echelon vein arrays. One array is oblique to the principal vein and 

the other is parallel to the principal vein. From the study by Pollard [1982] and Olson 

and Pollard [1991], sigmoid echelon vein formation (Figure 1.5) is attributed to the 

change in the stress field around the tip due to mechanical interaction between adjacent 

segments. Observations by Beach [1980] include a single vein with a zigzag trace (Figure 

1.7). 

 

1.2.3 Joints 

Joints, the most common brittle structure in the Earth’s crust [Pollard and Aydin, 

1988], can be formed by remote extension or hydraulic fracturing [Secor, 1965]. Multiple 

joints are also commonly found in nature. Figure 1.8 shows the map view of three 

echelon joint traces on the bedding surface of Dakota sandstone with a distinct trace 

pattern. Joint sets A and B have a curving path that overlap, while those in the joint set in 

the lower part of the figure are relatively straight. Olson and Pollard [1989] suggested 

that these differences result from a different state of principal stresses that leads to local 

stress change due to mechanical interaction. 

The study of a planar joint surface is another method to observe fracture patterns 

in joints if the cross section is not available. The fracture surface of the echelon types 
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shows stepwise features that link discrete segments with gradual or abrupt initiation of 

breakdown from a single joint (Figure 1.9). Figure 1.10 shows an idealized block diagram 

illustrating echelon crack formation initiating from the parent crack. 

Figure 1.11a shows the surface of the non-planar parallel joint set in layered 

sedimentary rocks. Figure 1.11b is a schematic drawing illustrating the initiation point 

and propagation direction of a joint. The pre-existing joint in the upper layer (siltstone) is 

horizontal and the joint in the lower layer (shale) is segmented, initiating from its 

boundary. Helgeson and Aydin [1991] stated that if a relatively thick shale is jointed by 

the introduction of additional energy into the system, the new joints initiate at the vertical 

extent of a pre-existing joint in siltstone and usually propagate at a small angle relative to 

the joint in siltstone. 

Figure 1.12a shows a well-exposed set of parallel joints in the dolomite layers of 

Argot stream, central Dead Sea basin. The significant mechanical interaction during 

formation can be expected because the spacing of the joints is relatively small compared 

to their thickness. In addition, a detailed investigation reveals that multi-level branching 

from a single joint in the main dolomite layer (bottom of Figure 1.12a) is present, 

indicating dynamic fracturing [Sagy et al., 2001]. Figure 1.12b shows two orthogonal 

joint sets with a relatively large spacing in the limestone layers of the Central Formation, 

Chimney Rock, Utah [Bai and Pollard, 2000]. 

 

1.2.4 Segmentation of mid-oceanic ridges 

Detailed geological observations reveal that the mid-oceanic ridges are segmented 

by discontinuities, such as transform faults and overlapping spreading centers in the East 
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Pacific Rise (EPR) [e.g., Macdonald and Fox, 1983; Langmuir et al., 1986; Sempere and 

Macdonald, 1986b; Lonsdale, 1989; Macdonald et al., 1991] as well as in the Mid-

Atlantic Ridge (MAR) [e.g., Weiland et al., 1996]. Figure 1.13 shows the EPR that is 

discontinuous at the orthogonal transform fault. At a smaller scale, echelon types of 

numerous segments, called overlapping spreading centers, are found by magnifying the 

circles in Figure 1.13. They indicate that the mid-oceanic ridges have a hierarchical 

segmentation [Macdonald et al., 1991]. Figure 1.14 and Table 1.1 show this feature as 

found in mid-ocean ridges. The transform fault corresponds to the first-order 

discontinuity that can be found at fast- and slow-spreading ridges. Overlapping spreading 

centers (Figure 1.14a) and oblique shear zones (Figure 1.14b) are second-order 

discontinuities for fast-and slow-spreading ridges, respectively. In a few papers, these 

overlapping spreading centers have been modeled by fractures in the sea floor [e.g., 

Pollard and Aydin, 1984; Sempere and Macdonald, 1986a; Macdonald et al., 1991]. 

These third- and fourth-order discontinuities for ridges are summarized in Table 1.1. 

 

 

Table 1.1 Hierarchical characteristics of mid-oceanic ridge segmentation [Macdonald et 
al., 1991]. Contents inside parenthesis are for a slow spreading ridge. 
 

Order Discontinuity Segment length (km) Offset (km)

1 transform fault 
large propagating rifts 

600±300 
(400±200) > 30 

2 overlapping spreading centers 
(oblique shear zones, rift valley jogs) 

140±90 
(50±30) 2 to 30 

3 overlapping spreading centers 
(intervolcano gaps) 

50±30 
(15±10) 0.5 to 2 

4 devals, offsets of axial caldera 
(intervolcano gaps) 

14±8 
(7±5) < 1 
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1.3 Multisegmented hydraulic fractures in laboratory experiments 

 

Laboratory experiments of hydraulic fracturing have provided insight into the 

mechanisms of propagating hydraulic fractures with well-controlled parameters. Since 

the contributions from the field scale are still limited, many laboratory experiments have 

been performed to understand complicated hydraulic fracturing behavior, in particular 

near a wellbore. 

Numerous papers have been devoted to laboratory experiments of hydraulic 

fracturing, investigating the dimensions of hydraulic fractures, and identifying the 

mechanisms of fracture growth. Examples include hydraulic fractures in a relatively 

homogeneous material [Hubbert and Willis, 1957; Medlin and Massé, 1984], in layered 

formations [Hubbert and Willis, 1957; Daneshy, 1978; Van Eekelen, 1982; Teufel and 

Clark, 1984], in a horizontal wellbore or a wellbore deviated from a preferred fracture 

plane [Veeken et al., 1989; Hallam and Last, 1991; Weijers et al., 1994; Abass et al., 

1996], and in particulate materials [Murdohk, 1992, 1993a; Panah and Yanagisawa, 

1989; Dijk et al., 2003; Chang et al., 2003], interacting with pre-existing fractures 

[Lamont and Jessen, 1963; Anderson, 1981; Hanson et al., 1981; Blanton, 1982, Blair et 

al., 1990], and propagating under hydrostatic conditions [Takada, 1990]. This section 

focuses on observations of multisegmented hydraulic fractures in laboratory experiments 

that simulate various field conditions. 
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1.3.1 Multisegmented hydraulic fractures in homogeneous materials 

The results of many experiments have clearly shown the existence of 

multisegmented hydraulic fractures. Hubbert and Willis [1957] found that hydraulic 

fractures propagate in the plane that is normal to the least compressive stress (Figure 

1.15). In this historic experiment, a gelatin material was used for the solid with a 

simulated wellbore. A hydraulic fracture with a height of 22 cm was formed by injecting 

slurry of a Plaster of Páris as a fracturing fluid into a pre-stressed sample. Although the 

authors did not focus on fracture segmentation and viewed their hydraulic fracture 

(Figure 1.15) as a single wing, fracture segmentation and overlapping with an offset in 

the fracture front can be observed even in this rather homogeneous material (Figure 

1.15). In practice, it is anticipated that MHF can be already produced near a wellbore 

(refer to section 1.3.3 below) and continue to grow to the far-field as well (i.e., it 

reshapes, with some coalescence) with further stimulation. In Hubbert and Willis’s 

[1957] experiment, the formation of MHF may be attributed to the generic characteristics 

of unstable fracture growth [Germanovich et al., 1997a] or mode III mechanisms of 

fracture segmentation [Pollard et al., 1982; Cooke and Pollard, 1996]. 

To find nonlinear effects in hydraulic fracture propagation, de Pater et al. [1994] 

conducted experiments in a homogeneous sandstone with varying injection rate and 

confining stress. After performing these experiments, the sample blocks were cut into 

thin sections parallel to the borehole. Figure 1.16a shows the microscope image 

displaying multiple fractures predominantly through the rock matrix. 

Dudley et al. [1995] conducted an extensive laboratory investigation of hydraulic 

fracturing to identify various fracture mechanisms that may also affect and control the 
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growth of large-scale hydraulic fractures in the field. The observed patterns of hydraulic 

fracture growth in sandstone specimens are fracture branching, bridging of the fracture 

faces, and formation of microfractures in the vicinity of the main fracture surface (Figure 

1.16b). 

Takada [1990] conducted an experimental study on the propagation of liquid-

filled fractures in gelatin under hydrostatic conditions. He stated that when the total 

injection volume exceeds a critical value, segmentation of an isolated fracture begins to 

occur because of an enlarged irregular surface at the upper end of the fracture (Figure 

1.17). Consequently, increased excess pressure makes fracture propagation locally 

unstable, inducing the rotation of principal stress, dynamic branching, and viscous 

fingering at the upper end. 

 

1.3.2 Hydraulic fracture propagation in heterogeneous materials 

It is expected that multiple segments are more likely to form in experiments in 

heterogeneous materials than in homogeneous media. The interfaces and discontinuities, 

such as joints, fissures, faults, and bedding planes, that are the most common features in 

natural rocks, affect hydraulic fracture growth in conjunction with tectonic stress. 

Anderson [1981] and Hanson et al. [1981] have performed laboratory experiments to 

study the effects of frictional properties of unbonded interfaces on the growth of 

hydraulic fractures in rocks. They found that a sudden change in the frictional properties 

of an interface can cause lateral offset at the interface. For example, Figure 1.18a shows 

the result of an experiment conducted by Hanson et al. [1981] to identify the effect of 

low friction on the hydraulic fracture growth across an unbonded interface. The three-
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block limestone has been stacked in a press. An internal pressure was applied to force the 

fractures to propagate across the interfaces. The upper interface has lower frictional 

properties than the lower one. As a result, hydraulic fracture propagated across the upper 

interface with a lateral offset, while it propagated directly through the lower interface. 

This result shows that frictional properties at the interface affect the geometry of fracture 

growth. Figure 1.18b also shows the continuous and discontinuous fracture crossing of 

the unbonded frictional interface in the anchoring cement [Renshaw and Pollard, 1995]. 

Blanton [1982] also performed a hydraulic fracturing laboratory experiments in 

both Devonian shale and hydrostone. He concluded that the growth of hydraulic fractures 

is strongly influenced by natural fractures. Hence, in most cases the hydraulic fracture 

were either diverted or arrested by the pre-existing fractures. 

Therefore, the above mentioned hydraulic fracturing experiments on 

heterogeneous materials suggest that diversion and offset may often occur. Indeed, 

symmetrical and single planar fractures are rarely expected in naturally fractured 

environments (e.g., petroleum reservoirs). 

 

1.3.3 Segmentation by mixed mode loading 

In conventional fracture mechanics, fracture propagation depends on three mode 

types (Figure 1.19). Generally, mode I (i.e., opening mode) is responsible for the fracture 

growth (Figure 1.19a), mode II (i.e., in-plane shear) is responsible for the fracture 

direction (Figure 1.19b), and mode III (i.e., anti-plane shear) is responsible for the 

fracture segmentation (Figure 1.19c). In reality, fractures usually propagate with all three 

modes combined. In particular, the formation of MHF is often associated with mode III. 
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One example was discussed in section 1.2. The rotation of the least principal stress, as 

shown in Figure 1.2, corresponds to the occurrence of mode III loading. 

Figure 1.20 illustrates the procedure of a laboratory experiment of hydraulic 

fracturing to create segmentation in an acrylic cylinder. First, fluid is injected into the 

hole (Figure 1.20a) to create a horizontal fracture (Figure 1.20b). Then, additional fluid is 

injected while the specimen is loaded in torsion (Figure 1.20c), resulting in fracture 

segmentation (Figure 1.20d). Figure 1.21 shows the injection pressure response during 

the fracture segmentation process. For a single radial fracture, the injection pressure is 

expected to decrease after the fracture propagates [Economides and Nolte, 2000]. 

However, in this experiment, the injection pressure increases. 

Knauss [1970] also observed the initial stage of crack segmentation in a brittle 

material by anti-plane shear (Figure 1.22). 

Hydraulic fracture stimulations of horizontal or deviated wellbores indicate an 

increased likelihood of MHF, compared to vertical wellbores. This is because the 

direction of the wellbore may easily deviate from the maximum principal stress direction. 

This causes pronounced anti-plane shear during fracture propagation. Many laboratory 

experiments have shown that if a horizontal wellbore or deviated wellbore direction does 

not coincide with the preferred fracture plane, the geometry of hydraulic fracturing is 

tortuous and non-planar. This results in a loss of well productivity [e.g., Veeken et al., 

1989; Hallam and Last, 1991]. These phenomena were observed by Abass et al. [1996], 

who conducted an experimental study on a prismatic gypsum cement block with 

dimensions of 6×6×10 in (15.2×15.2×25.4 cm) and varied angles between the borehole 

and maximum horizontal stress. They observed that the non-planar fractures (e.g., 
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multiple fractures, re-oriented fractures, and T-shaped fractures) were created if the 

wellbore orientation was not parallel to the direction of the maximum horizontal stress. 

For example, when the orientation angle is 60° relative to the maximum horizontal stress, 

the fracture surface shows pronounced steps initiated from the wellbore (Figure 1.23). 

This results in multiple fractures directed away from the wellbore. 

 

1.4 Industrial multisegmented hydraulic fractures 

 

Direct observations from mineback experiments and overcored hydraulic fractures 

in the field also reveal that hydraulic fractures rarely, if ever, propagate as a single planar 

feature. Hydraulic fracturing is commonly conducted at the field scale for degasification 

from coal beds in advance of mining. Hence, it is possible to make a detailed mapping of 

exposed hydraulic fractures in a coal seam by mining operations. The overcored samples 

cutting through hydraulic fracture sections are also good sources to observe hydraulic 

fracturing behavior. Accordingly, some researchers have investigated hydraulic fracturing 

behavior through mineback experiments [Diamond and Oyler, 1987; Palmer and Sparks, 

1991; Jeffrey et al., 1994, 1995; Jeffrey, 1996; Jeffrey and Settari, 1998; Warpinski, 

1985; Warpinski and Teufel, 1987] while others studied overcored fracturing samples 

[Warpinski et al., 1993a, 1993b; Fast et al., 1994]. 

 

1.4.1 Mineback experiments 

Warpinski [1985] measured the aperture and pressure in a propagating hydraulic 

fracture at the Department of Energy (DOE) Nevada test site in an existing tunnel 
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complex. He concluded that the pressure drop along the fracture is caused by the 

tortuosity of the fracture path, the roughness of the fracture surfaces, multiple fractures, 

and sharp curvature in the flow path resulting from geologic discontinuities. Multiple 

fracture strands were observed, regardless of rock type and stress regime. 

Diamond and Oyler [1987] mined and observed the areas in coalbeds and 

surrounding strata affected by 22 stimulation treatments. Multiple vertical fractures were 

found in 12 areas, and multiple horizontal fractures in 7 out of 22 areas. Figure 1.24 

shows that en echelon vertical fractures are filled with sand and extend from the roof 

down into the coalbed near the borehole. 

Palmer and Sparks [1991] observed the height and width of hydraulic fractures in 

Black Warrior basin coalbeds in Alabama. They used downhole visual logging to better 

understand fracturing behavior. Multiple fractures in the coal seam and fracture offset at 

interfaces between coal and rock were found. Figure 1.25 shows one of the propped 

fractures in the coal seam and surrounding rock strata through downhole visual logging. 

Although the boundary between coal and rock could not be clearly identified (Figure 

1.25), the authors expected that the widest mid-fracture would be generated in a coal 

seam because coal is soft and weak, compared to the host rock. 

 

1.4.2 Overcored samples 

Direct observations from cored hydraulic fracture, also confirm that multiple 

fractures are an overwhelming occurrence rather than an exception. Warpinski et al. 

[1993a] investigated cored hydraulic fractures obtained from the highly anisotropic 

reservoir in the Piceance basin near Rifle, Colorado. This core includes two fracture 
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intervals containing multiple fractures as illustrated in Figure 1.26. The first primary 

interval (HF-1) contains 30 multiple fractures spread out over 4 ft of core. The secondary 

interval (HF-2), offset by 60 ft horizontally and 17 ft vertically from the primary fracture 

interval, contains 8 multiple fractures over 3 ft. Some fractures are terminated or initiated 

with multiple fractures at the bedding plane of both intervals. The authors also 

emphasized that for more complex the reservoirs, the fracturing becomes more complex. 

The inclined cored sample (235 ft) shown in Figure 1.27 was used to investigate 

hydraulic fractures of Opal-A diatomite at Lost Hills Field, California [Fast et al., 1994]. 

Seven propped fractures and two non-propped fractures were found. The additional 

fracture identified at 2,707 ft was found by a microresistivity log test without coring. 

Three propped fractures identified at 2,265.5, 2,266.5, and 2,267.0 ft were branched from 

the same well, based on the evidence that they have the same proppant material. The 

author inferred that the two non-propped fractures at 2,252.7 and 2,289.7 ft are natural 

fractures or fractures generated by water injection in a nearby well. The other fractures 

are created after near well treatment. 

 

1.5 Modeling multisegmented hydraulic fractures 

 

In this section we consider the Perkins-Kern-Nordgren (PKN) model that has 

been widely employed in hydraulic fracturing treatment and design [Gidley et al., 1989; 

Economides and Nolte, 2000]. After reviewing the conventional PKN model for a single 

hydraulic fracture (section 1.5.1), we describe the PKN model for MHF by Germanovich 

et al., [1997b, 1998a]. The advantage of considering the PKN model is that in addition to 
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being practically important, it also provides most of the results in the closed mathematical 

form. This, in turn, allows to clearly analyze the importance of studying hydraulic 

fracturing segmentation. 

 

1.5.1 Conventional PKN model 

The conventional PKN model is based on a single vertical fracture with constant 

height H (Figure 1.28), perhaps, due to higher horizontal stress above and below the pay 

zone. The fracture is at a state of plane strain and the fluid pressure inside the fracture is 

constant in each vertical cross section perpendicular to the propagation direction. It is 

assumed that there is no fracture toughness, so that the resistance to the fracture 

propagation is due to the frictional losses in the fracturing fluid. 

Following Nordgren [1972], the continuity equation for the volume of the fracture 

with an incompressible fluid can be expressed as 

0=
∂
∂

+
∂
∂

t
A

x
q      )0),(0( ><< ttLx                                   (1.1) 

where q is the flow rate inside the fracture, A is the cross-sectional area of the fracture, 

L(t) is the fracture length at time t. For simplicity, the case of no fluid leakoff is 

considered here. The flow rate for laminar flow of a Newtonian viscous fluid in an 

elliptical cross section can be expressed as 

dx
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where ∆p is the net pressure, η is the dynamic viscosity of the fracturing fluid, 
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is the maximum fracture aperture at a given vertical cross section, G is the shear modulus 

of the rock. Accordingly, the elliptic cross sectional area of the fracture is 

WHA
4
π

=                                                       (1.4) 

Expressions (1.1) – (1.4) represent a set of four equations with four unknowns (q, 

A, W, and ∆p). This set is typically solved with the following four boundary and initial 

conditions [e.g., Kemp, 1990]: 

1. The flow rate qin is constant at the wellbore: 

inqtq =),0(                                                       (1.5) 

2. The fracture is initially closed: 

0)0,( =xW                                                       (1.6) 

3. The fracture is closed at the tip: 

0)),(( =ttLW     )0( >t                                            (1.7) 

4. The velocity of the fracturing fluid at the tip is equal to that of fracture 

propagation: 

A
q

dt
dL

=      )0,0)(( >−→ ttLx                                   (1.8) 

Conditions (1.5) – (1.8) assure that the set of equations (1.1) – (1.4) has a unique 

solution [Kemp, 1990]. In particular, the closed-form solution for the fracture length, 

aperture, and net pressure are given by 
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where λ ≈ 3.531 is a transcendental constant, ξ = x/L is the dimensionless coordinate, and 
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Function ψ(ξ) was first obtained by Kemp [1990]. After a small correction [Germanovich 

et al., 1998a] it can be written as 
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These are the main parameters used in the hydraulic fracturing design. 

 

1.5.2 PKN model for multisegmented hydraulic fractures 

The first PKN model for MHF was derived by Germanovich et al. [1997b, 1998a] 

and studied in detail by Astakhov [2000]. In this model, a single PKN model is extended 

to the case of MHF with N segments by incorporating the effect of segment interaction to 

evaluate the aperture of the interacting segments. The vertical cross section of MHF 
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consists of N single PKN “models” to represent the geometry of the MHF (Figure 1.29). 

The nth segment has a height of hn while H is the total height of the MHF. It is assumed 

that (1) the total fluid flow pumped into the fracture is redistributed into the segments, so 

that the flow in each segment is determined as a part of the solution, and (2) there is a 

good pressure communication between the segments, that is, the fluid pressures are equal 

in each vertical cross section of each segment. 

The total flow of the fracturing fluid and the fracture cross sectional area are 
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are the flow rate inside the nth segment and the area of the nth interacting segment, 

respectively. 

Instead of equations (1.1) – (1.4), describing a non-segmented PKN fracture, we 

now have: 

0=+
dt
dA

dx
dq                                                    (1.17) 
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where the effective parameters of MHF (marked by “eff”) are given in Table 1.2. The 

boundary conditions (1.5) – (1.8) remain the same in the case of MHF: 

inqtq =),0( ,   0)0,( =xWeff ,   0)),(( =ttLWeff ,   
A
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Since equations (1.1) – (1.4) and (1.9) – (1.12) coincide in form, the solution of 

(1.17) – (1.20) can immediately be written from (1.9) – (1.11) by replacing the 

corresponding symbols: 
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The effective parameters Qeff and Keff are also given in Table 1.2. Note that in Table 1.2, 

Wmax is the maximum aperture in the MHF under consideration, and W0
max is the aperture 

(in the center) of a single fracture of size H loaded by the same pressure ∆p as the MHF. 
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As can be seen from Table 1.2, the dimensionless coefficients b1, b2, and β 

depend on the interaction of the segments. To quantify the effect of interaction, the 

parameters obtained above are compared with those of a single fracture (of the same total 

height H) and the non-interacting model, in the case of MHF with N = 19 and 81 

segments (Figures 1.30 and 1.31). The overlap and offset are assumed to be a = 0.1h and 

b = 0.2h, respectively (Figure 1.29). It can be seen that the net pressure can be 

overestimated by an order of magnitude if the interaction is ignored (Figures 1.30 and 

1.31). If the number of segments increases, the error becomes more significant. This 

result indicates that the effect of interaction needs to be taken into account. 
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Table 1.2 Summary of formulae for multisegmented hydraulic fractures in the case of no 
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1.5.3 Importance of hydraulic fracturing segmentation 

In hydraulic fracturing treatment (Figure 1.32a), fractures created by fluid 

pumping are invisible since they are located in the subsurface strata and connected to the 

surface only by a narrow wellbore. The pressure response versus time is the main 

measurable parameter at the borehole or ground surface during pumping (Figure 1.32b). 

From this pressure curve, the created fracture geometry needs to be inferred. This is a 

basic, fundamental issue in the hydraulic fracturing treatment [e.g., Economides and 

Nolte, 2000]. 

Figure 1.33 illustrates the standard concept of inferring the fracture geometry 

from the pressure curve. The initial pressure decrease at stage 1 indicates radial fracture 

shape. The pressure increase at stage 2 suggests PKN type of fracture propagation 

between the pay zones. The gradual pressure increase at stage 3 is interpreted as further 

fracture propagation mostly as a PKN fracture, but also somewhat beyond the pay zone. 

An example based on the field data in Figure 1.34 suggests that the generated fracture 

geometries are of radial and PKN types during the pumping of the fluid. 

The uncertainties associated with this type of analysis can be shown using the 

laboratory experiments shown in Figure 1.20. Observing pressure curve in Figure 1.21 

and following the conventional pressure analysis (Figure 1.33), one should infer fracture 

geometry close to the PKN type (stage 3 in Figure 1.33). In actuality, however, the 

fracture was almost radial but segmented (Figure 1.20d). In this experiment, the 

segmentation constrained the fluid flow inside the fracture diminishing the pressure 

decrease that should have been otherwise observed for radial geometry (Figure 1.33). 
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Therefore, by ignoring the segmentation, it is likely that an incorrect fracture geometry is 

inferred from the pressure curve. 

The existence of the MHF is a critical issue that needs to be considered for more 

reliable design [e.g., Lehman and Brumley, 1997; Mahrer, 1999], because there are 

discrepancies between field data and conventional simulations. Observed symptoms 

attributed to hydraulic fracture segmentation include elevated net pressure, shortening 

propped length, reduced individual fracture width with increased potential for screenouts, 

increased leakoff, and less reliable fracture confinement within the pay zone [Medlin and 

Fitch, 1983; Davidson et al., 1993; Stadulis, 1995; Hainey and Weng, 1995; Wright et al., 

1995; Lehman and Brumley, 1997; Germanovich et al., 1998a; Mahrer, 1999; Sato et al., 

1999; Economides and Nolte, 2000]. 

 

1.6 Goal and structure of thesis 

 

Hydraulic fracturing is an important and abundant process in both industrial 

applications and natural environments. The formation of hydraulic fractures includes 

nucleation, growth, and termination in numerous rock types and stress regimes, at scales 

ranging from microns to many kilometers. As a result, the fractures show complicated 

geometries, which reflects the complexity of the underlying physical mechanisms. 

Fracture segmentation, commonly observed at all scales and in all materials, contributes 

to this complexity in many ways. In particular, the mechanical interaction of fracture 

segments as well as the interaction of a fracture with other fractures, the Earth’s surface, 
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and pre-existing geological discontinuities strongly affect almost all hydraulic fracturing 

processes. 

The main goal of this thesis is to understand the effects of mechanical interaction 

in and between complex natural and industrial hydraulic fractures at different spatial 

scales. For this purpose, mathematical models are developed to quantify the elastic 

interaction of these features. 

A typical field case of a highly segmented vein is studied. For this well-mapped 

and, therefore, well constrained example, we test whether the simplest constitutive model, 

based on an ideal elastic material, captures the complex behavior of multisegmented 

fractures. 

In most cases, very little, if any, direct measured data on fracture and material 

properties is available. In such situations, the system needs to be constrained by the 

available indirect data. Consequently, using the simplest model (i.e., based on elastic 

theory) is often the most straightforward option to conduct a sufficiently detailed 

parametric analysis. 

An important example of such a weakly constrained case involving hydraulic 

fracturing is diking beneath the seafloor at mid-oceanic ridges. In this case, the common 

scenario of a dike propagating from the center of the pressurized magma chamber to the 

ocean floor is not consistent with conventional fracture mechanics due to the fact that the 

chamber has the shape of a thin lens. Even at this large scale (i.e., a kilometer or more), 

the mechanical principle of elastic interaction has a good potential to describe the 

observations. The dikes that initiate from the subsurface magma chamber, and the magma 
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chamber itself, can be considered as mechanically interacting segments in an elastic half-

space bounded by the seafloor. 

The detailed structure of this thesis is as follows: 

Chapter I, Introduction, describes the topic of the research, provides literature 

review, and formulates the goal of this study. 

Chapter II, Mathematical Modeling of Multisegmented Hydraulic Fractures, 

provides essential tools to evaluate the elastic interaction between the fracture segments. 

The boundary collocation method is employed for this purpose. The parallelized 

numerical code based on the boundary collocation method is developed for multiple 

interacting fractures. Displacements and displacement discontinuities are compared with 

available and obtained analytical solutions to verify the developed numerical code. It is 

shown that the required number of collocation points can be decreased by an order of 

magnitude without loosing the accuracy of calculations. This made the problems 

considered in the subsequent chapters treatable. 

Chapter III, Modeling Natural Multisegmented Hydraulic Fractures, discusses the 

calibration of the net pressure by computing the apertures of highly segmented natural 

calcite veins in the field. The effect of elastic interaction between the segments is 

considered using the developed numerical code at three different spatial scales: 

microscale, mesoscale, and macroscale. For comparison, the case of non-interaction is 

also considered. For simplified approach, a concept of the effective fracture (with the 

same overall size or length as the real fracture) has been tested. 

Chapter IV, Diking Processes at Mid-Oceanic Ridges, studies dike propagation 

from a magma chamber beneath the seafloor. Based on the thin melt lens model of an 
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axial magma chamber, two mechanisms of dike evolution from the magma lens 

(pressurization and depressurization of the magma chamber) are simulated to understand 

the relationships among the hydrothermal system, dike emplacement, and magma 

replenishment. To accomplish this, the developed model quantifies the mechanical 

interaction of magma lenses and dikes with the seafloor. The obtained results show that 

the dike-seafloor interaction is a key mechanism affecting dike propagation at mid-

oceanic ridge environments. 

Chapter V, Conclusions and Recommendations for Future Work, summarizes the 

results obtained in the previous chapters and presents recommendations for future work. 
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Figure 1.1 Segmentation with overlapping in a dike at various scales: (a) granitoid dike 
segments propagating through the Glen Mountain Gabbro at a scale of centimeter in 
Wichita Mountains, Oklahoma [Germanovich et al., 1997a]; (b) Pegmatite dike segments 
through older granite at a scale of several meter in East Quarry of Stone Mountain, 
Georgia; and (c) Minette dike segments at a scale of several kilometer near Ship Rock, 
New Mexico [Pollard, 1978]. 
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Figure 1.2 Formation of segmented dike due to rotation of the least compressive stress 
direction [Delaney and Pollard, 1981]. 
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(a) 

 
 
 
 

 
(b) 

 
Figure 1.3 Dikes exposed in the Ardon Formation, Makhtesh Ramon, Israel [Baer, 1991]: 
(a) cross section of eleven dikes, and (b) mechanism of segmentation and direction of 
propagation parallel to the bedding plane. 
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Figure 1.4 Classification of segmented igneous dikes [Hoek, 1994]. 
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Figure 1.5 Overlapping calcite veins in Tapley Hill Formation, Opaminda Creek, 
Arkaroola, South Australia [Bons, 2000]. 
 
 

 
(a) 

 

 
(b) 

 
Figure 1.6 Two types of echelon veins in Millook Haven, S.W. England [Beach, 1977]: 
(a) echelon array oblique to the principal vein, and (b) echelon array parallel to the 
principal vein. “P” indicates principal vein. 
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Figure 1.7 Irregular zigzag Geometric forms in a vein from Carboniferous flych, Millook 
Haven, N. Cornwall, England [Beach, 1980]. 

 

 

 
 
Figure 1.8 Map view of three joint traces in Dakota sandstone, Coal cliffs, central Utah 
[Olson and Pollard, 1989]. 
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Figure 1.9 Echelon fracture surface [Pollard and Aydin, 1988]: (a) gradual initiation of 
breakdown in sandstone, and (b) abrupt initiation of breakdown in limestone. 

 

 

 

 

 
 

Figure 1.10 Abrupt initiation of breakdown in limestone [Pollard et al., 1982]. 
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(b) 

 
Figure 1.11 Non-planar parallel joint set in layered sedimentary rocks from the 
Appalachian Plateau near Finger Lakes, central New York: (a) photo of non-planar 
parallel joint set [Courtesy of Carter], and (b) schematic drawing of a joint surface with 
initiation point [Helgeson and Aydin, 1991]. 
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(b) 

 
Figure 1.12 Multiple joint set: (a) parallel joints set in the dolomite layer of Argot stream, 
central Dead Sea basin [Sagy et al., 2001], and (b) two orthogonal joint sets in the 
limestone layers of the Central Formation, Chimney Rock, Utah [Bai and Pollard, 2000]. 
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Figure 1.13 Segmentation of the East Pacific Rise and overlapping spreading centers 
[Macdonald et al., 1986]. 
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Figure 1.14 Ridge segmentation at different scales [Macdonald et al., 1991]: (a) fast 
spreading ridges, and (b) slow spreading ridges. S1, S2, S3, and S4 indicate ridge 
segments of order 1, 2, 3, and 4 and D1, D2, D3, and D4 indicate ridge axis 
discontinuities of order 1, 2, 3, and 4. 
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Figure 1.15 Vertical fracture formed in a gelatin material [Hubbert and Willis, 1957]. 

 

 

(a) 

 

(b) 

 

Figure 1.16 Multiple fractures in a homogeneous rock: (a) multiple fractures in sandstone 
[de Pater et al., 1994], and (b) hydraulic fracture branching in sandstone [Dudley et al., 
1995]. 
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Figure 1.17 Segmentation of the liquid-filled crack in gelatin [Takada, 1990]. 
 
 
 
 
 
 

 
(a)  

(b) 
 
Figure 1.18 Fracture offset across the frictional interface: (a) effect of low friction region 
on hydraulic fracture growth across an unbonded interface of limestone [Hanson et al., 
1981], and (b) continuous and discontinuous fracture crossing of the frictional interface 
of the anchoring cement [Renshaw and Pollard, 1995]. 
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(a) (b) (c)  
 
Figure 1.19 Three modes of fracture: (a) mode I, (b) mode II, and (c) mode III [Lawn, 
1993]. 
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Figure 1.20 Mixed mode experiment in an acrylic cylinder: (a) loading condition to create 
a fracture (b) initial horizontal fracture, [Wu and Germanovich, 2003], (c) loading 
condition to create segmentation, and (d) segmentation from horizontal fracture [Wu and 
Germanovich, 2003]. 
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Figure 1.21 Pressure versus time during the segmentation [Wu and Germanovich, 2003]. 

 

 
Figure 1.22 Crack segmentation in anti-plane shear [Knauss, 1970] 

 

 
 
Figure 1.23 Fracture surface with steps at wellbore inclined at 60° with respect to the 
least principal stress [Abass et al., 1996]. The numbers shown indicate confining 
principal stress in pounds per square inch (psi). 
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Figure 1.24 En echelon vertical fractures filled with sand near wellbore EM-8, Pittsburg 
coalbed, Pennsylvania [Diamond and Oyler, 1987]. 

 

 

 
 
Figure 1.25 Multiple fractures in a coal seam and surrounding strata [Palmer and Sparks, 
1991]. 
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(a) 

 
 

 
(b) 

 
Figure 1.26 Cored hydraulic fractures obtained from the highly anisotropic reservoir in 
the Piceance basin near Rifle, Colorado [Warpinski et al., 1993a]: (a) primary fracture 
interval, HF-1, and (b) secondary fracture interval, HF-2. 
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Figure 1.27 Cored hydraulic fractures in Opal-A diatomite at Lost Hills Field, California 
[Fast et al., 1994]. 
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Figure 1.28 Single PKN model [Nordgren, 1972]. 
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Figure 1.29 A PKN model of multisegmented hydraulic fractures: (a) multisegmented 
hydraulic fractures and a single fracture of the same height, and (b) vertical cross section 
of multisegmented hydraulic fractures. 
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(a) 

 

(b) 

Figure 1.32 Hydraulic fracturing treatment [Economides and Nolte, 2000]: (a) hydraulic 
fracture created by pumping fluid, and (b) pressure response at the borehole or surface. 
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Figure 1.33 Inference of fracture geometry from the time-pressure curve [Economides 
and Nolte, 2000]. 
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Figure 1.34 Pressure curve and hydraulic fracture geometry from field data [Economides 
and Nolte, 2000]. 
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CHAPTER II 

MATHEMATICAL MODELING OF MULTISEGMENTED HYDRAULIC 

FRACTURES 

 

In this chapter, a mathematical model and numerical code are developed to study 

the elastic interaction between multiple fractures. 

 

2.1 Elastic interaction between multiple fractures 

 

The problem of multiple defects has been a key issue in many disciplines, because 

elastic interaction significantly changes the stress and strain fields in materials. In the 

field of hydraulic fracturing, the displacement and displacement discontinuity across a 

fracture are of great concern in the evaluation of hydraulic fracturing parameters [e.g., 

Narendran and Cleary, 1983; Jeffrey et al., 1987; Vandamme et al., 1988; Naceur and 

Roegiers, 1990, Germanovich et al., 1998a] that are significantly affected by the 

mechanical interaction between the segments (refer to section 1.5.2). Because analytical 

solutions are seldom feasible, many authors have addressed this problem numerically 

[e.g., Isida, 1970; Erdogan and Gupta, 1972; Savruk and Datsyshin, 1973; Panasyuk et 

al., 1977; Horii and Nemat-Nasser, 1985; McCartney and Gorley, 1987]. 

This section describes a numerical formulation for analyzing the elastostatic 

fracture-induced stress fields for arbitrarily arranged, multiple, non-intersecting fractures 

in a homogeneous plane. A boundary collocation method (BCM), which has been used 

for the solution of problems with multiple cracks [e.g., McCartney and Gorley, 1987; 
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Ukadgaonker and Murali, 1991; Madensi et al., 1998] is employed, because with the 

development of advanced computing technology it can be developed into a more accurate 

and efficient method. In this method, the prescribed boundary conditions are satisfied in a 

finite number of collocation points. In the adopted version of BCM, an approach using 

Chebyshev polynomials as approximating functions [e.g., Gladwell and England, 1977; 

McCartney and Gorley, 1987; Zhan et al., 1998] is employed to accurately evaluate the 

displacements and displacement discontinuities of multiple defects. An extensive 

computer program has been developed, for which the formulations are described below. 

This model not only provides the capability to solve an array of associated elastic 

problems but also affords simplicity in the determination of stress intensity factors and 

fracture opening displacements. While many computer codes are currently available to 

simulate crack interaction, the method considered in this chapter is especially helpful for 

numerical modeling of closely located sub-parallel fractures. We tested the capability of 

the method and demonstrated that the number of collocation points can be reduced as 

much as by an order of magnitude (see below). This allowed us to simulate a real 

multisegmented fracture (as described in next Chapter III), which would have not been 

possible otherwise. 

First, consider a pair of fractures (N = 2) in an infinite plane that are located at 

z1 = x1 + iy1 and z2 = x2 + iy2, respectively (Figure 2.1). Known tractions p1(z1) = σ1 + iτ1 

and p2(z2) = σ2 + iτ2 are applied to the first and second fracture where σ and τ are the 

normal and shear traction components, respectively. Based on the superposition principle, 

this problem can be represented as a sum of two auxiliary problems for a single fracture 

(Figure 2.1). In the first auxiliary problem, unknown tractions acting on the first fracture 
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q1 = s1 + it1 induce stresses ∆q1 = ∆s1 + i∆t1 at the location of the second fracture. 

Likewise, in the second auxiliary problem, unknown tractions loading the second fracture 

q2 = s2 + it2 generate stresses ∆q2 = ∆s2 + i∆t2 at the location of the first fracture. 

Therefore, the tractions in the original problem can be written as: 

)()()( 111211 zpzqzq =∆+ ,   )()()( 222122 zpzqzq =∆+                    (2.1) 

Representing the unknown tractions q1 and q2 in (2.1) in the form of the 

Chebyshev polynomial expansions gives 
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where αm and βm are real unknown coefficients that need to be determined, M is the 

number of collocation points (which may be different for each fracture), 

Um(ξ) = sin((m+1)arcos(ξ))/sin(arcos(ξ)) is the mth order Chebyshev polynomial of the 

second kind, ξ = x/c is the dimensionless spatial coordinate along the fracture, and c is the 

half-size of the fracture. For the auxiliary problems, the second terms, ∆q1 and ∆q2, in 

(2.1) that represent the effect of interaction can be calculated as follows [Muskhelishvili, 

1953]: 

)](')()()([)()( 2 zzzzzezzq i Φ−−Φ−Φ+Φ+Φ=∆ θ                      (2.3) 

where θ is the inclination angle of the fracture with respect to the global coordinate set 

(Figure 2.1). The complex potential Φ(z) is expressed as [Muskhelishvili, 1953]: 
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Using the Gauss-Chebyshev integration formula [e.g., Gladwell and England, 

1977] 
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for singular integrals and taking into account (2.2), the Muskhelishvili [1953] potential 

(2.4) can be expressed in the following form 
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where ζ = z/c = ξ + iη, ξ = x/c, and η = y/c. Therefore, based on (2.3), the auxiliary stress 

∆q can be also expressed in terms of the coefficients αm and βm. Finally, (2.1) forms a 

linear system of equations with the number of equations depending on the total number of 

collocation points M1 + M2. Solving this system produces the unknown coefficients αm 

and βm. 

Similar to (2.1), for the N-fracture problem, the general relationship between all 

tractions can be written as a sum of N auxiliary problems: 

∑
≠
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=∆+
N

nr
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nnnrnn zpzqzq
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)()()(      (n = 1, 2, …, N)                      (2.7) 

The resulting linear system of equations with the size of ∑
=

N

n
nM

1
2  was derived by 

McCartney and Gorley [1987], and can be written in a slightly modified form as 

[Germanovich and Astakhov, 2004] 
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where j
n

j
n

j
n iyxz +=  are the discrete collocation points on the fractures at which the 

boundary conditions are satisfied, θr and θn are the rth and nth fracture inclination angles 

to the global x axis, respectively, (Figure 2.1), and the functions r
mI , r

mJ , r
mK , and r

mL  are 

defined as follows: 
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where rt1  and rt2  are complex numbers indicating the locations of the tips of the rth 

fracture. The first term on the left side in (2.8) represents the unknown tractions qn for the 

nth fracture, while the second and third terms indicate the effect of interaction caused by 

the other fractures. The term on the right side represents the known tractions that are 
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determined from the boundary conditions. In other words, σn(z) + iτn(z) = pn(z) are the 

external tractions applied to the nth fracture sides and σ∞ + iτ∞ = p∞ is the remote load. 

A FORTRAN program (Appendix A) was developed to solve the linear system of 

equations (2.8). To determine the unknown real coefficients αm
n and βm

n, Crout’s 

algorithm for Lower and Upper (LU) matrice decomposition [e.g., Press et al., 1992, 

§2.3] was used. For the large system of equations, we parallelized the numerical code 

such that it is compatible with high performance computing. 

After the unknown real coefficients αm
n and βm

n are determined, the 

displacements, displacement discontinuities, and stress intensity factors can be calculated 

easily. The representation of shear and normal displacements in the dimensionless 

coordinate system ζ associated with a crack is 
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the displacement discontinuity is given by 
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and the stress intensity factors are expressed as 
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where G = E/[2(1+ν)] is the shear modulus, ν = Poisson’s ratio, κ = 3 – 4ν and E1 = E/(1 

- ν2) (since only the plane strain case is considered), and “+” and “–” in (2.15) indicate 
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the stress intensity factors for the crack tips with ξ > 0 and ξ < 0, respectively. By 

integrating the normal displacement discontinuities ∆v in (2.14), the fracture aperture 

area can be given by 

1
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−

                                        (2.16) 

Expression (2.13) provides the crack side displacements (u± and v±) only in the 

corresponding auxiliary problems. To evaluate the displacement in the original problem 

with multiple cracks, one should add the displacements at the position of this crack in all 

other auxiliary problems. 

Since the computational results of the BCM are sensitive to the disposition of the 

selected collocation points [e.g., Tsamasphyros and Eftaxiopoulos, 1996], Chebyshev’s 

collocation points 
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are typically used to obtain the fastest convergency [e.g., McCartney and Gorley, 1987; 

Germanovich and Astakhov, 2004]. If the collocation points are assigned according to 

(2.17), their density becomes denser from the center of the fracture to its tips (Figure 2.2). 

Furthermore, to obtain satisfactory results for the problems with multiple fracture, it is 

commonly accepted [e.g., Astakhov, 2000] that the distance from one collocation point to 

adjacent collocation points within one segment (a in Figure 2.2) must be smaller than the 

distance from this point to any collocation point on any other segment (b in Figure 2.2). 

While this condition is sufficient, it may be very restricting and hence make some 

calculations not feasible. We further show that this condition is not always necessary and 
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the required number of collocation points (and, therefore, the number of equations) can in 

some cases be decreased by an order of magnitude. 

 

2.2 Comparison with available solutions 

 

For better confidence, the displacement discontinuities computed with BCM are 

compared with those obtained from a finite element method (FEM). In the majority of 

publications on elastic crack theory, the principal goal is to calculate the stress intensity 

factors rather than evaluating the displacement discontinuities. For hydraulic fracturing 

simulations, it is usually critically important to compute the fracture apertures. However, 

even in the simplest case of two arbitrary located segments (N = 2), analytical solutions to 

calculate displacement discontinuities are not available. Hence, to compare FEM to the 

BCM, the two-dimensional FEM code, FRANC2D [Wawrzynek and Ingraffea, 1987] is 

used. 

An example of three segments of different size c and orientation θ (Table 2.1) is 

shown in Figure 2.3a. The same pressure p1 = p2 = p3 = 1 is applied in all segments. A 

Poisson’s ratio of ν = 0.21 and a Young’s modulus of E = 1 are used for the elastic 

properties of the material. The portion of the deformed mesh with open fractures is 

shown in Figure 2.3b. For the BCM, the number of collocation points on the segments 

(Table 2.1) are M1 = 30, M2 = 35, and M3 = 40, respectively (Figure 2.4). 
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Table 2.1 Configuration of the three segments. 
 

Segment 
Center of 
segment 

(x, y) 

Inclination 
angle 
θ 

Half size 
c 

Number of 
collocation 

points 

1 (1.7, 0.6) 0 0.7 30 
2 (0.6, 1.5) 90 0.9 35 
3 (1.7, 1.75) -42.89 0.955 40 
 

The normal and shear displacement discontinuities computed with (2.14) are 

compared with the FEM analysis and show good agreement (Figures 2.5). All three 

segments have different sizes, but are plotted in the normalized x-coordinate system 

associated with each segment. The absolute values of the shear displacement 

discontinuity are one order of magnitude smaller than the normal one. Since the absolute 

error of the FEM calculations mainly depends upon the chosen mesh, the relative error 

should be larger for the former than for the latter. For the density of collocation points 

shown in Figure 2.4, the results obtained with BCM are practically exact (refer to the 

next section). 

 

2.3 Asymptotic solution for en echelon of closely spaced fractures 

 

In this section, the asymptotic solution for en echelon of closely spaced fractures 

is obtained for comparison with the BCM method. This solution is also interesting by 

itself since the overlapping closely spaced sub-parallel fractures are commonly observed 

at all scales (e.g., refer to Figure 1.1a). 
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2.3.1 Geometry and simple bending 

Figure 2.6a shows a schematic diagram of en echelon with a total number N of 

closely spaced overlapping segments. The length of each segment is 2c and the overlap is 

2a. It is convenient to consider en entire echelon to be one “effective” single fracture of 

the same total length xN (Figures 2.6b and 2.6c). If the spacing S between the individual 

segments is much smaller than the overlap (S << 2a) and the number of segments N is not 

too large (see below), the resistance of thin ligaments “connecting” the sides of effective 

fracture (Figure 2.6b) can be ignored to the first order. Then, the opening shape of N will 

be that of the effective one provided that following condition is satisfied 

cSN 2)1( <<−                                                    (2.18) 

The location of the right tip of each segment in the global coordinate set can be 

expressed as 

)1()1(22 Nnanncxn ≤≤−−=                                     (2.19) 

This results in N segments and N – 1 ligaments (Figure 2.6a). The deformation of each 

ligament can be evaluated by modeling it by a ligament beam (plate) and computing the 

beam deflection. First, displacements by moving the ligament ends in the local coordinate 

set (Figure 2.7a) can be symmetrized (Figure 2.7b): 

2
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where u(x) and v(x) are displacements of the sides of the effective fracture in the global 

coordinate system (Figure 2.6b). 

Let the size of the whole fracture (Figure 2.6) be 

NN xc =2                                                        (2.22) 

so that [see (2.19)] 
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In the global coordinate system associated with the effective crack center, the crack side 

displacements are 
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where “+” and “–” denote the displacements of the upper and lower sides, respectively, 

and 

p
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c
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In the global coordinate system associated with the left crack tip (Figure 2.6), expressions 

(2.24) and (2.25) become 
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Substituting (2.28) into (2.21) (Figure 2.7), we obtain the horizontal displacements of the 

ligament ends 

a
c
c

a
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∆
=∆                                                   (2.29) 

Therefore, the longitudinal strain of the nth ligament is given by 
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and it is the same for all ligaments (Figure 2.8). Substituting (2.26) into (2.30), we have 

p
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Stresses in the nth ligament can be obtained by using the plane strain relationship 

(Figure 2.8) 

)( yyxxzz σσνσ +=                                               (2.32) 

and Hooke’s law 

)]([1
zzyyxxxx E

σσνσε +−=                                        (2.33) 

Substituting (2.32) into (2.33), we further use the well known expression 
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so that inserting (2.31) and pyy =σ  (see Figure 2.8) into (2.34) results in 
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pn
xx =)(σ                                                       (2.35) 

Therefore, the stress state in each ligament is given by 
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In the linear theory of bending, longitudinal and normal (bending) displacements 

are uncoupled. The loads (2.36) and displacements (2.28), (2.29) are completely 

consistent with the Poisson’s effect for the entire fracture (Figure 2.6c). Therefore, it is 

sufficient to compare only normal displacements (deflections) of each ligament to the 

BCM results. 

To consider normal displacements wn of the beam, we ignore na∆  (Figure 2.9). 

Using the differential equation [e.g., Gere and Timoshenko, 1991] 
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The boundary conditions are given by 

)( axdw nn ±== m                                            (2.38a) 
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Solution of (2.37) and (2.38) is elementary, and in the local coordinate system (Figure 

2.9) it is given by 
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Then, in the global coordinate system (Figure 2.6a), the deflection (2.39) of the nth 

ligament becomes 
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                         (2.40) 

where parameter dn can be used to match the displacements of the ligament ends to the 

displacements of the effective crack sides (Figure 2.6c). Taking into account (2.20), we 

have 
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Once wn(x) is known, the normal displacements of the sides of individual segments 

(Figure 2.6a) can be expressed as follows 

First segment (n = 1): 
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Second segment (n = 2): 
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nth segment (n ≠ 1, n ≠ N): 
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Last segment (n = N): 
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Expressions (2.27) and (2.43) to (2.45) are asymptotically accurate (for s/a → 0) 

and can be used for comparison with the numerical results obtained by BCM. For the 

following discussion, it is convenient to introduce the normalized half-aperture of the 

effective fracture, which, according to (2.27) is given by 
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2.3.2 Analysis of the spring effect 

The modulus of the shear force in the beam in the nth ligament (per unit length in 

z-direction) is given by (Figure 2.10) [e.g., Gere and Timoshenko, 1991]: 
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From (2.41), 
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so that after substituting (2.20) into (2.48) and the results into (2.47) we have 
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Since v(xn) ≤ v0 and v(xn-2a) ≤ v0, we see from (2.49) that 
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which, after substituting (2.46) into (2.50) becomes 
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Based as (2.51) let 
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be the upper estimate of the shear force Fn. With respect to the sides of the effective 

fracture these forces can be interpreted as normal (Figure 2.11). To the first order, we 

represent them by the normal distributed tractions. Then, the tractions corresponding 

tractions corresponding Fupper are (Figure 2.11) 
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and substituting (2.52) into (2.53) results in 
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The effect of the forces Fn on the crack opening can be ignored. Substituting 

(2.54) into (2.55), this sufficient condition can be written as 

1)1(36 3

3
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a
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and provides another restriction on N (see also (2.18)): 
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Since according to (2.18) 

S
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we can write both restrictions (2.57) and (2.58) in a combined form 
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For example, let 

5,01.0,1 === cSa                                           (2.60) 

Then, (2.59) becomes 

000,5<<N                                                     (2.61) 

Therefore, in this case, our asymptotic solution is accurate if the number of fractures is 

much less than 5,000. 
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2.3.3 Two overlapping fractures 

The openings of the two overlapping fractures (N = 2) are now compared with the 

asymptotic solution. We use geometric parameters S/2a = 0.005 and a/c = 0.2. Viewed 

with an equal scale (Figure 2.12a), the fractures appear as they can be simulated by one 

single fracture. Viewed with an exaggerated scale in the y-direction (Figure 2.12b), 

however, the overlap is clearly visible. 

Figure 2.13a shows the opening shape of the two fractures when 2,000 collocation 

points for the BCM calculation are used. Figure 2.13b shows a magnified scale of the 

ligament deformation of the boxed area in Figure 2.13a. The ligament that connects two 

fractures appears to be deformed similarly to a deflected beam with clamped ends. 

Figures 2.14 and 2.15 show the comparison of the openings of the first fracture 

with the asymptotic solution (2.27) for two different numbers of collocation points. The 

crack side displacements are normalized by the half-aperture, v0 (2.46). Figure 2.14a 

shows the results when 2,000 collocation points are assigned. The density of the 

collocation points (Figure 2.14b) is sufficient to satisfy the conventional criterion (refer 

to section 2.1). As expected, the opening computed by the BCM practically coincides 

with the asymptotic solution (2.27) (Figure 2.14a). 

Figure 2.15a shows the results when 250 collocation points are used for the BCM 

calculations. Despite a dramatic reduction in the number of collocation points (e.g, by an 

order of magnitude; also compare Figure 2.15b), the opening is still in very good 

agreement with the asymptotic solution. Note that the case of S/2a = 0.005 (i.e., the 

spacing is only 0.5% of the overlap) is very unfavorable for numerical calculations. Yet 
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the BCM produced excellent results even for a greatly reduced number of collocation 

points. 

 

2.3.4 Six overlapping fractures 

In the second example, the openings of six overlapping fractures (N = 6) are 

compared with the obtained asymptotic solution (2.27). We use the same geometric 

parameters as in the case of two overlapping fractures (S/2a = 0.005 and a/c = 0.2). 

Figure 2.16 shows the map view of the six overlapping fractures both at an equal scale 

and at an exaggerating scale in the y-direction. 

Compared to the case of two overlapping fractures, this case is even more 

unfavorable for numerical calculations because the six fractures generate a large number 

of equations (2,000 × 6 × 2 = 24,000) to satisfy the usual criterion for the density of the 

collocation points (section 2.1). Given the matrix structure that is typical for BCM, the 

numerical calculation is likely to be almost impractical although this certainly depends 

upon the available computational results. 

Figure 2.17a shows the opening shape of six fractures when 2,000 collocation 

point per fracture are used for the BCM. Figures 2.17b to 2,17e show a magnified scale 

of the ligament deformations inside the boxed areas (Figure 2.17a). As in the case of two 

overlapping fractures, all ligaments that connect fractures are also deformed, similar to a 

beam. 

Figures 2.18 and 2.19 show the comparison of the open shapes of the first (n = 1), 

second (n = 2), and third (n = 3) fractures with the asymptotic solution for two different 

numbers of collocation points. As in the previous example, the crack side displacements 
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are normalized by the half-aperture, v0 (2.46). Figure 2.18 presents the results when 2,000 

collocation points are assigned for each fracture. As expected, the opening computed by 

the BCM again coincides with the asymptotic solution (2.27). 

Figure 2.19 shows the results when 250 collocation points are used for the BCM 

calculations. Despite a dramatic reduction in the number of collocation points (by an 

order of magnitude), the opening is still in very good agreement with the asymptotic 

result. 

 

2.4 Asymptotic solution for two parallel fractures 

 

In this section, the asymptotic solution for two parallel fractures is compared to 

the BCM computations. Figure 2.20a shows two closely spaced parallel fractures of the 

length of 2c. For a small spacing (S << 2c), the displacement discontinuity (i.e., aperture) 

of each fracture can be expressed as the sum of the half-opening of the single fracture v+ 

in Figure 2.20b, and the small displacement v- at the side of the thin beam (plate) that 

represents the solid ligament between the two fractures in Figure 2.20c. The beam is 

loaded by the pressure p that causes the same amount of displacement as the pressure in 

the fractures. In addition, the beam contracts by the amount of ∆c due to the Poisson’s 

effect (Figure 2.20c) in the material with fractures (Figure 2.20b). 

Similar to the previous section, to the first order, a very thin material ligament 

(beam) does not affect the deformation of the surrounding material. Therefore, both v+(x) 

and ∆c can be found by considering a single fracture with a length 2c subjected to a 
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pressure, p, in an infinite plate (Figure 2.20b). This is a classic problem and we have in 

plane strain [e.g., Tada et al., 1985, see also (2.24), (2.25)] 
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We now have an elementary problem for a rectangular body loaded by the 

pressure p in one direction and contracted by the amount of 2∆c in the perpendicular 

direction (Figure 2.20c). Similar to (2.36), the solution is obtained directly from Hooke’s 

law (2.33) and the plane strain condition (2.32): 

pxx =σ                                                        (2.64) 

S
E
pv )21(

2
2νν −−=−                                           (2.65) 

Figures 2.21 and 2.22 show the comparison of the vertical displacements of the 

sides of the upper fracture with the asymptotic solution (2.65) by varying the number of 

collocation points. The geometric parameter that was used is S/(2c) = 0.0005. Figure 

2.21a shows the results (normalized by 2ν+(0) = 4c(1-ν2)p/E) when 4,000 collocation 

points are assigned for the BCM computation. The density of collocation points (Figure 

2.21b) satisfies the conventional criterion (section 2.1). We observe that both vertical 

displacements, v+ and v-, computed with the BCM practically coincide with the 

asymptotic solution (Figures 2.21a and 2.21c). The maximum displacement v+ of the 

upper side approaches 1/2, which is the half-opening of the single fracture. 
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We also performed several computations with a smaller number of collocation 

points. Figures 2.22a shows the results when 250 collocation points are used for the BCM 

calculation. The density of the collocation points is now considerably smaller (Figure 

2.22b) and by the usual standard is not accepted. Yet, again, the displacement is still in a 

good agreement with the asymptotic solution despite the great reduction of the number of 

collocation points by more than an order of magnitude. 

Note again that the considered example is not favorable for numerical calculations 

because it involves a very thin body (the thickness of the ligament separating the 

fractures is only 0.05% of the fracture size). This geometry practically prohibits FEM 

computations. Yet, BCM provides robust results with a relatively small number of 

equations. 

 

2.5 Summary and conclusions 

 

The boundary collocation method is implemented to model the effect of elastic 

interaction between multiple fractures. The displacements, as well as the displacement 

discontinuities, are accurately calculated and compared with existing closed form 

solutions. 

The results computed with the BCM are also compared to the obtained asymptotic 

solutions for two and six overlapping, as well as for two parallel, closely spaced 

fractures. Both cases represent important frequents elements observed in the field and in 

the laboratory (refer to Chapter I). However, most numerical techniques (e.g., FEM) are 

hardly suitable (if at all) for such cases, involving geometries that are highly unfavorable 
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for numerical computations due to the large difference in the relevant dimensions. Yet, 

the BCM provides results that are in excellent agreement with the asymptotic solutions, 

even when the number of collocation points is reduced by as much as an order of 

magnitude (and more), compared to conventional implementations. Without such a 

significant reduction of the number of collocation points, the numerical simulation of 

more realistic and, hence, more complex fracture geometries (such as in the following 

chapter) would be prohibitive. 
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Figure 2.1 Original and auxiliary problems for interacting fractures. 
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Figure 2.2 Density of collocation points in two parallel fractures. 



 76

 

 
(a) 

 

 
(b) 

 
Figure 2.3 Three fractures in the finite element method (FEM): (a) finite element mesh 
with three fractures, and (b) the deformed finite element mesh with three fractures. 
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Figure 2.4 Density of collocation points in BCM. 
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Figure 2.5 Comparison of displacement discontinuities with FEM: (a) normal 
displacement discontinuity, and (b) shear displacement discontinuity. 
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Figure 2.6 En echelon of closely spaced fractures: (a) geometric configuration of N 
fractures, (b) opening of the fractures, and (c) opening of the single fracture of the same 
total length of xN. 
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Figure 2.7 Deformation of ligament: (a) initial deflection of ligament and (b) converted 
initial deflection. 
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Figure 2.8 Deformation of the ligament by surrounding stresses. The dashed line 
indicates the state before deformation of ligament. 
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Figure 2.9 Deflection of the ligament without horizontal contraction. 
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Figure 2.10 Shear force at the ligament end. 
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Figure 2.11 Resistance generated by shear forces in the ligament ends. 
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(b) 

Figure 2.12 Map views of two overlapping fractures: (a) equal scale, and (b) magnified 
scale in y direction. 
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Figure 2.13 Two closely spaced overlapping fractures: (a) normalized opening when 
2,000 collocation points for the BCM calculation are used, and (b) ligament deflection at 
magnified scale. 
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Figure 2.14 Two closely spaced overlapping fractures: (a) comparison of opening 
between BCM and asymptotic solution when 2,000 collocation points are used, and (b) 
density of BCM collocation points at magnified scale. 
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Figure 2.15 Two closely spaced overlapping fractures: (a) comparison of opening 
between BCM and asymptotic solution when 250 collocation points are used, and (b) 
density of BCM collocation points at magnified scale. 
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Figure 2.16 Map view of six overlapping fractures: (a) equal scale, and (b) magnified 
scale in y direction. 
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(b) 

Figure 2.17 Six closely spaced overlapping fractures: (a) normalized opening when 2,000 
collocation points for the BCM calculation are used and ligament deflection at magnified 
scale for: (b) ligament 1, (c) ligament 2, (d) ligament 3, (e) ligament 4, and (f) ligament 5. 
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Figure 2.17 (Continued). 
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Figure 2.17 (Continued). 
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(b) 

Figure 2.18 Comparison of opening between BCM and asymptotic solution when 2,000 
collocation points are used for closely spaced six overlapping fractures: (a) first segment, 
(b) second segment, and (c) third segment. 
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(c) 

Figure 2.18 (Continued). 
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(b) 

Figure 2.19 Comparison of opening between BCM and asymptotic solution when 250 
collocation points are used for closely spaced six overlapping fractures: (a) first segment, 
(b) second segment, and (c) third segment. 
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Figure 2.19 (Continued). 
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Figure 2.20 Asymptotic solution for two closely spaced parallel fractures: (a) definition 
of the geometry, (b) opening of the two parallel fractures and opening of a single fracture 
of the same length, and (c) deformation of the beam by surrounding stresses. The dashed 
line indicates the boundary of the beam before deformation. 
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Figure 2.21 Two closely spaced parallel fractures: (a) comparison of opening between 
BCM and asymptotic solution when 4,000 collocation points are used, (b) density of 
BCM collocation points at magnified scale, and (c) normalized vertical displacement at 
magnified scale. 
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Figure 2.21 (Continued). 
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Figure 2.22 Two closely spaced parallel fractures: (a) comparison of opening between 
BCM and asymptotic solution when 250 collocation points are used, (b) density of BCM 
collocation points at magnified scale, and (c) normalized vertical displacement at 
magnified scale. 
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Figure 2.22 (Continued). 
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CHAPTER III 

MODELING NATURAL MULTISEGMENTED HYDRAULIC FRACTURES 

 

3.1 Introduction 

 

Fluid-driven natural fractures, which we will refer to as natural hydraulic 

fractures, appear in a variety of forms (i.e., dikes, veins, and joints). These fractures 

display various structural features due to variation of heterogeneity of the rock, stress 

regimes, and fracture modes [e.g., see review in Germanovich et al., 1997a]. Echelons of 

multisegmented hydraulic fractures (MHF) with consecutive overlap are one of the most 

common types of structures in the Earth’s crust (Figure 1.1). Due to the interaction 

between the segments, the mechanical behavior of these fractures may be quite different 

from that of single fractures. In particular, the mechanical interaction between the 

fracture segments significantly influences the parameters of industrial hydraulic 

fracturing (e.g., fracture aperture, length, and net pressure) [e.g., Jeffrey et al., 1987; 

Nolte, 1987; Naceur and Roegiers, 1990; Germanovich et al., 1998a and 1998b; Olson, 

2003] as well as rock permeability associated with openings of natural multisegmented 

fractures [Germanovich and Astakhov, 2004]. 

The mechanical behavior of a single natural hydraulic fracture has been studied 

extensively. In contrast, few efforts have been devoted to the simulation of natural MHF 

due to the technical difficulties in the evaluation of the interaction between the segments 

even when using conventional elastic theory. 
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Delaney and Pollard [1981] investigated 35 distinct north-eastern echelon dike 

segments near Ship Rock, New Mexico (Figure 1.1). To evaluate the mechanical 

interaction between dike segments, they used the method of successive approximation 

and compared computed dike apertures with measured values. The results of their 

modeling are in good agreement with field data and reproduced in Appendix C. 

Olson and Pollard [1991] simulated the growth of echelon veins and vein fillings. 

They suggested that the mechanical interaction between the segments is responsible for 

the sigmoid shape of segments after overlap, because the interaction changes local 

stresses around the tip of the segment. In order to investigate the effects of the interaction 

on the apertures, they considered two parallel echelon segments and found that the 

mechanical interaction of the two segments causes a change of the local strain in the 

fracture tips and therefore leads to the shear offset of the fracture walls. 

Bai et al. [2000] investigated the interaction between equally-spaced parallel 

joints in layered sedimentary rocks. Using FRANC2D [Wawrzynek and Ingraffea, 1987], 

they performed a finite element analysis to compute the aspect ratio (i.e., the ratio of 

fracture aperture to length) as function of the joint and the layer thickness. The number of 

fractures used in their simulations ranged from 3 to 23, with varying spacing between the 

fractures. They concluded that the effect of interaction becomes significant when the 

spacing-to-thickness ratio is less than 1.3, and that the aspect ratio approaches its upper 

limit asymptotically when the spacing-to-thickness ratio increases. 

Germanovich et al. [1997b and 1998a] computed the effect of interaction between 

parallel fractures based on the boundary collocation method. Although special attention 

was paid to the accuracy of the calculations, only specifically selected multisegmented 
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fracture geometries were chosen for their parametric study. Germanovich and Astakhov 

[2004] evaluated the interaction of up to 50 fractures numerically and ~103 segments 

asymptotically. 

To the best of the author’s knowledge, no studies simulating a large number of 

real natural MHF with significant interaction currently exist. Therefore, the apertures of a 

naturally segmented vein, which has a small offset compared to the overlap, are 

simulated in this study. The boundary collocation method (described in Chapter II) is 

employed to evaluate the effect of interaction. The computed apertures are compared to 

the measured apertures at various spatial scales. In addition, the computed net pressures 

for the case of interacting segments are compared to the case of the non-interacting 

segments. 

 

3.2 Multiple vein segments 

 

3.2.1 Geometric features of the 71-segment calcite vein 

To describe the geometry of the multiple segments, geometric terms are defined 

as illustrated in Figure 3.1. In a cross-section of the vein segments, the length, 2c, is 

measured along the greater dimension and the aperture is measured along the lesser 

dimension. The offset is defined as the distance perpendicular to the segment strike and 

the overlap or separation is measured parallel to the strike. 

Vermilye and Scholz [1995] investigated the 71-segment calcite vein in siltstone 

from the Culpeper Crushed Stone Quarry in Stevensburg, Virginia. The fracture, which is 

composed of 71 segments, has an outcrop length of 13.23 m and is segmented with 
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upwards stepping of approximately ~30 cm. These segments have a well-exposed cross-

section whose normal lies in the bedding plane. There is no evidence of shear 

displacement that would indicate extensional opening. 

Viewed with an equal scale (Figure 3.2a), the fracture appears quite simple with 

only slight segmentation. Viewed on an exaggerated scale in the y-direction, however, the 

segmentation of the vein fracture can be identified clearly (Figure 3.2b). These vein 

segments are filled with white calcite in dark red fine-grained siltstone, resulting in a 

sharp contrast. Therefore, fine aperture measurements were feasible. The aperture along 

the segments has been well mapped by Vermilye [1996] (Figure 3.2c). For this reason, 

these vein segments are chosen for the quantitative simulation of the apertures of 

naturally MHF in this chapter. The vein segments have a length that ranges from 3.4 to 

142 cm, with segment apertures ranging from 0.017 to 3.88 mm on average (Table 3.1). 

 

3.2.2 Offset and overlap features of the 71-segment calcite vein 

The relative location of multiple segments can be described by their offset and 

overlap (or separation). Table 3.2 lists the offset and overlap of each segment with 

respect to the adjacent segment from left to right. Thus, the last segment (number 71) 

does not have any offset and overlap because it does not have any adjacent segment to its 

right. Negative overlap indicates separation with the adjacent segment (which is referred 

to as underlap or positive separation by some authors) as shown in Figure 3.1. 
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Table 3.1 Geometric data for the 71-segment calcite vein in siltstone from the Culpeper 
Quarry in Stevensburg, Virginia [after Vermilye, 1996]. 

 

Segment Length 
(cm) 

Maximum 
aperture 

(mm) 

Average 
aperture 

(mm) 
Segment Length 

(cm) 

Maximum 
aperture 

(mm) 

Average 
aperture 

(mm) 

1 7.5 0.05 0.033 37 48.5 1.6 1.120 
2 5.5 0.05 0.033 38 34.5 2.25 1.315 
3 8 0.1 0.061 39 38.1 2.5 1.484 
4 26.5 0.1 0.065 40 35.5 2.5 1.458 
5 9.5 0.1 0.050 41 46.7 2.25 1.358 
6 4.2 0.1 0.050 42 13 0.1 0.033 
7 4.7 0.1 0.050 43 15.5 0.45 0.214 
8 14.3 0.2 0.092 44 38 0.1 0.033 
9 19.2 0.4 0.250 45 62 2.7 1.523 

10 6.6 0.3 0.146 46 54.5 3.5 2.012 
11 26.5 0.55 0.373 47 80.5 3.9 2.787 
12 6 0.5 0.292 48 106 4.7 3.179 
13 12.5 0.55 0.266 49 25 4.2 2.018 
14 20.9 0.65 0.451 50 37.5 4.5 2.771 
15 11 0.6 0.360 51 26 4.7 2.798 
16 7.7 0.6 0.391 52 52 5 3.740 
17 10.9 0.6 0.244 53 14.5 4 1.519 
18 17.1 0.7 0.387 54 27.5 3.7 1.141 
19 6.2 0.7 0.386 55 31.5 3.8 2.087 
20 9.3 0.5 0.245 56 15 3.5 1.831 
21 7.6 0.25 0.109 57 8 4.2 2.372 
22 12.9 0.5 0.214 58 13 3.9 1.379 
23 15 0.7 0.396 59 20.5 4.4 2.778 
24 36.4 1 0.646 60 20 4.2 2.089 
25 24.8 1.05 0.584 61 24.5 3.7 1.192 
26 9.6 0.75 0.330 62 11 4.3 2.802 
27 29.5 0.7 0.338 63 73.5 4.85 3.824 
28 11.2 0.25 0.113 64 55 4.9 3.881 
29 28.2 0.3 0.156 65 142 5 3.327 
30 3.4 0.05 0.036 66 76.5 3.9 2.780 
31 22.8 0.15 0.081 67 12.5 3.6 1.875 
32 14.5 0.05 0.017 68 53 3.6 2.844 
33 14.8 0.45 0.241 69 12 3 1.790 
34 7.2 0.35 0.165 70 121 3.2 1.527 
35 9.4 0.55 0.295 71 28 0.4 0.133 
36 38.5 1.1 0.604     
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Table 3.2 Offset and overlap (separation) for the 71-segment vein [after Vermilye, 1996]. 
Negative overlap indicates separation between segments (Figure 3.1). The offset and 
overlap between the nth and (n+1)th segments are given in the row of the nth segment. 

 

Segment Offset 
(mm) 

Overlap 
(mm) Segment Offset 

(mm) 
Overlap 

(mm) 
1 2.2 -2 37 2.7 60 
2 11.3 -9 38 4.5 125 
3 7.5 11 39 2.5 46 
4 7.5 10 40 3.3 185 
5 3.3 5 41 0.3 42 
6 4.3 12 42 0.3 45 
7 7.5 47 43 38.1 -95 
8 2.5 8 44 15.1 85 
9 1.3 7 45 10.5 275 

10 2.5 36 46 5 190 
11 1.1 10 47 8 200 
12 1.6 16 48 9.3 170 
13 5.2 46 49 3 115 
14 5.5 24 50 4.5 175 
15 2.1 23 51 0.8 50 
16 2.8 21 52 3.9 85 
17 7.8 64 53 1.8 70 
18 1 22 54 6 260 
19 0.6 5 55 10.5 150 
20 16.9 54 56 1.6 50 
21 0.6 16 57 0.5 30 
22 1.1 49 58 4.3 105 
23 0.5 65 59 0.7 70 
24 0.5 47 60 3.3 200 
25 1.5 50 61 1.3 50 
26 1.85 51 62 2.5 35 
27 0.5 112 63 1.52 70 
28 0.3 20 64 2.48 80 
29 0.95 32 65 21.4 380 
30 0.5 14 66 3.3 40 
31 0.5 3 67 2.5 70 
32 86.55 -615 68 0.6 25 
33 0.5 20 69 2.2 35 
34 0.3 21 70 2 180 
35 0.3 40 71   
36 2 155    
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In this fracture, a maximum offset of 86 mm was observed between segments 32 

and 33, and a maximum overlap of 280 mm was observed between segments 70 and 71. 

Figure 3.3 shows the relationship between the offset and the overlap for the multiple vein 

segments. The ratio of offset to overlap ranges from 10-1 to 10-3. Therefore, it is expected 

that the effect of interaction should strongly affect the apertures of this fracture. In 

general, the segments with larger offsets typically have relatively large overlaps. For 

example, segments pairs 20 and 21, 32 and 33, 43 and 44, 55 and 56, 65 and 66 all have 

relatively large offsets and large overlaps (or separations) compared to other segment 

pairs. 

 

3.2.3 Aperture features of the 71-segment calcite vein 

To investigate the relationship between the length and the maximum aperture of 

the veins, Vermilye and Scholz [1995] considered different spatial scales (Figure 3.4). 

Based on the large offset between segments, they divided the entire fracture into several 

groups, which they referred to as first order subunits. By repeating this procedure, 

second, third, and fourth order subunits were identified (Figure 3.4). The apertures of the 

individual segments (i.e., the fourth subunit) revealed that the classic elliptical shape does 

not apply to all segments because the adjacent segments considerably affect the apertures 

of each segment. Vermilye and Scholz [1995] found that the correlation between the 

length and the maximum aperture for all subunits decreases as the scale decreases from 

the first to the fourth subunit. This indicates that subunits do not act independently. They 

also found that the aspect ratios for the first to third order subunits are less than those of 

an isolated single fracture with the same length. In contrast, the fourth order subunit has a 



 106

higher aspect ratio than that in the same outcrop. The difference between the aspect ratios 

for single fracture and those for multiple segments has also been found in other research 

[Renshaw and Park, 1997; Olson, 2003]. 

In this chapter, to understand these phenomena, the apertures that are computed 

by the boundary collocation method (refer to Chapter II) for the 71-segment vein are 

directly compared with the measured apertures. 

 

3.3 Analysis procedure 

 

The apertures of the naturally segmented veins are simulated at three different 

spatial scales: microscale, mesoscale, and macroscale. At the microscale, all segments are 

considered individually, such that the effect of interaction between multiple segments is 

fully accounted for along the vein segments. At this scale, based on the geometric 

configuration of the 71 segments, we define six groups as follows (Figure 3.5a): 

 

• Group 1: segments 1 to 20 

• Group 2: segments 21 to 32 

• Group 3: segments 33 to 43 

• Group 4: segments 44 to 55 

• Group 5: segments 56 to 65 

• Group 6: segments 66 to 71 
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At the mesoscale, the 71 segments are not “visible” individually. Rather each of 

the groups defined at the microscale is represented as a single segment, which leads to a 

total of six segments (Figure 3.5b). Thus, the effect of interaction is partially considered. 

This considerably reduces the size of the problem compared to the microscale. The 

location parameters of the six segments (e.g., segment angle) are determined by linear 

regression. At the macroscale, the multiple segments are represented by a single 

“effective” fracture (Figure 3.5c). Its location parameters are also determined by linear 

regression. The three map views at the three different scales in an equal scale coordinate 

set are shown in Figure 3.6. Summarizing, the 71 segments at the microscale are 

represented by 6 segments at the mesoscale and one fracture at the macroscale, 

respectively. 

To evaluate the effect of interaction at each scale, the computed apertures for both 

the non-interacting and the interacting cases are compared with the measured apertures. 

In the non-interacting case, each segment is treated as a mechanically isolated fracture. 

Therefore, the aperture, ∆vs = vs
+ - vs

- of a single isolated fracture with a length of 2c, 

under the influence of a net pressure ∆p (i.e., the difference between the internal pressure 

p and the remote stress σy
∞; simply referred to as pressure hereafter), in an infinite, 

homogeneous, and isotropic medium (Figure 3.7), is given by (e.g., Tada et al., [1985], 

see also (2.24)) 

2

22

1)1(4
c
x

E
pcvs −

∆−
=∆

ν      cx ≤||                                 (3.1) 

where E is the Young’s modulus, υ is the Poisson’s ratio, and x is the local spatial 

coordinate along the length of the segment. 
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To take into account the effect of interaction between the segments, the aperture 

∆vn of the nth segment that is pressurized by ∆p can be calculated as given by (2.14): 
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where Mn is the number of collocation points on the nth segment, n
mα  are the unknown 

coefficients of the Chebyshev expansion for the nth segment that need to be determined 

for a given configuration, and Um(x/cn) = sin((m+1)arcos(x/cn))/sin(arcos(x/cn)) is the mth 

order Chebyshev polynomial of the second kind. As discussed in section 2.1, after 

obtaining the coefficients n
mα  by solving the linear system of equations (2.8), the aperture 

(3.2) as a function of the distance along the fracture for a given pressure ∆p can be found. 

In both cases (i.e., interacting and non-interacting segments), the pressure ∆p is evaluated 

by using the least squares method to minimize the error between computed ∆vn and the 

measured apertures. If a uniform pressure is not sufficient to fit the data, different 

pressures are applied to different parts of the multisegmented fracture. 

The pressures ∆p obtained from both non-interacting and interacting cases at the 

microscale and mesoscale are also compared. A Young’s modulus of E = 2.5 × 1010 Pa 

and a Poisson’s ratio of ν = 0.21 are assumed for the host rock in this analysis. However, 

as can be seen from (3.1) and (3.2), all results can be easily adjusted for different E and ν 

since they only appear in a factor in the expression for ∆p. 
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3.4 Microscale consideration 

 

At the microscale, all 71 individual segments are considered. As mentioned 

previously, these segments do not behave independently since they are located very close 

to each other. Thus, it is necessary to consider the effect of interaction between the 

segments. The interaction between all segments can be investigated in detail using the 

boundary collocation method considered in Chapter II at this level. The case of non-

interacting segments is also considered for comparison. The geometric configuration of 

the multisegmented fracture is shown in Figures 3.2 and 3.3, while the corresponding 

data is listed in Tables 3.1 and 3.2. 

 

3.4.1 Computational approach 

A different number of collocation points is carefully assigned to each segment by 

considering the relationship between the offset and the overlap for the interacting case. 

For example, if two adjacent segments are closely spaced, the distribution of the 

collocation points should be dense. The total number of collocation points assigned to 

this fracture is M = 12,465. Accordingly, the size of the set of equations to be solved 

(refer to section 2.1) is 2M = 24,930. 

To solve this large set of linear equations, we used the Silicon Graphics’ 

Scientific Computing Software Library, which includes the multi-processor version of the 

LAPACK library for parallel computations with double precision. Instead of using the 

serialized routines ludcmp and lubksb [Press et al., 1992], the parallelized FORTRAN 

routines dgetrf (LU factorization) and dgetrs (solution of linear equations) were used to 



 110

solve the large sets of equations. The serialized routines are adequate for relatively small-

scale computations (Appendix A). For optimal performance, the Georgia Tech high 

performance computing cluster consisting of SGI Origin 3600 workstations was used. 

 

3.4.2 Evaluation of the pressures, and comparison of computed and measured apertures 

As mentioned in section 3.3, the apertures for non-interacting segments can be 

calculated from (3.1). For interacting segments, after obtaining the coefficients αm
n by 

solving the linear set of equations, aperture (3.2) is computed as a function of the distance 

along the fracture (once the pressure is obtained from the least squares method). The 

number of pressures required to fit the measured apertures needs to be determined for the 

case of non-interacting and interacting segments. 

 

Non-interacting case 

Figure 3.8 shows the comparison between the computed and the measured 

apertures for the case of no interaction when a uniform pressure is applied to the entire 

fracture. In this case, the aperture of each segment is represented by an elliptical shape 

(refer to (3.1)), and its magnitude (∆p = 45.26 MPa) is proportional to the segment length 

2c. Apparently, there is no aperture trend because each segment is not affected by the 

behavior of any other segment. Therefore, to obtain a better least square fit, the 

possibility of applying different pressures is investigated. Figure 3.9 shows the results 

when two different pressures are applied to the fracture (also with non-interacting 

segments). The computed apertures still do not match the measured apertures. Even when 

71 different pressures are applied to each segment independently, as in Figure 3.10, the 
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elliptical aperture shapes of individual segments do not fit to the measured apertures, 

although the entire aperture profile improved considerably. 

 

Interacting case 

In the case of interaction, pressurized individual segments affect the apertures of 

other segments. First, a single uniform pressure is applied to the entire fracture. Although 

the apertures of individual segments are close to the measured apertures (Figure 3.11), 

the entire aperture trend is quasi-elliptical and does not fit the measured data sufficiently 

well. To obtain a better fit, the application of several pressures to the fracture is 

investigated. 

Figure 3.12 shows the results of applying two pressures. The computed apertures 

are in good agreement with the measured apertures in terms of the aperture shape of 

individual segments as well as the entire aperture trend. The detailed comparison is 

shown in Figure 3.13. The regions affected by different pressures are indicated with 

different colors. The first pressure, that is applied to groups 1, 2 and 3, is negative 

(∆p1 = -1.52 MPa). The second pressure, that is applied to groups 4, 5 and 6 is positive 

(∆p2 = 5.23 MPa). There is a large pressure difference between groups 3 and 4. 

To obtain the final results (Figure 3.12) in this analysis, several computations are 

repeated to fit the computed apertures to the measured ones. As indicated in the plot for 

groups 3 and 4 (Figure 3.13), between which the value of pressure is changed abruptly 

from positive to negative, the parts of several segments that have a negative aperture 

during the computation (e.g., segments 42 and 43) were removed from the subsequent 

computation. Negative apertures correspond to segment sides inter-penetrating each 
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other, which is physically not possible. Since the removed segments have very small 

apertures (Figure 3.14), these segments are interpreted to be closed (with contacting 

sides) and, therefore, they do not contribute to the interaction and can be removed from 

the computation (or more accurately, parts of these segments where the computed 

aperture is negative). 

For example, in the first simulation (Figure 3.14a) in which all segments are 

included, the computed apertures of segment 42 and 43 in group 3 are negative (i.e. the 

segments are closed). These segments are removed (Figure 3.14b). The computation is 

then repeated. This results in a good agreement with the measurements (Figure 3.13). 

The narrow segment 44 in group 4 in Figure 3.13 was also removed from the 

simulation, because it resulted in the negative apertures for the wide segment 41 of group 

3 (Figure 3.13). The reason for this effect is the abrupt pressure change between the 

adjacent groups. In reality, such a large pressure change is unlikely. Instead, a transition 

zone with a more gradually changing pressure is expected. This zone can be modeled by 

considering separate pressures in the corresponding segments within this zone. However, 

this would introduce a number of additional fitting parameters. Although these 

parameters may have a physical meaning (e.g., segment 44 may have solidified first 

before the rest of the segments), they are unconstrained by the available measurements. 

Given the very small aperture of segment 44, it does not contribute significantly to the 

interaction, and, consequently, it is removed from the computations. After that, two 

pressure parameters results in reasonable fit (Figure 3.13). 

Although the aperture profile simulated with two pressures is much better than 

that of a single uniform pressure (Figure 3.11), three and six pressures are also applied to 
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the fracture to further improve the computation (Figures 3.15 and 3.16) and to determine 

the minimum number of pressure parameters required for an acceptable agreement 

between the measured and computed results. Compared to the obtained results to those 

for two pressures (Figure 3.12), the aperture trend is not significantly improved and the 

pressures have similar values. Table 3.3 lists a summary of results for the full interaction 

of all segments. For all cases, the negative net pressures are obtained in groups 1, 2 and 3. 

Consequently, two net pressures are sufficient to simulate the apertures of the 71-segment 

vein provided that the effect of interaction between the segments is accounted for. 

 

Table 3.3 Results for the net pressures at the microscale. 
 

Number of pressures 2 3 6 
Group 1 -1.17 
Group 2 

-1.38 
-1.89 

Group 3 

-1.52 

-1.59 -1.15 
Group 4  4.90 
Group 5  5.34 

pressure, 
MPa 

Group 6 
 5.23  5.24 

 5.55 
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3.4.3 Convergence study 

To verify that the solution has converged in the simulations at the microscale, the 

results for all cases are compared with those obtained with an increased number (i.e., 

75% to 100%) of collocation points (for all segments). The details are given in Appendix 

B. 

 

3.5 Mesoscale consideration 

 

As mentioned in section 3.3, in order to simplify the analysis, each of the 

previously defined groups (Figure 3.5a) is represented as a single segment (Figure 3.17a). 

Consequently, any effect caused by the segmentation within each group is ignored in this 

consideration. In other words, at the mesoscale, the individual segments are not 

distinguishable and only the first order segmentation are noticeable (i.e., groups are 

treated as segments). 

 

Non-interacting case 

Similar to the non-interacting segments at the microscale, using a single, uniform 

pressure or two pressures does not result in a good fit of the measurement (Figures 3.17 

and 3.18). Even when six pressures are applied to the fracture (Figure 3.19), the quality 

of the fit does not improve significantly. Consequently, we further consider the case of 

the interacting mesoscale segments. 
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Interacting case 

Using the same procedures as for the microscale, first, a uniform pressure is 

applied to the fracture. As expected, the entire aperture trend shows quasi-elliptical shape 

(Figure 3.20). This is similar to that of the microscale case (Figure 3.11) and does not 

really fit the measured apertures. 

Figure 3.21 shows the result of applying two pressures. A reasonably good 

agreement with the measured points in terms of the shape of the overall aperture trend is 

obtained. However, the computed apertures clearly underestimate the measured apertures. 

This is the result of including all measured apertures while computing the fit using the 

least squares method. Indeed, the apertures of the segments at the microscale are small 

near the segment ends. Yet, the mesoscale segments have small apertures only at their 

ends, but not in the central points corresponding to the ends of the microscale segments. 

Including these small aperture values at the intermediate points (with respect to the 

mesoscale segments) into the least squares fitting decreases the apertures (Figure 3.21). 

At the microscale, this is not an issue since these small apertures are relevant when all 

microscale segments are considered explicitly. 

Therefore, the data is reduced before using the least square method at mesoscale 

simulations. Figure 3.22 shows how the data is reduced on the example of group 3. The 

data points that are below the intersections between the curves representing the segment 

apertures are removed. This results in a good agreement with the measured apertures 

(Figures 3.23). The pressures for the mesoscale segments 1, 2 and 3 are negative (∆p1 = -

1.75 MPa), while the pressures for the mesoscale segments 4, 5 and 6 are positive (∆p2 = 

5.14 MPa). Similar to the microscale case, there is a large pressure transition between 
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groups (or mesoscale segments) 3 and 4. Note that the obtained net pressures at the 

mesoscale are close to those for the microscale case (-1.52 MPa and 5.23 MPa; refer to 

Figure 3.12). 

Similar to the microscale, to obtain the final results (Figure 3.23), small closed 

sections of the mesoscale segments were removed. These closed sections correspond to 

very small measured apertures (Figures 3.23). 

The application of two pressures dramatically improves the entire aperture trend 

compared to the trend for a single uniform pressure (Figure 3.20). Although the 

implemented data reduction is somewhat arbitrary, it does not affect the data set 

significantly. Further data reduction would improve the fitting. Again, using two pressure 

parameters is sufficient (and necessary, since the single pressure model is not reasonably 

accurate) to fit 2,700 data points (after reduction) at the mesoscale if segment interaction 

is taken into account. 

 

3.6 Macroscale consideration 

 

The simplest method to simulate the aperture of multiple segments is to represent 

all vein segments as a single fracture. In this case, segmentation is completely ignored 

within the fracture. In fact, visually, on a map with an equal scales in the x and y 

directions, the vein almost appears to be a single fracture (Figure 3.2a). This is due to the 

fact that the offsets between the adjacent segments are very small. The effective single 

fracture (determined by the linear regression analysis) has a length of 2c = 13.23 m and 

an inclination with respect to the x direction of θ ≈ 1°. 
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The aperture of the effective fracture can be plotted by using (3.1) or (2.24) if the 

uniform pressure ∆p is applied to its sides. As a result, a pressure of ∆p = 2.34 MPa has 

been obtained by the least square method. Figure 3.24 shows the computed and measured 

apertures. As expected, the computed aperture shape is simply elliptic and does not 

represent the aperture shape well. In this respect, this result is similar to those for the 

mesoscale and microscale (Figures 3.20 and 3.21). Accordingly, two pressure parameters 

were used to fit the measured apertures. 

 

Effective fracture 

At the macroscale, consider a single fracture bounded by two pressures that are 

determined by fitting the measured apertures. As shown in Figure 3.25, the apertures 

bounded by two pressures can be simply superimposed in a single fracture. In this case, 

the aperture of the single macroscale fracture can be calculated as follows: 
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where b = -2.09 is the boundary between two pressures (the center of the fracture is x = 0; 

refer to Figure 3.25). The first term in (3.4) represents the case when a single, uniform 

pressure is applied to the entire fracture while the second term [Tada et al., 1985] 

corresponds to the partial uniform pressure applied to the same fracture (Figure 3.25). As 
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a result of the least squares fit, the obtained pressures, ∆p1 = -1.90 MPa and 

∆p2 = 5.03 MPa, are similar to those for the case of segment interaction at the microscale 

and mesoscale. Therefore, the concept of the effective single fracture is sufficiently 

accurate for the computation of the vein apertures, but without the difficult and laborious 

computations of the interaction between the multiple segments.  Mechanically, this is the 

low flexural rigidity of the thin ligaments between the segments that allows the effective 

fracture to accurately represent the vein, although this condition is not sufficient (see 

below). 

The concept has been already employed in the literature [see Olson, 2003, and the 

references therein] in the case of the uniform pressure applied to the sides of the effective 

fracture. In our case, homogeneous pressure does not result in a reasonable agreement 

with the field measurements and minimum two pressure intervals along the effective 

fracture are necessary. Then the match becomes very good. 

Note that while the effective fracture model produced a good result for the studied 

field case, it may not be valid for all types of segmented fractures, even if the spacing 

between the segments is small. Consider, for example, en echelon of identical segments 

that is well represented by the effective fracture. Let us do the following thought 

experiment. Start increasing the number of segments in the echelon (i.e., adding more and 

more segments to the echelon edges), but maintaining the same pressure in each segment 

and keeping the geometrical pattern (i.e., offset, overlap, and the segment sizes). As a 

result, the aperture of the central segment will be approaching that of an infinite array 

and, therefore, is bounded. In contrast, because the size of the effective fracture grows 

unlimited (since we continue adding more segments), the aperture of the effective 
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fracture tends to infinity and, hence, is unbounded. In other words, the difference 

between the actual aperture and that of the effective fracture will increase without limit. 

Thus, this example clearly demonstrates that the concept of the effective fracture, which 

has recently become conventional, needs to be applied with care. 

 

3.7 Discussion 

 

3.7.1 Effect of interaction 

For comparison, the changes in the obtained pressures are summarized in Table 

3.4 for all cases. The shaded cells in Table 3.4 indicate the pressures that result in the best 

fits of the measurements. By using two pressures as fitting parameters for the interacting 

vein, it is possible to obtain an excellent match (Figures 3.12, 3.23, and 3.26) between the 

computed and measured apertures (based on 3,339 data points) at every scale. 

As stated previously, the vein segments that are considered in this study are 

strongly interacting with each other. Even the application of many pressures in the model 

of no interaction at both the mesoscale (Figure 3.19) and the microscale (Figure 3.10) 

does not result in an acceptable match with the measured apertures. 

As can be seen from Table 3.4, there are noticeable differences of pressure values 

between the cases of non-interacting and interacting segments. However, the pressures 

for the interacting segments for different scales are similar to each other when two 

pressures are applied to the fracture (shaded area in Table 3.4). In addition, regions with 

negative pressures (group 1-3) are detected, while all pressures are positive for the non-

interacting case. 
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Furthermore, when applying two pressures at the microscale (Table 3.4), the 

positive pressure obtained for non-interacting segments (∆p2 = 45.49 MPa) is an order of 

magnitude greater than that for interacting segments (∆p2 = 5.23 MPa). At the mesoscale, 

the deviation becomes less significant. However, the positive pressure obtained for non-

interacting segments (∆p2 = 12.62 MPa) is still greater than that for the interacting 

segments (∆p2 = 5.14 MPa). This is due to the fact that the strong interaction between the 

segments results in larger segment apertures, such that the pressure is much lower than 

that for the non-interacting segments. 

Therefore, ignoring the segment interaction in the hydraulic fracturing analysis 

may overestimate the pressure by an order of magnitude (or more). Furthermore, this 

overestimation could be even more significant since the sign of the pressure values may 

be misinterpreted (refer to Table 3.4). 

 

3.7.2 Effect of scale 

The effect of spatial scale can be considered by comparing both the pressures and 

the apertures at different scales. In this analysis, the microscale and mesoscale both show 

an excellent fits of the measurements if the effect of interaction is taken into account 

while using two pressures. At the microscale, the individual aperture shape of the 

segments, as well as the aperture shape of the entire fracture, can be simulated. 

Obviously, at the mesoscale, the individual apertures of the segments cannot be 

simulated, but it is much easier to simulate the entire aperture shape because of the 

reduced size of the problem. 
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The pressures obtained from the three different spatial scales show slight 

deviations when the effect of the interaction is considered. For example, for a single 

uniform pressure (Table 3.4), the pressure for the interacting case at the microscale 

(∆p = 3.45MPa) is slightly greater than that at the mesoscale (∆p = 2.62MPa) and the 

macroscale (∆p = 2.34MPa). For two pressures (Table 3.4), the pressures at the 

microscale (∆p1 = -1.52 MPa, ∆p2 = 5.23 MPa) are also slightly greater than those at the 

mesoscale (∆p1 = -1.75 MPa, ∆p2 = 5.14 MPa) and the macroscale (∆p1 = -1.90 MPa, 

∆p2 = 5.03 MPa). This difference, even if it is small, could stem from the method of data 

reduction (Figure 3.22). In fact, the data has not been sufficiently reduced for the 

mesoscale (Figure 3.23) and microscale (Figure 3.26). Removing more data points could 

increase the pressures and lead to the decrease of the pressure difference at all spatial 

scales. 

On the other hand, when the effect of interaction is ignored, the pressures are very 

different. For example, for two pressures (Table 3.4), the pressures at the microscale 

(∆p1 = 42.12 MPa, ∆p2 = 45.49 MPa) are much greater than that at the mesoscale 

(∆p1 = 5.42 MPa, ∆p2 = 12.62 MPa). Consequently, neglecting the interaction can result 

in the pressure misinterpretation. 

In general, as the amount of segmentation increases, the pressure required to 

achieve the same aperture increases (if the overall fracture dimension does not change). 

In other words, it is expected that the pressure at a smaller scale (microscale) should be 

higher than those at a larger scale (mesoscale and macroscale). This behavior has not 

been clearly identified for the interacting segments of this fracture, since it has extremely 

small spacing and large overlaps. Nevertheless, it is possible to properly simulate fracture 
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shapes and pressures at every scale as long as the effect of interaction is taken into 

account. 

 

3.7.3 Non-elliptical aperture shape 

An elliptical aperture shape is generally associated with a uniform pressure 

distribution. However, a fracture typically has a variety of cross-sectional shapes that are 

not simply elliptical due to the non-uniform pressure distribution and the inherent nature 

of the rock heterogeneity [e.g., Pollard and Muller, 1976]. For example, the entire 

aperture profile of the 71-segment vein, which was studies in this chapter (Figure 3.2c), is 

not elliptical. The profile is low and concave at the left and high and convex at the right 

(refer to Figure 3.2c), which is referred to as a teardrop shape [e.g., Secor and Pollard, 

1975; Pollard and Muller, 1976]. Moreover, the apertures of individual segments are 

neither elliptical nor teardrop because of the interaction between adjacent segments. 

If two pressures caused the asymmetry of the 71-segment vein, it is expected that 

the internal pressure p has changed while the remote stress σy
∞ remained constant 

because the total length of this fracture, 2c = 13.23 m, is not sufficiently large for the 

remote stress to be affected. In other words, the left side of the aperture profile (groups 1-

3) indicates that the remote stress σy
∞ is greater than the internal pressure (i.e., the net 

pressure is negative), whereas the right side of the aperture profile (groups 4-6) indicates 

that the internal pressure overcame the remote stress (i.e., the net pressure is positive). 
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3.7.4 Geological interpretation 

The Culpeper basin of northern Virginia, where Culpeper Quarry is located, is a 

fault-bounded trough containing a thick sequence of Upper Triassic to Lower Jurassic 

nonmarine sedimentary rocks (e.g., siltstone) [Lee and Froelich, 1987]. A relatively high 

fluid pressure (5 MPa) could result from tectonic extension. Vermilye and Scholz [1995] 

stated that the orientation of this vein set is compatible with the northwest extension 

direction postulated for the formation of Culpeper basin. 

Later, the lower Jurassic strata of the Culpeper basin were interbedded with a 

series of basalt flows that erupted on the surface and subsurface intrusions of basaltic 

magma known as diabase [Lee and Froelich, 1987]. Accordingly, it cannot be excluded 

that the potential hydrothermal activity generated by the intrusion of diabase and the 

higher percentage of hydrothermal minerals [Junium et al., 2000] could be another reason 

for the high fluid pressure. 

Our computations recreate the final stage of the vein evolution. The simulated 

apertures represent segments that have been opened by the two calculated net pressures. 

These two distinct pressures indicate that the pressure communication between the two 

corresponding vein parts is weak or non-existent. Further geological interpretation, 

perhaps, based on our results, is required to reconstruct the complete history of the vein 

(e.g., initiation, propagation, fluid flow, and precipitation) [refer to Ramsay, 1980; Fisher 

and Brantley, 1992; Laubach, 2003], which is beyond the scope of this work. Yet, we 

concluded that as long as the vein was pressurized, mechanical interaction was always a 

major mechanism regardless of whether other processes were active or not. 
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3.8 Summary and conclusions 

 

In this chapter, a typical field example, a highly segmented vein, is studied and 

used to determine the effects of segment interaction at different spatial scales. For this 

well-mapped vein that represents a well constrained case, the simplest constitutive model, 

based on an ideal elastic material, has been tested for its capability to capture the complex 

behavior of multisegmented fractures. 

The mathematical model is tested by comparing computed segment apertures to 

the measured apertures at three different spatial scales. By using this simple constitutive 

model and by including the effect of interaction between the segments, an excellent 

match was obtained at all considered scales. Only two net pressures were needed to fit 

3,339 highly irregular measured apertures. This simulation also suggests that the 

interaction between the segments strongly affects the apertures of the fractures and their 

net pressures. In contrast, by neglecting the interaction between the segments, the net 

pressures can be grossly overestimated, by as much as an order of magnitude or more. 

In addition, the concept of the effective fracture, as currently accepted in the 

literature, has been employed for a simple simulation of fractures with closely spaced and 

interacting segments. In the studied field case, the effective fracture model provided 

rather robust and accurate results. In general, however, due to the complex interplay 

between the parameters of segmentation, this concept may not always be applicable and 

may lead to unbounded inaccuracy. 

Our computations recreate the final stage of the vein evolution. The simulated 

apertures represent those that have been opened by the two calculated net pressures. 
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These two distinct pressures indicate that the pressure communication between the two 

corresponding vein parts is weak or non-existent. Further geological interpretation, based, 

perhaps, on our results, is required to reconstruct the complete history of the vein (e.g., 

initiation, propagation, fluid flow, and precipitation). Yet, our computations indicate that 

as long as the vein was pressurized, mechanical interaction was always a major 

mechanism regardless of whether other processes were active or not. 
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Figure 3.1 Geometric terms for a multisegmented fracture. Negative overlap indicates 
separation and vice versa (e.g., overlap of -2 cm means 2 cm of separation and the 
separation of -5 cm indicates the 5 cm overlap). 
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Figure 3.2 Map view and aperture distribution of the 71-segment calcite vein in siltstone 
in Culpeper Quarry (Stevensburg, Virginia) [after Vermilye and Scholz, 1995]: (a) map 
view for equal scales, (b) map view at magnified scale in y direction, and (c) aperture 
versus distance along the vein segments. 
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Figure 3.3 Offset versus overlap in the 71-segment vein markers based on the data in 
Table 3.2. Data points for separation (negative overlaps) in Table 3.2 are not shown. 
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Figure 3.4 Aperture versus distance along vein at different spatial scales [Vermilye and 
Scholz, 1995]. 
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Figure 3.5 Map views at three different spatial scales (exaggerated vertical scale): (a) 
microscale (71-segment model), (b) mesoscale (6-segment model), and (c) macroscale 
(single fracture model). 
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Figure 3.6 Map views at three different spatial scales (equal scales): (a) microscale (71-
segment model), (b) mesoscale (6-segment model), and (c) macroscale (single fracture 
model). 
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Figure 3.7 Aperture of a single isolated fracture under the influence of the pressure 
∆p = p - σy

∞, where σy
∞ is remote stress and p is internal pressure, in an infinite elastic 

medium. 
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Figure 3.8 Comparison of computed and measured apertures for a single uniform 
pressure for non-interacting segments at the microscale (value in the legend indicates the 
magnitude of the computed uniform pressure). 
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Figure 3.9 Comparison of computed and measured apertures for two pressures for non-
interacting segments at the microscale (values in the legend indicate the computed 
pressure magnitudes). 
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Figure 3.10 Application of 71 pressures for non-interacting segments at the microscale: 
(a) comparison of computed and measured apertures, and (b) variation of 71 pressures 
along the segments. 
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Figure 3.11 Comparison of computed and measured apertures for a single uniform 
pressure for interacting segments at the microscale (value in the legend indicates the 
magnitude of the computed uniform pressure). 
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Figure 3.12 Application of two pressures for interacting segments at the microscale: (a) 
71 segments, and (b) comparison of computed and measured apertures (values in the 
legend indicate the computed pressure magnitudes). 
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Figure 3.13 Detailed comparison of computed (bold line) and measured (thin line) 
apertures for two pressures for interacting segments at the microscale. 
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Figure 3.13 (Continued). 
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Figure 3.14 Change of apertures after removing the closed segments at the pressure 
boundary: (a) apertures before removing segments, and (b) apertures after removal of 
segments (segment 42 and 43) that have a negative computed aperture in (a). Thin line 
represents measured apertures and bold line represents computed apertures. Dotted line 
indicates segments removed for calculation. 
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Figure 3.15 Application of three pressures for interacting segments at the microscale: (a) 
71 segments, and (b) comparison of computed and measured apertures (values in the 
legend indicate the computed pressure magnitudes). 
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Figure 3.16 Application of six pressures for interacting segments at the microscale: (a) 71 
segments, and (b) comparison of computed and measured apertures (values in the legend 
indicate the computed pressure magnitudes). 
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(b) 

Figure 3.17 Application of a single uniform pressure for non-interacting segments at the 
mesoscale: (a) six segments, and (b) comparison of computed and measured apertures 
(value in the legend indicates the computed pressure magnitude). 
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Figure 3.18 Comparison of computed and measured apertures for two pressures for non-
interacting segments at the mesoscale (values in the legend indicate the computed 
pressure magnitudes). 
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Figure 3.19 Comparison of computed and measured apertures for six pressures for the 
non-interacting segments at the mesoscale (values in the legend indicate the computed 
pressure magnitudes). 
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Figure 3.20 Comparison of computed and measured apertures for a single uniform 
pressure for interacting case at the mesoscale (values in the legend indicates the 
computed pressure magnitude). 
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Figure 3.21 Application of two pressures for interacting segments at the mesoscale 
(before reduction): (a) six segments, and (b) comparison of computed and measured 
apertures (values in the legend indicate the computed pressure magnitudes). 
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Figure 3.22 Data reduction in group 3 for the least squares method. Dotted line indicates 
data removed for the least squares method. 
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Figure 3.23 Application of two pressures for interacting segments at the mesoscale (after 
reduction): (a) six segments, and (b) comparison of computed and measured apertures 
(values in the legend indicate the computed pressure magnitudes). 
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Figure 3.24 Comparison of computed and measured apertures for a single uniform 
pressure at the macroscale (value in the legend indicates the magnitude of the computed 
uniform pressure). 
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Figure 3.25 Superposition of two pressures in a single fracture. 
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Figure 3.26 Comparison of computed and measured apertures for two pressures at the 
macroscale (value in the legend indicates the magnitudes of the computed pressures with 
reduced data). 
 
 

 



 154

CHAPTER IV 

DIKING PROCESSES AT MID-OCEANIC RIDGES 

 

4.1 Magma chambers and dike emplacement at mid-oceanic ridges 

 

Mid-oceanic ridges (MOR) (Figure 4.1), the sites of seafloor spreading, are 

characterized by dynamic volcanic activity at the ocean floor. MOR are found in all of 

the major oceans occupying the Earth’s surface, where the new lithosphere is created 

(dashed area in Figure 4.2). Magma chambers beneath MOR play a major role in crustal 

formation and hydrothermal activity [e.g., see review by Lowell et al., 1995]. Several 

studies have been conducted over the past decades to elucidate the locations, dimensions 

and properties of the magma chambers. Although the magma chambers are the subject of 

debate due to their inaccessibility, the understanding has been much improved due to 

accumulated geophysical evidence and observations. From direct observations of 

ophiolites, which are thought to be ancient sections of the oceanic crust exposed on land 

initially, the magma chambers were initially believed to be huge molten reservoirs [Cann, 

1974; Pallister and Hopson, 1981]. However, seismic studies on MOR (Table 4.1) have 

indicated that the cross section of the magma chambers appear to be thin (< 200 m) and 

narrow (1 to 4 km) at a depth of approximately 1 to 3 km below the seafloor [Detrick et 

al., 1987, 1993; Harding et al., 1989; Toomey et al., 1990; Burnett et al., 1989; Vera et 

al., 1990; Kent et al., 1990, 1993a, 1993b; Caress et al., 1992; Wilcock et al., 1992; 

Babcock et al., 1998]. The liquid magma overlies the top of the seismic low 
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velocity zone (LVZ), which is partially melted and extends to the Mohorovicic 

discontinuity. Figure 4.3 represents the crustal structure including the magma lens of the 

axial magma chamber at the East Pacific Rise (EPR) near 9°30'N by Kent et al. [1993b]. 

Such a magma lens also lies beneath the intermediate spreading MOR, the Endeavor 

segment on the Juan de Fuca Ridge (JFR) [Rohr et al., 1988; Sinton and Detrick, 1992; 

Detrick et al., 2002; Carbotte et al., 2002a], and the Valu Fa Ridge (VFR) [Collier and 

Sinha, 1990], and beneath parts of the slow spreading Mid-Atlantic Ridge (MAR) [Sinha 

et al., 1998; Navin et al., 1998]. In addition, more recent studies suggest the existence of 

deep melt lenses near the crust-mantle interface [Crawford et al., 1999; Dunn et al., 

2000] (Figure 4.4) and multiple lenses in the lower crust [Kelemen et al., 1997; Garrido 

et al., 2001]. 

It has also been suggested that the magma chambers are generally continuous 

along the EPR [Detrick et al., 1987 and 1993; Burnett et al., 1989; Babcock et al., 1998] 

with significant variation in width across the major and minor ridge axis discontinuities 

[Kent et al., 1993a, 1993b, and 1994]. Sinton and Detrick [1992] interpreted that the LVZ 

of a tomographic image of the near 9°30’N EPR [Toomey et al., 1990] is also continuous 

across small ridge axis discontinuities, with variation of its width and internal velocity 

structure. 

The properties of the rock beneath the EPR can be inferred from seismic data. 

However, this is difficult because seismic waves vary with pressure, mineral 

composition, and magma melt distribution. Figure 4.5 shows a schematic cross section of 

the magma chamber with a p-wave velocity, Vp, profile [Vera et al. 1990]. Figure 4.6 

shows p-wave (Vp) and s-wave velocity (Vs) profiles at 9°N on the EPR by Vera et al. 
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[1990]. According to these profiles, the top of the magma chamber lies 1.6 km beneath 

the seafloor where both wave velocities decrease abruptly (Vp = 3 km/s and Vs ≈ 0 km/s). 

This indicates that the magma chamber is composed of fully molten material. However, 

in other places, the magma chamber could consist of partially molten material indicated 

by Vs ≠ 0 km/s [Hussenoeder et al., 1996; Singh et al., 1998]. Also, in the Vp-profile 

represented in Figure 4.5, most of the upper crust above the magma chamber shows Vp = 

5.3 to 6.7 km/s. In the lower crustal region, Vp and Vs gradually increase, to Vp = 5.5 km 

/s and Vs = 2.97 km/s on average. Moreover, the compliance measurements method 

suggested by Crawford et al. [1999] shows a 25% lower Vs in the upper crust and a 40% 

lower Vs in the lower crust compared to those found by Vera et al. [1990] (Figure 4.6). 

It is not clearly understood how magmatic dikes can initially be generated from 

the pressurized magma chambers and propagate to the seafloor. It is commonly believed 

that dikes propagate from the center of pressurized magma lenses (Figures 4.7a and 4.7b). 

However, this is not consistent with conventional fracture mechanics, because for the thin 

crack-like magma lens, the stress concentration occurs at the tip if it is pressurized. 

Recent seafloor studies also suggest that volcanic and hydrothermal activities are not 

restricted to the ridge axis but may also occur at some distance away from the axis as 

well, ranging from a kilometer to several kilometers [Perfit et al., 1994; Alexander and 

Macdonald, 1996; Van Ark et al., 2003]. Therefore, this lens-shaped magma chamber 

indicates that the pressurization of the magma chamber is likely to result in a stress 

concentration near the tips of the lens while the rest of the host rock is in a state of 

compression. As such, if an episode of magma replenishment in the magma lens results in 
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diking, the dikes will likely initiate near the tip of the lens. The continued propagation of 

these dikes can then be described by the principles of fracture mechanics. 

Alternatively, diking may result from solidification of the magma lens as a result 

of rapid hydrothermal cooling. Because the density of magma is lower than that of fresh 

rock, crystallization leads to a pressure decrease in the lens. Consequently, the stress 

distribution in the host rock changes and becomes tensile in the middle part of the magma 

lens, and compressive in the regions near the tips. In this scenario, indeed, the dikes are 

likely to initiate from the center of the magma lens, and the hydrothermal sites would be 

expected to occur along the ridge axis. 

Based on the thin melt lens model of an axial magma chamber, two scenarios (i.e., 

dike propagation from the tip and the center of the magma lens) of dike evolution from 

the magma lens are simulated to investigate the mechanisms of dike propagation and its 

effect on hydrothermal activity. 

 

4.2 Major mechanisms and mathematical model 

 

4.2.1 Model of magma lens and its properties 

Model of magma lens 

In this section, dike propagation from a lens-shaped magma chamber is simulated 

numerically the in plane strain condition. Figure 4.8 depicts the mathematical model that 

is used to model the mechanical interaction between the magma lens, the dike and the 

seafloor. The magma lens is trapped beneath the impermeable sheeted dikes and is 

located above the LVZ. 
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The magma lens is assumed to be 2b = 100 m thick and 2c = 1 to 2 km wide at a 

depth of H = 1 to 2 km beneath the seafloor. Although a constant width is suggested for 

the LVZ [Dunn et al., 2000], a width that broadens as it extends into the lower crust with 

an angle of approximately 45° with respect to the tip of the magma lens is also used as a 

limiting case. The typical value for the seawater pressure is pw = 25 MPa that indicates an 

ocean floor depth of hw = 2.5 km. The seafloor is assumed to be horizontal. 

 

Mesh and boundary conditions 

To simulate dike propagation from the magma lens, the finite element code 

FRANC2D [Wawrzynek and Ingraffea, 1987] is used. Figure 4.9 shows the typical 

FRANC2D mesh with the magma chamber and the boundary conditions. The applied 

mesh has a width of 20 km and a depth of 10 km to minimize the boundary effect. The 

magma chamber is located in the rectangular region within the finer mesh (i.e., 100 m per 

grid). Figure 4.10 shows the FRANC2D mesh of the magnified magma lens area for a 

width of 2c = 1 km and 2 km. Each tip of the magma lens is modeled by a semi-circle 

with a radius of r = 50 m. The lens has a thickness of 100 m. 

The left and right side boundaries have no horizontal displacement (ux = 0), 

assuming that these boundaries are sufficiently far away from the magma chamber. The 

boundary condition at the lower surface is assumed to have no vertical displacement (uy = 

0). A seawater pressure of pw = 25 MPa is applied to the upper surface, and a constant 

body forces are applied to simulate the gravitational acceleration (g = 10 m/sec2). 
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Properties 

The elastic properties for the numerical simulation are determined from elastic 

wave velocities. The magma lens is assumed to consist of fully molten liquid (Vs = 0 

m/s), although this may not be always vaild [Hussenoeder et al., 1996; Singh et al., 

1998], as previously stated in section 4.1. 

For the case of a homogeneous crust, Vp = 5.3 km/s and Vs = 3.0 km/s are used for 

the crustal rocks, resulting in the Young’s modulus of Er = 6.144⋅1010 Pa and Poisson’s 

ratio of νr = 0.264. For the heterogeneous case, the LVZ is assumed to have different 

material properties. Using Vp = 5.3 km/s, which is the same as homogeneous crust, and Vs 

= 2.0 km/s, which is the average value suggested by Vera et al. [1990] and Crawford et 

al. [1999], we have El = 3.061⋅1010 Pa and νl = 0.417. The density of the rock and magma 

are assumed to be ρr = 2,700 kg/m3 and ρm = 2,600 kg/m3, respectively, resulting in a 100 

kg/m3 difference [e.g., Murase and McBirney, 1973; Hussenoeder et al., 1996]. The 

material properties used for the numerical simulations are summarized in Table 4.2. 

 

Table 4.2 Material properties for numerical model. 
 

Material Property Value 

p-wave velocity Vp 5.3 km/s 

s-wave velocity Vs 3.0 km/s 
Density ρr 2,700 kg/m3 

Upper and lower crust 

Fracture toughness KIc 107 Pa⋅m1/2 
p-wave velocity Vp 5.3 km/s 
s-wave velocity Vs 2.0 km /s Low velocity zone 
Density ρr 2,700 kg/m3 

Magma Density ρm 2,600 kg/m3 
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4.2.2 Dike initiation and pressure 

Dike initiation at the tip of the magma lens 

If the pressure inside the magma lens due to the replenishment from the melt 

source exceeds the overburden stress σ1 at the location in the magma lens (i.e., the sum of 

seawater pressure and the lithostatic pressure), the stress will initially be concentrated 

near the tip of the magma lens. Figure 4.11 shows a contour plot of the major principal 

stress σ1 in the vicinity of a 1 km wide magma chamber at a depth of 1 km in 

homogeneous crust. The applied initial pressure is only 1% greater than the overburden 

pressure, i.e., pi = 1.01σ1. Tensile stresses occur at the tip while compressive stresses are 

generated at the center of the magma chamber. Figure 4.12 shows the details of dike 

initiation during numerical simulation. The right tip of the magma lens area is shown in a 

magnified scale with a tensile stress bar (Figure 4.12a). According to the tensile stress 

distribution along the surface of the chamber tip (Figure 4.12b), the maximum tensile 

stress at the tip is approximately 24 MPa, located at an angle of θ = 70° with respect to 

the plane of the magma lens. Therefore, it is expected that the dike will initiate at the tip 

if the maximum tensile stress, σθθ
max, exceeds the tensile strength of the crustal rock, σt. 

Figure 4.12c shows dike initiation along the line 'aa  in the vicinity of the tip of magma 

lens. 

 

Dike initiation at the center of the magma lens 

Dike initiation may also result from the solidification of the magma lens. Since 

the magma density is lower than that of the fresh rock, crystallization leads to a pressure 

decrease inside the lens. Consequently, the stress distribution in the host rock changes 
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and becomes tensile in the central part of the magma lens, and compressive in the tip 

regions. In this scenario, the dikes are likely to initiate from the central areas. 

Consequently, some hydrothermal sites may occur along the ridge axis. 

Figure 4.13 shows the contour plot of the major principal stress σ1 in the vicinity 

of a 1 km wide magma chamber at a depth of 1 km in a homogeneous crust. The applied 

initial pressure is 40% less than the overburden pressure, i.e., pi = 0.60σ1(0). A 

compressive stress is generated on the surface of the entire magma lens, except the lens 

center. Figure 4.14 shows the details of dike initiation at the center of the magma lens for 

this case. The initial pressure, pi, can be obtained by decreasing the pressure in the 

magma lens until the tensile stress exceeds the tensile strength of the rock at the center of 

the lens. Figures 4.14a and 4.14b show the deformation of the magma chamber and the 

horizontal stress distribution, σxx, along the upper part of the lens, indicating the 

maximum horizontal stress, σxx
max = 10 MPa, at the lens center. Figure 4.14c shows the 

dike initiation at the center of the magma lens. 

 

Dike pressure 

Due to the high viscosity of the magma, the actual dike pressure will be 

distributed nonlinearly. Here, we employ the hydrostatic pressure distribution applied to 

the fracture to induce continued dike propagation, as shown in Figure 4.15. In other 

words, the pressure in the dike decreases hydrostatically with depth: 

gypyp mi ρ−=)(                                                  (4.1) 

where y is the difference in depth between the dike tip and the base (at the depth of the 

magma chamber) Pressure (4.1) can be seen as an upper bound for the actual pressure 
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distribution in the dike (Figure 4.15). This bound cannot be further improved since it 

becomes accurate when the dike stops and can be viewed as an asymptotic limit for 

slowly propagating dikes. 

 

4.2.3 Trajectories of dike propagation 

Dike propagation from the magma lens tip 

Consider dike trajectories for different lens depths, H, and widths, 2c, in both a 

homogeneous and a heterogeneous crust. Calculations suggest that dikes propagate 

almost vertically towards the seafloor from the lens tips for all upper bound cases 

(Figures 4.16 – 4.18), regardless of the crustal condition (Figure 4.19). 

Fialko [2001] has suggested different dike trajectories using the boundary element 

method. He suggested that the dike originating from pressurized chamber does not 

propagate vertically towards the seafloor and that the distance between the ridge and the 

emerging dike is much greater than the width of the magma lens. This is due to the fact 

that the body force, that affects the direction of dike propagation, was omitted in his 

calculations for simplicity. Based on the results presented in our study, the dike can 

indeed propagate farther than the distance of magma lens tip, provided that the initial 

pressure pi is much greater than the overburden. 

 

Dike propagation from the magma lens center 

For dike propagation from the lens center, the dike always propagates vertically 

towards the seafloor as expected based on the symmetry of the model adopted here 

(Figure 4.20). 
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4.3 Dike propagation from the magma lens center 

 

The numerical analyses described in section 4.2 intend only to simulate the 

possible dike trajectories. The pressure inside the magma lens remains constant and the 

chamber volume increases as the dike propagates. In reality, the total magma volume 

(chamber plus dike) is expected to remain constant because the dike propagates much 

more rapidly than that rate of magma to replenishment. Accordingly, the pressure in the 

magma lens should decrease as the dike propagates. This constrain represents the main 

difference of our problem compared to those typical studied in mechanics of hydraulic 

fracturing and diking (where the constant flow rate or constant pressure conditions are 

usually assumed). In this section, the magma conservation is taken into account. After the 

initial pressure for the central dike propagation is estimated, it is determined whether a 

dike indeed propagates to the surface (in the model of the homogeneous crust). The 

pressure in the magma lens, the volume of the dike, and the opening of the dike are also 

evaluated. 

 

4.3.1 Initial pressure 

In section 4.2, the initial pressure, pi, of dike initiation was defined based on the 

condition that it exceeds the tensile strength of the rock. Numerically this condition leads 

to a rather laborious procedure because the values for the pressure are computed 

iteratively, for a particular instance of the tensile strength of the rock, the depth and the 

geometry of the magma lens. Therefore, in this section, the stress state in the vicinity of 
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the magma lens is addressed analytically to quantify the initial pressure for the dike 

propagation from the lens tip and center. 

Since the magma lens is relatively close to the seafloor surface, it may interact 

with the surface mechanically before and during dike propagation. Figure 4.21 shows the 

physical problem. The chamber is loaded by an internal pressure p while the in-situ 

stresses, σ1(y) and σ3(y), can be expressed as 

)()()(1 yHgghyHgpy rwwrw −+=−+= ρρρσ                         (4.2) 

)()( 13 yy λσσ =       )1( <λ                                         (4.3) 

where ρw is the seawater density, hw is the seawater depth, and λ is the stress ratio of 

horizontal to vertical in-situ stress. 

The physical problem for a thin cavity that is filled with magma can be 

represented by an idealized mathematical problem for a fracture with the same pressure 

(Figure 4.22), because 

cb <<                                                           (4.4) 

Further, this problem can be represented as a sum of two auxiliary problems: the half-

space without the magma lens but with gravity and given boundary conditions (Figure 

4.23a), and a half-space with a pressurized magma lens but zero gravity and other 

boundary conditions (Figure 4.23b). 

In the later auxiliary problem, the tractions on the fracture sides (σ in Figure 

4.23b) can be expressed as 

)0(1σσ −= p                                                     (4.5) 
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where σ1(0) is the overburden stress at the fracture location (y = 0) and can be obtained 

from (4.2): 

gHghgHp rwwrw ρρρσ +=+=)0(1                                  (4.6) 

Here hw is the ocean depth. 

Consider first the fracture open by the internal pressure p in an infinite plane 

loaded by the remote stresses σ1 and σ3 (Figure 4.24a). The maximum stress σmax at the 

center of the magma lens (Figure 4.24b) is 

p−−= 31max σσσ                                               (4.7) 

Substituting (4.3) into (4.7) yields 

p−−= )1(1max λσσ                                              (4.8) 

For dike initiation, the maximum stress should be equal to or greater than the tensile 

strength of the rock: 

tσσ ≥max                                                      (4.9) 

Therefore, substituting (4.8) into (4.9) results in the initiation condition 

tp σλσ −−≤ )1(1                                               (4.10) 

In our case, because of the free surface (Figure 4.23b), the stress  

2

2

4
3

H
c

r
σσ =                                                     (4.11) 
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needs to be added to stress σ in (4.5). This stress is the first-order correction 

corresponding to the fracture-surface interaction [Dyskin et al., 2000]. Rearranging then 

(4.7) as 

31max )( σσσ −−−= p                                            (4.12) 

and adding (4.11) to the first term in (4.12) yields 

32

2

1max 4
31)( σσσ −








+−−=

H
cp                                    (4.13) 

Therefore, to initiate a dike at the center of the magma lens, (4.13) needs to satisfy 

condition (4.9). As a result, the pressure of dike initiation 

2

2

2

2

1

4
31

4
31

H
c

H
c

p
t

i

+

−







−+

=
σλσ

                                       (4.14) 

 

4.3.2 Dimensional analysis 

Figure 4.25 shows the superposition of problem for the dike propagation from the 

lens center at a MOR. Again, the magma lens is represented by a fracture (i.e., 

mathematical discontinuity). The dike is assumed to propagate vertically from the center 

of the magma lens (section 4.2.3). The original problem is simply represented as the sum 

of two sub-problems: the in-situ stress problem and the dike problem (Figure 4.25). The 

in-situ stress problem describes the body of the crust with gravity and other boundary 

conditions, but without a magma lens and without a dike. The dike problem describes the 
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body with a pressurized magma lens and with a pressurized dike but with zero gravity 

and other boundary conditions. 

In the original problem (Figure 4.25), the pressure (4.1) on the dike can be 

expressed as 

)0()0()()( py
l

plpyp +
−

=                                       (4.15) 

where p(l) is the pressure at the dike tip, p(0) is the pressure in the magma lens equal to 

the pressure at the dike base, and l is the dike length. 

In the in-situ stress problem (Figure 4.25), the solution must satisfy (e.g., 

Muskhelishivili [1953, §28]) equilibrium 

0=
∂

∂
+

∂
∂

yx
xyxx τσ

                                                (4.16) 

g
yx r

yyxy ρ
στ

=
∂

∂
+

∂

∂
                                             (4.17) 

and compatibility 

0)(2 =+∇ yyxx σσ                                               (4.18) 

conditions, where 

)(1 yyy σσ −→     )( ±∞→x                                      (4.19) 

)(3 yxx σσ −→     )( ±∞→x                                      (4.20) 

wyy p−=σ     )( Hy =                                           (4.21) 
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and compressive stresses are negative. The solution of this boundary value problem (4.16 

– 4.21) is obviously 

0=xyτ                                                        (4.22) 

)(),( 3 yyxxx σσ −=                                              (4.23) 

)(),( 1 yyxyy σσ −=                                              (4.24) 

where )(1 yσ  and )(3 yσ  are given by (4.2) and (4.3). Substituting (4.2) and (4.3) into 

(4.23) and (4.24) yields 

)]([),( yHgpyx rw
situin

xx −+−=− ρλσ                                 (4.25) 

)]([),( yHgpyx rw
situin

yy −+−=− ρσ                                  (4.26) 

0),( =− yxsituin
xyτ                                                 (4.27) 

In the dike problem (Figure 4.25), the pressure on the dike and magma lens can be 

defined as 

)()()( 3 yypys σ−=                                              (4.28) 

)0()0( 1σσ −= p                                                (4.29) 

respectively.  

The dike problem (Figure 4.25), in turn, can be also represented as the sum of 

three auxiliary problems (Figure 4.26). Let 

σ=Ap                                                        (4.30) 

)(lspB =                                                      (4.31) 
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)()()( lsysypC −=                                              (4.32) 

be the loads in these problems (see Figure 4.26). Since pC(y) is a linear function of y 

(because both p(y) and σ3(y) in (4.28) are linear function of y). Each of problems A, B, 

and C depends only on one loading parameter, i.e., pA, pB, and pC(0), respectively. 

In each of these problems, the parameter set is 

{ }yxcHlEp rrZ ,,,,,,, ν=Ω                                      (4.33) 

where subscript Z represents A, B, or C. In two dimensions, the stresses σij are 

independent of elastic moduli for our boundary conditions [e.g., Muskhelishivili, 1953]. 

Therefore, 

),,,,,( yxcHlpZijij σσ =                                         (4.34) 

or 


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c
lfp ijZij ,,,σ                                          (4.35) 

Similarly, the displacements in two dimensions are given by 

),,,,,,,( yxcHlEpuu rrZii ν=                                    (4.36) 

or 


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Finally, the stress intensity factors (SIFs) for the dike and magma lens are 







=

c
H

c
lkcpK dike

IZ
dike
I ,π                                        (4.38) 
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


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
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I ,π                                   (4.39) 

Here fij, Fi, KI
dike, and KI

chamber are some dimensionless function yet to be 

determined. For our purposes, only the SIFs and volumes (i.e., areas) of the dike and 

magma chamber are needed: 
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where again Z is A, B, or C and VZ
chamber volume of crack modeling the magma chamber 

in Problem Z. 

In (4.40) to (4.42), functions kI
dike, fZ

dike, and fZ
chamber are dimensionless. Suppose 

that all three functions with respect to the dike propagation length, l, are known from the 

numerical calculations. Then, the superposition of problems A, B, and C results in 
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Our notations can be further simplified by introducing the function 
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and the “total” volume 
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Since at this stage, the magma chamber is represented by a fracture (Figure 4.25), 

V in (4.47) gives the total volume of the dike-chamber system minus the initial volume of 

the magma chamber. The word “initial” here may refer to different moments in the 

evolution of the dike-chamber system. To calculate the change of the magma chamber 

volume due to the dike propagation, the volume of the fracture (modeling the chamber) 

that was pressurized by the pressure pi at dike initiation, should first be subtracted (Figure 

4.27a). 

Similar to Figure 4.23, this volume is equal to that of a fracture in a half-space 

loaded by pressure (Figure 4.27b) 

)0(1σσ −= ii p                                                  (4.48) 

Since the pressurized fracture shown in Figure 4.27b is the same as Problem A (Figure 

4.26), in the case of l = 0, the volume of this fracture (Figure 4.27b) at dike initiation can 

be expressed as: 
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where we took into account that 
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because 
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Then the total volume change due to the dike propagation (with respect to that at 

the dike initiation moment) is obtained by substituting (4.49) from (4.47): 
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Assuming now that the magma is incompressible, the two conditions determining 

the dike growth can be written in the form of 

Ic
dike
I KK ≥                                                     (4.54) 

0=∆V                                                        (4.55) 

where KI
dike and ∆V are given by (4.43) and (4.53), respectively. 

Substituting (4.53) into (4.55), magma conservation condition becomes 

0)()0()()0()( =++− lfplfpflfp CCBBAiAA σ                         (4.56) 

where for brevity, the function fZ(ν, l/c, H/c) is replaced with fZ(l). Rewriting (4.30) to 

(4.32) yields 
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)0()0( 1σ−= ppA                                               (4.57) 

)()( 1 llppB λσ−=                                               (4.58) 

)]()([)()()( 33 lylpypypC σσ −−−=                                (4.59) 

)]()0([)()0()0( 11 llpppC σσλ −−−=                               (4.60) 

so that the condition (4.56) can be expressed as 
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If p(l) is known, p(0) is given by 
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From (4.50) and (4.51), we see that p(0) satisfies 

ipp →)0(      )0( →l                                           (4.63) 

which makes our model consistent with respect to choosing the initial moment of dike 

initiation as a lens for volume comparison. 

Inserting (4.57), (4.58), and (4.60) into (4.43) yields 
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Given (4.62), the two conditions (4.54) and (4.55) can be effectively reduced to a 

single condition (4.54) or 
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Once l  is found from (4.65), p(0) can be calculated from (4.62). 

Since the pressure p(y) inside the dike follows a hydrostatic (i.e., “magmastatic”) 

pressure gradient, 

g
l
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in (4.15), which can be rewritten as 

)0()( pgyyp m +−= ρ                                            (4.67) 

so that 

glplp mρ−= )0()(                                               (4.68) 

Substituting (4.68) into (4.58) and (4.60) yields 

)()0( 1 lglpp mB λσρ −−=                                        (4.69) 

)]()0([)0( 11 lglp mC σσλρ −−=                                    (4.70) 

Consequently, substituting (4.57), (4.69), and (4.70) into (4.56) or directly in (4.61) 

produces 
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which, in turn, yields 
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which, obviously, can be also obtained from (4.62). Then (4.72) with (4.54) or, which is 

the same, (4.65) with (4.57), (4.67) – (4.70), result in the condition 
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which determines l. 

Finally we need fA(0) to determine the dike size from (4.73) or (4.65). It can be 

found, based on the discussion in section 4.3.1. Accordingly, we consider a fracture (i.e., 

magma lens) in an infinite space loaded by the effective pressure equal to the sum of 

stresses (4.5) and (4.11): 

refp σσ +=                                                    (4.74) 

Substituting (4.11) into (4.74) results in 









+= 2

2

4
31
H
cpef σ                                               (4.75) 

where, again, the term 3c2/(4H2) accounts for the interaction with the surface (seafloor). 

The area of the fracture open by efp  is given by 

ef
r

pc
E

A 2
2 )1(2 νπ −

=                                           (4.76) 
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and substituting (4.48) and (4.75) into (4.76) yields the change of the volume of the lens 

at the moment of dike initiation with respect to the moment when the pressure in the dike 

is still equals overburden: 









+

−
=∆ 2

222

4
31)1(2
H
c

E
cV i

r
i σνπ                                   (4.77) 

From comparing (4.49) and (4.77) 









+−= 2

2
2

4
31)1(2)0(
H
cf A νπ                                      (4.78) 

This dimensionless value is consistent with fA(l) for small dike propagation (e.g., l = 50 

m); (see Appendix D). 

 

4.3.3 Results 

Figure 4.28 shows an example of a FEM mesh used in calculation of the 

dimensionless functions fZ
dike(l), fZ

chamber(l), and kIZ
dike(l) for H = 1 km, 2c = 1 km, and l = 

0.5 km (Table 4.3). In particular, to calculate fZ
dike(l) and fZ

chamber(l), which are associated 

with the fracture volume, the displacements from all node points in the magma lens and 

the dike are recorded and used for the computing both volumes. In Appendix D, these 

functions are compared with the available analytical solutions (refer to Appendix D). 

Figures 4.29 to 4.30 show the normalized SIF (KI/KIc), the normalized pressure in 

the magma lens (p(0)/pi), the normalized dike volume (Vdike/Vi), and the dike opening at 

the base along the dike propagation in the homogeneous crust. As expected, the pressure 

in the magma lens decreases as the dike propagates since the total magma volume is 

constant. Three different stress ratios λ are used for the comparison. For extensional ridge 
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environments, the stress ratio λ is less than one. The lower limit for the stress ratio is 

probably given by the normal faulting condition or the condition of zero horizontal strain 

(whatever is larger). For all cases, the central dike cannot propagate to the seafloor 

surface, because the dike-seafloor interaction is not sufficient. In the previous numerical 

analysis for H = 1 km and 2c = 1 km (Figure 4.20a), in which the magma volume is not 

constant, the dike can propagate to the surface. Therefore, the magma conservation 

condition is critical for obtaining physically reasonable results. 
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Table 4.3 Dimensionless functions (fZ
dike, fZ

chamber, and kIZ
dike) for dike propagation from 

the lens center. 
 

H = 1 km and 2c = 1 km 
Problem A Problem B Problem C l (m) fA

dike fA
chamber kIA

dike fB
dike fB

chamber kIB
dike fC

dike fC
chamber kIC

dike 
50 -0.042 6.929 -0.386 0.036 -0.040 0.350 0.022 -0.024 0.132 

100 -0.151 7.04 -0.465 0.143 -0.149 0.491 0.086 -0.090 0.188 
200 -0.474 7.283 -0.439 0.553 -0.471 0.669 0.329 -0.292 0.245 
300 -0.806 7.467 -0.331 1.165 -0.806 0.772 0.693 -0.512 0.275 
400 -1.071 7.562 -0.218 1.932 -1.072 0.847 1.146 -0.705 0.291 
500 -1.246 7.597 -0.118 2.835 -1.252 0.914 1.672 -0.853 0.305 
600 -1.331 7.606 -0.029 3.888 -1.340 0.99 2.276 -0.956 0.323 
700 -1.317 7.607 0.061 5.135 -1.330 1.085 2.975 -1.008 0.350 
800 -1.169 7.621 0.173 6.682 -1.185 1.231 3.811 -0.997 0.395 
900 -0.768 7.697 0.361 8.828 -0.791 1.525 4.900 -0.877 0.488 
950 -0.336 7.809 0.550 10.480 -0.362 1.891 5.668 -0.728 0.605 

H = 1.5 km and 2c = 1 km 
50 -0.037 6.465 -0.35 0.036 -0.037 0.35 0.022 -0.022 0.132 

100 -0.138 6.560 -0.43 0.144 -0.138 0.492 0.086 -0.084 0.188 
200 -0.430 6.760 -0.405 0.547 -0.428 0.665 0.326 -0.265 0.242 
300 -0.738 6.921 -0.317 1.150 -0.738 0.766 0.683 -0.468 0.271 
400 -0.980 6.992 -0.219 1.891 -0.983 0.835 1.120 -0.641 0.284 
500 -1.164 7.034 -0.144 2.764 -1.170 0.897 1.628 -0.786 0.296 
600 -1.279 7.044 -0.083 3.748 -1.287 0.954 2.193 -0.895 0.305 
700 -1.350 7.049 -0.039 4.877 -1.361 1.018 2.832 -0.979 0.320 
800 -1.372 7.049 -0.003 6.144 -1.387 1.084 3.538 -1.035 0.336 
900 -1.357 7.049 0.028 7.609 -1.375 1.162 4.341 -1.071 0.360 

1000 -1.298 7.051 0.059 9.273 -1.320 1.249 5.240 -1.083 0.387 
1100 -1.188 7.057 0.092 11.236 -1.214 1.356 6.282 -1.068 0.423 
1200 -1.008 7.069 0.135 13.598 -1.04 1.506 7.505 -1.021 0.476 
1300 -0.703 7.099 0.198 16.625 -0.742 1.737 9.021 -0.919 0.558 
1400 -0.152 7.167 0.311 20.973 -0.202 2.194 11.079 -0.720 0.717 
1450 0.406 7.086 0.431 23.658 0.353 2.718 12.173 -0.482 0.890 
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4.4 Dike propagation from the lens tip 

 

4.4.1 Initial pressure 

Consider first dike initiation from the tip of the magma chamber (Figure 4.31). 

The criterion for dike initiation is the same as (4.9): 

tσσ ≥max                                                      (4.79) 

where σmax is now the maximum tensile stress near the lens tips. The effect of mode II 

fracturing is ignored at the moment of initiation. To estimate σmax, the solution of the 

problem shown in Figure 4.22 is used. According to (4.11), this solution is equivalent (to 

the first order) to the solution of the problem in an infinite plane if σ is replaced with σ + 

σr, where the second term is given by (4.11). Therefore 

cK rI πσσ ][ +=                                               (4.80) 

Substituting (4.11) into (4.80) yields 

c
H
cK I πσ 








+= 2

2

4
31                                           (4.81) 

Then, σmax at the lens tips can be estimated as 

πκ
σ

2max
IK

=                                                  (4.82) 

where κ is the typical characteristic dimension at the lens tips. For example, it can be 

equal to the curvature radius 
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c
b2

=κ                                                        (4.83) 

for an elliptical lens. Alternatively, it can be equal to the characteristic thickness  

b2=κ                                                       (4.84) 

if the lens is of a rectangular shape. 

Substituting (4.81) into (4.82) yields 
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
+=                                         (4.85) 

At the moment of dike initiation 

iσσ =                                                        (4.86) 

where σi is defined by (4.48). Using then (4.48) and (4.86), (4.85) is rewritten as 

κ
σσ
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2
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
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+−=                                  (4.87) 

and from condition (4.79) and (4.87), the dike initiation pressure pi can be expressed as 

c
H
c

p t
i

κσ
σ 2

4
31

)0(

2

21

+
+=                                        (4.88) 

In the case of an elliptic magma lens, (4.83) and (4.88) suggest that 

c
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H
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σ
σ                                        (4.89) 

while in the case of a rectangular magma lens, 
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due to (4.84). 

 

4.4.2 Dimensional analysis and results 

Using the same procedure as that for the central dike problem (Figure 4.25), this 

problem can be represented as the sum of two sub-problems as shown in Figure 4.31. The 

dike is assumed to propagate vertically from the tip of the magma lens as in the case of 

the dike propagation from the lens center, although the dike trajectories in the previous 

numerical analyses (Figures 4.16 and 4.17) were not exactly vertical. To verify this 

assumption, the normalized dike volumes (Vdike/V0) and SIFs (KI and KII) normalized by 

(4.81) at p(0) = σ1(0) are compared with those obtained from the previous numerical 

analysis (Figure 4.16). Here, V0 is the original volume of the magma lens. This results in 

a good agreement (Figure 4.32) for vertical and sub-vertical dikes. Accordingly, the dike 

problem can indeed be represented as the sum of three sub-problems (Figure 4.33) where 

dike propagation is vertical. 

Figure 4.34 shows one example of a typical FRANC2D mesh to calculate the 

dimensionless functions fZ
dike(l), fZ

chamber(l), and kIZ
dike(l) for H = 1 km, 2c = 1 km, and l = 

0.5 km (Table 4.4) in the case of dike originating at the magma chamber tips. 

Dimensionless parameter fA(0) is again defined by (4.78). Another dimensionless 

parameter for the dike propagation from the lens tip, kIA
dike(0), is available from the work 

of Melin [1994], and is equal to 0.3718838. This is obtained by considering a straight 
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crack terminated by an infinitesimally small kink which forms an angle 90° to the main 

crack. 

Because the normalized SIF remains greater than one until the dike reaches the 

seafloor, in contrast to the central dike, the tip dike propagates to the surface in all 

considered cases (Figure 4.35 and 4.36). The pressure drop in the magma lens is 

unfavorable for dike propagation. However, the pressure decrease is compensated by the 

dike-seafloor interaction. The deeper magma lens has a greater pressure drop, and results 

in a larger dike volume, as well as larger dike apertures. 
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Table 4.4 Dimensionless functions (fZ

dike, fZ
chamber, and kIZ

dike) for dike propagation from 
the lens tip. 
 

H = 1 km and 2c = 1 km 
Problem A Problem B Problem C l (m) fA

dike fA
chamber kIA

dike fB
dike fB

chamber kIB
dike fC

dike fC
chamber kIC

dike 
0 0.000 6.941 0.372 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.025 7.126 0.171 0.029 0.023 0.314 0.017 0.014 0.111 
100 0.037 7.266 0.068 0.115 0.033 0.436 0.067 0.021 0.155 
200 -0.006 7.596 -0.054 0.456 -0.016 0.620 0.263 -0.005 0.212 
300 -0.126 8.017 -0.099 1.009 -0.142 0.747 0.580 -0.081 0.256 
400 -0.300 8.509 -0.110 1.764 -0.324 0.854 1.013 -0.194 0.291 
500 -0.500 9.098 -0.094 2.727 -0.530 0.953 1.562 -0.331 0.324 
600 -0.699 9.776 -0.060 3.903 -0.736 1.049 2.227 -0.478 0.356 
700 -0.865 10.576 -0.003 5.339 -0.908 1.161 3.031 -0.621 0.394 
800 -0.96 11.562 0.087 7.108 -1.007 1.309 4.001 -0.749 0.443 
900 -0.865 13.002 0.265 9.518 -0.911 1.592 5.260 -0.820 0.535 
950 -0.621 14.238 0.465 11.299 0.659 1.947 6.120 -0.802 0.649 

H = 1.5 km and 2c = 1 km 
0 0.000 6.332 0.372 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.019 6.516 0.130 0.029 0.017 0.312 0.017 0.011 0.110 
100 0.024 6.629 0.027 0.115 0.020 0.440 0.066 0.013 0.154 
200 -0.032 6.890 -0.079 0.449 -0.042 0.612 0.258 -0.022 0.207 
300 -0.162 7.212 -0.123 0.983 -0.178 0.731 0.564 -0.103 0.277 
400 -0.342 7.566 -0.138 1.702 -0.364 0.829 0.975 -0.217 0.302 
500 -0.551 7.962 -0.136 2.598 -0.580 0.913 1.485 -0.355 0.325 
600 -0.773 8.380 -0.124 3.667 -0.808 0.991 2.090 -0.504 0.344 
700 -0.983 8.799 -0.104 4.889 -1.025 1.061 2.777 -0.654 0.365 
800 -1.181 9.231 -0.080 6.299 -1.228 1.132 3.565 -0.802 0.390 
900 -1.351 9.665 -0.052 7.901 -1.403 1.211 4.451 -0.940 0.420 

1000 -1.484 10.126 -0.018 9.746 -1.541 1.300 5.463 -1.066 0.455 
1100 -1.566 10.623 0.023 11.873 -1.624 1.406 6.612 -1.171 0.506 
1200 -1.565 11.184 0.078 14.415 -1.624 1.550 7.958 -1.245 0.506 
1300 -1.442 11.856 0.155 17.544 -1.498 1.760 9.564 -1.273 0.578 
1400 -1.023 12.823 0.301 21.970 -1.068 2.192 11.705 -1.195 0.724 
1450 -0.52 13.617 0.465 25.428 -0.550 2.743 13.245 -1.059 0.906 
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4.5 Geophysical implications 

 

4.5.1 Hydrothermal vents at Juan de Fuca Ridge 

Our model suggests the location of the propagating dike with respect to the 

location of the pressurized magma lens. In addition to heat, the dike increases the 

permeability near its margin [Lowell and Germanovich, 1995; Curewits and Karson, 

1998]. Consequently, hydrothermal activity may become localized [Lowell, 1990]. As a 

result, our model can be constrained by comparing the locations of observed 

hydrothermal vents to the location of the magma lens at MOR. 

Figure 4.37a shows a location of the Juan de Fuca Ridge (JdFR). The Endeavor 

segment is located inside the dashed circle. Four main hydrothermal sites appear on this 

segment (Figure 4.37b). One of them, the Salty Dawg hydrothermal site on the Endeavor 

segment, appears to be located above the tip of the seismically imaged magma lens [Van 

Ark et al., 2003]. 

Figure 4.37c shows a scenario of how a dike propagating from the tip of the 

pressurized magma lens could result in a hydrothermal vent located above the tip of the 

lens. Summarizing, dike propagation from the tip of a magma lens is consistent with 

hydrothermal vents located off the ridge axis, and with an episode of recent 

pressurization of the magma lens. 

 

4.5.2 Hydrothermal vents at East Pacific Rise 

Our model can be further constrained by comparing the locations of the observed 

hydrothermal vents to the location of the magma lens at MOR. Figure 4.38a shows a 
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geographic location of the EPR. Most of the hydrothermal sites of the EPR appear above 

the center of the magma lens (Figure 4.38b). 

Figure 4.38c shows a scenario of how a dike propagating from the center of the 

depressurized magma lens can result in a hydrothermal vent located above the center of 

the lens. Although the dike does not propagate to the seafloor, hydrothermal activity 

becomes localized because the dike increases the permeability near its margin and further 

fracturing may occur due to the magmatic gases resulting from the depressurization of the 

magma chambers. 

Summarizing, dike propagation from the center of the magma lens is consistent 

with hydrothermal cooling that controls the permeability distribution and, perhaps, with a 

shallow magma source [Von Damm, 2004]. 

 

4.6 Dike propagation from tip of the deep magma lens 

 

4.6.1 Single deep melt lens 

As introduced in section 4.1, recent seismic studies suggest that the magma lens 

may also exist at the base of the crust [Crawford et al., 1999; Dunn et al., 2000]. In this 

section, dike propagation from a tip of a deep melt lens is analyzed. 

A dike originating from the deep melt lens is likely to initiate from the tip of the 

magma lens, because it is expected that hydrothermal cooling is rather weak (or absent) 

and magma is being replenished from the mantle. As in the case of dike propagation from 

a shallow magma lens, the dike propagates sub-vertically. Figure 4.39 shows an example 

of a typical FEM mesh with a cavity modeling the lens. The dike propagates to the 
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surface and its trajectory deviates slightly from the vertical (solid line in Figure 4.40a). 

The normalized dike volumes (V/V0) and SIFs (KI and KII) are also compared in Figure 

4.40 for vertical and sub-vertical dikes. They appear to be in good agreement. 

Figure 4.41 shows an example of a FEM mesh used to calculate the dimensionless 

functions fZ
dike(l), fZ

chamber(l), and kIZ
dike(l) for H = 5.5 km, 2c = 1 km, and l = 2.5 km 

(Table 4.5). It appears that the dike does not propagate to the surface (Figure 4.42). For 

all stress ratios, λ, the dike terminates at a similar depth, but with greater pressure drop 

inside the magma lens, a larger dike volume, and a larger dike opening at the base for 

smaller λ. 

To test the effect of the size of the magma lens, the dimensionless functions for H 

= 6 km and 2c = 2 km are also calculated (Table 4.6). In this case, the dike does not reach 

the surface either, but it propagates nearly twice as far as for the case of the small magma 

lens (2c = 1 km) (Figure 4.43). Compared to the small magma lens, a greater pressure 

drop in the magma lens, a larger dike volume, and a larger dike openings are obtained. 

From these two previous simulations, it can be concluded that dike-seafloor 

interaction for deep magma lenses is too weak to overcome the pressure decrease in the 

magma chamber and for the dikes to reach the seafloor. 
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Table 4.5 Dimensionless functions (fZ

dike, fZ
chamber, and kIZ

dike) for dike propagation from 
the deep lens tip (H = 5.5 km and 2c = 1 km). 
 

H = 5.5 km and 2c = 1 km 
Problem A Problem B Problem C l (m) fA

dike fA
chamber kIA

dike fB
dike fB

chamber kIB
dike fC

dike fC
chamber kIC

dike 
0 0 5.882 0.372 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.017 5.971 0.111 0.029 0.014 0.314 0.017 0.009 0.109 
100 0.021 6.057 0.015 0.114 0.013 0.438 0.066 0.009 0.150 
200 -0.032 6.261 -0.081 0.443 -0.051 0.606 0.254 -0.028 0.204 
300 -0.155 6.511 -0.123 0.966 -0.186 0.723 0.554 -0.108 0.241 
500 -0.513 7.074 -0.137 2.509 -0.568 0.888 1.431 -0.345 0.285 
750 -1.008 7.776 -0.109 5.235 -1.089 1.035 2.963 -0.691 0.317 

1000 -1.432 8.381 -0.076 8.736 -1.534 1.155 4.904 -1.013 0.342 
1250 -1.751 8.875 -0.048 12.978 -1.867 1.263 7.221 -1.281 0.364 
1500 -1.970 9.273 -0.028 17.984 -2.095 1.367 9.918 -1.493 0.387 
1750 -2.108 9.596 -0.013 23.782 -2.237 1.467 13.002 -1.654 0.411 
2000 -2.179 9.863 -0.003 30.429 -2.311 1.568 16.516 -1.773 0.437 
2250 -2.200 10.087 0.005 37.972 -2.330 1.668 20.464 -1.856 0.463 
2500 -2.178 10.279 0.010 46.491 -2.306 1.771 24.891 -1.909 0.493 
2750 -2.120 10.448 0.015 56.058 -2.244 1.875 29.835 -1.937 0.524 
3000 -2.029 10.598 0.019 66.800 -2.147 1.988 35.352 -1.940 0.560 
3250 -1.906 10.735 0.023 78.842 -2.016 2.106 41.506 -1.922 0.599 
3500 -1.748 10.863 0.026 92.396 -1.849 2.238 48.391 -1.881 0.644 
3750 -1.549 10.986 0.031 107.732 -1.639 2.384 56.125 -1.816 0.696 
4000 -1.299 11.106 0.036 125.257 -1.377 2.557 64.892 -1.724 0.76 
4250 -0.983 11.226 0.043 145.563 -1.043 2.764 74.941 -1.599 0.839 
4500 -0.571 11.352 0.052 169.609 -0.609 3.032 86.696 -1.427 0.941 
4750 -0.012 11.489 0.064 199.146 -0.022 3.398 100.833 -1.188 1.081 
5000 0.800 11.650 0.083 237.817 0.833 3.974 118.871 -0.838 1.298 
5250 2.166 11.865 0.120 295.907 2.270 5.144 144.657 -0.257 1.725 
5400 3.794 12.072 0.181 358.814 3.985 7.187 170.674 0.413 2.444 
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Table 4.6 Dimensionless functions (fZ
dike, fZ

chamber, and kIZ
dike) for dike propagation from 

the deep lens tip (H = 6 km and 2c = 2 km). 
 

H = 6.0 km and 2c = 2 km 
Problem A Problem B Problem C l (m) fA

dike fA
chamber kIA

dike fB
dike fB

chamber kIB
dike fC

dike fC
chamber kIC

dike 
0 0.000 5.967 0.372 0.000 0.000 0.000 0.000 0.000 0000 

100 0.018 6.065 0.112 0.029 0.015 0.315 0.017 0.0092 0.108 
200 0.022 6.154 0.000 0.114 0.014 0.438 0.066 0.0094 0.151 
400 -0.032 6.362 -0.081 0.444 -0.051 0.607 0.255 -0.028 0.204 
600 -0.156 6.621 -0.123 0.968 -0.187 0.723 0.555 -0.109 0.242 

1000 -0.521 7.215 -0.139 2.529 -0.577 0.894 1.443 -0.351 0.288 
1500 -1.031 7.963 -0.112 5.310 -1.114 1.049 3.007 -0.707 0.325 
2000 -1.468 8.625 -0.076 8.921 -1.572 1.179 5.009 -1.039 0.355 
2500 -1.799 9.189 -0.047 13.408 -1.918 1.308 7.457 -1.318 0.388 
3000 -2.018 9.670 -0.022 18.851 -2.146 1.441 10.384 -1.537 0.426 
3500 -2.135 10.095 -0.002 25.492 -2.267 1.594 13.902 -1.697 0.475 
4000 -2.141 10.488 0.018 33.619 -2.272 1.775 18.143 -1.797 0.538 
4250 -2.095 10.682 0.030 38.467 -2.223 1.887 20.638 -1.821 0.580 
4500 -2.008 10.878 0.043 43.935 -2.131 2.021 23.424 -1.825 0.631 
4750 -1.864 11.084 0.059 50.306 -1.979 2.181 26.623 -1.802 0.692 
5000 -1.650 11.303 0.078 57.688 -1.753 2.384 30.286 -1.746 0.770 
5250 -1.313 11.550 0.106 66.909 -1.398 2.676 34.750 -1.636 0.882 
5500 -0.779 11.850 0.147 78.941 -0.835 3.134 40.396 -1.442 1.055 
5700 -0.047 12.166 0.204 92.751 -0.064 3.804 46.599 -1.160 1.303 
5900 1.449 12.685 0.350 116.878 1.512 5.666 56.728 -0.579 1.966 
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4.6.2 Magma replenishment mechanism 

Although a dike from a deep melt lens does not propagate to the surface, based on 

the above calculations it may reach a shallow magma lens because of the mechanical 

interaction between the dike and shallower lenses. Figure 4.44a shows the concept of a 

possible magmatic injection from a deep melt lens to a shallow magma lens [Crawford et 

al., 1999]. Figure 4.44b shows the hypothesized dike propagation from the center of 

magma lens [Korenaga and Kelemen, 1997]. This could be related to the magma 

replenishment of the shallower magma lenses. 

To simulate and test this phenomenon, two magma lenses are created in the mesh 

(Figure 4.45). First, the dike propagation from the tip of the deep magma lens (H = 6 km 

and 2c = 2 km) to the shallow magma lens (H1 = 2 km and 2c = 2 km) is simulated by 

using FRANC2D. The pressure condition in the shallow magma lens is assumed to be the 

in-situ stress σ1 at its depth. The pressure in the dike follows the hydrostatic distribution, 

which represents the upper bound estimate. Figure 4.46 shows the calculated and the 

simplified dike trajectories. The latter is used to calculate the volume of the lens and the 

dike. The SIFs for the vertical and sub-vertical dikes appear to be in good agreement, 

although the calculated trajectory deviates slightly from the vertical (Figure 4.47). 

After the deep dike reaches the shallow lens, this can lead to the subsequent dike 

propagation from the tip of this lens caused by the fast lens pressurization. Figure 4.48 

shows the dike propagation simulation with FRANC2D. The dike from the deep to the 

shallow magma lens is connected using the mesh generator CASCA because a crack 

simply cannot be connected to the shallow lens in FRANC2D. The SIFs (KI) normalized 
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by (4.81) are also compared between the vertical and sub-vertical dike propagations from 

the shallow lens (Figure 4.49), and they are found to be in good agreement. 

Using the same procedure that was introduced previously for the dike propagation 

from a single lens, the original problem can be decomposed as the sum of two sub-

problems as shown in Figure 4.50. Accordingly, the dike problem can also be represented 

as the sum of four sub-problems (Figure 4.51), where the pressure in the shallow magma 

lens is included in additional Problem D. 

Until the dike reaches the shallow lens, the magma conservation condition should 

be expressed for the shallow and deep magma lenses separately. Similar to (4.55), we 

have 

0=∆V                                                       (4.91) 

01 =∆V                                                       (4.92) 

where V(l) is the values of the deep magma lens plus dike volume while V1(l) is the 

volume of the shallow lens (it depends upon l due to the lens-dike interaction). 

From conditions (4.49) and (4.92), similar to (4.56), we obtain: 

0)0()()()0()()0()( =−+++− DDiDDCCBBAiAA fplfplfplfpflfp σ    (4.93) 

0)0()()()0()()0()( =−+++− DDiDDCCBBAiAA gplgplgplgpglgp σ   (4.94) 

where fA(l), fB(l), and fC(l) are the same as before, and gZ(l) 

2)(
cp

E
Vlg

Z

rchamber
upper

ZZ ⋅=                                           (4.95) 

is the dimensionless volumes of the shallow lens in problem Z, and 
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)( 1111 HHpspD −−== σ                                        (4.96) 

is the initial pressure in the shallow lens in problem D (Figure 4.51) Now, Z is A, B, C, 

and D. 

Assuming that the interaction between two melt lenses is weak (if the distance 

between them considerably exceeds their sizes), we have that 

0)0( ≈Ag                                                     (4.97) 

 

and the initial pressure in the shallow lens (again, at the moment when the dike initiates 

from the deep lens) is given by 

)( 111 HHp i −≈ σ                                                (4.98) 

Therefore, 

0)( 111 ≈−−= HHpp iDi σ                                        (4.99) 

Using conditions (4.96) – (4.99), we obtain p(0) and p1 as follows: 

)()(
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σσ

       (4.100) 
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λσρσσ

    (4.101) 

where )()()()()( lflglglflD DADAA −= , )()()()()( lflglglflD DBDBB −= , and  
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)()()()()( lflglglflD DCDCC −= . 

Similar to (4.64), the SIF can be defined as: 

ckHHpckllpp

ckllpckpK
dike
ID

dike
IC

dike
IB

dike
IA

dike
I

πσπλσλσ

πλσπσ

)]([)]()0()()0([

)]()([)]0()0([

11111

11

−−+−−−+

−+−=
 (4.102) 

Figure 4.52 shows one example of a FEM mesh to calculate the dimensionless 

functions (fZ
dike(l), fZ

chamber(l), kiZ
dike(l), gZ(l)) for the deep (H = 6 km and 2c = 2 km) and 

shallow magma (H1 = 2 km and 2c = 2 km) lenses (Table 4.7). Figure 4.53 shows the 

normalized SIF (KI/KIc), the normalized pressure in the magma lens (p(0)/pi), the 

normalized dike volume (Vdike/Vi), the dike opening at the base, and the normalized 

pressure in the shallow magma lens (p1/σ1(H-H1)) along the dike propagation. 

As a result, a dike from a deep melt lens (H = 6 km) may indeed propagate to a 

shallow lens (H1 = 2 km) because the SIF remains greater than KIc during the entire dike 

propagation. In turn, this may lead to the subsequent dike propagation from the shallow 

magma lens tip. Whether the dike from a shallow lens can reach the seafloor surface, 

requires further investigation. The answer is not obvious since this dike will further 

decrease the pressure in the dike-lenses system. 

Note that pressure in the deep magma lens, the dike volume and the dike opening 

at the base show similar behavior as for the case of dike propagation from a deep magma 

lens, i.e., without a shallow magma lens present (Figure 4.43). The pressure in the 

shallow magma lens p1, computed with (4.101), monotonically decreases as the dike 

propagates (Figure 4.53). 
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4.7 Discussion 

 

4.7.1 Effect of the compressibility of the magma 

Ignoring the compressibility of the magma underestimates the size of the dike and 

may affect the dike propagation. The effect of magma compressibility can be included by 

considering the magma mass conservation rather than the volume. In other words, the 

total mass of magma during the dike propagation remains constant. Therefore, 

idikechamber MMM =+                                           (4.103) 

where Mchamber and Mdike are the total mass of magma in the magma lens and the dike, 

respectively, and Mi is the mass of magma in the lens at the moment of dike initiation.  

In the simplest model, the density of the magma, ρm, linearly depends upon the 

pressure: 








 −
+=

m

i
mim K

pp
1ρρ                                           (4.104) 

where ρmi is the density of the magma at the moment of dike initiation, and Km is the 

magma bulk modulus. Further, 

miii VM ρ=                                                   (4.105) 

mchamberchamber VM ρ=                                            (4.106) 

∫==
l

mdikemdike dyyWypVM
0

)())((ρρ                             (4.107) 
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where Vi and Vchamber are the volume of the magma lens at the moment of dike initiation 

and during the dike propagation, respectively, and W(y) is the width of the dike. 

Inserting (4.104) into (4.107) yields 

dyyW
K

pyp
dyyWM

l

m

i
mi

l

midike )(
)(

)(
00
∫∫

−
+= ρρ                       (4.108) 

The volume of the dike (per unit thickness in plane strain) is 

∫=
y

dike dyyWV
0

)(                                               (4.109) 

so that (4.108) reads 

∫
−

+=
l

m

i
midikemidike dyyW

K
pyp

VM
0

)(
)(

ρρ                           (4.110) 

Substituting (4.105), (4.106) and (4.110) into (4.103) yields 

mii

l

m

i
midikemimchamber VdyyW

K
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VV ρρρρ =
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++ ∫
0

)(
)(

                (4.111) 

and (4.104), (4.111) give 

i

l
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i
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1                (4.112) 

The change of the lens volume is defined as 

ichamberchamber VVV −=∆                                          (4.113) 

Inserting (4.113) into (4.112) yields 
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∫
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where the last term ∆Vdike can be written as 
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      (4.115) 

Considering (4.109) and (4.115), we obtain from (4.114) 
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where 

∫=−
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)()()0( ρ                                       (4.117) 

or, (4.104), recalling 
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Differentiating (4.118) with respect to y yields the first order differential equation 
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for p(y), which has the solution 
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where the constant C 
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m
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1                                              (4.121) 

is obtained by substituting y = 0 into (4.120). 

With (4.121), (4.120) becomes 
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and we further assume that the following condition is satisfied: 

1<<
m

mi

K
glρ

                                                   (4.123) 

This condition simply means that the magma bulk modulus is much greater than the 

pressure generated by the weight of the magma in the dike. For the MOR conditions, 

(4.123) is satisfied with great confidence. Then, 
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                                       (4.124) 

with a sufficient accuracy and (4.122) can be written as 
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               (4.125) 

Because we used a linear pressure gradient while decomposing the problems in 

section 4.3.2, we can only employ the dependence (4.125) rather than (4.122), which is 

not linear. Substituting (4.122) into (4.116), we obtain 
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and, if taking (4.123) into account, (4.126) can be simplified as 
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              (4.127) 

We further assume that 

1
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                                               (4.128) 

which means that the pressure change in the magma chamber is much smaller than the 

magma bulk modulus. Considering condition (4.128), (4.125) and (4.127) can be written 

as 

gyypp miρ=− )()0(                                           (4.129) 

and 
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respectively. Since, 0 ≤ y ≤ l and W(y) ≥ 0, the estimate 
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                    (4.131) 

is always valid. Therefore, due to (4.123), the third term in (4.130) can be ignored when 

compared to the second one. Hence, (4.130) becomes 
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Expression (4.132) immediately allows us to rewrite equation (4.56), obtained for 

the case of incompressible magma as 

20
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∆+=++             (4.133) 

where 

ii VVV ∆−=0                                                 (4.134) 

is the original volume of the magma lens (at pressure equal to the overburden stress at the 

lens depth), and ∆Vi is defined by (4.49).  

Compared to (4.56), the right hand side in (4.133) is not zero and accounts for the 

magma compressibility. Also, since V0 is estimated by 

kbcV =0       )4~(k                                         (4.135) 

equation (4.133) now depends upon the lens thickness. Substituting (4.57), (4.69) and 

(4.70) into (4.132), we obtain 
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Figures 4.54 and 4.55 show the normalized SIF (KI/KIc), the normalized pressure 

in the magma lens (p(0)/pi), the normalized dike volume (Vdike/Vi), and the dike opening 
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at the base for the dike propagating from the lens center (H = 1 km, 2c = 1 km) and from 

the lens tip (H = 6 km, 2c = 1 km), respectively. They are compared to the case where the 

compressibility of the magma is ignored. The bulk modulus of the magma is assumed to 

be Km = 1010 Pa [e.g., Murase and Mcbirney, 1973; Genge et al., 1995]. For both cases, 

the effect of the compressibility of the magma does not change the results compared to 

the case of the incompressible magma. 

 

4.7.2 Effect of topography 

It was initially assumed that the seafloor is horizontal. Here, we check whether 

the observed topography of MOR may affect the dike propagation. The axial caldera at 

EPR is rather small (~ 200 m wide and ~ 15 m deep) [Fornari et al., 1998] and, in 

general, the depth of the ocean floor gradually decreases from the ridge axis to the 10 km 

off-axis by 200 to 400 m [Cochran and Buck, 2001; Shah and Buck, 2001], which is the 

scale of the typical mesh in our numerical simulation (Figure 4.9). Therefore, it is highly 

unlikely that the topographic effects influence the dike propagation at our scale. 

The axial region at the JdFR is much larger and characterized by the 1 – 3 km 

wide smooth terrain bounded to the east and to the west by the linear ridges that are 100 – 

200 m higher [Carbotte et al., 2002b; Canales et al., 2003]. This is the case we simulated 

to asses if the dike propagation may change compared to the model of the flat ocean 

floor. 

Figure 4.56 shows the FEM mesh featuring a typical topography at the 

intermediate spreading ridges. The magma lens is located at the depth of 2.5 km (refer to 

Table 4.1). Its size is assumed to be 2 km. The same boundary conditions are applied as 
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in section 4.2.1 and the dikes still propagate nearly vertically (Figure 4.57). Compared to 

the horizontal seafloor, dike trajectories and SIFs (KI and KII) normalized by (4.81) are 

practically indistinguishable (Figure 4.58). Consequently, it appears that the topography 

of MOR does not affect the dike propagation from the magma lens, not at the global 

scales. 

 

4.7.3 Time scale of magma crystallization 

The crystallization of the magma caused by the hydrothermal cooling leads to the 

dike propagation from the center of the magma lens. The time scales of the crystallization 

of the magma lens will be now discussed. First, we estimate the fraction of the 

crystallized magma corresponding to the dike initiation. 

Let us consider 

ppp ∆−= 0                                                  (4.137) 

where p0 is the original pressure in the magma lens and ∆p is the pressure drop as a result 

of magma crystallization. Also let 

0M
M∆

=ε                                                     (4.138) 

be the fraction of crystallized magma. Here 

000 mVM ρ=                                                  (4.139) 

is the original mass of the magma, ρm0 is the magma density at p = p0, V0 is the cross 

sectional area of the magma chamber (i.e., the original magma volume). 

We assume 
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00 mr ρρ >                                                    (4.140) 

and employ 

ppp −=∆ 0                                                 (4.141) 

from (4.137). We also assume linear density-pressure dependence for both rock and 

magma densities: 
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where Kr is the rock bulk modulus. 

Once the mass ∆M of the magma chamber solidifies, the new volume of the 

magma chamber becomes 
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Substituting (4.138) into (4.144) gives 
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and inserting (4.138) and (4.139) into (4.145) yields 
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Similar to the previous section, it is safe to conclude that 
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and (4.146) can be written as 
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which, after the substitution of (4.139) reads 
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Therefore, the volume change can be written as 
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or, in the normalized form, as 
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This volume is accommodated by the displacements of the chamber sides as 

shown in Figure 4.59. The maximum side displacement ∆b in the chamber center scales 

as 

( ) c
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rr 11

22 ∆
=

∆
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The original volume can be approximated by 
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( )( ) cbbcV 4220 ≡≅                                            (4.154) 

Therefore, the change of the magma volume as a result of crystallization is 

bcV ∆−≅∆ 4                                                 (4.155) 

and from (4.153) to (4.155), the volume change ratio can be derived as 
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where 
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r
r

E
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ν−
=                                                 (4.157) 

Note that in the case of a thin elliptical magma lens, (4.156) is also “accurate” 

because (4.154) and (4.155) become 

cbV π=0                                                     (4.158) 

bcV ∆−=∆ π                                                  (4.159) 

resulting in 
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which coincides with (4.156). 

Introducing the lens aspect ratio 

c
b

=β                                                       (4.161) 

we rewrite (4.160) as 
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Equating (4.152) and (4.162) gives 
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According to (4.138), 
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Because for a thin magma lens, 

1<<β                                                       (4.167) 

the main term in the denominator of (4.163) is 2Km/(βEr1). Since 
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substituting (4.164)-(4.167) into (4.163) gives 
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and taking (4.147) into consideration yields 
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which is satisfied given (4.164) to (4.168). 

Now, the condition for dike initiation from the center of the magma lens can be 

obtained by substituting (4.137) into (4.14): 
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Since the pressure decreases as a result of crystallization, 

ippp −≥∆ 0                                                 (4.173) 

and (4.169) with (4.173) give the condition of dike initiation: 
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This means that in order to initiate the dike from the center of the magma lens, the 

fraction of the crystallized magma in the lens should be sufficiently large. The critical 

fraction is given by 
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and shown in Figure 4.60 as a function of the depth H of the magma lens assuming p0 = 

σ1. For example, when λ = 0.36 and β = 0.1, εi = 30% at H = 2000 m. This indicates that 

the about 30% of magma in the lens should crystallize to initiate a dike from the center of 

the lens at this depth. In general, as the depth of the magma H and the stress ratio λ 

increase, more magma needs to be crystallized for the dike initiation. 

The time scale of the magma crystallization can be estimated from the heat 

diffusion time scale [e.g., Carslaw and Jaeger, 1959]: 

ra
dt

2

~                                                       (4.176) 

where ar is the thermal diffusivity of the rock. Figure 4.61 shows the time scale (4.176) 

of magma crystallization for a typical value ar = 10-6 m2/sec. We can see that it may take 

several decades to crystallize 50% of the magma in the lens. 

In addition, the normalized side displacement of the lens (δ = ∆b/b) (Figure 4.59) 

can be calculated at the moment of dike initiation by substituting (4.158) and (4.159) in 

(4.156): 

1

2
rE
p

b
c

b
b ∆
=

∆
=δ                                              (4.177) 

Figure 4.62 shows the lens side displacement δ as a result of crystallization. 

 

4.8 Summary and conclusions 

 

In many field cases, very little (if any) directly measured data on fracture and 

material properties is available. An important example of such a weakly constrained case, 
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involving hydraulic fracturing, is diking beneath the seafloor at mid-oceanic ridges. In 

this study, it is shown that the conventional scenario of a dike propagating from the 

center of a magma chamber to the ocean floor is not consistent with conventional fracture 

mechanics, because the chamber has the shape of a thin lens. Even at such a large scale 

(i.e., one kilometer or more), the mechanical principles of elastic interaction appear to be 

applicable. The dikes that initiate from the subsurface magma lens, and the magma lens 

itself, can be considered as mechanically interacting segments in an elastic half-space 

bounded by the seafloor. 

Model calculations show that dike propagation from a thin axial magma lens 

beneath the seafloor depends primarily on the pressure magnitude within the magma lens. 

Excess magma pressure due to magma replenishment results in nearly vertical dike 

propagation originating from the vicinity of the tips of the lens. In contrast, a deficit of 

magma pressure stemming from hydrothermal cooling and magma crystallization results 

in vertical dike propagation from the center of the magma lens. 

The propagating dike withdraws magma from the magma lens, which decreases 

the lens pressure. Despite this pressure decrease, the tip dike does propagate to the 

seafloor, because the dike-seafloor interaction is sufficiently strong to compensate for the 

pressure decrease. In contrast, the central dike does not propagate to the seafloor, because 

of insufficient dike-seafloor interaction. 

Since diking is likely to generate a region of high permeability near its margin, in 

addition to heat, the ongoing hydrothermal activity becomes localized. Our calculations 

suggest the possible positions of the propagating dikes. Consequently, comparing the 
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observed locations of the hydrothermal sites with respect to that of the magma chamber 

could be useful for constraining the magma lens modeling. 

The occurrence of hydrothermal vents near the tips of the magma lens at the Salty 

Dawg hydrothermal sites of the Juan de Fuca Ridge is consistent with an episode of 

recent pressurization of the subsurface magma lens and dike propagation from one of its 

tips. The fact that hydrothermal venting at the East Pacific Rise occurs above the center 

of the magma lens suggests that rapid hydrothermal cooling and magma crystallization in 

the lens may be important in controlling the permeability distribution at that site. 

As has recently been speculated in the literature, the pressurization of the magma 

lens may be result from the dikes originating from the underlying, deep magma chambers 

(also of a lens shape). Our quantitative results support this hypothesis. Furthermore, not 

only may these dikes pressurize overlying shallow magma lenses, but this may then also 

lead to the subsequent dike propagation from the tips of these shallow lenses to the 

seafloor although further detailed modeling is required. 
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Figure 4.1 The topography of Earth’s solid surface [Heezen and Tharp, 1977]. 
 

 

 

Figure 4.2 Crustal formation at mid-oceanic ridges [Nicolas, 1995]. 
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Figure 4.3 Cross-section of a model of the melt lens (black color) model of the axial 
magma chamber at 9°30’N [Kent et al., 1993b]. 

 

 

Figure 4.4 Cross-section of a model of two melt lenses of an axial magma chamber at 
9°48’N [Crawford et al. 1999]. 
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Figure 4.5 Cross-section of a seismic profile of a mid-oceanic ridge [Vera et al., 1990]. 
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Figure 4.6 p-wave (Vp) and s-wave velocity (Vs) profiles. Thick solid line and dashed line 
indicate Vp and Vs, respectively, at 9°35’N by Vera et al. [1990]. Thin solid line indicates 
Vs at 9°48’N as inferred by compliance measurements [Crawford et al., 1999]. 
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(a) 

 

 

(b) 

Figure 4.7 Conventional scenario of diking event [Wilcock, 2001] and (b) the dike 
accommodating the spreading of the ocean plates [Buck et al., 1997]. 
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Figure 4.8 Cross-section of a magma chamber at a mid-oceanic ridge. 
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Figure 4.9 Example of FRANC2D mesh for the numerical model of a magma lens: (a) 
melt lens with a width of 2c = 1 km at the depth of H = 1 km, and (b) melt lens with a 
width of a 2c = 2 km at the depth of H = 2 km. 
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Figure 4.10 Magnified mesh of the magma lens area in FRANC2D: (a) melt lens with a 
width of 2c = 1 km, and (b) melt lens with a width of 2c = 2 km. 
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pipipi

 

 

 

 
Figure 4.11 Contour of major principal stress (Pa) in the vicinity of magma lens in 
homogeneous crust in FRANC2D (H = 1 km, 2c = 1 km, and pi/σz = 1.01). 
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Figure 4.12 Dike initiation at the tip of a magma lens in a homogeneous crust in 
FRANC2D (H = 1 km, 2c = 1 km, and pi/σ1(0) = 1.01): (a) tensile stress bar near the tip 
of the magma lens by internal pressure pi, (b) tangential stress (σθθ) distribution along the 
surface of the tip and maximum tangential stress σθθ

max = 24 Mpa at 70°, and (c) dike 
nucleation along 'aa  in (a). 
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Figure 4.13 Contour of major principal stress (Pa) in the vicinity of a magma lens in a 
homogeneous crust in FRANC2D (H = 1 km, 2c = 1 km, and pi/σz = 0.60). 
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Figure 4.14 Dike initiation at the center of a magma lens in a homogeneous crust in 
FRANC2D (H = 1 km, 2c = 1 km and pi/σ1(0) = 0.60): (a) deformation of magma lens 
caused by pressure decrease inside magma lens, (b) maximum tensile stress σxx

max = 10 
MPa at the center of the lens, and (c) dike initiation at the center. 
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Figure 4.15 Pressure distribution inside a dike. 
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(a) 

 

(b) 

Figure 4.16 Dike trajectories from the magma lens for the upper bound estimate in 
FRANC2D (2c = 1 km and H = 1 km, and pi/σ1(0) = 1.01): (a) homogeneous, and (b) 
heterogeneous crust. 
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(b) 

 
Figure 4.17 Dike trajectories from the magma chamber for the upper bound estimate in 
FRANC2D (2c = 1 km, H = 1.5 km, and pi/σ1(0) = 1.01): (a) homogeneous, and (b) 
heterogeneous crust. 
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(a) 

 
(b) 

Figure 4.18 Dike trajectories from the magma chamber for the upper bound estimate in 
FRANC2D (2c = 2 km, H = 2 km, and pi/σ1(0) = 1.01): (a) homogeneous, and (b) 
heterogeneous crust. 
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(b) 

Figure 4.19 Comparison of dike propagation between homogeneous and heterogeneous 
crust: (a) 2c = 1 km and H = 1 km, (b) 2c = 1 km and H = 1.5 km, and (c) 2c = 2 km and 
H = 2 km. Solid line indicates homogeneous crust, and dotted line indicates 
heterogeneous crust. 
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(c) 

 
Figure 4.19 (Continued). 
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(a) 

(b) 

 
(c) 

Figure 4.20 Dike propagation from the center of a magma lens due to magma 
solidification in a homogeneous crust in FRANC2D: (a) 2c = 1 km, H = 1 km and 
pi/σ1(0) = 0.60; (b) 2c = 1 km, H = 1.5 km and pi/σ1(0) = 0.55; (c) 2c = 2 km, H = 2 km 
and pi/σ1(0) = 0.63; and (d) 2c = 2 km, H = 1.5 km, and pi/σ1(0) = 0.68. 
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(d) 

Figure 4.20 (Continued). 
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Figure 4.21 A magma lens pressurized by internal pressure p at a mid-oceanic ridge. 
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Figure 4.22 Magma lens represented as a fracture. 



 231

 

 

pw

x

y

σ3 = λσ1 σ3 = λσ1

H

g

pw

x

y

σ3 = λσ1σ3 = λσ1 σ3 = λσ1

H

g

 

(a) 

 

σ = p - σ1(0)

x

y

2c

H

g = 0

σ = p - σ1(0)

x

y

2c

H

g = 0

 

(b) 

Figure 4.23 Decomposition of the physical problem: (a) half-space without magma lens, 
(b) half-space with magma lens but without boundary conditions and without gravity. 
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Figure 4.24 Dike initiation at the center of the magma lens: (a) pressurized magma lens at 
an infinite plane, and (b) dike initiation by maximum stress, σmax at the center of magma 
lens. 
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Figure 4.25 Superposition of problem for the dike propagation from the lens center. 
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Figure 4.27 Pressurization by initial pressure pi: (a) original problem before propagation, 
and (b) “dike” problem before propagation (refer to Figure 4.25). 
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Figure 4.28 Example of typical FRANC2D mesh for the dike propagation from the lens 
center (H = 1 km, 2c = 1 km, and l = 0.5 km). 
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Figure 4.29 Results of the dike propagation from the lens center in the upper bound 
estimate (H =1 km and 2c = 1 km). 
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Figure 4.30 Results of the dike propagation from the lens center in the upper bound 
estimate (H =1.5 km and 2c = 1 km). 
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Figure 4.31 Superposition of problem for the dike propagation from the lens tip. 
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Figure 4.32 Comparison between numerical simulations of the vertical propagation of the 
dike originating from the tip of the magma lens in a homogeneous crust for a depth of H 
= 1 km and a lens width of 2c = 1 km – simulated propagation path (solid line) versus 
simplified propagation path that is forced to be straight and completely vertical 
(markers): (a) dike trajectories, (b) normalized volume, (c) normalized KI, and (d) 
normalized KII. 
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Figure 4.34 Example of typical FRANC2D mesh for the dike propagation from the lens 
tip (H = 1 km, 2c = 1 km, and l = 0.5 km). 
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Figure 4.35 Results for the dike propagation from lens tip in the upper bound estimate (H 
=1 km and 2c = 1 km). 
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Figure 4.36 Results for the dike propagation from lens tip in the upper bound estimate (H 
=1.5 km and 2c = 1 km). 
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Figure 4.37 Examples of tip dike propagation: (a) location of the JdFR [Wilcock, 2000], 
dashed line indicates Endeavor segment; (b) hydrothermal site on Endeavor segment 
[Delaney et al., 2000], and (c) hydrothermal venting activity at the location above the tips 
away from the ridge axis. 
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Figure 4.38 Examples of central dike propagation: (a) location of the EPR [Heezen and 
Tharp, 1977], (b) hydrothermal vents at EPR [EPR 9°-10° N Archive website], and (c) 
hydrothermal venting activity at the center of ridge axis. 
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Figure 4.39 Example of typical FRANC2D mesh for the simulation of the deep magma 
lens (H = 5.5 km and 2c = 1 km): (a) full mesh, and (b) magnification of mesh around 
deep lens. 
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Figure 4.41 Example of typical FRANC2D mesh for the dike propagation from deep 
magma lens tip (H = 5.5 km, 2c = 1 km, and l = 2.5 km). 
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Figure 4.42 Results for the dike propagation from the deep magma lens tip in the upper 
bound estimate (H =5.5 km and 2c = 1 km). 
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Figure 4.43 Results for the dike propagation from the deep magma lens tip in the upper 
bound estimate (H =6 km and 2c = 2 km). 
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(a) 

 

(b) 

Figure 4.44 Hypothesized model for dike propagation from the deep melt lens: (a) dike 
propagation from deep melt lens to shallow lens, [Crawford et al., 1999]; and (b) magma 
lenses with the shape of thin lenses [Korenaga and Kelemen, 1997]. 
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Figure 4.45 FRANC2D mesh for the simulation of dike propagation from the deep 
magma lens (H = 6 km and 2c = 6 km) to the shallow magma lens (H1 = 2 km and 2c = 2 
km): (a) full mesh; and (b) magnification of mesh around two magma lenses. 
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Figure 4.46 Dike propagation from the deep magma lens tip to the shallow magma lens in 
FRANC2D: (a) real dike trajectory; and (b) simplified dike trajectory. 
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Figure 4.47 Comparison between numerical simulations of the vertical propagation of the 
dike originating from the deep magma lens tip – simulated propagation path (solid line) 
versus simplified propagation path that is forced to be straight and completely vertical 
(circles): (a) dike trajectories, and (b) normalized KI. 
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Figure 4.48 Subsequent dike propagation from shallow magma lens tip in FRANC2D: (a) 
real dike propagation, and (b) simplified dike trajectory. 
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Figure 4.49 Comparison between numerical simulations of the vertical propagation of the 
dike originating from the shallow magma lens tip – simulated propagation path (solid 
line) versus simplified propagation path that is forced to be straight and completely 
vertical (circles): (a) dike trajectories, and (b) normalized KI. 
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Figure 4.50 Superposition of problem for the dike propagation from the deep lens tip to 
the shallow magma lens. 
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Figure 4.52 Example of typical FRANC2D mesh for the dike propagation from the deep 
magma lens tip to the shallow magma lens (H = 6 km, 2c = 2 km, and l = 2 km). 
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Figure 4.53 Results for the dike propagation from deep lens tip to the shallow lens in the 
upper bound estimate (H =6 km and 2c = 2 km). Vertical dashed line indicates the 
location of shallow magma lens (H1 = 4 km). 
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Figure 4.53 (Continued). 
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Figure 4.54 Dike propagation from the lens center (H = 1 km and 2c = 1 km). Dotted 
lines shows the results when the compressibility of the magma is considered. 
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Figure 4.55 Dike propagation from the lens tip (H = 6 km and 2c = 2 km). Dotted lines 
show the results when the compressibility of the magma is considered. 



 265

10 km 10 km
300 m

9.9 km

10 km 10 km
300 m

9.9 km

 
(a) 

2 km

200 m

2.5 km

2 km

200 m

2.5 km

 
(b) 

Figure 4.56 FRANC2D mesh for the numerical model of a magma lens considering 
topography: (a) whole mesh that has a non-horizontal topography, and (b) magnified non-
horizontal topography with 2c = 2 km size of melt lens at the depth of H = 2.5 km. 
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Figure 4.57 Dike trajectories from the magma lens tip (H = 2.5 km and 2c = 2 km): (a) 
non-horizontal seafloor; and (b) horizontal seafloor. 
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                                              (b)                                                                 (c) 

Figure 4.58 Comparison of results between horizontal and non-horizontal seafloor (2c = 2 
km): (a) dike trajectory, (b) normalized KI, and (c) normalized KII. Solid line indicates 
results in the non-horizontal seafloor, and circles indicate result in horizontal seafloor. 
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Figure 4.59 Shrinkage of the lens volume as a result of magma crystallization. 
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Figure 4.60 Critical fraction of the crystallized magma in the lens required for the dike 
initiation from the lens center. 
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Figure 4.61 Time scale of magma crystallization. 
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Figure 4.62 Normalized displacement of the lens sides at the center. 



 270

CHAPTER V 

CONCLUSIONS 

 

Hydraulic fracturing is an important and abundant process in both industrial 

applications and natural environments. The formation of hydraulic fractures includes 

nucleation, growth, and termination in numerous rock types and stress regimes, at scales 

ranging from microns to many kilometers. As a result, the fractures show complicated 

geometries, which reflect the complexity of the underlying physical mechanisms. 

Fracture segmentation, commonly observed at all scales and in all materials, contributes 

to this complexity in many ways. In particular, the mechanical interaction of fracture 

segments as well as the interaction of a fracture with other fractures, the Earth’s surface, 

and pre-existing geological discontinuities strongly affect almost all hydraulic fracturing 

processes. 

For more than five decades, hydraulic fracturing techniques have been widely 

used to enhance oil and gas production. Recent observations based on geological 

evidence, laboratory tests, and mineback experiments confirm that complex 

multisegmented hydraulic fractures are common phenomena. However, current hydraulic 

fracture models presume a single fracture, or neglect the interaction between the fracture 

segments. This is despite the fact that the interaction dramatically changes the simulated 

dimensions of the hydraulic fractures and their net pressures. 

The current work is the first systematic quantitative study of the effects of the 

mechanical interaction in and between complex hydraulic fractures. A mathematical 

model, based on the boundary collocation method, has been developed. A typical field 
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case, a highly segmented vein, is studied and used to understand the effects of segment 

interaction at different spatial scales. For this well-mapped vein that represents a well 

constrained case, the simplest constitutive model, based on an ideal elastic material, has 

been tested for its capability to capture the complex behavior of multisegmented fractures. 

The mathematical model is tested by comparing computed segment apertures to 

the measured apertures at three different spatial scales. By using this simple constitutive 

model and by including the effect of interaction between the segments, an excellent 

match was obtained at all considered scales. Only two net pressures were needed to fit 

3,339 highly irregular measured apertures. This simulation also suggests that the 

interaction between the segments strongly affects the apertures of the fractures and their 

net pressures. In contrast, by neglecting the interaction between the segments, the net 

pressures can be grossly overestimated, by as much as an order of magnitude or more. 

In addition, the concept of the effective fracture, as currently accepted in the 

literature, has been employed for a simple simulation of fractures with closely spaced and 

interacting segments. In the studied field case, the effective fracture model provided 

rather robust and accurate results. In general, however, due to the complex interplay 

between the parameters of segmentation, this concept may not always be applicable and 

may lead to unbounded inaccuracy. 

Our computations recreate the final stage of the vein evolution. The simulated 

apertures are such as if they have been opened by the two calculated net pressures. These 

two distinct pressures indicate that the pressure communication between the two 

corresponding vein parts is weak or non-existent. Further geological interpretation, based 

on our results, is required to reconstruct the complete history of the vein (e.g., initiation, 
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propagation, fluid flow, and precipitation) that is well beyond the scope of this work. Yet, 

as long as the vein was pressurized, mechanical interaction was always a major 

mechanism regardless of whether other processes were active or not. 

In most cases, very little (if any) directly measured data on fracture and material 

properties is available. An important example of such a weakly constrained case, 

involving hydraulic fracturing, is diking beneath the seafloor at mid-oceanic ridges. In 

this study, it is shown that the conventional scenario of a dike propagating from the 

center of the pressurized magma chamber to the ocean floor is not consistent with 

conventional fracture mechanics due to the fact that the chamber has the shape of a thin 

lens. Even at such a large scale (i.e., a kilometer or more), the mechanical principles of 

elastic interaction appear to be applicable. The dikes that initiate from the subsurface 

magma lens, and the magma lens itself, can be considered as mechanically interacting 

segments in an elastic half-space bounded by the seafloor. 

Model calculations show that dike propagation from a thin axial magma lens 

beneath the seafloor depends primarily on the pressure magnitude within the magma lens. 

Excess magma pressure due to magma replenishment results in nearly vertical dike 

propagation originating from the vicinity of the tips of the lens. In contrast, a deficit of 

magma pressure stemming from hydrothermal cooling and magma crystallization results 

in vertical dike propagation from the center of the magma lens. 

The propagating dike withdraws magma from the magma lens, which decreases 

the lens pressure. Despite this pressure decrease, the tip dike does propagate to the 

seafloor, because the dike-seafloor interaction is sufficiently strong to compensate for the 
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pressure decrease. In contrast, the central dike does not propagate to the seafloor, because 

of insufficient dike-seafloor interaction. 

Since diking is likely to generate a region of high permeability near its margin, in 

addition to heat, the ongoing hydrothermal activity becomes localized. Our calculations 

suggest the possible positions of the propagating dikes. Consequently, comparing the 

observed locations of the hydrothermal sites with respect to that of the magma chamber 

could be useful for constraining the magma lens modeling. 

The occurrence of hydrothermal vents near the tips of the magma lens at the Main 

Endeavor and Salty Dawg hydrothermal sites of the Juan de Fuca Ridge is consistent with 

an episode of recent pressurization of the subsurface magma lens and dike propagation 

from one of its tips. The fact that hydrothermal venting at the East Pacific Rise occurs 

above the center of the magma lens suggests that rapid hydrothermal cooling and magma 

crystallization in the lens may be important in controlling the permeability distribution at 

that site. 

As has recently been speculated in the literature, the pressurization of the magma 

lens may be occurring by the diking originating from the underlying, deep magma 

chambers (also with a lens shape). Our quantitative results support this hypothesis. 

Furthermore, not only may these dikes pressurize overlying shallow magma lenses, but 

this can then also lead to the subsequent dike propagation from the tips of these shallow 

lenses to the seafloor. 

Hence, the mechanical interaction is likely to have a pronounced effect on the 

behavior of complex natural and industrial hydraulic fractures and needs to be included 

into the modeling efforts. 
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APPENDIX A 

FORTRAN 90 SOURCE CODE 
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!********************************************************************** 
!* This program determines alpha and beta coefficients and            * 
!* stress intensity factor for multiple segments.                     * 
!********************************************************************** 
 
program interact 
use msflib 
character(len=35) datfil 
integer(kind=4) :: cnt, tcol 
integer(kind=4), allocatable :: indx(:),l(:) 
real, allocatable :: a(:,:),b(:) 
real, allocatable :: x0(:),y0(:),alf(:),c(:),p(:),tau(:) 
real, allocatable :: K1il(:),K1ir(:),K2il(:),K2ir(:) 
! ax = b       : matrix type to solve 
! x0(n), y0(n) : center coordinate 
! alf(n)       : inclination angle 
! c(n)         : half-length 
datfil="ldata.dat" 
write(*,*) 
write(*,'(a\)') " Input data file name [ldata.dat] "  
read(*,'(a)') datfil 
if(datfil.EQ."")then 
   datfil="ldata.dat" 
endif 
! n: total number of segments 
! l(n): array of collocation points for each segment 
! m & l(1): number of collocation points for first segment 
open(unit=1,file=datfil) 
read(1,*) n 
allocate(l(n)) 
read(1,*) sx,sy,txy 
read(1,*) (nd,dx0,dy0,dalf,dc,dp,dtau,l(i), i=1,n) 
close(1) 
m=l(1) 
! tcol : total number of collocation points 
! isize: size of linear system of equation 
tcol=0 
do i=1,n 
   tcol=tcol+l(i) 
enddo 
isize=2*tcol 
n=n-1 
! Memory allocation for arrays 
write(*,*)  
write(*,*) "Preparing data." 
write(*,*)  
allocate(a(isize,isize),b(isize),indx(isize)) 
allocate(x0(n),y0(n),alf(n),c(n),p(n),tau(n)) 
allocate(K1il(n),K1ir(n),K2il(n),K2ir(n)) 
! Subroutine for converting data to reference format and assigning 
! the reference segment 
call dataconv(n+1,datfil,c_1) 
! Read data 
open(unit=9,file='$ldata1.dat') 
read(9,*) pz,tz 
read(9,*) (x0(i),y0(i),alf(i),c(i),p(i),tau(i),l(i),i=1,n) 
close(9) 
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! Subroutine forming the system of equations to be solved 
call form(a,n,l,m,x0,y0,alf,c,isize) 
write(*,*)'The main matrix has been formed.' 
! Subroutine forming the right-hand side of the equation system 
call rside(b,n,l,m,p,tau,isize) 
write(*,*)'The right hand side has been formed.' 
! Subroutines solving the system of equation 
call ludcmp(a,isize,isize,indx,d) 
call lubksb(a,isize,isize,indx,b) 
! Subroutine calculating SIF's and writing the output files 
call res(b,n,l,m,c,K1il,K1ir,K2il,K2ir,c_1,isize) 
! Deleting temporal data file created by subroutine dataconv 
cnt = delfilesqq("$ldata1.*") 
end program interact 
 
 
!********************************************************************** 
!* This subroutine performs the conversion of the input data to the   * 
!* internal format and assigns reference segment.                     * 
!********************************************************************** 
subroutine dataconv(n,datfil,c_1) 
integer n,nd 
dimension x0(n),y0(n),alf(n),c(n),p(n),tau(n),l(n) 
real x1(n),y1(n),alf1(n),c1(n),p1(n),tau1(n),s1(n),t1(n) 
real sx,sy,txy,c_1 
character*35 datfil 
open(unit=9,file=datfil) 
read(9,*) dn 
read(9,*) sx,sy,txy 
read(9,*) (nd,x0(i),y0(i),alf(i),c(i),p(i),tau(i),l(i),i=1,n) 
close(9) 
pi=acos(-1.0d0) 
do i=1,n 
   alf(i)=alf(i)/(180.d0/pi) 
enddo 
do i=1,n 
   s1(i)=sy*cos(alf(i))**2+sx*sin(alf(i))**2-txy*sin(2.*alf(i)) 
   t1(i)=(sy-sx)/2.*sin(2.*alf(i))+txy*cos(2.*alf(i)) 
enddo 
p0=p(1)+s1(1) 
t0=tau(1)+t1(1) 
c_1=c(1) 
do i=1,n-1 
   c1(i)=c(i+1)/c(1) 
   xtmp=(x0(i+1)-x0(1))*cos(alf(1))+(y0(i+1)-y0(1))*sin(alf(1)) 
   x1(i)=xtmp/c(1) 
   ytmp=-(x0(i+1)-x0(1))*sin(alf(1))+(y0(i+1)-y0(1))*cos(alf(1)) 
   y1(i)=ytmp/c(1) 
   alf1(i)=alf(i+1)-alf(1) 
   p1(i)=p(i+1)+s1(i) 
   tau1(i)=tau(i+1)+t1(i) 
enddo 
! Modified input data is saved. 
open(unit=9,file='$ldata1.dat') 
write(9,*) p0,t0 
write(9,'(6e12.4,i5)') (x1(i),y1(i),alf1(i),c1(i),p1(i),tau1(i),& 
         l(i+1),i=1,n-1) 
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close(9) 
end subroutine dataconv 
 
 
!********************************************************************** 
!* This subroutine forms the matrix of the equations system to be     * 
!* solved.                                                            * 
!********************************************************************** 
subroutine form(a,n,l,m,x,y,alf,c,isize) 
dimension a(isize,isize) 
dimension x(n),y(n),alf(n),c(n),l(n) 
! Calculate tractions induced by each segment on all other segments. 
! Reference segment is excluded at this point.  
pi=acos(-1.0d0) 
dx=0. 
dy=0. 
dalf=0. 
lsumt=0 
do i5=1,n 
   lsumt=lsumt+l(i5)  
enddo 
do i=1,n          ! i- row number 
   write(*,*)'Computing tractions induced by segment', i  
   lsumi=0 
   do i3=1, i-1 
      lsumi=lsumi+l(i3)  
   enddo 
   do li=1,l(i) 
      xli=x(i)+c(i)*cos(alf(i))*cos(pi*(2.*li-1.)/2./l(i)) 
      yli=y(i)+c(i)*sin(alf(i))*cos(pi*(2.*li-1.)/2./l(i)) 
      xp=cos(pi*(2.*li-1)/2./l(i))  
      do j=1,n    ! j- column number   
         lsumj=0 
         do i4=1, j-1 
            lsumj=lsumj+l(i4)  
         enddo 
         if(j /= i)then 
         do lj=1,l(j)                          
            dx=(xli-x(j))*cos(alf(j))/c(j)+(yli-y(j))*sin(alf(j))/c(j) 
            dy=-(xli-x(j))*sin(alf(j))/c(j)+(yli-y(j))*cos(alf(j))/c(j) 
            dalf=alf(i)-alf(j) 
         call coef2( a(lsumi+li,lsumj+lj) , & 
                     a(lsumi+li,lsumt+lsumj+lj), & 
                     a(lsumt+lsumi+li,lsumj+lj), & 
                     a(lsumt+lsumi+li,lsumt+lsumj+lj),& 
                       dx,dy,dalf,lj) 
         enddo 
         else 
! Calculate tractions induced by each segment on itself. 
! The reference segment is excluded. 
         do lj=1,l(i)              ! lj- column number 
            a(lsumi+li,     lsumj+lj)=Um(xp,lj-1) 
            a(lsumi+li,     lsumt+lsumj+lj)=0 
            a(lsumt+lsumi+li, lsumj+lj)=0   
            a(lsumt+lsumi+li, lsumt+lsumj+lj)=Um(xp,lj-1) 
         enddo 
         endif 
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      enddo 
   enddo 
enddo     
! Calculate tractions induced by each segment on the reference one. 
write(*,*)'Computing remaining tractions.' 
do i=1,n                                 ! i- row number 
   lsumi=0 
   do i3=1, i-1 
      lsumi=lsumi+l(i3)  
   enddo 
   do li=1,l(i) 
      xli=x(i)+c(i)*cos(alf(i))*cos(pi*(2.*li-1.)/2./l(i)) 
      yli=y(i)+c(i)*sin(alf(i))*cos(pi*(2.*li-1.)/2./l(i)) 
      do j=1,m                           ! j- column number 
         call coef2(a(lsumi+li,2*lsumt+j) ,& 
                    a(lsumi+li,2*lsumt+m+j), & 
                    a(lsumt+lsumi+li,2*lsumt+j),&  
                    a(lsumt+lsumi+li,2*lsumt+m+j),& 
                      xli, yli, alf(i), j) 
      enddo 
   enddo 
enddo 
! Calculate tractions induced by the reference segment on all 
! other segments. 
do i=1,m                                 ! i- row number 
   xp=cos(pi*(2.*i-1)/2./m) 
   do j=1,n                              ! j- colomn number 
      lsumj=0 
      do i4=1, j-1 
         lsumj=lsumj+l(i4)  
      enddo 
      do lj=1,l(j) 
         dx=(xp-x(j))*cos(alf(j))/c(j)-y(j)*sin(alf(j))/c(j) 
         dy=-(xp-x(j))*sin(alf(j))/c(j)-y(j)*cos(alf(j))/c(j) 
         dalf=-alf(j) 
         call coef2(a(2*lsumt+i,lsumj+lj), & 
                    a(2*lsumt+i,lsumt+lsumj+lj),& 
                    a(2*lsumt+m+i,lsumj+lj), & 
                    a(2*lsumt+m+i,lsumt+lsumj+lj),& 
                      dx , dy, dalf, lj) 
      enddo 
   enddo 
enddo 
! Calculate tractions induced by the reference segmen on itself. 
do i=1,m                                 ! i- row number 
   xp=cos(pi*(2.*i-1)/2./m) 
   do j=1,m                              ! j- colomn number 
      a(2*lsumt+i,2*lsumt+j)=Um(xp,j-1) 
      a(2*lsumt+i,2*lsumt+m+j)=0 
      a(2*lsumt+m+i,2*lsumt+j)=0   
      a(2*lsumt+m+i,2*lsumt+m+j)=Um(xp,j-1) 
   enddo 
enddo 
end subroutine form 
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!********************************************************************** 
!* This subroutine forms the right-hand side of the equation system   * 
!* to be solved.                                                      * 
!********************************************************************** 
subroutine rside(b,n,l,m,p,tau,isize) 
dimension b(isize),p(n),tau(n),l(n) 
pi=acos(-1.0d0) 
lsumt=0 
do i5=1,n 
   lsumt=lsumt+l(i5)  
enddo 
do i=1,n 
   lsumi=0 
   do i3=1,i-1 
      lsumi=lsumi+l(i3)  
   enddo 
   sigs=tau(i) 
   sigt=p(i) 
   do li=1,l(i) 
      b(lsumi+li)=sigt 
      b(lsumt+lsumi+li)=sigs 
   enddo 
enddo 
open(unit=9, file = '$ldata1.dat') 
read(9,*) pz,tz 
close(9) 
p0=pz 
tau0=tz 
do i=1,m 
   sigs=tau0 
   sigt=p0 
   b(2*lsumt+i)=sigt 
   b(2*lsumt+m+i)=sigs 
enddo     
end subroutine rside 
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!********************************************************************** 
!* This subroutine (Press et al. p38, 1992) is for the decomposition. * 
!* It was slightly changed from original one.                         * 
!********************************************************************** 
subroutine ludcmp(a,n,np,indx,d) 
integer n,np,indx(n),nmax 
real d,a(np,np),tiny 
parameter (nmax=20000, tiny=1.0d-20) 
integer i,imax,j,k 
real aamax,dum,sum,vv(nmax) 
d=1. 
write(*,*) 'Checking matrix.' 
do i=1,n 
   aamax=0. 
   do j=1,n 
      if(abs(a(i,j)) > aamax) then  
         aamax=abs(a(i,j)) 
      endif 
   enddo 
   vv(i)=1./aamax 
enddo 
write(*,*) 'Decomposition.' 
do j=1,n 
   if(mod(j,100) == 0)then 
   write(*,*)'' 
   call current_time 
   write(*,*) j,' out of',n, ' equations have been processed.'  
   endif 
   do i=1,j-1 
      sum=a(i,j) 
      do k=1,i-1 
         sum=sum-a(i,k)*a(k,j) 
      enddo 
      a(i,j)=sum 
   enddo 
   aamax=0. 
   do i=j,n 
      sum=a(i,j) 
      do k=1,j-1 
         sum=sum-a(i,k)*a(k,j) 
      enddo 
      a(i,j)=sum 
      dum=vv(i)*abs(sum) 
      IF(dum >= aamax) then 
         imax=i 
         aamax=dum 
      endif 
   enddo 
      if(j /= imax) then 
         do k=1,n 
            dum=a(imax,k) 
            a(imax,k)=a(j,k) 
            a(j,k)=dum 
         enddo 
         d=-d 
         vv(imax)=vv(j) 
      endif 
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      indx(j)=imax 
      if(a(j,j) == 0.) then 
         a(j,j) = tiny 
      endif 
      if(j /= n) then 
         dum=1./a(j,j) 
         do i=j+1,n 
            a(i,j)=a(i,j)*dum 
         enddo 
      endif 
enddo 
end subroutine ludcmp 
 
 
!********************************************************************** 
!* This subroutine (Press et al. p38, 1992) performs forward          * 
!* substitution and backsubstitution.                                 * 
!********************************************************************** 
subroutine lubksb(a,n,np,indx,b) 
integer n, np, indx(n) 
real a(np,np), b(n) 
integer i, ii, j, ll 
real sum 
ii=0 
write(*,*) 
write(*,*) 'Forward substitution.' 
do i=1,n 
   ll=indx(i) 
   sum=b(ll) 
   b(ll)=b(i) 
   if(ii /= 0) then 
      do j=ii,i-1 
         sum=sum-a(i,j)*b(j) 
      enddo 
   else if(sum /= 0.) then 
      ii=i 
   endif 
   b(i)=sum 
enddo 
write(*,*) 'Back substitution.' 
   do i=n,1,-1 
      sum=b(i) 
      do j=i+1, n 
         sum=sum-a(i,j)*b(j) 
      enddo 
      b(i)=sum/a(i,i) 
   enddo 
end subroutine lubksb 
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!********************************************************************** 
!* This subroutine calculates SIFs and writes the output results.     * 
!********************************************************************** 
subroutine res(b,n,l,m,c,K1il,K1ir,K2il,K2ir,c_1,isize) 
character*35 alffil,betfil,intfil 
integer l(n) 
real b(isize) 
real K1l,K2l,K1r,K2r 
real c(n),c_1 
real K1il(n),K1ir(n),K2il(n),K2ir(n) 
pi=acos(-1.0d0) 
! In some problems (e.g., interaction 
! between a large fracture and a set of small microfractures), it is 
! convenient to consider one fracture as a reference one. 
! This is done here for the sake of convenience only.  
! Introduce the reference segment of 2*c0 length: 
c0=1.0d0 
c01 = sqrt(pi*c0) 
alffil="alpha.txt" 
write(*,'(a\)') " File name for alpha coefficients [alpha.txt] "  
read(*,'(a)') alffil 
if(alffil == "") then 
   alffil="alpha.txt" 
endif 
write(*,'(a\)') " File name for beta coefficients [beta.txt] "  
read(*,'(a)') betfil 
if(betfil =="") then 
   betfil="beta.txt" 
endif 
open(unit=4, file=alffil) 
open(unit=5, file=betfil) 
lsumt=0 
do i5=1,n 
   lsumt=lsumt+l(i5)  
enddo 
i=0 
write(4,'(x,i3,x,e12.4)')(i+1,b(2*lsumt+li),li=1,m)    ! alpha.txt 
write(5,'(x,i3,x,e12.4)')(i+1,b(2*lsumt+m+li),li=1,m)  ! beta.txt 
do i=1,n 
   lsumi=0 
   do i3=1,i-1 
      lsumi=lsumi+l(i3)  
   enddo 
   K1il(i)=0. 
   K1ir(i)=0. 
   K2il(i)=0. 
   K2ir(i)=0. 
   do li=1,l(i) 
      K1il(i)=K1il(i)+sqrt(pi*c(i))*(-1)**(li+1)*b(lsumi+li) 
      K2il(i)=K2il(i)+sqrt(pi*c(i))*(-1)**(li+1)*b(lsumt+lsumi+li) 
      K1ir(i)=K1ir(i)+sqrt(pi*c(i))*b(lsumi+li) 
      K2ir(i)=K2ir(i)+sqrt(pi*c(i))*b(lsumt+lsumi+li) 
   enddo 
   write(4,'(x,i3,x,e12.4)')(i+1, b(lsumi+li),li=1,l(i)) 
   write(5,'(x,i3,x,e12.4)')(i+1, b(lsumt+lsumi+li),li=1,l(i)) 
enddo 
close(4) 
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close(5)  
K1l=0. 
K2l=0. 
K1r=0. 
K2r=0. 
do i=1,m 
   K1l=K1l+c01*(-1)**(i+1)*b(2*lsumt+i) 
   K2l=K2l+c01*(-1)**(i+1)*b(2*lsumt+m+i) 
   K1r=K1r+c01*b(2*lsumt+i) 
   K2r=K2r+c01*b(2*lsumt+m+i) 
enddo 
write(*,'(a\)')" File name for SIFs [inten.txt] "  
read(*,'(a)') intfil 
if(intfil == "")then 
   intfil="inten.txt" 
endif 
cc=sqrt(c_1) 
open(unit=4,file=intfil) 
write(4,*)'---------------------------------------------------------' 
write(4,*)'  n     KI_left      KI_right     KII_left    KII_right' 
write(4,*)'---------------------------------------------------------' 
i=0 
write(4,'(x,i3,x,e12.4,x,e12.4,x,e12.4,x,e12.4)') i+1, cc*k1l,& 
          cc*k1r, cc*k2l, cc*k2r  
do i=1,n 
   write(4,'(x,i3,x,e12.4,x,e12.4,x,e12.4,x,e12.4)') i+1, cc*k1il(i),& 
             cc*k1ir(i),cc*k2il(i),cc*k2ir(i) 
enddo 
close(4) 
end subroutine res 
 
 
!********************************************************************** 
!* This is an auxiliary subroutine for calculating functions a0,b0,c0,* 
!* d0 characterizing tractions generated by a segment on the place of * 
!* another segment. This subroutine will be used by subroutine form   * 
!* forming the main matrix of the equations set to be solved.         * 
!********************************************************************** 
subroutine coef2(a0,b0,c0,d0,x,y,alf,m) 
complex rm, gm1, gm2 
complex crm, cgm1 
real Im, Jm, Lm, Km 
real cIm, cJm 
complex ed, z0, z0c 
pi=acos(-1.0) 
ed=(0.,1.) 
tet=atan2(y,x) 
tet1=atan2(y,x-1) 
tet2=atan2(y,x+1) 
r=sqrt(x*x+y*y) 
r1=sqrt((x-1)*(x-1)+y*y) 
r2=sqrt((x+1)*(x+1)+y*y) 
z0=r*cdexp(ed*tet) 
rm=(z0-sqrt(r1*r2)*cdexp(ed*(tet1+tet2)/2.))**m 
gm1=-rm/sqrt(r1*r2)/cdexp(ed*(tet1+tet2)/2.) 
Im=real(gm1) 
Jm=-aimag(gm1) 
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gm2=(m/sqrt(r1*r2)/cdexp(ed*(tet1+tet2)/2.)+z0/(z0*z0-1))*gm1 
Lm=-real(gm2) 
Km=aimag(gm2) 
! Calculate Im(x,-y) and Jm(x ,-y). 
tetm=atan2(-y,x) 
tetm1=atan2(-y,x-1) 
tetm2=atan2(-y,x+1) 
r=sqrt(x*x+y*y) 
r1=sqrt((x-1)*(x-1)+y*y) 
r2=sqrt((x+1)*(x+1)+y*y) 
z0c=r*cdexp(ed*tetm) 
crm=(z0c-sqrt(r1*r2)*cdexp(ed*(tetm1+tetm2)/2.))**m 
cgm1=-crm/sqrt(r1*r2)/cdexp(ed*(tetm1+tetm2)/2.) 
cIm=real(cgm1) 
cJm=-aimag(cgm1) 
a0=1./2.*(2.*Im+(cIm-Im-2.*y*Km)*cos(2*alf)-(cJm+Jm-2.*y*Lm)& 
   *sin(2*alf)) 
b0=-1./2.*(2.*Jm+(cJm-Jm+2.*y*Lm)*cos(2*alf)+(cIm+Im+2.*y*Km)& 
   *sin(2*alf)) 
c0=1./2.*((cJm+Jm-2.*y*Lm)*cos(2*alf)+(cIm-Im-2.*y*Km)& 
   *sin(2*alf)) 
d0=-1./2.*(-(cIm+Im+2.*y*Km)*cos(2*alf)+(cJm-Jm+2.*y*Lm)& 
   *sin(2*alf)) 
end subroutine coef2 
 
 
!********************************************************************** 
!* Function for creating Chebyshev polynomial of second kind          * 
!********************************************************************** 
function Um(x,m) 
Um=sin((m+1)*acos(x))/sin(acos(x)) 
end function Um 
 
 
!********************************************************************** 
!* Subroutine showing current time and date                           * 
!********************************************************************** 
subroutine current_time() 
integer(2)  tmpday,tmpmonth,tmpyear 
integer(2)  tmphour,tmpminute,tmpsecond,tmphund 
character(1) mer 
call getdat(tmpyear,tmpmonth,tmpday) 
call gettim(tmphour,tmpminute,tmpsecond,tmphund) 
 
if(tmphour > 12)then 
   mer = 'p' 
   tmphour = tmphour - 12 
   else 
   mer = 'a' 
   endif 
   write(*,'(10x,i2,"/",i2.2,"/",i4.4,",",x,i2,":",i2.2,":",i2.2,x,a,& 
        "m")') tmpmonth,tmpday,tmpyear,tmphour,tmpminute,tmpsecond,mer 
end subroutine current_time 
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APPENDIX B 

CONVERGENCE STUDY FOR ALL INTERACTING CASES 

AT THE MICROSCALE 
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Figure B.1 Application of two pressures for interacting segments at the microscale after 
an increase in the number of collocation points: (a) 50% increase, and (b) 75% increase 
(values in the legend indicate the computed net pressure magnitudes). 
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Figure B.1 (Continued) 
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Figure B.2 Application of three pressures for interacting segments at the microscale after 
an increase in the number of collocation points: (a) 50% increase, and (b) 100% increase 
(values in the legend indicate the computed net pressure magnitudes). 
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Figure B.2 (Continued). 
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Figure B.3 Application of six pressures for interacting segments at the microscale after an 
increase in the number of collocation points: (a) 50% increase, and (b) 100% increase 
(values in the legend indicate the computed net pressure magnitudes). 
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Figure B.3 (Continued). 
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APPENDIX C 

MODELING 35 ECHELON MINETTE DIKE SEGMENTS NEAR SHIP ROCK, 

NEW MEXICO 
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The apertures of the 35 minette dike segments near Ship Rock, New Mexico are 

modeled by using the boundary collocation method and compared to the results by 

Delaney and Pollard [1981]. The dike consists of 35 discrete segments arranged in en 

echelon, with an outcrop length of approximately 2,900 m, an average thickness of 2.3 m, 

and a maximum thickness of 7.2 m. All data used for our simulation was obtained from 

the work of Delaney and Pollard [1981]. 

Figure C.1 shows the map view and opening of the dike segments. Figure C.2 

shows the comparison of computed and measured apertures following the same 

procedure that was used by Delaney and Pollard [1981]. Based on the subsurface 

consideration, they suggested that some of the 35 segments are merged so that 

mechanically, the entire dike behaves as having only 10 segments. We obtained the 

pressure-to-modulus ratio of 0.0017 for the dike with 10 segments, which is similar to the 

value of 0.0018 that was found by Delaney and Pollard [1981]. 

Figure C.3 shows the mode I stress intensity factors KI normalized by that for the 

non-interacting segments for the boundary collocation method (used in this work) as 

compared to the method of successive approximations (implemented by Delaney and 

Pollard [1981]). The results are similar and show the good accuracy of the computations 

by Delaney and Pollard [1981]. 
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Figure C.1 Map view and opening of the 35 echelon dike segments, Ship Rock, New 
Mexico [Delaney and Pollard, 1981]: (a) map view for equal scale, (b) map view at 
magnified scale in y direction, and (c) opening versus distance along the dike segments. 
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Figure C.2 Comparison of computed and measured openings for a single uniform 
pressure by using boundary collocation method: (a) 35 dike segments model, (b) 10 dike 
segments model obtained after removing data for brecciated parts of dike wall, joining 
together closely spaced segments, and removing data near adjacent ends of jointed 
segments, and (c) single dike model obtained by joining all segments together and 
removing data near segment ends. 
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Figure C.3 Comparison of KI SIFs between boundary collocation method and successive 
approximation for 10 dike segments model: (a) normalized SIF (left), and (b) normalized 
SIF (right). 
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APPENDIX D 

TESTING PROBLEMS FOR DIKE PROPAGATION FROM THE CENTER AND 

THE TIP OF THE MAGMA LENS 
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D.1 Testing problems for dike propagation from the lens center 

 

It is necessary to verify the dimensionless functions (fZ
dike, fZ

chamber, and kIZ
dike) and 

displacements obtained from numerical simulations of the vertical propagation of a 

fracture (dike) from the center of a horizontal fracture (i.e., magma lens) in a half-space 

(Figure 4.26) to avoid significant errors and to verify the results. Although there is no 

analytical solution for comparison in a half-space, some specific cases can be compared 

approximately. 

In Problem A of Figure 4.26, the dimensionless function fA
chamber(50) (Table 4.3) 

can be compared to the dimensionless function, fA(0) of (4.78), that is derived analytically 

for the magma volume before the dike propagation. Repeating (4.78) here gives 









+−= 2

2
2

4
31)1(2)0(
H
cf A νπ                                        (D.1) 

Table D.1 shows a comparison of the dimensionless functions fA(0) and fA
chamber(50). It is 

expected that fA(0) is always less than fA
chamber(50). However, for H = 1 km case, fA(0) is 

greater than fA
chamber(50), because the chamber crack is close to the half-space boundary, 

which may result in a slight deviation. 

 
Table D.1 Comparison of dimensionless functions fA(0) and fA

chamber(50), for dike 
propagation from the lens center. 

 
Function H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 

fA(0) 6.941 6.332 
fA

chamber(50) 6.929 6.465 
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In problem B of Figure 4.26, the dimensionless functions for small propagation in 

a half-space (e.g., l = 50 m or 100 m) can be compared with those in the semi-infinite 

space (Figure D.1a). Analytical expressions for the dimensionless functions, fB
dike and 

kIB
dike, in a semi-infinite space are [Tada et al., 1985] 

2

2
2 )1(258.1

c
lf dike

B νπ −=                                           (D.2) 

c
lk dike

IB 1215.1=                                                 (D.3) 

Compared to the analytical solutions, the computed dimensionless functions are in good 

agreement (Tables D.2 and D.3). Additionally, the half-opening profile of a dike in a 

semi-infinite space is available [Tada et al., 1985]: 


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




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
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l
y

l
y

l
yyl

E
py Z ν

δ   (D.4) 

Compared to the analytical solutions, they are in good agreement (Figure D.2). 
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Table D.2 Comparison of dimensionless function, fB
dike, for dike propagation from the 

lens center. 
 

H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 
Function 

l = 50 m l = 100 m l = 50 m l = 100 m 

Tada et al. [1985] 0.037 0.147 0.037 0.147 

This work 0.036 0.143 0.036 0.144 
 

Table D.3 Comparison of dimensionless function, kIB
dike, for dike propagation from the 

lens center. 
 

H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 
Function 

l = 50 m l = 100 m l = 50 m l = 100 m 

Tada et al. [1985] 0.355 0.502 0.355 0.502 

This work 0.350 0.491 0.350 0.492 
 

In problem C of Figure 4.26, the dimensionless functions of small propagation in 

a half-space can be compared with those in the semi-infinite space (Figure D.1b). 

Analytical expressions for dimensionless functions, fC
dike and kIC

dike, in a semi-infinite 

space are [Tada et al., 1985]: 

2

2
2 )1(349.2

c
lf dike

C ν−=                                            (D.5) 

c
lk dike

IC 439.0=                                                  (D.6) 

Compared to the analytical solutions, the computed dimensionless functions are also in 

good agreement (Table D.4 and D.5). The dimensionless function, kIC
dike, for H = 1 km 

case shows a slight deviation from the analytical solution because the chamber crack is 



 302

close to the half-space boundary. Additionally, the analytical expression for dike opening 

at the base in a semi-infinite space is [Tada et al., 1985] 

c
l)1(174.4)0( 2νδ −=                                              (D.7) 

Compared to the analytical solutions, the computed dike openings at the base are in good 

agreement (Table D.6). 

 

Table D.4 Comparison of dimensionless function, fC
dike, for dike propagation from the 

lens center. 
 

H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 
Function 

l = 50 m l = 100 m l = 50 m l = 100 m 

Tada et al. [1985] 0.022 0.087 0.022 0.087 

This work 0.022 0.086 0.022 0.086 
 

Table D.5 Comparison of dimensionless function, kIC
dike, for dike propagation from the 

lens center. 
 

H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 
Function 

l = 50 m l = 100 m l = 50 m l = 100 m 

Tada et al. [1985] 0.139 0.196 0.139 0.196 

This work 0.094 0.133 0.132 0.188 
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Table D.6 Comparison of normalized dike opening at the base for dike propagation from 
the lens center. 

 
H = 1 km and 2c = 1 km H = 1.5 km and 2c = 1 km 

Function 
l = 50 m l = 100 m l = 50 m l = 100 m 

Tada et al. [1985] 0.388 0.777 0.388 0.777 

This work 0.366 0.735 0.367 0.735 
 

D.2 Testing problems for dike propagation from the lens tip 

 

In Problem A of Figure 4.35, the dimensionless function fA
chamber(50) (Tables 4.4 

and 4.5) can be also compared with the analytically derived dimensionless function, fA(0) 

of (4.78). Compared to the analytical solutions, the computed dimensionless functions are 

in good agreement (Table D.7). 

 
Table D.7 Comparison of dimensionless functions, fA(0) and fA

chamber(50), for dike 
propagation from the lens tip. 

 
Function H = 1 km  H = 1.5 km H = 5.5 km  

fA(0) 6.941 6.332 5.882 
fA

chamber(50) 7.126 6.516 5.971 
 

The stress intensity factor of a propagating fracture in Problem A can be 

compared approximately with other available solutions obtained in an infinite space. As 

expected, if the fracture is located at a greater distance from the half-space boundary (e.g. 

H = 5.5 km), the normalized KI and KII are in good agreement (Figures D.3 – D.5). 
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Figure D.1 Dike propagation in a semi-infinite space: (a) constant pressure, and (b) linear 
pressure. 
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Figure D.2 Comparison of half-opening of dike for dike propagation from the lens center: 
(a) H = 1 km and 2c = 1 km, and (b) H = 1.5 km and 2c = 1 km. 
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Figure D.3 Comparison of SIFs with available solutions for dike propagation from the 
lens tip (H =1 km and 2c = 1 km): (a) normalized KI, and (b) normalized KII. 
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Figure D.4 Comparison of SIFs with available solutions for dike propagation from the 
lens tip (H =1.5 km and 2c = 1 km): (a) normalized KI, and (b) normalized KII. 
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Figure D.5 Comparison of SIFs with available solutions for dike propagation from the 
lens tip (H =5.5 km and 2c = 1 km): (a) normalized KI, and (b) normalized KII. 
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