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SUMMARY

Rotor (helicopter/wind turbine) blades are typically slender structures that can

be modeled as beams. Beam modeling, however, involves a substantial mathematical

formulation that ultimately helps save computational costs. A beam theory for rotor

blades must account for (i) initial twist and/or curvature, (ii) inclusion of composite

materials, (iii) large displacements and rotations; and be capable of offering significant

computational savings compared to a non-linear 3D FEA (Finite Element Analysis).

The mathematical foundation of the current effort is the Variational Asymptotic

Method (VAM), which is used to rigorously reduce the 3D problem into a 1D or beam

problem, i.e., perform a cross-sectional analysis, without any ad hoc assumptions

regarding the deformation. Since its inception, the VAM based cross-sectional analysis

problem has been in a constant state of flux to expand its horizons and increase its

potency; and this is precisely the target at which the objectives of this work are aimed.

The problems addressed are the stress-strain-displacement recovery for spanwise non-

uniform beams, analytical verification studies for the initial curvature effect, higher

fidelity stress-strain-displacement recovery, oblique cross-sectional analysis, modeling

of thin-walled beams considering the interaction of small parameters and the analysis

of plates of variable thickness.

The following are the chief conclusions that can be drawn from this work:

1. In accurately determining the stress, strain and displacement of a spanwise non-

uniform beam, an analysis which accounts for the tilting of the normal and the

subsequent modification of the stress-traction boundary conditions is required.

2. Asymptotic expansion of the metric tensor of the undeformed state and its
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powers are needed to capture the stiffnesses of curved beams in tune with elas-

ticity theory. Further improvements in the stiffness matrix can be achieved by

a partial transformation to the Generalized Timoshenko theory.

3. For the planar deformation of curved laminated strip-beams, closed-form ana-

lytical expressions can be generated for the stiffness matrix and recovery; further

certain beam stiffnesses can be extracted not only by a direct 3D to 1D dimen-

sional reduction, but a sequential dimensional reduction, the intermediate being

a plate theory.

4. Evaluation of the second-order warping allows for a higher fidelity extraction of

stress, strain and displacement with negligible additional computational costs.

5. The definition of a cross section has been expanded to include surfaces which

need not be perpendicular to the reference line.

6. Analysis of thin-walled rotor blade segments using asymptotic methods should

consider a small parameter associated with the wall thickness; further the anal-

ysis procedure can be initiated from a laminated shell theory instead of 3D.

7. Structural analysis of plates of variable thickness involves an 8×8 plate stiffness

matrix and 3D recovery which explicitly depend on the parameters describing

the thickness, in contrast to the simplistic and erroneous approach of replacing

the thickness by its variation.
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I

A LAY INTRODUCTION

It was kinder, gentler time in 1936, and it is interesting to read the informal

beginning of Einstein’s paper on gravitational lensing, which after all was

published in a distinguished scientific journal: “Sometime ago RW Mandl

paid me a visit, and asked me to publish the results of his little calculation,

which I had made at his request. This note complies with his wish.”

– Lawrence Krauss, A Universe From Nothing

The 20th century and the first decade of the 21st century have borne witness to

a significant growth of science (and subsequently its applications: engineering and

medicine). Mankind has crossed frontiers which seemed unimaginable and progress

has been achieved by leaps and bounds. Unfortunately, while the fruits of science

(by and large) have been experienced by the general public, a side-effect is that the

understanding of science is increasingly alienated from the public (for example, by

use of scientific jargon).

Therefore, this chapter is intended for the lay person to understand the goals and

objectives of this thesis. I must add that this effort is in no way perfect; and having

spent approximately 8 continuous years in engineering schools, my language has been

unconsciously corrupted by engineering jargon, which obviates for me, some terms.

Unfortunately, I am unable to write the rest of the thesis in this manner, the only

consolation I can offer is that relevant references are provided wherever appropriate.

I would like to start this introduction from very fundamental and humble be-

ginnings by a definition of reality (in the context of this thesis, the reality which is

alluded to is ‘physical reality’). When something is referred to as ‘real’, it can be
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experienced through one of our five sense organs. Sometimes, the senses need to be

enhanced, for example, using instruments such as microscopes to enhance our vision

so as to see tiny organisms not visible to the naked eye. When neither of these are

possible, one can resort to describing reality through models. For example, consider

the Bohr model of an atom, where electrons revolve around a proton and neutron

core.

Models constructed by using the scientific method have shown to best correspond

to physical reality and this has been the proponent of the progress which I alluded to

in the beginning.

1.1 Engineering Research

Engineering research today involves the construction of such models to capture reality.

The starting point of an engineering problem is usually a system under a particular

environment(s). The engineer is asked to determine certain aspects of the system

which characterize its behavior in that environment. The three main stages or parts

of a research initiative involve:

1. Identification of the physical mechanism that corresponds to the behavior of

the system under that particular environment, which can be converted into an

engineering model using mathematics.

2. Extraction of data corresponding to a prototype of the system under the per-

tinent environs. This will ideally involve construction of an experimental test

facility.

3. Rework the model (recheck and/or relax assumptions) if its predictions do not

confirm to data. In the extreme case, one might have to discard the model

(which requires a good deal of mental conviction and strength).
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The question naturally arises so as to why one needs to construct a model when

data can be collected from an experimental test which exactly corresponds to physical

reality. The reason for this is that in engineering, one needs to tweak the parameters

of the model (corresponding to the features of the system) before deciding what’s

best. For example if I am interested in designing an aircraft wing, one of the first

questions is what material should I use? Let’s say I have the data of various materials

and their relevant properties. To throw in another set of parameters, the client might

also be interested in the behavior of the system in a range of environments. I cannot

build prototype wings from each and every material and subject them to the relevant

tests corresponding to each and every environment. This would be far too expensive

and time-consuming. Instead I come up with an engineering model which predicts

the relevant outputs of the system and to test this model I carry out the experimental

studies with a limited set of materials to see how the model does. If this works, I

am reasonably confident that when my model is applied to a new wing of some new

material, the results confirm to reality. Of course, one can be fooled by models that

are riddled with assumptions and simplifications to work only for those materials

which were used in the experiment.

1.2 Structural Analysis

Aerospace engineering is a term used to collectively define the various engineering

tasks where the system is an aircraft or spacecraft vehicle and the environments are its

operating conditions. Fundamentally, the origins of aerospace engineering come from

other disciplines, for example: fluid mechanics and propulsion systems (mechanical

engineering), structural analysis (civil and material engineering) and control systems

(electrical engineering); with of course an ‘aerospace focus,’ so to speak.

The broad category to which this work can be slotted is structural analysis. A

clear definition of the terms ‘structure’ and ‘load’ follow. A structure can be a part of
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the aerospace vehicle or the aerospace vehicle itself. The loads acting on the structure

are forces and moments. (While force has a clear meaning, a moment is a kind of load

which is generated in a small ruler if you were to hold either end in each hand and bend

it). Loads are caused primarily by the fluid flow over the structure and propulsive

systems such as engines, if any. Structural analysis (along with rigid-body dynamics)

considers a structure under a given load and determines the final configuration of

the system. As a simple example, consider a rubber eraser. Use your pen and mark

two spots near the ends. Now hold one end fixed, say the left; and at the right end,

bend it or stretch it and see where the right spot is. It will no longer be in the same

exact position with respect to the left spot. And the more you bend or stretch the

eraser, the farther the right spot will be from the left position. You could also throw

the eraser across the room, in which case both spots have moved, but with their

relative positions unchanged. The former is called deformation, and the latter rigid-

body motion. Sometimes both occur together, for example, say you walked across

the room stretching the rubber in your hands. Now rigid-body displacements can be

obtained simply by Newton’s laws (called rigid-body dynamics). Structural analysis

is an engineering analysis which will tell you quantitatively what the deformation is.

By knowing both, you can therefore know the total displacement (the final minus

initial configuration of the system) of any point on the structure.

It must be pointed out that while deformation is the fundamental output of struc-

tural analysis, there are auxiliary outputs which include operation limits of the vehicle,

stability boundaries, natural frequencies (when you excite a structure and leave it to

itself, the rate at which it oscillates) and so on. Of course, a structural analysis model

can also be used when performing a fluid-structure interaction study, commonly re-

ferred to as aeroelasticity.

Structural analysis involves three major steps:

1. A description of deformation, which usually involves the definition of quantities
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called strains. The strains are written in terms of displacements.

2. A material law which relates the strains to quantities called stresses. Stress is

usually some form of force per area of application.

3. A statement of Newton’s law which relates the stresses.

Sometimes, it is possible to solve for these equations exactly. These solutions comprise

what is known as the Theory of Elasticity (ToE). Unfortunately, the set of such

solutions is quite limited and most of them can be found in the extraordinary treatise

on the same subject matter by Love [76]. A more practical way of solving these set

of equations is by making some assumptions on the problem, is referred to as the

Strength of Materials (SM) approach. Indeed undergraduate courses on structural

analysis focus on this approach. The most famous example of this method is the

Euler-Bernoulli beam theory. The progress of the SM approach till 1950 has been

sketched in detail by Timoshenko [110]. Another solution method involves recasting

step 3 of the structural analysis procedure in energy-like terms and attempting to

satisfy the equation not at every point but ‘averaged’ out on the structure as a whole.

These are referred to as Variational Methods (VM) and it must be noted that they

are only as good as the theory you base them on.

Over the past few decades, two important developments have taken in place in the

field of engineering structural analysis. With the advent of significant computational

resources, especially in the past few decades, it has become possible to obtain very

close approximations of exact three dimensional (3D) elasticity solutions using what

is known as the Finite Element Method (FEM). This method involves dividing the

structure into several small parts and then applying the equations, cast in a varia-

tional form, over small parts. As the divisions get smaller and smaller, the solution

is expected to get more and more precise, offset by requiring more computational

resources. At the time of writing this document, the 3D FEM is the most widely

5



accepted method of carrying out structural analysis in academia and industry.

Traditionally aerospace vehicles were made of metals, aluminum being the pri-

mary choice. Metals are usually isotropic materials, i.e., their properties are same in

all directions. This would seem a material over-indulgence in cases where loads are

only along specific directions. The second significant development in structural anal-

ysis over the past few decades is the usage of composite laminated materials whose

properties are different in different directions. Due to the directional nature of these

materials, the properties of the structure can be tailored to suit certain requirements.

The introduction of composite materials, however, has necessitated more rigor in the

models developed for structural analysis (certain assumptions made might work for

isotropic materials but fail in the presence of anisotropy).

Despite the advent of computational resources, there are still structures such as

helicopter rotor blades for which building 3D FE models and running them will con-

sume inordinate amounts of time and need exceptional skill. To see how complicated

a blade can be, please refer to Chapter 2. Design exercises for tailoring the properties

of these blades are therefore cumbersome and excruciating when done using FEM.

One feature of the helicopter blade that can be exploited by the structural analyst

is that one of its dimensions is very large compared to the third. (Another feature is

the ‘gentleness’ of curvature and twist, but I will not touch on how this can be ex-

ploited in this chapter). By using the appropriate mathematics, the 3D problem can

be reduced into a 1D problem. This dimensional reduction, called a cross-sectional

analysis, is achieved by evaluating the cross section (the two-dimensional surface per-

pendicular to the long dimension) deformation in terms of quantities (still unknown)

which describe the 1D problem. This can be done analytically and only once for

the entire problem (if the beam is spanwise uniform). In order for the 1D problem

to be as close as possible to the 3D problem, the assumptions on the cross section

deformation should be as minimal as possible. Obviously, solving a problem in 1D
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will be cheaper computationally – one obvious reason being you will have far fewer

divisions to make than for the 3D structure.

The dimensional reduction process described in the previous paragraph is usually

accompanied by ad hoc assumptions regarding the deformation of the cross section.

One very common example, still in use today, is that the cross-sectional surface

remains rigid in its own plane, i.e. any point on the cross section will have deformed

only in the ‘long’ direction and not in the two directions that determine the cross

section itself. Unfortunately, such assumptions do not paint a picture close to reality,

for complex geometry and anisotropic material. It is best if we do away with these

assumptions if we are to use this model for a helicopter blade. One way of completely

doing away with assumptions is to use asymptotic methods.

The primary focus of this work was the development of structural tools for the

analysis of rotor blades. I would like to state at the outset that the efforts for de-

veloping these tools, now christened, VABS and GEBT (see Chapter 2) have been

underway for more than 20 years. My contribution to this program was to first un-

derstand the procedure and make some refinements to add new features and test the

existing capabilities of VABS. Hence the title. To understand these refinements and

studies, the reader (at the very least!) needs to read Ref. [46]. I need therefore stop

here lest I fall into the trap of over-simplification.
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II

MOTIVATION

To tell us that every species of everything is endowed with an occult specific

quantity by which it acts and produces manifest effects, is to tell us nothing;

but to derive two or three general principles of motion from phenomena,

and afterwards tell us how the properties and actions of all corporeal things

follow from those manifest principles, would be a very great step.

– Issac Newton, Optics

2.1 Introduction

Rotor blades, like several critical load carrying members of an aircraft (fixed- or

rotary-wing) are slender structures which are typically incorporated with a gentle

curvature (usually in a direction along the length of the blade, referred to as twist).

During the course of the vehicle operation, they undergo large displacements and

rotations; necessitating the use of a geometrically non-linear analysis. Over the past

few decades, composite materials have revolutionized the field of aerospace structural

engineering due to their directional nature which lends itself to tailor properties as

per the requirement; and their excellent fatigue behavior. With the introduction of

composite materials, the rotor blade section has grown complex, as shown in Fig. 1.

Due to the features mentioned above, a full non-linear 3D finite element analysis will

be computationally intensive, and the effort grows higher if one wishes to link the

structural analysis to perform an optimization or aeroelastic analysis.

The geometry of the rotor blade naturally suggests to an analyst to be modeled

as a beam. A beam theory, however, involves a substantial mathematical formulation
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Figure 1: A typical rotor-blade cross section

that ultimately helps save computational costs. A beam theory must address the

following three issues: A cross-sectional analysis which reduces the 3D problem into

a 1D analysis (dimensional reduction), the equations which describe the 1D analysis,

and finally a merging of the results from the 1D problem into the cross-sectional

analysis to recover 3D quantities which describe the deformation of the structure

(often referred to as recovery). A beam theory thus developed then should be able to

able to satisfy the following requirements:

1. Include the effects of geometric non-linearity

2. Allow for the inclusion of composite materials

3. Model the effects of initial twist and curvature

4. Obtain results with accuracy equivalent to that of a fully non-linear 3D FEA

analysis

The origins of the solid mechanics of beams can be traced back to the theories

of Euler-Bernoulli and St. Venant, which describe the deformations of extension and

bending, and torsion respectively. These were followed by the seminal developments

of Timoshenko in introducing transverse shear and Vlasov [113] who showed how

restrained warping effects at the boundaries penetrate into the beam interior solutions.

The assumptions used in these works displays their extraordinary insight into the

solid mechanics of the pertinent problems. Though these serve as very good origins
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Figure 2: Structural analysis methodology for a rotor blade

for further development of beam analysis, assumptions of a nature similar to or which

are inspired by the postulates of these classical works cannot be used to address the

problem of rotor blades due to the requirements specified. A comprehensive review of

beam theories developed till 2004 is provided by Ref. [46]. The described classification

of beam theories therein still holds for the developments that one may encounter in

the latest literature. Firstly, come the theories which make some a priori assumptions

regarding the cross-sectional behavior and obtain equations which describe the 1D

analysis; often these theories are found to have internal inconsistencies. Secondly,

are the theories which model the structure as a 1D continuum and rely on external

sources for the sectional properties. Finally, comes the third approach, wherein the

3D continuum mechanics of the structure is a decoupled into a 2D cross-sectional

analysis and a 1D beam analysis which are consistent with each other. It is obvious

by now that the third approach is far superior and complete when compared to the

first two.

With respect to the third approach, it is essential to state the seminal works of

Berdichevsky [15] and Danielson and Hodges [29] which introduce the ideas of the

Variational Asymptotic Method (VAM) and Decomposition of the Rotation Tensor

(DRT) which decouple the 3D nonlinear elasticity problem into a linear cross-sectional

and nonlinear 1D analysis (see Fig. 2). A linear cross-sectional analysis suffices in

most cases for rotor blades as, while they undergo large displacement and rotations,
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the strains are still small [46].

Several excellent works exist concerning the geometrically exact equations per-

taining to the 1D beam analysis. A representative list of such publications follows.

Reissner [93] was one of the first works to present a large-displacement finite-strain

beam theory. An unusual aspect of this work is the extraction of strain-displacement

relations using the principle of virtual work. The Rodrigues parameters were used to

describe finite rotation and the idea of intrinsic equations was touched upon. Wemp-

ner [120] extracted the equations for thin curved and twisted rods using the principle

of virtual work. The works of Simo and his co-workers [101, 102] extend the classical

Euler-Kirchhoff-Clebsch equations by including finite extension and shearing using a

geometric mechanics approach. The 1D geometrically nonlinear beam equations of

Hodges [46] have found application in the mixed-variational formulation of GEBT

(Geometrically Exact Beam Theory)[126] and the intrinsic equations of NATASHA

(Nonlinear Aeroelastic Trim and Stability of HALE Aircraft) [83]. These equations

are also used in the beam element of the multibody dynamics tool DYMORE [12].

While literature pertaining to rotating beams mention the works of Ref. [52], followed

by the well recognized Ref. [45], it has been established that the mixed variational

formulation of Ref. [43] has superseded the latter.

The focus now shifts to the cross-sectional analysis problem. Several outstanding

methods exist for determining the sectional constants and recovering the 3D fields

once the 1D variables are solved for. Borri and his co-workers [37, 17] based their ap-

proach on linear elasticity and extracted a 6×6 cross-sectional stiffness matrix using

the principle of virtual work. The tools BECAS and NABSA are based on this ap-

proach. A novel approach is introduced by Ref. [36] where the sectional properties are

obtained by modeling the cross section as a slice using solid 3D finite elements. In a

recent work [14], Bauchau and Han performed the cross-sectional analysis in tune with
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three-dimensional elasticity based on a Hamiltonian formalism, the only approxima-

tion introduced by the finite-element discretization of the section. Another rigorous

methodology of recent times in the Formal Asymptotic Method (FAM) wherein the

asymptotic analysis is applied directly to the governing equations (rather than a vari-

ational equivalent of the same). The analysis begins by using the slenderness ratio to

define a ‘slow’ and ‘fast’ set of coordinates; for example, the slow coordinates, would

refer to the cross-sectional coordinates divided by the slenderness ratio; and the axial

coordinate. Buannic and Cartaraud [18] employed the FAM to develop a theory for

beams whose elastic moduli varied periodically along the beam. A recent paper [62]

has shown its ability to be comparable to the VAM, at least in the case of prismatic

beams. Ref. [56] presents a structural model based on a mixed force and displacement

method starting from a two-dimensional shell model. The results were validated for

both open and closed section beams. The method of extraction of cross-sectional

anlysis properties followed by by Dong and his co-workers [32, 64, 33] is to obtain the

displacements from 3D elasticity (such as Iesan’s solutions [53]), from which equiva-

lent section properties are obtained. Another idea, explained in Ref. [59] is to extract

section properties using the solutions for ‘fundamental states’, which are loading con-

ditions such that there is only one stress-resultant at a convenient point such as the

mid-point of the beam. Another method, which performs a reduction from 3D to

1D using the ideas of an axiomatic hypothesis and an asymptotic expansion method,

goes by the name of Carrera Unified Formulation (CUF). The displacement field is

written as a series using Maclaurin polynomials for the cross-sectional coordinates

with unknown coefficients dependent on the axial coordinate. These are then evalu-

ated using a finite element approach. In order to reduce the computational effort, an

asymptotic analysis is used to detect and eliminate the DOF which are not relevant to

the problem. Various cross-sections have been studied using this method [20] and it

was shown that the model was able to satisfactorily predict natural frequencies [19].
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Silvestre and Camotim [99, 100] construct a Generalized Beam Theory (GBT) for

composite thin-walled beams starting from classical plate theory. The kinematics are

developed based on the thin plate assumptions of the Love-Kirchhoff model and the

principle of virtual work is used to obtain the final governing equations of the prob-

lem. Two models are developed: a first-order theory for geometrically linear analysis

and a second-order theory for linear stability analysis by including the appropriate

nonlinear terms in the kinematics.

Despite the presence of the above-mentioned works, composite beam theories with

ad hoc assumptions are continuously being churned out even today. A result-based

comparison is made near-to-impossible by a shortage of benchmark problems and

experimental results; agreement with these few might give even a poorly constructed

theory an outward semblance of generality. A quick literature review over the last

couple of years throws up several developments which can be slotted into the first

category of the beam theory classification previously alluded to. Ref. [78] assumes

the cross-sectional contour to be rigid and the out of plane warping to be the St.

Venant solution for isotropic beams, though the development is for composite ma-

terials. The Euler-Bernoulli formula for the deflection of a simply supported beam

is used for the analysis of a reinforced concrete beam with CFRP (Carbon Fiber

Reinforced Polymers) [105]. Further usage of the Euler-Bernoulli beam theory is seen

in Refs. [24], [67] and [121] for studies of vibration suppression, multi-scale MEMS

(Micro Electrical Mechanical Systems) and smart piezo and ferro electric materials,

respectively. It should be noted that the latter fails to recognize that the sectional

properties are dependent on initial curvature, which is by now a well established fact

[89]. This approach is also prevalent in the analyses which employ higher-order elas-

ticity theories (couple-stress, strain gradient, and so on), for example, for micro- and

nano-scale structures. Refs. [77], [27], [3] and [117] are a testament to this fact.

Apart from these one encounters in literature several another class of works which
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consist of novel ideas for a pertinent problem but are not general enough. Ref. [97]

uses the ‘line-element less’ method (a numerical technique that sets up the problem

in terms of a potential involving the shear stresses instead of warping) to solve the

St. Venant’s problem for orthotropic beams. Ref. [106] extended Love’s solution for

flexure of isotropic beams to radially inhomogeneous circular cross-sections, from

which the shear stiffnesses were obtained. The St. Venant torsion problem of an

anisotropic non-homogeneous beam is analyzed with the shear flexibilities evaluated

in terms of Prandtl’s stress function of the corresponding homogeneous bar in Ref.

[35]. Mathematically rigorous definitions of the shear center and center of twist are

provided by Refs. [9, 10]. Ref. [72] contains studies on the free vibration of a laminated

composite beam using a hyperbolic shear deformation theory. For beams with initial

curvature, analytical solutions for the stresses are provided for half-elliptic [111] and

composite layered beams [11]. These nevertheless serve as excellent validation tools

for any cross-sectional analysis model that claims to be general. The work of Ref. [98]

is representative of another line of effort, of higher order beam theories (introducing

more deformation modes than the usual six: extension, twist, two bending and two

shearing modes), which in this case was to address the problem of excess boundary

conditions at a clamped edge for the Timoshenko beam theory.

The focus of this thesis is the cross-sectional analysis of beams. Towards the end,

an important problem concerning plates is also addressed. The principal tool used to

obtain the solution of these problems in this dissertation is the VAM. In a nutshell, the

procedure reads thus: Set up the variational statement of the geometrically non-linear

elasticity formulation. Identify small parameters which are naturally inherent to the

structure. For example, in rotor blades, these would be the slenderness ratio and the

gentleness of the curvature. Solve for the unknowns recursively up to an asymptotic

order deemed sufficient. For a more mathematically rigorous introduction to the VAM

and the various nuances in its application to dimensionally reducible structures, the
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reader is encouraged to consult Sec. I, Ch. 4 of Ref. [46]. This principle has been used

to construct beam models as well as plate and shell models, the latest developments

(excluding the ones found in this work) of which can be found in Refs. [129] and [125]

respectively.

Prof. Hodges and his co-workers have been working on the problem of rotor blade

cross-sectional modeling for over two-and-a-half decades and one of the first significant

publications is Ref. [22]. Their efforts to model rotor blades at Georgia Tech. (and

more recently, including Utah State/Purdue) have led to the development of the

computer program VABS (Variational Asymptotic Beam Section), which is based on

the VAM, for the cross-sectional analysis. VABS can also recover the 3D quantities:

stress, strain and displacement once the beam (1D) problem has been solved. Users

of VABS include Boeing, Siemens and the US army. Over the past decade, VABS has

expanded from being simply a structural tool to include other multi-physics effects

such as thermal [118] and piezoelectric [95]. An example of the time required for the

structural analysis of a rotor blade using VABS has been studied by Yu and Hodges

[130] and is presented in Table 1. A comparison with 3D FEM (Finite Element

Methods) is listed for the stress analysis of graphite-epoxy beam [−45/+ 45/0/90]10s

with geometry 0.25 in. × 1 in. × 5 in. loaded with a unit tip force. The computational

savings are evident.

With the increase in computing speed over the past decade, the time required

to run 3D FEM models has significantly reduced. It is important to note, however,

that the ratio of the times required will still be the same, i.e., there will still be a

relative difference of few orders of magnitude. Therefore, savings will still be evident

for design exercises wherein parametric studies need to be conducted to determine

the effect of a certain geometric parameter or material property (choice of composite

material and layup angle) of the cross section. Reduced order structural models are

also useful in aeroelastic studies and real time monitoring of structural components.
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Table 1: Computational effort for the stress analysis of an orthotropic beam: VABS
vs. 3D FEM [130]

3D FEA (ANSYS) VABS

Elements 25600 (brick) 640 (quad)

Time ∼ 1hr 0.5s

Computationally, achieving these using traditional 3D FEM might be very difficult.

Also, it is typical for monitoring instruments such as strain gauges to be mounted

in regions of moderate stress and based on their outputs the behavior of the entire

structure (especially the regions of extreme stress) needs to ascertained. Directly

mounting measuring instruments in regions of extreme stress (for example, near the

root of a fixed-wing aircraft) might affect their life and the accuracy of their readings.

All these are possible situations wherein the usage of beam models for predicting the

structural behavior might be expedient and fastidious.

To conclude, a rotor blade analysis procedure would involve the following:

1. Providing the blade-section material and geometry with the blade initial twist

and curvature to VABS, which gives the mass and stiffness matrices;

2. Input into the 1D analysis (GEBT) to get static, steady state, eigenvalue, dy-

namic response, etc.

3. Put the resulting 1D solutions back into VABS, to obtain the 3D stress, strain

and displacement.

2.2 Scope of Present Work

Since its initiation in the early 90s, the VAM based cross-sectional analysis problem

and hence, VABS, has been in a constant state of flux, in a quest to increase its

potency and expand its horizons. The work that went into this thesis is another such

effort in doing so. The objectives of the current effort are better put in perspective
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by a brief review of the work carried out so far by Hodges and his co-workers con-

cerning cross-sectional analysis. The VAM based cross-sectional analysis first took

concrete shape with the work of Cesnik [21]. A formulation was put forth for general

anisotropic twisted and curved beams for a classical (0th) and 1st order analysis; the

latter using a least squares solution. This led to the development of VABS as a re-

search tool. This was followed by a study by Volovoi [114] on the end effects by using

dispersion curves which led to an asymptotic development of the Generalized Vlasov

(GV) theory. He also put forth an analytical formulation for thin-walled beams using

a novel formulation, which goes by the name of a “phantom” analysis. Significant

progress was then made by Popescu [87] on the modeling of transverse shear and the

trapeze effect. He also developed an oblique cross-sectional analysis formulation for

the classical theory. Further studies on geometrical non-linearity in the cross-sectional

analysis was accomplished by Harursampath [39]; applications of which include the

Brazier effect and a non-linear extension twist coupling for pretwisted strips. Sig-

nificant strides were made in the commercialization of VABS with the development

of a super-efficient code by Yu [124]. He also formulated better constraints (in-tune

with 3D elasticity) on the warping field and a more rigorous solution for the 1st order

analysis by replacing the least squares solution with a Generalized Timoshenko (GT)

form which uses a perturbation technique. Finally, was the work of Ho [40], who

developed a more consistent formulation for the classical and GT theories and made

an attempt in modeling spanwise non-uniformity. This work picks up directly where

Dr. Ho left off [40] and the specific objectives will now be listed.

2.2.1 Recovery for Spanwise Non-Uniform Beams

Rotor blades often feature regions of spanwise non-uniformity. From a structural

standpoint, there are various factors which might lead to a tapered blade design. For

example, the cantilevered nature of a rotor blade causes stresses to decrease outwards
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and the rotation of the beam causes centrifugal forces to increase outwards. From

an aerodynamics perspective the reason seems to be relatively straightforward, as

Ref. [70] states “Usually small amounts of taper over the blade tip region can help

significantly improve Figure of Merit (FM) in hover. The benefits, however, seem

lost for higher amounts of taper.” (FM is the ratio of ideal to actual power required

to hover). Examples of such blades are the ONERA SPP8 and Sikorsky “Growth”

blade tip. A study on the effect of spanwise non-uniformity was initiated by Hodges et

al. [48] using the example of the in-plane deformation of a linearly tapered isotropic

strip. They addressed the previously unknown necessity that the sectional constants

are explicit functions of taper. However, as mentioned in Sec. 2.1, a complete beam

theory must address, three aspects, of which the second, i.e., the 1D analysis, is made

simple in this problem. Therefore the recovery of stress-strain-displacement was still

left to be dealt with. In order to complete the loop, so to speak, this issue is addressed

in this research, thus presenting a complete picture as to how a VAM based beam

theory addresses the structural analysis of beams with spanwise non-uniformity. It

should also be mentioned that Sec. 1 of Ref. [48] includes a list of other works in

literature which do consider taper in the cross-sectional analysis. Few of them have

the rigor associated with a VAM development. Ref. [5] stands out as one of the few

works that recognize that a tapered beam cannot be considered to be a collection of

cross-sections each varying in dimension. The effects of taper on the cross-sectional

stiffnesses, which was subsequently used to predict lateral torsional buckling, was

shown not to be negligeble.

2.2.2 Analytical Verification of the Initial Curvature Effect

Numerical validation and verification studies of VABS with 3D FEM and experimental

results is a continuous and ongoing process. Several significant studies include the

works of Refs. [136], and more recently [65]. Both these approaches established,

18



without a doubt, the accuracy and computational superiority of VABS. Numerical

studies, though useful in their own right do not offer the same verification capability

as problems for which closed form analytical solutions can be obtained. An analytical

solution provides the researcher with a in-depth understanding of the problem for

improvements in the theory and makes the process of determination of errors, if

any, much more tangible. The only analytical validation [127] for VAM (and hence

VABS) was carried out for isotropic, prismatic beams with rectangular and elliptic

cross-sections which possess 3D elasticity solutions. Further with the work of Ref.

[40], significant validation was carried out for initially twisted beams. With emphasis

now on initial curvature, two different lines of approach were pursued: a numerical

validation study with 3D FEM as a comparison [65] and an analytical verification

study with the identification and subsequent aid of a problem which had elasticity

solutions. This research task deals with the latter.

The elasticity solutions for an initially curved strip of unit thickness subjected to a

bending moment and tip shear force (as depicted in Fig. 3) are given in Timoshenko

and Goodier [109]. Analytical closed-form expressions for the stiffness matrix and

stress-strain recovery can extracted by the development of a beam theory for the in-

plane deformation of this structure using the VAM, which can be used for a vis-à-vis

comparison with the corresponding elasticity solutions for a successful validation.

The successful completion of this study with the motivation from the work of

Hodges et al. [47] (which extracts an analytical solution for the problem, despite it

being a layered composite laminate), suggested to the author that the above veri-

fication study can be extended to a initially curved composite laminate with layers

distributed through the thickness. Of course, the term ‘extended’ is loosely used

here; it is only meant as a quest for closed-form expressions for stiffness matrix and

stress-strain recovery. The development must start from scratch and no results from

the isotropic case should be used in this problem. From a review of the literature, it
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(a)

(b)

Figure 3: Strip of unit thickness with in-plane curvature subjected to (a) a constant
bending moment and (b) a concentrated force at the end
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was concluded that such a comprehensive treatment of laminated curved beams was

clearly lacking; at best were studies like those of Ref. [75] which start from a plate

theory based on the Love-Kirchoff assumptions. The study was further motivated

by the findings of Ref. [8]; wherein it was reported that a wind turbine blade, one

of whose features was a gentle lead-lag curvature towards the tip had an increased

power output by a impressive 12%.

2.2.3 Higher Fidelity Stress-Strain-Displacement Recovery

Current capabilities of VABS include a stiffness matrix obtained from a second-order

asymptotically correct strain energy and a stress-strain-displacement recovery which

only incorporates the first-order warping and is hence only correct up to first-order in

small parameters. Since the stiffness matrix is correct up to second-order, evaluation

of the second-order warping is sufficient (without obtaining the subsequent energy

which is expected to be asymptotically correct up to fourth-order) to capture the

second-order terms in the final expressions for recovery. Therefore, the procedure

resulting from this research task is expected to bring consistency in the analysis

by raising the recovery to the same level of fidelity as the stiffness matrix. From the

results of the previous problems on the tapered and initially curved isotropic strip, this

procedure is seen to significantly improve the accuracy of the cross-sectional stresses,

σ22, σ23 and σ33. These stresses are of paramount importance if one wishes to model

the onset of damage in blades, required for the effort being pursued using VABS at

Purdue University. The result of this problem is to provide VABS with second-order

recovery capabilities in both the GT and GV models. To the best of the author’s

knowledge, this improvement in recovery is a first in beam theory development.

2.2.4 Oblique Cross-Sectional Analysis

Traditional structural analysis of beams involves the choice of a reference line and a

cross section orthogonal to that reference line. However, there might be situations
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Figure 4: Schematic of swept blade or wing with normal and oblique cross sections

where an analyst might prefer a cross section which is not perpendicular to the refer-

ence line. One such frequently encountered case is rotor blades (or high AR wings)

which are swept. A schematic of such problems is depicted in Fig. 4.

Also, for various reasons, it might be convenient for the user to use a cross section

oblique to the reference line (for example, one might be interested in the variation

of recovery in such a cross-sectional plane). Therefore, incorporation of the oblique

cross-sectional analysis potency in VABS is of importance. A previous study suc-

cessfully implemented the classical model for this problem [86]. However, due to

several advantages, which include the ability to model transverse shear and capture

the effects of twist and curvature, a GT model is preferred for analysis. Among the

several shortcomings of the classical model is that the reference line chosen must be

the locus of generalized shear centers [46], therefore a user of the current VABS must

perform a normal cross-sectional analysis, gather the generalized shear center, shift

the reference line and then carry out a oblique cross-sectional analysis to obtain the

correct classical model. Therefore this research will address the development of the

theory for incorporation of obliqueness into the GT model of VABS. In the reminder

of this thesis, a cross section is taken to be orthogonal unless otherwise mentioned.

The idea of dimensional reduction using a oblique cross section was first introduced
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by Borri et al. [17] who mention the possibility of “a cross section which could be tilted

with respect to the reference line” and though it may be that Borri and co-workers

have implemented the obliqueness feature in their cross-sectional tool, HANBA [37],

to the best of the authors’ knowledge an explicit formulation of such an analysis

is not found in the literature. Another problem with a slight resemblance to the

oblique cross-sectional analysis is the well known topic of skew plates. A large body

of literature on skew plates involves the usage of an un-skewed plate theory (Love-

Kirchhoff or Reissner-Mindlin) along with a transformation of the coordinate and

variable to an axis system that describes the plate. Several such studies can be

seen in the literature [73, 74], and to date analysis of skew plates has followed a

similar approach [7, 69, 58]. It should also be noted that several of these studies

use plate theories based on assumed displacement fields, unlike the more rigorous

and consistent theory of Ref. [108] (which is based on asymptotic methods); and the

corresponding global analysis [128]. In light of these studies it is important to note

that the current analysis of oblique sections does not involve any transformations

or adaptation of results from the existing VAM procedure (which goes into VABS)

for orthogonal sections. The analysis for oblique cross sections will be carried out

independently, from first principles.

The process is initiated by a VAM based analysis of an isotropic, prismatic strip

and an isotropic prismatic beam (possessing a circular cross section) to develop a GT

model. Again these cases are chosen because they have an elasticity solution [76]

and since the development is expected to be analytical, it will aid in a through study

of the intricacies of an orthogonal vis-à-vis a normal cross-sectional analysis. The

expected outcome of these studies is to aid in the development of a fully functional

GT model for VABS.
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2.2.5 Thin-Walled Beams: Interaction of Small Parameters

The cross-sectional analysis which goes into VABS is a very general procedure which

is not limited by considerations of geometry or material. However, in the case of

cross sections which comprise of segments whose thickness (h) is small compared to

a typical cross section dimension (a), also referred to as thin-walled beams, VABS

produces singular stiffness matrices at moderate values of twist and curvature. For

example, in the case of a graphite-epoxy strip [45/0]3s whose section measures 1.182

in. × 0.0579 in., and is initially curved out-of-plane (0.1 rad in.−1), VABS outputs

the bending stiffness in the hard direction to be −9.31×104 lb-in2. A possible reason

for this discrepancy is identified in Ref. [124], that when h/a becomes comparable

to the existing small parameters of the asymptotic analysis, a/` and a/R (where

R =max.(1/ki); i = 1, 2, 3; ` representing the wavelength of the deformation and ki’s

representing the components of the initial curvature vector), it is necessary to take

into account h/a as an additional parameter and develop the VAM based theory from

scratch. The reason behind this is that in a previous work [115], where similar analysis

was carried out, it was observed that terms of order h/a appear in the denominator,

reducing the order of certain terms, which would otherwise be discarded as higher

order. For example, terms of order (h/a)−2(a/R)4 which are of second-order and

hence need to be considered while constructing a GT theory, might be discarded in

the current analysis; yielding incorrect results. Again this problem is a specific issue

concerning VABS and remains unaddressed in the current literature. It is emphasized

here that this is not a ‘bug’ in VABS, but rather is a theory limitation, the addressing

of which is fundamental problem worthy of research in its own right.

2.2.6 Plates of Variable Thickness

The results of the problem described in Sec. 2.2.1, available in literature through

Refs. [48] and [50], which demonstrated that both the sectional stiffness matrix and
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the recovery were explicit functions of taper, a result previously unknown, motivated

the foundation of this problem. It is expected that the other class of dimensionally

reducible structures, i.e., plates should also exhibit similar behavior. The VAM has

also been independently used to obtain theories for plates and shells.

Leissa [71] provides a review of the analysis of plates with variable thickness till

1969. The Love-Kirchoff equations were used to analyze circular and rectangular

plates with the constant h being replaced by a variable h(r) and h(x, y) respectively.

In the former case, solutions were obtained for the case of D = D0r
m (D being the

plate flexural rigidity corresponding to classical plate theory) and the h = h0(1 +αx)

for the latter. Several works by Conway on the same subject, starting in early 1950s

employed the same approach, i.e., solutions to the classical plate theory for a variable

thickness (and hence variable D) by replacing D by D(x, y). One such example is the

work of Petrina and Conway [84].

Therefore the widely followed analysis methodology for plates of variable thickness

can can be summarized as:

− Uniform thickness =⇒ D = Eh3

12(1−ν2)
=⇒ Plate theory

− Variable thickness =⇒ D(x, y) = Eh(x,y)3

12(1−ν2)
=⇒ Same plate theory as above

Since then, analysis of tapered plates has proceeded using on the same lines.

Solutions have been obtained for different loadings, different boundary conditions,

plates on an elastic foundation etc. but none of them acknowledge that the plate

constants need to be explicit functions of taper. Bhat et al. [16] studied the effect

of variable thickness on the natural frequencies of thin plates with linear taper in

one direction by replacing D by D(x) in the expression for potential energy for the

classical plate theory. Singh and Saxena [103] studied the transverse vibration of

an isotropic doubly tapered plate with various boundary conditions, replacing D

by D(x, y) in the expression for the potential energy of an untapred plate. Similar
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studies were carried out for elliptic plates on an elastic foundation and plates made of

functionally graded materials in Refs. [38] and [51] respectively. Even developments

that search for analytical solutions, such as the recent work in Ref. [112], use the

same approach. The authors study the axisymmetric bending of circular plates of a

non-linear thickness. The cited papers only represent a sample literature in the sea of

research on this topic using the current methods. Again a shortage of experimental

results seems to hinder a comparison of effectiveness of these theories.

As in the case of beams, to study the effect of taper in plates, we consider an

isotropic plate tapered (with different rates) along the global plate directions as shown

in Fig. 70. This problem will yield a definitive insight on the effect of taper on the

plate constants as well as the 3D recovery.

Plate elements can be used in bearingless rotors to model flex-beams which allow

for blade pitching on account of their torsional softness. Apart from applications in

rotor blades, the following are certain auxillary useful outcomes:

1. The panels (for example on a fixed wing) can be modeled as plates; and this

permits modeling of these structures without restriction on their thickness.

2. Often one may model thin-walled beams using a “sequential” dimensional reduc-

tion. This means that the 3D elasticity problem is first reduced to a plate/shell

problem which is further reduced to a beam problem. This has been demon-

strated for the general case in Yu and Hodges [131] and later extended to include

the effect of initial twist in Ref. [135]. Therefore, it might be the first step of

an alternate approach on modeling spanwise non-uniformity in rotor blades.

Nevertheless the usefulness of this result from a fundamental mechanics perspective

cannot be questioned.
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III

RECOVERY FOR SPANWISE NON-UNIFORM BEAMS

It is a capital mistake to theorize before one has data. Insensibly one begins

to twist facts to suit theories, instead of theories to suit facts.

– Sherlock Holmes, A Scandal in Bohemia

3.1 Introduction

It is typical in beam theory to assume that taper affects cross-sectional stiffness

constants, stress and strain only from the change in section geometry along the beam

axis. In other words, if for a homogeneous, isotropic beam, the bending stiffness is

EI, then for a homogeneous, isotropic, tapered beam, the bending stiffness is simply

written as EI(x) where the area moment of inertia varies with the axial coordinate

due to change in the sectional geometry arising from taper. A recent work [30] is

one among a series of papers on tapered beams by the same authors that follows

this methodology. In Refs. [2] and [31], the bending energy per unit length is simply

written as EI(x)κ2/2. Results in Ref. [2] were compared with those of an older work

[92], both of which clearly follow this methodology. These are only a few selected

examples out of the many recent works on tapered beams based on cross-sectional

stiffnesses that are not corrected for taper.

An asymptotic beam theory for an isotropic strip-beam with linearly tapered

width was presented in Hodges et al. [48]. Section stiffnesses for this theory depend

on taper in ways other than the simplistic approach noted above. The main reason for

this is the tilting of the outward-directed normal so that it has a non-zero component

This chapter was published as Hodges et al. [50].
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along the beam longitudinal axis, and to be accurate the cross-sectional analysis

must take this tilt into account. Because of the strip-like geometry, accuracy of

the cross-sectional stiffnesses was evaluated using plane-stress elasticity solutions for

extension, bending and flexure from Refs. [109] and [66] and were shown to be in

excellent agreement. The plane stress problem of the in-plane deformation of an

isotropic tapered strip was chosen because it is a simple example to illustrate the

proposed theory. All results are closed form expressions that can be validated from

corresponding elasticity solutions available in the literature.

One purpose of this chapter is to show that high fidelity information is available

in beam theories based on asymptotic methods, which are no more complicated than

“engineering” theories. This chapter focuses on the recovery of the stress, strain,

and displacement fields for the linearly tapered isotropic strip-beam. This aspect was

not addressed by Hodges et al. [48]. The recovery is performed by the VAM and

is consistent with the derivation of the stiffness constants from Ref. [48]. It will be

shown that to capture the recovery relations accurately, one needs to evaluate the

warping one order higher than in Ref. [48]. The recovery relations are then compared

with the corresponding elasticity solutions. This comparison will thus confirm that a

VAM based beam theory is able to satisfactorily predict all aspects of the behavior

of beam-like structures which feature regions of spanwise non-uniformity.

Section 3.2 of this chapter revisits the previous work [48] and reviews the im-

portance of including taper in the stiffness constants. Section 3.3 provides details

of the procedure to determine the recovery relations using the VAM and presents a

comparison with the corresponding elasticity solutions. In Section 3.4, the range of

the small parameters used in the VAM is determined for which the VAM solution is

in close proximity with the elasticity solutions.
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Figure 5: Schematic of the isotropic strip tapered beam

3.2 Corrected Stiffness Constants for a Tapered Beam

For better understanding of the results to be presented, a brief review of the VAM

and a summary of the results from Ref. [48] is presented here. The VAM is used

to perform cross-sectional analysis of beams using the principle of minimum total

potential energy, exploiting the presence of small parameters. The total potential

energy is developed from a general displacement field subject to a restriction to small

strain. The leading terms of the energy can be obtained asymptotically in terms of the

small parameters of the analysis, which can be used to obtain the equations governing

in- and out-of-plane warping. This procedure can be repeated for successively higher

powers of the small parameters until the desired accuracy is achieved. As a result of

this analysis, the warping is expressed in terms of one-dimensional (1D) strains and

can then be used to calculate the strain energy per unit length. This 1D strain energy

per unit length provides the cross section constants, reducing the two-dimensional

(2D) plane stress problem to 1D, and formulae that allow for recovery of stress,

strain and displacement over the cross section.

An outline of the procedure to obtain the cross-sectional constants using the VAM

for a tapered-strip beam as in Fig. 5 will now be presented. For further details, the
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reader is encouraged to consult Hodges et al. [48]. The two small parameters of the

system are a slenderness parameter δ = a/l and a taper parameter τ = −b′(x), which

are assumed to be of the same asymptotic order. Considering the position vector of

an arbitrary point in the undeformed and deformed configurations of the beam, the

expressions for strain can be derived as

Γxx = ε− yκ+ wx,x

Γxy = wx,y + wy,x

Γyy = wy,y

(1)

where ε and κ are the classical 1D stretching and bending strain measures, respec-

tively. The strain energy per unit length is then

U =
Et

2(1− ν2)

〈
Γ2
xx + Γ2

yy + 2νΓxxΓyy +
1− ν

2
Γ2
xy

〉
(2)

where

〈•〉 =

∫ b(x)

−b(x)

• dx (3)

The first step is to solve for the zeroth-order warping. For this, we identify and

remove all the terms that are first and higher order in the small parameters from the

strain energy. The resulting equations obtained using the principle of minimum total

potential energy can be used to evaluate the zeroth-order warping, which in turn gives

the zeroth-order strain energy per unit length as

U0 =
1

2
EA(x)ε2 +

1

2
EI(x)κ2 (4)

which is the expected expression for strain energy per unit length associated with

classical Euler-Bernoulli beam theory.

To refine this result it is necessary to solve for the warping corrected to first-order

in δ and τ . To do so, the solution of warping previously obtained is perturbed to

the next higher order. A similar procedure is preformed as described previously, the

only difference being that all the terms in the energy correct through second-order in
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the small parameters are retained. The first-order warping thus obtained is used to

obtain the strain energy per unit length

U2 = Etb(x)[1− 2

3
(1 + ν)τ 2]ε2 +

2

3
Etντb(x)2ε ε′ +

Etb(x)3

9
[3 + 2(14ν + 15)τ 2]κ2

−4

9
Etτ(8ν + 9)b(x)4κ κ′ +

4

15
Et(1 + ν)b(x)5κ′

2
+

2

45
Et(11ν + 12)b(x)5κ κ′′

(5)

which is asymptotically correct through second order.

However, this strain energy per unit length is unsuitable for an engineering beam

theory because it contains derivatives of the classical 1D strain measures. Hence, it

is transformed into a generalized Timoshenko form as follows: First, the 1D classical

strain measures are written in terms of 1D generalized Timoshenko strain measures

using simple beam kinematics. A 1D shear strain measure enters into the picture

through this transformation. Second, the derivatives of the 1D generalized Timo-

shenko strain measures are evaluated using equilibrium equations. The equilibrium

equations can be simply obtained by the standard textbook approach of considering

an element of the beam and writing the force and moment equilibrium.

Thus, the strain energy per unit length of a beam correct through second order,

when transformed to the form of a generalized Timoshenko theory, is given by

U∗ =
1

2
Zε2 +

1

2
Wκ2 +

1

2
Y γ2 +Xκγ (6)

where

Z = EA(x)

(
1− 2τ 2

3

)
W = EI(x)

[
1 +

(ν − 48)ν − 45

45(ν + 1)
τ 2

]
Y =

5

6
GA(x)

X =
Et(5ν + 3)b(x)2τ

9(1 + ν)

(7)

For a linearly tapered beam, τ is the tangent of the taper angle α as shown in Fig. 5.

It should be noted that the stiffness associated with shear is what one obtains from
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the usual Timoshenko beam theory. There is no taper correction to this term because

the shear strain is already one order higher in the small parameter δ than the strains

associated with 1D bending and extension measures, so that the overall contribution

of the term to the strain energy per unit length is correct through second order. This

theory is said to be a generalized Timoshenko theory in that it contains contributions

to the strain energy associated with extension, bending and shear. However, it is

not subject to any of the usual restrictions on kinematics associated with the original

Timoshenko theory. Moreover, it includes a bending-shear coupling term X, which is

not found in the original theory.

Validation of these stiffness constants, presented in Ref. [48], showed that the

theory is only accurate when corrections associated with nonzero τ are included.

Unfortunately, a review of the literature shows that there is hardly any awareness

among researchers that beam stiffness constants depend on taper, as all references

the authors have found to date would provide the above stiffness constants with τ set

equal to zero.

An important aspect of the asymptotic theory is that bending and shear are cou-

pled for a tapered beam; hence, the coefficient X is present in the energy. Therefore,

if one takes the bending and shear stiffnesses as EI(x) and 5GA(x)/6 (i.e. only chang-

ing the sectional width in the stiffness formulae), the strain energy associated with

bending-shear coupling will be missed. This can lead to significant errors in prediction

of the beam deflection.

Figure 6 shows the percentage errors in extension and bending stiffnesses (Z and

W from Eq. (7)) when one neglects the effect of taper and proceeds with the sim-

plistic change in the sectional stiffnesses. It can be concluded that neglecting taper

introduces an error in the beam sectional stiffnesses that can be significant, affecting

deflections under load as well as natural frequencies.

To assess the importance of the bending-shear coupling term X relative to the
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Figure 6: Percentage errors in the stiffnesses for ν = 0.3
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Figure 7: Normalized stiffness for bending-shear coupling, ν = 0.3

pure bending and pure shear term, the coupling stiffness is normalized, such that:

X =
X√
YW

=
(5ν + 3)τ√

45(ν + 1) + (ν2 − 48ν − 45) τ 2

(8)

This normalized value can be thought of as a measure of coupling strength to be

compared with unity. For a taper (τ) of 0.2, it varies from 0.0215 to 0.1367 as

Poisson’s ratio varies from −0.5 to 0.5. Moreover, the plot shown in Fig. 7 indicates

that these values are by no means negligible compared to unity. Therefore, its absence

may cause significant errors, and it is thus important to include these corrections in

the stiffnesses to account correctly for the effects of taper.
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(a)

(b)

(c)

Figure 8: Schematic of beam loaded for extension (a), bending (b) and flexure (c)

3.3 Recovery Relations

This section presents strain, stress and displacement components obtained from the

beam theory based on VAM and comparisons with elasticity solutions. Although the

baseline elasticity solutions are not restricted to small values of the parameters δ and

τ , they are compared to solutions from the beam theory, which are subject to small

values of δ and τ . In particular, beam theory based on the VAM is used to analyze

the problem of a tapered beam subjected to three different types of loading described

as extension, bending and flexure shown in Fig. 8. These three cases correspond to
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constant axial force, constant bending moment and constant shear force, respectively.

As in Ref. [48], the warping and strain energy are evaluated through first and second

orders, respectively.

For greater accuracy than Ref. [48], the warping is here evaluated to second-order.

For this, the same procedure outlined in Sec. 3.2 is followed. The first-order warping

is perturbed and from the perturbed warping, strains are obtained that are, in turn,

used to evaluate the strain energy as a function of the unknown warping perturbations.

Minimization of the strain energy using calculus of variations yields the expression

for the second-order terms in warping as

w(2)
x = 0

w(2)
y = A0ε+ A1ε

′ + A2ε
′′ +B0κ+B1κ

′ +B2κ
′′

(9)

where

A0 =
1

6b2
y(ν + 1)τ 2

[
y2(ν + 1)− b2(ν − 3)

]
A1 =

1

6b
yτ
[
y2(ν + 1)2 − b2

(
ν2 + 2ν + 3

)]
A2 =

1

6
yν2

(
b2 − y2

)
B0 = − 1

18

(
8ν2 + 6ν − 3

)
τ 2
(
b2 − 3y2

)
B1 =

1

9
bν(5ν + 6)τ

(
b2 − 3y2

)
B2 =

1

360

[
−b4

(
40ν2 + 54ν + 7

)
+ 30b2y2

(
4ν2 + 6ν + 1

)
− 15y4(2ν + 1)

]

(10)

Thus, an expression for the warping through second order has been obtained. The

derivatives of the 1D classical strain measures make it unsuitable for use in an engi-

neering beam theory. The classical strain measures are transformed into generalized

Timoshenko strain measures, whose derivatives are computed using the equilibrium

equations. The required sectional stiffnesses for use in the equilibrium equations are

given by Eqs. (7).

Note that the second-order warping functions are not used for obtaining stiffnesses

but only for recovery of stress, strain and displacement. The expressions for strain in
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Eq. (1) are restricted only by the assumption of small strain. The 1D strain measures

may be used in their geometrically exact form. Herein, however, for the purpose of

comparison with linear elasticity theory, they are restricted to small displacement

and rotation. Care should be taken to distinguish between the 1D classical strain

measures which appear in Eq. (1) and 1D generalized Timoshenko strain measures

which appear in Eq. (6). The relation between the two is detailed in Ref. [46] and

specialized in Ref. [48] and here as

ε = ε κ = κ+ γ′ (11)

Since the problem under consideration is that of plane stress, the stresses are

simply obtained from the constitutive law as
σxx

σyy

σxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




Γxx

Γyy

Γxy

 (12)

The 2D displacements from linear beam theory are computed from subtracting

the position vector of an arbitrary point on the undeformed cross-sectional plane from

the corresponding position vector in the deformed cross-sectional surface, such that

ux =u− yv,x + wx

uy =v + wy

(13)

where u and v are the 1D displacement variables of the beam theory, while ux and

uy are the 2D displacements of an arbitrary point of the cross section. These 1D

displacement variables can be computed from the 1D strain measures by using the

linear 1D strain-displacement equations

ε =u′

γ =v′ − θ

κ =θ′

(14)

36



To completely determine the 1D displacement and rotation variables, i.e. u, v and θ,

the boundary condition specified at x = 0 sets u, v and θ to zero.

From this the stress, strain and displacement components were obtained from the

beam analysis based on VAM. They are compared with the plane-stress elasticity

solutions obtained from Refs. [66] and [109]. Results are presented in Figs. 9 – 11

for the three loading cases of extension, bending and flexure, respectively. The two

results from the variational-asymptotic method, VAM (I) and VAM (II) correspond

to the cases when warping is evaluated through first and second orders, respectively.

The elasticity solutions also have been plotted for comparison purposes. For the three

loading cases, the recovery relations are plotted at x = l/2, versus ζ, a dimensionless

variable defined as y/b(x).

It is clear that if the warping is accurate to second order, then the recovery rela-

tions of the beam theory agree very well with results from the elasticity solution. On

the other hand, if warping is evaluated only to first order [48], some results are not in

good agreement with the elasticity solutions. Note that for presentation the recovery

relations were normalized by certain standard quantities. In the case of strain the

normalizing quantities were F/(ELt), Q/(EL2t) and P/(ELt) for extension, bending

and flexure, respectively. For stresses and displacements, they were the strain normal-

izing factors multiplied by modulus of elasticity and length of the beam, respectively.

The results were generated for ν = 0.3, τ = 0.2 and δ = 0.25. It is essential to state

here that the VAM solutions are compared with the total elasticity solutions, not

with the elasticity solutions expanded to a certain order in small parameters.

Asymptotic expansions of the expressions for recovered strains were carried out,

and it was seen that the results are in excellent agreement with the elasticity solutions

expanded through the corresponding order. For the extension case, if the warping is

correct through second order, i.e. O(bδ2ε), O(bδτε) and O(bτ 2ε), then the strains Γxx,
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Figure 9: Comparison of the normalized VAM strains, stresses and displacements
with the elasticity solutions for extension
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Figure 10: Comparison of the normalized VAM strains, stresses and displacements
with the elasticity solutions for bending
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Figure 11: Comparison of the normalized VAM strains, stresses and displacements
with the elasticity solutions for flexure
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Table 2: Asymptotic expansions of the strains from VAM for the extension case

Strain Expansion

Γxx
F

2Etb

[
1 + τ2

3
{2− 3ζ2 (2 + ν)}

]
Γxy − τFζ(ν+1)

Etb

Γyy − Fν
2Etb

[
1− τ2

3ν
{−2ν + 3ζ2 (2ν + 1)}

]

Table 3: Asymptotic expansions of the strains from elasticity for the extension case

Strain Expansion

Γxx
F

2Etb

[
1 + τ2

3
{2− 3ζ2 (2 + ν)}

]
Γxy − τFζ(ν+1)

Etb

Γyy − Fν
2Etb

[
1− τ2

3ν
{−2ν + 3ζ2 (2ν + 1)}

]

Γxy and Γyy are expected to be correct through orders 3, 2 and 2, respectively. How-

ever, based on the trends in the evaluation of warping the third-order contribution to

the warping, wy is expected to be zero. Therefore, under these special circumstances,

the strains listed in the same order as above are actually correct through orders 3, 2

and 3, respectively, relative to the leading term. Expansions of the 2D strain compo-

nents for extension and bending are presented in Tables 2, 3, 4 and 5. For the case

of extension, for example, the third-order terms are zero for Γxx and Γyy and hence

the expansions are correct through the third order. Also, the second-order terms are

zero for Γxy, and hence it is correct through second order.

Table 4: Asymptotic expansions of the strains from VAM for the bending case

Strain Expansion

Γxx − 3Qζ
2Etb2

[
1− τ2

5

{
−12− 13

3
ν + 10 (2 + ν) ζ2

}]
Γxy −3Qτ(1+ν)

2Etb2
(1− 3ζ2)

Γyy
3Qνζ
2Etb2

[
1− τ2

5ν

{
−5− 12ν − 2

3
ν2 + 10 (1 + 2ν) ζ2

}]
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Table 5: Asymptotic expansions of the strains from elasticity for the bending case

Strain Expansion

Γxx − 3Qζ
2Etb2

[
1− τ2

5
{−12− 5ν + 10 (2 + ν) ζ2}

]
Γxy −3Qτ(1+ν)

2Etb2
(1− 3ζ2)

Γyy
3Qνζ
2Etb2

[
1− τ2

5ν
{−5− 12ν + 10 (1 + 2ν) ζ2}

]

For the flexure case, the expressions for the 2D strain are presented in Eqs. (15)

and (16). In all three loading cases a good agreement is observed between the second-

order expanded VAM and elasticity solutions. In the flexure results, k defined as

τL/b, the ratio of the two small parameters. f and g are lengthy functions of the

parameters indicated and not reproduced here for the sake of brevity. Nevertheless,

it suffices to say from the VAM and elasticity agreement in Fig. 11, they are very

in close proximity of each other. Care must be exercised in expanding the solutions

in both the small parameters and normalizing the expressions with the appropriate

lowest order terms. Any arbitary choice of non-dimensionalization while expanding

the solutions will create/destroy small parameters and lead to erroneous results, such

as the ones in Ref. [40].

Γxx =− 3PL (1− η) ζ

2Etb2

[
1 +

1

5 (1− η)

({
12 +

13

3
ν − 6η + 5 (−2 + η) (2 + ν) ζ2

}
τ 2

+

{
−6− 13

3
ν + 5 (2 + ν) ζ2

}
τb

L

)]

Γxy =
3P (1 + ν)

2Etb (1− ηk)

[
1− k + (−1 + 3k − 2ηk) ζ2 + f (k, ζ, η, ν)

]
Γyy =− 3PL (1− η) ζ

2Etb2

[
1 +

1

5 (1− η)

({
5 + 12ν − 2

3
ν2 − 6νη + 5 (−2 + η) (1 + 2ν) ζ2

}
τ 2

+

{
−5− 6ν +

2

3
ν2 + 5 (1 + 2ν) ζ2

}
τb

L

)]
(15)
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Γxx =− 3PL (1− η) ζ

2Etb2

[
1 +

1

5 (1− η)

({
12 + 5ν − 6η + 5 (−2 + η) (2 + ν) ζ2

}
τ 2

+
{
−6− 5ν + 5 (2 + ν) ζ2

} τb
L

)]

Γxy =
3P (1 + ν)

2Etb (1− ηk)

[
1− k + (−1 + 3k − 2ηk) ζ2 + g (k, ζ, η, ν)

]
Γyy =− 3PL (1− η) ζ

2Etb2

[
1 +

1

5 (1− η)

({
5 + 12ν − 6νη + 5 (−2 + η) (1 + 2ν) ζ2

}
τ 2

+
{
−5− 6ν + 5 (1 + 2ν) ζ2

} τb
L

)]
(16)

3.3.1 Recovery relations without taper corrections

When the sectional formulae of an untapered beam are used for a tapered one, with

the only effect of taper being a change in the width, it follows that taper does not enter

into the expressions for strains and stresses. The stresses, strains and displacements

from this type of analysis, which as mentioned in Sec. 3.2 is the starting point for

most of the research on tapered beams, has been plotted along with the VAM and

elasticity solutions in Figs. 9 – 11. The recovery relations are erroneous and certain

trends are incorrect. The bending-shear coupling effect is not captured as expected,

and it can be seen from parts (c) and (f) of Fig. 10 that the case of bending does

not result in any shear stress or strain. Another example of an erroneous trend is

that of σxy for flexure. The trend for a tapered beam is exactly opposite that of a

prismatic beam as shown in part (f) of Fig. 11. Using merely the change in sectional

width in the stiffness formulae for prismatic beams leads to erroneous stress, strain

and displacement. This implies that the problem is being posed in a fundamentally

incorrect way. A prominent error of this type was identified in Ref. [48], wherein it

was shown that the lateral-surface boundary conditions in the typical tapered beam

analysis are incorrect.

43



3.4 Validity of the recovery expressions

In the previous sections, the recovery relations obtained from the VAM were compared

with the exact elasticity solutions. The VAM analysis was based on considering

the parameters δ and τ to be small. This section addresses the definition of the

“smallness” of these parameters. In other words, the values of δ and τ are increased

till the point at which the VAM solution deviates from the exact elasticity solutions,

thus determining the range of applicability of the VAM solution. It is important to

note that from their definitions, the value of τ must always be less than or equal to

the value of δ. If τ were equal to δ, this is a special case of a tapered beam, i.e.

a wedge, for which a singularity exists in the case of flexure and extension, as the

force applied at the end in both the cases, acts over a vanishing area. Hence, the

cases for which τ is strictly less than δ will be addressed. The percentage errors for

various values of δ at are plotted in Fig. 12. Error here means the maximum of the

percentage errors of the recovery relations for all the three loading cases. The error of

a VAM solution is obtained by comparison with the corresponding elasticity solution.

Results for those combinations of τ and δ for which the maximum error was below

5% was considered to be satisfactory. It is seen that at the extreme case of δ = 0.4,

the results are accurate up to τ = 0.26. Investigations were terminated at δ = 0.4 as

for higher values, it is generally expected that an engineering analysis would be done

considering the structure as a plate and not a beam.
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IV

ANALYTICAL VERIFICATION OF THE INITIAL

CURVATURE EFFECT

The purpose of computing is insight, not numbers.

– Richard Hamming

4.1 Introduction

For structural members with initial twist/curvature, found commonly in the field

of aerospace engineering, using beam theories based on traditional approaches/ideas

will not yield accurate results. Modeling of beams with initial curvature is of interest

due to their presence in many engineering structures. The VAM provides a rigorous

framework to model such structures without ad hoc assumptions regarding their de-

formation. Though novel ideas are not lacking in some of the beam theories in the

current literature, the capability and generality of a VAM framework has maintained

the superiority of VABS, subsequently making it a popular analysis tool for helicopter

blades and wind turbines. Several efforts have contributed to the validation and ver-

ification of VABS (a finite-element computer program developed based on the VAM)

results, and this chapter is one such effort.

The first part of this work deals with the application of the VAM to analyze

the in-plane deformation of an isotropic strip with initial in-plane curvature. The

current problem is chosen for two reasons: First, all of the final results, such as the

sectional constants and the recovery relations for stress and strain, have closed-form

analytical expressions, which enables a greater understanding and makes possible an

This chapter was published as Rajagopal et al. [89] and Rajagopal and Hodges [90].
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in-depth study for improvements in the theory. Second, the problem can be verified

for two specific loading cases with published elasticity solutions [109]. This purely

analytical exercise also exhibits two distinct ways of improving the accuracy of the

results obtained through the VAM. In the first, sectional constants are evaluated by a

“partial” transformation of the second-order asymptotically correct strain energy to a

Generalized Timoshenko form. In the second, the recovery relations are improved by

evaluating the warping up to the second-order in the small parameters of the system.

Finally, the analytical solution of this problem serves as a verification tool for certain

aspects of VABS. Note that VABS is capable of analyzing beam cross sections with

arbitrary geometry and materials. Thus, only a very small subset of the capabilities

of VABS is addressed by the analytical solution presented herein.

Section 4.2 describes the development of a beam theory using the VAM. Sec. 4.3

compares results obtained for two loading cases from the linearized version of the

beam theory from Sec. 4.2 and elasticity. Sec. 4.4 presents the verification study for

VABS carried out using the beam theory. Appendix A presents a modified analysis

of initially curved and twisted anisotropic beams in light of developments arising out

of the current study.

Additionally, the advent of composite materials has revolutionized the field of

structural engineering, most notably due to their high strength-to-weight ratio and

their directional tailorability. Therefore, in the second part of this work, a beam

theory is proposed to analyze the in-plane deformation of an initially curved laminated

strip-beam. Recall, as mentioned in Chapter 2, a beam theory must address the

following three aspects: a cross-sectional analysis leading to a stiffness matrix which

is input into the 1D analysis, the 1D analysis itself, and the formulae or procedure to

recover stress, strain and 3D displacement. This later half of the chapter is organized

as follows: Section 4.5 outlines the theoretical development leading to the results for

the first and third aspects described previously. Section 4.6 demonstrates extraction of
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Figure 13: Schematic of the isotropic strip beam with initial in-plane curvature

some stiffness terms using an equivalent plate theory. Section 4.7 validates the current

work using results from VABS. Discussion of the results is always accompanied by

conclusions and suggestions arising from the study.

4.2 Analytical Development Using the VAM

In this section, a beam theory for the planar deformation of an isotropic strip with

an initial curvature (k3 = 1/R) as depicted in Fig. 13 is developed using the VAM.

The beam theory will address the issues of the strain energy density and the cross-

sectional stress-strain recovery in terms of generalized strains that depend only on the

axial coordinate. The VAM procedure involves the solution of an elasticity problem

in an asymptotic fashion exploiting the presence of small parameters in the system

[46, 127].

The reference line is chosen as the line of section centroids, which in this case is

the midline of the strip. Three different coordinate systems are used: a set of vectors

bi (i = 1, 2) associated with the undeformed configuration of the beam, i.e. along x1

and x2, as shown in Fig. 13; a set of vectors Bi (i = 1, 2) associated with the deformed
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Figure 14: Relation between the B and T coordinate systems

configuration of the beam; and a set of vectors Ti (i = 1, 2), also associated with the

deformed configuration of the beam. Here T1 and B1 are defined as tangent to the

reference line and normal to the cross section in the deformed configuration of the

beam, respectively; and T2 and B2 are in the same plane and defined to be normal

to T1 and B1, respectively. The relationship between B and T frames is depicted in

Fig. 14 and can be mathematically expressed as B1

B2

 =

 1 −2γ12

2γ12 1


 T1

T2

 (17)

where 2γ12 is the 1D shearing strain measure, defined in the latter part of this section.

Note that this relation is valid for small values of 2γ12, which is one of the assumptions

of our theory. The position vector of an arbitrary point on the undeformed beam

section is

r̂ = r + x2b2 (18)

where r is the position vector of a point on the reference line which is at the same

axial location as the chosen point. Using the curvature-angular velocity analogy [46]
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one can write

b′1 = k3b2

b′2 = −k3b1

(19)

where ( )′ denotes derivative with respect to x1. Similarly, choosing the T system,

one can write the position vector for an arbitrary point on the deformed beam section

as

R̂ = R + x2T2 + w1(x1, x2)T1 + w2(x1, x2)T2 (20)

where R = r + ub1 + vb2, with u and v as the displacement of the beam reference

line in the x1 and x2 directions, respectively. The unknowns in the displacement field

are the warping w1 and w2. The displacement field is rendered unique by choosing

these constraints on the warping:

〈w1〉 = 0

〈w2〉 = 0

(21)

where

〈•〉 =

∫ c

−c
• dx2 (22)

Note that these constraints are not unique.

From the displacement field, one can compute the covariant and contravariant base

vectors, which are the tangents to the coordinate curves and normals to the coordinate

surfaces, respectively, for both the deformed and undeformed systems [46]. Then the

deformation gradient tensor [81] is

χ = Gig
i (23)

where gi and Gi are the contravariant and covariant base vectors associated with

the undeformed and deformed configurations, respectively. While computing these

vectors, the elegant definitions of the 1D strains using vector pull-back operations
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[46] can be used, which may be simplified to

R′ =(1 + γ11)T1

T′1 =(k3 + κ3)T2

T′2 =− (k3 + κ3)T1

(24)

where γ11 and κ3 are the classical 1D generalized stretching and bending strains,

respectively. Note that by definition the T frame of reference does not have a 1D

shearing strain measure associated with it. After this, the polar decomposition theo-

rem [81] is employed. Using the Jaumann-Biot-Cauchy definition of the strain tensor

and assuming that both the strain and the local rotations (caused by warping) are

small [46], the nonzero strain components become

Γ11 =
1
√
g

(
γ11 − x2κ3 − k3w2 +

∂w1

∂x1

)
Γ22 =

∂w2

∂x2

2Γ12 =
1
√
g

(
k3w1 +

∂w2

∂x1

)
+
∂w1

∂x2

(25)

where

g = det

 g1 · g1 g1 · g2

g2 · g1 g2 · g2

 (26)

Since the problem under consideration is that of plane stress, the constitutive law

is simply 
σ11

σ22

σ12

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




Γ11

Γ22

2Γ12

 (27)

Consequently the expression for the strain energy per unit length is given by

U =
Et

2(1− ν2)

〈
√
g

[
Γ2

11 + Γ2
22 + 2νΓ11Γ22 +

1− ν
2

(2Γ12)2

]〉
(28)

The formulation until now is equivalent to that of a standard elasticity approach.

If we attempt to solve the problem directly using minimization principles we will run
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into the same difficulties as we would in solving an elasticity problem. The small

parameters of the system are easily identified. Therefore, we turn our attention to

the VAM. Firstly, the maximum strain, i.e. max(γ11, cκ3), is assumed to be small

compared to unity and assumed to be O(ε). Secondly, specific to the problem are

the small parameters c/l and δ = c/R, which are assumed to be O(σ). The VAM

takes advantage of these small parameters to solve for the unknown warping. We will

eventually ignore O(σ3) terms. The warping is assumed to be O(cε). Its subsequent

solution justifies this assumption.

The first step of the VAM is to obtain the zeroth-order solution, also referred to

as the classical solution. For this the O(σ) terms in the strain energy are ignored.

The minimization of this strain energy subject to the constraints on warping given

by Eqs. (21) using the standard principles of the calculus of variations leads to the

solution for the zeroth-order warping

w
(0)
1 =0

w
(0)
2 =− νx2γ11 +

νκ3

6
(3x2

2 − c2)
(29)

Note that the order of the warping is the same as that which was assumed. It can

be substituted back into the energy to obtain the zeroth-order strain energy per unit

length

U0 = Ectγ2
11 +

1

3
Ec3tκ2

3

=
1

2
EAγ2

11 +
1

2
EI3κ

2
3

(30)

The warping is then perturbed one higher order in σ, so that

w1 = w
(0)
1 + w

(1)
1

w2 = w
(0)
2 + w

(1)
2

(31)

This implies that the first-order warping w
(1)
i is O(cσε). It is substituted back into the

strain energy, and all terms O(σ3) are disregarded. Before minimization, integration
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by parts is carried out to remove the derivatives of the unknown warping functions

with respect to x1. The boundary terms can be safely ignored since we are interested

in an interior solution. As before, application of the calculus of variations yields the

solution to the first-order warping

w
(1)
1 =

1

6

{
ν
(
3x2

2 − c2
)
γ′11 + x2

[
x2

2(ν + 2)− c2(5ν + 6)
]
κ′3
}

w
(1)
2 =

1

6
k3

{
ν(ν + 1)

(
c2 − 3x2

2

)
γ11 + x2κ3

[
c2
(
2ν2 − 3

)
+ x2

2(2ν + 1)
]} (32)

The warping is substituted back to obtain the asymptotically correct second-order

strain energy

U2 =
1

2
EA

[
1 +

(1 + ν)2

3
δ2

]
γ2

11 +
1

2
EI3

(
1 +

3 + 10ν + 5ν2

3
δ2

)
κ2

3

− EI3k3(1 + ν)γ11 κ3 +
4

15
Et(1 + ν)c5κ′3

2
+

2

45
Et(11ν + 12)c5κ3 κ

′′
3

(33)

Recall that δ = ck3 = c/R. The asymptotically correct second-order energy thus

gives us the corrections due to the initial curvature, and other new terms (in addition

to those of the zeroth-order energy) correspond to shear deformation. However, this

energy expression contains derivatives of the classical 1D strain measures, which make

it unsuitable from an engineering perspective. To make it usable it is desirable to

convert the strain energy into the “Generalized Timoshenko” (GT) form:

UGT =
1

2


γ11

κ3

2γ12



T 
S11 S12 S13

S12 S22 S23

S13 S23 S33




γ11

κ3

2γ12

 (34)

where the 1D strain measures used here are defined in the first step of the conversion

procedure, known as the “Generalized Timoshenko Transformation” (GTT):

1. The classical 1D generalized strain measures (γ11, κ3) are written in terms of the

GT 1D strain measures (γ11, κ3, 2γ12). The latter are the 1D strain measures

obtained if one uses the B frame of reference for the deformed beam configu-

ration. Essentially this means that we have switched from using the T frame
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of reference to the B frame of reference to describe the deformed beam config-

uration, which will introduce 2γ12, a 1D shear strain measure. Following the

procedure adopted by Ref. [46] and in sync with our assumption of small strain

and Eq. (17), the following relation is obtained:

γ11 = γ11

κ3 = κ3 + 2γ′12

(35)

These relations are used now on Eq. (33).

2. The 1D equilibrium equations are used to eliminate the derivatives of these

strain measures. The stress resultants are obtained from Eq. (34) as
F1

M3

F2

 =


S11 S12 S13

S12 S22 S23

S13 S23 S33




γ11

κ3

2γ12

 (36)

In terms of the stress resultants, the 1D equilibrium equations are [46]

F ′1 − k3F2 = 0

M ′
3 + F2 = 0

F ′2 + k3F1 = 0

(37)

Using these equilibrium equations, one can solve for the derivatives of the gen-

eralized strains in terms of the generalized strains themselves.

Using the resulting relations, one arrives at a set of equations to solve for the

3×3 stiffness matrix in Eq. (34). This is then solved using a perturbation solution,

exploiting the fact that the stiffnesses need to be correct up to a certain order. This

can be obtained by recognizing the fact that γ11, cκ3 and 2γ12 have orders of O(ε), O(ε)

and O(cε/l), respectively. The details of the solution are too lengthy to be presented

here, but suffice it to say one can obtain it using symbolic manipulation software such
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as Mathematica. The strain energy in the GT form can be obtained as

UGT =
1

2
EA

[
1 +

(1 + ν)(1 + 25ν)

75
δ2

]
γ2

11 +
1

2
EI3

(
1 +

15 + 60ν + 37ν2

75
δ2

)
κ2

3

− EI3k3

(
1 +

6

5
ν

)
γ11κ3 +

1

2

(
5

6
GA

)
(2γ12)2

(38)

It must be remarked here that apart from the presence of derivatives, there is

another troublesome aspect of the asymptotically correct second-order energy: the

boundary conditions. The classical (i.e. zeroth-order) and the GT theories have a

consistent number of boundary conditions. These boundary conditions affect the

displacement, section rotation, bending moment and shear force in the usual ways.

However, the asymptotically correct second-order energy has additional boundary

conditions, the physical interpretations of which are rather obscure. For example,

the higher-order derivative terms involve boundary-layer phenomena, which are not

involved at all in either the classical or GT theories. Decay lengths associated with

these phenomena are extremely short, making it feasible to capture the dominant

deformations with the simpler GT theory.

It is important, however, to note that the GT energy is no longer accurate up to

second order. The asymptotic exactness has been lost during the conversion process.

To obtain an energy that is closer to the asymptotically correct second-order energy

we make the following observation: The underlined term in Eq. (38) is obtained from

the underlined terms in Eq. (33). Therefore, if we perform a “partial” conversion by

converting only the underlined terms in Eq. (33), we will obtain a partially converted

GT form (pGT)

UpGT =
1

2
EA

(
1 +

(1 + ν)2

3
δ2

)
γ2

11 +
1

2
EI3

(
1 +

3 + 10ν + 5ν2

3
δ2

)
κ2

3

− EI3k3(1 + ν)γ11κ3 +
1

2

(
5

6
GA

)
(2γ12)2

(39)

This turns out to be the energy given by Eq. (33), with the underlined terms replaced

by the underlined term of Eq. (38). This energy is also not asymptotically correct up

to the second order, but it is a slightly better approximation than the GT form.
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The importance of an analytical solution is highlighted here as it was possible

to keep track of the terms during the process and define a pGT form that preserves

the second-order exactness to a somewhat greater extent than the GT form. Were

a numerical solution obtained using the VAM as in Ref. [136], it would be very

cumbersome to identify the terms and define a pGT form.

In either the GT/pGT forms above, the correction due to the small parame-

ter c/l appears through the term associated with the shearing deformation and the

corrections due to δ through the first three terms involving extension and bending

deformation. As mentioned previously, the 1D generalized shearing strain is of or-

der O(cε/l); and, hence, the energy associated with shearing deformation is of order

O(σ2). Consequently, the shearing stiffness does not contain any higher-order terms.

At this point it is necessary to emphasize that, unlike many of the beam theories

in literature with the same or similar names, neither the classical model nor the

pGT/GT model make any of the myriad assumptions about beam deformation.

Once the strain energy per unit length is obtained, the second aspect of the beam

theory is now addressed: the cross-sectional stress and strain recovery relationships.

The asymptotically correct warping is known up to first order. The classical strain

measures can be transformed to the GT ones, and their derivatives evaluated using

the stiffness terms obtained in the GT/pGT forms. The warping is then used in

Eq. (25) to recover strains. This can be used in Eq. (27) to recover the stresses. By

solving the 1D problem, one can also recover the displacements point-wise in the cross

section. For an example of how this is done, the reader is encouraged to consult Ref.

[50] wherein cross-sectional recovery of stress, strain, and displacement is carried out

for a tapered strip using the VAM.

However, obtaining stress and strain this way will result in the recovery rela-

tionships being asymptotically correct only up to the first order. To improve this
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situation, second-order warping functions, viz. w
(2)
1 and w

(2)
2 , are evaluated. The pro-

cedure for this mirrors the evaluation of the first-order warping, and the details are

not presented here because the expressions obtained are very lengthy. However, they

are easily obtained and used with symbolic manipulation software. The warping,

when evaluated as described and correct up to second-order, can be used to obtain

a more accurate evaluation of the stress and strain, in fact asymptotically correct

up to the second order. It should be noted, however, that one need not evaluate

a higher order energy (4th) associated with correction of the warping to the second

order. Derivatives of the 1D strain measures contained in the second-order warp-

ing expressions can be evaluated using the equilibrium equations and cross-sectional

stiffnesses obtained from the GT/pGT form since the strain energy based on those

stiffnesses is itself close to the asymptotically correct second-order strain energy. So,

this way, the recovery relations are as close to second-order accuracy as the GT/pGT

forms are. In addition to improving the consistency of the beam theory, evaluation of

the second-order warping guarantees the recovery relations will be more accurate for

larger values of the small parameters. With this, a complete beam theory has been

proposed for the isotropic strip with initial in-plane curvature using the principles of

the VAM.

4.3 Comparison with Classical Elasticity Solutions

The beam theory developed in the previous section will be now be applied to solve

two classical problems, solutions of which are obtained through linear elasticity theory

[109]. The two loading cases are for a strip with initial in-plane curvature of unit

thickness subjected to (1) a bending moment M at its ends and (2) a concentrated

tip force P at one end. These two loading cases are depicted in Fig. 3. The solutions

obtained from the VAM-based beam theory will be verified against those obtained

from Ref. [109].
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Recall that in the VAM-based beam theory, the only assumptions were smallness

of strain and the parameters δ and a/l. However, the theory of elasticity solutions

require that the displacements and rotations associated with the deformation be small

as well. Therefore, in what follows we too make this assumption to facilitate compar-

isons between the two results. This requires us to linearize our beam theory before

comparing its results with the elasticity solutions, so that results from VAM should

be interpreted as results from the linearized VAM beam theory.

For loading case (1), it is obvious that the 1D equilibrium yields stress resultants

with values

F1 = 0 F2 = 0 M3 = M (40)

Employing Eq. (36) and using the stiffnesses from both the GT and pGT forms, the

values of M/γ11 and M/κ3 are presented in Table 6. The shearing strain measure

turns out to be zero. Recall that the solutions from the VAM are for obtained using

t = 1 so as to compare with the elasticity solutions.

For the loading case (2), 1D equilibrium in terms of the stress resultants will yield

the following distribution:

F1 = −P cos(φ) F2 = P sin(φ) M3 = PR cos(φ); (41)

where φ = x1/l. Table 6 presents the values of P/γ11 and P/κ3 at x1 = 0 and P/2γ12

at x1 = l obtained using both the GT and pGT forms. The results will now be

developed from the elasticity solutions given in Ref. [109]. For the loading case (1),

the stresses in terms of polar coordinates r and θ, defined in Fig. 3 are given by

σr =
4M

N

(
a2b2

r2
log

b

a
+ b2 log

r

b
+ a2 log

a

r

)
σθ = −4M

N

(
−a

2b2

r2
log

b

a
+ b2 log

r

b
+ a2 log

a

r
+ b2 − a2

)
σrθ = 0

(42)

where

N =
(
b2 − a2

)2 − 4a2b2

(
log

b

a

)2

(43)
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From the stresses, the following operations are performed in order to get the 1D

generalized strains:

1. The strains are obtained using the constitutive law for plane stress.

2. The displacement field is obtained using the strain-displacement relations and

some appropriate geometric boundary conditions.

3. An appropriate coordinate transformation is done. Also the quantities a and

b used are expressed in terms of c and R. One thus obtains, u1(x1, x2) and

u2(x1, x2).

4. The displacement field is expressed in terms of the displacement of the reference

line and warping functions using Eqs. (18) and (20).

R̂− r̂ = û = u1b1 + u2b2 (44)

Assuming small displacements and rotations, this reduces to

u1 = u− x2v
′ + w1

u2 = v + w2

(45)

5. The constraints on warping are then utilized to obtain the displacement com-

ponents of the reference line:

u =〈u1〉

v =〈u2〉
(46)

6. A 1D section rotation variable θ3 is defined that minimizes the average distance

between the warped cross section of the deformed beam and the cross section

rigidly translated by ub1 + vb2 and rotated by θ3. It is easily shown that

θ3 = − 3

2c3
〈x2u1〉 (47)
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7. The 1D generalized strains are obtained from the above displacement and ro-

tation variables as explained in Sec. 4.2. Note that the 1D variables are now

defined with respect to the B frame of reference. If one assumes small displace-

ments and rotations, these generalized strains are

γ11 = u′ − k3v

2γ12 = v′ + k3u− θ3

κ3 = θ′3

(48)

It is to be noted that the choice of geometric boundary conditions in step 2 should

not affect the 1D strains obtained. We choose the displacement components of the

reference line and the section rotation (defined in steps 5 and 6 above) to be zero at

the left end of the beam where x1 = 0. The results thus obtained are truncated to the

second order in the small parameter (δ) and tabulated with the corresponding results

from the VAM in Table 6. A similar procedure can be carried out for loading case

(2). From a detailed comparison of results in Table 6 of the VAM and elasticity, it is

obvious that both GT and pGT are in very good agreement with the elasticity results

though the pGT form does a better job than the GT form in accurately capturing the

sectional constants. Also, recall that the transformation of U2 to UGT/UpGT does not

preserve asymptotic exactness; and, hence, there is a minor difference in the value of

P/2γ12 from the GT/pGT approaches when compared to the elasticity solution.

The second part of the verification consists of cross-sectional stress and strain

recovery. The elasticity expressions for the stress and strain [109] (with appropriate

coordinate transformations) and the corresponding ones from the VAM-based beam

theory are obtained as explained towards the end of Sec. 4.2. The expressions from

elasticity are to be truncated within the second order of small parameters. As an

example, Table 7 presents the analytical expressions for σ11 for the loading case (1).

The boxed terms in the GT/pGT rows are those that can be obtained only if the

warping is evaluated up to second order. Two very straightforward conclusions can
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Table 6: Stiffnesses from VAM and elasticity for a curved-strip beam for the loading
cases in Fig. 3

Stiffness VAM (pGT) VAM (GT) Elasticity

M/γ11 − 2c2E
(1+ν)δ

− 2c2E
(1+ 6

5
ν)δ

− 2c2E
(1+ν)δ

M/κ3
2
3
c3E(1− 2

15
δ2) 2

3
c3E

[
1− 2

15
(1− ν2

10
)δ2
]

2
3
c3E(1− 2

15
δ2)

P/γ11
2cE
ν

5cE
3ν

2cE
ν

P/κ3
2c2E

3
δ 2c2E

3
δ 2c2E

3
δ

P/2γ12
5cE

6(1+ν)
5cE

6(1+ν)
10cE

12+11ν

Table 7: σ11 recovered by VAM and elasticity for a curved-strip beam for loading
case (1)

Case σ11

VAM (GT) −3Mx2
2c3
− M((1+ ν

5
)c2−3x22)

2c4
δ+

7Mx2(3(1+ 2ν
21

+ 4ν2

35
)c2−5x22)

2c4
δ2

VAM (pGT) −3Mx2
2c3
− M(c2−3x22)

2c4
δ+

7Mx2(3c2−5x22)

2c4
δ2

Elasticity −3Mx2
2c3
− M(c2−3x22)

2c4
δ +

7Mx2(3c2−5x22)

2c4
δ2

be put forth: First, the pGT form gives a result that is much closer to the elasticity

solutions than that of the GT form. Second, introduction of the second-order warping

makes the recovery process accurate to the next order, which essentially means larger

values of the small parameters can be used. It is also trivial to note that the VAM-

based beam theory results are in excellent agreement with those from elasticity.

A sample of the stress and strain recovery that has been carried out for the two

loading cases, and results for the stresses for each loading case are presented in Fig.

15. The plots were generated for δ = 0.15 and Poisson’s ratio of 0.3. The stresses

were normalized by M/c2 for loading case (1) and P/c for loading case (2). Recall,

the thickness of the strips is taken to be unity in the elasticity solution [109]. It must

be emphasized here that the elasticity solutions used for comparison are the complete

expressions, not expanded and truncated to a certain order; this is in contrast to the
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treatment above, which was done for comparison purposes. The two results from the

variational-asymptotic method, VAM (I) and VAM (II) correspond to the cases when

warping is evaluated through first and second orders, respectively. Though there

is a difference analytically between the GT and pGT forms, hardly any differences

were observed numerically; and, hence, they have not been graphed separately. The

stresses are plotted against ζ = x2/c, a dimensionless coordinate along x2. For the

load case (1), the stresses are independent of x1, while for case (2), the plots are

generated for x1 = l/2.

It can be observed that for σ11, there is no visible difference between the various

approaches for both the loading cases, while for σ22, there is an appreciable difference

between the plot for the VAM solution from the first- and second-order warping, the

latter being obviously closer to the elasticity solution. A similar trend can be observed

for the plot of σ12 as well, especially near the boundaries. All the approaches confirm

σ12 = 0 for loading case (1) and thus are not plotted.

Therefore, from the results presented in this section, the linearized version of the

asymptotic beam theory proposed in Sec. 4.2 has been successfully verified up to

O(σ3) using the results from plane stress elasticity. This exercise also verifies the

accuracy of the results that can be predicted by such an approach to solve beam-like

structures.

4.4 Verification for Initial Curvature Effect in VABS

The asymptotic beam theory developed in Sec. 4.2, which has been successfully ver-

ified using classical elasticity solutions, was used for the purpose of verifying VABS

[136, 23], a computer program used in rotor blade modeling and design. VABS is

a very general FEM-based code that uses the VAM to perform the cross-sectional

analysis of beam-like structures. Since the procedure employed is the same as that of

our beam theory, it is expected that identical results are produced from VABS.
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Figure 15: Comparison of the normalized VAM stresses and those from VABS 3.4
with the elasticity solutions for the loading cases in Fig. 3; (a) and (b) are for loading
case (1); (c), (d) and (e) are for loading case (2)
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The test case chosen was that of a 10×1 isotropic strip with properties E =

0.26× 1010 and ν = 0.3. The curvature values (k3) were taken up to 0.05. The stiff-

ness matrices obtained from VABS 3.3 were compared with the beam theory, which

exhibited a discrepancy in the extensional stiffness. Upon investigation, two major

differences were identified between the analyses behind VABS 3.3 and the above beam

theory. First, the VABS 3.3 analysis treats the terms accompanying the generalized

strains and their derivatives in the second order asymptotically correct strain energy

as constants and not explicit functions of k3; second, it does not asymptotically ex-

pand g (defined in Sec. 4.2) or its powers. It was established using Mathematica that

the former does not lead to any change in the stiffness values. For the latter, an ana-

lytical solution was generated as in Sec. 4.2, the only difference being the restriction

of expansion of g and its powers. It was found that not expanding
√
g terms in the

strains and strain energy leads to certain terms being missed while truncating the

expression for the strain energy density beyond the second-order terms. This leads

to erroneous terms in the expressions for the first-order warping and, consequently,

the second-order energy and the subsequent expressions for the stiffnesses. Using this

approach, the second order energy when transformed to a GT form is given by:

U g
GT =

1

2
EA

(
1 +
−119− 84ν + 25ν2

75
δ2

)
γ2

11 +
1

2
EI3

(
1 +

15 + 60ν + 37ν2

75
δ2

)
κ2

3

− EI3k3

(
1 +

6

5
ν

)
γ11κ3 +

1

2

(
5

6
GA

)
(2γ12)2

(49)

The discrepancy in the extensional stiffness is clearly noted by comparing the above

expression with Eq. 38. Once this restriction of the expansion of g and its powers

was lifted in the VABS code, the corrected version (VABS 3.4) produced stiffnesses

that were in agreement with the predictions of our beam theory. The corrections to

the VABS theoretical formulation are given in Appendix A.

The stiffnesses from various approaches are plotted versus k3 in Figs. 16 – 19.
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VAM (GT) and VAM (pGT) are the solutions from the beam theory detailed in Sec.

4.2 from the GT and pGT forms, respectively. VAM (g) is the solution from the same

beam theory imposing the restriction that g and its powers are not expanded. It can

be concluded that the VAM (g) results are close to that of VABS 3.3 and VAM (GT)

is close to VABS 3.4 (within minor numerical differences). This proves the conclusion

made above.

For example, if one looks at the extensional stiffness, as in Fig. 16, the VABS 3.3

predictions decrease with k3, but the results from the above beam theory, both the

GT and pGT ones increase with k3. If we perform the same analysis as in Sec. 4.2

without expanding
√
g asymptotically, one ends up with the exact same prediction

as by VABS 3.3. But obviously, since our beam theory has been successfully verified

using elasticity, the predictions from VABS 3.3 can be concluded to be faulty. When

this term
√
g was expanded in VABS (and hence VABS 3.4), they were close agreement

with those obtained from GT/pGT results. A similar observation can be made about

the bending and extension-bending stiffness. Only in Fig. 19, the elasticity solution is

plotted separately as the expression for P/2γ12 from Table 6 slightly differs from the

ones obtained by the GT/pGT approach, which means that the shear stiffness is not

exactly the same. The slight discrepancy is because when the GTT process is done,

the energy is no longer exact up to second order. The shear stiffness as obtained by

VABS is not expected to have any corrections as explained in the previous section.

For all other values in Table 6, the pGT and elasticity solutions give identical results;

hence, the stiffnesses other than shear are not plotted separately.

VABS 3.4 was also used to perform the sectional stress-strain recovery for the

same values of the parameters as in Sec. 4.3 and the results are included in Fig. 15.

It can be seen that the results from VABS exactly coincide with those obtained from

VAM (I). Though these results are in close agreement with the elasticity solutions,

they can be further improved if the warping is evaluated up to second-order as shown
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Figure 16: Extensional stiffness vs. k3 for a 10×1 isotropic strip with initial in-plane
curvature obtained from various approaches. Stiffness is scaled down by 1010

by VAM (II).

To conclude, the VAM based beam theory of Sec. 4.2 has served as a very useful

verification tool for VABS, a software being extensively used in the rotorcraft and

wind turbine industry. It has helped uncover an error in the analysis of curved

beams, which could be significant for some structures. The next few sections pertain

to the second half of this verification study and extends the analysis for laminated

beams with initial curvature.
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Bending
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Figure 17: In-plane bending stiffness vs. k3 for a 10 × 1 isotropic strip with initial
in-plane curvature obtained from various approaches. Stiffness is scaled down by 1011
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Extension Bending Coupling
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Figure 18: Extension-inplane bending coupling stiffness vs. k3 for a 10× 1 isotropic
strip with initial in-plane curvature obtained from various approaches. Stiffness is
scaled down by 109
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Shear
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Figure 19: In-plane shear stiffness vs. k3 for a 10 × 1 isotropic strip with initial
in-plane curvature obtained from various approaches. Stiffness is scaled down by 109
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Figure 20: Schematic of the composite strip beam with initial in-plane curvature

4.5 Laminated Strips: Beam Theory

Consider a laminated strip beam with initial curvature k3 = 1/R as shown in Fig. 20.

This section deals with the development of a beam theory to describe the in-plane

deformation of such a structural member. In the undeformed configuration, for a

given axial coordinate (x1), the unit vectors b1 and b2 are defined to be tangent to

the reference line and perpendicular to it as shown.

Two frames of reference are used in the analysis to describe the deformed config-

uration. The 1D generalized strain measures associated with the frame of reference

in which one of its unit vectors is tangent to the reference line are γ11 and κ3. On

the other hand, those associated with the frame of reference in which one of its

unit vectors is normal to the cross section are γ11, κ11 and 2γ12; geometrically exact

expressions for both of these measures may be found in Ref. [46]. The kinematics

development parallels that of Sec. 4.2, and the reader is advised to go through this
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section for a complete description of the kinematics of this problem. Consequently,

the strain expressions

Γ11 =
1
√
g

(
γ11 − x2κ3 − k3w2 +

∂w1

∂x1

)
Γ22 =

∂w2

∂x2

2Γ12 =
1
√
g

(
k3w1 +

∂w2

∂x1

)
+
∂w1

∂x2

(50)

are obtained, where the square root of the metric tensor of the undeformed state is

given by

√
g = 1− x2k3 (51)

where w1 and w2 are the unknown warping displacements. The problem we are dealing

with is a plane stress problem; hence,
σ11

σ22

σ12

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66




Γ11

Γ22

2Γ12

 (52)

Consequently the strain energy per unit length is

U =
1

2

〈
√
g


σ11

σ22

σ12



T 
Γ11

Γ22

2Γ12


〉

(53)

where 〈 〉 denotes an integration over the cross section. Now define: Aij =
∫ t/2
−t/2Cij dx3,

i.e., an integration through the thickness, which can also be written as a summation

over the various layers of the laminate (after appropriate coordinate transformations).

One therefore can write the strain energy per unit length to be

U =

∫ c

−c

1

2

√
g


Γ11

Γ22

2Γ12



T 
A11 A12 A16

A12 A22 A26

A16 A26 A66




Γ11

Γ22

2Γ12

 dx2 (54)
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This completes the formulation of the variational aspect of the problem. The

current unknowns in the problem are the warping field. An attempt to solve this using

standard variational principles will lead to the same difficulties as the corresponding

elasticity problem. The solution of the problem is now carried out using asymptotic

methods. One does this by identifying the inherent small parameters of the system:

c/l and ck3 which are assumed to beO(σ). Also the maximum strain (max(γ11, cκ3) =

O(ε)) is assumed to be small compared to unity. Before we proceed further, we define

the following quantities which will be used in later analysis:

A11 = A11+
A22A

2
16 − 2A12A16A26 + A2

12A66

A2
26 − A22A66

Ã11 = A22A66 − A2
26; Ã22 = A11A66 − A2

16; Ã66 = A11A22 − A2
12;

Ã12 = A16A26 − A12A66; Ã16 = A12A26 − A16A22; Ã26 = A12A16 − A26A11

(55)

The first step of the VAM is a zeroth-order or classical analysis where all terms

O(σ) are ignored in the strain energy. The warping is assumed to be of order O(cε),

and its subsequent solution justifies this assumption. Standard procedures of calculus

of variations yield the warping as

w
(0)
1 =

Ã16

Ã11

(
x2γ11 +

c2 − 3x2
2

6
κ3

)
w

(0)
2 =

Ã12

Ã11

(
x2γ11 +

c2 − 3x2
2

6
κ3

) (56)

The classical strain energy per unit length is thus

U0 =
1

2

 γ11

κ3


T  2cA11 0

0 2c3

3
A11


 γ11

κ3

 (57)

We then proceed to an analysis one order higher. This is done by perturbing the

warping with terms of O(σcε). The resulting minimization problem leads to a set of
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Euler-Lagrange equations, which can be solved for the first-order warping

w
(1)
1 =

Ã16Ã12

6Ã2
11

k3(c2 − 3x2
2)γ11 +

x2k3

6Ã11

[(
2A11A26 − Ã16 − Ã26

)
c2 +

(
Ã26 − Ã16

)
x2

2

]
κ3

+
A22A11 − Ã66 + Ã12

6Ã11

γ′11

+
x2

6Ã11

[(
−A11A22 − Ã12 + Ã66

)
(c2 − x2

2) + A11A22(−3c2 + x2
2)
]
κ′3

w
(1)
2 =

Ã12

Ã11

(
Ã12

Ã11

− 1

)
k3(c2 − 3x2

2)γ11 −
x2k3

6Ã11

[(
2A11A66 + Ã22

)
c2 +

(
2Ã12 − Ã22

)
x2

2

]
κ3

− Ã12Ã16

6Ã2
11

(c2 − 3x2
2)γ′11 +

x2

6Ã2
11

[
Ã12Ã16(c2 − x2

2)− A11Ã11A26(x2
2 − 3c2)

]
κ′3

(58)

Once the first-order warping is determined, the asymptotically correct second-order

strain energy per unit length can be obtained

U2 =
1

2
(S110 + S112k

2
3)γ2

11 + S121k3γ11γ
′
11 +

1

2
S220γ

′2
11 + S141k3γ11κ3 +

1

2
(S440 + S442k

2
3)κ2

3

+
1

2
S550κ

′2
3 + S240γ

′
11κ3 + S451k3κ3κ

′
3 + S460κ3κ

′′
3

(59)

The terms in the above equation are defined as

S110 = 2cA11; S112 =
2c3

3
A11

(
1− Ã12

Ã11

)2

; S121 =
2c3

3
A11

Ã16

Ã11

(
1− Ã12

Ã11

)
;

S220 =
2c3

3
A11

(
Ã16

Ã11

)2

; S141 = −2c3

3
A11

(
1− Ã12

Ã11

)
; S440 =

2c3

3
A11

S550 =
2c5

45
A11

(
5A11A22 + Ã66

Ã11

)
; S240 = −2c3

3
A11

(
Ã16

Ã11

)
;

S460 =
2c5

45
A11

(
Ã12 + 7A11A22 − Ã66

Ã11

)
; S451 =

2c5

45
A11

(
6Ã16 − 5A11A26 + Ã26

Ã11

)
;

S442 =
2c5

45
A11

(
9− 10Ã12 + 5A11A66 + Ã22

Ã11

)
;

(60)

It can be remarked here that the asymptotically correct strain energy has the
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derivatives of the 1D generalized strains which make it unsuitable from an engineer-

ing perspective. To overcome this shortcoming, a Generalized Timoshenko (GT)

transformation is carried out. The details are similar to those of [89] and are not

repeated here. The final GT model can be written as

UGT =
1

2


γ11

κ3

2γ12



T 
X11 X12 X13

X12 X22 X23

X13 X23 X33




γ11

κ3

2γ12



=
1

2


γ11

κ3

2γ12



T 
X110 +X112k

2
3 X121k3 X130

X121k3 X220 +X222k
2
3 X231k3

X130 X231k3 X330




γ11

κ3

2γ12



(61)

The stiffness matrix in the above equation contains terms which are zeroth, first and

second order in k3. The formula for each set is sequentially listed below in the order

mentioned.

X110 = S110 +
S2

240

S550

; X220 = S440; X130 =
S240S440

S550

; X330 =
S2

440

S550

(62)

X231 = S240 +
S440S451 − S240S460

S550

X121 = S141 +
S240S451

S550

+
1

S440

(
S2

240

S550

− S110

)
(S550 − S460)

(63)

X222 = S442 +
S2

451

S550

+
S460 − S550

S440

[
2

(
S141 −

S240S451

S550

)
+

1

S440

(S460 − S550)

(
S2

240

S550

+ 2S110

)]
X112 =

1

S2
110S

3
440S

2
550

(α1 + α2 + α3 + α4 + α5 + α6)

(64)
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where

α1 = −S8
240 + [(−2S141 + S220 − 2S440)S440 − 4S110S460]S6

240 + 2S110S440S451S
5
240

α2 = 2S110S240S440S550 {S110S451 (S141S440 + S110S460) + S121S440 [S440 (S141 + S440) + S110S460]}

α3 = 2S110S440S
3
240 [S440S451 (S141 + S440) + 2S110S460S451 + S121S440S550]

α4 = S4
240

[
2S460S550S

2
110 + S2

141S
2
440 +

(
S2

440 + 2S110S460

)2 − 2S220

(
S3

440 + S110S460S440

)
+ 2S141S440

(
S2

440 − S220S440 + 2S110S460 + S110S550

)]
α5 = S2

110S
2
550

{
S112S

3
440 + S110S550 [S110 (S550 − 2S460)− 2S141S440]

}
α6 = S2

240

(
S220S440

(
S2

440 + S110S460

)2
+ 2S141S440

[
S220

(
S3

440 + S110S460S440

)
− 3S2

110S460S550

]
−

S2
110

{[
S2

451 + 2S550 (S442 + S550)
]
S2

440 + 2S110S550

(
3S2

460 − 2S550S460 + S2
550

)}
+ S2

141S220S
3
440

)
(65)

This completes the formulation of the beam theory. Eq. (61) provides the stiffness

matrix that can be used in the 1D beam analysis. Once the generalized strains are

determined, the strain can be recovered by substituting Eqs. (56) and (58) into Eq.

(50). The stresses follow from Eq. (52), completing the recovery aspect. Before

closing, it is important to make several observations. First, no ad hoc assumptions

were used regarding the beam deformation. Second, with emphasis on the fact that

the beam is constituted of composite materials, the entire development is analytical.

The author wishes to emphasize the latter point as the unique aspect and perhaps

the most singular contribution of this part of the chapter to existing literature on

beam theory.

4.6 Extraction of Extension-Shear Coupling from Plate The-
ory

When casting the second-order asymptotically correct strain energy into a GT form,

one has to solve a set of nonlinear, algebraic equations. In the course of this process,
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Figure 21: Composite Strip with k3 = 0, subjected to a tip force P as shown

it is observed that the equation for the extension-shear coupling term, X130 yields

no information by being indeterminate (it is satisfied for all values of X130). It is

to be noted that X130 describes the extension-shear coupling stiffness for the beam

without initial curvature (k3 = 0). Since the theory has been obtained using a rigorous

dimensional reduction of 3D elasticity, one should be able to recover this term from

the corresponding plate theory. Consider the beam of Fig. 21 subjected to a load P

as shown.

Classical Laminated Plate Theory (CLPT) yields:
N11

N22

N12

 =


A11 A12 A16

A12 A22 A26

A16 A26 A66




ε11

ε22

2ε12

 (66)

The Nij and εij are the membrane stress-resultants and strains respectively. For

further details on this subject, the reader is advised to refer to Ref. [133]. Now since

the member is also qualified to be modeled as a beam, we can reduce the above model

by setting N22 = 0 N11

N12

 =

 A11 − A2
12

A22
A16 − A12A26

A22

A16 − A26A12

A22
A66 − A2

26

A22


 ε11

2ε12

 (67)

For this case, we can use
∫ c
−cN11 dx2 = P ,

∫ c
−cN12 dx2 = 0,

∫ c
−cε11 dx2 = 2cγ11 and∫ c

−cε12 dx2 = 2cγ12. Upon solving for γ11 and γ12 and comparing the results from

the beam GT model (setting k3 = 0), we obtain two equations for the three un-

knowns, X110, X330 and X130. Extraction of the first two quantities from the GT
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transformation process presents no difficulties and the these values satisfy the first

equation (equality of γ11). The second equation (equality of 2γ12) is used to extract

the extension-shear coupling term.

X130 =− 10cA11Ã16

5A11A22 + Ã66

=
S240S440

S550

(68)

This extraction clearly demonstrates the mathematical rigor of the VAM. Since the

VAM performs the dimensional reduction with no ad hoc assumptions, for a given

structural member, a plate (2D) and the corresponding beam (1D) theory will be con-

sistent with not only the starting point which is 3D elasticity, but between themselves

as well.

4.7 Validation of Results with VABS

The beam theory developed in Section 4.5 will now be validated using the computer

program VABS. The consistency of VABS with 3D FEM has been established in

several studies in literature [136, 65]. Validation will be presented in the form of

cross-sectional stiffness and stress recovery for a composite beam with a given layup

configuration.

The test case is that a cross section manufactured from AS5/3501-6 graphite epoxy

with cross-sectional dimensions 1.182 in. × 0.0579 in., consisting of a [45 ◦/0 ◦]3s

layup. This case was chosen because it has been validated and verified for VABS

using 3D FEM [65, 122]. In all the plots that follow, the solid black line denotes the

results of the current beam theory (obtained using Mathematica R©) and the discrete

squares/circles, those of VABS. The stiffness values have been normalized as follows

X ii =
Xii

(Xii)k3=0

X ij =
Xij√

(XiiXjj)k3=0

(i 6= j)
(69)
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For consistency, the normalizing values were chosen to be those from VABS, i.e., the

quantities in the denominator of the above equation were VABS inputs. The six dif-

ferent stiffnesses for this case are plotted in Fig. 22. It can be seen that there is an

excellent agreement between the results of VABS and from the current approach. It

is observed that there is a slight discrepancy between the results of the extension-

bending coupling stiffness. Upon curve fitting the VABS results, it was determined

that the difference was a term cubic in k3. Thus VABS has picked up some cubic

terms whose accuracy cannot be trustworthy as our GT model is extracted from a

second-order asymptotically correct strain energy. This is due to the fact that dur-

ing the GT transformation VABS considers the terms accompanying the generalized

strains and their derivatives in the second order asymptotically correct strain energy

as numbers (without the explicit dependence on k3). However this difference is small

when compared to the actual correction.

The stress recovery is carried out for two different loading cases, the first with the

beam subjected to a unit bending moment (1 lb-in), and the second with it subjected

to a unit tip force (1 lb) as shown in Fig. 4.7. The stress recovery was carried out

at the section at the middle of the beam, i.e., at x1 = l/2 and along x3 = 0 and for

k3 = 0.2 in−1. A choice of the loading cases is from Ref. [109] where the corresponding

results for the isotropic case were studied in and used for the VAM validation in Ref.

[89].

The stress variations for these two cases are presented in Fig. 24. Again, we

observe an excellent agreement between the current and VABS results. Agreement

of stresses implies that the strain and displacement (when the appropriate geometric

boundary conditions are applied, e.g, for the second case, the left end is fixed) are

in good agreement as well. Validation studies also have been carried out for another

layup configuration. To prevent cluttering of results and subsequent confusion for

the reader, it suffices to say that the results from the two approaches were in good
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Figure 22: Normalized in-plane stiffnesses versus in-plane curvature k3 (with units
in−1) for a 1.182 in. × 0.0579 in. graphite-epoxy strip; layup: [45 ◦/0 ◦]3s, VABS vs.
current approach
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(a) Loading Case 1 (b) Loading Case 2

Figure 23: Composite Strip subjected to (a) Constant Bending Moment and (b) Tip
Shear Force

agreement. The current test case drives home the point desired to be made.
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Figure 24: Cross-sectional stress (psi) recovery for a 1.182 in. × 0.0579 in. graphite-
epoxy strip with layup [45 ◦/0 ◦]3s at x1 = l/2 and for k3 = 0.2 in−1; (a)−(c) are for
loading case 1; (d)−(f) are for loading case 2
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V

HIGHER FIDELITY STRESS-STRAIN-DISPLACEMENT

RECOVERY

Courage is not the absence of fear, but rather the ability to understand,

rationalize and triumph over fear.

– Various

From Chapters 3 and 4, an important conclusion established was the usefulness in

perturbing the warping to the second-order and the subsequent evaluation of the

stress, strain and displacement to a higher fidelity. The thus recovered 3D quantities

would be accurate up to second order in small parameters since the stiffness matrix

is currently extracted from a second-order asymptotically correct strain energy. It

is therefore desirable to implement this feature in the general VABS finite-element

procedure for anisotropic beams with initial twist and curvature. In principle, the

procedure is simple enough: perturb the existing first-order warping to one order

higher in small parameters and obtain the resulting strain energy. Using the stan-

dard procedures of calculus of variations and keeping in mind the constraints on the

warping field, the Euler-Lagrange equations and boundary conditions are obtained,

which can be solved for the warping field. The formulation presented in this chapter

remains consistent with the zeroth- and first-order formulation – the latest version of

which is presented in Appendix A. The final expression for the second-order warping

reduces to, albeit, after a series of remarkable cancellations, a relatively simple one.

This chapter contains all the equations needed for obtaining a higher-order recov-

ery of stress, strain and displacement in VABS. The procedure can be considered to be

of two parts: evaluating the second order warping and obtaining the final recovery by
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evaluation of the derivatives of the 1D strain measures. Finally, some results from the

updated version of VABS are presented to demonstrate the capturing of second-order

terms and any possible advantages over the previously existing first-order recovery.

5.1 Evaluating Second-Order Warping

The finite-element procedure to determine second order warping for VABS is now

detailed. The
√
g correction outlined in Chapter 4 has complicated the process by

significantly increasing the number of terms (impaled by one’s own sword!). One

begins with the expansion of the relevant powers of g

√
g = β11 − y2k3 + y3k2 = g0 + g1

1
√
g

=
1

β11

+
y2k3 − y3k2

β2
11

+
(y2k3 − y3k2)2

β3
11

+
(y2k3 − y3k2)3

β4
11

+
(y2k3 − y3k2)4

β5
11

+O(k5
i )

= γg0 + γg1 + γg2 + γg3 + γg4 +O(k5
i )

(70)

The strain is defined in the usual way

Γ = Γaβ w + Γε ε+ ΓR w + Γl w
′ (71)

The operators used in Eq. (71) are now defined.

Γβ =
4∑
i=0

Γβi

Γβi =− γgi
(
β12

∂

∂y2

+ β13
∂

∂y3

) (72)

Γaβ =



Γβ 0 0

∂
∂y2

Γβ 0

∂
∂y3

0 Γβ

0 ∂
∂y2

0

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3


=

4∑
i=0

Γaβi ; Γaβi =



Γβi 0 0

∂
∂y2

Γβi 0

∂
∂y3

0 Γβi

0 ∂
∂y2

0

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3


(73)
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Γε =
1
√
g



β11 0 y3 −y2

β12 −y3 0 0

β13 y2 0 0

0 0 0 0

0 0 0 0

0 0 0 0


=

1
√
g

Γε =
4∑
i=0

γgiΓε (74)

Γ` =
1
√
g



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


=

1
√
g

Γ` =
3∑
i=0

γgiΓ` (75)

ΓR =
1
√
g



ΓhR −k3 k2

k3 ΓhR −k1

−k2 k1 ΓhR

0 0 0

0 0 0

0 0 0


=

1
√
g

ΓR =
3∑
i=0

γgiΓR (76)

where

ΓhR = k1

(
y3

∂

∂y2

− y2
∂

∂y3

)
(77)

In the absence of obliqueness (i.e. β1α = 0), then Γaβ = Γaβ0 . The strain energy per

unit length is

2U =〈〈σTΓ〉〉

〈〈•〉〉 =〈•√g〉
(78)

where 〈•〉 denotes an integration over the beam cross section. The expression for the

strain energy can be rewritten using the finite element discretization of the warping
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field [46]

w (x1, x2, x3) = S (x2, x3)V (x1)

w = bw1 w2 w3c
T

(79)

where S(x2, x3) are the finite-element shape functions.

2U =V TEV + 2V T (Daεε+DaRV +Da`V
′) + εTDεεε+ V TDRRV

+ V ′TD``V
′ + 2V TDRεε+ 2V ′TD`εε+ 2V TDR`V

′
(80)

The matrices in the above equation are defined as

Daε =
4∑
i=0

Daεi

Daεi = 〈(ΓaβiS)TDΓε〉

(81)

DaR =
3∑
i=0

DaRi+1

DaRi+1
= 〈(ΓaβiS)TDΓRS〉

(82)

Da` =
4∑
i=0

Da`i+1

Da`i+1
= 〈(ΓaβiS)TDΓ`S〉

(83)

Dεε =
4∑
i=0

Dεεi

Dεεi = 〈γgiΓ
T

ε DΓε〉

(84)

DRR =
2∑
i=0

DRRi+2

DRRi+2
= 〈γgi(ΓRS)TDΓRS〉

(85)

D`` =
2∑
i=0

D``i+2

D``i+2
= 〈γgi(Γ`S)TDΓ`S〉

(86)
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DRε =
3∑
i=0

DRεi+1

DRεi+1
= 〈γgi(ΓRS)TDΓε〉

(87)

D`ε =
3∑
i=0

D`εi+1

D`εi+1
= 〈γgi(Γ`S)TDΓε〉

(88)

DR` =
2∑
i=0

DR`i+2

DR`i+2
= 〈γgi(ΓRS)TDΓ`S〉

(89)

E =
4∑
i=0

Ei

Ei =g0Ki + g1Ki−1

Ki =
4∑

m=0

4∑
n=0

(ΓaβnS)TD(ΓaβmS)

∀m,n ∈ Z; m+ n = i; 0 ≤ m,n ≤ 4

(90)

In the last equation, it should be noted that that by definition, one setsK−1 = 0 = K5.

The total strain energy that is to be considered is therefore

2U =(V0 + V1 + V2)T (E0 + E1 + E2 + E3 + E4)(V0 + V1 + V2)

+ 2(V0 + V1 + V2)T (Daε0 +Daε1 +Daε2 +Daε3 +Daε4)ε

+ 2(V0 + V1 + V2)T (DaR1 +DaR2 +DaR3 +DaR4)(V0 + V1 + V2)

+ 2(V0 + V1 + V2)T (Da`1 +Da`2 +Da`3 +Da`4)(V
′

0 + V ′1 + V ′2)

+ εT (Dεε0 +Dεε1 +Dεε2 +Dεε3 +Dεε4)ε

+ (V0 + V1 + V2)T (DRR2 +DRR3 +DRR4)(V0 + V1 + V2)

+ (V ′0 + V ′1 + V ′2)T (D``2 +D``3 +D``4)(V
′

0 + V ′1 + V ′2)

+ 2(V0 + V1 + V2)T (DRε1 +DRε2 +DRε3 +DRε4)ε

+ 2(V ′0 + V ′1 + V ′2)T (D`ε1 +D`ε2 +D`ε3 +D`ε4)ε

+ 2(V0 + V1 + V2)T (DR`2 +DR`3 +DR`4)(V
′

0 + V ′1 + V ′2)

(91)
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The terms are now split into orders for the asymptotic analysis. Note that the defi-

nitions of the terms are such that the order of any term is the sum of all the numbers

that appear as subscripts in that term. While minimizing the strain energy, one needs

to also consider the constraints due to warping

V TDc = 0 (92)

The kernel of Γaβ0 , ψ, also comes in handy during the development

Γaβ0ψ = 0 =⇒ E0Ψ = 0

ψ = SΨ

(93)

5.1.1 Zeroth-Order Analysis

From Eq. (91), the zeroth-order energy can be obtained.

2U0 =V T
0 E0V0 + 2V T

0 Daε0ε+ εTDεε0ε (94)

Keeping track of the warping constraints, the final equation for zeroth-order warping

is therefore

E0V0 +Daε0ε = 0 (95)

After considering singularities of E0 [46], the final solution is

V0 = V̂0ε (96)

5.1.2 First-Order Analysis

The relevant terms in the strain energy are those up to second-order. However, the

zeroth-order strain energy is a constant and does not feature in the first-order warping

calculation.

2U1 =εTDεε1ε+ (�����2V T
1 Daε1 + 2V T

0 Daε1 + V ′T0 D`ε1 + V T
0 DRε1)ε

2V T
0 DaR1V0 +�����V T

1 E0V0 + V T
0 E1V0 +�����V T

0 E0V1 + 2V T
0 Da`1V

′
0

(97)
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2U2 =εDεε2ε+ (�����2V T
2 Daε0 + 2V T

1 Daε1 + 2V T
0 Daε2 + 2V ′T1 D`ε1 + 2V ′T0 D`ε2

+ 2V T
1 DRε1 + 2V T

0 DRε2)ε+ 2V T
1 DaR1V0 + 2V T

0 DaR2V0 + V T
0 DRR2V0

+�����V T
2 E0V0 + V T

1 E1V0 + V T
0 E2V0 + 2V T

0 DaR1V1 + V T
1 E0V1 + V T

0 E1V1

+�����V T
0 E0V2 + 2V T

1 Da`1V
′

0 + 2V T
0 Da`2V

′
0 + V T

0 D``2V
′

0 + 2V T
0 DR`2V

′
0 + 2V T

0 Da`1V
′

1

(98)

The canceled terms in the above two equations are results of Eq. (95). As expected

the second-order warping plays no part in the second-order strain energy (a fact stated

in Ref. [124]). After considerations of the warping constraints, the final equation for

V1 is

E0V1 =(Dc(Ψ
TDc)

−1ΨT −∆)(DRε+DSε
′)

DR =E1V̂0 +Daε1 + (DaR1 +DT
aR1

)V̂0 +DRε1

DS =(Da`1 −DT
a`1

)V̂0 −D`ε1

(99)

The solution after removing the singularities of E0 may be written as

V1 = V1Rε+ V1Sε
′ (100)

5.1.3 Second-Order Analysis

The relevant terms in the strain energy are those up to fourth-order. The algebra is

very tedious. However since our interest is only to evaluate the second-order warp-

ing and not the final energy, the following simplifications (not assumptions!) are

made. One, there the terms up to second order are constant and do not enter into V2

computation. Second, the terms in the third- and fourth-order strain energy can be

simplified to exclude the terms that do not contain V2 for the same reason. Thus,

2U3 =(2V T
2 Daε1 + 2V ′T2 D`ε1 + 2V T

2 DRε1)ε+ 2V T
2 DaR1V0 + V T

2 E1V0 + V T
2 E0V1

+ 2V T
0 DaR1V2 + V T

1 E0V2 + V T
0 E1V2 + 2V T

2 Da`1V
′

0 + 2V T
0 Da`1V

′
2

=2V T
2 (E0V1 +DRε+DSε

′)

(101)
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The above simplification comes from Eq. (99)

2U4 =(2V T
2 (Daε2 +DRε2) + 2V ′T2 D`ε2)ε+ 2V T

2 DaR2V0 + V T
2 DRR2V0 + V T

2 E2V0

+ 2V T
2 DaR1V1 + V T

2 E1V1 + 2V T
1 DaR1V2 + 2V T

0 DaR2V2 + V T
0 DRR2V2

+ V T
2 E0V2 + V T

1 E1V2 + V T
0 E2V2 + V T

2 Da`2V
′

0 + V ′T2 D``2V
′

0 + 2V T
2 DR`2V

′
0

+ 2V T
2 Da`1V

′
1 + 2V T

1 Da`1V
′

2 + 2V T
0 Da`2V

′
2 + V ′T0 D``2V

′
2 + 2V T

0 DR`2V
′

2

=V T
2 E0V2 + 2V T

2 {[Daε2 +DRε2 + (DaR2 +DRR2 + E2 +DT
aR2

)V̂0

+ (E1 +DaR1 +DT
aR1

)V1R]ε+ [−D`ε2 + (Da`2 −DT
a`2

+DR`2 −DT
R`2

)V̂0

+ (E1 +DaR1 +DT
aR1

)V1S + (Da`1 −DT
a`1

)V1R]ε′ + [(Da`1 −DT
a`1

)V1S −D``2V̂0]ε′′}

(102)

The final function to be minimized is therefore

F =V T
2 E0V2 + 2V T

2 (D0ε+D1ε
′ +D2ε

′′) + 2V T
2 DcΛ

+ 2V T
2 (E0V1 +DRε+DSε

′)

(103)

The matrices above are defined as

D0 = Daε2 +DRε2 + (DaR2 +DRR2 + E2 +DT
aR2

)V̂0 + (E1 +DaR1 +DT
aR1

)V1R

D1 = −D`ε2 + (Da`2 −DT
a`2

+DR`2 −DT
R`2

)V̂0 + (E1 +DaR1 +DT
aR1

)V1S

+ (Da`1 −DT
a`1

)V1R

D2 = (Da`1 −DT
a`1

)V1S −D``2V̂0

(104)

The third-order terms cancel out after determination of the Lagrange multiplier in

the usual way and subsequent substitution for V1. After considerations of the warping

constraints, the final equation for second-order warping can be written as

E0V2 = [Dc(Ψ
TDc)

−1ΨT )−∆](D0ε+D1ε
′ +D2ε

′′) (105)

After elimination of the singularities associated with E0 in the usual way, the final

expression for the second-order warping is

V2 = V20ε+ V21ε
′ + V22ε

′′ (106)
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5.2 Final Recovery

At the x1 location of the recovery, the following are needed:

1. 1D displacements

2. Direction cosine matrix

3. Stress resultants

4. Distributed forces and moments and their first, second and third derivatives

The expression for strain reads

Γ =Γaβw + Γεε+ ΓRw + Γ`w
′

=ΓaβS(V0 + V1 + V2) + Γεε+ ΓRS(V0 + V1 + V2) + Γ`(V
′

0 + V ′1 + V ′2)

=
[
(Γaβ + ΓR)S(V̂0 + V1R + V20) + Γε

]
ε+ [(Γaβ + ΓR)SV22 + Γ`S(V1S + V21)] ε′′

+
[
(Γaβ + ΓR)S(V1S + V21) + Γ`S(V̂0 + V1R + V20)

]
ε′ + Γ`SV22ε

′′′

(107)

The final expression for stress is simply

σ = DΓ (108)

Finally, one can ascertain the displacement to be

Ui = ui + xα[Cαi − δαi] + Cjiwj (109)

where wj can be obtained from

w = S
[
(V̂0 + V1R + V20)ε+ (V1S + V21)ε′ + V22ε

′′
]

(110)

Now all that is left is the evaluation of the 1D strain derivatives. A quick summary

of the various notations for the 1D strain measures and the relations between them
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follows

ε = bγ11 κ1 κ2 κ3c
T

ε = bγ11 κ1 κ2 κ3c
T

γs = b2γ12 2γ13c
T

ε = bγ11 2γ12 2γ13 κ1 κ2 κ3c
T

ε = ε+Qγ′s + Pγs

(111)

Hence, to determine ε, one needs ε and ε′. Hence the strain recovery needs ε, ε′, ε′′,

ε′′′ and ε(IV ). After lumping the inertial terms with the applied loads, the 1D beam

equations can be written as

F ′ +RF + φ = 0

F = bF1 F2 F3 M1 M2 M3c
T

R = R(ε) =

 K̃ 0

ẽ1 + γ̃ K̃


φ =

f

m



(112)

Note that the F is not to be confused with the minimization functional used in the

previous section. The 6×6 cross-sectional flexibility matrix (Φ) of the GT model is

employed as follows:

• ε = ΦF =⇒ R can be evaluated

• F ′ = −RF − φ; ε′ = ΦF ′ =⇒ R′ can be evaluated

• F ′′ = −R′F −RF ′ − φ′; ε′′ = ΦF ′′ =⇒ R′′ can be evaluated

• F ′′′ = −R′′F −RF ′′ − 2R′F ′ − φ′′; ε′′′ = ΦF ′′′ =⇒ R′′′ can be evaluated

• F (IV ) = −R′′′F − 3R′′F ′ − 3R′F ′′ −RF ′′′ − φ′′′; ε(IV ) = ΦF (IV )
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In case of recovery using the Vlasov model, the derivatives of the strain measures

are not extracted from the equilibrium equations or any such method. Instead they

come from the 1D analysis and the user is expected to input ε, κ′1, κ′′1 and κ′′′1 .

From this, one obtains the derivatives as ε′ = [0 κ′1 0 0]T and so on. With this the

formulation for the second-order stress, strain and displacement recovery from VABS

for general anisotropic and curved and/or twisted beams is complete.

5.3 Results

The above mentioned formulation has been coded up and is present in VABS versions

3.6 and later. A first test to ensure that second order effects are indeed being picked

up will be to regenerate Fig. 15 additionally using VABS 3.6 and verify that the

solutions coincide with the corresponding second-order analytical development. This

is presented in Fig. 25, and it can be concluded from the plots of σ12 and σ22 that

VABS is indeed capturing the second order effects.

Now, a test is performed on the CAS1 cross section. The geometry and material

of this cross section are detailed in Ref. [124]. For a cantilevered beam of length 10

in., two cases are considered: one prismatic and another with initial twist (k1) of

0.05 rad. in.−1. The free end is subjected to a load such that at the mid-span of the

beam, the only non-zero stress resultants are F3 = 1 lb. and M2 = −5 lb-in. For

the prismatic case, this would require simply a unit F3 at the free end; and for the

twisted beam, the loading might be more complex. This kind of loading is chosen so

as to ascertain the effect of k1 on the cross-sectional stress recovery alone (by keeping

out the effects of initial twist from the 1D analysis). The stress is recovered at the

mid-span for the right-wall. For the untwisted case, it is evident from Fig. 26 that the

second-order recovery offers very little advantages compared to the first-order results.

In the solution of the second order warping, two out of three terms, i.e., V20 and

V21 are zero for first prismatic beams. Recall that a VAM solution is fundamentally
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Figure 25: Comparison of the normalized VAM stresses and those from VABS 3.4
and VABS 3.6 with elasticity solutions for the loading cases in Fig. 3; (a) and (b) are
for loading case (1); (c), (d) and (e) are for loading case (2)
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nothing but the elasticity solution expanded in terms of small parameters. Therefore,

an interesting conclusion from this result is that possibly an exact elasticity solution

has been achieved if there is very less difference between and nth and (n+ 1)th order

solution, n being 1 in this case.

However, for the case of initial twist, an appreciable difference is observed for

the cross-sectional stresses σ22, σ23 and σ33. One must also realize that the CAS1

section has an interface at the top and bottom ends of the right-wall where layers go

from being stacked horizontally to being stacked vertically and vice-versa. Therefore

traditional 3D finite-element procedures may be not be the best judge of whether the

beam solutions are close to the actual values. Wan-Lee Yin [123] presents an analysis

with approximate analytical solutions for problems of this kind. The spikes in the

plots may be result of the well known singularities in such structures. Therefore, an

analysis of the type done in Ref. [123] is required validate the stress-recovery plots

for the CAS1 section obtained using VABS.
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Figure 26: Stress distributions (in psi.) on the right wall of the CAS1 section at mid-
span for a tip transverse force. VABS I and II represent the first and second-order
recoveries.
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Figure 27: Stress distributions (in psi.) on the right wall of the pretwisted CAS1
section at mid-span for a tip transverse force. VABS I and II represent the first and
second-order recoveries.
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VI

OBLIQUE CROSS-SECTIONAL ANALYSIS

Johannes Kepler preferred the hardest of truths to his illusions. And that

is the heart of science.

– Carl Sagan, Cosmos

6.1 Introduction

In beam theory, a natural choice of the reference cross-sectional plane is the one

normal to the reference line. In fact, most beam theories in literature constrain the

user’s choice of the reference cross section to be perpendicular to the reference line.

In certain cases, particularly when the user happens to possess the properties of a

section which is not orthogonal to the blade reference axis, the limitations of such

a restriction lead to a significant expenditure of time because calculations must be

made to transform the geometry and material properties of the oblique section to

that of an orthogonal section. The latter is compounded because of the presence of

composite materials at varying fiber orientations. An oblique cross-sectional analysis

is therefore a dimensional reduction that uses a cross section that is not constrained

to be perpendicular to the reference line.

It should be pointed out here that one could carry out the regular cross-sectional

analysis (using a cross section perpendicular to the reference line) and use tensorial

and vectorial rotation formulae to obtain 3D quantities (stress, strain and displace-

ment). An oblique cross-sectional analysis is merely a convenience, which is significant

The first part of this chapter was published as Rajagopal and Hodges [91]. The second part has
been accepted for presentation at the 70th annual AHS forum.
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especially in cases where the cross section geometry and material is complex such as

rotorcraft blades.

The current obliqueness model in VABS [86] is limited to classical theory which

does not model transverse shear or restrained warping. This chapter presents details

of the various studies undertaken by the author in solving this problem. The first

effort consisted of developing a beam theory for an oblique cross-sectional analysis of

in-plane deformation of a prismatic, isotropic strip. A second effort was an analysis of

the full 3D deformation of an isotropic beam in the form of a solid, circular cylinder.

The choice of these problems was determined by two considerations:

• The results of the beam theory (i.e., cross-sectional stiffness matrix and stress-

strain recovery relations) should be closed-form analytical expressions. Such

studies have been undertaken by the author to study the effects of span-wise

non-uniformity [50] and initial curvature [89, 90]. These serve as validation

tools for VABS in the same sense that elasticity validates FEM.

• The presence of elasticity solutions for several loading cases [109, 76], which

shall be described in detail.

These considerations facilitate in-depth study of the problem and consequently will

aid in a thorough understanding of the intricacies of an oblique cross-sectional analysis

vis-à-vis an orthogonal cross-sectional analysis. These, as will be shown, demonstrate

that an oblique cross-sectional analysis is capable of accurately capturing transverse

shear effects for isotropic, prismatic rods, as long as the obliqueness angle is not

assumed to be arbitrarily large.

The precise objective of this work is to add to the existing oblique cross-sectional

model in VABS, the ability to capture the effects of transverse shear and restrained

warping (important for flex-beams) for initially curved and/or twisted beams made of

generally anisotropic material. This chapter is organized as follows: First, we expand
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on the idea of the importance of possessing an oblique cross-sectional analysis and

the advantages it offers users; then following the analytical studies, present a brief

overview of the theory and the equations pertaining to the obliqueness model and

their implementation in VABS. After this, several validation studies are provided for

beams using results from experiments and 3D FEM. These studies ensure that the

latest oblique cross-sectional model of VABS is able to accurately both (a) obtain the

cross-sectional stiffness matrix and (b) recover the 3D stress. The final outcome of

this work is a version of VABS in which the user has the freedom to choose a reference

cross section that is not orthogonal to the reference line.

6.2 Motivation

In this section, several scenarios are presented wherein the concept and application

of an oblique cross-sectional analysis might be greatly beneficial to the VABS user.

These include, but are not limited to:

1. The presence of sweep in a wing or blade: In classical aeroelasticity, the problem

of a swept wing (see Fig. 4) is analyzed considering an approximate structure

by “rotating the wing about the root” [49]. Further calculations are needed to

show that bending and torsion are coupled for such a problem. On the other

hand if one can use a cross section along the stream-wise direction, i.e., oblique

to the reference line, coupling between bending and torsion stems directly from

the stiffness matrix (as we shall establish shortly), and there is no need to

undertake any special analysis – or even define a chordwise direction.

2. Composite laminates at various fiber orientations: Because it is commonplace

to encounter composite laminates at various fiber orientations in the section

of a rotor blade, the alignment of the cross section along or perpendicular to

fiber directions may result in the stiffness matrix having a much simpler form.

Consider for example, Fig. 28, if one chooses the cross section to be at 90 − Λ
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with respect to the reference line, the fibers will all seem to be at 0◦ orientation.

Two cautionary remarks must be made here: This is not of a nature similar

to what is done in aeroelastic tailoring. The global behavior of the structure

here obviously remains the same; only an intermediate result, i.e., the stiffness

matrix, is simpler. Second, in colloquial terms when two measures of beam

deformation are referred to as coupled, these are usually defined with reference

to an orthogonal reference section. Therefore, when using the concept of oblique

cross-sectional analysis, care should be taken in interpreting the results.

Figure 28: Composite laminate with non-zero fiber orientation

3. When recovering 3D stress, strain or displacement in a nonorthogonal plane as

shown in Fig. 29: To achieve this using a section perpendicular to the reference

line, the user would have to solve the 1D problem at various axial locations as

shown and at each location run VABS recovery to obtain the 3D quantity at a

point on the oblique plane corresponding to that particular axial location. On

the other hand, an oblique cross-sectional analysis entails a single run to obtain

the recovery.

4. Readily available properties for a reference surface that is not perpendicular to

the reference line: An instance of this occurs when the ribs of a wing structure

are not perpendicular to its axis. A representative rotor blade section is shown
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x1

Figure 29: Recovering 3D quantities on an nonorthogonal plane: oblique vs. orthog-
onal cross-sectional analysis

in Fig. 30. If this were, for example, a section not perpendicular to the axis, gen-

eration of the corresponding orthogonal section would involve a transformation

of the geometry and material properties. While the geometry transformation is

relatively simple and can be obtained readily from the rotation parameters relat-

ing the two sections, material transformations are quite involved. The material

transformation, which is not so simple [54], is further complicated when the

blade is made of different composite materials with differing stacking sequences

in different walls of the blade section. This will involve significant effort for a

section such as the one in Fig. 30.

6.3 Reference Frames

Before undertaking the analysis, the various frames of reference used in the solution

procedure are introduced in this section. For the analysis of the deformation of any

structure, at least two frames of reference are required: one to describe the deformed

state and another the undeformed state. The term “corresponding normal section”

is used to denote a cross section orthogonal to the beam reference axis at the same

axial coordinate (x1) as that of the oblique section. Latin indices range from 1 to

3, and Greek from 2 to 3. We will refer to the following frames of reference (listed
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Figure 30: A typical rotor blade section made of composite and generally anisotropic
materials with varying fiber orientation

with the corresponding orthonormal vectors describing the frames) during the course

of this development:

1. Frame b with unit vectors bi (x1): b1 is tangent to the undeformed reference

line and bα are in the plane of the corresponding normal section

2. Frame a with unit vectors ai(x1): a1 is normal to and aα are in the plane of the

oblique section

3. Frames T with unit vectors Ti (x1) and B with unit vectors Bi (x1): T1 is

tangent to the deformed reference line and B1 is a normal to the deformed

surface associated with the corresponding normal section

4. Frames A with unit vectors Ai (x1) and N with unit vectors Ni (x1), such that

CAa = CTb and CNa = CBb, where CBb refers to the dyadic associated with

the finite rotations from b to B, etc.

Note that the development in Ref. [46] for the orthogonal section uses frames b (unde-

formed beam), T and B (deformed beam). One of the frames used for the deformed

configuration brings transverse shear strain explicitly into the formulation (B), while
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the other (T ) does not. The precise orientation of the in-plane unit vectors is user-

defined for the undeformed case and is obtained by imposing constraints on the un-

known warping field for the deformed case. It is emphasized here that the frames

of reference used for the description of the deformed configuration do not represent

the total deformation; they still have an unknown warping which is evaluated using

the VAM. For the development of the oblique cross-sectional analysis, the frames a

(undeformed), A and N (deformed) will be used. Classical theory is developed in

terms of the 1D strains associated with frame A, while the GT theory is developed in

terms of the 1D strains of N . A measure of the obliqueness of the section is defined

by the parameters β1i:

b1 = β1iai (113)

Using the above relation and the fact that a rotation about the beam reference line

does not create an oblique section, the following relation between the frames b and a

can be developed by means of the standard Euler rotation [57]
b1

b2

b3

 =


β11 β12 β13

−β12 1− β2
12

1+β11
−β12β13

1+β11

−β13 −β12β13
1+β11

1− β2
13

1+β11




a1

a2

a3

 (114)

From the definitions of frames A and N , it can also be shown that the above equation

holds when bi and ai are replaced by Ti and Ai, or Bi and Ni, respectively. In

the problems of interest in this paper, the oblique section is obtained by rotating the

corresponding normal section by Λ about b3, for which the frames a and b are depicted

in Fig. 31. Note in the problem schematics (Figs. 32 and 38), b3 is directed out of

the plane of the paper. For this case, the obliqueness parameters are: β11 = cos(Λ),

β12 = − sin(Λ) and β13 = 0.

The beam or 1D generalized strains associated with each of the deformed beam

frames are listed in Table 8, the meanings and applicability of which will become clear

in later sections. It should be stated here that kinematics can be employed to relate
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beam reference line 

orthogonal cross-section 
oblique cross-section 

a2

a1

b2

b1

b3/ a3

Figure 31: Reference frames used in the cross-sectional analysis

Table 8: 1D generalized strains for various reference frames
Frame Extension Twisting Bending Transverse Shear
T γ11 κ1 κα −
B γ11 κ1 κα 2γ1α

A γo11 ρ1 ρα 2γo1α
N γo11 ρ1 ρα 2γo1α

the two sets of strain measures of Table 8.

6.4 Isotropic Strip: In-plane Deformation

The first problem of interest is the development of a beam theory to analyze in-plane

deformation of an isotropic strip using an oblique cross section as shown in Fig. 32.

The beam theory formulation will be carried out using the VAM. The reference line

is chosen as the line of section centroids. The position vector of an arbitrary point P

in the undeformed configuration, can be written as:

r̂ = r + ξ (115)
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O
P
Mx1

Figure 32: Schematic of the isotropic strip

where r is the position vector from the reference point (O) to the point on the reference

axis (M), and ξ = y2a2 is the position vector from M to P . After deformation, the

point P is now at:

R̂ = R + y2A2 + w1(x1, y2)A1 + w2(x1, y2)A2 (116)

where R is the position vector to the point M after deformation, and w1 and w2

represent the unknown warping. These expressions are used to form the covariant

(Gi) and contravariant (gi) base vectors of the deformed and undeformed states,

respectively. In doing so, one uses the elegant definitions of the 1D strains [46] as:

R′ = (1 + γ11)T1 = [1 + γ11(x1)][cos(Λ)A1 − sin(Λ)A2]

A′i = ρ3(x1)A3 ×Ai

(117)

In what follows (•)′ = d(•)/dx1. Note that even though an oblique section is being

used, it makes more sense to define the stretch of the reference line in a direction

along the beam reference axis. The next step is to form the deformation gradient

tensor [81]

χ = Gig
i (118)
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Under the assumptions of the smallness of strains and local rotation [29] (caused by

warping), the Jaumann-Biot-Cauchy strains turn out to be:

Γij =
χij + χji

2
− δij

χij = Ai.χ.aj

(119)

where δij is the Kronecker delta. The nonzero measures of the strains, when written

out explicitly, reduce to

Γ11 = γ11 − y2 sec(Λ)ρ3 + tan(Λ)w1,2 + sec(Λ)w′1

2Γ12 = w1,2 + sec(Λ) [w′2 + sin(Λ)w2,2 − sin(Λ)γ11]

Γ22 = w2,2

(120)

Note the square root of the magnitude of the metric tensor for the undeformed state,

√
g = cos(Λ). Since the problem of interest is the planar deformation of a strip, the

stress-strain relations correspond to those of plane stress, and hence,
σ11

σ22

σ12

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




Γ11

Γ22

2Γ12

 (121)

The sectional strain energy can therefore be obtained as

U = 〈〈1
2
σTΓ〉〉 (122)

where 〈〈•〉〉 = 〈•√g〉 and 〈〉 denotes an integration over the oblique-section. For a

complete solution of the problem, it is necessary to pose constraints to render the

displacement field (introduced in Eq. (116)) unique, which are:

〈w1〉 = 〈w2〉 = 0 (123)

The formulation up to now has cast the elasticity problem in a form suitable for a

variational analysis. Therefore, if an attempt is made to solve it directly, one encoun-

ters the same difficulties as in solving any other elasticity problem. An asymptotic
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method will now be employed to circumvent this obstacle. A small parameter is easily

identified as the inverse of the slenderness ratio, b/l, of order δ. As usual, the orders

of the 1D strains are O(γ11, bρ3) = ε, where ε is of the order of the maximum strain

in the structure; and the orders of warping, obtained by equating the orders of the

leading bilinear and quadratic terms in the unknowns, are bε.

Throwing away all the terms of order O(δ) in the strain energy density, and solving

for the zeroth-order warping, using the standard principles of calculus of variations,

one obtains

w
(0)
1 =

1

12
sin(Λ) sec2(Λ)

{
−12y2(1 + ν) cos(Λ)3γ11

−
[
b2 − 3y2

2 cos(Λ)2
]

[(3 + ν) + (1 + ν) cos(2Λ)] ρ3

}

w
(0)
2 =

1

6

[
ν cos(Λ)2 − sin(Λ)2

]
sec(Λ)

{
−6y2 cos(Λ)γ11 +

[
−b2 + 3y2

2 cos(Λ)2
]
ρ3

}
(124)

This can be substituted back in the expression for U and integrated to obtain the

classical strain energy:

U0 =
1

2

 γ11

ρ3


T  2Ebt 0

0 2
3
Etb3


 γ11

ρ3

 (125)

As mentioned previously, the stretching strain measure corresponding to T has been

used. If one used that of A, an additional shearing strain measure would have been

introduced because:

R′ = [cos(Λ) + γo11]A1 + [− sin(Λ) + 2γo12]A2 (126)

However, this would not be an independent 1D variable as can be ascertained by a

comparison with the first of Eq. (117), which yields:

γo11 = cos(Λ)γ11

2γo12 = − sin(Λ)γ11

(127)
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To go to the next level of the asymptotic analysis, the warping is perturbed one

order higher (O(δbε)), and all terms O(δ3) are discarded in the strain energy density.

Before minimization, integration by parts is carried out to remove the derivatives

of the unknown warping functions with respect to x1. The boundary terms can be

safely ignored since we are interested in an interior solution. As with the zeroth-

order solution, taking the warping constraints into considerations, one obtains the

first-order warping as:

w
(1)
1 =

1

96
sec(Λ)2

{
8 cos(Λ) [(ν + 1) cos(2Λ)− 3ν − 1]

[
b2 − 3y2

2 cos(Λ)2
]
γ′11

+ 2y2

(
−12b2(ν + 1) + (ν + 3)y2

2 + cos(2Λ)
[
(3ν + 7)y2

2 − 4b2(5ν + 7)
]

+ cos(4Λ)
[
(3ν + 5)y2

2 − 8b2(ν + 1)
]

+ (ν + 1)y2
2 cos(6Λ)

)
ρ′3

}

w
(1)
2 =− 1

12
sec(Λ) tan(Λ)

{
2
[
b2 − 3y2

2 cos(Λ)2
] [
ν cos(Λ)2 − sin(Λ)2

]
γ′11

+ y2 cos(Λ)
(
−4b2(2ν + 1) + (3ν + 1)y2

2 + 2 cos(2Λ)
[
(2ν + 1)y2

2 − 4b2(ν + 1)
]

+ (ν + 1)y2
2 cos(4Λ)

)
ρ′3

}
(128)

Employing this expression for warping in Eq. (122) and subsequent integration over

the oblique section yields the second-order asymptotically correct strain energy per

unit length:

U2 =Ebtγ2
11 +

1

3
Eb3tρ2

3 +
2

3
Eb3t tan(Λ)γ′11ρ3 +

2

45
b5Et sec2(Λ) [(3ν + 2) cos(2Λ) + 3ν + 4] ρ′3

2

+
1

3
b3Et tan(Λ)2γ′211 +

1

45
b5Et sec2(Λ)[(11ν + 15) cos(2Λ) + 11ν + 9]ρ3ρ

′′
3

(129)

The second-order strain energy contains the derivatives of the 1D generalized strains

which make it unsuitable from an engineering perspective. Apart from the presence

of derivatives, another troublesome aspect of the asymptotically correct second-order
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energy is the difficulty in the interpretation of the boundary conditions. For these

reasons, the energy is cast into a readily usable form called the GT energy. The

transformation procedure involves the following steps:

1. The classical strain measures of Eqs. (117) are written in terms of the classical

strain-measures for the corresponding normal section by using the appropriate

transformation. Note the stretching strain is already that of the T frame. For

the strip, the planar bending measures of the A and T frame are equal, i.e.

ρ3 = κ3. This can be obtained from the frame developments in Sec. 6.3, the

second of Eqs. (117), and recognizing that T′i = κ3(x1)T3 ×Ti.

2. These classical (T ) strain measures are written in terms of the GT (B) strain

measures, which introduces a 1D shear strain. From the definition of the T and

B frames, one can derive [46]

γ11 = γ11

κ3 = κ3 + (2γ12)′
(130)

3. The 1D equilibrium equations are used to eliminate the derivatives of these

strain measures. For the strip, in terms of the beam stress resultants, i.e.,

sectional forces (F1(x1) and F2(x1)) and moment (M3(x1)) the equations are

simply

F ′1 = 0

F ′2 = 0

M′
3 + F2 = 0

(131)

If the GT form of the strain energy can be written as

UGT =
1

2


γ11

2γ12

κ3



T 
S11 S12 S13

S12 S22 S23

S13 S23 S33




γ11

2γ12

κ3

 (132)
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then the equilibrium equations reduce to

(S11γ11 + S122γ12 + S13κ3)′ = 0

(S12γ11 + S222γ12 + S23κ3)′ = 0

(S13γ11 + S232γ12 + S33κ3)′ + (S12γ11 + S222γ12 + S23κ3) = 0

(133)

which can be used to solve for the derivatives of the generalized strain measures.

These can be substituted into U2, and the final result must be the same as UGT ,

leading to a set of nonlinear algebraic equations for the Sij’s.

4. The GT strain energy which is now in terms of the B strain measures can be cast

into a form associated with the strain measures that correspond to the frame

that describes the deformed oblique section, i.e., N . We therefore develop the

kinematical equations relating the strains of the N and B frames. Following,

Refs. [46] and [86], the derivative of R with respect to x1 can be written in two

different ways:

R′ =(1 + γ11)B1 + 2γ12B2

R′ = [cos(Λ) + γo11] N1 + [− sin(Λ) + 2γo12] N2

(134)

Following the development in Sec. 6.3, the following relations are obtained:

γo11 = cos(Λ)γ11 + sin(Λ)2γ12

2γo12 = − sin(Λ)γ11 + cos(Λ)2γ12

(135)

Using an analysis similar to step 1 of the GT transformation, it can be proven

that ρ3 = κ3.

Note that steps 1 and 4 are not absolutely necessary. However the equilibrium equa-

tions with the oblique-section force resultants will involve Λ. In other words, they are

simplest when written for the normal-section resultants. The existing GT procedure

even for the simpler case is quite involved [132]. Instead of further increasing the

length and the complexity of the expressions in the GT procedure by introducing
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terms associated with obliqueness, before and after the actual derivative elimination

process using the equations of equilibrium, the energy is transformed forth and back in

terms of the oblique-section strain measures, which, as demonstrated involved simple

kinematical transformations.

Also, the second-order energy, when cast into the GT form, loses its asymptotic

exactness. This is not unique for the section being oblique; indeed, it is also true for

the usual VAM dimensional reduction involving an orthogonal section. Carrying out

the procedure as described above, the sectional strain energy reduces to (in the B

strain measures):

UGT =
1

2


γ11

2γ12

κ3



T

X
(B)
GT


γ11

2γ12

κ3


X

(B)
GT =


2Ebt 0 0

0 5Ebt
6(1+ν)+2 tan(Λ)2

0

0 0 2
3
Eb3t


(136)

This strain energy is also suitable for direct comparison with existing results (which

have been shown to be equivalent to 3D elasticity [127]) because the strain measures

are those of the corresponding orthogonal section. The stiffnesses associated with

extension and bending are correctly captured. For a rectangular cross section, the

elasticity solution for shear stiffness in the stiff-direction is shown to approach 5GA/6

(where G is the shear modulus of the material and A is the area of the corresponding

orthogonal section) when the aspect ratio of the rectangle is very large, which is by

definition a strip. A plot of the shear stiffness in Fig. 33, shows a divergence from the

elasticity result at large obliqueness angles, the reason for which can be attributed

to a natural “reminder” to the analyst from the dimensional reduction procedure

that the obliqueness angle cannot be too large, following which the definition of a

cross section breaks down. Such an effect is not observed in the stiffnesses associated
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Figure 33: In-plane shear stiffness of the strip vs. obliqueness angle (in degrees) for
ν = 0.3. Shear stiffnesses have been normalized by the corresponding elasticity values

with the classical strain measures. This is fundamentally because the classical strain

measures are of order ε, whose ratio to the order of the shear strain measure is the

slenderness ratio. Therefore, it is only when the inverse of the slenderness ratio factors

into the analysis, does the mathematical procedure spit out a warning concerning the

extent of obliqueness.

Finally, in terms of the strain measures of the deformed oblique section (N), the

GT sectional strain energy can be written as:

UGT =
1

2


γo11

2γo12

ρ3



T

X
(N)
GT


γo11

2γo12

ρ3


X

(N)
GT =


3Ebt cos(Λ)2[4+4ν+3 tan(Λ)2]

2[3+3ν+tan(Λ)2]
−Ebt sin(2Λ)[7+12ν+4 tan(Λ)2]

4[3+3ν+tan(Λ)2]
0

−Ebt sin(2Λ)[7+12ν+4 tan(Λ)2]
4[3+3ν+tan(Λ)2]

Ebt cos(Λ)2[5+12(1+ν) tan(Λ)2+4 tan(Λ)4]
2[3+3ν+tan(Λ)2]

0

0 0 2
3
Eb3t


(137)
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Figure 34: Various loading cases for the strip which possess elasticity solutions

The final aspect of the beam theory is to recover the cross-sectional stress, strain and

displacement. This can be done by using the expressions for warping from Eqs. (124)

and (128) in the strain measures developed in Eqs. (120). The derivatives of the gen-

eralized strain measures can be evaluated now using the 1D equilibrium equations, as

in step 3 of the GT transformation, with the knowledge of the final section constants.

The 1D generalized strains can be computed using solvers such as GEBT [126], which

are based on a set of 1D beam equations [46] consistent with the current VAM based

cross-sectional analysis. Also, since most 1D solvers work with the generalized strains

of the corresponding normal section, it is preferred (again, not necessary) to set up

the expressions in terms of the B generalized strain measures. Once the strains are

known, the cross-sectional stress can be obtained from Eq. (121). Using Eq. (116)

and the essential boundary conditions of the problem, the displacement field can be

determined.

The recovery is validated against elasticity for three different loading cases as

shown in Fig. 34. The elasticity solutions for these are quite simple, and can be
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Table 9: Stresses: VAM vs. elasticity for the loading case of extension

Stress VAM/Elasticity

σ11
F1 cos(Λ)2

2Ebt

σ12 −F1 sin(Λ) cos(Λ)

2Ebt

σ22
F1 sin(Λ)2

2Ebt

found in any standard elasticity text [109]. One could choose other loading cases

too for which elasticity solutions exist, but that would needlessly complicate the

process. This is because though the current loading cases are simple, they form

a complete validation set as they involve all three modes pertaining to the planar

deformation pertaining to the strip: extension, bending and shearing. It should be

stated here that the only assumptions in the VAM were the smallness of local rotation

and strains. But elasticity solutions assume small (total) rotations and displacements.

Therefore the beam theory is specialized to the linear case before comparing it with

the elasticity solutions. Each loading case will have three strains, three stresses and

two displacements, making it a total of eight recovery quantities. If the stresses are

in good agreement, this implies so will the strains and a consistent set of essential

boundary conditions will ensure agreement in displacement as well. Therefore each

loading case, the expressions for stress from the VAM and elasticity are presented in

Tables 9, 10 and 11. The VAM recovers the quantities in the oblique cross section,

so the elasticity solutions will be have to be transformed by using the well known

tensorial and vectorial rotation formulae.

For the cases of extension and bending, the VAM predicts the stresses to be

exactly the same as the elasticity solution. Excellent agreement is observed even for

the flexure case, except for a minor difference involving the coefficient of b2. Apart

from this, the cross-sectional variation of the stress for both elasticity and VAM are in
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Table 10: Stresses: VAM vs. elasticity for the loading case of bending

Stress VAM/Elasticity

σ11 −3M3y2 cos(Λ)3

2Eb3t

σ12
3M3y2 cos(Λ)2 sin(Λ)

2Eb3t

σ22 −3M3y2 cos(Λ) sin(Λ)2

2Eb3t

Table 11: Stresses: VAM vs. elasticity for the loading case of flexure

Stress Theory

σ11

VAM
3F2 cos(Λ)

2b3t

[
4

3
sin(Λ)b2 − y2 cos(Λ)2 (l − x1 + 2y2 sin(Λ))

]
Elasticity

3F2 cos(Λ)

2b3t

[
sin(Λ)b2 − y2 cos(Λ)2 (l − x1 + 2y2 sin(Λ))

]
σ12

VAM
3F2

4b3t

[
1

3
(1− 4 cos(2Λ)) b2 + cos(Λ) cos(3Λ)y2

2 − 2y2 cos(Λ)2 sin(Λ) (l − x1)

]
Elasticity

3F2

4b3t

[
− cos(2Λ)b2 + cos(Λ) cos(3Λ)y2

2 − 2y2 cos(Λ)2 sin(Λ) (l − x1)
]

σ22

VAM
3F2 sin(2Λ)

4b3t

[
−(1− 1

3
tan(Λ)2)b2 − y2

2 cos(2Λ)− (l − x1) y2 sin(Λ)

]
Elasticity

3F2 sin(2Λ)

4b3t

[
−b2 − y2

2 cos(2Λ)− (l − x1) y2 sin(Λ)
]

115



perfect agreement. The minor decrease possibly can be attributed to the reason given

for the shear stiffness variation with Λ. A quantitative comparison of the solutions

can be ascertained by plotting the stresses for various obliqueness angles as shown

in Figs. 35, 36 and 37. While the stresses have been made dimensionless by F2/bt,

ζ is a dimensionless width defined as y2 cos(Λ)/b. The b/l value for all the cases is

chosen to be 0.1, which implies that the ratio of beam’s width to length is 0.2, which

is a reasonably “stout” beam. From the plots, it can be seen as the section gets

oblique, there is a significant change in the behavior of σ12 and σ22 over the width.

For Λ = 15◦, the results are in excellent agreement, and as Λ is increased to 30◦,

there is a minor difference in the stress distributions, and as mentioned previously, is

a reminder that the obliqueness angle cannot be arbitrarily large.

It must be stated here that the patterns of the stress distribution, especially at

higher obliqueness angles can be used to bring to light the fact that traditional beam

assumptions regarding the deformation and variation of cross-sectional stresses will

not work when trying to construct a beam theory using an oblique cross section as

in the current problem. Only an approach that adheres closely to elasticity will yield

true. None of the analysis steps, such as using the warping constraints or equilibrium

equations to eliminate the strain derivatives, impose any ad hoc restrictions on the

deformation. To conclude this section, a beam theory has been proposed for the

in-plane deformation of an isotropic strip using an oblique section. A cross-sectional

stiffness matrix was derived and the stress recovery was demonstrated for loading

cases which involved all three possible in-plane deformations. Both these quantities

were shown to be in agreement with elasticity.

6.5 Isotropic Prismatic Beam: 3D Deformation

The second problem of interest is the development of a beam theory for a prismatic,

isotropic beam whose orthogonal cross section is a solid circle. The oblique-section
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Figure 35: Variation of cross-sectional stresses for flexure; b/l = 0.1 and Λ = 0◦ .
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Figure 36: Variation of cross-sectional stresses for flexure; b/l = 0.1 and Λ = 15◦
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Figure 37: Variation of cross-sectional stresses for flexure; b/l = 0.1 and Λ = 30◦
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Figure 38: Schematic of a prismatic, isotropic beam with a circular cross section

used for the VAM based dimensional reduction will therefore be an ellipse as shown

in Fig. 38. Again for this case, an obvious choice of the reference line will be the line

of section centroids.

The VAM procedure follows along the lines corresponding to the development of

the strip, the chief difference being that the cross section is two dimensional in this

case; and the deformation will include all possible modes, which will become evident

as the theory is developed. Therefore for the purpose of brevity, the description of

the problem will be limited to the places where there is significant departure from

the previous problem. The equations presented will involve quantities with the same

interpretation as in Sec. 6.4, but applied to the problem of current interest. As always,

the solution of the problem begins with writing the geometrically exact expressions

for the position of a generic point in the undeformed section and its corresponding

position in the deformed section, viz.,

r̂ = r + y2a2 + y3a3

R̂ = R + y2A2 + y3A3 + w1(x1, y2, y3)A1 + w2(x1, y2, y3)A2 + w3(x1, y2, y3)A3

(138)
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The beam strains used for the development of the classical analysis are:

R′ = [1 + γ11(x1)]T1

A′i = ρj(x1)Aj ×Ai

(139)

Subsequently, the expressions for the 3D strains are:

Γ11 = sec(Λ) [w′1 + y3ρ2 − y2ρ3 + cos(Λ)γ11] + tan(Λ)w1,2

2Γ12 = sec(Λ) [−y3ρ1 − sin(Λ)γ11 + w′2] + w1,2 + tan(Λ)w2,2

2Γ13 = sec(Λ) (y2ρ1 + w′3) + w1,3 + tan(Λ)w3,2

Γ22 =w2,2

2Γ23 =w2,3 + w3,2

Γ33 =w3,3

(140)

From the constitutive law of 3D elasticity, the stress-strain relations for an isotropic

material may be expressed as

σ11

σ12

σ13

σ22

σ23

σ33



=
E

(1− 2ν)(1− ν)



1− ν 0 0 ν 0 ν

0 1−2ν
2

0 0 0 0

0 0 1−2ν
2

0 0 0

ν 0 0 1− ν 0 ν

0 0 0 0 1−2ν
2

0

ν 0 0 ν 0 1− ν





Γ11

2Γ12

2Γ13

Γ22

2Γ23

Γ33


(141)

which can be used to obtain an expression for the sectional strain energy in terms

of the unknown warping. The displacement field introduced in Eq. (138) is rendered

unique by the following constraints on the unknown warping:

〈wi〉 = 0

〈cos(Λ) (w2,3 − w3,2) + sin(Λ)w1,3〉 = 0

(142)

The first three constraints are obtained from stipulating that the position of the

reference line (R) is the average over the cross section of the positions of all particles
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that make up the oblique section. The fourth constraint is obtained from vanishing

of the average local rotation about T1, which is a necessity for the VAM procedure

to be in sync with 3D elasticity [132]. Thus, one can formulate the exact elasticity

problem using variational principles. Estimating orders as was done in Sec. 6.4, an

asymptotic procedure can be carried out. The solution of the zeroth order warping

turns out to be

w
(0)
1 =

1

8

{
−4y2 sin(Λ)

[
2 (1 + ν) cos(Λ)γ11 + νy3 sin(2Λ)ρ1 + 2y3

(
1 + ν cos(Λ)2

)
ρ2

]
+
[(
−r2 − 4y2

3ν + (ν + 5) y2
2

)
sin(Λ) + (1 + ν) y2

2 sin(3Λ)− r2 sec(Λ) tan(Λ)
]
ρ3

}

w
(0)
2 =

1

8

{
−8y2

[(
ν cos(Λ)2 − sin(Λ)2

)
γ11 + y3 sin(Λ)

(
−1 + ν cos(Λ)2

)
ρ1 + y3ν cos(Λ)3ρ2

]
+
[
−4 cos(Λ)

(
νy2

3 +
(
−ν cos(Λ)2 + sin(Λ)2

)
y2

2

)
+ r2 sin(Λ) tan(Λ)

]
ρ3

}

w
(0)
3 =

1

8

{
−8νy3γ11 + sin(Λ)

[
r2
(
1 + sec(Λ)2

)
− 4νy2

3 + 2y2
2 (−3 + ν + (−1 + ν) cos(2Λ))

]
ρ1

+
[
−4νy2

3 cos(Λ) + 4y2
2 cos(Λ)

(
sin(Λ)2 + ν cos(Λ)2

)
− r2 sin(Λ) tan(Λ)

]
ρ2

+ 8y2y3ν cos(Λ)ρ3

}
(143)

and the corresponding sectional strain energy is

U0 =
1

2



γ11

ρ1

ρ2

ρ3



T 

Eπr2 0 0 0

0 Eπr4

4(1+ν)
(1 + ν sin(Λ)2) Eπr4 sin(2Λ)

8(1+ν)
0

0 Eπr4 sin(2Λ)
8(1+ν)

Eπr4

4(1+ν)
(1 + ν cos(Λ)2) 0

0 0 0 1
4
Eπr4





γ11

ρ1

ρ2

ρ3


(144)

Note that the classical theory is described using the stretching strain of the T frame

and the curvature strain measures of the A frame. If the stretching strain of the A

frame were used, the shearing strain measures will enter into the picture and they
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are not independent strain measures for this theory. They can be related using the

kinematical equations and frame relations outlined in Sec. 6.3.

R′ = (1 + γ11)[cos(Λ)A1 − sin(Λ)A2]

R′ = [cos(Λ) + γo11]A1 + [− sin(Λ) + 2γo12]A2 + 2γo13A3

=⇒ γo11 = cos(Λ)γ11; 2γo12 = − sin(Λ)γ11; 2γo13 = 0

(145)

For these reasons and the fact that the stretching strain is more natural when it is

expressed along the longitudinal axis, the classical analysis is carried out in terms of

γ11. The analytical evaluation of the warping perturbed one order higher turns out

to be very challenging, so terms which are expected to contribute to the Generalized

Vlasov energy (another model obtained from the second-order asymptotically correct

strain energy [46]) and those which are expected to vanish with application of the

equilibrium equations (recall from Sec. 6.4 that this is one of the steps of the GT

transformation) are dropped, and the final expressions for the first-order warping
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become

w
(1)
1 =

1

96

{
−6y3

[
2(2ν + 1)r2 sec(Λ) + cos(Λ)

(
−2(6ν + 7)r2 − 4νy2

2 + y2
2 + 4y2

3

)
+ (4ν + 3)y2

2 cos(3Λ)
](

sin(Λ)ρ′1 + cos(Λ)ρ′2
)

+ y2

[
12r2 sec2(Λ)− 4 cos(2Λ)

(
3(3ν + 4)r2 + 3(2ν − 1)y2

3 − 5y2
2

)
− 3

(
4(ν + 3)r2 + (2ν + 1)

(
y2

2 − 4y2
3

))
+ (6ν + 7)y2

2 cos(4Λ)
]
ρ′3

}

w
(1)
2 =

1

96
tan(Λ)

{
6y3

[
2r2 sec(Λ) + cos(Λ)

(
−2(6ν + 7)r2 + 12νy2

2 + y2
2 + 4y2

3

)
+ (4ν + 3)y2

2 cos(3Λ)
](

sin(Λ)ρ′1 + cos(Λ)ρ′2
)

+ y2

[
12(3ν + 2)r2 − (6ν + 7)y2

2 cos(4Λ)− (18ν + 5)y2
2 + 12(2ν − 1)y2

3

− 12 cos(2Λ)
(
−(3ν + 4)r2 + 2ν

(
y2

2 − y2
3

)
+ y2

2 + y2
3

) ]
ρ′3

}

w
(1)
3 =

1

24

{
y2

[
−3r2 tan(Λ) sec(Λ) + 3 sin(Λ)

(
(2ν + 1) r2 + (1− ν) y2

2 + 4νy2
3

)
− (3ν + 1)y2

2 sin(3Λ)
](

sin(Λ)ρ′1 + cos(Λ)ρ′2
)

+ 6νy3

(
r2 tan(Λ)− 2y2

2 sin(2Λ)
)
ρ′3

}
(146)

which can be used to obtain the second-order asymptotically correct sectional strain

energy, U2. The resulting expression is too lengthy to be included here. However,

all quantities needed for its computation have been explicitly presented, and results

can be obtained by using symbolic manipulation software, such as Mathematica. The

expression U2 involves the derivatives of the 1D generalized strain measures and is

thus not in a form suitable for use in an engineering beam theory. The derivatives

are eliminated using the GT transformation as outlined in Sec. 6.4. The pertinent

equations used in each of the four steps of the transformation are sequentially listed
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below 

γ11

ρ1

ρ2

ρ3


=



1 0 0 0

0 cos(Λ) sin(Λ) 0

0 − sin(Λ) cos(Λ) 0

0 0 0 1





γ11

κ1

κ2

κ3


(147)

γ11 =γ11

κ1 =κ1

κ2 =κ2 − (2γ13)′

κ3 =κ3 + (2γ12)′

(148)

F ′1 = 0

F ′2 = 0

F ′3 = 0

M′
1 = 0

M′
2 −F3 = 0

M′
3 + F2 = 0

(149)



γ11

2γ12

2γ13

κ1

κ2

κ3



=



cos(Λ) − sin(Λ) 0 0 0 0

sin(Λ) cos(Λ) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos(Λ) − sin(Λ) 0

0 0 0 sin(Λ) cos(Λ) 0

0 0 0 0 0 1





γo11

2γo12

2γo13

ρ1

ρ2

ρ3



(150)

The final forms of the stiffness matrices of the GT sectional strain energy associated
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with the B and N frames of reference are therefore:

S(B)
GT =



Eπr2 0 0 0 0 0

0 3Eπr2(1+ν)
7+14ν+8ν2+3(1+ν) tan(Λ)2

0 0 0 0

0 0 3Eπr2(1+ν)
7+14ν+8ν2+2(1+ν) tan(Λ)2

0 0 0

0 0 0 Eπr4

4(1+ν)
0 0

0 0 0 0 1
4
Eπr4 0

0 0 0 0 0 1
4
Eπr4


(151)

S(N)
GT =

 Sγ 03×3

03×3 Sρ

 (152)

where the 3× 3 matrix Sρ is defined as

Sρ =


Eπr4

4(1+ν)
[1 + ν sin(Λ)2] Eπr4 sin(2Λ)

8(1+ν)
0

Eπr4 sin(2Λ)
8(1+ν)

Eπr4

4(1+ν)
[1 + ν cos(Λ)2] 0

0 0 1
4
Eπr4

 (153)

and the nonzero elements of the Sγ matrix are

(Sγ)11 =Eπr2 cos(Λ)2

[
1 +

3(1 + ν) tan(Λ)2

7 + 14ν + 8ν2 + 3(1 + ν) tan(Λ)2

]
(Sγ)12 =

Eπr2 sin(2Λ)

2

[
−1 +

3(1 + ν)

7 + 14ν + 8ν2 + 3(1 + ν) tan(Λ)2

]
(Sγ)22 =Eπr2 cos(Λ)2

[
tan(Λ)2 +

3(1 + ν)

7 + 14ν + 8ν2 + 3(1 + ν) tan(Λ)2

]
(Sγ)33 =

3Eπr2(1 + ν)

7 + 14ν + 8ν2 + 2(1 + ν) tan(Λ)2

(154)

Using orthogonal (i.e., traditional) cross-sectional analysis, Ref. [127] presents a 6×6

stiffness matrix for an elliptical section, which was verified against elasticity solutions.

For this case, the corresponding normal section for the oblique cross section is a circle.

Eq. (151) is based on the strain measures of the corresponding normal section and

hence can be used for comparison, when the ellipse is specialized to a circle. When

this comparison is made, it can be seen that the stiffnesses associated with extension,
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Figure 39: Shear stiffnesses associated with S
(B)
GT vs. obliqueness angle, Λ(deg.) for

ν = 0.3. All values are normalized by the corresponding elasticity solutions

twist and bending (in either direction) are correctly captured. The shear stiffness for

the circular section in either direction is 3(1 + ν)Eπr2/(8ν2 + 14ν + 7); and therefore

the only departure from the exact solution for the current oblique-sectional analysis

are the terms involving tan(Λ). The qualitative aspect of this result is demonstrated

in Fig. 39.

As with the strip, there is a departure from the elasticity solution which becomes

predominant at large values of Λ, indicating that the cross section cannot be tilted

at an arbitrarily large angle. A clearer picture the effects of this departure can be

gleaned when an recovery comparison is carried out; which shall be our next recourse.

The generic procedure for the recovery that is outlined in Sec. 6.4 is followed

in principle to obtain the cross-sectional stress, strain and displacement. Prior to

comparison with the elasticity solutions, the VAM beam theory is specialized for

small displacement and (total) rotation. The loading cases which will be considered

are depicted in Fig. 40 - they total to six in number. The loading cases which involve

the same deformation along multiple axes will be referred to in short by ‘direction-

deformation’. For example, the F3 loading case will be referred to as 3-flexure. The

elasticity solutions to these problems are often attributed to St. Venant [76]. Again,
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Figure 40: Loading cases for which the beam has elasticity solutions. Some of the
figures have multiple loading cases depicted on them.

128



Table 12: Stresses: VAM vs. elasticity for the loading case of extension

Stress VAM/Elasticity

σ11
F1 cos(Λ)2

πr2

σ12 −F1 sin(Λ) cos(Λ)

πr2

σ22
F1 sin(Λ)2

πr2

σ13, σ23, σ33 0

Table 13: Stresses: VAM vs. elasticity for the loading case of twisting

Stress VAM/Elasticity

σ11 −2M1y3 sin(2Λ)

πr4

σ12 −2M1y3 cos(2Λ)

πr4

σ13
2M1y2 cos(Λ)2

πr4

σ22
4M1y3 cos(Λ) sin(Λ)

πr4

σ23 −2M1y2 cos(Λ) sin(Λ)

πr4

σ33 0

there is a possibility the beam might have elasticity solutions for a more complex

loading case. But the intent of this problem is to ensure that all the six possible

deformation modes of the beam- extension, torsion, bending and shearing in either

directions are captured in sync with the elasticity solution. Therefore the set of the

problems considered forms a complete validation set for the GT theory, introducing

the minimum level of complexity.
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Table 14: Stresses: VAM vs. elasticity for the loading case of 2-bending

Stress VAM/Elasticity

σ11
4M2y3 cos(Λ)2

πr4

σ12 −4M2y3 sin(Λ) cos(Λ)

πr4

σ22
4M2y3 sin(Λ)2

πr4

σ13, σ23, σ33 0

Table 15: Stresses: VAM vs. elasticity for the loading case of 3-bending

Stress VAM/Elasticity

σ11 −4M3y2 cos(Λ)3

πr4

σ12
4M3y2 sin(Λ) cos(Λ)2

πr4

σ22 −4M3y2 sin(Λ)2 cos(Λ)

πr4

σ13, σ23, σ33 0

Table 16: Stresses: VAM vs. elasticity for the loading case of 3-flexure

Stress VAM/Elasticity

σ11 −2F3y3 cos(Λ)2

πr4(1 + ν)
[2(1 + ν)(l − x1) + y2 sin(Λ)(3 + 4ν)]

σ12
F3y3 cos(Λ)

πr4(1 + ν)
[−y2 cos(2Λ)(3 + 4ν) + 2(1 + ν) (y2 + 2 sin(Λ) (l − x1))]

σ13
F3 cos(Λ)

2πr4(1 + ν)

[
y2

2 cos(Λ)2(2ν − 1) + (2ν + 3)(r2 − y2
3)
]

σ22
F3y3 sin(Λ)

πr4(1 + ν)
[−y2 + y2 cos(2Λ)(3 + 4ν)− 4(1 + ν) sin(Λ)(l − x1)]

σ23
F3 sin(Λ)

2πr4(1 + ν)

[
y2

2 cos(Λ)2(1− 2ν) + (2ν + 3)(y2
3 − r2)

]
σ33 0
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Table 17: Stresses: VAM vs. elasticity for the loading case of 2-flexure

Stress Theory

σ11
VAM

F2 cos(Λ)

(1 + ν)πr4

[
sin(Λ)

(
(2ν − 1) y23 + (4 + 3ν) r2

)
− y2 cos(Λ)2 (4 (1 + ν) (l − x1) + y2 sin(Λ) (7 + 6ν))

]
Elasticity

F2 cos(Λ)

(1 + ν)πr4

[
sin(Λ)

(
(2ν − 1) y23 + (3 + 2ν) r2

)
− y2 cos(Λ)2 (4 (1 + ν) (l − x1) + y2 sin(Λ) (7 + 6ν))

]
σ12

VAM F2
8(1+ν)πr4

[
2 cos(2Λ)

(
2 (−1 + 2ν) y23 − (3 + 2ν) y22 + (6 + 4ν)r2

)
+ y2

(
(1 + 2ν)y2 − y2(7 + 6ν) cos(4Λ) + 32 (l − x1) (1 + ν) cos(Λ)2 sin(Λ)

)
− 8r2(1 + ν) sin(Λ)2

]
Elasticity F2

8(1+ν)πr4

[
2 cos(2Λ)

(
2 (−1 + 2ν) y23 − (3 + 2ν) y22 + (6 + 4ν)r2

)
+ y2

(
(1 + 2ν)y2 − y2(7 + 6ν) cos(4Λ) + 32 (l − x1) (1 + ν) cos(Λ)2 sin(Λ)

)]
σ13

VAM −
F2y2y3(1 + 2ν) cos(Λ)2

πr4(1 + ν)

Elasticity −
F2y2y3(1 + 2ν) cos(Λ)2

πr4(1 + ν)

σ22
VAM −

F2 sin(2Λ)

4πr4(1 + ν)

[
2 (2ν − 1) y23 + (2ν + 1) y22 +

(
6 + 4ν − 2 (1 + ν) tan(Λ)2

)
r2 + y2 (−y2 (7 + 6ν) cos(2Λ) + 8 (l − x1) (1 + ν) sin(Λ))

]
Elasticity −

F2 sin(2Λ)

4πr4(1 + ν)

[
2 (2ν − 1) y23 + (2ν + 1) y22 + (6 + 4ν) r2 + y2 (−y2 (7 + 6ν) cos(2Λ) + 8 (l − x1) (1 + ν) sin(Λ))

]
σ23

VAM
F2y2y3(1 + 2ν) cos(Λ) sin(Λ)

πr4(1 + ν)

Elasticity
F2y2y3(1 + 2ν) cos(Λ) sin(Λ)

πr4(1 + ν)

σ33
VAM 0

Elasticity 0
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The stress recovered from VAM is compared with the six loading cases in Tables

12-17. The VAM recovers stresses in an oblique cross section, and thus elasticity

solutions must be expressed in this system by tensorial laws of rotation. It can be

seen that the oblique cross-sectional analysis recovers the same stress as the elasticity

solution for the loading cases of extension, twist, bending and 3-flexure. For the 2-

flexure case, σ13, σ23 and σ33 are in perfect agreement. Even for the cases of σ11, σ12

and σ22, the cross-sectional distribution of the stresses are in perfect agreement. The

minor difference comes through the coefficient of the constant term (associated with

r2), which is attributed to the slight decrease in shear stiffness; the reason for this was

stated previously. A qualitative measure of this difference can be obtained by plotting

the stress distribution over the cross section, as shown in Figs. 41 and 42. The stresses

are normalized by F2/r
2, and the dimensionless coordinates are defined as ζα = yα/r,

respectively. For σ13, σ23 and σ33, the recovery expressions are perfectly coincident,

and this is captured in the plots. As mentioned previously, the other three stresses

(σ11, σ12 and σ22) differ by very minor constants (approximately 0.13, 0.08 and 0.04,

respectively – and thus negligible compared to the corresponding representative stress

values). This is established by a side-by-side display of the solutions from VAM and

elasticity; the difference between either is hardly discernible.

This completes the development and validation of an oblique cross-sectional anal-

ysis based beam theory for the problem of interest using the VAM. A 6 × 6 cross-

sectional matrix was presented associated with the strain measures of a deformed

oblique section. The stress recovery is presented for six different loading cases to

validate all the six deformation modes of the beam. Both the stiffness matrix and

recovery were shown to be in good agreement with the corresponding results obtained

from 3D elasticity.

132



(a) VAM (b) Elasticity

(c) VAM (d) Elasticity

(e) VAM (f) Elasticity

Figure 41: Variation of cross-sectional stresses (σ11, σ12 and σ13) for 2-flexure: VAM
vs. elasticity for r/l = 0.1 and Λ = 30◦
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(a) VAM (b) Elasticity

(c) VAM (d) Elasticity

(e) VAM (f) Elasticity

Figure 42: Variation of cross-sectional stresses (σ22, σ23 and σ33) for 2-flexure: VAM
vs. elasticity for r/l = 0.1 and Λ = 30◦
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6.6 Conclusions From the Analytical Developments

An oblique cross-sectional analysis based beam theory was developed for the in-plane

deformation of an isotropic strip and the full 3D deformation of an isotropic solid

cylinder. The theory was developed using the VAM, viz., minimization of the to-

tal potential energy using an asymptotic method. Results from these problems were

conclusively demonstrated to coincide with those of 3D elasticity. These problems

have been used to develop the formulation for the general case (including anisotropic

material and initial twist and/or curvature), which are being implemented in VABS.

Since a VAM based theory is devoid of any ad hoc assumptions regarding the defor-

mation, extending it to the general case can be accomplished without any significant

alterations of the theories developed above.

The analytical solutions for the two problems presented in this paper provide

valuable tools for the development of the general theory to test the formulation at each

stage. For this reason and because the problems have been validated with elasticity

theory, the departure points of the differences when carrying out an oblique cross-

sectional analysis (vis-à-vis the existing orthogonal cross-sectional analysis currently

in VABS) can be clearly identified. The following aspects of the general cross-sectional

analysis associated with the GT model have been modified/added to account for

obliqueness:

• Obtaining the direction cosine matrix from the user-defined obliqueness param-

eters (see Eq. (114))

• The measures of the 3D strain tensor

• The magnitude of the metric tensor in the undeformed state

• The constraints associated with warping

• The kernel of the matrix used to solve for the nodal values of the warping (VABS
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is a finite element program)

• Transformation of the 1D generalized strain measures before and after the GT

transformation (if the beam is initially twisted and/or curved, the measure

numbers of the curvature vector have to be expressed in the b frame for use in

the existing GT transformation. Since it is natural for the user to specify the

measure numbers in the a frame, this conversion process is facilitated).

• The solver for the Y matrix (the part of the stiffness matrix that couples the

classical to the transverse shear strain measures) is now least-squares based.

These prove to be of immense aid in developing the equations for the general

case for anisotropic beams with initial twist and/or curvature. The VAM procedure

remains the same, except that the warping is now numerically evaluated using a

finite-element approach.

6.7 Theory for the General Case

This section describes the theory pertaining to obtaining the sectional mass and

stiffness matrices and finally recovering the 3D quantities. As usual [132], the 3D

problem is dimensionally reduced to 1D using the VAM without ad hoc assumptions.

The schematic of deformation is depicted in Fig. 43. Frames a and N are used to

describe the undeformed and deformed oblique sections respectively with an interme-

diate frame A. For the corresponding orthogonal section, the frames are b and B with

an intermediate frame T . For further information on various frames of reference used

and the generalized strains associated with them, the reader is encouraged to consult

Sec. 6.3. While x1 is the usual axial curvilinear coordinate, the section is described

using yα. The obliqueness of the section (depicted green in Fig. 43) is quantified by

relating its unit vectors with the unit vectors of the corresponding orthogonal section

(black outline in Fig. 43) using the obliqueness parameters β1i.
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Figure 43: Schematic of beam deformation using an oblique cross section

Using geometrically exact expressions for the displacement of a generic point in

the undeformed and deformed sections, and the assumptions of smallness of local

rotations, the expression for the strain tensor is obtained to be

Γ = Γaβw + Γεε+ ΓRw + Γ`w
′

w = bw1 w2 w3c
T

ε = bγ11 ρ1 ρ2 ρ3
cT

(155)

where w represents the unknown warping functions, γ11 and ρi’s are the geometrically

exact strain measures for stretch (along the reference line instead of perpendicular to

the section because the latter introduces non-independent shear strains) and sectional

curvatures of the oblique section. The matrices in Eq. (155) are now explicitly defined
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as

Γaβ =



Γβ 0 0

∂
∂y2

Γβ 0

∂
∂y3

0 Γβ

0 ∂
∂y2

0

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3



Γε =
1
√
g



β11 0 y3 −y2

β12 −y3 0 0

β13 y2 0 0

0 0 0 0

0 0 0 0

0 0 0 0


ΓR =

1
√
g

k̃ + I3k1

(
y3

∂
∂y2
− y2

∂
∂y3

)
03×3


Γ` =

1
√
g

 I3

03×3



(156)

where Γβ = − 1√
g

(
β12

∂
∂y2

+ β13
∂
∂y3

)
,
√
g = β11 − y2k3 + y3k2 and ki are the mea-

sure numbers of the initial curvature vector. Assuming the material operates in a

linear elastic regime, the 3D stresses are simply σ = DΓ. The redundancies in the

displacement field are removed by introducing constraints on the warping:

〈wi〉 =0

〈β11 (w2,3 − w3,2) + β13w1,2 − β12w1,3〉 =0

(157)

where 〈•〉 represents integration over the cross section. These constraints specify

that the 1D displacements (see Ref. [46]) are the average of the displacements of all

the material points that make up the section and that the average local rotation in
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a direction tangent to the deformed reference axis is zero. One can now set up a

variational statement of the problem by the usual definition of the strain energy

U =
1

2
〈√gσTΓ〉 (158)

The warping is discretized using finite element shape functions S(y2, y3) as

w(x1, y2, y3) = S(y2, y3)V (x1) (159)

The unknown nodal values of warping V (x1) are now recursively solved for in an

asymptotic manner using standard procedures of the calculus of variations. For the

asymptotic method, the small parameters used are a/` and aki, where ` is the maxi-

mum wavelength of deformation. The solutions for the zeroth, first and second order

warping are obtained as

V = V0ε︸︷︷︸
0

+V1Rε+ V1Sε
′︸ ︷︷ ︸

1

+V20ε+ V21ε
′ + V22ε

′′︸ ︷︷ ︸
2

(160)

The zeroth- and first-order expressions for warping, when substituted back in the

strain energy, yield the classical and second-order asymptotically correct strain ener-

gies, respectively, viz.,

2U0 =εTAclε

2U2 =εTAε+ 2εTBε′ + ε′TCε′ + 2εTDε′′
(161)

The latter is converted to a Generalized Timoshenko form or a Generalized Vlasov

form by either using the equilibrium equations or neglecting all the strain derivatives

except the derivative of the torsion variable of the corresponding orthogonal section.

The final strain energies yield the stiffness matrices for these two theories in terms of

the generalized strains of B (the deformed corresponding orthogonal section) as

2UGT = εTSGT ε; ε = bγ11 2γ1α κic
T

2UGV = εTV Ŝ εV ; εV = bγ11 κi κ′1c
T

(162)
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While both these stiffnesses correct for initial twist and/or curvature, the GT theory

incorporates transverse shear while GV captures the end effect due to restrained

warping. The latter is important for thin-walled beams with open sections, such as

rotorcraft flex-beams. As mentioned in Sec. 6.6, the solution for the Y matrix, i.e.,

the matrix that couples classical and transverse shear strain measures, is now based

on a least-squares solver. For further details, see Appendix B.

The kinetic energy can be obtained with sufficient accuracy in a much simpler

manner, using the assumptions that corresponding orthogonal section remains plane

and rigid during deformation

2K =

VΩ

T

M

VΩ
 (163)

where V and Ω are again the velocity and angular velocity of the corresponding

orthogonal section. The 1D variables chosen so that the VABS outputs can be directly

input into GEBT [126]. In calculating the mass matrix, the following transformation

is needed to obtain the coordinates of the corresponding orthogonal section from the

given coordinates of the oblique section

bx2 x3c = by2 y3c

1− β2
12

1+β11
−β12β13

1+β11

−β12β13
1+β11

1− β2
13

1+β11

 (164)

The mass and stiffness matrices are now input into the 1D solver GEBT, and

upon obtaining the solution of the 1D variables, VABS can be used to recover the 3D

stress, strain and displacement variables. The following are the user inputs for VABS

recovery:

1. the 1D displacements (a frame)

2. the rotation matrix (CNa)

3. sectional force and moment resultants and the distributed and inertial loads (B

frame)
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GEBT outputs the 1D displacements in the b frame, the force and moment resultants

in the B frame and quantities that be used to calculate CBb. To obtain the required

VABS outputs, the measure numbers of the 1D displacements in a frame can be

simply obtained using Cβ, which defines the rotation from a to b (Cba) and is known

in terms of the obliqueness parameters, β1i’s. It is defined in Eq. 114.

GEBT also outputs quantities which can be used to calculate CBb. From this

CNa can be obtained using the formula given in Ref. [91]. Given the sectional forces

and moments and the distributed and inertial loads, VABS recovery calculates the

strain measures (and their derivatives) of B, converts them into the strain measures

of T [46], then finally gets the strain measures of A using the obliqueness parameters.

These can be then used to obtain the 3D stress and strain using Eqs. (155) and (160).

The displacement is then recovered using

Ui =ui(x1) + yα
[
CAa
αi (x1)− δαi

]
+ CAa

ji wj

CAa = CANCNa

CAN = CβTCTBCβ

(165)

From Ref. [46], CTB is

CTB =


1 2γ12 2γ13

−2γ12 1 0

−2γ13 0 1

 (166)

Thus concludes the determination of the sectional properties and 3D quantities by

VABS for an oblique cross-sectional analysis. In the subsequent sections the results

from a VABS obliqueness model and GEBT will be verified against solutions from

experiments, 3D FEM and other beam analyses in a quest to demonstrate its func-

tionality and accuracy.
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6.8 VABS Verification and Validation

Static and dynamic results of various kinds of cross sections are available in litera-

ture [107, 104, 26, 25, 55, 56, 6, 60, 62, 61, 80, 134, 63, 76] for ready comparison of

the outputs from an oblique cross-sectional analysis. Because these results are from

completely different approaches such as experiments, FEM and unrelated beam pro-

cedures, they serve as adequate and unbiased validation cases. One important point

must be made at this juncture: the blade is obviously the same, so it is not “aware”

that the analysis is being carried out with an oblique section, so the global behavior of

the structure remains the same. Again, it is iterated here that the obliqueness feature

in VABS ONLY offers the user a flexibility of modeling blades using a nonorthogonal

cross section. So, analyzing a structure with an orthogonal section or oblique sec-

tions (at various oblique angles) should lead to the same results and, as shall be seen

shortly, it does.

x1

b

y 3

Λ

x3

x2

y 2

b

a

a se
c(Λ
)t s

ec
(Λ)

t
P

P0P0 P

t

Figure 44: Generating the properties of an oblique section given the properties of an
orthogonal section

Most of the works cited from the literature readily provide the properties of the
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orthogonal section. Therefore, there is a need to generate the properties of a section

not perpendicular to the reference line. For example, in the thin-walled box beam

shown in Fig. 44, if the geometry and material of a point P0 in the orthogonal section

is known, the corresponding point on the oblique section, P , the coordinates of which

can be determined using Eq. (164). The 6×6 material matrix at P can be determined

from the 6× 6 material matrix at P0 using material transformation laws outlined in

Ref. [54] bearing in mind the wall orientation, fiber angle and the obliqueness of the

section (defined by Λ). In the examples to follow, we consider the oblique section

as defined in Fig. 44, i.e., a rotation of Λ about x3, which results in β11 = cos(Λ),

β12 = − sin(Λ) and β13 = 0.

6.8.1 The CUS and CAS Sections

Fundamentally, there are only two types of composite cross sections: The Circumferentially

Uniform Section (CUS) and the Circumferentially Asymetric Section (CAS). While

the former exhibits extension-twist and bending-shear couplings, the latter exhibits

extension-shear and bending-twist couplings. The other two types of coupling, viz.,

extension-bending and shear-twist are caused by picking a reference line which differs

from the lines of tension centers and generalized shear centers respectively. Therefore,

the ability to accurately predict the behavior of the CUS and CAS sections inherently

implies that the methodology holds for any thin-walled composite cross section.

The properties of Fig. 45 are provided in Tables 18 and 19 with θ = −15◦. The

properties of the oblique CUS section are provided for a representative obliquity angle

of Λ = 30◦. It can be seen that the oblique section possesses the characteristics of

having truly anisotropic materials. Therefore, this validation should serve as a test

for the ability of VABS to capture generally anisotropic behavior as well.

In what follows, the results are presented from runs of the obliqueness model of

VABS, i.e., VABS(Λ) and GEBT and compared with the results obtained from other
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Table 18: Section properties for the orthogonal CAS and CUS sections

Geometry Material
a = 0.953 in. El = 20.59× 106 psi
b = 0.537 in. Et = 1.42× 106 psi
t = 0.03 in. Glt = 8.9× 105 psi

Gtn = 6.96× 105 psi
νlt = 0.42
νtn = 0.5

ρ = 1.352× 10−4 lb-in−4-s2

Table 19: Section properties for the oblique (Λ = 30◦) CUS section. Listed below
are the Material Properties (MP) corresponding to 6× 6 material matrix D

MP (psi) M1 M2 M3 M4

D11 7.4192E6 1.2061E7 1.9229E7 1.2061E6
D12 −4.9193E6 −5.3841E6 −4.3586E6 −5.3841E6
D13 0 −2.8647E6 −2.8647E6 2.8647E6
D14 5.6392E5 4.0901E6 2.3502E6 4.0901E6
D15 0 1.6054E6 0 −1.6054E6
D16 1.1366E6 2.0214E6 1.2381E6 2.0214E6
D22 5.2754E6 3.7290E6 1.9863E6 3.7290E6
D23 0 1.6003E6 0 −1.6003E6
D24 −4.9193E6 −2.0909E6 −5.6073E5 −2.0909E6
D25 0 −9.5197E5 0 9.5197E5
D26 −1.1726E5 −5.6948E5 −5.8627E4 −5.6948E5
D33 7.93E5 1.6670E6 8.77E5 1.6670E6
D34 0 −9.6074E5 0 9.6074E5
D35 7.4192E6 −5.5311E5 −4.85E4 −5.5311E5
D36 0 −4.8560E5 0 4.8560E5
D44 7.4192E6 3.4297E6 2.1877E6 3.4297E6
D45 0 6.0318E5 0 −6.0318E5
D46 1.1366E6 1.3638E6 1.0350E6 1.3638E6
D55 7.93E5 1.0283E6 7.09E5 1.0283E6
D56 0 2.8036E5 0 −2.8036E5
D66 1.9660E6 2.1877E6 1.9660E6 2.1877E6
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methods. Table 20 presents the stiffnesses for the CUS section with respect to the

strain measures of the orthogonal section. Again it is emphasized here that because

the beam remains the same, the strain energy per unit length must be the same,

and if the same strain measures are used to write the potential energy, the stiffnesses

must be the same. The reason for a slight discrepancy for the shear related terms

with larger obliqueness angles has been discussed in detail in Ref. [91]. Note that

NABSA is a code based on Ref. [37] (developed by Prof. Bauchau).

In what follows, all rotations of the blade refer to rotations about x3 or y3. Flap

and lag deformations are those corresponding to the deformations in the x3 and x2

directions respectively. We will now discuss the dynamic results of the CUS section.

Table 21 lists the first five natural frequencies from experiments and other analyses,

even with an earlier version of VABS. From Fig. 46, lag frequencies are not signifi-

cantly affected by the rotor angular speed for small hub radii or in the absence of hinge

offsets; centrifugal lead-lag stiffening is nearly cancelled out by the “negative spring”

term in lead-lag motion. Considering Fig. 47, two conclusions can be gleaned: The

stretch is less than 0.01 even for an angular speed of 10000 RPM (which may entail

only academic interest), validating the small strain analysis. Second, as Ω increases,

the mode shape begins to resemble a straight line with an area of large curvature at

the root, caused by the root boundary conditions of zero displacement and rotation.

The first two natural frequencies are plotted as a function of the slenderness ratio

(defined here as the ratio of length to height) and compared with the corresponding

FEM results. Figs. 49, 50, 51 and 52 present the mode shapes corresponding to the

CUS section for a slenderness ratio equal to 60. The mode shapes are normalized

such that the maximum displacement or rotation variable corresponding to that par-

ticular mode is unity at the tip. It is interesting to note the extension-twist and

bending shear couplings and the equal contributions of flap and lag displacements to

the eighth mode.
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Table 20: Stiffnesses for the CUS section
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Table 21: Natural frequencies (Hz) for the CUS section. L=33.25 in. and rotor
rotational speed about x3 (or y3) Ω=1002 RPM
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Moving on to static results, deflections, geometrically exact slopes and sectional

rotations are presented for various loading cases in Figs. 53, 54, 55 and 56. Displace-

ment results are in inches and rotations in radians; all values normalized as indicated

in each figure.

Dynamic results of the CAS section are now alluded to. Table 22 presents the

natural frequency comparison similar to what Table 21 did for the CUS section. If the

fiber layup angle is changed from 15◦, the dynamic results corresponding to the first

three modes are shown in Fig. 57. Only in the case of the second flap mode of the 45◦

case is there a slight discrepancy between the experimental and theoretical results,

which can be possibly be attributed to a nonlinearity in the shearing deformation.

Due the bending-twist coupling, their effective stiffnesses or rigidities, defined as the

inverse of the corresponding flexibility coefficients are presented in Fig. 58. This

concludes a validation of the obliqueness model for VABS for the CUS and CAS

sections.

6.8.2 Anisotropic I-beams

While the CUS and CAS sections serve as sufficient validation for thin-walled closed

section beams, open section beams, such as the ones employed in flex-beams of rotor-

craft need a separate verification because end effects pertaining to restrained warping

become significant in the central beam solutions. For this purpose, consider an I-

beam, whose orthogonal section is shown in Fig. 59. For this kind of cross section,

the Generalized Vlasov model needs to be used in the cross-sectional analysis. Two

cases are considered: one isotropic and one orthotropic as outlined in Table 23. The

value of α for the orthotropic case is taken to be 15◦. The properties of the oblique

section can be generated in a manner similar to the procedure outlined the previous

section. Two important parameters that govern the behavior of these kind of cross

sections are the torsional and warping rigidity which are the coefficients of κ2
1 and
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κ′21 in the sectional strain energy. These results are listed in Table 24 corresponding

to the strain measures of the corresponding orthogonal section in lb-in.2 and lb-in.4

respectively. Because the strain energy per unit length is not dependent on the choice

of a reference cross-sectional plane, if the same 1D strain measures are used, the re-

sults are expected to be identical with sufficient accuracy, which can be seen in the

results. Agreement with an earlier version of VABS [134], wherein the solutions were

shown to produce results equivalent to 3D FEM imply that the obliqueness model in

VABS models the GV theory correctly.

6.8.3 Initial Twist

The next feature to be validated is the effect of initial twist and curvature on the

cross-sectional analysis. For this consider a pre-twisted strip as shown in Fig. 60.

When using an orthogonal section to model this structure, it needs to be analyzed

with a non-zero initial twist. On the other hand, modeling this with an oblique

section requires a non-zero initial twist and curvature. Mathematically, this is easier

to comprehend because initial twist and curvature are simply measure numbers of the

same initial curvature vector. If x3 is the cross-sectional coordinate corresponding

to the thickness variable of the strip, the initial curvature vector has the following

measure numbers in the orthogonal and oblique sections respectively: bk1 0 0c and

bk1 cos (Λ) −k1 sin (Λ) 0c. The strip has cross section dimensions 10×1 and is made

up of isotropic material of E = 2.6× 107 and ν = 0.3. All the inputs and outputs are

assumed to be in a consistent system of units. The stiffness results for the classical

corrected stiffnesses are presented in Fig. 61. The extensional, extension-torsion and

torsional stiffnesses (again for the oblique section, they are converted into those of

the corresponding orthogonal section) are affected by k1 and the exact solutions for

these stiffnesses are provided by Ref. [63]. Again, an excellent agreement is observed.
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6.8.4 Stress Recovery

The final aspect of the VABS oblique cross-sectional model is to demonstrate accurate

recovery of 3D stress, strain and displacement. In this section, stress recovery is

alluded to and it is presumed that the reader is familiar with standard elasticity

procedures of extracting 3D strain and displacement (given the appropriate essential

boundary conditions) from the stress and hence can concur that agreement in stress

implies an agreement in the other nine quantities as well. Consider an isotropic

prismatic rod as shown in Fig. 38. For the six different loading cases shown in Fig.

40, Ref. [76] provides the exact elasticity solutions. These solutions, after appropriate

vectorial and tensorial transformations of the stresses and coordinates, form the basis

of comparison of the VABS results over an oblique plane as shown in Fig. 38. In

what follows, the stresses are normalized by Fi/r
2 or Mi/r

3 and plotted with respect

to the cross-sectional coordinates: ζ (y2 cos (Λ) /r) or η (y3/r), and along y3 = 0

and y2 = 0 respectively. The flexure loading cases necessitates stress plotting along

y3 = y2 cos (Λ); in those cases ζ∗ is (y3 + y2 cos (Λ))/
(√

2r
)
. Only the non-zero

variations and a bare-minimum number of plots sufficient to establish all the stress

variations over the cross section are sufficiently captured are plotted. The obliqueness

angle, Λ, is chosen to be 30◦, while r/l is 0.15. From the results displayed in Figs.

62, 63, 64, 65, 66, 67 and 68, an excellent agreement of the VABS obliqueness model

with respect to exact elasticity solutions is observed. The slight divergence from

elasticity solutions for the loading case of F2 can be attributed to the fact that a large

obliqueness angle might lead to errors when shearing deformations are involved. This

is because the small parameter associated with the inverse of the slenderness ratio is

no longer small at large obliqueness angles. This concludes a successful and rigorous

validation of the oblique cross-sectional analysis using VABS.
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(a) Orthogonal. CAS orientations are in red.

(b) Oblique

Figure 45: Orthogonal CUS and CAS sections and the oblique CUS section. Fiber
orientations are defined with respect to the local normal
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Figure 49: Normalized first mode shape for the CUS section
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Figure 50: Normalized second mode shape for the CUS section
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Figure 51: Normalized fifth mode shape for the CUS section
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Figure 52: Normalized eighth mode shape for the CUS section
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Figure 53: Geometrically exact static results for CUS under tip load, F2=1 lb.
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Figure 54: Geometrically exact static results vs. slenderness ratio (S=length/width)
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Table 22: Natural frequencies (Hz) for the CAS section. L=33.25 in. and rotor
rotational speed about x3 (or y3) Ω=1002 RPM
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Figure 57: Variation of the first three natural frequencies vs. rotor speed for CAS
with varying fiber orientations, L = 33.25 in.
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Figure 58: Effective torsional and flap bending stiffnesses for the CAS section
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a

b

h/8

θ

0°
90°

Figure 59: Orthogonal section for the anisotropic I-beam

Table 23: Section properties for the orthogonal I-beams

Geometry Isotropic Material Orthotropic Material
a = 0.5 in. E = 107 psi El = 20.59× 106 psi
b = 1.0 in. ν = 0.3 Et = 1.42× 106 psi
h = 0.04 in. Glt = 8.7× 105 psi

Gtn = 6.96× 105 psi
νlt = νtn = 0.42
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Table 24: Torsional and warping rigidities for the I-beam

Stiffness VABS (2005) VABS(Λ = 0◦) VABS(Λ = 30◦)
Isotropic

Ŝ22 199.9440 200.3909 200.3914

Ŝ55 3553.4300 3517.2171 3521.4612

Orthotropic

Ŝ∗22 55.8658 56.4270 56.4270

Ŝ55 4232.1700 4398.5962 4437.5981

Ŝ∗22 = Ŝ22 − Ŝ2
23/Ŝ33

2b

l

Figure 60: Initially twisted strip modeled as a initially curved and twisted beam
using an oblique cross section
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Figure 61: Corrected classical stiffnesses for an initially twisted strip
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Figure 62: Stress recovery for the loading case of extension (F1)
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Figure 63: Stress recovery for the loading case of 2-bending (M2)
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Figure 64: Stress recovery for the loading case of 3-bending (M3)
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Figure 65: Stress recovery for the loading case of torsion (M1)
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Figure 66: Stress recovery for the loading case of 3-flexure (F3): Part I
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Figure 67: Stress recovery for the loading case of 3-flexure (F3): Part II
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Figure 68: Stress recovery for the loading case of 2-flexure (F2)
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VII

THIN-WALLED BEAMS: INTERACTION OF SMALL

PARAMETERS

One thing is that I can live with doubt and uncertainty and not knowing. I

think it’s much more interesting to live not knowing than to have answers

which might be wrong. I have approximate answers and possible beliefs, in

different degrees of certainty, about different things. But I’m not absolutely

sure of anything and of many things I don’t know anything about. I don’t feel

frightened by not knowing things, by being lost in the mysterious universe

without having any purpose, which is the way it really is, as far as I can tell.

– Richard Feynman

An existing issue with VABS is the singularity of the stiffness matrices associated

with thin-walled beams with moderate values of initial twist and/or curvature. This is

possibly due to the fact that the asymptotic analysis does not consider a specific small

parameter: the ratio of wall thickness to the the maximum cross section dimension

(h/a). The theory for these kind of beams is expected to take into account this small

parameter ab initio. This chapter demonstrates explicitly how the parameter h/a

interacts with the existing small parameters of VABS to affect the solutions for the

classical theory.

7.1 Euler-Lagrange Equations

The warping solution of the problems about to be considered are of a slightly different

nature than the ones encountered so far. A generic mathematical result (which can be

easily derived) is now stated. To determine the function y(x) such that the following
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(a) (b)

Figure 69: Strip with initial out-of-plane curvature (a); which is further incorporated
with an initial twist (b)

functional is minimized:

I =

∫ b

a

f (x, y, y′, y′′) dx (167)

The solution for y can be determined by solving the following equation

∂f

∂y
−
(
∂f

∂y′

)′
+

(
∂f

∂y′′

)′′
= 0 (168)

and the corresponding boundary conditions at x = a and x = b (assuming y′ and y

are not specified at the boundaries)

∂f

∂y′′
= 0

∂f

∂y′
−
(
∂f

∂y′′

)′
= 0

(169)

7.2 Pre-twisted Strip with Out-of-Plane Curvature

Consider an isotropic strip (material constants E and ν) with initial twist (k1) and

out-of-plane curvature (k2). This is depicted in Fig. 69. The width, thickness and

length of the strip are represented by 2b, t and L; x2 and x3 are cross-sectional

coordinates along the width and thickness respectively with the origin at the section

geometric center and x1 is the curvilinear coordinate along the axis of the beam.

The small parameters of the problem are the usual b/L, bk1 and bk2. In addition to

these, we will also consider the small parameter δh = h/b. The fundamentals of the

analysis now follow as per the development in Ref. [47], except that since the analysis

here is still linear, the assumption of the smallness of the local rotation is invoked.
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The expression for the 3D strain field in terms of the beam generalized strains and

unknown warping wi (x1, x2, x3) can be obtained by the usual procedures outlined in

Ref. [46] and repeated in Chapters 4 and 6.

Γ11 =
1

1 + x3k2

[k2w3 + γ11 − x2κ3 + x3κ2 − k1x2w1,3 + k1x3w1,2 + w1,1]

2Γ12 =w1,2 +
1

1 + x3k2

[−k1w3 − x3κ1 − k1x2w2,3 + k1x2w2,2 + w2,1]

2Γ13 =w1,3 +
1

1 + x3k2

[−k2w1 + k1w2 + x2κ1 − k1x2w3,3 + k1x3w3,2 + w3,1]

Γ22 =w2,2

2Γ23 =w2,3 + w3,2

Γ33 =w3,3

(170)

The starting point of this theory will not be 3D elasticity but Classical Laminated

Shell Theory (CLST). Therefore the next step will be the determination of the shell

2D strain measures from the plate ones. For this purpose, consider the following

representation of the warping field (Greek and Latin indices go from 1 to 2 and 1 to

3 respectively):

wα (x1, x2, x3) = wα (x1, x2) + x3φα (x1, x2) + ∆α (x1, x2, x3)

w3 (x1, x2, x3) = w3 (x1, x2) + ∆3 (x1, x2, x3)

(171)

where wi and φα’s are an ‘average’ warping and local rotation respectively through

the thickness and ∆i’s are the rest of the unknown variations. This decomposition

of the warping field is motivated by the presence of the small parameter δh, i.e, the

shell-like nature of the member shown in Fig. 69. The orders of the warping are now

assumed to be

O (wα) = bε O (w3) =
bε

δh
(172)

where ε is of order of maximum strain. These can be verified once the final solution

for warping is obtained. The orders of the 1D strains are as expected

O(γ11) = O(hκα) = O(bκ3) = ε (173)
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Using Equation 171 in the 3D strain measures and employing a ‘phantom’ analysis

[114] wherein terms too large to be in the strain are killed, the orders of ∆i can be

determined

O (∆i) = bδhε (174)

Therefore if one is interested in a zeroth order analysis, ∆ terms can be dropped

straightaway. Another consequence of the phantom analysis are the solutions to φα

of leading order:

φ1 =− x2κ1

φ2 =− w3,2

(175)

Again, the higher order terms in φα do not enter into the classical analysis and the

above evaluation suffices. Making use of the derivation in Ref. [135], which relates 3D

and shell strain measures, one discovers for the classical analysis the following simple

relations

Γαβ = εαβ + x3ραβ (176)

Thus the measures for the shell membrane and curvtaure strain measures turn out

to be

ε11 = γ11 − x2κ3 + k1x
2
2κ1 + k2w3

2ε12 = −k1w3 + w1,2 + k1x2w3,2

ε22 = w2,2

ρ11 = κ2

2ρ12 = −2κ1

ρ22 = −w3,22

(177)

Again, owing to the fact that the classical shell and plate theories give the same

zeroth and first order approximation to the strain energy [46], one can neglect the

effects of k1 and k2 in the shell constitutive law, which therefore reduces to nothing
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but a classical plate theory. The strain energy per unit reference-surface (chosen to

be the mid-surface here) area is therefore

U2D =
1

2
εT2D

 A B

BT D

 ε2D

ε2D =bε11 2ε12 ε22 ρ11 2ρ12 ρ22c
T

(178)

The matrices A, B and D contain the usual plate constants and can be found in any

standard plate textbook, such as Ref. [13]. To eliminate the redundancies, the usual

four constraints on the warping (w) are used [46]. Using the decomposition of the

warping field in Eq. (171), the constraints are re-stated in terms of wi’s

〈wi〉 = 0

〈w3,2 − φ2〉 = 0

〈•〉 =

∫ b

−b
• dx2

(179)

Using standard variational principles, on imposing a minimization of strain energy,

one obtains the following warping field (in order to obtain closed-form expressions, it

is assumed that the maximum permissible order of k2 is
√
ε/b)

w1 =
k1

210h2

[
k1k2x2

(
29b6 + 35b4x2

2 − 21b2x4
2 + 5x6

2

) (
1− ν2

)
κ1

− 35νh2x2

(
x2

2 + b2
)
κ2 + k2

(
5b6 − 35b2x4

2 + 14x6
2

) (
1− ν2

)
κ3

]

w2 = −ν
6

[
6x2γ11 + 2k1x

3
2κ1 + νk2x2

(
x2

2 − b2
)
κ2 +

(
b2 − 3x2

2

)
κ3

]
w3 =

1

210h2

[
k1k2

(
29b6 − 105b4x2

2 + 35b2x4
2 − 7x6

2

) (
1− ν2

)
κ1

− 35νh2
(
b2 − 3x2

2

)
κ2 + 7k2x2

(
7b4 − 10b2x4

2 + 3x4
2

) (
1− ν2

)
κ3

]
(180)

Notice how the initial twist and curvature enter into the solution for the zeroth order

warping due to the presence of δh in the denominator. Indeed on a perfunctory glance
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one would be inclined to dismiss several of these terms as being higher order; it is only

when δh is taken into account does one realize that they are all of the order assumed

in Eq. (172). Putting these solutions back into Eq. (181), the following sectional

strain energy is obtained:

U1D =
1

2
εTAclε

ε =bγ11 κ1 κ2 κ3c
T

(181)

The non-zero components of the Matrix Acl are now listed below

(Acl)11 = 2Ebh

(Acl)12 =
2

3
Eb3hk1

(Acl)22 =
2

3
Gbh3

[
1 + (1 + ν)

(
b

h

)2

(bk1)2

{
6

5
− 64 (1− ν2)

315

(
b

h

)2

(bk2)2

}]

(Acl)23 =
4ν

45
Eb5hk1k2

(Acl)33 =
1

6
Ebh3

[
1 +

4ν

15

(
b

h

)2

(bk2)2

]

(Acl)44 =
2

3
Eb3h

[
1− 8 (1− ν2)

105

(
b

h

)2

(bk2)2

]

(182)

It must be re-iterated here that all these stiffnesses are extracted from a zeroth-order

strain energy. Notice several of the terms bought about by interaction of the small

parameter δh with bk1 and bk2. Indeed the ‘correction’ term associated with the

torsional stiffness due to initial twist (k1) is comparable in magnitude to what one

might colloquially consider the classical stiffness. Terms of this nature do not appear

in the theory corresponding to the current classical VABS analysis [129]. Again,

the fundamental cause of the appearance of such terms is the fact that the small

parameter δh appears in the denominator of order as high as 4. This brings into play

terms containing the other small parameters by changing their relative orders. This

development establishes that while analyzing thin-walled rotor blade segments, the

asymptotic analysis should be initiated by considering an additional small parameter
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similar to δh. It has clearly been demonstrated that not taking into account this small

parameter will result in the wrongful omission of certain terms associated with initial

twist and curvature.

7.3 Shear Deformable Theory

In the previous section, the interplay of small parameters was clearly shown to produce

certain terms which affect the classical stiffnesses. This section outlines the procedure

for a higher fidelity theory which will produce a 6× 6 cross-sectional stiffness matrix

accounting for shear deformation, analogous to the current GT theory. The following

considerations need to kept in mind

• While evaluating a the next higher order warping functions for wi, the higher

order terms associated with ∆i and φα need also be considered. It is obvious

that such terms cannot be obtained as a closed-form solution. Nevertheless,

this does not matter as the final outcome of this procedure is to create a finite-

element code for evaluating these functions.

• The simple relation of Eq. (176) does not hold; Eq. (18) of Ref. [135] gives

the exact relation. This can be integrated with the latest 3D recovery from a

shell theory using the VAM based plate and shell code VAPAS [125]. The shell

transverse strain measures can be ignored since for thin-walled beams, the shear

strain normal to the thin-walled segments is usually very small compared to the

tangential shear strain.

• To determine the second order terms in the strain energy, start with the 6× 6

Generalized classical model output from VAPAS. In other words, the plate strain

energy will no longer work.

• While developing this higher-order theory, in addition to interacting with bk1

and bk2, δh may interact with b/L (which enter into the analysis through the
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beam generalized shear strains) as well.

Though it is not possible to develop a closed-form analytical solution by this method, a

finite-element formulation is adequate for the numerical solution of the warping. The

solution procedure will also involve an internal run of VAPAS. This will then need

to be used instead of the current VABS when the beam cross section has segments

where the ratio of the wall thickness to the maximum cross section dimension becomes

comparable to the other small parameters of the problem.

To summarize, in this chapter a methodology has been proposed for the analysis

of thin-walled beams. It has been shown that when h/a is considered as an additional

small parameter, the zeroth-order stiffness matrix is radically different from when it

is performed without. It should also be noted that the development of the theory is

quite different from the usual VABS procedure. An algorithm has been developed for

extending the current analysis to a higher order which will yield the appropriate 6×6

stiffness matrix. Such a formulation is necessary to prevent singularities associated

with the stiffness matrix which is a current concern in VABS for thin-walled beams

with initial twist and curvature.
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VIII

PLATES OF VARIABLE THICKNESS

These are some of the things hydrogen atoms do, given 15 billion years of

cosmic evolution.

– Carl Sagan, Cosmos

It is a common assumption in plate theory that the effect of varying thickness on plate

constants (both those associated with the membrane and curvature strains) can be

simply accounted for by incorporating in the formulae obtained for a plate of uniform

thickness, the thickness distribution. For example, for an isotropic and homogeneous

(with material constants E and ν) plate of uniform thickness h, the well known

flexural rigidity is simply Eh3/ (12 (1− ν2)). For such a plate with non-uniform

thickness, the flexural rigidity is simply assumed to be Eh(x1, x2)3/ (12 (1− ν2)), if

x1 and x2 denote the global coordinates. One of the aims of this chapter is to show

that such an approximation is erroneous, primarily since it violates the stress-traction

boundary conditions at the top and bottom surfaces of the plate. Accounting for this

boundary condition will introduce into the plate potential energy a quantity which

describes the variation of thickness. In the case of linearly varying thickness, these

are nothing but taper constants, defined in a form similar to τ of Chapter 3.

The outline of this chapter is thus: Sec. 8.1 introduces the problem to be solved

followed by the development of a VAM based theory, finally arriving at an 8 × 8

Generalized Reissner-Mindlin stiffness matrix and a set of stress and strain recovery

expressions, both of which are shown to explicitly depend on parameters that deter-

mine the thickness distribution. Finally, Sec. 8.2 compares the results of this theory

with ABAQUS for a problem similar in nature as that of Pagano’s cylindrical bending
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Figure 70: Isotropic prismatic plate tapered along the x1 and x2 directions

[82].

8.1 Isotropic, Homogeneous, Linearly Tapered Plate

Consider a plate made of isotropic, homogeneous material with a thickness distribu-

tion as follows

h(x1, x2) = h0 − xαζα (183)

The schematic of such a plate is depicted in Fig. 70. The taper parameters ζ1 and ζ2

are defined in terms of the depicted angles angles α1 and α2 as

α1 = tan−1

(
ζ1

2

)
α2 = tan−1

(
ζ2

2

)
(184)

It is now desired to develop a plate theory for such a structure. Though the method-

ology followed has its roots in the development of Ref. [125], to the best of the author’s

knowledge, no previous work based on the VAM has accounted for plates of variable

thickness in a manner about to be demonstrated. The reference surface is chosen to

be the mid-surface. Again, for the rest of this chapter, unless otherwise mentioned,

Greek indices go from 1 to 2, while Latin indices go from 1 to 3. The index α is not to

be confused with the angles shown in Fig. 70. The frames used for the development
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are b, B and B∗; the latter two are employed for the classical and refined theories

respectively. Each of these frames has a triad of unit vectors associated with them.

For example, bi (i = 1, 2, 3) are a set of unit vectors along the coordinate axes xi, so

b3 is along the thickness direction. While B3 is normal to the deformed surface, B∗3 is

along the deformed line element. Thus, while B does not accommodate 2D transverse

shear strains and hence is suitable for a classical or Generalized Love-Kirchhoff the-

ory, B∗ does accommodate plate transverse shear strains and is suitable for a refined

or Generalized Reissner-Mindlin theory. The position vector of a generic point in the

undeformed configuration (r̂) can be written in terms of the position vector of the

corresponding point on the mid-surface (r) as

r̂ (x1, x2, x3) = r (x1, x2) + x3b3 (185)

In a similar vein, after deformation, the point will now have a position vector which

can be expressed in terms of unknown warping functions (wi) as

R̂ (x1, x2, x3) = R (x1, x2) + x3B3 + wiBi (186)

The displacement field thus introduced has six redundancies. Two constraints are

introduced by the definition of B3 above. Another is introduced by setting B1.R,2 =

B2.R,1. The final three redundancies are removed by precisely defining R such that

〈wi〉 =ci (i = 1, 2, 3)

〈•〉 =

∫ 1
2
h(x1,x2)

− 1
2
h(x1,x2)

• dx3

(187)

where the constants ci’s will be determined later so as to fit the second-order asymp-

totically correct strain energy into a ‘best’ possible Generalized Reissner-Mindlin

form. Now to determine the deformation gradient tensor (χ), the same procedure as

alluded to in Chapter 4 is used. In the course of doing so, the 2D strains (associated
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with the B frame) are introduced into the problem [44]

R,α =Bα + εαβBβ

Bi,α = (−KαβBβ ×B3 +Kα3B3)×Bi

(188)

To summarize, the following 2D strains are introduced into the development: the

membrane strains ε11, ε12 and ε22 and the plate curvatures K11, 1
2

(K12 +K21) and

K22. For the current problem, since there are no initial curvatures, the latter three will

be used interchangeably with their corresponding strain measures, κ11, 1
2

(κ12 + κ21)

and κ22 respectively. A remark must be added concerning the definition of 2D strains.

Plate literature is divided regarding the convention for the curvature strain measures.

The current definition is based on rotation variables θα, which are defined to be

positive when the normal tilts towards positive xα. The notation employed in this

chapter results in the classical stiffness matrix having a form that is easy on the eye.

However, K11 is not the curvature in the x1 direction. On the other hand, curvature

definitions associated with rotation variables defined to be positive along the positive

coordinate axes enables one to write the second of Eqs. (188) in a much simpler form.

This difference in notation should be emphasized, particularly in the light of the fact

that the beam developments till now have used the latter convention. Also, the reader

is encouraged to consult Ref. [44] for an extensive discussion on the kinematics and

subsequent choice (and number) of plate generalized strains required to construct a

Reissner-Mindlin like plate theory.
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The final expressions for the 3D strain measures are

Γ11 =ε11 + x3κ11 + w1,1

2Γ12 =2ε12 + x3 (κ12 + κ21) + w1,2 + w2,1

Γ22 =ε22 + x3κ22 + w2,2

2Γ13 =w1,3 + w3,1

2Γ23 =w2,3 + w3,2

Γ33 =w3,3

(189)

Using the stress-strain relationship for isotropic, homogeneous, linear elastic ma-

terial (σ = DΓ) as in Eq. 141, the strain energy per unit reference surface is given

by

U =
1

2
〈ΓTDΓ〉 (190)

To form the total potential energy, the next logical step is to determine the poten-

tial of applied loads. The following loads are assumed to be present: body loads

φi (x1, x2, x3) Bi and surface loads τi (x1, x2) Bi and βi (x1, x2) Bi at the top and bot-

tom surfaces respectively. Care should be taken in recognizing that the top and

bottom surfaces are not at a constant distance from the reference surface, but a vari-

ation given by Eq. 183. Following the same development as in Ref. [125], one obtains

the applied load potential per unit reference area associated with warping terms (it

is sufficient to consider the terms not associated with warping in the potential for the

2D analysis since they obviously do not affect warping solutions)

Vw = −τiw+
i − βiw−i − 〈φiwi〉

w+ =w|x3=h(x1,x2)/2

w− =w|x3=−h(x1,x2)/2

(191)

The total potential energy is therefore Π = U +Vw and the warping functions can be

solved for by setting δΠ = 0. Following the variational formulation, the asymptotic
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procedure is initiated. The usual small parameters are associated with the smallness

of strain (the maximum strain is assumed to be of order ε) and the plate structure

(h(x1, x2)/a and h(x1, x2)/b). For this particular problem, additional small parame-

ters arise out of taper, i.e., ζα. The orders of the 2D strains and loading terms (surface

and body) are listed in Ref. [125]. The orders for warping are determined by equat-

ing the orders of the leading quadratic term in warping and leading bilinear term in

warping and generalized plate strains in the total potential energy. This leads to the

warping being O(hε). The next perturbations of warping will be O(δhε), O(δ2hε),

etc., where the small parameters associated with the plate definition and taper are

taken such that O(h/a, h/b, ζ1, ζ2) = δ.

The first step in the asymptotic procedure is to discard all terms in the potential

energy that are O(δ). The Euler-Lagrange equations for the extended functional

(constraints on warping need to be accounted for) now yield equations which can be

solved for the zeroth-order warping. The solution has the form

w(0) =Zε

w(0) =bw(0)
1 w

(0)
2 w

(0)
3
cT

(192)

These warping solutions, when put back into the strain energy, yield the classical

or generalized Love-Kirchhoff potential energy which corresponds to the well-known
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results given by

2Π0 = εT

Acl Bcl

BT
cl Dcl

 ε
ε = bε11 2ε12 ε22 κ11 κ12 + κ21 κ22c

T

Acl =
Eh(x1, x2)

1− ν2


1 0 ν

0 1−ν
2

0

ν 0 1


Bcl = 03×3

Dcl =
Eh(x1, x2)3

12 (1− ν2)


1 0 ν

0 1−ν
2

0

ν 0 1



(193)

The next step is to perturb the warping one order higher and repeat the procedure.

The first order warping functions will contain corrections associated with the applied

loads, taper parameters and derivatives of the 2D strains with respect to x1 and

x2, which cause a load vector (a term linear in strains) to appear in the potential

energy, along with explicit appearance of ζ1 and ζ2 in the plate stiffness measures and

transverse shear respectively. Thus,

w(1) =FSαε,α + FTαζαε+ w
(1)
L

w(1) =bw(1)
1 w

(1)
2 w

(1)
3
cT

(194)

Note that throughout this development, the warping functions (the matrices Z, FSα,

etc.) are not explicitly presented since the analytical expressions are quite lengthy,

but it suffices to say that they can be determined without significant difficulty us-

ing a symbolic manipulation software such as Mathematica R©. Once this warping is

known, we can substitute it back into the potential energy, to obtain the second-order

asymptotically correct potential energy per unit mid-surface area, which is of the form
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(omitting the constant term for obvious reasons)

2Π2 = εTAε+ εT,1Bε,1 + 2εT,1Cε,2 + εT,2Dε,2 + 2εT,1H1ε+ 2εT,2H2ε− 2εTF (195)

where A is a quadratic function of the taper parameters and H1 and H2 are linear

functions of the same. It is also interesting to note that there are no terms in the

strain energy that can be considered to be of first order in the small parameters.

All the terms are either zeroth- or second-order. Since this potential energy contains

derivatives of 2D strain variables, it becomes unsuitable from an engineering perspec-

tive. Casting it into a usable form is achieved through a Generalized Reissner-Mindlin

transformation. The first step involves switching to the 2D strain measures associated

with the B∗ system.

ε = R−Dαγ,α

R = bε∗11 2ε∗12 ε∗22 κ∗11 κ∗12 + κ∗21 κ∗22
cT

γ = b2γ∗13 2γ∗23
cT

D1 =

0 0 0 1 0 0

0 0 0 0 1 0


T

D2 =

0 0 0 0 1 0

0 0 0 0 0 1


T

(196)

Substituting this into the expression for the asymptotically correct potential energy

and discarding higher-order terms by recognizing that the trasnverse shear strains are

O(δε)

2Π2 =RTAR−2RTA0Dαγ,α +RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2

+ 2RT
,1H1R+ 2RT

,2H2R− 2RTF

(197)

where A0 = A (ζ1 = ζ2 = 0). The final desired potential energy will have the following

form

2ΠR = RTXR+ 2RTY γ + γTGγ − 2RTFR − 2γTFγ (198)

Therefore, the matrices X, Y , G, FR and Fγ need to be determined by casting Eq.

197 into the form of Eq. 198. The stress resultants which are defined to be conjugate
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to the 2D strains of B∗ are

FR =
∂ΠR
∂R

= XR+ Y γ − FR

Fγ =
∂ΠR
∂γ

= Y TR+Gγ − Fγ

FR =bN11 N12 N22 M11 M12 M22c
T

Fγ =bQ1 Q2c
T

(199)

where the Nαβ’s are the in-plane force stress resultants, Mαβ’s are the out-of-plane

moment stress resultants and Qα’s are the transverse shear force stress resultants.

The next step is to use the two moment equilibrium equations (mα’s are the plate

equivalent applied and inertial loads lumped together [125]) listed below

M11,1 +M12,2 −Q1 +m1 =0

M12,1 +M22,2 −Q2 +m2 =0

(200)

The moment equilibrium equations can be rewritten in terms of ΠR as

DTα
(
∂ΠR
∂R

)
,α

− ∂ΠR
∂γ

+

m1

m2

 = 0 (201)

The above equation will be used to solve for shear strain, and hence one can neglect

all terms except those that are first-order in small parameters. Neglecting higher

order terms and assuming that X (ζ1 = ζ2 = 0) = A0 (which is indeed shown to be

true later), the equation reduces to

DTα (A0R),α − Y
TR−Gγ + F γ = 0

F γ = Fγ +

m1

m2


(202)
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The underlined term in Eq. 197 can now be simplified using the above relation

−2RTA0Dαγ,α =2
(
RTA0

)
,α
Dαγ (integration by parts)

=2
[
(A0R),α

]T
Dαγ

=2
[
DTα (A0R),α

]T
γ

=2
[
Gγ + Y TR− F γ

]T
γ (using equation 202)

=γTGγ + 2RTY γ +
(
Gγ − 2F γ

)T
γ

(203)

Now, Eq. 202 can be recast and used to solve for the shear strain as

γ = G−1
[
DTαA0Rα − Y

TR+ F γ

]
Y = Y − A0,αDα

(204)

Using the above result in the underlined term in the last of Eqs. (203)

(
Gγ − 2F γ

)T
γ = RT

,αA0DαG−1DTβA0Rβ − 2RT
,αA0DαG−1Y

TR+RTY G−1Y
TR

(205)

Finally Eq. 197 can be rewritten as

2Π2 =RT
(
A+ Y G−1Y

T
)
R+ γTGγ + 2RTY γ − 2RTF + 2Π∗2

2Π∗2 =RT
,1

(
B + A0D1G

−1DT1 A0

)
R,1 + 2RT

,1

(
C + A0D1G

−1DT2 A0

)
R,2

+RT
,2

(
D + A0D2G

−1DT2 A0

)
R,2 + 2RT

,α

(
Hα − A0DαG−1Y

T
)
R

(206)

Therefore, if we can determine Y and G such that Π∗ goes to zero, then we have

a Generalized Reissner-Mindlin potential energy of the form of Eq. 198 with the

following solutions:

B + A0D1G
−1DT1 A0 = 0

C + A0D1G
−1DT2 A0 = 0

D + A0D2G
−1DT2 A0 = 0


Solve for G (78 equations, 9 unknowns) (207)

Hα − A0DαG−1Y
T

= 0

}
Solve for Y (72 equations, 36 unknowns) (208)
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X = A+ Y G−1Y
T

FR = F

Fγ = 0

(209)

The 30 additional unknowns come from the warping constraints in Eq. 187. Since

the number of equations exceeds the number of unknowns, the solution is obtained

through a least-squares approach. Thus, the second order asymptotically correct

strain energy has been packaged into a form which can be directly input in plate

2D solvers. This transformation procedure described above is valid as long as the

second-order asymptotically correct potential energy is of the form of Eq. 195. It is

not restricted to isotropic materials. But, for the given problem at hand, we have

closed-form analytical solutions for X, Y and G. The stiffnesses associated with

transverse shear are

G =

5
6
Gh(x1, x2) 0

0 5
6
Gh(x1, x2)

 (210)

The coupling stiffnesses between classical and transverse shear strain measures are

Y =



0 0

0 0

0 0

Y1ζ1 Y2ζ2

Y3ζ2 Y3ζ1

Y2ζ1 Y1ζ2


Y1 =

E (225− 7ν + 171ν2 + 5ν3)

72 (1− ν2) (5− 2ν + 5ν2)
h(x1, x2)2

Y2 =
E (15 + 70ν + 21ν2 + 98ν3)

36 (1− ν2) (5− 2ν + 5ν2)
h(x1, x2)2

Y3 =
5E (3 + 2ν + 3ν2)

16 (1 + ν) (5− 2ν + 5ν2)
h(x1, x2)2

(211)
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Finally, the solution for the A matrix (from which stiffnesses associated with the

classical strain measures can be obtained as per Eq. 209) is now presented. The A

matrix can be decoupled into the in- and out-of-plane components as

A =

 Ai 03×3

03×3 Ao

 (212)

The in-plane part is

(Ai)11 =
Eh(x1, x2)

1− ν2

[
1− 1− 2ν

6 (1− ν)
ζ2

1 +
ν2

6(1− ν)
ζ2

2

]
(Ai)12 = (Ai)23 = −Eζ1ζ2h(x1, x2)

12(1 + ν)

(Ai)13 =
Eh(x1, x2)ν

1− ν2

[
1 +

ν

6(1− ν)

(
ζ2

1 + ζ2
2

)]
(Ai)22 =

Eh(x1, x2)ν

1− ν2

[
1− 1

12

(
ζ2

1 + ζ2
2

)]
(Ai)33(ζ1, ζ2) = (Ai)11(ζ2, ζ1)

(213)

while the out-of-plane part is given by

(Ao)11 =
Eh(x1, x2)3

12 (1− ν2)

[
1 +

7ν − 57

6 (1− ν)
ζ2

1 −
25ν2

3(1− ν)
ζ2

2

]
(Ao)12 = (Ao)23 = −Eζ1ζ2 (57 + 50ν)h(x1, x2)

144(1− ν2)

(Ao)13 =
Eh(x1, x2)ν

1− ν2

[
1 +

7ν − 107

6(1− ν)

(
ζ2

1 + ζ2
2

)]
(Ao)22 =

Eh(x1, x2)3ν

24 (1 + ν)

[
1− 19

4

(
ζ2

1 + ζ2
2

)]
(Ao)33(ζ1, ζ2) = (Ao)11(ζ2, ζ1)

(214)

To recover the 3D stress and strain, one needs to evaluate the warping to second-

order. This helps particularly in the determination of stresses such as σ33, which is

generally smaller than the other two normal stresses, but still may come into play in

some cases. Therefore, the warping is further perturbed, the fourth order potential

energy is taken as the functional and the solution of the second-order warping comes
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out to be of the form

w(2) =WSSαβε,αβ +WSTαβζαε,β +WTTαβζαζβε+ w
(2)
L

w(2) =bw(2)
1 w

(2)
2 w

(2)
3
cT

(215)

The zeroth, first and second order warping can be used in Eq. 189. Unlike beam

problems, the generalized strain derivatives cannot be evaluated using ‘global’ equi-

librium equations alone. Therefore, once the potential energy of Eq. 198 is input into

a plate solver and the distributions of the 2D strains with respect to x1 and x2 are

known, the derivatives can be evaluated (if the problem does not offer the luxury of an

analytical solution for the generalized plate strains, the derivatives can be obtained

by finite difference procedures). Once the 3D strains, are known, the 3D stresses can

be obtained by the relation given in Eq. 141.

This concludes the development of a theory for plates with variable thickness.

Both the solutions for an 8 × 8 stiffness matrix and the recovery of 3D quantities

have been outlined. No assumptions were made in the development of the kinematics.

Instead, the presence of naturally occurring small parameters was exploited to present

a mathematically rigorous development which is valid up to second order in any of

the small parameters.

8.2 Comparison with ABAQUS

In this section, the results from the plate theory developed will be compared to results

from ABAQUS [1]. ABAQUS is a general purpose finite-element tool commonly

used for structural analysis. The problem under consideration is the linear elasticity

solution for a plate with taper in one direction (x1). The other plate dimension, x2

is assumed to be very long, so that the plate can be modeled in ABAQUS using

plane-strain elements. The loading for this problem, depicted in Fig. 8.2, is

φi = τα = βα = 0

τ3 = β3 =
p0

2
sin
(πx1

a

) (216)
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Figure 71: Plate with infinite dimension along x2 (not shown on figure; along the
normal into the plane of the paper) and linear taper along x1; loaded at the top and
bottom with sinusoidal loads

The ends of the plate at x1 = 0, a are assumed to be under simple support. The mo-

tivation for choosing the problem is that for plates of constant thickness, Pagano [82]

gives the exact elasticity solutions under the same loading condition which is referred

to as the cylindrical bending problem. For the case of varying thickness, the solutions

will obviously not correspond to cylindrical bending, but nevertheless should be useful

for testing the predictions of the current theory. The problem is set up with the values

of ν, h0/a and ζ1 to be 0.3, 0.25 and 0.2 respectively. The final results are the non-

dimensional 3D stresses (σij/p0) vs. x3/h(x1) at x1 = a/2. These are compared from

three different methods, which are from ABAQUS, a VAM plate theory accounting

for variable thickness as in Sec. 8.1 (VAM-corrected) and one accounting for variable

thickness in the traditional way, i.e. by replacing h with h(x1, x2) in a plate theory

developed for constant-thickness plates (VAM-uncorrected). The ABAQUS model is

made of 19,019 CPE8R elements (8-node bi-quadratic plane strain quadrilateral with

reduced integration) and consists of a total of 57,798 nodes. The density of the mesh

was chosen by refining the mesh further and further till the stress-traction boundary
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conditions at x3 = ±h(x1, x2)/2 are satisfied with reasonable accuracy.

The solution of the problem from the plate theory of Sec. 8.1 requires the solution

of the 2D problem. Before that, the load vector (the linear term FR) is calculated as

FR = −νp0h(x1, x2)2

10(1− ν)
sin
(πx1

a

)[
0 0 0 1 0 1

]T
(217)

The full list of plate equilibrium equations and linearized strain-displacement relations

can be found in Refs. [124] and [94] respectively. They can be simplified since the

plate is very long in the x2 direction and hence the derivative of any quantity with

respect to x2 can be discarded. The equilibrium equations with the simple support

boundary conditions yield the following solutions

N11 = 0

N12 = 0

M11 = p0

(a
π

)2

sin
(πx1

a

)
Q1 = p0

(a
π

)
cos
(πx1

a

)
Q2 = M12,1

(218)

Using the plate constitutive law of Eq. 199, the 2D strains can be obtained, of which

the following relations (obtained from the plate being very long in the x2 direction)

can be used to determine the remaining stress resultants

ε∗22 = 0

κ∗22 = 0

2γ∗23,1 = κ∗12 + κ∗21

(219)

The solutions obtained are thus

N22 = 0

M12 = 0

(220)

The solution for M22 is another lengthy expression with dependencies on both the

sine and cosine of πx1/L. These can be used to determine the final solutions for the
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Figure 72: Stress recovery for the problem depicted in Fig. 8.2. Stress is normalized
by p0, while x3 is by h(x1)

2D strains. The solutions for the 2D strains and their derivatives can be used to

determine the recovery. The results are now presented in Fig. 8.2.

It is clear from the results that while VAM-uncorrected does a good job of captur-

ing the stresses σ11 and σ22, the other two stress predictions are clearly in error. In

fact, from the value at the ends, it is very evident that the stress-traction boundary

conditions are violated as a consequence of ignoring the tilting of the outward normal.

σ13 is predicted to vanish throughout, which is clearly not the case. On the other

hand, all the stress distributions for VAM-corrected are in very good agreement with

the ABAQUS results. This example clearly proves that to analyze plates of variable

thickness, it is necessary to perform an analysis of the kind described in this chap-

ter. Merely changing the thickness distributions may work for certain problems but

clearly is not sufficiently general, nor can it guarantee that all aspects of the analysis
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are captured with good agreement. This is because these kinds of approximations

are not in tune with the mechanics of such a problem. Further as always, a theory

developed using the VAM does not make any assumptions regarding the deformation

and is suited to capture effects such as this, without any fundamental change in the

procedure.
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IX

CONCLUSIONS AND FUTURE WORK

Behind every human visage are flesh and blood, which are mortal; and ideas,

which are immortal.

– V for Vendetta

The research work corresponding to the material presented in this thesis was fun-

damentally motivated by the need for the development of a next generation VABS.

In that sense, the thesis represents a collection of problems each resulting in either

an update to VABS or yielding some fundamental insight into the mechanics of the

pertinent beam or plate problems. The ability to model initial curvature, obliqueness

and extract a higher-fidelity recovery field have already been incorporated into VABS.

For all the problems addressed in this work, the solutions from VAM were com-

pared with results from exact elasticity solutions (where they exist) or solutions from

3D FEM. Owing to the nature of the effects being studied (initial curvature, oblique-

ness etc.) the author found little sense in comparision with traditional beam theories

which rely on some ad hoc assumptions regarding the cross-sectional deformation.

For example, as has been pointed out earlier, any kind of assumptions made along

the lines of traditional beam theories for the obliqueness models will produce results

with very little correspondance to reality.

From the perspective of a purist, it may be argued that the plate problem does not

fall under the purview of this thesis. The author however would beg to differ because

possibilities such as plate elements being used to model rotorcraft flex-beams and

reducing a plate model to that of a beam using the ‘sequential dimensional reduction’

idea (used in Sec. 4.6) as an alternative to model spanwise non-uniformity in beams
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keep it under the common umbrella. Also most of the developments in this thesis are

within the framework of a small strain, large dispacement analysis for dimensionally

reducible structures. Therefore, they can be used in stability studies for which this

assumption holds. These models cannot predict, for example, any kind of local shell

buckling phenomenon as the warping variables are solved for in terms of the plate or

beam generalized strains.

Most of the developments in this thesis are akin to the wheel of time, which

has neither a beginning nor an end; what each development can be used to further

accomplish cannot be fathomed in its entirety, but does not mean an attempt cannot

be made to do so.

9.1 Accomplishments

9.1.1 Recovery for Spanwise Non-Uniform Beams

A beam theory has been presented based on the VAM for tapered strip-beam. The

strip-beam is sufficiently thin that it can be assumed to be in a state of plane stress.

The novel feature of the beam theory is that the effect of the taper parameter τ on

the lateral-surface boundary conditions is included. This effect must be accounted

for when performing a cross-sectional analysis, which gives the cross-sectional elastic

constants necessary for solving the 1D beam equations, and the recovery relations

necessary for accurately capturing stress, strain and displacement. To obtain accurate

recovery relations, it is necessary to evaluate warping through second order in the

small parameters, while only first-order warping is sufficient for obtaining accurate

cross-sectional elastic constants. When the VAM-based beam theory is linearized

and applied to problems for which elasticity solutions exist, such as constant axial

force, constant bending moment and constant transverse shear force, the results agree

quite well (within 5% of the exact elasticity ones) for all values of τ for a beam with

δ up to 0.25. Beyond this value of δ, the values of τ for which the solutions are
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good reduces; and, finally, for δ = 0.4, the maximum value of τ is 0.26, which is

satisfactory. Therefore, a VAM-based beam cross-sectional analysis can solve the

problem of a tapered beam with sufficient accuracy.

Unfortunately, while extending the approach of Chapter 3 to model spanwise non-

uniformity for the general case, issues with the determination of certain matrices in the

second-order asymptotically correct theory and derivatives of the generalized Timo-

shenko stiffness matrix have stalled further development [42]. Therefore, the approach

to model spanwise non-uniformity is now being pursued by a different methodology

[68].

9.1.2 Analytical Verification of the Initial Curvature Effect

A beam theory has been proposed for the planar deformation of in-plane curved

isotropic strips using the VAM. The beam theory was specialized for the linear case

and successfully verified using classical elasticity solutions, both for its predictions

of the strain energy per unit length and recovery relations for cross-sectional stress

and strain. The theory was then used to compare results with VABS. The predicted

behavior from VABS 3.3 and earlier versions was at variance with theory, and the

problem was corrected in versions of VABS starting with 3.4. The error was caused

by the way the asymptotic expansion of g and its powers was handled in the older

versions of VABS. Moreover, results from the VAM-based beam theory suggest two

ways of improving current VABS results. One is the pGT form, which is closer to

the asymptotically correct second-order energy than the GT form. The other involves

evaluation of the second-order warping to increase the accuracy of the sectional stress-

strain recovery. Implementation of these two features will increase the accuracy and

robustness of VABS.

Further, a beam theory has been developed for the in-plane deformation of an ini-

tially curved composite strip. The rigor in dimensional reduction from 3D elasticity
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has been demonstrated using the results from the corresponding plate theory. The

validity of this theory is limited to laminates whose in and out-of-plane deformations

are decoupled (readers familiar with CLPT will recall that this corresponds to the

vanishing of the matrix B). This is most common in the case of symmetric layup

configurations. This work serves as a good validation tool for VABS and also provides

analytical expressions for the stiffness matrix and stress-strain recovery, a rarity for

composite structures, and consequently the author believes that this can serve as a

verification tool for researchers working on slender, initially curved structural mem-

bers made of composite material.

9.1.3 Higher Fidelity Stress-Strain-Displacement Recovery

The capabilities of VABS have been extended to capture a higher fidelity stress, strain

and displacement recovery. The major step that is required for this functionality is

to evaluate a second-order warping field. The development is valid for both the GT

and GV theories of VABS and requires hardly any additional computational effort.

Stress distributions over a few example cross-sections have been provided and the

advantages of this feature are particularly found in the stresses σ22, σ23 and σ33 for

initially curved and/or twisted beams. Therefore, both the cross-sectional stiffness

matrix and the recovery of 3D quantities are correct up to second-order in small

parameters; bringing consistency in both aspects of VABS.

9.1.4 Oblique Cross-Sectional Analysis

Building on previous works [86, 91], this effort develops a cross-sectional model for

which the user is not constrained to choose a reference cross-sectional plane that is

perpendicular to the reference axis. An extensive validation of this model is preceded

by the analytical development for two test cases which possess elasticity solutions, sit-

uations wherein the model comes in its own right and a brief outline of the theory. It
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can be seen that the VABS results are invariant, whether the user chooses an orthog-

onal section or an oblique section. This is expected because the beam global behavior

should be independent of the obliqueness of the reference cross-sectional plane, and

the results are also in excellent agreement with other well established methods. Re-

sults grouped in four different categories (transverse shear, restrained warping, initial

twist and stress recovery) were included with appropriate discussions, to demonstrate

that VABS has the flexibility of modeling beams with a non-orthogonal section, an

added advantage while determining the structural and aeroelastic response of a sys-

tem such as a rotor blade. VABS is thus one of the few beam analysis tools that offers

the user independent choices of reference line and reference cross-sectional plane.

9.1.5 Thin-Walled Beams: Interaction of Small Parameters

A theoretical framework has been provided for the problem of interaction of small pa-

rameters by considering the small parameter associated with wall thickness ab initio.

An initially out-of-plane curved strip with initial twist was chosen as a representative

problem and it was shown that in the zeroth-order analysis terms up to fourth-order

in k1 and k2 were present in the stiffness matrix due to the presence of δh in the

denominator. Two innovative approaches of this analysis are the splitting of the

warping field motivated by the shell-like nature of the problem and a phantom step,

which is used to determine certain terms and their orders in the warping field. An

algorithm has been provided for the development of a shear-deformable theory and

its finite-element implementation has been left for the future.

9.1.6 Plates of Variable Thickness

For plates whose thickness varies in the global directions linearly, a plate theory has

been developed using the VAM. In a first of its kind development, if these linear

variations along the x1 and x2 directions are given by ζ1 and ζ2, then the both the

8×8 stiffness matrix and the 3D stress and strain recovery are shown to contain these
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taper parameters explicitly, as opposed to just being present by variation of the plate

thickness. It is later clearly demonstrated using a problem with sinusoidal surface

loads at the top and bottom that such an analysis is needed to accurately determine

the stress, whose variation was compared with results from ABAQUS. In conclusion,

the standard practice of simply changing the thickness in results for uniform plates

will not yield the right results, since it models the mechanics of the plate wrongly, by

disregarding the tilt of the outward-directed normals at the top and bottom surfaces

in the boundary conditions.

9.2 Future Work

9.2.1 Principal Shear Axes in the GT Model

Ref. [34] follows up on the previous work of Ref. [33] and is clearly aimed at proving

that the concept of principal shear axes is redundant. In beam theory, the idea of the

principal axes of bending is well known. This is essentially the orientation of the cross-

sectional axes for which the cross-bending term, i.e., the term in the stiffness matrix

that couples the two bending deformations is zero. One could extend this concept

to shearing deformation as well and define the principal shear to be the direction in

which the term that couples the two shear deformations is zero.

This issue essentially pertains to the shear-coupling term or cross-shear term.

Ref. [34] asserts on the basis of Ref. [79], that if the axes are chosen to be along

the principal centroidal axes of bending, the shear coupling term vanishes. Results

obtained from VABS suggest otherwise so that there seems to be no reason for the

directions of principal bending and principal shear to coincide.

To decide this debate, consider the trapezoidal section, depicted in Fig. 73. The

beam, of length 7.5, is cantilevered with the free end subjected to a transverse load P

as shown. The material considered is isotropic with E = 2.6× 1010 and ν = 0.3. The

reference line is chosen as the line of shear centers. Therefore, when a transverse load
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Figure 73: Trapezoidal cross section with a = 2; b = 3 and h = 1 with the origin at
shear center

is applied at the shear center, the only deformations will be those of bending and shear.

To calculate the displacements that arise purely out of shear, the bending solution can

be subtracted from from the total solution. The shear displacement perpendicular

to the load will determine the behavior of the cross-shear term. Consider the two

methods outlined below:

1. In the first method, the refined flexibility matrix was obtained for the cross
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section using VABS for the x2 − x3 coordinate axes:

γ11

2γ12

2γ13

κ1

κ2

κ3



=



φ11 0 0 0 φ15 φ16

0 φ22 φ23 0 0 0

0 φ23 φ33 0 0 0

0 0 0 φ44 0 0

φ15 0 0 0 φ55 φ56

φ16 0 0 0 φ56 φ66





F1

F2

F3

M1

M2

M3



(221)

The loads at any axial coordinate can be easily determined as F1 = 0, F2 =

−P sin (θ), F3 = P cos (θ), M1 = 0, M2 = −P cos(θ)(L − x1) and M3 =

−P sin(θ)(L − x1). Specializing the geometrically exact strain-displacement

relations of Ref. [46] for the linear case (assuming small displacements and

rotations) and using the boundary conditions for the fixed end (average dis-

placements and rotations are zero), the formula for the tip shear displacement

orthogonal to P is:

U shear = PL
{
φ23

[
cos(θ)2 − sin(θ)2

]
+ sin(θ) cos(θ) (φ33 − φ22)

}
(222)

It should be noted that results recently obtained from the new SectionBuilder

[14] code are identical with those obtained from VABS.

2. In the second method, the tip displacements were computed from ABAQUS

using brick 3D finite elements (C3D20R) with the entire cross-sectional plane

at the left end fixed (ENCASTRE boundary condition). The bending results

were obtained from GEBT, using only the classical stiffness matrix from VABS

(which considers only extension, torsion and bending). This solution shall be

denoted for the remainder of this article as GEBT c. The fixed boundary con-

dition for the latter is the same as that of previous method. Using these results,

the tip shear displacement perpendicular to the load can be computed.
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Figure 74: Tip shear displacement perpendicular to the load for varying θ as shown
in Fig. 73

Plotting the results obtained from both these solution methodologies, one obtains

Fig. 74. The analytical solution, which corresponds to the first method, vanishes

when the load is applied at θ = −13.68◦, which thus occurs when the cross-shear

term goes to zero and is in the direction of principal shear as predicted by VABS.

However the second method’s (based on 3D FEM) solutions vanish when the load

is applied along the principal bending directions, which seems to suggest that Ref.

[34]’s assertion is true. (All the values in this problem are assumed to be given in a

consistent set of units. The load is assumed to be unity and the displacements are

scaled by E). The discrepancy between the results was thought to be the difference in

the application of the boundary conditions at the fixed end. While for beam theory

solutions, the boundary conditions total six in number (average displacements and

rotations are zero), ABAQUS models a fixed end by setting three displacements at

every node of the section of the fixed end of the beam to be zero. These need not be

necessarily truly equivalent but when one increases the length of the beam (and hence
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by St. Venant’s principle the way the boundary conditions are applied should cease to

affect the solutions) to 15 and 22.5, the exact same behavior is observed. Therefore

at this point it would seem that Prof. Dong’s assertion concerning the principal shear

is correct. A similar conclusion is obtained for another asymmetrical cross section: A

thin-walled Z-section. It is evident further investigations are needed concerning the

modeling of asymmetric cross-sections in VABS.

9.2.2 Unified GT-GV Model

The current Vlasov (GV) and Timoshenko (GT) models in VABS are complementary

from the second order asymptotically correct energy. While the GT model offers a

6×6 stiffness matrix for ‘regular’ beams, the GV theory yields a 5×5 stiffness matrix

for thin-walled beams with open sections. It is a well established fact that the GV

theory is not valid for closed-section beams [46]. A single unified theory will no doubt

be convenient for users. An approach to build a unified model was initiated by Volovoi

et al. [116], who showed a decoupling only for the isotropic, prismatic case. An issue

identified was the assignment of terms which contribute both to GT and GV Vlasov

theories.

Therefore, the current approach [129] cannot be used to develop a unified theory.

Further ambiguities which need to be addressed is the process of integration by parts

before the Generalized Timoshenko transformation and definition of the Vlasov 1D

variable. While integration by parts is used to remove the x1 derivatives of warping,

Ref. [127] discovered that integration by parts of the final second-order asymptotically

correct strain energy results in negative shear stiffnesses. Such an ambiguity clearly

does not exist for plates and shells [125].

Wempner [120] uses a warping variable α(x1) not directly connected to torsion.

An out-of-plane warping is introduced as

w1 = ψ (x2, x3)α (x1) (223)
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Figure 75: I-beam analyzed with a Vlasov variable: α(x1)

instead of the usual St. Venant assumption for torsion

w1 = ψ (x2, x3)κ1 (x1) (224)

The resulting theory developed has an 8×8 beam sectional stiffness matrix with 1D

variables γ11, γ12, γ13, κ1, κ2, κ3, α and α,1. For ‘regular’ beams, one simply sets

α = κ1. The constitutive relations of Eq. (8-100) in Ref. [120] show a theory with

transverse shear and Vlasov effects. For example, for the I-beam shown in Fig. 75,

the shear strains on the flanges can be written as

2Γ13 = 2γ13 +
h

2
(κ1 − α) (225)

This equation clearly demonstrates both the usefulness of a variable such as α and the

utility of a combined theory. The warping solution procedure in VABS is handicapped

by the fact that it can only pick up the warping as cross-sectional variations of 1D

variables that already exist in the problem. Therefore, the fundamental challenge

is to revisit the beam kinematics and accommodate an α-like variable. Unlike Ref.

[120], the VAM procedure never assumes warping to be of any form but rather is

solved for from an asymptotic method. It should be noted that while such theories

have been developed in the past by researchers [119], a fundamental understanding of
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the α variable is clearly lacking. Studies in this direction are clearly promising given

the utility of such a theory.

The final stiffness matrix will be an 8×8 array; from which the GT and GV model

can be obtained. The study of boundary layer effects using the dispersion curves [114]

should prove to be pertinent to this problem.

9.2.3 Stress Resultants from Recovery

In the beam theory of Ref. [46], the solutions to the beam force and moment resul-

tants, Fi’s and Mi’s are usually obtained from the 1D analysis of the problem. In the

final step, when the 3D stresses are recovered from the cross-sectional analysis, it is

expected these integrate out (using the appropriate formulae) to the resultants which

are used as inputs to the recovery. This serves as a good internal check for the beam

analysis, i.e. verifying the consistency between the 2D and 1D parts of the prob-

lem. Therefore using these well-known formulae, the stresses can be integrated using

standard Gaussian quadrature rules to obtain back the stress resultants. Without

significant effort, such a feature can be added into the VABS program.

Consider the thin-walled three celled section shown in Fig. 76. The section is

made of isotropic material with the following properties: E = 0.26 × 1012 psi and

ν = 0.3. The generalized shear center of the section as obtained by VABS was shown

to be in excellent agreement with the results from ANSYS in Chapter 7 of Ref. [46].

Suppose the beam reference line was now taken to be the line of generalized shear

centers. Further at a particular section, say the 1D analysis yields the solution for

the stress resultants as all being zeros, except for F3 = 1× 105 lb. For this case, the

3D stresses can be recovered from VABS.

The stress resultants obtained from the integration of the stresses are all zero

except for M1 and F3. While F3 is obtained as the value input (the expected value),

the value for M1 (that is expected to be zero) is 4 × 103 lb-in. The same values
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(x2sc, x3sc) 
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Figure 76: Cross section having three closed cells

were obtained on further refinements of the mesh indicating that these were the final

converged results.

It is important to state here that the stress resultants in the beam theory of Ref.

[46] are defined as those being conjugate to the 1D strain measures of the potential

energy per unit length. It could be argued that the condition of the appropriate stress

integrals being equal to the stress resultants is never enforced. However structural

engineers expect a consistency between the stress resultants and beam forces and

moments. Hence further investigation is required in relating the 1D force and moment

variables in terms of the 3D stresses.

9.2.4 Miscellany

Some other avenues of fundamental and applied research in the framework of the

analysis of beams and plates described in this research are listed below:

• Verification and validation of VABS is an continuous process. An essential

aspect of this process is the identification of pertinent papers with new devel-

opments and exact elasticity solutions. Since VABS is a general cross-sectional

analysis tool, all such solutions should fall under its purview. A sample list of
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such papers has been provided in Sec. 2.1.

• The author also advocates the construction of general finite-element/ finite-

difference based shell and 1D Vlasov solvers; otherwise the comparisons for any

developments in these areas will be restricted to problems which have simple

closed-form analytical solutions such as the works of Refs. [125] and [134].

• Another potential area of research is the development of a beam damping model

similar to the development of Ref. [28]. The question to be answered is: just

as the 3D elastic properties are reduced to a stiffness matrix, can the 3D vis-

coelastic properties be used to obtain a damping matrix? Further detailed

investigation is required on this subject matter.

• One might consider moving out of the linear elastic regime and accounting for

nonlinear elastic strain and metal plasticity. This will require strain measures

such as the logarithmic functions introduced by Henky [4] and iteration between

the local and global analyses.

• In the framework of dimensionally reducible structures, models can also devel-

oped for studies on damage and crashworthiness. There are a few studies on

similar lines concerning failure predictions based on the Tsai-Wu-Hahn criterion

[85].

• Avenues for applied research include structural models which account for MEMS

and piezoelectric devices. Smart or intelligent structures are often designed with

these devices for a variety of reasons such as wave guiding. It is expected that

beam or plate modeling when accounting for such structures will have to be

done with additional generalized strain measures [88].
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APPENDIX A

MODIFICATION OF THE ANALYSIS FOR CURVED

AND TWISTED BEAMS

In the light of the developments presented in the Chapter 4, the following equations

have been modified in the VABS 3.4 code. For the original form of the equations and

any further details, the reader is encouraged to consult Ref. [46]. Note that
√
g is

expanded as

√
g = β11 − y2k3 + y3k2 = g0 + g1

1
√
g

=
1

β11

+
y2k3 − y3k2

β2
11

+
(y2k3 − y3k2)2

β3
11

+O(k3
i )

= γg0 + γg1 + γg2 +O(k3
i )

(226)

The strain operators defined in Eqs. (3.94) – (3.99) in Ref. [46] are modified as:

Γβ = − 1
√
g

(
β12

∂

∂y2

+ β13
∂

∂y3

)
= −(γg0 + γg1 + γg2)

(
β12

∂

∂y2

+ β13
∂

∂y3

)
= Γβ0 + Γβ1 + Γβ2

(227)

Γaβ =



Γβ 0 0

∂
∂y2

Γβ 0

∂
∂y3

0 Γβ

0 ∂
∂y2

0

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3


= Γaβ0 + Γaβ1 + Γaβ2 (228)
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If β1α = 0 (cross section is chosen normal to the reference line), then Γaβ = Γaβ0 .

Γε =
1
√
g



β11 0 y3 −y2

β12 −y3 0 0

β13 y2 0 0

0 0 0 0

0 0 0 0

0 0 0 0


=

1
√
g

Γε (229)

Γ` =
1
√
g



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


=

1
√
g

Γ` (230)

ΓR =
1
√
g



ΓhR −k3 k2

k3 ΓhR −k1

−k2 k1 ΓhR

0 0 0

0 0 0

0 0 0


=

1
√
g

ΓR (231)

where

ΓhR = k1

(
y3

∂

∂y2

− y2
∂

∂y3

)
(232)

Note above that the operator Γε contributes a zeroth-order term to the strain

while Γ` and ΓR contribute to the first-order terms. Define:

〈〈•〉〉 = 〈•√g〉 (233)
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The expression for the strain energy is as given by Eq. (4.40) in Ref. [46]:

2U =V TEV + 2V T (Daεε+DaRV +Da`V
′) + εTDεεε+ V TDRRV

+ V ′TD``V
′ + 2V TDRεε+ 2V ′TD`εε+ 2V TDR`V

′
(234)

The matrices defined in the above equation are now modified as:

E =〈〈(ΓaβS)TDΓaβS〉〉

=〈(ΓaβS)TD(ΓaβS)
√
g〉

=〈((Γaβ0 + Γaβ1 + Γaβ2)S)TD((Γaβ0 + Γaβ1 + Γaβ2)S)
√
g〉

= 〈(Γaβ0S)TDΓaβ0Sg0〉︸ ︷︷ ︸
E0

+ 〈(Γaβ0S)TDΓaβ0Sg1〉+ 2〈(Γaβ0S)TDΓaβ1Sg0〉︸ ︷︷ ︸
E1

+ 2〈(Γaβ0S)TDΓaβ1Sg1〉+ 2〈(Γaβ0S)TDΓaβ2Sg0〉+ 〈(Γaβ1S)TDΓaβ1Sg0〉︸ ︷︷ ︸
E2

= E0 + E1 + E2

(235)

Daε = 〈〈(ΓaβS)TDΓε〉〉

= 〈(ΓaβS)TDΓε〉

= 〈(Γaβ0S)TDΓε〉+ 〈(Γaβ1S)TDΓε〉+ 〈(Γaβ2S)TDΓε〉

= Daε0 +Daε1 +Daε2

(236)

Again, if the cross section is normal to the reference line, Daε = Daε0 .

DaR = 〈〈(ΓaβS)TD(ΓRS)〉〉

= 〈(ΓaβS)TDΓRS〉

= 〈(Γaβ0S)TDΓRS〉+ 〈(Γaβ1S)TDΓRS〉

= DaR1 +DaR2

(237)

Only terms up to the second order are kept. Again, DaR2 = 0 if β1a = 0.

Da` = 〈(ΓaβS)TDΓ`S〉

= 〈(Γaβ0S)TDΓ`S〉+ 〈(Γaβ1S)TDΓ`S〉

= Da`1 +Da`2

(238)
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Dεε = 〈〈ΓTε DΓε〉〉

= 〈 1
√
g

Γ
T

ε DΓε〉

= 〈γg0Γ
T

ε DΓε〉+ 〈γg1Γ
T

ε DΓε〉+ 〈γg2Γ
T

ε DΓε〉

= Dεε0 +Dεε1 +Dεε2

(239)

DRR = 〈〈(ΓRS)TDΓRS〉〉

= 〈 1
√
g

(ΓRS)TDΓRS〉

= 〈γg0(ΓRS)TDΓRS〉

(240)

D`` = 〈〈(Γ`S)TDΓ`S〉〉

= 〈 1
√
g

(Γ`S)TDΓ`S〉

= 〈γg0(Γ`S)TDΓ`S〉

(241)

DRε = 〈〈(ΓRS)TDΓε〉〉

= 〈 1
√
g

(ΓRS)TDΓε〉

= 〈γg0(ΓRS)TDΓε〉+ 〈γg1(ΓRS)TDΓε〉

= DRε1 +DRε2

(242)

D`ε = 〈〈(Γ`S)TDΓε〉〉

= 〈 1
√
g

(Γ`S)TDΓε〉

= 〈γg0(Γ`S)TDΓε〉+ 〈γg1(Γ`S)TDΓε〉

= D`ε1 +D`ε2

(243)

DR` = 〈〈(ΓRS)TDΓ`S〉〉

= 〈 1
√
g

(ΓRS)TDΓ`S〉

= 〈γg0(ΓRS)TDΓ`〉

(244)
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From Eq. (234), the zeroth-order energy can be obtained.

2U0 =V TE0V + 2V TDaε0ε+ εTDεε0ε (245)

This along with the constraints on the warping field (to render it unique) is used

to obtain the zeroth-order warping, V0(= V̂0ε). This warping is now perturbed and

substituted back in the energy:

2U =(V0 + V1)T (E0 + E1 + E2)(V0 + V1) + 2(V0 + V1)T ((Daε0 +Daε1 +Daε2)ε

+ (DaR1 +DaR2)(V0 + V1) + (Da`1 +Da`2)(V
′

0 + V ′1)) + εT (Dεε0 +Dεε1 +Dεε2)ε

+ V T
0 DRRV0 + V ′T0 D``V

′
0 + 2(V0 + V1)T (DRε1 +DRε2)ε+ 2(V ′0 + V ′1)T (D`ε1 +D`ε2)ε

+ 2V T
0 DR`V

′
0

(246)

From the above equation, the zeroth and first-order terms are given as:

2U0 + 2U1 =V T
0 E0V0 + 2V T

0 Daε0ε+ εTDεε0ε+�����V T
0 E0V1 + V T

0 E1V0 +�����V T
1 E0V0 + 2V T

0 Daε1ε

+������
2V T

1 Daε0ε+ 2V T
0 DaR1V0 + 2V T

0 Da`1V
′

0 + εTDεε1ε+ 2V T
0 DRε1ε+ 2V ′T0 D`ε1ε

(247)

The terms canceled above correspond to the solution of the zeroth-order warping V0.

The second-order terms are

2U2 =V T
0 E1V1 + V T

0 E2V0 + V T
1 E0V1 + V T

1 E1V0 + 2V T
0 Daε2ε+ 2V T

1 Daε1ε+ 2V T
0 DaR1V1

+ 2V T
0 DaR2V0 + 2V T

1 DaR1V0 + 2V T
0 Da`1V

′
1 + 2V T

0 Da`2V
′

0 + 2V T
1 Da`1V

′
0 + εTDεε2ε

+ V T
0 DRRV0 + V ′T0 D``V

′
0 + 2V T

0 DRε2ε+ 2V T
1 DRε1ε+ 2V ′T0 D`ε2ε+ 2V ′1D`ε1ε+ 2V T

0 DR`V
′

0

(248)

Only the terms related with V1 are relevant in the process of the minimization of

the strain energy. After performing integration by parts to get rid of the derivatives
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of V1 with respect to x1, the relevant terms are

F =V T
1 E0V1 + 2V T

1 (E1V0 +Daε1ε+ (DaR1 +DT
aR1

)V0 +DRε1ε)

+ 2V T
1 ((Da`1 −DT

a`1
)V ′0 −D`ε1ε

′)

=V T
1 E0V1 + 2V T

1 (E1V̂0 +Daε1 + (DaR1 +DT
aR1

)V̂0 +DRε1)ε

+ 2V T
1 ((Da`1 −DT

a`1
)V̂0 −D`ε1)ε

′

=V T
1 E0V1 + 2V T

1 DRε+ 2V T
1 DSε

′

(249)

Keeping the constraints in mind, one can use the standard procedure of the calculus

of variations to solve for the warping field. Hence

E0V1 =(Dc(Ψ
TDc)

−1ΨT −∆)(DRε+DSε
′)

V1 =V1Rε+ V1Sε
′

(250)

where Ψ is the kernel matrix for E0 and Dc is the constraint matrix associated with

warping (i.e., E0Ψ = 0 and V TDc = 0, respectively). Using this, we may now obtain

the second-order asymptotically correct strain energy as

2U = εTAε+ 2εTBε′ + ε′TCε′ + 2εTDε′′ (251)

The matrices in the above equation are defined as

A =V̂0
T
Daε0 +Dεε0 + V̂0

T
E1V̂0 + 2V̂0

T
Daε1 + 2V̂0

T
DaR1V̂0 +Dεε1 + 2V̂0

T
DRε1

+ V̂0
T
E2V̂0 + 2V̂0

T
Daε2 + 2V̂0

T
DaR2V̂0 +Dεε2 + V̂0

T
DRRV̂0 + 2V̂0

T
DRε2 + V T

1RDR

B =V̂0
T
Da`1V̂0 +DT

`ε1
V̂0 + V̂0

T
Da`2V̂0 +DT

`ε2
V̂0 + V̂0

T
DR`V̂0 +

1

2
(V T

1RDS +DT
RV1S)

+ (V̂0

T
Da`1 +DT

`ε1
)V1R

C =V̂0

T
D``V̂0 + V T

1SDS

D =(V̂0

T
Da`1 +DT

`ε1
)V1S

(252)

where

DR =(Dc(Ψ
TDc)

−1ΨT + ∆)DR

DS =(Da`1 +DT
a`1

)V̂0 +D`ε1

(253)
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The generalized Timoshenko transformation now follows as that given in Ref. [41].
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APPENDIX B

SOLUTION FOR THE Y MATRIX

The second-order asymptotically correct strain energy is converted into a GT form

using equilibrium equations. The latest procedure for the GT transformation is out-

lined in Ref. [129] with which the symbols and notation used here are consistent with.

The final GT form is written as

2UGT = εTXε+ 2εTY γs + γTs Gγs (254)

In the zeroth-order solution, after determining G, the equations that are to be solved

for Y are

AQG−1Y TA−1Q = BA−1Q (255)

which is a system of eight equations in eight unknowns. After some matrix algebra,

the solution to this equation is written as [129]

Y = BTA−1QG (256)

If one follows the therein derivation carefully, it can be observed that the solution

process involved algebra with rectangular matrices, so the system goes from eight

equations, eight unknowns to sixteen equations, eight unknowns and then back to

eight equations, eight unknowns. Such a procedure gives incorrect results (even when

the first two rows of A−1B are filled with zeros, as mentioned in Ref. [129]) for the

obliqueness models. For example, the solution for a prismatic circular rod of Sec. 6.5

yields a non-zero extension-shear coupling in the stiffness matrix associated with the

strain measures of the B frame. A better solution would be to recast Eq. (255) as

Ky = r

y =

{
Y11 Y12 Y13 Y14 Y21 Y22 Y23 Y24

}T (257)
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where K and r are 8 × 8 and 8 × 1 matrices respectively and obtained appropri-

ately from Eq. (255). The best solution to this system of eight equations in eight

unknowns is obtained using a Moore-Penrose pseudo-inverse based solver. This has

been implemented in VABS using the well known linear algebra package LAPACK.
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APPENDIX C

MOMENT VS. CURVATURE FOR A BEAM UNDER

SELF-WEIGHT: ELASTICITY VS. VAM

Figure 77: Isotropic, prismatic beam with a circular section loaded by self-weight

Consider a cantilevered beam loaded under its own weight (p0 = ρAg, A is the

section area) as shown in Fig. 77. The beam is prismatic and made of isotropic

material. The cross section of the beam is circular. All symbols have their usual

meaning unless otherwise stated. The curvature of the beam centerline at the fixed

end as per 3D elasticity is given by [76, 109]:

1

r
=
M

EI

[
1− 7 + 12ν + 4ν2

6(1 + ν)

(a
l

)2
]

(258)

where the reaction moment at the fixed end, M = −p0L
2/2. This article demonstrates

how to derive the same using the VAM of Ref. [46]. The reader is advised to refer to

this text for the development of the equations used in the remainder of this article.

We begin by stating the following kinematic relationship:

1

r
= κ3(x1 = L) = κ3(x1 = L) + (2γ12(x1))′

∣∣∣
x1=L

(259)
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The strain measures defined above are beam strains and defined as follows: κ3 is

the curvature associated with the bending of the centerline, κ3 and 2γ12 are the

bending curvatures and shear strain associated with the cross section (i.e. a section

perpendicular to the centerline) of the beam. The number subscripts in the strains

are as usual: for example, in the case of curvatures, they denote the direction. Now

employing the Generalized Timoshenko (GT) model,

κ3(L) =
M

EI

2γ12(x1) =
p0(L− x1)

S2

=⇒ 2γ′12(L) = − p0

S2

(260)

The shear stiffness for a cirular rod is given by

S22 =
3Eπa2(1 + ν)

8ν2 + 14ν + 7
(261)

Assembling all these values

1

r
=
M

EI

[
1− 7 + 14ν + 8ν2

6(1 + ν)

(a
l

)2
]

(262)

The minor difference in the correction term, is due to the loss in the exactness of

the theory while casting a mathematical model to a one usable from engineering

perspective. However, the correction term is more important than the difference in

the correction term as can be seen for the case of ν = 0.3 in Fig. 78. The uncorrected

solution refers to that from a traditional beam theory approach, wherein moment and

curvature are simply related as 1/r = M/EI.

The main purpose of this article is to demonstrate to the reader how the VAM

can be used to derive such elasticity solutions for dimensionally-reducible structures.

It is also to be noted that obtaining the elasticity solution for this problem is quite

tedious [76]. On the other hand, to a researcher familiar with the VAM, derivation

of this expression is quite simple. It is therefore the belief of this author that the

VAM should be introduced to the student in advanced undergraduate/ graduate level

structural analysis coursework as an efficient and elegant tool to study dimensionally

reducible structures.
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Figure 78: Comparison of Non-dimensional curvature for ν = 0.3 using various
approaches
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APPENDIX D

RELEVANT TERMS IN WARPING CALCULATIONS

Recall from Chapter 5, the solution procedure for the nodal values of warping. The

problem can be posed as: Assuming the presence of inherent small parameters in

the problem, find the solution for u using an asymptotic procedure, such that the

function

F (u) = uTAu+ uTB + C (263)

is minimized, subject to the constraints

G (u) = 0

Given, G (u) = uTD

(264)

where u is a column matrix of unknowns and A (symmetric), B, C are known matrices;

all of which can be expanded in terms of small parameters, i.e., A = A0 +A1 +A2 . . .

and so on. For simplicity it is assumed that the generalized strains and their x1

derivatives are absorbed into the definitions of B and C, i.e., for example B = Pε+

Qε′ . . ., where P and Q are some known matrices extracted from the finite-element

procedure. For the course of this article, the subscript denotes the order and not

the component(s) of that matrix. It is well known that this problem can be posed

equivalently as a single statement using a column matrix of lagrange multipliers, say

λ, as a minimization of H = F + Gλ. Owing to the quadratic nature of the function,

one can note that the N th order solution for u will require keeping in terms up to

order 2N in F . This article will prove that while calculating the solution to the N th

order u, one needs to calculate only the term of order 2N in F . This will be achieved

using the Principle of Mathematical Induction (PMI). The steps in the proof are now

sequentially listed:
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1. For n = 0, the statement is trivially satisfied.

2. Assume the statement is true for all n such that n ≤ N , for a general N . What

this entails us is that only terms of order 2n need to be retained in the extended

function to calculate un, n = 0, 1, 2 . . . N . The relevant terms (superscript r) in

the function to solve for are (λn is the Lagrange multiplier associated with the

solution of un)

Hr
n = uTnA0un + 2uTn

n∑
i=0

(Aiun−i) + uTn (Bn +Dλn) (265)

The final equations to solve for un and λn (n = 0, 1, 2 . . . N) are

2
n∑
i=0

(Aiun−i) +Bn +Dλn = 0

uTnD = 0

(266)

3. It is now required to prove this statement for the solution of uN+1. Again the

relevant terms in the extended function are (terms which do not have uN+1 in

the extended function can be dropped as they are constants for this problem)

Hr
N+1 = uTN+1A0uN+1+uTN+1BN+1+uTN+1

N∑
i=1

[
2

(
N+1−i∑
j=0

Aj

)
ui +Bi

]
︸ ︷︷ ︸

χ

+uTN+1DλN+1

(267)

The term χ can be simplified as first of Eqs. (266) is valid for ui (i = 0, 1, 2 . . . N)

χ = −D
N∑
k=0

(λk) + 2
N∑
j=0

(AN+1−juj) (268)

Replacing this back in Eq. (267), one obtains:

Hr
N+1 =uTN+1A0uN+1 + uTN+1BN+1 + uTN+1

[
−D

N∑
k=0

(λk) + 2
N∑
j=0

(AN+1−juj)

]

+ uTN+1DλN+1

(269)
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Now uN+1 is required to satisfy the warping constraint, uN+1D = 0 and hence

Hr
N+1 = uTN+1A0uN+1 + uTN+1BN+1 + uTN+1

[
2

N∑
j=0

(AN+1−juj)

]
+ uTN+1DλN+1

(270)

It is evident from the above expression that all the relevant terms are of order

2N + 2 (A quick check can be carried out by adding all the indices since the

index of a matrix denotes its order). This proves the statement for N + 1.

Hence by PMI, the statement is true.
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APPENDIX E

STATIONARITY AND MINIMIZATION

The procedure to solve for the warping by determining the Euler-Lagrange equations

invokes the stationarity of the total potential energy. The Euler-Lagrange equations

are therefore necessary but not sufficient conditions for the minimization of the total

potential energy. A simple way of establishing the minimization in the finite-element

procedure (which reduces from a problem in calculus of variations to a problem in

multi-variable calculus) is to check for the positive-definitiveness of E0. However, if

one wishes to check whether the solution is a minima in a problem of calculus of vari-

ations, a different set of conditions must be satisfied. This chapter will demonstrate

that the warping is indeed a minima by considering the classical solution for a simple

strip problem (for which the cross-sectional analysis problem is 1D).

Consider an isotropic strip as shown in Fig. 13, except with k3 = 0. Following the

zeroth-order analysis in Sec. 4.2, the problem can be re-stated as: Find a solution to

w1 and w2 such that the the following functional is minimized

F =

∫ c

−c
L dx2

L = λ1w1 + λ2w2 +
E

2(1− ν2)
[(γ11 − x2κ3)2 +

1− ν
2

w2
1,2 + 2ν(γ11 − x2κ3)w2,2 + w2

2,2]

(271)

where λ1 and λ2 are Lagrange multipliers associated with the constraints

〈wi〉 = 0 (i = 1, 2) (272)

The condition that ensures stationarity yields the following solutions

w1 =0

w2 =− νx2γ11 −
1

6
ν(c2 − 3x2

2)κ3

(273)
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Now for this solution to be a minima, additionally the following must be satisfied

[96].

1. The warping solution must be embeddable in a field of extremals

2. The Lagrangian must be convex with respect to wi,2

3. The Jacobi equation with vanishing end-point boundary-conditions must have

only a trivial solution

The only possible parameters in the problem are those associated with the warping

constraints (recall from Ref. [46], that the choice of the warping constraints are not

unique). If the warping constraints were 〈wi〉 = Ci, then the solution for the warping

field is:

w1 =
C1

2c

w2 =
C2

2c
− νx2γ11 −

1

6
ν(c2 − 3x2

2)κ3

(274)

Therefore, one can see that the warping field is a smooth function of the set of possible

parameters, thus making it embeddable in a field of extremals. The next condition is

trivially satisfied as

∂2L
∂w2

1,2

=
E

2(1 + ν)
> 0

∂2L
∂w2

2,2

=
E

(1− ν2)
> 0

(275)

Finally for the third condition, the functional of interest is

Q [φ1, φ2] = δ2Fw1,w2 [φ1, φ2] (276)

The second variation of F can be written as

δ2Fw1,w2 = f ′′ (0)

f (ε) = F [w1 + εφ1, w2 + εφ2]

(277)
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Therefore, for this specific problem the second variation with respect to the solutions

of Eq. (273) is

Q [φ1, φ2] =

∫ c

−c

(
E

4(1 + ν)
φ2

1,2 +
E

2(1− ν2)
φ2

2,2

)
dx2 (278)

The Euler-Lagrange equation(s) of the above functional (the Jacobi equations) are

simply

φ1,22 = 0

φ2,22 = 0

(279)

It is obvious to note that with zero endpoint boundary conditions, these equations

will have only trivial solutions. Hence, the warping field solution has satisfied all the

sufficient conditions for a minima.
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