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SUMMARY

The key to understanding any system, including physiologic and pathologic systems, is to
obtain a truly comprehensive view of the system. The purpose of this dissertation was to
develop foundational analytical and modeling tools, which would enable such a
comprehensive view to be obtained of any physiological or pathological system by
combining experimental, clinical, and theoretical viewpoints. Specifically, we focus on
the development of analytical and modeling techniques capable of predicting and
prioritizing the mechanisms, emergent dynamics, and underlying principles necessary in
order to obtain a comprehensive system understanding. Since physiologic systems are
inherently complex systems, our approach was to translate the philosophy of complex
systems into a set of applied and quantitative methods, which focused on the relationships
within the system that result in the system’s emergent properties and behavior. The result
was a set of developed techniques, referred to as relational modeling and analysis that
utilize relationships as either a placeholder or bridging structure from which unknown
aspects of the system can be effectively explored. These techniques were subsequently
tested via the construction and analysis of models of five very different systems: synaptic
neurotransmitter spillover, secondary spinal cord injury, physiological and pathological
axonal transport, and amyotrophic lateral sclerosis and to analyze neurophysiological
data of in vivo cat spinal motoneurons. Our relationship-based methodologies provide an
equivalent means by which the different perspectives can be compared, contrasted, and

aggregated into a truly comprehensive viewpoint that can drive research forward.

XVvi



CHAPTER 1

INTRODUCTION

Ask any biomedical engineer, myself included, and they will say that one of the reasons
they entered the field was to ‘make a difference’ or to ‘help others’ through the
application of their skills to either prevent or treat human illness and disease or to
positively impact the lives of patients with health or physical ailments. As in any
engineering endeavor, whether it is designing an oil refinery, a river dam, an electric
power plant, or yes, even a treatment for a medical pathology, the key to success is to
truly understand the problem or process that constitutes intervention. In fact, the actual
task of comprehensively understanding and conceptualizing a problem, process, or
system is a significant part of engineering. It is the primary task emphasized in
engineering education, and it is the first and arguably the most important task of any
engineering project, regardless of discipline. However, a major challenge for biomedical
engineers is that our ‘systems’, the physiologies and pathologies in which we wish to
intervene or apply treatment, are amazingly complex. This high degree of biological
complexity has hampered our ability to comprehend and understand how these processes
work. In many devastating conditions such as secondary spinal cord injury and
amyotrophic lateral sclerosis to name two specific examples, this inability has and
continues to result in a host of failed clinical trials by treatments that initially, that is
without our full understanding of the pathology, seemed promising. Thus, irrespective of

the specific type of physiology, pathology, ailment or condition being investigated, there
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is a significant and fundamental need to obtain a comprehensive view of its inner
workings in order to most effectively and efficiently identify, design, and apply
interventions, which positively affect the lives of patients. My over-arching research goal
is to provide foundational research that enables comprehensive views of complex
physiological and pathological systems to be obtained, and thus facilitates biomedical
engineers in our ultimate goal, to help others—the patients that can benefit from the fruits

of their collectively applied skills.

A truly comprehensive view of any physiologic or pathologic system necessitates
multiple perspectives, including clinical, experimental and theoretical viewpoints, which
respectively address the questions of ‘what’, ‘how’, and ‘why’. Yet, the traditional
approach to physiologic systems has rather single-handedly relied upon hypothesis-
driven experimentation, both in vitro and in vivo. Clinical viewpoints, in which actual
human data is collected, is less common, with most studies focusing on pathologies and
therapeutics. However, the use of system-level theory, such as quantitative meta-analysis
or computational models is infrequent, with only a few small niches of research pursuing

such views, particularly at the system level.

While not as common in the study of physiologic systems, the tool that engineers have
often employed in an attempt to obtain a comprehensive understanding of the inner
workings or mechanisms of any number of studied systems is, in fact, the computational
model. The purpose of the computational model is no different than any other kind of

model or prototype used as a simplified representation or visualization. A computational



model allows researchers to ‘conceptualize’ highly complex systems in a manageable,
quantitative manner by translating the language of biology to the language of math.
Perhaps a more applied analogy is to think of a computational model as a map. The
model has inputs, which signify the initial ‘starting point’ of the system, mathematical
equations that represent the actual process path, parameters that represent the coordinates
of that path, and outputs, which reveal the ‘final destination’ or process products or
outcomes. The system map represented by the computational model thus provides a
means for engineers and scientists to explore the ‘landscape’ or inner workings of their

systems.

Using computational models to obtain an overall or system-level understanding of a
physiological or pathological system has many potential advantages. In contrast to
experiments alone, which due to the inherent nature of their methodology are forced to
focus on either a single or at most a couple of physiological or pathological factors at a
time, models can simultaneously simulate the effects of multiple factors and their
interactions. Furthermore, preclinical experimentation and especially a clinical trial can
take years and hundreds of thousands if not millions of dollars to screen a single therapy.
Given the speed and efficiency at which a model can simulate (as quickly as seconds to
minutes for a single treatment), models have the promise to be used as a financially
inexpensive high-throughput test bed to screen thousands of possible mechanistic
hypotheses and therapeutics, prior to committing to expensive and lengthy preclinical and
clinical trials. Thus, the computational model has the potential to not only provide the

much needed comprehensive view and high level of understanding of the physiologies



and pathologies of the very patients that we wish to treat, but also to use that view to
prioritize, predict, and speed the process from therapeutic identification through

preclinical development to clinical success.

Despite the many potential benefits of computational models, they are infrequently used
as an exploratory or predictive biomedical research tool, and they are even more rarely
used in the study of diseased states or pathologies. Instead, models have lagged far
behind their experimental counterparts, reserved as a confirmatory tool utilized mostly to
look at the biophysics and function of normal non-diseased state physiologies. Given the
many advantages of models and their great promise, it leads one to ask the obvious
question: Why aren’t computational models currently employed to obtain the
comprehensive and predictive views that are essential to biomedical engineers and
biomedical scientists to explore, understand, an treat the complex pathologies that plague

a multitude of patients?

Two main obstacles have prevented the use of models as a means of early comprehensive
system exploration and prediction, especially in the research of pathologies. First and
foremost, traditional techniques of model analysis are often unable to explain the
emergent and robust complex and often adaptive behavior of the biological systems they
are intended to represent. This inability is largely due to the models being inherently
reductionistic in nature, whereas the biological systems they are intended to convey are
inherently complex. Complex biological systems exhibit complicated patterns of

emergence, behaviors that are irreducible to the system’s constituent parts. Yet, how we,
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as humans, go about conceptualizing and subsequently modeling such systems is
precisely on a reductionistic, component-by-component basis, stringing together any
number of conceptualized parts until the model exhibits one or more desired outcomes or
properties. Because the whole is greater than the sum of its parts, it is unrealistic to
assume that any model, regardless of its level of detail and number of parts or
components, can fully represent the actual system, particularly when viewed solely at the
component level. While models will always be reductionistic in that they will only
consist of the conceptualized components that we as humans manage, our analytical
techniques that we use to characterize models do not need to be restricted to such
reductionism. We contend that a primary problem with current model analytical
techniques is that they do not fully consider, identify or address the complex nature,
properties, and dynamics of the biological systems that they characterize. Thus, what is
needed to overcome this obstacle are techniques able to look through the model’s
reductionism to unveil the complex system-level properties that lie beneath. In essence,
we need a technique that ‘raises the hood’ of the model to see how the set of components,
as a whole, relate and interact to produce dynamics and properties that characterize the

physiologies and pathologies that we wish to understand.

Secondly, in addition to the short falls of model analysis, the approach utilized by
traditional modeling methodology has prevented the construction of models early in the
research process. While traditional modeling methodology has been successfully used to
develop models that confirm theories and hypotheses regarding biological systems in

which we already have some level of understanding, these model construction techniques



have not been amenable to the study of systems in which we do not have a great deal of
information or pre-existing conceptualizations, particularly regarding system-level
behavior. This inability is largely due to the fact that the traditional approach to many
biological models has been to model ‘deep’ instead of ‘wide’. That is, biological models
are often constructed by piling as much detail as possible into the individual components
of a model until the model exhibits the desired properties. Again, this reductionistic
approach, which emphasizes the detailed properties of individual components rather then
the holistic behavior and interactions of those components, which produce the system’s
emergent behavior, requires too much upfront knowledge of a system. This knowledge
barrier prevents the development of a full-fledged system model on the front end of the
research process, and limits the utilization of the model as an exploratory tool that
complements and refines the experimental process rather than trailing and confirming it.
It is for this reason that pathologies, for which there is even less understanding and fewer

details known than in normal, non-diseased state physiologies, are highly under-modeled.

Goal
The goal of this dissertation is to lower these two aforementioned barriers by laying the
necessary foundation to move models forward in the research process—from a
confirmatory tool to an exploratory tool, which helps to direct and prioritize experimental
and clinical research by providing the comprehensive, system level view of physiologies
and pathologies that is needed in order to identify, develop, and evaluate effective

therapeutic strategies.



Specific Objectives
The specific objectives of this dissertation individually address each of the two
aforementioned obstacles, which correspond to the short falls of current model analytical
and development techniques to produce comprehensive system-level views of complex

physiological and pathological systems:

1) Develop and evaluate analytical tool(s) to tease out and explain the underlying
mechanisms, organizing principles, and/or dynamics of emergent, complex
adaptive behavior within computational models.

2) Develop and evaluate methodology that enables initial, system-level “scaffolding”
models to be quickly built and assessed based on available literature or

experimental data without the need for unknown detailed component properties.

Approach
It is our assertion that the philosophy of complexity theory, the study of complex
systems, can be utilized to develop methods capable of identifying, characterizing and
even predicting the inner workings, dynamics, and emergent behavior of complex
physiologies and pathologies. Thus, the approach utilized to accomplish these objectives
consists of using complex systems theory and philosophy to develop applied
methodological and analytical modeling tools. The developed modeling tools are referred
to as relational modeling and the analysis tools are referred to as relational analysis.
These complex systems-based tools are developed and tested within five very different

physiological and pathological systems whose only commonality is they are neural in
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nature: synaptic neurotransmitter spillover, axonal transport, spinal cord injury (SCI),
amyotrophic lateral sclerosis (ALS), and motoneurons. To insure the robustness of the
developed analytical tools of relational analysis in examining complex system dynamics
in all types of models, these systems were modeled using both a variety of traditional
techniques, including mechanistic and conceptual modeling, in addition to the newly
developed relational modeling technique. In addition to testing on computational
models, the usability and effectiveness of the relational analysis technique is also
evaluated on experimental data using neurophysiological recordings from cat spinal
motoneurons. The relational modeling methodologies are used to construct
comprehensive views of two highly clinically significant, yet lesser understood

neuropathologies: secondary SCI and ALS.

Dissertation Organization
The overall organization of this dissertation is by system test case study since the primary
intent is to illustrate the use, applicability and efficacy of the developed methods within
different physiological and pathological systems. Chapters 2-3 lay the foundation of this
dissertation by providing a literature review and the philosophy of approach. Chapters 3-
6 focus on the developed relational modeling and analysis tools. Chapters 7-10 are
physiological and pathological test cases in which we develop and test our relational
modeling and/or relational analysis tools. Chapter 11 provides the conclusions of this

work.



Outline of Chapters

Chapter 2: Literature Review provides an overview and history of computational
modeling and the theoretical fields that primarily use it, computational neuroscience
and systems biology. The field of complex systems is also reviewed.

Chapter 3: Philosophy of Approach explains the complex systems based philosophy,
which was used to develop the methodological tools, and how this philosophy was
synthesized into an analytical approach. Additionally it provides an overview of our
generalized modeling process.

Chapter 4: Relational Analysis discusses relational analysis in detail including why,
when, and how to use it. It also serves as a user’s guide for the relational analysis
technique of search-survey-and-summarize (S3).

Chapter 5: Component Analysis discusses component analysis, including the detailed
steps. It also illustrates an experimental test case in which neurophysiological data
from in vivo cat spinal cord motoneurons is analyzed using component analysis.

Chapter 6: Relational Modeling discusses relational modeling in detail. It also serves
as a user’s guide for the relational modeling technique of review-relate-refine (R3).

Chapter 7: Synaptic Neurotransmitter Spillover encompasses the test case of
neurotransmitter spillover. It includes two publications. The first develops and
analyzes the primary spillover model using traditional methods (Mitchell et al 2007)
and the second develops and uses relational analysis to differentiate between two

different model implementations (Mitchell and Lee 2007).



Chapter 8: Secondary Spinal Cord Injury includes the published spinal cord injury
model (Mitchell and Lee 2008), the first relational model using our developed R3
technique.

Chapter 9: Axonal Transport includes the physiologic portion of the axonal transport
test case. It includes the published cooperative axonal transport model (Mitchell and
Lee 2009).

Chapter 10: Amyotrophic Lateral Sclerosis is aggregation of our work in ALS using
our developed relational analysis and modeling methodologies. It includes a
submitted publication of a computational model of ALS-disrupted axonal transport
(Mitchell and Lee, in revision) and a preliminary relational model of the
comprehensive ALS pathology (Mitchell and Lee, in preparation).

Chapter 11: Conclusions summarizes our conclusions on the developed methodologies,

viewpoints, and a new approach to systems physiology.
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CHAPTER 2

LITERATURE REVIEW

This chapter lays the background required to understand the philosophy of our approach
(Chapter 3) by discussing the current research techniques and applications of
computational modeling in the analysis of biological systems. Within this chapter, the
history of the field(s) which utilize computational modeling are discussed, as well as their
current techniques, and the pros and cons of those techniques in regards to their ability to
produce, analyze, and predict the emergent properties and dynamics of physiologic and

pathologic systems.

The field of computational modeling is, in and of itself, not a single field. Rather,
computational modeling exists among theoretical fields, which use it as a tool to
investigate their respective systems. Of fields that have extensively used computational
models to study physiological systems, the theoretical fields of computational
neuroscience and systems biology have used computational modeling and associated
quantitative techniques the most. While both systems biologists and computational
neuroscientists have the same overall goal—the desire to better understand their
respective systems, including mechanisms, dynamics, and organizing principles--- as a
whole, each field has undertaken different means and methods to pursue their equivalent
goals. This chapter describes the history of computational neuroscience and systems

biology, focusing on the advantages and disadvantages of their techniques and the traits

11



of their systems, which necessitate a certain technique. Finally, the chapter concludes

with some necessary background on complex systems.

Computational Neuroscience
Computational neuroscience is a field that uses mathematics and theory in order to
describe, examine and analyze the behavior, function, and dynamics of individual
neurons, neural networks, and the brain and spinal cord, which comprise the central
nervous system. Computational neuroscience has made provided enormous contributions
to computational modeling through the addition, application, and implementation of
important quantitative techniques, particularly techniques such as the ‘black box’ model,
large and complex mechanistic models, information theory, and parameter searches
(which are all discussed in this section). While computational neuroscientists have been
quite successful in producing the emergent properties of the neurons in which they study,
the field in general often falls short in explaining why and how these properties are

produced, a key requirement for studying neural physiologies and especially pathologies.

Though the term “computational neuroscience” did not appear until the mid-1980’s
(Sejnowski et al. 1988), most consider the birth of the field to be in 1952 with the
publication of the classic Hodgkin-Huxley neuron model, a quantitative description of
neuronal membrane current and excitation using parameters obtained from the giant
squid axon, developed by Alan L. Hodgkin and Andrew F. Huxley (Hodgkin and Huxley
1952). However, some argue that the true starting point of computational neuroscience

was in 1907 when Louis Lapicque first introduced the integrate-and-fire neuron model
12



(Brunel and van Rossum 2007; Lapicque 1907). These original models were more or less
“black box” models that describe the neuron model using an input-output transform.
They assumed that neurons were isopotential, and they ignored the contributions of

dendrites.

The next significant advance in computational neuroscience was by Wilfrid Rall who
used the mathematics of the cable theory to show that the dendrites and their numerous
arborizations largely affect the processing of synaptic input by the soma (Rall 1959; Rall
1964; Rall 1962). The neuronal models of today often incorporate hundreds of neuronal
“compartments” (e.g. individual pieces of a neuron which are computationally modeled
as a single unit), mainly to account for the strong impact of these large dendrites (Rose
and Cushing 2004; Shapiro and Lee 2007). In addition to getting “larger”, recent neuron
models have become increasingly more complex. For example, some include numerous
sodium channel subtypes rather than modeling sodium as a single influx (Naundorf et al.
2006) or include detailed channel kinetics such as a 12-state Markov model for a single
sodium channel (Kuo and Bean 1994), and active transporters and pumps (Lopreore et al.

2008).

While some of the newer, complex additions to neuronal models are mechanistic in
nature, based off first-principles kinetics, diffusion, and electrotonics, much of neuronal
modeling and computational neuroscience still remains largely “black box” intermixed
with some degree of mechanistic modeling. This is particularly true of large neuronal

network models. Other than alleviating computational requirements, a feat that has been

13



greatly helped by the advent of new simulator technologies (Bower and Beeman 1998;
Carnevale and Hines 2005; Graas et al. 2004; Weinstein and Lee 2006), the need for the
black box approach largely remains for two reasons. First, much is still unknown in
regards to neuronal mechanisms and especially as to connectivity. Secondly,
computational neuroscience lacks the extensive databases that the systems biologists have
at their disposal. Thus, traditional data-driven techniques, which require very large,
complete data sets, such as those used by systems biologists to explore the enormous
genomics and proteomics databases, are not amenable to most of computational and
experimental neuroscience. Therefore, the current analytical approaches that best lend
themselves to computational neuroscience include information theoretic approaches such
as infomax learning (Okajima 2004) and Bayesian methods (Pearl and Russell 2003) and
other traditional input-output transformation techniques; for a review of computational
neuroscience techniques see (Dayan and Abbott 2001; Rieke et al. 1997). Another
common technique set includes monte-carlo or random analysis in which random
parameter sets (i.e. parameter searches) and/or connectivities are simulated to aid in the
investigation of dynamics(Goldman et al. 2001; Mitchell and Lee 2007; Prinz et al. 2004;
Van Geit et al. 2008). However, the pitfalls of such methods is that, though they allow us
to recapitulate experimental outputs, they do not give us insight as to how or why we
have reached them. Thus, mechanistic deduction from such methods alone becomes very

difficult.
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Systems Biology
Systems biology is a field that attempts to take a ‘systems’ or ‘top down’ approach to the
analysis of biological systems. Instead of focusing on the individual components within
a system, the goal of systems biology is to look at multi-scale interactions, functions and
dynamics across different physiological levels, such as cellular, tissue, and body systems.
However, while most in the field would agree with this overall goal, much of what is
currently considered ‘systems biology’ typically does not work at the true systems level
nor does it focus on system-level interactions. Instead, most research focuses on one or
two scalar levels and looks only at the implications of those levels on the system. Many
researchers reside in the areas of metabolics, genomics, and proteomics where high-
throughput arrays, analyses and databases can be used to quantify how specific individual
changes affect all of metabolism, the genome or proteome. Thus, systems biologists
often focus on the relationships within their studied systems. In fact, much can be
learned from systems biology given that it has pioneered the application of multi-variate
statistics to extract important system relationships from large datasets. However, systems
biology has been unable to ‘drill’ through a system and utilize the relationships to look at
how the components of a system interact to produce the emergent properties, dynamics,
and organizing principles which encompass the physiologies and pathologies that we
wish to explore. In this section, the history of systems biology is highlighted along with

currents relationship-extracting techniques currently utilized by the field.

Similarly to computational neuroscience, systems biology was also rediscovered and

defined far after its origin. Ludwig von Bertalanfty is often considered the father of the
15



field for his work in general systems theory applied to biological systems, work that first
appeared around 1950 but was not recognized until the mid-1960’s (von Bertalanfty
1968; von Bertalanffy 1950). After Bertanlanffy, some of the earliest contributions to the
field came in the 1970’s from the very independent and isolated efforts of a variety of
fields, including metabolism (Savageau 1969), cardiophysiology (Heppner and Plonsey
1970; Melbin and Patterson 1970), and developmental biology (Meinhardt and Gierer

1974), to name a few.

However, “systems biology” as we currently know it did not become popularized until
the late-1990’s. Its rebirth was largely due to the advent of high-throughput experimental
technologies such as the gene chip and microarray (Lashkari et al. 1997), which
revolutionized the study of genomics (Collins et al. 1998), proteomics (Anderson and
Anderson 1998), and other ‘omic’ fields by providing large compilations and databases
of quantitative metrics and output that could describe a system in its entirety, such as the
Human Genome Project (Collins et al. 1998). In sharp contrast to computational
neuroscience, the chief issue of systems biology is an overwhelming availability of
extremely complex experimental data. Since theses large experimental databases serve as
the primary source of data, systems biology became data-driven resulting in the need for

interpretative data analysis and manipulation techniques.

Because the data pool is so overwhelmingly large, systems biologists spend a good deal
of time determining the “importance” of various metrics by looking at their correlations

using multi-variate statistics (Hair et al. 2006). In addition, graph theory is used to unveil
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the topology of detailed genetic and molecular networks in an effort to determine their
underlying organizing principles and dynamics (Strogatz 2001; Wouters et al. 2003).
Thus, the tools of systems biologists lean towards systems theory in order to describe

how the numerous components in their databases result in a functional “system”.

Complex Systems
While systems biology and complex systems are presently distinct fields, they share
underlying principles and foundational mathematic origins, as well as many mathematical
research contributors, including Ludwig von Bertalanffy. However, the two fields
diverged not long after their birth when early system biologists turned to “reductionist”
approaches, which attempt to study the global properties of a system by the independent

study and combining of its simpler, sub-system components (Ricard, 2006).

However, real systems, including biological systems, have properties that cannot be seen
when viewed solely from the independent component perspective. For example, say that
a real system, XY, can be defined by a mathematical function H(X,Y) = H(X) + H(Y)
that describes its properties or degrees of freedom using two independent subsystems,
H(X) and H(Y). The result of H(X,Y) produces integrated properties that cannot be seen
when the two subsystems are considered independently. These integrated properties are
referred to as emergent and the system is said to be complex (Ricard, 2006). Neurons are
a perfect example of how combining different subsystems (channel kinetics) can result in

an action potential, an emergent property of the neural system.
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Typically, complex systems are very robust. They possess the ability to undergo radical
qualitative change while maintaining systemic integrity. Complex systems theorists
attribute such innate ability to undergo change to the fact that complex systems show a
domain between deterministic order and randomness (Cilliers 1998), which is complex
and often referred to as “the edge of chaos” (Bak 1996). Unlike chaotic systems,
complex systems develop far from equilibrium at the edge of chaos and are history-
dependent (Buchanan 2000). Complex systems evolve at a critical state built up by a
history of irreversible and unexpected events. These additional defining attributes of
complex systems add to the balance of adaptability and predictability of their

functionality (Buchanan 2000).

In fact, it is this very lack of robustness that results in the inability of reductionistic
computational models to either fully produce or uncover the rich emergent features of
many physiological systems. From a modeler’s standpoint, some of the larger pitfalls
with reductionism, listed in no particular order, include the following:

e Failure to produce any or all of the emergent properties

e Failure to be as robust as the real system

e “Breaking” of fundamental system component relationships (i.e. wrong

correlation sign or magnitude) in order to produce desired features
¢ Inability to explain how or why an emergent feature appears

¢ Inability to characterize the dynamics of emergent features
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Not surprisingly, it has become increasingly obvious to modelers and non-modelers alike,
that the global properties of a system cannot always be predicted from the independent
study of corresponding sub-systems (Ricard, 2006). In a series of articles published in
Science entitled “Beyond Reductionism”, scientists from several fields including
neuroscientists, chemists, physicists, biologists, and social scientists reached the same
conclusion that the study of emergent global properties of a system of interactions
between local subsystems is essential to understand their physical nature in quantitative
scientific terms (Gallagher and Appenzeller, 1999). To date, despite the common
agreement that the study of emergent properties is one of the keys to understanding
physical mechanisms of models, there is little to no consensus as to how to go about
quantitatively and methodically studying them. Instead, the field still remains largely

philosophical.

The methods that do exist to study complexity are centered on quantifying the flow of
information, often referred to as information theory. The methods of information theory
are based on probability theory and statistics. The most important metrics used are
entropy, the information in a random variable, and mutual information, the amount of
information in common between two random variables. While information theory has
been used to model and characterize some aspects of physiological systems, such as
quantifying the complexity of the brain to determine the segregation of areas of function
(Tononi 1994), this technique is not amenable or applicable as a general modeling tool

for constructing and analyzing most physiological and pathological systems.
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Table 2.1. Summary of methods used by computational neuroscientists, systems

biologists, and complex systems theorists, including their advantages and disadvantages.

Field Methods Advantages Disadvantages
Computational | e Information e Able to achieve output | e Difficult to infer
Theory goals mechanisms from
Neuroscience | e Bayesian e Requires no knowledge non-unique
networks of mechanisms solutions
e Random analysis | ¢ Requires less data ¢ Do not know
e Parameter “why” outputs are
searches achieved
Systems e Graphical theory | e Able to handle large e Overly restrictive
e Cluster analysis data sets assumptions
Biology e PCA e Inability to look at
all “layers” of the
system
Complex e Information e Uses simple e Largely
theory relationships to explain philosophical
Systems complex behavior e Currently no

e Does not require that
mechanisms be known

applications-based
methods

e Information theory
is not amenable to
all biological
questions
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CHAPTER 3

PHILOSOPHY BEHIND THE APPROACH

The disconnect between the computational models of the physiological systems that we
wish to explore and the actual systems, themselves, is the gulf that lies between
reductionism and complexity. It is a requirement that our models be reductionistic in
nature, yet, the physiologies and pathologies that we wish to study are quite obviously
complex. To date, this inescapable fact has left biomedical engineers in a quandary
since, as noted in the background, most of what has been proposed to analyze complex
systems has fallen into the category of ‘descriptive philosophy’. Unfortunately, this
philosophy alone does not solve the biomedical engineers’ quandary. This fact is perhaps
best exemplified by a quote of a very famous scientist, which has served as a source of

inspiration for this entire project:

“The love of complexity without reductionism makes art; the love of complexity

with reductionism makes science.” --Edward O. Wilson, Consilience

The above quote eloquently states our methodological goal: to make science by
developing an analytical approach that would allow the complex properties and dynamics
of physiologic and pathologic systems to be explored through what are unavoidably

reductionistic computational models. To do this, we translated the philosophical art,
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which describes the rich features, properties, and characteristics of complex systems into

a set of applied quantitative techniques.

This chapter describes the perspective and philosophy from which our methodologies are
derived. The first section of this chapter describes our over-arching view of physiologic
systems, as complex biological systems, and discusses their conserved fundamental
properties. The second section of this chapter describes how we utilize the
aforementioned complex systems philosophy as an analytical approach to develop
methods capable of exploring complex biological systems. In the third and final section

in this chapter our generalized modeling process is outlined.

Physiologic systems described as complex systems
Real physiologic systems are inherently complex in that a huge number of inputs,
governed under an extremely dynamic set of relationships, are used to generate a large set
of robust yet predictable behavioral patterns which are said to be “emergent”. This
fundamental feature of biological systems was first described by Csete and Doyle (Csete
and Doyle 2004) as the “bowtie” effect. A critical principle of the bowtie is dimensional
restriction. That is, a large number of inputs (i.e. multi-dimensional system input) are
transformed or dimensionally restricted through mechanisms governed by underlying
relationships to produce emergent, complex adaptive behavior (i.e. multi-dimensional
system output) as shown in Figure 1. The system utilizes positive and negative feedback
to alter or “tune” these relationships to respond to changing input or environmental

conditions or to initiate a change in behavioral output.
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As shown in Figure 1, it is the inner relationships and emergence, which form the “knot”
or “pinch point” of the bowtie. It is at this pinch point where the driving mechanics of a
system reside. Therefore, it is our ability to ‘see’ what happens inside the pinch point,
which holds the key to unlocking the mechanisms, dynamics, and organizing principles
that are central to bioscientific and clinical research. Thus, we focus our methodological
development on the relationships that specify the dimensional restriction and emergence,

which, together, encompass the pinch point.
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Figure 3.1. The bowtie effect of complex biological systems. Multi-dimensional input is
dimensionally restricted via local relationships that govern system mechanisms to
produce multi-dimensional complex adaptive behavior. The system uses positive and
negative feedback in order to “tune” the behavioral response.
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There are two critical aspects or properties of complex biological systems that influence
the relationships and resulting dimensional restriction and emergence seen at the pinch
point--redundancy and degeneracy. Redundancy is defined as identical structural units or
subsystems which perform the same function, whereas degeneracy is defined as
structurally different units or subsystems which can perform the same function (Tononi et
al. 1999). These properties can affect the magnitude, probability or certainty of an
emergent property or response. For example, a neuronal cell contains numerous identical
or redundant sodium channels that can affect the magnitude and certainty of its
fundamental emergent property, the action potential. Simultaneously, sodium channels
can be degenerate in that there are different types of sodium channels (e.g. Nav 1.6 vs
Nav 1.3), which are structurally different but perform the same function of controlling
sodium influx into the cell. However, the best example of degeneracy is the brain. The
brain has multiple activation pathways that can be used in order to accomplish a task.
Such degenerate paths become apparent particularly in brain-injured patients such as
those who have incurred a traumatic brain injury, had brain surgery, or experienced a
stroke. These patients often have damage, which initially limits certain motor tasks or
skills such as speech or language. However, with time, these patients adapt by activating
degenerate networks, which enable them to “regain” lost functions. Such adaptability

makes complex biological systems extremely robust.

While complex biological systems are extremely robust over long periods of time, they
also have the ability to undergo radical qualitative change while maintaining systemic

integrity. For example, consider a patient with a prosthetic arm/hand who has undergone
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the relatively new procedure to redirect cutaneous sensation from the hand to the chest
skin of human amputees with targeted reinnervation (Kuiken et al. 2007). Such patients
learn to activate their prosthetic hand using the chest muscles and “feel” the sensation
from objects touching their prosthetic hand as if is was their real hand except this
sensation is mapped to the chest. The sensory map is transformed such that literally
touching the area where the prosthesis is reinnervated is as if the physiological hand were
being touched. This adaptability is so superb that such a patient can even distinguish

sensations as being felt from individual fingers.

Complex systems philosophy utilized as an analytical approach
We assert that the redundancy and degeneracy within complex systems directly results in
the flexibility and robustness that is seen in complex biological systems. The remainder
of this chapter discusses how these fundamental properties of complex systems,
particularly the formation of pinch points, can be used to model complex biological

systems, including physiologies and pathologies.

In the Introduction, a model was described as a system map in which the inputs signify
the initial starting point, equations represent the system path(s), parameters specify the
coordinates of the path(s), and outputs specify the final destination or system outcome.
Typically most modelers will fixate on the final destination (the outputs). However, as is
shown in the bowtie effect, it is in the path where the complex relationships between
inputs and outputs are created which result in the emergent properties and behavior that

characterize a particular system. Thus, it is this path, the pinch point that contains critical
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information about the underlying physiological mechanisms involved in a biological
process. Models, just like maps, can include varying levels of details and complexity,
which illustrate the system paths. For example, a simple model may only show major
highways similar to a road map, whereas a more complex model may include additional
features, similar to the mountains, rivers, and elevations shown on a more detailed
physical or topological map. The level of complexity included in a model may or may
not affect the measured outputs. However, it can definitely influence the model
dynamics, what happens between the starting point and final destination, and it is these

dynamics, which are a measure of the relationships within a system.

Thus, using traditional output-value based analytical techniques, there is no way of
knowing whether the model implemented, whether a detailed mechanistic model or a
high-level ‘black box’ model, correctly illustrates the dynamics that occur at the pinch
point. Furthermore, because there is little to aid in the determination of the input-output
function, typical output value based techniques of modeling and analysis are highly
reliant upon knowing or understanding a considerable amount about a system—either

bottom-level detailed, mechanisms or top-level, higher conceptual understanding.

In contrast, our general approach to modeling methodology and analysis is to shift the
attention back to the ‘pinch point’, where the mechanisms and organizing principles that
we wish to reveal are actually contained, by focusing on the relationships within a system
rather than purely its quantitative output values. We use these system relationships as

either a placeholder or bridging structure from which unknown aspects of a system can be
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effectively explored. For example, our data analysis technique, relational analysis,
utilizes the intrinsic relationships among the system outputs in order to deduce the
mechanisms and dynamics, which are occurring inside the pinch point. Similarly,
relational modeling, utilizes the measured intrinsic experimental relationships within the

system in order to reproduce the dynamics, which specify the outputs.

Our generalized bridging framework for biological and neural complex systems, termed
Heuristic Emergence via Dimensional Restriction (HEDR), is the philosophical basis
from which relational modeling and relational analysis are derived. HEDR has become
our (the Lee lab’s) ‘manifesto’ for the exploration and analysis of complex biological

systems, and has been formally written as the following:

We believe that the structural similarities we observe reflect a fundamental
feature of biological systems at all levels. We refer to this common feature as a
“pinch point” —a dimensional reduction producing the emergence of functional
behaviors. Furthermore, we believe that the overabundance of dimensions, due to
redundancy/degeneracy, provides the key building material from which these
pinch points are formed. By warping, squeezing and folding, the nonlinear
dynamics of specific mechanisms within the underlying system transform these
dimensions. The redundancies/degeneracies in the system are critical for
robustness, allowing adaptation and reconfigurability that would be impossible in
an actual, low-dimensional system. Finally, we believe that each pinch point

implements what can be considered a heuristic solution for producing a behavior,
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with the “degree” of pinch being tied to the degree of emergence and to the

“certainty” of the heuristic.

The development of our relational analysis and relational modeling methodologies using
HEDR principles is discussed in the methodology chapters: Chapters 4 for relational
analysis, Chapter 5 for the close relative of relational analysis, component analysis, and
Chapter 6 for relational modeling. Furthermore, it is in these aforementioned chapters
where the detailed steps of these methodologies are specifically laid out. However, the
application of these methodologies is discussed within the specific system test case
chapters, 7-10 for relational analysis, and 8 and 10 for relational modeling. Examples of
component analysis, including its use to analyze experimental data, are given both
specifically within the component analysis (Chapter 5) and within the relational analysis

test cases.

Generalized Modeling Process
In this section, our generalized modeling process is outlined. Figure 2 illustrates our
generalized modeling workflow. The overall process is an iterative approach that
incorporates experimental, clinical, and theoretical data/input into a ‘working model’ that
is evaluated and refined with the techniques developed in this dissertation, namely

relational and component analysis.
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Figure 3.2. Modeling Process Workflow. The diagram illustrates the major steps of our
modeling process. The overall process is an iterative approach that includes
experimental, clinical, and theoretical input into the construction of a ‘working model’
that is evaluated and refined using our complex systems based approaches of relational
and component analysis.

The process begins with identification of the system to be studied. In general, system
identification is based on the interests of the researcher and the type of question the
researcher wishes to investigate. In this work, our scientific/research interest in particular
systems did influence the types of systems that we chose to model. For example, our
particular research interests favor neural systems, both physiological and pathological.
As such, that is the one commonality between all of the test case systems. However,
specific system selection for the test cases was also influenced by the properties of the
system. We wanted to insure our developed methods were robust enough to handle a

wide range of systems modeled using a variety of model construction techniques. Thus,

we desired to have a diverse range of systems—systems that varied in their properties,
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the level to which they had been experimentally investigated, and our level of a priori

knowledge.

The next stage of the process works towards developing a ‘preliminary model’, a ‘back of
the envelope’ calculation or general estimate of the primary system behavior/emergent
property(ies). It is at this point when the translation from the ‘language of biology to the
language of mathematics’ first occurs. This initial translation is usually quite crude,
consisting of a few simple relationships or generalized mathematical functions to
estimate one or more aspects of system behavior. In fact, this initial or preliminary
model may or may not be an actual computational model in the traditional sense of a
formally coded computer program,; it could be as simple as a theoretical
conceptualization within a spreadsheet. This ‘back of the envelope’ calculation is the
starting point from which the model is first synthesized from multiple influencing
perspectives, including the experimental/clinical literature (labeled as ‘non-modeling
literature’ in Figure 2) and theoretical literature stemming from existing theories or

computational models within the field (labeled as ‘modeling literature’ in Figure 2).

After a few iterations with a preliminary model based on input from multiple sources and
perspectives, a working model is developed. This working model is the traditional
computer model, but the label of ‘working model’ is used instead to signify that the
model evolves through an iterative process of evaluation and refinement. It is during this
stage when the model strategy (bottom-up/top-down/middle-out) and type are chosen

based on the properties of the system, the type of data available and the status of the field
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(i.e. the level to which either detailed mechanisms and/or comprehensive theories have
been developed). With each iteration, the model is re-evaluated not just at the quantitative
level (i.e. parameters, etc), but also at the conceptual level to insure that the model is not
forcing the modeler’s assumptions inappropriately onto the modeled system, a common
issue particularly in black-box or higher level mechanistic models. Thus, even the model

strategy and type can continue to change or evolve very late in the process.

The iterative process of evaluation and refinement (see Figure 3) is accomplished using
our repertoire of analytical techniques, namely relational and component analysis. The
process begins with an initial ‘base case’ simulation from which output values are
extracted using system-specific metrics that characterize the model’s behavior or
emergent property(ies). Next, data is collected that represents multiple or different
system responses or ‘model operating points’. Once data is collected, relational and
component analysis are used to evaluate both system and component level properties,
respectively. As previously mentioned, these techniques focus on the relationships
within the system, which result in the emergence and dimensional restriction that occurs
at the pinch point. Specifically, the quantitative output relationships are qualitatively
visualized on a map referred to as a ‘landscape’. This detailed map provides critical
system insight that can be used to predict and prioritize mechanisms and dynamics and to

identify areas of the model that need improved and refined.
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Figure 3.3. Model Evaluation and Refinement. This diagram shows the basic process
beginning with the initial simulation, extraction of output metrics characterizing the
model’s behavior or emergent property(ies), accumulation of data representing multiple
model operating points and/or behaviors, and model evaluation via relational and
component analysis. The product of relational and component analysis, the system
landscape, is used to refine the model.

Different Viewpoints
We recognize three basic modeling viewpoints, each which uses a different general
approach in the model development and construction process: bottom-up, top-down, and
middle-out. Each type of model can offer a very different and unique perspective into a
system. However, despite the benefits of multiple viewpoints, typically modelers’ tend to
use only a single viewpoint, the viewpoint that most assists with the efficient construction

and implementation of their system model. In some cases, depending on the amount and
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type of a priori knowledge of a system, there may be no initial choice in which viewpoint

to utilize. These viewpoints include:

1.

Bottom-up. The bottom up viewpoint is a detailed-oriented perspective that
is used to lay the foundation of the model. It typically utilizes individual
mechanisms and first principles, customary to the typical mechanistic model
with which scientists are most familiar.

Top-down. The top down viewpoint is less focused on structurally
recapitulating the detail of individual mechanisms, but rather, it instead
utilizes higher level theories from which the components of the model are
conceptualized. Thus, top down models are often referred to as ‘conceptual
models’.

Middle-out. The term ‘middle-out’ is not one that is likely to be seen in the
standard computational modeling literature. Rather, it is a term that we have
coined to refer to models, which are data-centric. This viewpoint is thus
dependent upon experimental data, not only for validation, but also for its
structural foundation, construction, and implementation. The ‘middle-out’
viewpoint is best described by our newly developed approach of relational

modeling using the R3 technique.
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CHAPTER 4

RELATIONAL ANALYSIS

As bioscientists and bioengineers, the goal of our models is to identify, understand, and
predict the mechanisms, dynamics, and organizing principles that are central to our
respective physiological and pathological systems and their respective emergent
property(ies). Using complex systems theory as a methodological guide, the bowtie effect
states that the inner workings that we wish to reveal occur at the dimensionally restrictive
“pinch point”. Therefore, what is needed is an analytical method to view the inner
workings of pinch points. The set of analytical tool(s) we have developed for this exact
purpose we refer to as “relational analysis”. Relational analysis allows us to “pop the
hood” on the model and to see what happens beneath the surface, inside the pinch point.
With this inside view, we can assess, characterize, and predict system dynamics, behavior

and emergent properties in ways not possible with traditional methods used alone.

The philosophical basis of relational analysis is rooted in complex systems theory in that
it uses the system’s underlying relationships and emergence. The relational analysis
methods that we developed can be thought of as a camera that can see through a low-
dimensional pinch point, revealing the warping, squeezing and folding of the underlying,
high-dimensional, redundant/degenerate mechanisms. This relational analysis camera
can be used to assess origin and degree of pinch, thereby helping us to assess the

implications of the pinch point on model behavior. Thus, relational analysis is simply an
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analytical technique that allows us quantify the relationships within the model or system,
which are a result of the pinch point. The main product of relational analysis is the model
or system landscape, which reveals the “shape” or topology of the system under a certain
set of specified model conditions. This landscape, composed of a cross-correlation
matrix of the system’s or model’s outputs, reveals the relationships or interactions which
comprise the system’s dynamics and describe the system’s emergent property(ies). By
revealing the topology of the system, a series of landscapes of the system and/or of its
components can unveil dynamics, which can be used to pose hypotheses regarding

system mechanisms and behavior.

Search-survey-and-summarize (S3)
While relational analysis is composed of several techniques or subsets of techniques, our
overall strategy or technique is referred to as “search-survey-and-summarize”, or S’ for
short. As the name implies, the standard S® method contains three basic parts: search for
a set of parameter values that give rise to the selected target output values (we define
each set as a homologue), survey the model output landscape by cross-correlating
sensitivity analyses for each homologue and summarize by statistical analysis of the
population of homologue landscapes. Essentially S* looks to assess the model at various
operating points of interest, collect data regarding the sensitivity and robustness of those
operating points, evaluate and visualize the output relationships which are created at the
specified operating point(s) within a model landscape, and to compare and contrast the
dynamics illustrated within a landscape or set of landscapes to explore or formulate

hypotheses regarding both mechanistic and system-level behavior. The basics of
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relational analysis and specifically the technique of S® are published (Mitchell and Lee,
2007), but this chapter expounds on those basics and focuses on the what, when, where,

how and why of the process.

Before beginning S’...
Before relational analysis can be performed, a model must be up and running. Different
ways to construct a model are discussed in the General Modeling Methodology section of
Chapter 3. However, beyond the model construction, the next step is specifying the
outputs that are to be included as part of the relational analysis. This section briefly

outlines model output selection.

Output types. The first step to relational analysis is defining the relationships that are to
be analyzed. The analyzed relationships of relational analysis are typically the model
output relationships. Although not a requirement, the output metrics and their
relationships usually describe or quantify one or more emergent properties of the system.
Relational analysis does not discriminate the types of model outputs. That is, any metric
that is a single, quantifiable entity can be used as an output, and these output metrics need
not be of the same type or units. However, if a model utilizes graphical output or
“traces” to represent an emergent property or other characterizing feature, then such a
graphical output will need to be decomposed into a set of metrics which describe or
characterize the graph or trace. An example of such a graphical trace is the emergent
property and output of a neuron model, the action potential. Thus, typical outputs for

relational analysis of a neuron model might include spike height, spike width, time of
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onset, half-activation and time constants, etc. Other possibilities for outputs, particularly
in models that include kinetics or pathways, include concentrations (such as measures of
glutamate), degrees of activation (such as receptor or enzyme activation) or percent or
fractional compositions. Whether measurements are electrical, physical, chemical,
statistical, and/or combination thereof, or even something else not mentioned here in this
text makes no difference since all of the output metrics will be analyzed relative to one

another.

Minimum outputs. While the type(s) of outputs do not matter for relational analysis, the
number of outputs does influence the outcome and particularly the efficacy of relational
analysis. In general, more outputs are better. In fact, it is helpful if some outputs are
‘degenerate’ in that they are different methods that ultimately measure the same thing or
‘redundant’ in that they are the same metrics measured at different time points or
different conditions. More outputs equate to more insight into the system and give more
discriminatory power to differentiate, compare, and contrast models, properties and/or
systems. Based on the test cases in this dissertation in which relational analysis was
applied to models of varying complexity and size and at various stages within model

development, the loose ‘minimum’ number of outputs is about 8-10.

Maximum outputs. Also, since the general method of relational analysis arises from
statistical techniques adapted to larger data sets, relational analysis itself is also best
suited for visualizing and analyzing multiple outputs. While there is no set maximum,

analyzing or visualizing more than 30 outputs at a time and particularly in a single
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landscape, can be a little difficult to intuit in one setting. However, despite this difficulty,
much information can be honed from the system-wide landscape. To aid in visualization
and analysis in a case where there are large numbers of outputs that make the overall
landscape difficult to singly intuit, component analysis is especially helpful to dissect the
system into smaller sub-systems and smaller landscapes, which parse the total number of

outputs (see Chapter 5 for a discussion and user guide on Component Analysis).

Other metric types. Relational analysis can potentially be applied to any set of metrics
that describe the system, not just the final model output metrics. Other examples include
experimental metrics, intermediate metrics within a model or sub-model, state variable
metrics, or possibly model parameter metrics within an automated search. While these
“others” do not strictly fit within the main technique of relational analysis, the search-
survey-and-summarize, they often fit modified forms of it, “survey and summarize”, or

fit within the relational analysis technique of component analysis.

Search
The first step of relational analysis is to gather output data from various model operating
points, typically through either a series of manual or automated searches using one or
more optimization techniques. As defined in the background, a search seeks to find one
or more parameter value sets that result in a specified set of quantitative model outputs
call the target output values or simply the ‘target’. We define such multiple, non-unique
parameter value sets, which are capable of producing the same quantitative target output

values as ‘homologues’.
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There are three common reasons that engineers typically perform a search: 1) To find
parameter value sets that produce the target output values of a characterized behavior in a
mechanistic model in which experimental parameter values are either unknown or
questionable. 2) To ‘fit” output data in which mechanisms are not clearly known as in a
black box model. 3) To analyze different structures or ‘circuitry’ of a system as in
computational neuroscience neural networks. While we also believe the search to be
useful in the above three purposes, our main purpose of the search is to exploit parameter
non-uniqueness to gain additional ‘views’ of the system as explained in the ‘Why Search’

section below.

Why Search? Although this step is not required and it may not even be possible with
every model, it definitely adds to the versatility and robustness of the analysis by giving
as many ‘views’ through the pinch point as possible. These views can later be used to
compare and contrast the underlying relationships and dynamics of different sets of
unique model operating points or solutions or different sets of non-unique solutions based
on their parameter values (i.e. orientation in the parameter space). Continuing with the
traditional neuron model example, there may be several different neuronal behaviors,
which we desire to characterize, such as bursting, amplification, or bistability, and each

behavior can potentially have its own parameter value set(s) and target output values.

An additional benefit of searches is that, by requiring that the quantitative output metrics

be the same (within convergence or specified error criteria), searches are an excellent
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vehicle for examining the differences between different model or sub-model
implementations. Such an analysis can be invaluable for determining the implications of
both the level of complexity and the type of mechanism(s) or concept(s) to be included in
the model. Thus, the relational analysis of several prospective models can be compared
to a relational analysis of an experimental data set such that the model with the closest
match is chosen to represent the real system. A detailed example of such a comparison is
given in the glutamate spillover test case where the simpler, 5-state Lester and Jahr
NMDA receptor model compared to the more complex, 8-state Banke and Traynelis
NMDA receptor model both intrinsically and extrinsically within the context of a

glutamate spillover model.

When should a search be performed? Searches work best in a mechanistic model, but
they can also be of aid in a conceptual model. Searches are particularly helpful for
models that have either a large number of inputs or parameters or multiple “operating

points” that exemplify different system properties or behaviors.

What should be included in a search? At first, the answer to this question may seem
painfully obvious—parameters, of course. But actually, it can be more complicated. How
many parameters should be searched at once? How does one go about choosing which
parameters to search? When should a particular parameter be searched? These are just a
few questions that relate to what to search. There are not precise answers to these
questions. In fact, the best rule of thumb is ‘when in doubt, try it’. If analyzing a single

model, we typically begin by searching for every parameter within the model. The

40



advantage of this is that searching every parameter gives greater insight into the
sensitivity and robustness of the parameter and its overall impact on the system at

different operating points.

However, there is also great value in dividing the parameter set and only searching for a
specified segment of parameters. Parameter segregation is particularly advantageous
when comparing and contrasting sub-models or components of the system. It is
analogous to ‘doing an experiment’ on a sub-model or component. Just like an
experimentalist typically only varies one variable at a time when performing a test to
determine the impact of an experimental factor, a modeler can also vary one component
or sub-system at a time to determine its impact on a system. This is precisely what was
done in the spillover test case to compare the LJ and BT NMDA-R models within a
spillover model. However, there are other possible ways of segregation that are not on a
strictly component or sub-model basis. One example is to do it on a factor basis. For
example, in a neuron model, one may choose to vary every parameter that directly affects
calcium. Thus, calcium parameter values would be changed in perhaps the calcium
channel(s), calcium pump(s), and the calcium buffer(s), with each of the aforementioned

three being considered its own ‘component’ or sub-model.

How is a search performed? While not the focus of this particular work, much research

has gone into determining the best ways or methods to search. Basically, no one search

or ‘optimization’ method or technique is perfect for every problem. All techniques have
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their advantages and disadvantages. However, all optimization techniques follow the

same basic workflow:

1) Start. Choose a random starting point for input(s) or parameters to be
optimized. This starting point may or may not be bounded within a pre-
determined range. Choose a desired set of metric and values to serve as
the target output values and a set of convergence criteria, which state
how closely the search must match the target output values.

2) Evaluate. The model is run at the starting point values. A ‘cost function’
or equation, which determines the ‘error’ in the outputs, their deviation
from the target output values, is used to correct the search variable(s).
The cost function may or may not be ‘weighted’ such that one or more
outputs are deemed more ‘important’. Depending on the technique, one
or more variables may be moved at a time.

3) Correct. The details of this step depend largely on the search algorithm or
technique. Essentially, the algorithm corrects one or more search
variables by moving them in the appropriate direction(s) toward the
target output values.

4) Iterate. Repeat steps 2-3 for all search variables.

5) Stop. There are different forms of stop criteria. Most set the stop criteria
to the convergence criteria, but if the search has not converged on a

solution, or homologue, after a specified number of iterations, then the
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search either stops completely or starts over at step one with a new

starting point.

Considerations to be made in choosing a search or optimization technique include the
stability and robustness of the model, the properties of the underlying model
mathematics, the number of parameters included in the search, computational
requirements, and ease of implementation. Different types of techniques include gradient
descent, genetic or evolutionary algorithms, bifurcation analysis, or hybrid methods.
While it is best to choose an optimization technique that best fits the properties of your
particular model or problem, like any given technique or set of techniques, individual
researchers tend to have their favorite or preferred methods of searching. Our preferred
method, which works well in our models and in neural models in general, happens to be
gradient descent. A gradient descent type of search was used in our work with the

spillover test case.

Survey
Surveying a model is very similar to surveying a construction site. The purpose of
surveying the model is to determine the topology or characteristics of the model under a
particular set of conditions, or model operating point. Surveying a model, just as in an
actual construction site survey, consists of two parts: data collection, which includes
quantitative measurements of the variability around the model operating point and

visualization through a blueprint or map, which comprises the output relationships of the
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model. The data collection process is performed via sensitivity analyses and the

visualization is performed via the formation of the model landscape.

Sensitivity Analysis

The sensitivity analysis (SA) is typically defined as the study of how the variation or
uncertainty in the output of a mathematical model can be apportioned, qualitatively or
quantitatively, to different sources of variation in the input of a model. However, this
definition need not be restricted solely to true ‘input’. That is, this definition can extend
to parameters as well since parameters can also greatly affect model output. To modelers
in other fields, particularly sociology and economics, the SA is quite commonplace.

However, it has been used to a lesser extent in biological models.

Typical SA’s vary inputs or parameters or both over varied ranges that are typically set to
one to two experimental standard deviations. Typically one input or parameter is varied
at a time and the change that input or parameter has on the output is recorded, typically
graphically. Therefore, we define the sensitivity itself as the linear relationship between
a parameter and its output. Thus, the sensitivity is often characterized as a slope. An
output that is sensitive to a particular input or parameter will reflect a steep slope in its

sensitivity analysis.

Why perform a sensitivity analysis? Typically, an SA, when performed over what is

thought to be an experimental or valid input or parameter range, is as much a necessary
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validation technique as it is an analytical technique. Questions the SA helps to address
include: Can the model hold up under some uncertainty or does it fall apart? Is the model
as robust as the complex biological system, or more specifically, the experimental
preparation, which it is supposed to simulate? While the SA still serves as a validation
technique as one of its functions, it’s primary purpose within relational analysis, and
specifically the search-survey-and-summarize technique, is as the name implies, to

‘survey’ the system or model.

The only way to survey the model is to see how it responds. However, with most models,
unless the model is stochastic or already has some degree of variability built into it such
as ‘white noise’, the model will always produce the same quantitative output values with
a given input or parameter set. Thus, to survey the model, we have to introduce some
variability into the system by the way of altering inputs and parameters. Surveying the
model via a SA allows the model dynamics to be characterized within the landscape by

providing the data sets from which relationships are extracted among the outputs.

When should a sensitivity analysis be performed? The answer to this general question is
rather simple, always! A SA is a necessary part of both the model validation and analysis
process, regardless of the type of model or system. However, in regards to relational
analysis technique of S*, a SA should be performed of every homologue from the search.
Note that as part of some searches, such as the searches we perform, SA’s are embedded
within the search and are used to ‘guide’ the search by surveying the landscape around

the starting point and directing the search in the appropriate direction towards values that
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are closer to the target output value(s). These SA’s are specifically for the purposes of
the search. Since they are done at the beginning or during the search, they typically are
sensitivity analyses of a set of inputs or parameters, which do not produce the target
output values. Therefore, these intermediate SA’s do not replace the ‘final SA’, which is
performed around the product of a single successful search, the homologue that produces
the target output values. It is these final SA’s, the sensitivity analyses of the homologues,
that are used in relational analysis to make the landscape. If a search is not performed on
the model, then a SA is done on every input and/or parameter set, which produces the

target output values.

What should be included in a sensitivity analysis? In this respect, the SA is similar to the
search. Typically, we begin by performing an overall SA in which every input or
parameter is varied, depending on the requirements. (Note that for the test cases included
in this work, the SA was always for parameters.) However, as was also the case in the
search, there are additional benefits to performing the SA simply on one segment of the

model, such a single component or factor that is of interest (see Chapter 5).

How to perform a sensitivity analysis? Many modelers simply hand tune their models by
manually moving one input or parameter at a time and recording the output values.
However, the easiest method is to automate the SA. Our typical method is to simply
specify a deviation interval and set up a script that runs the model at specified points
within the interval. Precisely what the analysis interval is will depend on the specifics of

the model, particularly its robustness, but also on the availability of experimental data.
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For the spillover model, the interval was equal to two experimental standard deviations.
For the spinal cord injury model, experimental deviations were not known. Though the
parameter ranges were not precisely known, they were known to be quite large. Thus, a
SA was performed by varying each parameter individually by a specified interval of +
50%, and the sensitivities were calculated by evaluating the model in eight 6.25%
increments. While we use linear SA’s in the test cases presented in this dissertation, a
non-linear method SA could be implemented. The type of SA utilized will not affect the

outcome of S°.

When determining what interval over which to perform the SA for relational analysis,
one has to remember both the purpose of the SA and the purpose of the model landscape.
The purpose of the SA is to provide the data from which relationships are extracted in the
model landscape, and the purpose of the model landscape is to access the system’s inner
working and dynamics. Thus, the data included in the landscape from the SA needs to be
robust in that it needs both quantitatively measurable and meaningful variability in the
outputs in order to effectively illustrate the output relationships. Since the correlation
technique to make the landscape uses the differences between values and not the values
themselves, too much or too little variability can alter the landscape both qualitatively
and quantitatively. Too little variability (i.e. too small of a SA interval) and the
landscape will either not reveal any relationships or it could vastly under or overestimate
them due to the differences in small numbers. Too large of a variability (too large of a
SA interval), and the landscape may ‘average out’ relationships or show a relationship

average which quantitatively skews the relationships in one direction or the other.
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There are a few ‘rules of thumb’ tests to check the SA interval. First, look at the
differences in the output. Use intuition and knowledge of the model’s robustness to get a
feel if the differences seem comparatively small or large. Also, check the magnitudes and
signs of the slope. Are they consistent? If the sensitivities are plotted, do they appear
linear? Are the signs all the same (i.e. do they go positive say, for example, 4 of your 6
points and negative for the remaining 2 points)? If the slopes are not consistent in
magnitude or sign or they have large ‘gaps’ or ‘jumps’ in magnitude, the SA interval may
be the wrong size. Typically, if the aforementioned is true, the SA interval would be too
large, but if the differences themselves are extremely small (e.g. out past the decimal
point), then one might suspect the SA is too small; thus, the differences being measured
are really just stochastic or rounding error. If the model’s tolerance to variability is just
inherently small and therefore the SA must be kept proportionately small, it is sometimes
helpful to increase the sample size over the SA interval. Furthermore, if the model has
built-in variability, as in a stochastic model, then the sample size will definitely need to

be larger, and the SA interval may need to be on the larger side.

However, it should be noted that there might be cases where inconsistencies in magnitude
or sign of the slopes are permissible. An example of such a case is when an ‘overall’
landscape of the ‘average’ system dynamics is desired over a determined operating range.
In that particular case, the SA interval would likely be an interval that is known to be a
viable operating range for the complex system being modeled, perhaps an experimentally
determined range. Over such a range changes in sign or magnitude of the relationships

might naturally occur.
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Model Landscape

Why make a model landscape? A model landscape allows the output relationships of the
system to be easily visualized, both in magnitude and/or sign. It is the underlying
premise of relational analysis that based on complex systems philosophy, these
relationships represent the inner workings and dynamics of a system. Thus, the
landscape is both a critical and central product of relational analysis. It is from the model
landscape or a set of model landscape(s) from which summarizing with exploratory data
analysis techniques leads to new hypotheses regarding system mechanisms, behaviors,
and/or functions. Visualizing these output relationships in a systematic way via a
landscape allows their impact, influence, and overall interacting dynamics to be more
easily identified and evaluated. This is particularly true in models where there are many

outputs.

When to make a landscape? When performing relational analysis, their should always be
at least one landscape which illustrates the relationships of the outputs under the primary
set of specified conditions, or the primary operating point. However, landscapes ‘have
power in numbers’. The ability to compare and contrast landscapes is what makes
relational analysis truly powerful. For ideas of different types or sets of landscapes
which are particularly helpful in model analysis, see the “How should one summarize?”

section of text.

What should be included in the landscape? Granted, there are different possible types of

landscapes and thus what goes in the landscape depends on what type of landscape it is—
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output landscape, parameter landscape, etc. However, landscapes have one thing in
common—they all reveal relationships among the variables that they visualize. The main
type of landscape is the model output landscape. The landscapes included in this work in
the test cases are all model output landscapes but are simply referred to as the ‘model
landscape’. Model landscapes are the cross-correlation of the model output values
obtained from a set of sensitivities extracted from a parameter sensitivity analysis. The
standard model output landscape includes all of the model outputs. However, there is
also value in just viewing the landscape, or the cross correlation of outputs, of a specific

component or sub-model.

How to make a model landscape? A landscape can be made by cross-correlating the
calculated sensitivities for each set of output values to be included in the landscape or by
cross-correlating the actual output values, themselves. Cross-correlation analysis can be
performed in any statistical software such as MATLAB ™ or Systat ™. However, it is
important to pay attention to which cross-correlation technique is used and any user-
specified options. It is our experience that different cross-correlation methods and
options produce subtle to negligible variability in the results. However, it is important
that any set of landscapes that are to be compared or contrasted be constructed using the

same cross-correlation technique and options.

While there is no maximum on the number of ‘runs’/model evaluations/sets of model
output values to be included in the landscape, there can be a minimum. The ‘minimum’

number of model evaluations to include depends on the variability among the runs within
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the group. Bootstrap analysis, a re-sampling technique, can be used to determine the
minimum number of model evaluations in order for the landscape to be significant. This
is discussed in greater detail in Chapter 5. The definition typically used as ‘significant’
for any particular landscape that is based on a segmented set of model evaluations is that
the standard deviation of the magnitude of all the individual relationships within the
segmented data set landscape must be less than the standard deviation, and preferably less
than 50% of the standard deviation, of the landscape for the full data set. As a general
rule, it is best to include at least 8 different model evaluations or sets of model output

values in each landscape.

Note that quantitative correlations for any given cross-correlation matrix, or landscape,
should range from -1 to +1 inclusive. The higher the absolute value of the cross-
correlation, defined as the correlation magnitude, the greater the degree of correlation
between two outputs. The sign of the correlation simply indicates its direction. Thus, a
cross-correlation of positive one (+1) indicates that the two outputs are completely,
positively correlated, a cross-correlation of negative one (-1) indicates that the two
outputs are completely, negatively correlated, and a cross-correlation of zero (0) indicates
no correlation between the two outputs. In some systems, the sign of the relationships are
either arbitrary to the output definition, not particularly meaningful, or are simply
‘confusing’ to the analysis. For those cases, it can be best to remove the sign by taking

the absolute value of the entire matrix.

Once the cross-correlations have been produced, they must be visualized graphically.
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Typically, this is done with a ‘heat map’. In a heat map, differences in magnitude are
represented by different colors or hues of colors. The basic landscape of overall
dynamics is best visualized using a grayscale heat map to avoid the confusion of many
colors. In such a map, darker hues represent larger magnitudes (black is usually used to
illustrate a correlation of 1) and lighter hues represent less correlation magnitudes (white
is usually used to illustrate a zero correlation). However, if the intent of the analysis is
especially focused on small differences in relationship magnitude, a color heat map may

be necessary.

If it is not necessary to visualize the sign of the relationships within a certain landscape, it
is best to take the absolute value of the cross-correlation matrix before plotting the graph.
However, if differences in relationship signs are important in the system or analysis, there
are three ways to both easily illustrate magnitude and sign. First, if very small
differences in magnitude are not that important, plotting the positive relationships in one
color (such as red) and the negative relationships in another color (such as blue) and
using hues of either color to indicate magnitude is a good illustration technique. If
grayscale is preferred, sign can be indicated by shape. However, if fine gradation is
necessary to differentiate relationship magnitude, a heat map that has a colorbar for the

entire positive and negative spectrum may be required.

Finally, there is great benefit to sorting the outputs on the axes. One sorting method that
is beneficial, particularly when viewing a single landscape, is to sort such that the outputs

that are the most related appear next to each other on the axes. This sorting helps to
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identify patterns of relationship within a landscape. Such a sorting technique can be done
manually by visualization, quantitatively by using the values of the cross-correlations
themselves, or statistically using a technique such as cluster analysis. If a group of
landscapes are to be compared, it is best to sort them such that the outputs appear in the
same order on the axes of each landscape. Note that regardless of the method of sorting,
sorting in no way changes the quantitative values of the relationships, their meaning or
even what is in the landscape. Sorting only assists in evaluating and analyzing the

landscape by giving different perspectives.

Summarize
Summarize is perhaps the least defined procedure in the S® technique. We loosely define
‘summarize’ as the analytical process by which we evaluate the “pictures’ (i.e the model
landscapes) we have taken inside the pinch point to view the inner workings of our
system. Thus, in general, ‘summarizing’ is the process of comparing and contrasting,
performing multi-variate statistics, and posing hypotheses based on the model

landscape(s).

Why summarize? 1f we do not summarize, or explore or put into perspective the results
of our analyses, then our results are little more than statistical tests without biological
meaning. Thus, without summarizing, we are simply left with general characterizations
such as “the model exhibits parameter non-uniqueness” and “the model is or is not
robust”. It is the act of summarizing where the analytical techniques are applied to gain a

comprehensive insight into the system. Summarizing is as much, if not more, of a
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process of thinking, hypothesizing and evaluating, as it is a specific quantitative test or

method.

When should one summarize? Based on why we summarize, the answer to this question
is a resounding always! Regardless of the model type, complexity or the specifics of the
number of outputs, homologues, or operating points or systems, the model (perhaps best
stated as ‘the system’) should always be summarized. Summarizing is particularly
helpful to analyze, compare, and contrast the dynamics of a model over time and at
different operating points. It is also helpful in determining the differences between
different model implementations or the contributions of different model or factor

components.

What should one summarize? This is a question with an infinite number of answers.
What is summarized often depends on the system specifics or what is desired from the
analysis. In general, the landscapes should always be summarized and in as many ways
as possible to hone as much information about the system. Summarizing by time, by
component, homologue, target output values, and system factors are just a few ideas.
Dimensionality is something else that can be summarized. A measurement of

dimensionality is a measure of the ‘degree of pinch’ in the pinch point.

How should one summarize? Again, how to go about summarizing can be as varied as to
what should be summarized. The key is to initially be systematic in summarizing. Set up

a few different things or ways in which the system will be summarized. Then, be open in
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letting the results of those initial summaries lead to other possible summaries from which
more information can be honed. The act of summarizing is as much an art as it is a
science. It is dependent on the generation of ideas to explore. However, coming up with
such ideas is usually not difficult. The results of even one or two initial ideas or analyses
typically generate many more. In general, we try to incorporate several different
analytical or statistical tests as part of the summarizing process, such as factor or
principal component analysis and bootstrap analysis. However, the way we go about
summarizing is best described as exploratory data analysis. The goal is to use statistics

and analytical techniques to explore or generate hypotheses rather than confirm them.

Rather than laying out a specific recipe for summarizing here, it is more beneficial to
review the test cases themselves. Perhaps the best two examples to compare and contrast
different ways of summarizing are the spillover and spinal cord injury model test cases.
In the spillover case, summarizing focused on comparing and contrasting the differences
between two different model implementations. In the spinal cord injury case,
summarizing focused on characterizing the type and number of system interactions in the
landscape and how those interactions changed with time (i.e. the analysis focused on

hypotheses regarding system dynamics).

Below is a ‘top 10’ list of the most common ways to summarize:
1) Compare and contrast landscapes at different time points
2) Compare and contrast landscapes spatially (if model has spatiality)

3) Compare and contrast landscapes of different model components
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4) Compare and contrast landscapes of different homologues

5) Compare and contrast the standard deviation in segregated group(s) of landscapes

6) Compare and contrast landscapes of different model or mechanistic
implementations

7) Compare and contrast the landscapes of categories of model factors

8) Compare and contrast the dimensionality of different components

9) Compare and contrast the dimensionality of different model implementations

10) Compare and contrast the factor or principal component analysis of a landscape or

group of landscapes
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CHAPTER S

COMPONENT ANALYSIS

The relational analysis presented in Chapter 4 uses the relationships within a system to
determine the overall system dynamics and behavior and to make system-level
mechanistic and/or clinical hypotheses. However, there are times in which scientists and
engineers need to hone in on a specific aspect of a system, to essentially place a
magnifier on a smaller segment, or component, while still being able to view such a
component in terms of the full system. This need to view the inner workings of a system
is no different than that of the mechanic who must raise the hood of a car to view the
components of the engine, which are responsible for making the car run. The tool that we
have devised to do precisely this task is component analysis. Whereas relational analysis
allows us to pop the hood to view the ‘engine’ itself, component analysis allows us to go
deeper and discriminate the relationships and contributions of individual engine parts.
Another way to think about component analysis is that it allows one to ‘peel off” the
individual layers of a system, analogous to peeling away the layers of an onion. This
peeling uncovers the embedded relationships and reveals the corresponding dynamics
that are hidden from sight when the system is viewed simply at the outer-most level
alone. This chapter serves as a user guide on when, why, and how to perform component
analysis. Additionally, this chapter includes a detailed example of how component

analysis can be used to extract component and system properties from experimental data.
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Component analysis is a form of relational analysis that focuses on the relationships
induced by an individual system component and reveals the impact of that component on
the system landscape. That is, it is an analytical technique that quantifies the cross
correlations, namely the system output cross correlations, which are specifically
attributable to a system component. A component can be any segment of a model (e.g.
such as subsystem or a category of factors or mechanisms that have a regulatory or
functional commonality, etc.) or a portion or sub-set of experimental data within a single
study (e.g. different cell types, cells with different properties, etc.). Examples of
potential components:

e A factor or output that is affected by multiple mechanisms. For example, the
‘calcium component’ in a traditional neuron model may be defined as every
‘mechanism’ that has something to do with calcium, such as all calcium channels,
pumps, and buffers.

e A single mechanism responsible for a specific function, such as the NMDA
receptor model within a glutamate spillover model.

e Any category or group of similar factors, such as ‘apoptosis’ or ‘free radicals’
within the spinal cord injury model.

e A single factor or factor property that determines any given system-level
property(ies): the conductance of a neuron, the glutamate concentration within
the soma, the length of the axon, etc.

e A degenerate mechanism, whether mathematical (5-state receptor model versus 8-
state receptor model) or biological (sodium channel Nav 1.3 versus sodium
channel Nav 1.6).
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Why and when to use component analysis
As stated above, the purpose of component analysis is to study a single component within
the context and view of the larger system. Component analysis within a larger model,
compared to isolated analysis of a component outside the system model, is analogous to
the benefits of an in vivo experiment over an in vitro one. Just like an in vivo
experiment, component analysis gives a more realistic picture of how a factor,
mechanism or therapy affects the whole system by analyzing that component within the
full system itself. Component analysis is an excellent tool for either general system
analysis, in order to understand the deeper ‘layers’ of a system, or for a more specific or
detailed analysis of the component itself. Thus, component analysis can be used with
specific intent in order to go after a pre-existing hypothesis regarding a component or
system function or it can be used to generate new hypotheses at both the component and
system level. Thus, component analysis is an excellent tool for nearly every model type,

and should be included as part of the relational analysis of any model.

How to perform component analysis
The general steps are the same regardless of the type of component to be examined and
regardless of whether the data is of computational or experimental origin. Like regular
relational analysis, component analysis closely follows the search-survey-and-summarize

or S” technique. For details on S3, please see Chapter 4.

Step 1: Primary data collection, relational analysis, and landscape construction. Before

beginning component analysis, it is best to have already collected the primary data set
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and to have performed relational analysis on the overall set. That is, one should have
already obtained the ‘primary’ system landscape, a cross-correlation of all the system
outputs based on the primary data set. As stated in Chapter 4, typically this primary data
set contains the sensitivity analyses of a model solution, which produces the target output
values. This primary data set typically contains multiple sensitivity analyses, one for
each homologue, if a search has been performed. However, it must contain at least one
sensitivity analysis, which corresponds to at least a single solution that produces the

target output values.

There are several reasons for starting with an overall or primary system landscape. First,
having an initial primary landscape can be helpful for manual component identification
using the summarize technique. Secondly, it is also necessary to aid in the validation of
component analysis. Finally, it is necessary in order to compare the effect(s) of the

component and separate those from the rest of the system.

Step 2: Determine the standard deviations of the correlations within the primary
landscape. These standard deviations will be used to calculate what the maximal
deviations in correlations are allowed to be within the component subset data. The
standard deviation is simply calculated for every correlation within the primary
correlation matrix or landscape from step 1 by bootstrapping. Bootstrapping is a
statistical re-sampling technique, which allows properties, such as variance, to be
measured from an approximating distribution (Hair, 2006). Bootstrapping allows one to

gather many alternative versions of a single statistic, such as a standard deviation, that
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would ordinarily be calculated from one sample. We cannot possibly obtain the
sensitivity analysis for every homologue or model solution in order to calculate the true
standard deviation of a/l possible homologues of the system. From our sample of data,
only one value of a statistic can be obtained, i.e one mean, or one standard deviation etc.,
and hence we don't see how variable that standard deviation is for any particular
homologue or set of homologues. When using bootstrapping, we randomly extract a new
sample of N runs out of the sampled homologues or model operating points, where each
homologue can be selected many times. By doing this several times, we create a large
number of datasets that we ‘might have seen’ and compute the standard deviation for
each of these datasets. Thus, we get an estimate of the distribution of standard deviations
we might have seen. By taking the standard deviation of this distribution of standard
deviations, we can determine what the ‘allowable’ standard deviation is for any set of
homologues or model operating points. This allowable standard deviation determines the
number of homologues or model operating points that must be included. Essentially,
there must be enough data sets such that the standard deviation of the group is not above

the calculated expected standard deviation for the set as determined by bootstrapping.

Step 3: Determine what to include as a component. Typically, there is a specific
component that the modeler or experimentalist has already identified as ‘interesting’ or
worthy of further examination either from the overall relational analysis from Step 1 or
based on other analytical data or hypotheses in the field. However, if not, interesting
components can be identified through a series of statistical tests using the correlations

from the primary landscapes. Statistical tests that can be used to group potential outputs
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in the landscape to formulate components include: factor analysis, cluster analysis, and
categorical analysis, to name just a few. Categorical analysis and cluster analysis are
perhaps the most preferable as they are best suited for the purpose of grouping
relationships whereas factor analysis is best suited as a dimensionality assessment
technique. For example, cluster analysis assigns objects (and in the case of component
analysis on the cross-correlated outputs which comprise the landscape, the objects are the
outputs) into groups called clusters so that the objects or outputs from the same cluster
are more similar to each other than outputs from different clusters. Using cluster
analysis, the major interesting components, which could be pursued, include the groups

of outputs that form the nodes of the cluster.

Bootstrap analysis can be used to determine if there is anything that is both interesting
and significant within the groups produced by the statistical tests. Using bootstrap
analysis, the data is ‘parsed’ into distinct but random subsets for each identified group or
component. These subsets can then be statistically compared to determine if specific
correlation patterns are both evident and significant. If the patterns appear in multiple
bootstrapped subsets, they may be worth pursuing. Bootstrap analysis can also reveal
how many data sets are necessary to analyze a component using the process outlined in

Step 2. This is also discussed further in Step 6.

Step 4: Obtain data for the component. The purpose of this step is to ‘peel” away the
component so that its effects on the system landscape can be visualized. This ‘peeling’

can occur by either sorting the existing data set used to formulate the primary landscape,
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or by generating new data sets through either additional simulations or experiments,
which directly separate the effects of the component. In essence, the goal is to isolate the
variability and corresponding relationships, which are attributable to the component.
Whether the data is simply sorted into segregated groups, which isolate the component in
question or whether additional data is collected that isolates the component will depend

on the nature of the component and the ease of which additional data can be obtained.

For component analysis on experimental data, this typically involves just segregating the
data set by sorting by the properties, metrics, and/or outputs of the component. For
example, in the motoneuron experimental input conductance component test case, the
data was simply sorted by the measured input conductance magnitude. If such a sort is
not possible or there is no variability among the metrics or outputs belonging to the
component in question, additional experiments may need to be performed to obtain the
variation in the component metrics and outputs such that their relationships to other

system variables can be examined.

For a component analysis on computational data, usually a separate search or at the very
least a separate sensitivity analysis will need to be run on the inputs and parameters
which are directly related to the component. Using the example of a motoneuron calcium
component mentioned previously, the parameters of all the calcium channels, pumps, and
buffers would need to be varied to produce a data set that is simply a function of the
‘calcium component’. This variation could be done through a search in an attempt to

reach a particular target output, as was done in the comparison of the two NMDA
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receptor models in the spillover test case, or it could simply mean doing a sensitivity
analysis that varies all involved component inputs or parameters. Typically, unless
comparing two degenerate models, a sensitivity analysis will suffice for the first pass at

component analysis.

Step 5: Construct component landscape and determine standard deviation. To construct
a landscape, simply cross-correlate all of the model or experimental outputs, using the
data generated from Step 4 just as is done in Relational Analysis (see the landscape
section in Relational Analysis, Chapter 4). Additionally, if multiple data sets (such as
multiple homologues from a search or multiple sets of experimental data) are included in
the aforementioned component landscape, cross correlate each data set independently to
make a landscape for each data set and calculate the standard deviation of each

correlation in the set of landscapes.

Step 6: Perform bootstrap analysis to determine the minimum number of points within a
component. In this step, bootstrap analysis is used to determine either the minimum
number of experiments or model simulations necessary to produce a ‘significant’
landscape for that component. To do this, the standard deviation, which was calculated
during Step 2, is utilized. The criterion for significance is the number of points in the
bootstrapped data set that results in an average standard deviation that is equal to total
standard deviation of the overall landscape divided by the number of components into
which the model has been separated. However, because the definition of a ‘component’

is somewhat subjective, particularly when using a non-mathematical definition, factor
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analysis can be used to determine the number of dimensions in the data. The number of
dimensions can then be taken as the number of components by which the overall standard
deviation should be divided. However, a simpler rule of thumb if factor analysis cannot
be readily performed is just to take the component landscape standard deviation ‘cut-oft’
as being ~20-30% of the overall standard deviation because most systems rarely have
more than 3-5 major dimensions in the data set. If the standard deviation of the data set
of component sensitivity analyses for a set of homologues is within ~ 30% of the primary
landscape standard deviation, the component is likely significant. However, due the
limitations and assumptions of bootstrapping this significance must be manually verified

as discussed in Step 7.

Step 7: Inspect the component landscape to verify component analysis
significance/criteria. This is the final validation step to insure that component analysis
has correctly and adequately ‘peeled off” the intended layer. For example, in the
motoneuron test case the intent was to ‘peel off” size so that the relationships that lie
‘under’ the dominant ‘size principle’ correlations could be revealed. Thus, conductance
relationships should be minimized within the individual component landscapes (i.e. the
landscapes of the small, medium, and large motoneurons). If these correlations are still
significant, then the intended layer has not been adequately peeled, and the component
criterion for sorting needs to be re-evaluated. Typically, Step 6 will catch ‘inadequate
peeling’, but Step 7 is an easy and effective check. For example, in the small

motoneuron group landscape, Step 6 revealed that there were not enough points, and this
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was visually evident in Step 7 as the landscape still showed significant conductance

correlations, as shown in Figure 1A.

Step 8 (optional): Repeat for different model operating points. Just as in regular
relational analysis, it is often beneficial to repeat the component analysis at different
points of model operation or different sets of conditions. For example, repeating the

component analysis at different times or under different input(s).

Step 9: Summarize. 1t is in this step that both component and/or system-level hypotheses

can be either evaluated and/or identified. See Summarize section of Relational Analysis.

Step 10: Repeat or iterate for additional components. Often it is helpful to test the
robustness of a component by comparing landscapes with other components such that the
true contribution of a single component can be better compared and quantified in relation

to other system components.

Component analysis to evaluate experimental motoneuron data
Motoneurons are classified according to their firing properties as: slow (type S) and fast
(type-F). Type-F motoneurons can be further classified as fatigue resistant (type-FR),
and fast fatigueable type-FF). The classification of motoneuron type is important because
it is related to the overall function of the motoneuron within the neuromuscular system.
Type-S motoneurons tend to respond to more stable inputs and participate in longer-term

functions such as posture. Type-F motoneurons tend to respond to transient inputs and
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participate in more short-term or ‘active’ movements. Elucidating the different intrinsic
properties of these motoneuron types has been a key goal of scientists within the field.

A common finding in both experimental data and in computational models is that the
firing properties of motoneurons are highly related or correlated to the size of their
conductance. Note that the conductance value is also directly proportional to motoneuron
size or area. Lower conductance or smaller motoneurons are typically type-S whereas
higher conductance or larger motoneurons are typically type-F. This size-based effect on
the firing properties of motoneurons is often referred to as the ‘size principle’. The size
principle is typically the first noticeable trait of any landscape of motoneuron data,
especially data generated from motoneuron computational models. In fact, because the
properties of motoneurons are so closely tied with conductance, the conductance-based
correlations end up dominating the landscape, making any other properties ‘beneath the

size principle’ very difficult to reveal.

In this test case, component analysis is used to study in vivo cat spinal cord motoneuron
experimental data from neurophysiology experiments performed by Dr. Robert Lee. The
specific intent of this study was to analyze the underlying properties of motoneurons as a
function of size. Thus, the purpose of performing component analysis for this study was
to ‘peel off” the conductance such that the underlying properties of these motoneurons,

categorized by type, could be revealed within the landscape.

Since the component of interest had already been identified (input conductance), the data

was automatically sorted using the input conductance measure (G_leak) into three
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categories labeled as small, medium, and large. Figure 1 shows the conductance
component analysis results for each of these three motoneuron sizes. As expected,
component analysis was able to strip away the conductance layer of relationships, as
noted by the absence of any correlations with input conductance (G_leak) in all panels of

Figure 1.

The most apparent immediate observation is that the relationships among each group of
motoneurons are in fact, different. This immediately supports the hypothesis that the
motoneurons are not merely just different sizes of the exact same cell type. If this were
the case, we would have expected the correlations to be very similar, with perhaps only a
few small quantitative differences. Instead, we see that there are multiple differences in
the sheer number of correlations, their magnitude, and their sign. The most striking
difference at first glance is that there are far more correlations in the smaller motoneurons

with the number of correlations decreasing with size.

Beyond the overall, holistic differences in the landscapes, there are many specific
differences in the individual relationships, which suggest differences in regulation and
function among the different motoneuron sizes. There are far too many notable
correlations, both correlations that are similar among types and correlations that are very

different, to mention each explicitly, but a few of the major ones are highlighted.

Major similarities among groups. Starting with the most recognizable pattern of

correlation, there is a large block of strong, positive correlations (denoted in red) in all

68



three motoneuron groups that signify a potential ‘excitability’ mechanism. The group is
composed of namely the spike properties (height, gain, slope, etc) and persistent sodium
peak (Ifast peak). The number of factors included in this mechanism varies among the
size groups, with strongest and greatest number of correlations appearing in the middle
group, followed by the small group, and trailed by the large group, in which only a few of
the correlations within the group remain. Another notable correlation similarity is the
block of correlations relating the half-activation (GNaP_Vh and the AHP Bottom).
Unlike the previous block of correlations, these correlations were not ‘expected’ and thus

could potentially represent a mechanism or function that is yet to be determined.

Major differences among groups. The largest block of differences, other than the notable
differences within the excitability block, are among the persistent sodium relationships
(GNaP). In the small group, these correlations are numerous and strongly negative
(denoted in blue) whereas in the middle group they are fewer but opposite in sign; finally,
in the large group the same relationships are nearly non-existent, with only one or two
major correlations showing up as strongly negative, namely the relationships between
GNaP max (the peak of persistent sodium) and the GNaP rate (the rate of persistent
sodium). Persistent sodium is known to have a strong effect on the types of firing, and
thus, the relationships could be potentially meaningful in designating the mechanisms

behind the firing of each group of motoneurons.

Finally, it should be noted, as is mentioned in step 7 of “How to perform component

analysis”, that the major correlations in the small group to conductance suggests that the
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sample size is still too small for this group. The bootstrap analysis from step 6 had
already suggested this, but it is apparent in the landscape as well by the appearance of
these relationships, which should have been ‘peeled off” or at the very least, minimized.
To correct this, the input conductance magnitude inclusion criteria should be lowered and

more cells that meet the new criteria should be included.
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Figure 5.1. Input conductance component analysis landscapes for experimental
motoneuron data (Mitchell and Lee, In prepartion). (A) Small conductance motoneuron
landscape (B) Middle conductance motoneuron landscape (C) Large conductance
motoneuron landscape
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Component analysis to compare model implementations
As part of the spillover test case, two degenerate NNMDA receptor model
implementations (the 8-state Banke and Traynelis model versus the 5-state Lester and
Jahr model) are compared within the context of a larger neurotransmitter spillover model.
In this test study, component analysis revealed the differences between the two models,
including differences that were intended or expected as well as differences that were not.

See Chapter 7 for details.
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CHAPTER 6

RELATIONAL MODELING

As stated in the Introduction, the second key limitation that has prevented the use of the
model as an exploratory tool is the inability to construct relevant computational models
of physiologies and especially pathologies very early in the research process, a limitation
largely attributable to the requirements of traditional model construction techniques
requiring a vast amount of upfront knowledge of a system. That is currently modelers,
analogous to map-making cartographers, must know with great detail what their system
looks like before they can even begin to create their system maps. For example, the most
common modeling technique, mechanistic modeling, requires that the modeler be able to
both synthesize and construct the system at the most detailed or ‘bottom’ level, deriving
and compiling mechanistic components from first principles. Other existing model
construction techniques such as the traditional ‘black box’ modeling method and the
relatively newer technique of conceptual modeling, require less detailed information
regarding system mechanisms, but they do require a good deal of ‘top’ level knowledge
and intuition regarding the overall properties of the system and its outputs. (For a review

of traditional modeling methods see Background.)

The ideal system-level exploratory technique would not be at all reliant upon our current

understanding but rather would rely on our naivety to the system such that our answers or
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findings are not unintentionally preordained. Thus, such a method would neither require
the holistic understanding of a top-down approach nor the detailed mechanisms of a
bottom-up approach, but would instead utilize a ‘middle-out’ approach that simply
incorporates the existing data of a system, such as the individual experimental
studies/findings within the field. Whether in a relatively new physiological or
pathological field or a long-standing field that lacks comprehensive understanding, there
are typically numerous such ‘findings’ embedded in the literature of the field, literature
that can range from 50 to 100 studies on the smaller end of the spectrum, to hundreds and

even thousands on the larger end.

The method that we developed in order to construct models early in the research process
is referred to as relational modeling. Relational modeling uses simply correlations (or
relationships) and time constants extracted from experimental data to create a system of
piece-wise linear first order differential equations that approximate the dynamics of a
system. Note that the basics of this method are published within our spinal cord injury
publication (Mitchell and Lee, 2008). Relational modeling fits all of the above criteria in
that it simply aggregates and recapitulates the findings of numerous experimental studies
of a physiology or pathology in order to provide a comprehensive, system-level view.
Relational modeling, like relational analysis, is derived from complex systems
philosophy in that it is based on the foundation that it is the system’s relationships that
result in the emergent properties and behaviors of that system. Furthermore, relational
modeling exploits the fact that most individual experimental studies are detailed

investigations of a single interaction between two system factors (often referred to in the
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literature as the experimental correlation). Our general technique to develop and
construct relational models is referred to as review-relate-refine (R®): review the
literature, relate the factors, and refine to meet validation criteria. The remainder of this

chapter describes in detail the steps of this technique.

Review-relate-refine (R3)

Relational modeling, using the R? technique, directly translates a system’s numerous
measured experimental relationships into a literal network or map of system factors and
interactions, a map which can be further translated into a set of differential equations that
can mathematically model the temporal and/or spatial dynamics of a system. The first
step is to review the experimental literature/data to identify the known key aspects of a
system, referred to as factors. Next is to relate the factors using their experimental
correlations to create a network or ‘map’ of factors that illustrates all of their interactions
and to translate this map into a system of mathematical equations. Finally, the translated
factor network, or ‘model’, is refined to meet validation criteria by using relational
analysis to identify areas that need improvement or further detail. Additional
relationships and intermediate factors are added until a set of specified output criteria, as
determined from the experimental literature, is reached. Once validation criteria are met,
relational analysis can be used to make clinical and mechanistic predictions about the
system. Thus, relational modeling using the R® technique enables ‘scaffolding’ models to
be quickly and efficiently built. These system scaffolds can then be filled with either
additional or more detailed relationships, or segments can be replaced with detailed

mechanisms or concepts as research moves forward and information becomes available.
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There are three major ‘parts’ to a relational model: factors, categories, and gains.
Factors are distinct quantitative entities that represent the major parts or ‘players’ in the
physiological or pathological system as defined by the literature in the field. For
example, reactive oxygen species (ROS) and nitric oxide (NO) can be described as two
potential factors of the pathology of spinal cord injury. Categories represent collections
of factors commonly categorized or grouped together by scientists in the field. In the
previous example, ROS and NO could be a part of a category called ‘free radicals’. Last
but not least, gains are quantitative metrics determined from experimental data, which
represent the one-way interactions or relationships between factors. For example, the

gain, Gno-ros, would determine how a change in NO would quantitatively impact ROS.

Figure 1a shows an example relational model for spinal cord injury where boxes denote
factors and categories (energetics, excitotoxicity, free radicals, necro-apoptosis,
inflammation, and other) are labeled and denoted by factor box color. Figure 1b
illustrates the overall process of how experimental literature is used to extract gains that
are translated into a system map. Essentially, one-way piece-wise linear correlations are
exracted along with the time constant over which the correlation is valid. From this map,
a set of first order differential equations are formed which reprsent the dynamics of the
system. Using our relational and component analysis techniques, the system
relationships are quantified and used to characterize and visualize emerging dynamics.
Finally, the relationships and their resulting dynamics are used to make mechanistic and

clinical predictions.
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Figure 6.1. Construction of a relational model of spinal cord injury. (A) The boxes
represents tracked factors. Necro-apoptosis, energetics, excitotoxicity, free radicals,
inflammation, and other represent different categories as factors, indicated by color. (B)
The relational model is developed by identifying important system factors (review),
deriving experimentally determined relationships or gains from the literature and
translating them into a network to construct a relational model (relate), and by performing

relational analysis to analyze system wide behavior, make clinical and mechanistic
predictions, and to improve the model (refine).
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A relational model, like any model, is a form of map. In fact, it is most analogous to a
map with which many engineers are familiar, a process flow diagram or a system control
diagram. In R’, the quantitative relationships extracted from the literature that are used to
connect factors within the system map are referred to as ‘gains’, analogous to the
proportional gains used in linear control systems. Just as in controls, the gain in a
relational model specifies the output-input relationship between two factors. The gain in
a control system is used to adjust the error between the current system operating point
and the desired operating point. In a physiological system, the gain would likely have the
same purpose. However, in a pathological system, the ‘gain’ may not always reduce the
‘error’ or the disease, but rather it may be a part of its propagation. At any rate, the gains,
or the relationships between factors in a pathology, whether they help to reduce or to
propagate, do determine the pathology’s operating point. Figure 2 illustrates how the

gains in a relational model are equivalent to the gains in a linear control system.
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Figure 6.2. A relational model as analogous to a control system. The figure illustrates
how a relational model uses experimentally determined relationships, or ‘gains’ between
two pathological factors to determine the pathological output analogously to how and an
engineered plant uses a proportional gain controller to alter its response. (A) A typical
engineering ‘plant’ with proportional control feedback, as indicated by the output-input
gain, Gor. The gain is used to adjust the error between the current output and the desired
or target output by altering the plant’s input. (B) The diagram illustrates a portion of a
generic relational model and exemplifies how Factor X impacts Factor Y via the
experimentally determined relationship or gain, Gyx. The dotted lines represent
connections to factors not shown. (C) The diagram ‘converts’ the relational model map to
the equivalent control diagram having equivalent mathematics. Note the dotted line that
was exiting Factor Y in (B), was moved to show that it has the same quantitative value as
the solid line labeled Factor Y output.
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Review
As with any literature review, the key is to be systematic and agnostic. With a relational
model, it is important to be open and objective, to ‘pull’ out or away one’s own
knowledge and opinions of the system, such that the entirety of literature in a system or
the system’s field can be reviewed without bias or a tendency to ‘pick and choose’ what
goes into the relational model. The great advantage of a relational model is that it can
bring a system into focus, highlighting the ‘key’ or most important or highest-impacting
factors. Thus, it is important not to unintentionally blur or skew this advantage by over-
filling the model with a certain type or kind of factors, which from the beginning, points
or leans toward a certain preconceived idea or theory. Once an overall system has been
made and the most important factors objectively identified, then additional detail and
filling may be done with certain system aspects or factors, which support an identified

theory or mechanism.

Step la: Creating the database. One of the most important steps to success in a
relational model is superb recordkeeping. It is nearly impossible to hold hundreds of
papers in one’s head, particularly long term. Thus, before one even begins to look at a
single paper, it is important to create an initial database. Typically, we would
recommend three databases. One database, the primary database, keeps track of every
article that one finds interesting enough to download at least its abstract, whether or not
that article is eventually read or used directly in the model does not matter. For this big
database, EndNote™ or other similar reference managing system is excellent.

EndNote™, for example, can store and sort by all of the typical author, date, and journal
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information, stores the abstract, and it can be used to directly search and download
references from a source such as PubMed (www.pubmed.gov). Furthermore, a
downloaded pdf version of the paper can be stored with is entry in the EndNote™ library.
All literature searches should be performed within this primary database (e.g. the

EndNote™ library).

The second database is referred to the literature database. This database contains all of
the papers that are downloaded or either partially or fully read, regardless of whether
direct information or values is used from them in the final model. However, more
importantly, this literature database has important summary information about the papers,
which could potentially be incorporated into the model. The literature database, probably
best implemented in either Microsoft Excel™ or Access™ gives each paper a primary
and secondary category name. Additionally, it keeps track of important specific
information pertinent to the system or pathology being modeled. For example, in the SCI
model, we kept track of which nervous system the data was derived (CNS or PNS),
whether it was from (brain, spinal cord or other), experimental type (in vivo or in vitro),
experimental preparation (cat, rat, mouse, co-culture, human, etc). In the preliminary
ALS model, we added database columns that kept track of particular ALS forms (familial
or sporadic), the type of mutation involved (G93A, G85, etc). In addition, it is important
to keep track whether or not the article is a ‘review’ article. Finally, besides the category
assignments, perhaps the most important entry for each article in the database is a short
one-line summary highlighting the major factors, a correlation or other quantitative

finding of the article. The third and final database is simply the ‘model database’. This
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database keeps track of all the quantitative values used in the model (i.e. the gains, time
constants, equation forms) and all of the values used as validation criteria (factor output
values at certain time points, experimental correlations, etc). Like the literature database,
Excel™ is a good platform because it also can allow for easy quantitative manipulation
and calculation. With each recording, pertinent information regarding the source is also
kept in addition to a one-line description of how the value was determined (figure

number, graphical estimation, etc).

Step 1b: Reviewing the reviews. This step consists of reading the major literature reviews
done within the system or the system’s field within about the last decade. The purpose of
this step is to get familiar with the field, particularly if it is a system in which you have no
prior knowledge, as was the case with the two relational modeling test cases in this work
for spinal cord injury and amyotrophic lateral sclerosis. However, this step is important
even if one does have a good deal of initial knowledge. Reading several different
reviews gives different perspectives of the system, aiding both the familiar and unfamiliar
modeler to obtain a multi-perspective, balanced view. Furthermore, it is important to
read not simply the most current review but also some older reviews. There is some truth
to the saying that ‘your first instinct is usually correct’. Thus, there are often some ideas
in older literature that have much value. Unfortunately, such ideas are often dismissed or
cast aside due to one or two studies, which have results that suggest an alternative or
different view. This is not to say that the older view is correct and the newer one is not or
vice versa. It could very well be that both views are correct and represent different

aspects of an emergent property of the system. Remember that the goal of the relational
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modeling process is not to pick the ‘right’ view from the onset but rather incorporate all
views by tying together the experimental research pieces, the relationships or
correlations, that represent each and let the relational analysis process bring the system-

level or big-picture view into focus.

Thus, as a general rule of thumb it is important to read at least 5-10 comprehensive
system reviews of the physiology or pathology to be modeled, if available. Additionally,
particularly if the system is a pathological or diseased-state system, it is helpful to read a
few clinical reviews or even case studies to really connect at both a scientific and human
level to the pathology. Furthermore, reading both the experimental or preclinical
literature in addition to the clinical literature helps to identify relationships between the
two particularly later on. Being able to relate experimental factors to clinical outputs or
effects is critical in the analysis of a pathology. Be sure to record to the primary and

literature databases as appropriate.

Step 2: Initial identification of major categories. Using these initial reviews, obtain a list
of ‘categories’. These categorical groups or classifications will later be used to organize
individual factors that describe a system function, mechanism, intermediate process,
pathway or theory. Note that while ‘categories’ of factors are typically more easily or
readily identified than individuated factors, particularly within reviews, it is both possible
and allowable to reverse steps two and three, and thus identify a list of the most pertinent

factors first and then subsequently classify those factors into categories.
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Step 3: Identify initial factors within major categories. Use the initial reviews to identify
factors within the major categories. These initial factors are typically more obvious in
their association with a category. For example, caspase would be a factor in the category

of apoptosis.

Step 4: Review detailed reviews of categories and/or individual factors. In this step, seek
out literatures reviews, which are more detailed or specific. Such reviews will typically
focus on a single aspect of a pathology, typically a category or a factor. Use these
reviews to understand the more detailed workings of the system and to ‘fill in gaps’. Be

careful to record all pertinent information to the appropriate databases.

Step 5: First expansion of factors and/or categories. Use the information from the
detailed reviews to expand the list of initial factors and/or categories. To aid in deciding
what to include as categories and factors, it’s often helpful to map out the process or
cascade or theory presented in each detailed review. Often times, such maps are already
presented within a figure in the review. If so, use the figure given. Within the map,
every major ‘block’ typically becomes a factor and the map itself typically becomes a

category.

Step 6: Key word searches for factors and categories. In this step, key word searches
are initiated to find actual experimental and clinical studies that are not simply literature
reviews. Typically, two key word searches are done for every factor. The first keyword

search utilizes the pathology name as one keyword, for example “amyotrophic lateral

83



sclerosis”, the factor’s category name as the second keyword, for example “apoptosis”
and the third keyword is the factor name, itself, such as “caspase”. The second keyword
search expands the search to include just the first and third keywords from the first
search, that is simply the pathology and factor names, such that the expanded search can
find studies in which caspase was studied but perhaps not as part of apoptosis or not
exclusively as part of apoptosis. The Boolean operators (and, or, not) can also be helpful.
This expanded search is critical to aid in finding indirect ‘paths’ where a factor ties in to

other factors or categories.

With some pathologies, the number of searches turned up may still be overwhelmingly
large. If this is the case, it may be helpful to limit the scope of the search again by
another criteria, such as experimental preparation or mutation. For example, in the case
of ALS, one criteria used was ‘G93A’ to represent a certain mutation known to cause
ALS that is used to create an ALS mouse model that is a common experimental

preparation.

Another helpful search tactic is to use the abstracts to manually cull through the pile,
looking for studies that appear largely quantitative or focus on a specific output, factor
relationship or correlation or a ‘finding’ or property of the pathology that is found at a
certain time point. Remember that, other than output criteria, which state the specific
value of a certain factor at a certain time, the relational model is a collection of
relationships, and thus, the majority of the literature search should be focused on finding

relationships. While the quantitative identification of relationships (i.e. the numerical
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value of the factor gains) does not occur until the relate process, it is important that the
papers identified during the review process contain these relationships. By knowing what
words signify a possible experimental relationship, one can generally just use the abstract
during the review process to collect potential papers for the literature database. Typical
relationship-signifying words or phrases to look for in the abstract include: in relation,
correlate, increase, decrease, compared to, etc. Examples of such statements found in
actual abstracts from papers included in a literature database for ALS are compiled

below, with the relationship-signifying word(s) in bold italics:

o “Compared to sham-treated G93 A animals, 30-day calcium blocker infusions
markedly diminished the loss of both motoneurons and of astrocytic GLT-1
labeling. (Yin 2007)”

e “Treatment with the antioxidant 5,5-dimethyl-1-pyrroline N-oxide resulted in
inhibition of protein oxidation and decrease in proteasome activity to the basal
levels. (Aquilano 2003)”

e “The temporal ordering of changes in cytoplasmic and intramitochondrial
calcium levels in relation to mitochondrial reactive oxygen species accumulation
and membrane depolarization was examined in cultured neural cells exposed to
either an apoptotic or necrotic [modulator]. (Kruman 1999)”

e “These findings suggest a causal relationship between enhanced oxidative stress
and mutant SOD1-mediated motor neuron degeneration, considering that
enhanced oxygen free radical production results from the SODI1 structural
alterations.”(Liu 2002)
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e This process accounts for up to 50% of the glutamate accumulation during energy
deprivation. Enhanced action potential-independent vesicular release also
contributes to the increase in glutamate, by 50%, but only once glutamate uptake
is inhibited. (Jabaudon 2000)

e Here, we show that the increased denitrosylase activity of SOD1 mutants leads to
an aberrant decrease in intracellular protein and peptide S-nitrosylation in cell and
animal models of ALS. (Schonhoff 2006)

e While intra-mitochondrial calcium levels were elevated in SOD1G93A

motoneurons, changes in mitochondrial function did not correlate with [Ca2+].

Typically, such direct qualitative and sometimes even quantitative relationship findings,
as in the last bulleted point, are highlighted in the abstract. A paper that lists a key
quantitative finding is a definite keep to file in the EndNote™ and literature databases.
However, if an abstract has direct or indirect qualitative relationships in the abstract, as
shown by the majority of the examples above, it should also be included in the
EndNote™ and literature databases. While many authors are not completely forward
with the quantitative value of such a mentioned qualitative relationship or a factor’s gain
either in the abstract or within the paper itself, typically data is presented from which the
quantitative values can be extracted (this process is explained in the relate section).
Finally, note that at this point, the date of publication range can be quite large. A
preferred range may include studies within the last 10-15, but with some factors,

including studies done over 20 years ago is not uncommon. Regardless of whether a
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study has a factor or data point that you think you will want to include, record it to the

EndNote™ database.

Step 7: Second expansion of factors and/or categories. Review the literature found as a
result of the searches. Use the key word searches from step six to identify and expand
especially new factors but also factor categories. At this point, it’s good to have between
6-10 papers for each factor, if possible. Similarly, for something as complex as a
pathology, there are typically between 5-10 obvious categories. The decision on what is
a category can be defined by a function (such as apoptosis), a malfunction (such as
excitotoxicity), a physiological process (such as axonal transport), or other obvious
commonality among a group of factors (such as ‘systemic effects’, which represents all of
the external effects on all bodily systems other than the one being modeled). Making and
splitting categories is subjective, but the relational analysis during the refine process will
be able to pick up on whether a factor has been wrongly categorized since factors of the
same category typically have a high degree of correlation among themselves. Typically
at this point, for an initial relational model, there are between 6-10 categories. Note that
the number of categories will depend on the breadth of the pathology and the literature
review, whereas the number of factors typically depends on the level of detail in the field

and the literature review of the field.

It is difficult to assign a standard number of factors for a category. The number of factors
within a category could easily range from 2-6, but could be as high as 10 or more. The

rule of thumb for an initial model is there should be at least one factor for each major
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‘output’ of the category (an example is cell death for apoptosis) and one factor for each of
the major players in the category. Using apoptosis as an example, there could be factors
for the two end or decision points, which determine apoptotic initiation, caspase and Bcl-
2; factors to represent each receptor type in the pathway such as the cytokine EGF
receptor, survival/growth RTK receptor, chemokine or GPCR receptor, death or Fas
receptors, etc; or more general factors that represent specific apoptosis initiators such as
calpain, calcium, gene regulation, etc. A modeler may choose to represent apoptosis with
one or all of those schemes, depending on how apoptosis is presented in his/her system.
Continuing with our apoptosis category example, intermediates, such as p53, FADD, mt
and other apoptotic-associated signals that occur in mid-cascade, are generally not
included as factors at this point. Admittedly, sometimes it is difficult to distinguish a
‘major player’ from an ‘intermediate’. However, this determination becomes more
evident during the relate process. During the relate process, when relationships are being
identified and extracted from the literature, what one may think of as an ‘intermediate’
may actually need to be included as a factor since intermediates are often used as metrics
of comparison or correlation to the main player, determining the main player’s or factor’s
response. Because such intermediates will be used to alter the main players in the model
through their gains, it will be necessary at that point to add in intermediates as actual

factors.

What ends up being a factor for any particular category ultimately ends up being
whatever the field defines as a ‘major player’ via what they measure as part of the

experiments. Whether the factor is truly a ‘major player’ in terms of impact, as defined
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by the field, will be determined by the relational analysis and not by the decision to
include it in the model. Thus, if in doubt, include as many factors as there is relationship
data during this second expansion. Once the factors are translated into a map, it will
become apparent if there are interactions that will warrant keeping these questionable or

extra/extraneous factors.

Finally, a critical part of this step is once again good record keeping. Carefully record all
pertinent information to the primary and literature databases. Keep an, active up-to-date

list of factors and categories.

Relate

It is in this step that all of the real work and ‘magic’ happens because it is here where the
model really starts to come together and where major decisions are made. In this step,
the relationships that represent the inner workings of the system are identified from the
literature for each factor and are translated into a map or network of factors, which are
connected by their relationships, or interactions. Typically, such a map looks very much
like a process flow diagram, commonly used by chemical engineers to represent a power
plant or refinery or a systems control diagram, commonly used my control engineers to
operate such a plant. Every line connecting two factors is called a ‘gain’, where the gain
is the one-way quantitative value of the relationship or correlation between two factors,
as taken from the experimental literature. This gain can be thought of as either a slope or
sensitivity that represents the linear change between two factors, X and Y, such as the

gain imposed on X by Y is equal to dY/dX. Conversely, the gain imposed by X on Y is
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dX/dY. However, note that these two gains do NOT have to be reciprocals of one
another nor do the two gains need to have any quantitative relationship of any kind in
respect to one another. In fact, two factors may have only a single one-way relationship
in which factor X causes a change in factor Y but factor Y does not cause a change in

factor X.

The primary intent of the relate process is to create a relational model that connects and
illustrates factor relationships. However, as part of that process, it can be helpful to first
go through the relate process with only categories. That is, in essence, make a relational
model based only on categories. A category model uses very rough or ‘back-of-the-
envelope’ estimates to determine the relationship or gain that each category has on every
other category and to determine the corresponding time constant associated with each
category. These category gains and time constants are essentially aggregated factor gains
and time constants, which can be very roughly estimated from the literature.

The benefit of a category model is that, because there are fewer things to quantify, it can
be very quickly constructed, and thus provide very fast feedback and insight into a
system. The insight gained from a category model can then be used to hypothesize which
parts of the relational model have the highest impact and when that impact occurs. This
insight, in turn, can be used to determine which categories may require the most detail
(i.e. additional factors), and when the most detail is needed (i.e. an estimate in the number
of time constants required—see step 10). Furthermore, the category model can give

insight into what additional factors may be needed to compensate within a category such

90



as, for example, factors which will provide negative feedback on the category to aid in

making the pathology or system more stable.

One critical reminder, however, is that one must keep in mind that the category model is
simply a very rough estimate. It cannot possibly represent all of the dynamics of the
factor model. Once factors are inserted and a true relational model of factors is
constructed and simulated, the factor model could show different or even contradicting
results. However, this comparing and contrasting can be enlightening and beneficial in
and of itself, helping to further stimulate hypotheses and conceptual system insight.

The major steps of the relate process as described below are the same overall steps
whether making a category or factor model. However, there are some specific details,
which differ between the two. The major difference being that quantitative data for
factors are taken directly from literature whereas the quantitative data for categories are
roughly estimated by the modeler using his/her aggregated insight obtained from reading
the literature. Thus, this distinction between factor and category model details is made

clear in each step.

Step 8: Determine the relationships. In this step, the specific relationships are
identified. That is, every ‘line’ or ‘arrow’ connecting the categories or factors is

identified.

For factors, this means first connecting every direct relationship. The ‘direct’

relationships are those that are directly stated or measured from the literature. For
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example, “an increase in calcium resulted in a subsequent increase in free radicals.”
However, one must be wary of relationships that are not directly apparent from the
literature. In fact, it may be the modeler who actually identifies an indirect relationship
by combining the results of two different studies, which have a common thread. Also,
there may be times when an apparent relationship is obvious from what is known about
the non-diseased physiology, but such a relationship may not have yet been directly
measured in the pathological literature in which case it must be estimated using other
literature or data points. In summary, it is up to the modeler to synthesize all of the

literature and identify all pertinent relationships.

For categories, determining the relationships simply means asking the question “Does
Category A in any way have an effect on Category B?” The answer to this question can
be very complicated and daunting, and it’s easy to miss especially smaller or indirect
effects. This is why it is important to keep in mind that the category model is simply an
estimate. Thus, simply recognizing obvious or direct effects is enough for a model at this
very rough, category level. Determining the relationships between categories involves
synthesizing what is known about both the normal physiology and the diseased
pathology. For example, in the normal motoneuron axonal transport physiology it is
known that the energetics category affects the axonal transport category. Thus, whether
there is a pathological ALS study that directly quantifies the effects of these two
categories does not matter. The relationship would be inferred from the physiology and
thus recorded as ‘present’ in a category model of ALS. Another pointer is that it may be

helpful to think in terms of factors. Is there any factor in Category A that impacts any
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factor in Category B? If yes, then there is likely a relationship between the two
categories, however big or small it may be does not matter, since the primary intent of

this step is simply to identify relationships.

Step 9: Determine the direction of the relationships. The purpose of this step is to
determine the direction of each one-way gain, ‘up’ (positive or increasing) or ‘down’
(negative or decreasing). This gives more intuition as to how each factor or category
affects the movement of another factor or category. It also aids in determining the sign
convention of a factor or category, as in whether the feedback is positive or negative.
For factors, this sign convention will come directly from experimental data. It will
typically follow a shown graphical or visual trend. Thus, there is typically nothing tricky
about determining the sign of a factor gain. The exception is when factor have resource
constraints or multiple feedbacks that have different signs. For example, glutamate can
be increased by NMDA activation and decreased by uptake by glutamate transporters.
The overall sign of glutamate will depend on which relationship or interaction is
‘winning’ at the measured time point. The possibility of a direction switch should be
denoted at this time such that it is not forgotten later. But, at this point, the direction can
simply be taken as the direction that causes the highest degree of pathological impact.
For example, in the case of glutamate, increasing glutamate via NMDA causes
excitotoxicity whereas decreasing glutamate, for most part, does not impose a
pathological effect. Thus, the sign of glutamate would be recorded as positive.

For categories, the sign can be trickier since different factors within a category can

potentially push the category different ways, similar to the factor case described with
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glutamate above. Again, the rule of thumb is to go with what the majority of the factors

within the category do to increase the pathological effect(s) on the system.

Step 10: Determine the time constant for a factor or category. The time constant is used
to determine the time-dependent behavior of a factor or category. It is a necessary
component to translate and construct the differential equations, which describe the

network of factors.

For factors, a time constant is determined directly from experimental data using the peak
or maximal impact as the point of measurement. For example, if the peak glutamate
concentration occurred at 1 hour, the time constant, as typically defined by engineers,

would be 67% of 1 hour, or ~ 40 minutes.

Of note, is that a factor may need to have multiple time constants. Since the relationship
gain being taken from literature is assumed to be linear over a short period of time, there
may need to be several ‘pieces’ of time which the factor is modeled with a different time
constant. This is analogous to having a smaller mesh size or time step for a differential
equation solver in areas in which a function is experiencing frequent or high degrees of
change. If a factor’s gain significantly changes with time, such as the glutamate case
described in step 9, then there must be a time constant to represent each piece-wise

change represented.
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In general, the model must be split in order to accommodate these piece-wise changes.
For example, in the SCI model, there are two such splits. There are time constants to
represent the ‘acute’ period, the first hour post-insult, and time constants to represent the
‘sub-acute’ period, hours 2-16 post-insult. These splits can only be determined by
validating the factor values at known time points to experimental data during the refine
process. If a factor’s output values track experimental data well at first but then begin to
not follow the experimental data over longer time periods, then there needs to be a split
and another time constant to be identified and used when the significant deviation from
experimental values occurs. Essentially, the number of time constants and time splits
required will depend on the system and the relationships of its individual factors. While
this process is not a curve fit, it is analogous to the piece-wise process used to fit different

parts of a function during a curve fit.

For categories, the time constants can be estimated based on when the main outputs or
factors of the categories express their peak impact. Thus, the estimate is based on the
‘majority’ of impact within the category. Typically, this is not a difficult estimate as
factors within a category are typically very inter-related and thus have similar time
constants; thus, the aggregated time constant for the category is comparable to the factor
time constants. Such an estimate definitely does not require knowing each factor’s time
constant. Typically, most experimental papers, and particularly high-level overall
physiology or pathology reviews, such as those used in step 1, are forthcoming in making

statements that hint to a category’s time constant. For example, a review in ALS may
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state the following: “Axonal transport defects are evident by day 60 in the G-93 mouse

model.”

For a physiology or pathology with a large number of categories, it may be helpful to
simply divide the time constants into ‘fast’, ‘medium’ and ‘slow’. For example, a
relational category model of ALS uses time constants that indicate key pathological
presentations of the G93A mouse model at 60, 90, and 120 days. A quantitative value,
based roughly on data for the system can be assigned to each time constant speed. For
the purpose of getting a preliminary system overview, obtaining more gradated or
accurate versions of the time constant magnitudes does not add a considerable amount to

the analysis since there the entire category model will be based largely on estimation.

Step 11: Translate the relationships into a relational map. 1t is at this point where
overall system map can be constructed. As in the example shown in Figure 1 for spinal
cord injury, a box should represent every factor and an arrow in the appropriate direction
between two factors should indicate every relationship or ‘gain’. Using the number of
total connections to each factor can help with ideal spatial placement of factors in order
to minimize the number of line crossings and clutter. The factors with a higher number

of relationships should be placed more towards the middle of the map.

Step 12a: Determine the magnitude of the relationships or ‘gains’. It is in this step that
the literature relationships are turned into quantitative values that can be used in Step 14

to form differential equations.
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Determining the magnitudes for gains of factors can be either extremely easy—a matter
of simply reading the text and extracting the stated value or it could be as difficult as
synthesizing multiple studies, crudely measuring, comparing, or averaging a handful of
things and then making a determination. However, the majority of the time, the value is
not simply stated. Even if a factor’s relationship is directly stated, it definitely does not
appear in the paper as “The gain of factor X on factor Y is 3.2”. Unfortunately, the
majority of the time, it takes a good amount of ‘work’ to find a gain in the text or even
obtain the data necessary to ‘calculate’ a gain, particularly for the first 10 or so gains for
any given system. In general, scientists in a particular field tend to present their data in a
similar way and, within reason, they even organize their findings in specific ways (e.g.
explicit types of graphs or visualizations) or patterns within the journal article (e.g.
location and organization of data within the results section). Thus, once one has become
more familiar with such ways and patterns of a particular field, gains are determined

more easily and efficiently as the extraction process continues.

The most important thing to keep in mind or remember whether trying to cull the
literature text to find the quantitative values directly or using the presented data to
calculate a value, is the definition of what the gain is: the gain is most simply stated as
the slope between two factors. Another way to think about it is like the proportional gain
on a controls diagram. The gain allows the change in a factor to be calculated, and within
the model this change can then be added back to the previous value of the factor to

determine the new factor value.

97



If a gain is directly quantitatively stated in a paper, it often appears in a figure caption
that describes the data being measured or near where a figure is cited in the text. For
example, “Figure 1 illustrates a five-fold increase in glutamate at 15 minutes post-insult”.
Note that the same relationship-signifying words as previously mentioned during the
review process in Step 6 still apply when looking for actual quantitative values within the
text. However, there is one important warning to be aware of when taking what appear
to be quantitative values or relationships from the text. Typically, papers do not present
factor relationships as an actual ‘gain’ or slope. Instead, they present a gain as a
proportional difference in a factor between two different points of measurement, as in the
example above. That is, the relationship presented is usually a dX or dY and not the
slope dY/dX or dX/dY, which is required for a relational model. This can be easily
corrected by using the dX or dY given in combination with ‘base’ value points of X and
Y or the experimentally varied points of X and Y to calculate a slope. ‘Base’ values, if
not shown in the data presentation (table or figure) often appear in the methods. Also,
‘base’ values can have many potential names or descriptions within the literature such as
physiological, non-diseased, normal, wild type, sham, or control. Another cautionary
reminder is to be careful of not flipping the gain the wrong way; this is a particularly easy
mistake to make for two factors which have a two-way relationship to each other.

There are quite possibly a nearly infinite number of ways for a relationship or ‘gain’ to be
presented within the data of a paper. The most common data presentations from which
gains can be extracted are listed below. However, it is important to keep in mind that a

couple of different data sources, whether within the same paper or whether from different
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papers but comparable studies, may be needed in order to determine quantitative gains.
For example, one experiment may identify that a relationship between Factor X and
Factor Y simply exists, while the results of another experiment presented in one or more

graphs may enable the change or slope to be calculated.

e Bar graphs. Bar graphs are probably the most highly favored data presentation
technique of experimentalists, mainly because most experiments aim to directly
compare a relatively few number of points. Such graphs typically have multiple
bars to show either different factors or different experimental variations of a
factor. If making measurements about the pathology in its native environment,
most will compare the values of two different pathological factors over time. A
slope can easily be extracted from data in this form. However, it is not
uncommon for factors to have different gains over time. Thus, one should check
the gain at multiple time points, if possible. An example gain extraction is given
in Figure 3: Qualitatively, the slope between the 0 and 4 hour time points is about
the same as the slope between 4 and 8 hour time points. However, the slope is
visually different between between the 8, 12, and 15 hour time points. Thus, there
would be two gain extracted for this data, one gain for hours 0-8 and another gain
for hours 8-16. The gain dY/dX or Gyx would be ~ 2 for hours 0-8. This gain
can be obtained by averaging the slope between 0 and 4 hours and 4 and 8 hours
or by taking the slope across the entire 0-8 hour interval. Taking the slope across
the entire interval, the slope dY/dX or Gyx calculation is: (3-2) / (1-0.5), where 3

and 2 correspond to the values of Factor Y and 1 and 0.5 correspond to the values
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of Factor X at the time points of 8 and 0 hours, respectively. Using the same
process, the gain can be calculated for hours 8-16 to be approximately 5. In
summary, this is an excellent example of when a model ‘split” with two time

constants may be needed, as described in Step 10.
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Figure 6.3. Two-factor temporal bar graph. The figure illustrates one of the more
common bar graph presentation forms from which a gain can be extracted. In this
particular example, two factors of a pathology are measured at different time points. For
this example, assume that it is given in the literature that Factor X has a one-way
relationship which impacts the value of Factor Y. Using this information, we know
which direction the slope must be calculated. By simply looking at the figure, it is
evident there are two different gains—one gain that remains fairly constant from 0-8 hrs
and another quantitatively different gain that represents the relationship between Factor X
and Factor Y from 8-16 hrs. The slope can be calculated between each of the two sets of
points. Slopes of similar magnitude can be averaged to determine the average gain over
a time frame.

Another common bar graph presentation is to illustrate how an experimental variable,
such as Factor Y, responds to a controlled level of another impacting factor, such as
Factor X (see Figure 4 below). This is a typical presentation especially in in vitro

experimental studies where individual factors can be more easily controlled. It is also a

very common data presentation form for a therapeutic study or a study where a drug, such
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as receptor blocker or antagonist, is used to measure the response of one or more
pathological factors. A slope can still be calculated as long as the control values are

given.
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Figure 6.4. Single factor or therapy bar graph. This example illustrates two data
presentation possibilities. One possibility is that the categories presented represent an
experimentally controlled concentration of Factor X, and thus, this graph alone can be
used to determine the slope or gain of the impact of Factor X on Factor Y
(dFactorX/dFactorY). Taking the slope between the control and 2mM of Factor X, the
gain would be (2-0)/(8-10) =2/(-2) =-1. The negative sign indicates that Factor X
decreases Factor Y. Another possibility is that the example represents the change in Y
when exposed to a therapeutic. If it were a therapeutic example, unless the therapy itself
actually represented Factor X, then another data presentation form would be necessary to
determine the presence of a relationship between X and Y and to determine the change in
X with the same therapeutic or within the same experimental preparation. Combined, the
latter two data forms could be used to determine the gain imposed by Factor X on Factor
Y.

e Traditional scatter plots. Such plots typically will either directly plot the
relationship, Factor Y vs Factor X, (as shown in Figure 4) or will plot a single
factor (Y or X) over time. The factor versus time plots are the easiest for

obtaining output validation criteria at multiple time points and for determining

when the model will need to be ‘split’ with multiple factor time constants. If a
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single factor is plotted, data may need to be combined with another data source in
the same paper or from a different paper.

Tables. Sometimes quantitative data is presented in tables. This data presentation
form is typically very accessible for calculating a gain. However, it often requires
reading the text to determine which and how what factors are related in the table.
Gene microarrays. These typically just give a ‘fold difference’ increase or
decrease in the expression of a gene or other marker. If the ‘mechanism’ or how
two factors are related is known (either from experiment or from the normal
physiological system), two microarray correlations can be combined to obtain a
one-way factor gain.

Protein gels (western blot). These are largely qualitative and simply show if a
relationship is present. However, they are often combined with other analytical
tests and visualization methods that do quantify the fold-difference. Thus, they
can be combined with such aforementioned tests or other analytical tests to
determine a gain.

Histological micrographs. These are by far the most difficult to obtain gains from
because very often they are heavily qualitative. Typically, relationships are
obtained when a drug, such an agonist or antagonist, is applied to increase or
decrease a factor, such as Factor X, so that the corresponding qualitative change
in Factor Y can be determined by change in dye ‘color intensity’. However, there
are a few cases in which quantitative gains can be extracted when no other data
source is available. The primary example is when the factor is manually
‘countable’, as in the case of detecting the presence of macrophages or microglia.
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If two micrographs of the same magnification are shown (either a before and after
treatment or two different time points), then counting within each micrograph
enables a factor difference obtained. This difference can then be combined with
data from another factor, either from the micrographs themselves (such as
treatment levels) or another data format. Another example is if the geometric area
of the micrograph covered by a certain color is the qualitative indicator, then this
area can be measured in order to compare micrographs and obtain a factor
difference, which like in the previous example, can be used in the construction of
a gain.

Electrophysiology. Traces of neural activity can be difficult to compare in and of
themselves. Metrics from such traces like frequency, firing rate, and
amplification provide the best means of comparison to calculate a relational
model gain or slope. The appropriate metric to choose will depend on what
relationship one is trying to illustrate.

Combining data sources. There are a few intuitive pointers to keep in mind when
combining data sources. First, one must know how and when the relationship
exists between two factors. Knowing the how and when allows one to decide
what data is valid to measure a relationship or gain. Second, to the fullest extent
possible, it is best if the two data sources were measured at the same conditions
(same protocol, preparation, etc). This usually means that it is preferable to use
data that is within the same study or paper. However, there may be times when
using data from the same study is simply not feasible. In those cases, one must

simply match data sources as best as possible.
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As values are recorded, it is important to keep track of them in the model database.
Minimally, one must record the gain type, its value and the source. However, because
obtaining gains can be subjective and they can vary at different experimental conditions,
it is also important to keep more details such as the figure or table number from which it
was extracted, the time points used, the numbers used in calculating the slope (if
applicable), and how the gain was determined. Additionally, finding and recording a
rough estimate of both the standard experimental error (mean or deviations) is helpful
and can be used during the refine process. Also, making a note of the general accuracy of
how the gain was extracted is helpful. For example, there is much more error by the
modeler in obtaining a gain from micrographs compared to graphical or tabular data.
Finally, upon reviewing and reading the literature in the current EndNote™ and literature
databases, one may find that there are still quantitative values that are missing for some
of the gains illustrated on the relational map and one may even find that there are possible
relationships that have not been appropriately illustrated on the map. If more data is

needed to fill these gaps, go to Step 12b.

Step 12b: Third expansion of factors—after reading this step, return to Review step 7.
Sometimes it becomes apparent during Step 12a that there are documented relationships
that have no current papers in the EndNote™ or literature databases that have measured
the relationships in a way that a quantitative gain can be identified or extracted. This
especially tends to happen when there are indirect relationships in a model that have been

inferred from a physiology or when a quantitative measurement has not been made of the
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pathological relationship. If this is the case, the literature review must be expanded
beyond the pathology to other sources of information---either literature of the normal
physiology or a related pathology. For example, in the spinal cord injury relational
model, traumatic brain injury data was often used as the ‘next source’ when useable,
quantitative data for a particular relationship was not available in the SCI literature. For
‘normal’ physiology data in the SCI model, central nervous system data was used.
Ultimately, a number from an expanded source is better than no number at all or a
complete guess. However, as with any review, one must set and record inclusion and

exclusion criteria for gain data sources for accuracy and consistency.

It is also at this point when the factors are reviewed to determine which ones of the
‘questionable’ or ‘intermediate’ factors identified from Step 7 should remain included in
the model and which ones should be excluded from the model. There is a rule of thumb:
In general, each factor in question should have at least two relationships, one of which
must induce feedback. Two exceptions are if a factor is a major input or output of the
system, like an input used to ‘initiate’ the pathology (as shown in Figure 5D), such as a
gene mutation, or an output used to validate the model (as shown in Figure 5E) or
represent a clinical presentation. The most common example of an intermediate that
should be excluded as a factor is shown in Figure 5A, where the intermediate simply
serves to connect two factors, but the intermediate has no feedback. For such a case
where there is no feedback, the intermediate can be excluded from the relational model
because the information extracted from the literature to obtain Gix and Gy can be used to

determine Gyx. As long as the intermediate in question has feedback, whether external
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(Figure 5B) or internal (Figure 5C), then the intermediate should be included as a factor

in the relational model.

Note that there may be other cases not shown in Figure 5 in which there is no feedback
but an intermediate may wish to be included, such as an intermediate that has
relationships to multiple factors. While there is no ‘harm’ in including intermediates as
actual factors, frequently doing so unnecessarily can make the model more cumbersome
and computationally slower. However, most importantly, unnecessarily including every
intermediate as a factor will make the model more difficult to analyze and interpret by
adding extra ‘clutter’, particularly in pathologies that already have a very large number of

factors that must be tracked and visualized.
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Figure 6.5. Determining when to make an intermediate an actual factor in the model.
Note that dotted arrows represent relationships to factors not shown. A. This example
illustrates the most common example of when an intermediate should be excluded as a
factor. This ‘linear’ scenario has no feedback and thus there is no reason to include it. B.
This example illustrates an intermediate with external feedback that should be included as
a factor in the relational model. C. This example illustrates an intermediate with internal
or self-feedback that should be included as a factor in the relational model. D. This
example illustrates an intermediate that also serves as a model output, and thus, should be
included as a factor in the relational model. E. This example illustrates an intermediate
that also serves as a model output, and thus, should be included as a factor in the
relational model.

For categories, once again, the values must be estimated. However, as before with the
time constants, reviews provide a good source to obtain some estimates as to what a
category of aggregated factor gains might look like. Similar to the recommendation
made in Step 10 for category time constants, category gains can also be assigned as
having magnitudes that are ‘small’, ‘medium’ or ‘large’. These magnitudes are assigned
relative to one another. Since the goal of a category model is to get an idea of system

behavior and not to precisely match quantitative values, keeping the category gains in
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roughly the correct proportions relative to one another is more important the actual values

used.

Step 13: Determine the ‘output’ value criteria. When it comes to output criteria, more is
better as additional outputs only help to further analyze and validate the model.
Remember that the relational analysis techniques actually perform better with larger
numbers of outputs. There are not very many rules when it comes to outputs. The one
rule is that there needs to be at least some outputs which come from data sources that are
not used to construct the model. This keeps the validation from becoming ‘biased’.
However, given the availability of data it is practically impossible to have an external
output for every factor. In fact, a good majority of the outputs may in fact come from the
same study from which the factor’s gain and/or time constant was taken. Thus, it is
important to keep track of where the outputs come from exactly, including the paper,
figure number, etc. Furthermore, it is helpful to categorize outputs such as ‘primary’,
‘secondary’, and ‘tertiary’. Primary outputs are completely external to the model.
Secondary outputs may have come from a study in which indirect information was
extracted for the model, taken either from different sub-study within the publication or
from a study in which only factor time constant information was extracted (since factor
time constants are less study-specific compared to factor gains). Tertiary outputs come
from papers or studies in which one or more factor time constants were extracted.
Despite being ‘closest’ to the model, tertiary outputs are often still not completely
internalized because there are typically many factor gains that go into the calculation of a

factor. Thus a tertiary reference only contributes to a portion of the factor’s output value.
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For categories, there is little to be done in getting actual category output validation
criteria in terms of quantitative values since such data typically is not readily available
from the literature or even in the reviews. Thus, categories must be analyzed relative to
one another and based on their time courses rather than their actual quantitative output

values/magnitudes.

Step 14: Determine the form of the equations for each factor or category. Although this
entire step is written in terms of factors, please note that the mechanics of this step are the
same whether doing a factor or category relational model. The form of the equations for
individual factors can be of any type and each factor can have a different form if one so
chooses. However, in general, the expected value for most factors, Fexpected, Can be
determined using this simple linear form where the gain of the influencing factor, Gi_ractor,
is multiplied by the influencing factor value, Factor;, and all such products for all

influencing factors one through N are summed:

i=N
Z G i—Factor FaCtori

Factor
=1 Equation 6.1

expected

There are exceptions where the above does not work well. One example of a factor that
was not well represented by the above was the Na-K-ATPase pump in the SCI model, in
which the above equation had to be altered (see Methods of the SCI test case in Chapter
8). It is possible that the above only works well for factors that are unidirectional in sign

over the selected model time ‘split’ or time constant. The SCI test case supports this

109



hypothesis as the Na-K-ATPase pump was the only factor in the SCI model which had a

significant change in sign during a single time split.

Typically, the differential equations, themselves, for most factors can be represented in
typical Euler form where the subscripts expected and previous denote the expected and

previous factor values, usually in terms of time:

— Factor

previous

d Factor FaCtorexpected
dt

TFactor Equation 6.2

Step 15: Construct and simulate a relational model. The construction part of this
particular step is really no different then implementing any other computational model.
The modeler can pick his/her favorite modeling platform such as MATLAB (The

MathWorks, Inc.), C/C++, Pascal, or FORTRAN.

As for the simulation part, review the chapter on relational analysis methodology. The
model will need to be simulated at multiple operating points. Some helpful pointers
include: separating the time ‘splits’ such that their results or outputs can be viewed
separately, automating sensitivity analyses for factor gains and/or time constants, and

automating the relational analysis landscapes.
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Refine
Step 16: Perform relational analysis. See the relational analysis instructions (Chapter
4.) Note that, in general for a relational model, only the survey and summarize parts of
the S’ relational analysis technique can be used on a relational model. Use the recorded
standard experimental errors (means or deviations) to aid in the sensitivity analysis

ranges.

Step 17: If possible, validate the relationships with experimental correlations. This step
is usually done jointly with Step 18, although it easier to start with validating correlations
before trying to obtain specific values. See the relational analysis instructions and
particularly the landscape text. Check the correlation of each factor at its experimentally
determined time. Ask the following questions: Does the model show the expected
correlations? Do the sign and/or magnitude(s) change with time? For the predicted
correlations, do they make sense? Can a mechanism be hypothesized?

If there are known differences in the model and experimental data, these differences will
need to be addressed. First check to see if the simulated factor correlation was sampled
at the same time period as the experimental data since correlations can actually change
with time. If not, then re-do the landscape at the experimental time frame for the factor
in question. Once the time frames are the same, check the factor gains including their
directionality (impact of X on Y vs impact of Y on X, if applicable), magnitude and sign.
If these are all correct, more detail may be needed (see Step 19). If these are incorrect,
make a series of landscapes over time. If and when do any of the series of landscapes

have the correct correlation? Next, check the time constants to see if they need to be
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split. This is usually evidenced by a factor following the proper trend for a while and
then suddenly falling away from the experimental trend. Next, check the form of the
factor-gain equation to see if it adequately represents the trend of the experimental data.
Finally, sample the space with a broad-based sensitivity analysis to check the robustness

of the factor and its broader behavior and stability.

Step 18: Validate values by comparing single factors with experimental data. There are
a multitude of ways to go about refining the model to obtain the proper output values. If
the correlations are correct over time (from Step 17), the first thing to check is the
relative trend of the factor. Does it look like its experimental counterpart? If not, return
to the troubleshooting tips in Step 17. If all of those criteria have been met, then the
model may simply need more detail (see Step 19), both in terms of time constants and/or
factor gains. If the trends are correct, but the quantitative values are merely wrong,
perform an extended sensitivity analysis using the standard experimental error and
approximated error during the gain extraction process. This allows the proper gain to be

‘tuned’ to the correct value.

Step 19: Determine which categories or factors need more detail. Steps 17 and 18
outlined many trouble shooting tips for factors, which did not in one way or another meet
some portion of the validation criteria. Once the factors are ‘close’ to experimental
correlations, the best way to determine if a category or factor needs more detail is to
perform relational analysis and component analysis on specific factors by both

subtracting and adding more detail (i.e. making the model bigger by adding in more
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factors or intermediates and smaller by subtracting them). Once the model gets to the
point to where both qualitative and quantitative changes seem tolerably small and the top
5 or so influencing factors are stable (in that they are the same regardless of model
operating point), it can be safely assumed that the model has sufficient detail to make
system-level hypotheses about dynamics. In the case with SCI, there was little difference
between the final implementation versus the version before it, which included about 25%
fewer papers. Thus, a stopping point was reached for the first system-level model of SCI.
This is not to say that more detail or outputs and such could not be added and more
insight gained. The ‘stopping point’ simply means that the answers the model produced

could be trusted.

Step 20: Iterate until the appropriate relationships and criteria have been satisfied.

Expect around 3 iterations to get a base model up and running.

If doing a preliminary or category model, return to step eight to make a factor model.
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CHAPTER 7

NEUROTRANSMITTER SPILLOVER

Neurotransmitter spillover was chosen as the first system test case. It was a reasonable
‘starter system’ in that it is a system in which we have some prior familiarity, and is
scientifically interesting in that it re-opens the long-standing debate in neuroscience that
synapses are truly independent. In section one of this chapter, the ‘base’ neurotransmitter
spillover model is developed and the system is analyzed using traditional analytical
techniques such as a parameter sensitivity analysis. In section two of this chapter,
degenerate versions of the neurotransmitter spillover model are developed in order to
refine our relational analysis technique of search-survey-and-summarize (S3) and to

develop the related component analysis technique.

Neurotransmitter spillover was chosen as the methodological development system for
three reasons: 1) It is a relatively simple system that can be modeled as two sub-systems
or components which can be independently analyzed, a glutamate diffusion model and a
neurotransmitter receptor model; 2) A neurotransmitter spillover model is a mechanistic
model, the most common type of model implementation, and its diffusion and kinetic
mechanics are representative of a large portion of traditional biological models and 3)
While the sub-system or component properties are well-characterized, the dynamics or

properties emerging from the interaction of the two sub-systems are not; thus, there were
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opportunities to “check” the method for what was known and to “test” the predictability

of the method to identify dynamics and/or mechanisms which were unknown.

The first study of spillover in the cerebellar glomerulus, the mechanistic model of the
system, was implemented and the amount of spillover seen within the cerebellar
glomerulus was calculated under a wide range of physiological parameters. This study
utilized a sensitivity analysis of the geometric parameters to determine the percent
contribution of NMDA-R activation to spillover at the cerebellar glomerulus. The major
finding of the study was that spillover results in NMDA-R open probabilities that are
79% of what is seen during a direct release. The paper, “An analysis of glutamate
spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus”, as
published in the Journal of Neural Engineering 4(3): 276-282 (Mitchell et al, 2007), is

presented in its entirety.

Study two focuses on the methodological development of the relational analysis
technique. In this study, relational analysis is used to discern the difference between two
degenerate models—the 8-state BT NMDA-R model and the 5-state L] NMDA-R model,
both individually and within the context of the larger spillover model. The underlying
thought was that the ability to discern between two models capable of producing the same
output [i.e. two degenerate models] would be a critical test of the robustness and
effectiveness of the relational analysis method to reveal complex system dynamics.

Furthermore, the study was an interesting exercise in determining the necessity of
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complexity within a model—a judgment that must often be made by modelers to balance

computational requirements, run time, and model robustness.

Ironically, the idea to compare the two degenerate versions of the NMDA-R model was
spurred by the comments of a reviewer of the first spillover paper who stated in his
review: “Why is the Banke and Traynelis model used instead of the Lester and Jahr
model? I see no need to implement the more complex BT model over the LJ model as
they both accurately model NMDA-R behavior.” His reasoning was similar to that of
most modelers—if a model produces the right “answer” (i.e. it meets the appropriate
quantitative output criteria), then it is “good enough” and there should be no need for

additional model complexity.

However, the findings of this study illustrates that there is much more to a model and its
dynamic behavior than simply meeting target output criteria. Using the developed
relational analysis technique of search-survey-and-summarize, this paper highlights how
relational analysis is able to “raise the hood of the model” to view the important
dynamics that lie beneath that contribute to the model’s robustness and ability to predict
unknown or emergent behavior using the product of relational analysis, the model’s
landscape, which consists of a visual representation of its quantitative output
relationships. The key result of the paper, in regards to spillover, is that though both the
BT and LJ NMDA-R models are able to reproduce overall spillover model target output
criteria, the BT model more accurately represents the dynamical relationships of synaptic

geometry, a critical predictive feature particularly once spillover analysis is moved from
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the well-characterized geometry of the cerebellar glomerulus to less-characterized
synapses. Furthermore, the presence of a “pinch point” or dimensional reduction within
the spillover model is determined and characterized. The paper “Output-based
comparison of alternative kinetic schemes for the NMDA receptor within a glutamate
spillover model” as published in the Journal of Neural Engineering 4(4): 380-389

(Mitchell and Lee, 2007) is given in its entirety.

System Background: Neurotransmitter spillover

The concept of synaptic independence has been a long-standing theorem in neuroscience
upon which nearly all mechanistic single cell and neural network models are based. In
fact, the very foundation of our neuroscientific thought hinges upon the dogma that
synapses are truly independent. However, increasing experimental and theoretical
evidence has suggested that this may not be the case. Synaptic neurotransmitter
spillover, defined by Diamond (2002) as the escape of neurotransmitter from a synapse of
an intentionally or directly activated neuron to a neighboring, quiescent synapse resulting
in the neighbor’s indirect activation (see Figure 1), has remained a topic of much debate.
Whether intentional whereby spillover has the potential to increase transmission
reliability or network synchronization (Nielson, 2004) or unintentional whereby spillover
has the potential to trigger pathological responses such as aberrant firing (Rusakov and
Kullmann, 1999), spillover most certainly impacts and adds additional layers of
complexity to neuronal dynamics and firing properties. The significance of spillover to

experimental and theoretical neuroscientists alike is without question, and as such,
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neurotransmitter spillover makes for an interesting test case from which further system

exploration using complex systems based methods is both necessary and warranted.
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Figure 7.0.1. Diagram of neurotransmitter spillover. The pre-synaptic terminal of
Synapse A is intentionally activated, resulting in the release of neurotransmitter from its
synaptic cleft (denoted by the red boxes). Under the theory of true synaptic
independence, this neurotransmitter simply diffuses across the synaptic cleft of Synapse
A, resulting in receptor activation in the post-synaptic terminal and subsequent action
potential initiation. However, when neurotransmitter spillover occurs, the
neurotransmitter from Synapse A escapes, diffuses into neighboring Synapse B, and
results in indirect receptor activation of the post-synaptic terminal of Synapse B and
subsequent action potential initiation.

The properties of neurotransmitter spillover, and neural transmission in general, are
largely dependent upon the specific properties of the synapses being studied including
geometry, intrinsic properties, uptake transporters, etc. In order to keep our analysis
tractable, both for the sake of understanding the system being explored and to assist in
methodological development, we chose to model the cerebellar glomerulus for which
much data already exists. The glomerulus consists of a relatively enclosed complex of

synapes having a mossy fiber at its core synapsing with axons of Golgi type II neurons
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tractable, both for the sake of understanding the system being explored and to assist in
methodological development, we chose to model the cerebellar glomerulus for which
much data already exists. The glomerulus consists of a relatively enclosed complex of
synapes having a mossy fiber at its core synapsing with axons of Golgi type Il neurons
and dendrites of granule cells (Kandell et al, 2004). Because of it relatively large size, its
geometric properties have been thoroughly experimentally examined. An additional
advantage is that uptake of the active neurotransmitter, glutamate, is accomplished by an
enclosed sheath around the complex that houses glutamate transporters (Overstreet et al,
1999). Because nearly all glutamate uptake occurs at the boundary of this sheath, there is
little need to model individual glutamate transporters. Instead, glutamate uptake can be
modeled using its residence time; when glutamate reaches the sheath, it is extracted from

the active synaptic system.

The synaptic transmission itself is accomplished via the activation of the glutamatergic
receptors, the N-methyl-D-aspartate receptor (NMDA-R) and alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPA-R). The role of AMPA-Rs had been
both experimentally and theoretically characterized by previous studies (DiGregorio et al,
2004; Saftenku, 2005). However, while no prior theoretical study had been conducted to
characterize the role of NMDA-Rs, prior experimental studies showed conflicting results
regarding the impact of NMDA-Rs in neurotransmitter spillover (Rossi et al, 2002,

Sargent et al, 2005; Cathala et al, 2003).
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With these simplifications in mind, a neurotransmitter spillover model which explores the
synaptic spillover of glutamate within the cerebellar glomerulus consists of two sub-
models: 1) a diffusion model which simulates the diffusion of glutamate between the
synapses within the cerebellar glomerulus and its uptake at the outer ensheathing
boundary and 2) a receptor kinetics model which simulates the binding and activation of
synaptic NMDA-Rs responsible for neural transmission. We chose to use existing
theoretical models, which accurately represented each sub-model system. The
implemented diffusion model was that developed and used by Saftenku (2005) to study
the effects of glutamate spillover on AMPA-Rs at the cerebellar glomerulus. The
implemented NMDA-R model was one of two published models: the 5-state Lester &
Jahr (LJ) model (Lester and Jahr, 1992) and the 8-state Banke and Traynelis (BT) model

(Banke and Traynelis, 2003).

This chapter is divided into two sections, each representing one of two published papers
on spillover at the cerebellar glomerulus. The first section or paper highlights the
spillover model development and the major conclusions regarding the impact of
glutamate spillover on the activation of NMDA-Rs at the cerebellar glomerulus. The
second section or paper highlights the methodological development of the search-
sensitivity-and-summarize technique of relational analysis and illustrates the
effectiveness of the method to identify complex system dynamics by using the method to
discern between two degenerate models (i.e. the BT and L] NMDA-R models) within the

context of the larger spillover model.
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Abstract

Glutamate spillover is thought to play a significant role in increasing neural transmission
at the mossy fiber/granule cell cerebellar glomerulus. Glutamate spillover has been
shown to activate AMPA receptors at the glomerulus, and here we complete the
characterization of spillover at the glomerulus by investigating the role of glutamate
spillover in N-methyl-D-aspartate receptor (NMDA-R) activation. We present a
quantitative model of glutamate spillover combining recent models of glutamate diffusion
and NMDA-R binding to determine the open probabilities of NMDA-Rs over time at a

neighbor synapse. Simulation results from a baseline set of physiologically realistic

121



parameters show that glutamate spillover onto a single neighbor synapse, created by
glutamate that diffuses from a point source into a restricted fractional 2D-3D space and
the glutamate concentration created by neighboring glutamate release sites, is sufficient
to elicit an NMDA-R peak open probability of 0.23, approximately 79% of that obtained
by a direct release (peak open probability of 0.29). Thus, it would appear that glutamate
spillover at the glomerulus at NMDA receptors is even more substantial than that seen at

AMPA receptors.

Keywords

synaptic crosstalk, NMDA receptor, cerebellar glomerulus, computer model,

extrasynaptic diffusion

Introduction

Glutamate spillover, defined as the escape of neurotransmitter from the synapse into
which it is released to neighboring, quiescent synapses thereby activating receptors
(Diamond 2002), is thought to play a critical role in synaptic transmission at the
cerebellar glomerulus, a complex structure surrounded by a glial sheath where the mossy
fiber terminal forms glutamatergic synapses on the dendrites of granule cells (Palay and
Chan-Palay 1974). Glutamate spillover has the potential to increase transmission
reliability (Saftenku 2005; Sargent et al. 2005) and to help synchronize granule cell firing
(DiGregorio et al. 2002). Most previous experimental and theoretical work has focused
on glutamate spillover on AMPA receptors (DiGregorio et al. 2002; Nielsen et al. 2004;

Saftenku 2005) which have shown considerable activation, >50%, via glutamate

122



spillover. Since NMDA receptors have a higher affinity for glutamate than AMPA
receptors, it is plausible that they, too, would be greatly influenced by glutamate
spillover. Thus, it has been hypothesized that glutamate spillover on NMDA does occur
at the cerebellar glomerulus. However, current experimental results looking at the
effects of glutamate spillover on NMDA receptors at the cerebellar glomerulus are
mixed. NMDA receptors contribute to quantal excitatory post synaptic currents (EPSCs)
at immature granule cell synapses, but multiquantal release was required to activate
NMDA receptors at mature synapses (Cathala et al. 2003). Consequently, further

investigation is warranted.

We examine the spillover of glutamate on NMDA receptors (NMDA-R) located at the
mossy fiber/granule cell synapse in the cerebellar glomerulus. A quantitative model of
NMDA spillover at the cerebellar glomerulus will complete the characterization of
spillover at this synapse. Using known glomerulus geometry from electromicrographs
and combining two published models of glutamate diffusion (Saftenku 2005) and NMDA
receptor kinetics (Banke and Traynelis 2003), we present spillover in terms of glutamate
concentration profiles and NMDA receptor open probability profiles. Specifically, we
explore the role of geometry, glutamate diffusion and uptake, receptor properties, and
cumulative glutamate release from multiple neighboring synapses. Additionally, the
effects of quantal release, receptor number per synapse, number of release sites, the
effective diffusion coefficient, nerve diameter, and location of glutamate uptake are

investigated.
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Our results indicate that the effects of glutamate spillover on NMDA receptors of the
cerebellar glomerulus are substantial with approximately 79% of the response obtained
by “normal” direct release.. Sweeps of model parameters indicate that substantial
glutamate spillover occurs in the majority of cases, including the cases that would
currently be considered physiological, suggesting that some level of spillover is the norm

rather than the exception in the cerebellar glomerulus.

Methods & Materials

Diffusion Model

The Saftenku diffusion model (Saftenku 2005) was chosen because it includes several
key features that limit the number of unknown parameters, and has already been
successfully used to characterize AMPA receptors at the cerebellar synapse. The more
complex, bounded cylindrical geometry well represents the actual neural environment
based on electron micrographs of the cerebellar glomerulus measuring the geometric
distances and parameters. Also, glutamate uptake is handled by an absorbing boundary
derived from the residence time of the glutamate in the extracellular space
(Trommershauser et al. 1999). Additionally, this model integrates the probability of
glutamate release from multiple neighboring synapses. Finally, the analytical nature of

this model allows for rapid computations (91 seconds per 60 ms simulation).

The glomerulus contains a mossy fiber at its center that is 3-4pum in diameter (Ryr) and

6.5-10um in length; the glial sheath is about 1-1.5um from the mossy fiber terminal (Xu-
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Friedman and Regehr 2003). Hence, the absorbing boundary in the radial direction, raps,
is 2.5-3.5um measured from the center of the mossy fiber. The normal direction
absorbing boundary (Ry4q) is equal to the difference between raps and Ryp. When
glutamate molecules reach r,s in a radial direction or Ryq in the normal direction, they are

absorbed by the glial sheath.

The diffusion model assumes instantaneous release of glutamate with an initial
concentration, ¢y, of 8.77mM, equivalent to one vesicle containing 4,000 molecules of
glutamate corresponding to a vesicle concentration of 100mM. Multi-vesicle release is
simulated by varying ¢, at 4.385, 8.77, and 17.54mM to represent 0.5, 1, and 2 vesicles,
respectively. There are many citations for possible diffusion coefficient values
(Nicholson and Sykova 1998; Saftenku 2005), etc. Accounting for the effects of
macromolecule obstacles and overcrowding, the glutamate diffusion coefficient is
0.2um?/ms (Saftenku 2005). The highest diffusion coefficient, describing diffusion within
the synaptic cleft, is thought to be 0.76 pm?*/ms (Barbour 2001). The value of 0.41
um?/ms represents the aqueous glutamate diffusion coefficient corrected for temperature
and a brain tortuosity of 1.6 (Nicholson and Sykova 1998). Table 1 lists the diffusion
model parameter base values, physiological ranges, and references. Note that to be
conservative in our estimate of spillover, we use slightly different base case parameter
values than those used by Saftenku 2005. However, our base case parameter values lie
closer to the mean of the experimentally determined values shown in Table I, and most of
the parameter values used by Saftenku 2005 lie within the parameter ranges we test (see

Table 2).
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Table 7.1.1. Diffusion model parameter definitions, values and references.

Description Reference
() o 8w O
= g2 222
> iz £2&
Mossy fiber radius (um) Rvrg 1.5 1.5-2 (Hamori et al. 1997; Xu-
Friedman and Regehr
2003)
Distance from center of Tabs 3.0 Rmrt1.5 Xu-Friedman & Regehr,
mossy fiber to glial sheath 2003
(um)
Distance from mossy fiber Ryqg 1.5 1-1.5 Saftenku, 2005
to glial sheath (um)
Radius of circle rvp  2.17 1.25-2.8 Saftenku, 2005
containing one release (equation)
site= /v, (um) See v, references
Initial glutamate Co 8.77 4.39-17.54 Xu-Friedman & Regehr,
concentration (mM) 2003
Effective diffusion Detr 041 0.41-0.76  Saftenku, 2005 ;
constant Barbour, 2001 ;
(urnz/ms) Nicholson &
Sykova,1998 ; Nielson,
2004.
Average release site Vs 1.5 1.5-3.5 (Rusakov et al. 1999;
density Sorra and Harris 1998;
(um™?) Xu-Friedman and
Regehr 2003)
Average radius of post- a 0.11 0.11 Xu-Friedman & Regehr,
synaptic density (um) 2003

NMDA-R Binding Model

To investigate glutamate spillover, we examine the binding kinetics of the two NR2
subunits, even though co-agonist binding is necessary to open the ion channel. Each NR2
subunit can independently bind glutamate, and glycine concentration is assumed to be

high enough such that the NR1 subunits are saturated. To simulate NMDA-R activation,
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the diffusion profile concentrations were fed into the Banke and Traynelis model (Banke

and Traynelis 2003)

The Banke and Traynelis model incorporates two desensitized receptor states and two
transition states representing a fast and a slow conformation change. The 2-glutamate
bound state, the two transition states, and the activated receptor state comprise a loop
(Figure 1) which allows for two conformational changes to proceed before receptor

activation.

Figure 7.1.1. Banke and Traynelis NMDA-R binding model. The desensitized states are
labeled RA,d; and RA,d,, and the transition states are labeled RA,r and RA,s. The

activated state is RA,* (Adapted from Banke and Traynelis, 2003).

Spillover Model Analysis

Model output is in the form of glutamate concentration profiles and open probability
profiles. Given a parameter set, glutamate concentration profiles show the time course of
glutamate concentration, at a distance of 0.46um from the center of the cleft, arising from

summary contribution of spillover from all neighboring release sites. Similarly, the open
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probability profiles show the time course of open probability when a synapse at the

aforementioned distance is exposed to a given concentration profile.

The implementation of the diffusion model was confirmed by comparison of the base
[Glu]is profile to that reported by Saftenku (not shown); note that the glutamate
concentration traces shown in this work (Figure 2) appear different than Saftenku because
of the differences in parameter values chosen (to keep the spillover estimate more
conservative) The implementation of the Banke and Traynelis NMDA-R model was
verified by comparison of the NMDA-R open probability (Po) distribution generated
when exposed to 1000uM glutamate to that reported by Banke and Traynelis (2003) (not
shown). The model is implemented in MATLAB R14 and runs at a time step of 10us.

Use of smaller time steps has negligible impact on the results.

A sensitivity analysis was performed by varying parameters independently. The
individual effects of Desr, rans, Rmr, Co, Vs, and receptor number on the concentration and
open probability profiles are assessed while using base values for the rest of the

parameters.

Results
A summary of effects of each parameter on peak glutamate concentration, peak open
probability, and the time point of the peak open probability are presented in Table 2.

Simulation of the model with the midpoint physiological parameter values (base values in
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Table III) led to a peak glutamate concentration (peak [Glu]s) of 126uM and a peak open
probability (peak Po) of 23% occurring 16.47ms after initial glutamate release.

Exploration of the details of the results is presented below.

Table 7.1.2. Summary of simulated parameter values and their effects on peak [Glu]ss,
peak Po, and time of peak Po.

Name Base  Simulated Peak [Glu]  Peak [Glu] Peak Pg Peak Po Trend
Value Range (M) Trend

Ry (Lm) 1.5 1-2 102-131 Mixed 0.16-0.24  Mixed

Taps (M) 3.0 2-3.5 103-126 T rws =T [Glu]  0.06-0.25 T rps=1Po

co (mM) 8.77 4.39-17.54  63-252 1 co=1[Glu] 0.14-0.28 1co=1Po

D (um*/s)  0.41 0.2-0.76 126 1 Dege=| [Glu] 0.15-0.28 1 Deg= | [Glu]

Vs (um) 1.5 0.5-2.5 23-246 1 vs=1[Glu] 0.04-0.28 1 vs=1[Glu]

Concentration Profiles

The glutamate concentration profile versus time was examined as a function of the
various model parameters within their respective physiological ranges (Figure 2). The
base case (Figure 2A) represents the mid-range of the physiologically relevant
parameters and, as previously stated, generates a peak [Glu] of 126uM. Peak [Glu]ys is
relatively insensitive to varying the effective diffusion constant (Deg), the distance from
the center of the mossy fiber to the glial sheath (r.s), or the radius of the mossy fiber
(Rwmr) (Figure 2B-D). However, the time course of [Glu]s is substantially affected by the
parameters, particularly Derr. Decreasing Degr delays the arrival of glutamate at the glial

sheath, resulting in a prolonged concentration increase. Increasing rq,s increases the
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distance the glutamate must travel before being taken up by the glial sheath thereby
lengthening the time course. Varying Ry has a mixed effect: at an Ryr = 1.5um peak
[Glu]ys is higher than that at an Ry = 1um, and the time course of uptake is dominated by
the effect of the increased number of release sites, making it slower. (Increasing Ry
increases the surface area of the mossy fiber which in turn increases the number of
glutamate release sites.) At an Ry = 2pum the peak [Glu]is is lower and the time course of
uptake is dominated by the effect of the shorter distance to the glial sheath, making it
faster. Thus, the distance glutamate must travel to reach the glial sheath decreases as Ry

increases and glutamate is taken up more quickly.

Conversely, both the initial glutamate concentration (c) and the number of glutamate
release sites (vs) significantly alter peak [Glu]is, but neither has a significant impact on the
concentration time course (Figure 2E-F). The effects of ¢pand v on peak [Glu]s are

scaled. Increasing either parameter results in a proportional increase in peak [Glu]s.
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Figure 7.1.2. Glutamate concentration profiles for parameters varied within the
physiological range. A4. The base case concentration profile. B. The effect of Degr, the
effective diffusion constant. C. The effect of .y, the distance from the center of the
mossy fiber to the glial sheath. D. The effect of Ry, the radius of the mossy fiber. E.
The effect of Cy, the initial concentration. F. The effect of v,, the number of release
sites.
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Open Probability Profiles

Ultimately, it is the action of glutamate on receptors that determines the relevance of
spillover. Thus, open probability (Po) versus time was examined as a function of the
various model parameters within their respective physiological ranges (Figure 3). The
base case (Figure 3A) generates a peak Po of 0.23. However, the Po remains above 0.15

for up to 60ms.

All of the parameters included in the parameter analysis have a meaningful impact on
peak Po. In general, the greater the impact the parameter has on the [Glu]s profile, the
greater its impact on peak Po. The geometric parameters (raps, Rvp) when varied within
the physiological range have less of an impact than the intrinsic parameters (Desr, Co, and
vs). Variation of ryps Within the physiological range results in peak open probabilities
between, 0.19 and 0.25, increasing as r,ps is increased (Figure 3B). The mixed effects of
varying Ry, as discussed previously for the [Glu]is profiles, are again apparent in the Po
profiles (Figure 3C). The higher peak [Glu]is seen with an Ryr = 1.5um results in a
higher peak Po than when Ry =2 um. Receptor number (varied between 250 and 1,000)

has no effect on peak Po (not shown).

The parameters that have the highest impact on peak Po when varied within their
physiological range are Degr, o, and vs. Variation of either ¢ or Deg within the
physiological range results in a peak Po from approximately 0.14-0.28 (Figure 3D-E).
The effect of varying v, within its physiological range from 1-2.5um™ results in a peak Po
range of 0.16 to 0.28 (Figure 3F).

132



Figure 7.1.3. Open probability profiles for parameters varied within the physiological
range. A. The base case open probability. B. The effect of r,ps, the distance from the
center of the mossy fiber to the glial sheath. C. The effect of Ry, the radius of the
mossy fiber. D. The effect of D, diffusion coefficient. £. The effect of Cy, the initial
concentration. F. The effect of v,, the number of release sites.
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Limiting Cases

The lowest peak Pp found by varying model parameters one at a time within their
physiological ranges was 0.15 (Degr = 0.76). To even reach a peak open probability of
0.05 (approximately 15% of the direct release open probability of 0.29 in the Banke and
Traynelis model) multiple parameters had to be varied to their minimizing limit within
their physiological range (Desr, Vs and raps). Of course, with expanded parameter ranges
beyond the stated physiological range it is possible to achieve a Pg at or below 0.05 with
several combinations of parameter values. However, the plausibility of these
combinations is highly questionable given the extent to which multiple parameters would

need to be beyond their established physiological ranges.

Comparison to Direct Release

To determine the impact of spillover, the base case open probability profile for the
NMDA-R was simulated using only direct release as was done by Saftenku (2005) for the
AMPA-R. The spillover peak open probability for direct release on NMDA is 0.29
compared to spillover release which results in a peak open probability of 0.23. Thus, in
this model, spillover can generate up to 79% of the NMDA-R open probability see from

direct release.

Discussion
Our results demonstrate that glutamate spillover on NMDA-Rs does result in significant

open probabilities. Our base case exhibits a peak NMDA Pg that is roughly 79% of that
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associated with direct release (base case Po = 0.23, direct release Po = 0.29). The higher
percentage of peak NMDA Po in comparison to AMPA (Saftenku 2005) may be
attributable to the receptor’s higher affinity for glutamate and could also be responsible
for spillover activation of extrasynaptic NMDA receptors. Our results support the
hypothesis that spillover plays an important role in synaptic transmission in the cerebellar
glomerulus. While it is not surprising that spillover on NMDA-Rs is probable at this

synapse, the magnitude of effect, as predicted here, is remarkable.

Comparison to Experiment

Previous experimental work (DiGregorio et al. 2002; Nielsen et al. 2004) and theoretical
work (Saftenku 2005) has shown that AMPA is activated by spillover of glutamate at the
cerebellar glomerulus. Given the NMDA receptor’s higher affinity for glutamate
(Diamond 2002) and the restricted area for diffusion in the glomerulus, perhaps our
results are not too surprising. The closed cerebellar glomerulus geometry and relatively
large size may explain why much higher open probabilities can be obtained via spillover
compared to smaller, isolated synapses such as hippocampal or pyramidal cells (Barbour

2001; Diamond 2001; Rusakov et al. 1999).

Unfortunately, no direct comparison of the spillover calculation with experiment is
possible (the inability to directly measure open probabilities associated with glutamate
spillover is what originally spurred this modeling work). Rossi et al (2002) measured the
EPSCs associated with spillover, but had no way of knowing the relationship of each of

the neighbor synapses which was contributing to the EPSCs. That is, was there one
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neighbor or five, etc? Without this geometric information there is no way to convert the
data generated by the EPSC into a calculation that is directly comparable to the

geometry-specific open probabilities generated by this work.

Furthermore, experimental work on some mature mossy fiber granule cells has suggested
that NMDA-Rs are located outside the synapse (Cathala et al. 2003). If this were the case,
glutamate spillover may be the only means of activation. In fact, Rossi et al found that
extrasynaptic NMDA receptor-mediated EPSCs activated by glutamate spillover

contribute 23% of the synaptic charge of single NMDAR EPSCs (Rossi et al. 2002).

Model Limitations

One of the key limitations of the spillover model presented here is that the Saftenku
diffusion model we implement lacks glutamate transporters. Experimentally it has been
shown that inhibiting transporters has little effect on the spillover-mediated component of
single EPSCs which suggests that glial transporters in mossy fiber—granule cell synapses
are not interposed between release sites and granule cell dendrites, but are situated mainly
at a distance from the mossy fiber terminal on the glial sheath, which surrounds the
glomerulus. Hence, most of the uptake transporters are located at this outer boundary
(Saftenku 2005) where 100% absorption of glutamate is assumed. The glial transporter
subtype GLAST is suggested to be most responsible for glutamate uptake within this
structure (Overstreet et al. 1999) but, unfortunately, we know little about the actual

parameters of uptake as the author of the cerebellar glomerulus diffusion model states
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(Saftenku 2005). Since transporters are not perfectly efficient, the absorbing boundary

assumption may overestimate the actual amount of uptake.

Implications

This work completes the preliminary theoretical characterization of glutamate spillover at
the cerebellar glomerulus. Although the results of this work can only be applied to the
cerebellar glomerulus, it does revive the long-debated topic of neurotransmitter spillover
and synaptic independence. Although the geometry and transporters at this synapse
suggest that spillover could very well be intentional to help aid in neurotransmission, it
remains to be seen how spillover could affect other synapse types. Pursuit of spillover
studies in other synapse types, both theoretical and experimental, will aid in our ability to
understand synaptic cross-talk and the implications it has in our current neuron models

and neuroscientific thought.
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Abstract

Recent experimental and theoretical work continues to explore the mechanisms and
implications of neurotransmitter spillover. Here we examine N-methyl-D-aspartate
receptor (NMDA-R) kinetics to determine their implication(s) in glutamate spillover by

comparing two mechanistically different NMDA-R models, the 5-state Lester and Jahr
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(LJ) model and the 8-state Banke and Traynelis (BT) model, within the context of a
glutamate spillover model. We employ a search-survey-and-summarize strategy to
analyze the relationships within model behavior (model relational analysis) and form a
model output landscape. Our results indicate that model relational analysis can reveal
differences in models whose outputs would be considered the same. The analysis reveals
that the BT model, with its more complex kinetics, is less reliant on diffusion compared
to the LJ version, resulting in differences in the relationships between open probability
and glutamate concentration despite the fact that both model versions were able to
produce the same target output values. Additionally, model relational analysis is able to
distinguish between the BT and L] NMDA-R model versions even though factor analysis
indicates that the overall model output space dimensions are the same for both NMDA-R
models. Furthermore, the work presented here suggests that model relational analysis
may be broadly applicable as a means to examine the complex interactions hidden within

overall model behavior.

Introduction

There has been a recent resurgence of interest in synaptic cross-talk or “neurotransmitter
spillover” with the mechanisms and implications of spillover being examined on many
fronts (e.g. DiGregorio et al. 2007; Logan et al. 2007; Marcaggi and Attwell 2007;
Mitchell et al. 2007; Sun and June Liu 2007; Szapiro and Barbour 2007; Waxman et al.
2007). Glutamate spillover is defined as the escape of glutamate from the synapse into
which it is released to neighboring, quiescent synapses thereby activating receptors

(Diamond 2002). Thus, our spillover model (Mitchell et al. 2007a) includes both a
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glutamate diffusion model to provide time-dependent glutamate concentration and an
NMDA-R kinetic model to produce time-dependent receptor open probabilities. Many
different kinetic models have been proposed for NMDA-Rs, two of which include the 5-
state Lester and Jahr (1992) model and the 8-state Banke and Traynelis (2003) model. At
first appearance, it would seem plausible and it has therefore been suggested that in the
case of glutamate spillover, the type of NMDA-R model implemented is unimportant.
The work presented here examines this supposition to determine the implications of
NMDA-R kinetics based on a relational analysis of model behavior (i.e. an analysis of the
inherent relationships exhibited by a model, independent of output values). Specifically,
we address the question “Is matching output sufficient to declare that different internal

mechanisms are functionally the same?”

Degeneracy (i.e. the ability of elements that are structurally different to perform the same
function), is a prominent property of many biological systems, including neural networks
(Price and Friston 2002; Tononi et al. 1999) and is thought to increase the system’s
robustness (Csete and Doyle 2002). Just as degeneracy is present in real biological
systems, it is also present in computational models (Marder and Prinz 2002) in that often
two mechanistically different models can often produce the same output. However, like
the physiology that the models represent, producing the same output at a single functional

point of assessment may not equate to the models actually being the same.

Here we explore degeneracy in the context of spillover using a “search-survey-and-

summarize” strategy to perform a model relational analysis to compare the more complex
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BT NMDA-R model to the simpler L] NMDA-R model. Our approach consists of
performing multiple automated parameter searches (“search”), parameter sensitivity and
multivariate correlation analyses (“survey”), and population statistics (“‘summarize”) to
obtain a landscape of the model based on output relationships. Our data indicate that this
landscape can reveal inherent output relationship differences in models whose outputs

would otherwise be considered the same.

Methods

The cerebellar glomerulus glutamate spillover model employed here (Mitchell et al.
2007a) consists of the Saftenku glutamate diffusion model (Saftenku 2005) and an
NMDA-R kinetic model, either the Banke and Traynelis (2003) or the Lester and Jahr
(1992) model. The glutamate concentration profile produced by the diffusion model is
fed into the NMDA-R kinetic model to obtain an open probability profile. We utilize 10
outputs that describe the glutamate diffusion and open probability profiles (Table 1).
Metrics 3-4 and 8-10 correspond to outputs derived from the glutamate concentration
([Glu]) profiles, which are only dependent upon the diffusion model, while metrics 1-2
and 5-7 are derived from the open probability (Po) profiles, which are functions of both
the diffusion and NMDA-R models. The output values in Table 1 are deemed the
“target” output values, or simply the target, because they are the output values of the
previously published physiological base case cerebellar glomerulus glutamate spillover

model (Mitchell et al. 2007a).
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Table 7.2.1. Target output values.

No. Output Metric Value
1 Peak open probability 0.24
2 Half-peak open probability 0.12
3 Peak glutamate concentration (uM) 126.0
4 Half-peak glutamate concentration (uM) 65.82
5 Time of peak open probability (ms) 16.47
6 Time of half-peak open probability (ms) 4.22
7 Time of decay half-peak open probability (ms) 99.74
8 Time of peak glutamate concentration 0.37
9 Time of half-peak glutamate concentration (ms) 0.10

10 Time of decay half-peak glutamate concentration (ms) 1.60

Saftenku Cerebellar Glomerulus Glutamate Diffusion Model.

The Saftenku glutamate diffusion model utilizes a cylindrical geometry to represent
glutamate diffusion from a point source that includes neighbor synapse contributions and
a simple residence time based method for glutamate uptake to represent the transient
glutamate concentration at a single neighbor synapse. Glutamate diffuses from the mossy
fiber until it is taken out of the glomerulus by the glial sheath which surrounds the mossy
fiber. The model has six free parameters: the initial glutamate concentration released
from the activated neighbor (Cy), the radius of the mossy fiber (Ryr), radius from the
center of the mossy fiber to the glial sheath (r,s), the effective diffusion constant (Degr),
the release site density (v;), and the number of NMDA-Rs (R). The diffusion model base
parameters are given in Table 2A and are the same as those used in the previously

published spillover model (Mitchell et al. 2007a).
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Banke and Traynelis NMDA-R model

The Banke and Traynelis (BT) model incorporates two desensitized receptor states and
two transition states representing a fast and a slow conformation change. The 2-glutamate
bound state, the two transition states, and the activated receptor state comprise a loop
(Figure 1B), which allows for two conformational changes to proceed before receptor
activation. Each NR2 subunit can independently bind glutamate, and glycine
concentration is assumed to be high enough such that the NR1 subunits are saturated.
Rate constants are the free parameters and are as denoted in Figure 1B with base values

taken as published in ChanneLab (software by Stephen Traynelis) in Table 2B.

Lester and Jahr NMDA-R model

The Lester and Jahr (LJ) model is similar to the Banke and Traynelis model. The key
difference is the absence of transition states and presence of only one desensitized state
(RA,d) instead of two (Figure 1A). Rate constants are as illustrated. The base values of

the LJ kinetic rate constants are taken from Lester and Jahr (1992) in Table 2C.
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Figure 7.2.1. Comparison of the LJ and BT NMDA-R Models. A. Lester and Jahr,

1992. The simpler LJ model contains an unbound receptor, R; 1-glutamate bound state,
RA; a 2-glutamate bound state, RA,; a single desensitized state, RA,d; and an open state,
O. B. Banke and Traynelis, 2003. The more complex BT model contains the same
states as the LJ model except that there are two desensitized states, RA,d; and RA,d,, and
two transition states, RA,s (slow conformation change) and RA,f (fast conformation
change).

Overview of the S® Method

As the name implies, the search-survey-and-summarize (S°) method contains three basic
steps: search for a set of parameter values that give rise to the selected target output
values (we define each set as a homologue), survey the model output landscape by cross-
correlating sensitivity analyses for each homologue, and summarize by statistical analysis
of the population of homologue landscapes. The steps of this general method are

presented below.

Search

1) Determine a list of model output values to serve as the point of assessment (base
case).

2) Segregate parameters into regions of interest (e.g. intrinsic vs extrinsic)
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3) Randomly determine a set of starting point parameter values for the search.
4) Perform an initial sensitivity analysis around the starting point
5) Use an optimization method to search for a parameter value set that generates the
chosen base case output values (i.e. a homologue to the base case)
Survey
6) Perform a final sensitivity analysis of the homologue.
7) Generate a model output landscape based on a cross-correlation (output vs output)
matrix from the sensitivity analysis, to obtain the model output landscape.
Summarize
8) Repeat steps 3-7 to generate additional homologues
9) Examine the variation of the model output landscapes by determining the standard
deviation of each point in the matrix across the set of homologues.

10) Perform multi-variate statistics on the population of homologues.

Sensitivity analyses

A sensitivity analysis is performed by varying each parameter individually by a specified
amount to measure its effect on the model output values. The sensitivity is defined as the
linear relationship of a parameter to its output. We perform sensitivity analyses before
and after the search with the final sensitivity analysis being used in the calculation of

output cross-correlations for the model output landscape.
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Partitioning of parameter set

Parameters are divided into “intrinsic” (parameters that are internal to the NMDA-R
model, i.e. the NMDA-R model kinetic rate constants), and “extrinsic” (parameters that
are external to the NMDA-R model, i.e. the diffusion model parameters). Note, we use
the term “full” to denote to the entire set of parameters (i.e. intrinsic plus extrinsic).
Segregating the parameter sets this way allows the contributions of each respective

NMDA-R model to be compared separately from the diffusion model.

Automated Parameter Search

Before the two models can be compared, they must be made equivalent in that they must
be forced to produce the target output values. To accomplish this, an automated
parameter search is used to obtain multiple homologues, parameter value sets that
produce the target output values within a specified error set by the convergence criteria.
Each homologue produces the same output values using the 10 metrics described
previously but from a different parameter value set. For the purposes of the analysis
presented here, we obtain multiple homologues by either varying the intrinsic or extrinsic

parameters, but not both simultaneously.

The general optimization method is a gradient-based search algorithm that utilizes a
modified secant method (Reklaitis et al. 1983) to obtain a set of homologues. The secant
method fits a second order polynomial to a function whose x-coordinate consists of the
parameter value and the y-coordinate is the corresponding cost function value. The cost

function value is defined as the sum of the square of the difference in the “target” output
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values to the output values of the homologue generated by the search. The first
derivative of the fitted polynomial is used to minimize the cost function over a parameter

range. The entire parameter set is optimized by tuning each parameter, one at a time.

The algorithm details are as follows: Initial starting point parameters for the search are
randomly determined and allowed to vary +/- 15% from the base values; this range
insures good coverage of the parameter space but is still tight enough to allow for good
convergence. Since parameters are varied individually, the order of parameter evaluation
is randomly determined at the beginning of each search. This insures good coverage of
the parameter space so that the search is not biased towards moving the same parameter
the same way each time. An initial sensitivity analysis is run to determine the baseline
sensitivity and to point the search in the right direction. Six different parameter values
which range between +/-10% of the starting point values are evaluated for each parameter
for the sensitivity analysis, and those points and their respective cost function values
make the polynomial for the first secant minimization. After each secant minimization,
the model is re-evaluated, and the new parameter value and its cost function value are
included in a new polynomial which is re-fitted and re-minimized; this continues for a
maximum of ten secant minimizations. Note that extrinsic parameter search values are
bounded by their physiological ranges, approximately +/-50%, and intrinsic parameter
searches are bounded by their published experimental standard deviations, approximately
+/- 35%. After each parameter is tuned, the parameter set is updated, and a new single-
parameter sensitivity analysis is run for the next parameter to be evaluated to start its

secant minimizations. This is repeated for all parameters remaining in the parameter set.
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Convergence criteria are based on a standard sum of squares cost function with the 10
output metrics. Scaling factors are often used to “weight” certain outputs in the cost
function by making the error between the target output value and the search output value
appear bigger by multiplying the square of the difference of an individual output value by
a scaling factor. For all searches in this work, the cost function weights for all outputs
were set to be equal. However, the convergence criteria for the outputs were not equal.
The tightest convergence criterion is on peak open probability which is allowed to vary
between +/- 3% from the target output value while all other outputs can vary by +/- 5%.
However, since the most sensitive output tends to be peak open probability, practically all
homologues result in the remaining outputs varying by less than 3%. Regardless, the

convergence criteria result in outputs that are qualitatively indistinguishable.

Cross-correlation Matrix

Cross-correlation analysis has been used in applications for DNA fingerprinting (Arnold
and Reilly 1998); here we propose cross-correlation analysis as a form of model
fingerprinting to obtain the model output landscape. A correlation matrix is a statistical
measure that shows the strength of the interrelationships among variables (Hair et al.
2006) or in our case, outputs. Individual correlations can range from +/-1. The sign
indicates the direction (positive or negative) of the correlation. The magnitude indicates
the strength of the correlation with one being completely correlated and zero completely
uncorrelated. The correlation matrix, which forms the landscape, consists of the
correlation values obtained by correlating all outputs against one another based on the

sensitivity analysis data. Since any given output will correlate perfectly with itself, the
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correlation matrix contains a diagonal line of identity and is symmetric along the
diagonal axis of the square. Since each homologue can generate such a matrix, the
average and standard deviation of each correlation value within the matrix is determined

to assess the robustness of the matrix with respect to position within the parameter space.

Output Space Dimensionality

Another means of comparing the model output spaces is to look at the relative size, or
dimensionality, of the output space instead of just examining individual outputs. One
way to examine dimensionality is using the multi-variate statistical technique, factor
analysis. In factor analysis, linear combinations of the original variables (or in this case,
model outputs), called factors, are used to represent underlying dimensions. Specifically,
we use a form of factor analysis called principal component analysis. Typically the
Eigenvalue (sometimes called the latent) of each factor generated by the factor analysis is
used to determine the number of dimensions; a plot of each factor’s Eigenvalue versus
the factor number is called a scree plot. The cut-off for what is “significant” enough to
be a dimension is somewhat subjective. Two possible criteria that are commonly used
alone or in combination are: 1) All factors whose Eigenvalue is greater than one are
counted as dimensions 2) Factors shown to have substantial amounts of common variance
(i.e. factors before the inflection point or natural “break™ of the scree plot) (Hair et al.

2006) are counted as dimensions.

151



Implementation

The entire spillover model, automated parameter search, sensitivity analyses, and cross-
correlation analysis is implemented and performed in MATLAB R2006b (The
MathWorks Inc). Factor analysis is performed in the statistical software program Systat
(Systat Software Inc.). Simulations were run on Windows personal computers (Core 2

Duo Intel processor, and 2 GB RAM).

Results

Based on the automated parameter search process, multiple homologues were generated
that met the convergence criteria. For our main example, we use four cases that produce
the target output values listed in Table 1. Each test case required its own set of searches
and resulted in its own set of homologues. These four cases consist of using either the
BT or L} NMDA-R model inside the spillover model and varying either the extrinsic
(diffusion model parameters) or intrinsic (NMDA-R rate constants) parameter sets.
Approximately 100 searches were run for each test case; the exception was the LJ
intrinsic case for which 200 were run due to the low rate of convergence. The
convergence rate for the BT and LJ extrinsic models were 95% and 40%, respectively.
The intrinsic convergence rates were substantially less, 58% for BT and 7% for LJ.
Initially, all homologues were included in the cross-correlation analysis. Bootstrapping, a
re-sampling technique that can estimate variance based on an approximating distribution
(Efron 1979), was performed in Systat (Systat Software Inc.) to determine the appropriate
number of homologues required to construct the correlation matrix; “appropriate” was

defined as the number of homologues required such that the no correlation was changed
152



beyond its standard deviation, approximately less than +/-0.2. The required number of
homologues, as determined by bootstrapping, was six. However, we include twelve,
randomly chosen, for each landscape presented. The base case parameter values and the
maximum, minimum, median and standard deviations are shown for the converged
parameter sets in Table 2. Examples of model output using two randomly chosen
homologues are shown for both the BT and LJ models in Figure 2. Note how the

solutions are qualitatively indistinguishable.
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Figure 7.2.2. Comparison of homologues generated by the parameter search. These
two figures illustrate that the search can find parameter sets that result in qualitatively
indistinguishable spillover models outputs using either the LJ or BT NMDA-R models.
A. Glutamate concentration ([Glu]) profiles. B. Open probability profiles (P,).
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Table 7.2.2. Extrinsic and Intrinsic Parameter Values. All base values are in
parentheses. The maximum (max), minimum (min), median (med), and standard
deviation (SD) are given for the converged parameter sets for each case.

A

BT Extrinsic LJ Extrinsic
Extrinsic Parameter Max Min Med SD [ Max Min Med SD
initial concentration (8.77mM), C, 9.38 7.69 8.66 0.41(10.80 7.85 9.01 0.99
radius from center of mossy fiber to
glial sheath (3 um), raps 3.28 2.92 3.04 0.08] 3.13 2.80 2.95 0.11

diffusion constant (0.41 um2/ms),D 045 0.38 0.42 0.01|] 0.48 0.43 0.44 0.02
radius of mossy fiber (1.5 um), Ryr 1.64 142 151 0.05| 165 1.28 1.50 0.13

receptor number (500), R 915 418 525 69.6|1551.9 350 416 75
release site density (1.5um™), vs 1.84 1.29 1.52 0.09|] 1.62 1.50 1.57 0.05
B C
Intrinsic BT Intrinsic Intrinsic LJ Intrinsic
Parameter Max Min Med SD Parameter Max Min  Med SD
k1 (9.5 uM7's™) 9.42 8.11 9.06 0.45 k1 GuM's™) | 510 421 436 017
k2 (29 3'1) 33.82 29.06 30.30 1.67 k2 (6.6 s'1) 756 6.19 6.77 0.34
k3 (45s) 56.88 4555 4918  4.22 k3 (15.2s™) 18.38 846 1621 2.62
k4 (0.5 s'1) 0.57 0.45 0.54 0.04 k4 (9.4 s-1) 10.87 9.61 10.23 0.40
k5 (70 5'1) 73.20 52.13 71.66 8.1 k5 (83.8 8'1) 92.16 82.38 84.89 2.96
k6 (2.8 s'1) 3.72 2.78 2.94 0.36 k6 (83.8 8'1) 96.88 81.65 85.66 4.14
k7 (1557 3'1) 2296.24 1557.73 1644.33 257.40
k8 (182 s'1) 236.50 169.21 188.77 21.57
k9 (89s™) 99.37 86.36 9258  4.00
k10 (135 8'1) 141.89 134.91 137.87 2.99

Determining model output landscape

We determine the model output landscapes for four different cases (BT extrinsic, LJ
extrinsic, BT intrinsic, and LJ intrinsic) which produce the target output values listed in
Table 1. The landscapes for the cases where the extrinsic parameters are varied give the

full landscape for all ten outputs. Since the NMDA-R model does not change the outputs
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associated with glutamate concentration, there are only five outputs which appear in the
intrinsic case landscapes and also later in the intrinsic dimensionality assessment. Thus,
the landscapes for the cases where intrinsic parameters are varied show only the

contribution of the NMDA-R model to the total landscape.

The landscapes for all four cases are presented in Figure 3 along with the landscapes for
the full parameter sets . The numbers on the axes identify the outputs based on their
given output identification number in Table 1. Looking at each correlation individually,
we can gain insight into the inter-relatedness of the outputs. Although there are some
characteristic features shared across all cases, there are also some unique features
depending on the NMDA-R model (BT vs LJ) and the parameter set varied (extrinsic
versus intrinsic). These differences are consistent for each case as shown by the small
standard deviation for the BT Extrinsic case (Figure 3E). The standard deviations for
each of the cases are quite small and look very similar to the representative example

shown in Figure 3G.

Similarities in landscape across partitioned cases

It is immediately noticeable that all the cross-correlation matrices have a wide swath of
high cross-correlation near the diagonal line of identity (Figure 3). This structure was
imposed by sorting the outputs to group correlated outputs near one another (see table 1
for a listing of the outputs). These “blocks” of correlations represent each of the four
main categories of output types that make up the ten output metrics: 1,2-peak open

probabilities, 3,4-peak glutamate concentrations, 5,6,7-times of peak open probabilities,
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and 8,9,10-times of peak glutamate concentrations. Within these category blocks, the
outputs correlate well with one another across all cases. For example, it is evident that
1,2-peak open probabilities correlate well to each other as do 3,4-peak glutamate

concentrations.

Differences in landscape across partitioned cases

While some cases look qualitatively similar, there are many quantitative differences
between the correlations matrices of the four cases illustrated in Figure 3. These
differences are too numerous to list individually. Below we focus on the major

differences.

At first glance, the most obvious difference seen between the two models (LJ vs BT)
whether varying intrinsic (kinetic parameters) or extrinsic (diffusion parameters), is seen
in the cross-correlations involving times of occurrence in open probability (5-time of
peak, 6-time of half-peak, and 7-time of decay). The correlations of 5,6-open probability
times to 1,2-peak and half-peak open probability are substantial in the LJ-E model
compared to the minimal, opposite in sign, correlations seen in the BT-E model.
Similarly the second major difference seen between the two models consists of the
correlations which relate the 5,6-times of occurrence in open probability to the 8,9-times
of occurrence of the peak and half-peak glutamate concentrations. The LJ model has
substantially higher correlations for these relationships compared to the BT model, and
also notable is that there are differences in the direction, or sign, of the correlation,

particularly for the correlations involving 7-time of the decaying half-peak open
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probability. Thus, the LJ model tends to have stronger correlations that relate outputs
which are dominated exclusively by the diffusion model and the extrinsic parameters
while most of the strong correlations seen in the BT model are to outputs that are affected
by both the diffusion and NMDA-R model. (Note that unlike the diffusion model, there

is no output metric that can be solely attributed to the NMDA-R model itself.)

By dividing the searches into intrinsic and extrinsic parameters, we are able to see which
part(s) of the model are contributing where. The spillover model makes an excellent test
case for this because there are only two sub-models, the independent diffusion model and
the diffusion-dependent NMDA-R model. For example, we can see that the strength of
the relationships among 1,2-peak open probabilities, themselves, and between 1,2-peak
open probabilities and 5,6,7-times of peak open probabilities is intrinsic to the receptor

models and projected from there into the extrinsic parameter correlations.

In the case of the NMDA-R models, it is actually known what the difference between the
LJ and BT model is “supposed to be”, and we can use this knowledge to test the ability of
our S® method to find the difference. The motivation for the additional states (2 transition
states and an additional desensitized state) in the BT model compared to the LJ model
was to better fit the receptor shut times (Banke and Traynelis 2003). Our closest output
which would account for shut time is 7-time of the decaying half-peak open probability.
In the BT model, there are strong correlations between the 7-time of the decaying half-
peak open probability and 5-time of the peak open probability and 6-time of the half-peak

open probability. However, in the LJ model the correlation for 7-time of the decaying
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half-peak open probability is much stronger with 3-peak glutamate concentration and 4-
half-peak glutamate concentration. So, basically, “control” over correlations involving 7-
time of the decaying half-peak open probability is shifted from exclusively the diffusion
model in the LJ model to both the diffusion and NMDA-R models in the BT case. That
is, the BT model is better able to control the time of decaying half-peak open probability,
just as it was intended. However, changes in the relationships with 7-time of the
decaying half-peak open probability were not the only correlation changes seen in the
entire spillover landscape, as previously illustrated. Thus, it can be concluded that the S
generated landscape is capable of picking up changes that we would expect to see
between the two different NMDA-R model versions as well as changes that we might not
expect to see, or at the very least, changes that are not obvious until we “look backwards”

after performing the relational analysis.

Partitioned landscapes versus the full landscape

Comparing the four cases to the landscapes for the full parameter set, it can be seen that
the effect of extrinsic parameters dominate the full landscapes with the exception of 7-

time of peak open probability, which appears to be dominated by the intrinsic parameters.

Other test cases

To test the robustness of the S* method, other model variants and simulations using
different target output values were used. For brevity and simplicity, the results of these

test cases will only be discussed below and not shown.

158



Just as two mechanistically different NMDA-R models can be distinguished based on
landscape, two mechanistically different diffusion models can also be distinguished using
model relational analysis. A simplified version of the Saftenku diffusion model, basically
a model without glutamate uptake, was compared to the original Saftenku diffusion
model using the S® method. Since glutamate uptake actually ends up being a critical
aspect to the diffusion model, convergence of the no-uptake model to the target output
metrics listed in Table 1 was practically negligible. Regardless, the two model
landscapes comparing the original Saftenku diffusion model and the no-uptake model

were vastly different, as expected.

To test how the functional point of assessment affects the analysis, target output values
were chosen such that each output value was within 5% of the original value shown in
Table 1. The new output values became the new target for the parameter search.
Convergence was less than with the original target output values, but still good, >40% in
most cases. The landscapes revealed that models could be differentiated not only based
on model type and parameter set varied, but also by there functional point of assessment.
That is, models which are analyzed at two different target output values can have two
different landscapes; hence, the sensitivities of the outputs can be different at different
model operating points. This is also supported by the fact that there is, though small, a
standard deviation seen between the sensitivities generated between different homologues

as shown in Figure 3G.
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Figure 7.2.3. Comparison of Model Output Landscapes. Color intensity represents the
correlation magnitude (i.e. darker colors represent stronger correlations) while the shape
represents the correlation sign (i.e. squares represent positive correlations and circles
represent negative correlations). Note the correlations which lie on the diagonal line of
identity (cross-correlations of an output to itself) have been removed for clarity. The
numbers on the axes identify the outputs based on their given output identification
number in Table 1. 4-C. Landscapes utilizing the BT NMDA-R model. D-F.
Landscapes utilizing the L] NMDA-R model. G. Representative standard deviation of a
typical spillover model landscape (using the standard deviation of BT Extrinsic as the
example).
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Output Space Dimensionality

Dimensionality assessment provides a means to compare the size of the output spaces as
whole. We compute the output dimensionality of the entire spillover model and the
contributions of the diffusion and NMDA-R models by performing factor analysis using
Systat (Systat Software Inc.). Several factor rotation methods were tried, but all resulted
in approximately the same Eigenvalues, within +/- 0.1. Like the full parameter set cases,
the extrinsic cases can have a maximum of ten factors (or dimensions), potentially one
factor for every output. The intrinsic cases can only have a maximum of five potential
factors, potentially one factor for each of the NMDA-R model outputs (the diffusion
model outputs are constant for the intrinsic cases and therefore cannot be included in the
factor analysis). Looking at the scree plot it is evident that the extrinsic cases carry an
additional dimension compared to the intrinsic cases (Figure 4). Careful comparison of
the extrinsic cases to the full parameter sets reveals that the full parameter sets carry
about an extra one-half to one dimension (seen in between factors 4 through 6). Thus, it
can be concluded that the extrinsic parameter set is contributing most of the
dimensionality to the model output space. In fact, the model output space is severely
sublinear. That is, the dimensions imposed by the extrinsic parameter set (~ 4) and the
intrinsic set (~ 3) are not linearly additive. The full parameter set has only 4.5-5
dimensions instead of 7. Of particular note is the lack of difference in dimensionality

between the BT and LJ models for intrinsic, extrinsic or the full parameter sets.
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Figure 7.2.4. Scree plot. Comparison of factors (or dimensions) for the four different
cases.

Discussion

Here we perform a model relational analysis to obtain a model output landscape using the
search-survey-and-summarize (S?) method. Based on the results, the two receptor
models, in the context of the larger spillover model, can result in the same overall model
output but yield differing sensitivities and therefore different cross-correlations of outputs
or landscapes. For the case of spillover, we are able to pick up the subtle differences
purposely imposed by the BT NMDA-R model, the ability to improve shut time, as well
as other differences, which were not intentional. In fact, utilizing the model output
landscape, we were able to differentiate between models that produce the same

quantitative output based on: 1) model type (BT versus LJ), 2) parameter set varied
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(extrinsic versus intrinsic), and 3) target output values. What does this mean for
spillover? The true differences in the NMDA-R models appear benign if only looked at
in the context of the NMDA-R models themselves; however, the differences imposed by
the NMDA-R model type in the larger, more complex spillover model become very
apparent in the landscape. In the case of spillover, the BT model does do what it was
intended to do, and it is less reliant on the diffusion model parameters to do so. Thus, in
this specific study of spillover at the cerebellar glomerulus either the BT or LI NMDA-R
model could be safely used to simply determine the presence of spillover, but the BT
model will give a better picture of what is happening at the mechanistic level without
being quite as dependent upon diffusion and geometric parameters. This could be
advantageous when spillover analysis moves beyond the well-studied geometry of the

cerebellar glomerulus to less known synaptic geometries in the brain.

Applications of model relational analysis

Systems biology has pushed computational models from being reduced to complex and
hypothesis driven (Baldi et al. 1998; Lee 2007; Shapiro and Lee 2007). There is an
increasing desire to use computational models to reveal deeper understanding into
cellular and system organization and interactions and their respective implications
(Coveney and Fowler 2005). Thus there is increasing need to balance computational load
induced by these large models as well as the need to be able to meaningfully analyze such

models where often many of the parameters are unknown.
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Previous attempts to characterize models have focused on parameter relationships via
careful and methodical tuning of the model (Achard and De Schutter 2006; Prinz et al.
2004; Vanier and Bower 1999). A model analysis that relies solely on parameter
relationships has the potential to be somewhat difficult to interpret given the known
existence of parameter non-uniqueness (Goldman et al. 2001; Hooper 2004) , i.e. the
presence of homologues. Furthermore, not all parameters can be experimentally
validated nor is their physiological range always known. Here we propose to analyze
models based on their inherent output relationships by exploiting parameter non-
uniqueness. We believe model relational analysis using the S* method to be
advantageous because 1) output relationships can provide a unique, distinguishable
landscape and 2) since most model outputs are derived from experimental outputs or
metrics, output analysis can be used on model and experimental data as a basis for an

additional layer of analysis, comparison, and/or validation.

The ability to distinguish between mechanistically different model implementations
solely based on output relationships is a useful tool that opens the door to higher level
analysis. There are times when several degenerate models may describe a system, and
the “best” model may not always be the “correct” model (Judd and Nakamura 2006).
When possible, landscapes to various computational models of a system can be compared
to the experimental output landscape (i.e. cross-correlations of experimental outputs) to
help decide which model is “best” (fits the data) and “correct” (accurately represents the
underlying mechanisms and interactions) for a given system or application. Additionally,

landscapes can be used to determine the most appropriate model for the desired
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computational load. Modelers can “see” what the difference is between models and
decide what differences in landscape are tolerable for a given problem to save on
computation time. Finally, it is possible that landscapes could be used to help identify
new correlations which can be used to guide further model development or experimental

work.

Dimensionality assessment is another potentially useful tool which can be used in
conjunction with model output landscapes as part of the model relational analysis.
Dimensionality assessment has been employed in various forms in biological science to
analyze and categorize different forms of multi-variate data sets (Cangelosi and Goriely
2007; Lin et al. 2003; Ly and Tranchina 2007). The ability to determine how various
model interactions and sub-components are contributing to the dimensionality of a
system is helpful in understanding complex interactions. For example, we were able to
use dimensionality assessment to determine that the majority of output space size is

coming from the extrinsic parameter set.

It has been suggested that a simplified model can exhibit dimensional reduction
(Gallagher and Appenzeller 1999; Ricard 2006; Teodoro et al. 2003). In the case of the
spillover model, the apparent reduction from 7 to about 4.5 dimensions noted in Figure 4
would seem to support this assertion. However, it is difficult to see the reduction in
dimensionality from the slightly more complex BT model compared to the slightly
simpler LJ model because the models are so mechanistically and structurally similar. In

contrast, the model output landscape can detect these differences. We suggest that the
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dimensionality of the model output space is analogous to the size of the output space
while the landscape is analogous to the shape of the model output space. The dimensions
imparted by the NMDA-R model have already been collapsed to the point that no
difference can be seen between the BT and LJ models and therefore their output spaces
remain the same size. However, the shape of the spaces is different, and this difference is

detected by the landscape.

Applications to Degeneracy

As has been discussed previously, there are many reasons why a modeler may desire to
differentiate between two different degenerate models. Three common such reason
include: 1) to aid in model selection and construction 2) to balance computational load 3)
to validate a mechanistic model implementation. However, what underlies the
differences imparted by mechanistically different models? It is likely that the differences
seen between two degenerate models are largely a function of the difference in their
sensitivities to input parameter sets and parameter values. These differences in
sensitivities, which are apparent in the model output landscapes, likely determine the
robustness of the model. The model’s ability to alter its sensitivities is probably a
function of its complexity. More parameters and dimensions (i.e. degrees of freedom)
allow the model to adjust to conditions that extend beyond its optimal base case. In
essence it can be hypothesized that more complex degenerate models will have larger
possible output ranges. The BT model’s ability to better control its own properties
intrinsically and its higher rate of convergence to multiple target output values supports

this hypothesis.
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Limitations

As with any form of data analysis, model relational analysis cannot be simply used
blindly. If there are not enough model outputs or if there is a “wrong” or “missing”
output, model relational analysis may not accurately represent the model. Additionally,
intuition must be used as a sanity check in viewing the cross-correlation values in the
model output landscape. The landscape is based on cross-correlation coefficients which
are a function of output variance; an output that generally always has a small variance
(i.e. an output that remains relatively constant) may have an exaggerated correlation
coefficient (usually either approximately 1 or 0) that is not representative of model
behavior. Alternatives to using cross-correlation coefficients are possible and would
involve normalizing regression slopes based on something other than variance (e.g.
subjective scaling factors). Finally, as mentioned previously, there are limitations to
factor analysis. Factor analysis assumes orthogonality, and there is subjectivity in

determining the number of factors.
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CHAPTER 8

SPINAL CORD INJURY

In addition to being an amenable test case to our set of complex system-based analytical
techniques, referred to as relational analysis, secondary SCI is a system that was ideally
suited for the development and implementation of our complex-systems based modeling
technique, referred to as relational modeling. Typical of most pathologies, no
comprehensive computational model of secondary SCI had previously existed. The
under-utilization of models in pathologies like SCI directly corresponds to both our lack
of understanding of pathologies and the lack of detailed information that is typically
required to make traditional mechanistic computational models. However, in the case of
secondary SCI, where detailed experimental research of several individuated factors or
mechanistic concepts has yet to translate into reliable and predictable clinical therapies
(Hall and Springer, 2004) and where numerous possibilities for additional research and
combinations of therapeutic trials seems infinite (Faden and Stoica, 2007), the
empowering ability of a computational model as an exploratory tool to predict and

prioritize was quite needed.

In this published study (Mitchell and Lee, 2008) the relational modeling methodology is
developed and implemented to produce a comprehensive computational model of
secondary SCI by simply aggregating and translating experimental literature-derived

relationships or correlations into a network of time-varying factors. This network
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exhibits the same output relationships and dynamics of the real system and provides a
means or test bed by which comprehensive mechanistic and therapeutic theories can be
identified, explored, and analyzed. Using the relational modeling methodology of
review-relate-refine, we successfully developed the first comprehensive model of SCI,
which recapitulated the findings of over 250 experimental papers. Using relational
analysis to analyze the underlying dynamics and relationships illustrated within the
model landscape, we were able to generate novel mechanistic, dynamical, and therapeutic
insights (Mitchell and Lee 2008). The results of this study challenge pre-existing
hypotheses surrounding the pathology dynamics of SCI and the subsequent therapeutic
direction of the SCI field. Our quantitative assessment of thousands of potential
therapeutic strategies has resulted in new and exciting ideas for potential therapeutic
alternatives. As such this initial relational model serves as a “scaffold” from which
further relational, conceptual or mechanistic modeling can be used to investigate areas of
interest in more detail. The papers “Pathology dynamics predict spinal cord injury
therapeutic success” as published in the Journal of Neurotrauma 25(12): 1483-1497 is

presented in its entirety (Mitchell and Lee, 2008).

Background: Secondary Spinal Cord Injury
The spinal cord serves as a conduit for over 13 million neurons, which directly conduct
signals from the brain to the rest of the body (Kandel et al, 2000). Spinal cord injury can
result in a devastating loss of function below the level of insult, including the inability to
breathe (in upper level C1-C3 cervical injuries), the loss of sensation, the loss of

voluntary motor control, and the loss of bladder and bowel control, to name just a few of
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the primary consequences. To date, despite promising in vitro and in vivo experimental
studies, there are no effective and reliable therapies to directly address the neural damage
and subsequent functional losses associated with SCI (Hall and Springer, 2004). With
over 11,000 new injuries each year in the United States alone that result in these
aforementioned catastrophic clinical consequences (according to the 2008 National
Spinal Cord Injury Database), SCI is both a relevant and significant clinical pathology
worthy of further system exploration. Notably, much of the damage associated with SCI
occurs post-insult as a result of a complex cellular cascade referred to as “secondary
injury” in which the body’s own response to the mechanical insult, including the failure
of cellular respiration, the accumulation of excitotoxic and free radical factors, the
initiation of necrotic-apoptotic cascades, and the activation of the immune system, results
in an increase in lesion size over the following weeks and months (Schwab, 1996; Park,
2004). This increase in lesion size can have perilous effects on the outcome of SCI that
results in the accumulation of additional permanent losses (Hall and Springer, 2004;
Schwab, 2006). The large number of interactions among these pathological factors
across multiple physiological and time scales makes both the experimental and
theoretical characterization and examination of secondary injury as a whole extremely
difficult. However, such an interactive and truly complex biological system is the ideal

test case for employing complex systems-based analytical methods.
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Figure 8.0.1. Propagation of Spinal Cord Injury. The figure illustrates SCI lesion
expansion from the initial primary mechanical or traumatic insult due to “secondary
injury”, damage that is initiated from within the cellular environment of the primary
injury. Secondary injury can expand a couple of vertebrae above and/or below the
primary insult, resulting in additional sensory and/or functional losses. Image credit: the
brain and cord figure is adapted from IC Irvine Reeve-Irvine Research Center. Anatomy
101: Spinal Cord and Central Nervous System. Website:
www.reeve.uci.edu/anatomy/images/scns_1b.gif Downloaded on1/19/2009.
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Abstract
(Secondary injury, the complex cascade of cellular events following spinal cord injury
(SCI), is a major source of post-insult neuron death. Experimental work has focused on

the details of individual factors or mechanisms that contribute to secondary injury, but
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little is known about the interactions among factors leading to the overall pathology
dynamics that underlie its propagation. Prior hypotheses suggest the pathology is
dominated by interactions, with therapeutic success lying in combinations of
neuroprotective treatments. In this study, we provide the first comprehensive, system-
level characterization of the entire secondary injury process using a novel relational
model methodology that aggregates the findings of ~250 experimental studies. Our
quantitative examination of the overall pathology dynamics suggests that while the
pathology is initially dominated by “fire-like”, rate-dependent interactions, it quickly
switches to a “flood-like”, accumulation-dependent process with contributing factors
being largely independent. Our evaluation of ~20,000 potential single and combinatorial
treatments indicates this flood-like pathology results in few highly influential factors at
clinically realistic treatment time frames with multi-factor treatments being merely
additive rather than synergistic in reducing neuron death. Our findings give new
fundamental insight into the understanding of the secondary injury pathology as a whole,
provide direction for alternative therapeutic strategies, and suggest that ultimate success
in treating SCI lies in the pursuit of pathology dynamics in addition to individually

involved factors.

Key Words

Secondary insult, spinal cord injury, traumatic brain injury, combination therapy,

neuroprotection, therapeutic treatment window
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Introduction

Despite their promise, translating in-vitro and in-vivo experimental SCI treatments into
effective and repeatable clinical therapies has been problematic (Blight and Tuszynski
2006; Faden and Stoica 2007; Hall and Springer 2004). It is therefore often concluded
that the progression of neuronal death in secondary injury must be dominated by complex
interactions, rather than any given single factor, and that the solution must therefore lie in
multi-faceted treatments aimed at simultaneously targeting several secondary injury
factors (Faden and Stoica 2007; Hall and Springer 2004). However, the overall dynamics

of the processes underlying the pathology remain unknown.

At a conceptual level, the secondary injury process is often thought to behave like a forest
fire. That is, a propagating wave of death that results in a slowly expanding lesion,
driven by multiple factors, often referred to as the necrotic-apoptotic continuum
(PorteraCailliau et al. 1997). Thus, the assumption is that a critical intervention in one or
more factors might arrest the propagation, thereby preventing subsequent damage. The
most commonly pursued secondary injury factors can be categorized into excitotoxic,
energetic, inflammatory, “necro-apoptotic”, and free radical. The excitotoxic factors
arise from a cascade originating from the initial mechanical insult, leading to the direct
disruption of ion gradients (e.g. sodium, calcium) and the escape of neurotransmitters
such as glutamate (Agrawal and Fehlings 1996; Park et al. 2004; Schwab and Bartholdi
1996). These effects, in turn, cause activation of metabotropic and ionotropic receptors,
further increasing external glutamate and internal calcium concentrations, thereby

perpetuating the excitotoxic response (Agrawal and Fehlings 1997; Park et al. 2004).
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Energetic factors arise from the cell’s attempt to maintain homeostasis in the face of the
above cascade (Ahmed et al. 2002). Thus, cellular respiration falls off as mitochondrial
dysfunction occurs (Sullivan et al. 2007) and local ATP concentrations decrease
(Anderson et al. 1980), compromising the cell’s energy supply (Sullivan et al. 2007) and
hampering the ability of ionic pumping mechanisms, such as the Na-K-ATPase
transporter (Faden et al. 1987; Li and Stys 2001), to restore ionic homeostasis. Free
radical factors, including nitric oxide (NO) (Hamada et al. 1996; Merrill et al. 1993) and
reactive oxygen species (ROS) (Hall and Braughler 1993), accumulate, damaging DNA.
Necro-apoptotic (i.e. necrotic and apoptotic) factors arise from these damaged cells as
well as those with increased membrane permeability (Farkas et al. 2006; Shi and
Whitebone 2006) from membrane damage. Cells that do not die necrotically initiate
apoptotic cascades (Crowe et al. 1997; Lu et al. 2000) via caspase and calpain activation
(Crowe et al. 1997). Inflammatory factors are activated (Beattie 2004; Dusart and
Schwab 1994), including microglia (Gomes-Leal et al. 2004; Merrill et al. 1993),
macrophages (Giulian and Robertson 1990) and astrocytes (O'Brien et al. 1994), resulting
in the production of pro-inflammatory cytokines (Bartholdi and Schwab 1997; Klusman
and Schwab 1997; Pineau and Lacroix 2007). Other secondary injury factors include
demyelination (Totoiu and Keirstead 2005), oligodendrocyte death (Crowe et al. 1997),

and axon damage (Shi and Whitebone 2006).

Experimental investigation of individual secondary injury factors has resulted in a
substantial, yet disparate pool of single factor data, making the interpretation of multi-

factor effects difficult. Recently, we have developed a methodology (Mitchell and Lee
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2007) that greatly facilitates pooling disparate data, enabling a novel, comprehensive
view into the pathology of secondary injury across time points, preparations, and
protocols. We developed a system-wide relational model of secondary injury by
aggregating the relevant relationships between factors commonly believed to be involved
in the progression of secondary injury from over 250 experimental papers. This relational
model represents a comprehensive view of the progression of neuron death following
mechanical insult by directly incorporating the literature-derived experimental
relationships into a network of time-varying factors. Thus, the dynamics of the entire
secondary injury process, including potential treatments, can be quantitatively examined.
This systems-based relational modeling approach encompasses and recapitulates
experimental data without having to assume the detailed and cumbersome mathematics of

numerous unknown mechanisms.

Methods

General strategy

The secondary injury model is characterized as a relational model (see Figure 1a),
which uses intrinsic relationships identified in the experimental data to aggregate and
recapitulate the findings of hundreds of experimental findings to make predictions
regarding pathology dynamics and interactions over time. Based on over 250 research
articles, we constructed a 20-output, 26-differential equation, 85-relationship system that
transformed the individual experimentally derived relationships into a model that

exhibited the known behaviors of secondary injury in the spinal cord.
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Figure 8.1.1. Comprehensive pathology of secondary injury post-SCI. (a) The diagram
represents the structure of the relational model, which is an embodiment of the published
literature. The model permits cross-factor examination of the pathology and treatment
responses of the secondary injury process. Boxes represent tracked factors in the model.
Categories of factors (shown in differing colors) represent established theories from the
literature regarding secondary injury: necro-apoptosis, energetics, excitotoxicity, free
radicals, inflammation, and other. (b) The figure illustrates how the extraction of
experimental relationships results in a relational model capable of making clinical and
mechanistic predictions. Each arrow in Figure 1a represents an experimentally derived
relationship or “gain”, which is extracted from the experimental relationship between 2
factors. Altogether, these gains are used to form the relational model’s differential
equations, which transcribe the relationships into a network of time-varying factors.
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The general relational modeling strategy utilizes the review-relate-refine technique as
summarized in Table 1: review the literature to identify pertinent factors, relate the
factors into a map transcribing a system of differential equations, and refine the model to
meet validation criteria. Specific methodological and analytical details central to the
secondary injury relational model are outlined in the sections of text below. As an aid to
the reader, Table 2 summarizes pertinent terminology used to convey dynamical
concepts, methodology, illustrations, and treatments, which appear throughout this

article.

Table 8.1.1. Relational modeling technique: Review-Relate-Refine.

Review

1) Determine criteria for primary literature reference inclusion.

2) Determine a base list of references and system factors for inclusion

3) Record references, categorized by factor, in an annotated database.

4) Expand scope of literature base manual searches. Record new or additional
factors.

Relate

5) Devise a “map” that illustrates how identified factors are related. Include
relevant system output(s).

6) For each 2-way relationship, extract a value from the literature that quantitatively
describes the relationship (e.g a gain).

7) Translate the map into a system of equations

Refine

8) Validate using experimental data

9) Repeat steps 3-7 for areas that need improvement
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Table 8.1.2. Glossary of terminology used to describe dynamical concepts,
methodology, illustrations, and treatments. Note that the treatment portion of Table
8.1.2 is continued on the next page.

Dynamical Concepts
fire

flood

Methodology
relational model

relational analysis

factor

factor category

factor gain

factor time constant

Dynamics Illustration
landscape

pathology diagram

Describes rate-dependent dynamics in which a high degree
of interaction between factors drives the propagation of the
secondary injury process.

Describes accumulation-dependent dynamics in which the
accumulation of independent factors drives the propagation
of the secondary injury process.

Aggregates multiple 2-way experimental relationships at
discrete time points to predict the interactions and
dynamics of all involved factors over a continuous time
frame.

Set of analytical techniques that evaluates and
subsequently uses the relationships among parameters,
variables, and especially model outputs to hypothesize
process dynamics, mechanisms, and/or functions (for
details see (Mitchell and Lee, 2007).

Quantifiable entity or output that has a measurable impact
on the process outcome.

Set of factors, which have been grouped together as
‘similar’ by scientists in the field, based on their function,
mechanism, or impact on process outcome.

Value that quantitatively specifies the one-way impact of
an inter-related or interacting factor.

Calculated using the factor peak value over its
experimentally measured range and used to form the
factor’s differential equation.

Matrix of correlations, which quantifies the inter-
relatedness of model outputs (or factors) and is
representative of their degree of interaction (i.e. a measure
of ‘fire’.)

A map/survey of the overall system operation, including
the changes in factor size, impact, and “flow” (i.e. a
measure of accumulation).
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Table 8.1.2 (continued)

Treatments

reducing treatment Targets factor accumulation by reducing the existing factor
(e.g. a free radical scavenger actively reduces existing free
radicals)

inhibiting treatment Targets the interactions by inhibiting formation of a factor
(e.g a free radical anti-oxidant inhibits the formation of
free radicals).

single [factor] A single treatment, either reducing or inhibiting, applied

treatment independently to target one factor.

combination treatment An n-number of inhibiting or reducing treatments given in
combination targeting n-number different factors.

Derivation of equations

Differential equations are of the standard Euler form. The derivative for each factor at
each time step is calculated using its relationships to the other factors and then integrated
numerically. Every arrow pointing to a specific factor in Figure 1 represents a
relationship between the two factors (see Figure 1b for illustration of extraction method).
For example, NMDA activation is mediated by calcium and glutamate. The relationships
between factors are taken or measured from the experimental data, and are effectively
linear gains denoted by ‘G’ (Table 3). Similarly, time constants for each factor, denoted
by 7, are calculated from experimental data and represent the time constants for the acute
and sub-acute secondary injury periods (Table 4). Therefore, for our example with
NMDA we have:

NMDA G G+ Gy i o - Ca Equation 8.1.1

expected
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dANMDA  NMDA,..., - NMDA

dt z-NMDA

previous

Equation 8.1.2

The one non-linear exception to the form of Equation 1 is for the factor ATP, (Equation
3) which reflects the production of ATP by the mitochondria and the consumption of
ATP by the Na-K-ATPase pump. However, the Euler differential equation still has the

same form as the other factors as shown in Equation 2.

ATP,cied =V (G arporio - Mito+ G ipp_yorarpase - NaKATPase) Equation 8.1.3

€

The model was split into two parts to better mathematically represent the fast or “acute”
period (<1 hour after injury) and slow or “sub-acute” (>1 and < 16 hours after injury).
The acute and sub-acute parts each have their own time constants (Table 4) to represent
the changing dynamics seen experimentally between these two time periods. However,
depending on a factor’s split dynamics, it may only exhibit substantive changes in one
period or the other. For a validated comparison between simulated factor values and
experimental data, see Table 5. Note that by splitting the time constants into smaller
time frames, the relationship equations, like Equation 1, can be safely approximated as
piece-wise linear. However, this linear approximation does not specify that the resulting

trajectories of factor values be linear, as shown in the Results in Figure 2.
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Table 8.1.3. Table of model gains for the calculation of secondary injury factors. How to
read the table: Each gain represents the relationship between two factors as shown in
Figure 1. The first part of the hyphenated gain name states the name of the factor being
calculated while the second part of the gain name states the influencing factor that the
gain relates. See main text (equation 1) for the example with NMDA. A. Energetic gains.
B. Excitotoxicity. C. Inflammation. D. Free radical. E. Necro-apoptotic. F. Other.

Table 8.1.3A. Energetics

i E 2 _ _ s

Gain § Reference E E E 8 g
ATP-Mitochondria 0.40  (Nicholls and Budd 2000) X X
ATP-NaKATPaseFactor 1.00 (Green and Kroemer 1998) X X
Blood-Blood 0.50  (Yanase et al. 1995) X X
Glucose-Blood 0.50  (Anderson et al. 1980) X X
Mitochondria-Calcium ~ 0.10  (White and Reynolds 1996)  x X
Mitochondria-Glutamate 0.15  (Ankarcrona et al. 1995) X X
Mitochondria-ROS 0.05 (Azbill et al. 1997) X X
Mitochondria-Sodium 0.40  (Iwai et al. 2002) X X
Table 8.1.3B. Excitotoxicity

: E 2 _ . &
Gain § Reference E E E 8 g
AMPA-Calcium 0.10 (Yanase et al. 1995) X X
AMPA-Glutamate 0.55 (Saftenku 2005) X
Calcium-AMPA 0.23  (Carriedo et al. 1998) X X
Calcium-

Calcium(uptake) -3.50 (Wingrave et al. 2003) X X
Calcium-Mitochondria 1.50 (Wingrave et al. 2003) X X
Calcium-NMDA 0.28 (Carriedo et al. 1998) X X
Calcium-Membrane

Damage 0.25 (Yoshioka et al. 1996) X X X
Glutamate-AMPA 1.10  (Saftenku 2005) X
Glutamate-

Glutamate(uptake) -3.50 (Xu et al. 2004) X X
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Table 8.1.3B (Continued) Excitotoxicity

2 £ 2 :
Gain T; Reference E E E g g
Glutamate-NMDA 1.30  (Mitchell et al. 2007) X
Glutamate-Membrane
Damage 0.25 (LaPlaca and Thibault 1998) x X
Glutamate-ROS 0.02  (Volterra et al. 1994) X X
NMDA-Calcium 0.10  (Zhang et al. 1996) X X
NMDA-Glutamate 0.60 (Mitchell et al. 2007) X
Sodium-AMPA 1.10  (Agrawal and Fehlings 1996) x X
Sodium-NaKATPase 1.00 (Agrawal and Fehlings 1996) x X
Sodium-NMDA 1.30  (Agrawal and Fehlings 1996) x X
Sodium-Membrane (Schwartz and Fehlings
Damage 0.10  2001) X X
Table 8.1.3C. Inflammation
2 £ . . &

Gain E Reference E E E 8 g
Astrocyte-Calcium 0.30 (Schnell et al. 1999) X X X
Astrocyte-Cytokine 2.00 (Gomes-Leal et al. 2004) X X
Astrocyte-Glutamate 0.50 (Schnell et al. 1999) X X X

(Klusman and Schwab
Cytokine-Astrocyte 1.20 1997) X X
(Klusman and Schwab
Cytokine-Microglia 2.00 1997) X X
Macrophage-Microglia ~ 4.50 (Tian et al. 2007) X X
Microglia-

Demyelination 0.33 (Blight 1985) X X
Microglia-Macrophage  0.30 (Dusart and Schwab 1994) X X
Microglia-NO 0.20 (Zhao et al. 2004) X X

(Agrawal and Fehlings
Sodium-NaKATPase 1.00 1996) X X
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Table 8.1.3D. Free Radicals

o g ¢ .
Gain § Reference ,_; E E g §
NO-Microglia 0.27 (Merrill et al. 1993) X X
NO-Oligodendrocyte 0.57 (Zhao et al. 2004) X X
ROS-AMPA 2.50 (Carriedo et al. 1998) X X
ROS-Cytokine 0.40 (Hu et al. 1997) X X X
ROS-Mitochondria 0.20 (Azbill et al. 1997) X X
ROS-NMDA 2.00 (Carriedo et al. 1998) X X
ROS-NO 0.10 (Mattiasson 2004) X X
Table 8.1.3E. Necro-apoptosis
Gain >  Reference s 5 F w2 3
Caspase-Calcium 2.00  (Wingrave et al. 2003) X X
Caspase-Glutamate 0.20  (Liu et al. 1999) X X
Caspase-Mitochondria 0.20  (Krajewski et al. 1999) X X X
Kacy Cullen, PhD and
Caspase-Membrane Michelle LaPlaca, PhD
Damage 1.00 (unpublished data) X X
Neuron-Caspase Factor  2.43  (Hartmann et al. 2000) X X
Neuron-Macrophage 2.03  (Tian et al. 2007) X X
Neuron-Mitochondria 0.16  (Sullivan et al. 2007) X X
Neuron-Oligodendrocyte 0.27  (Zhao et al. 2004) X X
Neuron-Membrane
Damage 0.81 (Cullen and LaPlaca 2006a) x X
Membrane Damage-
Caspase 1.00  (Wingrave et al. 2003) X X
Membrane Damage-ROS 1.00  (Mattiasson 2004) X X
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Table 8.1.3F. Other

o e ° =
. 3 £ £ B J 2
Gain =  Reference s £ F 2 35
(Pettus and Povlishock
Axon-Microtubule 2.00 1996) X X
(Pettus and Povlishock
Axon-Neurofilament 2.00 1996) X X
Axon-Membrane (Pettus and Povlishock

Damage 0.20 1996) X X
Demyelination-Axon 0.30  (Lovas et al. 2000) X X
Demyelination-

Oligodendrocyte 3.00  (Kandel et al. 2000) X
Neuron-Glutamate 0.09  (Ankarcrona et al. 1995) X X
Oligodendrocyte-AMPA  0.89  (Yoshioka et al. 1996) X X X
Oligodendrocyte-

Cytokine 0.50  (Louis et al. 1993) X X
Oligodendrocyte-

Demyelination 0.20  (Yoshioka et al. 1996) X X X
Oligodendrocyte-NO 0.10  (Merrill et al. 1993) X X
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Table 8.1.4. Time constants used in the model. Fast time constants are used for the acute
(<=1 hr post-insult) and slow time constants are used for the sub-acute period (> 1 hr and
<16 hr).

Fast Slow g S - -
Factor (hrs) (hrs) Reference E é 5 8
NMDA Activation 0.33 3.35 (Zhang et al. 1996) X X
AMPA Activation 0.33 3.35 (Goforth et al. 2004) X X
NaKATPase
Transporter 0.67 24.00 (Faden et al. 1987) X X
(Anderson et al. 1980) X X
Reactive Oxygen
Species (ROS) 2.5 24.0 (Hall and Braughler 1993) X
(Hamada et al. 1996) X X
Glutamate
Concentration 0.22 3.35 (Xu et al. 2004) X X
(Liu et al. 1999) X X
(LaPlaca and Thibault
Calcium Concentration  0.22 3.35 1998) X X
Sodium Concentration  1.00 24.00 (Lemke et al. 1987) X X
(Fehlings and Agrawal
1995) X X
Mitochondria
Dysfunction 1.00 24.00 (Alano et al. 2002) X X
ATP Concentration 0.67 24.00  (Anderson et al. 1980) X X
Membrane Damage 0.67 24.00  (Shi and Whitebone 2006) X X
(Cullen and LaPlaca
2006b) X X
(Barut et al. 2005) X X
Microglia Activation -- 4.00 (Dusart and Schwab 1994) X X
(Carlson et al. 1998) X X
(Vela et al. 2002) X X
Cytokine Concentration -- 12.00  (Pineau and Lacroix 2007) X X
(Klusman and Schwab
1997) X X

189



Table 8.1.4. (continued)

Fast  Slow g S -
Factor (hrs) (hrs) Reference E é E ((b)
Astrocyte Activation 6.7 5.00 (O'Brien et al. 1994) X X
Macrophage Activation -- 5.00 (Carlson et al. 1998) X X
(Vela et al. 2002) X X
(Fleming et al. 2006) X X
Oligodendrocyte Death  -- 12.00  (Crowe et al. 1997) X X
(Totoiu and Keirstead
Demyelination -- 24.00  2005) X X
Nitric Oxide (NO) -- 8.00 (Xiong et al. 2007) X X
Caspase Activation 54 24.00  (Springer et al. 1999) X X
(Pettus and Povlishock
Axonal Damage -- 12.00 1996) X X
Neuron Death 1.4 12.00 (Gaviria et al. 2006) X X
24.00  (Fujiki et al. 2005) X X
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Table 8.1.5. Factor validation comparison to experimental data. The model is “unitless”
in that the model generates factor values that are ratios to the baseline values, with all
baseline values (values immediately post-insult) starting at one. For example, a factor
value of three means that the factor value is three times the baseline value. References
listed in bold type indicate primary (i.e. external or independent) validation criteria in
which no data from the reference was used to calculate the corresponding validated factor
value. References in italic type indicate secondary validation criteria from which only
time constant information was extracted. Thus, these secondary references had no impact
on their corresponding resulting factor relationships. The remaining references in regular
type, with the exception of axonal damage, indicate tertiary validation criteria from which
the indicated reference was only one of several references that data was extracted from as
part of the calculation of the corresponding factor value. Thus, these tertiary references
have only a partial role in determining the impact of their listed factor values and
resulting relationships. Limitations imposed by the quantity, applicability and
extractability of available data make the prediction and validation of axonal transport
more difficult than the other factors.

Factor - Reference
=
g2 s2<2 £z
£ 8% %< T 28
=
NMDA Activation 253 25 <1 (Zhangetal. 1996) X X
AMPA Activation 231 22 <1 (Goforthetal 2004) X X
2.5 1 (Li and Stys 2001) X X
NaKATPase 0.67 0.7 24 (Faden et al. 1987) X X
Transporter
0.7 24 (Liand Stys 2001) X X
Reactive Oxygen 511  4-5 1 (Hall and Braughler 1993) X
Species (ROS)
1.77 2.5 0.5 (Hamada et al. 1996) X X
Glutamate 4.1 47 075 (Xuetal. 2004) X X
Concentration
Calcium 2.5  2.5- 4  (Wingrave et al. 2003) X X
Concentration 3
Sodium 243 2 1 (Lemke et al. 1987) X X
Concentration
Mitochondria 1.3 1.2 6 (Sullivan et al. 2007) X X
Dysfunction
ATP Concentration 0.8 0.7 1 (Anderson et al. 1980) X X
Membrane Damage 4.5 2-7 <1  (Choo et al. 2007) X X
Microglia 3.6 3 6  (Dusart and Schwab 1994) X X
Activation
Cytokine 26  2-5 6  (Bartholdi and Schwab X X
Concentration 1997)
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Table 8.1.5 (continued)

Factor Reference
=z Y v g = S =)
T3 FZES £ B 3
Astrocyte 21 24 4  (O'Brien et al. 1994) X X
Activation
Macrophage 1.1 11 16  (Giulian and Robertson X X
Activation 1990)
Oligodendrocyte 1.7 2 6  (Croweetal 1997) X X
Death
Demyelination 2.7 ~ 12#  (Totoiu and Keirstead X X
2.5 2005)
Nitric Oxide (NO) 1.5 25 6  (Merrill et al. 1993) X X
Caspase Activation 2.5,  3- 4  (Wingrave et al. 2003) X X
3.5
33 6  (Springer et al. 1999) X X
Axonal Damage 22 >2 6  (Pettus and Povlishock X
1996)

Parameter value extraction

When using experimental literature to obtain parameter values (Tables 4 and 5), primary
reference selection was based on the quantifiability of the parameter. All parameters
were extracted from central nervous system data, and when possible, data measured in
the spinal cord and spinal cord injury. However, when insufficient quantifiable data was
not available from the spinal cord literature, parameters were extracted from the

traumatic brain injury literature. This distinction is made in the tables.

Justification for factor inclusion/exclusion

This model is based on what is already known about secondary injury. Therefore, factors

included in the model were limited to those known to contribute to secondary injury
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during the studied time frame and for which there was sufficient experimental data
available for obtaining parameter values and validating results. Consequently, mediation
factors (factors that mediate cell death), which have been understudied in this early time
frame, are difficult to include. Thus, such explicit factors, like remyelination, were
excluded from the relational model. Some factors of secondary injury, such as
inflammation, are thought to have mediating as well as deleterious effects. In the model
presented here, only the deleterious effects are explicitly included, mainly due to the lack
of consistent, quantitative information currently available. Thus, it is implicitly assumed
that the impact of mediation factors during the time frames examined in this study is
negligible. However, we do not discount their potential importance; in the future, as

more experimental information becomes available, inclusion may be appropriate.

In general, this study only includes direct factors for which experimental data among
various studies is qualitatively consistent. If there was discordant experimental data for a
factor, the factor was not directly or explicitly included, but rather implicitly modeled
using related indirect factors and/or mechanisms for which experimental data was
qualitatively consistent. For example, we recognize the potential importance of cell
volume regulation, or edema, in the secondary injury process. However, conflicting
experimental results make direct inclusion as an individuated factor very difficult.
Several studies have documented a 2-3% change in spinal cord volume post-SCI, and
each of these studies states to have reduced this volume change by approximately the
same amount using very different methods corresponding to different potential

mechanisms—by reducing NMDA receptor activation (Churchwell et al. 1996),

193



macrophage/microglia activation (Tian et al. 2006), ATP depletion (Jurkowitzalexander
et al. 1992), and sodium (Ates et al. 2007), to name a few. Thus, in this study, we elect to
model the effects of edema indirectly by inclusion of these aforementioned indirect
mechanisms. Without a direct connection between edema and neuron death, it is possible
that factors likely to contribute to edema, such as sodium, may have their impact on
neuron death slightly underestimated, but the actual values of the indirect factors

themselves remain in line with experimental data (see Table 5).

Other model assumptions and limitations

It is true that there are implicit assumptions with each factor that are inherently
associated with the conditions, assumptions and limitations associated with the
experiment from which each gain was extracted including the experimental model type,
time frame of data collection, etc. (for a list of such publications, see Table 3). There are
also limitations based on the information available for a certain factor. Another implicit
assumption lies in the limitation imposed during data extraction from the literature.
However, the more general assumptions of the model are: 1) A quantitative
experimental correlation specifies an interaction which can be modeled in differential
form resulting in both inherent and emergent predictions which reflect the interactive and
temporal dynamics of the process. 2) No “events” occur between the discrete time points
extracted experimentally, and thus temporal dynamics can be interpolated between
discrete points by using an experimentally derived time constant in the translated

differential equations.
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Sensitivity analysis

A sensitivity analysis was performed by varying each parameter individually by a
specified amount (£ 50% in eight 6.25% increments) to measure its effect on the model
output (i.e. factor and neuronal death) values. Sensitivity data was used to obtain the
correlations between factors for the landscape. Additionally, the sign of the slope of the
linear regression between each gain and neuronal death was used to calculate which
direction a gain must be moved to minimize neuron death when specifying inhibiting

treatments.

Secondary Injury Landscape(s)

The landscapes reveal the inter-relatedness of the factors and thus are illustrative of
interaction dynamics. The correlation matrix, which forms the landscape, consists of
correlation values obtained by correlating all outputs against one another based on the
sensitivity analysis data. Note that landscapes are based on peak or maximal impact of
each factor rather than ending impact. “Maximal impact” was defined as the minimum
factor value occurrence over 12 hours for factors that decrease with neuron death (e.g. the
Na-K-ATPase transporter and ATP) and the maximum factor value for the remaining 17
factors, which increase with neuron death. Neuron death values for each sensitivity

analysis run were taken at their maximal value (i.e. at 12 hours).

Since any given output will correlate perfectly with itself, the correlation matrix contains
a diagonal line of identity and is symmetric along the diagonal axis of the square.

Correlations range from zero to one, with zero being completely uncorrelated and one
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completely correlated (for method details see (Mitchell and Lee 2007)). The factors were
sorted based on their correlation coefficients using hierarchical cluster analysis such that
the most correlated factors were located near each other in the landscape. This sorting
does not change the correlations in the landscape but rather makes correlations easier to

illustrate and readily identifies “groups” of related factors based on correlation.

Pathology Diagrams

Pathology diagrams serve not only as a map but also as a survey of the overall system
operation, including the changes in factor size, impact, and “flow”. Since the purpose of
the diagrams is to provide insight into the operation of the system as a whole, additional
scaling was applied to determine line thicknesses/saturation levels etc. The overall intent
was to scale in a manner that kept all lines and boxes visible and yet still provide
meaningful individuation of effect. Qualitatively, greater intensity (darkness/saturation)
indicates greater impact on neuron death with the scaling being roughly logarithmic.
Thus, each increment in intensity is approximately a 2.5-fold increase in impact on
neuron death. In contrast, size (box or line) is an indicator of magnitude. Box size (area)
scaling is roughly linear with factor magnitude relative to its peak value. Line thickness
is scaling is roughly logarithmic as impacts range over approximately 5 orders of
magnitude. Thus, each increment in thickness is worth approximately a 2.7-fold increase

in impact.
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Inhibiting treatments

Inhibiting treatments (treatments that inhibit the growth of a factor) were simulated by
co-varying all of the experimentally derived relationships (gains) directly governing a
given factor (i.e. all parameters, excluding the time constants, appearing in the
mathematical calculation of a factor) by a specified amount or “dose” in a direction that
reduces neuron death. For inhibiting treatments, doses were simulated by moving the
individual gains, G, that govern a factor or combination of factors between 1-95%. The
direction that each individual gain must be varied to reduce neuron death was determined

from a parameter sensitivity analysis.

Reducing treatments

Reducing treatments (treatments that directly reduce a factor) were performed by
subtracting a factor-dependent ‘dose’, by multiplying the current factor value at each time
step by a “reducing gain” that was roughly based on the sum of all gains (Gipa1, factor) fOr
each factor. However, to facilitate comparison, the exact scaling of reducing gains was
set so that reducing and inhibiting resulted in the same effect at very small dosing levels
under the premise that reducing and inhibiting should become indistinguishable as dosing
approaches zero. The specific scaling point was a 1% inhibiting treatment dose at time
zero. Thus, a 1% reducing treatment at time zero was defined as the gain that produced
the same change in neuron death as the 1% inhibiting treatment. Reducing gains were
then varied between 1-1000%. Summarizing by continuing with our example with

NMDA, the concentration-dependent dose that would be subtracted from Equation 2 to
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reduce NMDA is represented by Equation 4, where Syup. is the applied scaling factor as

described above.

NMDA, gy = NMDA -G,y - Sy, - dose Equation 8.1.4

Combination treatments

A factorial design was used to test single factor and multi-factor (simultaneously varying
2-5 factors) treatment combinations. The maximum of five was determined by a

dimensionality analysis of the system (see (Mitchell and Lee 2007)).

Implementation

The model is implemented in MATLAB R2007a (The Mathworks, Inc.). Secondary
injury simulations, sensitivity analyses, cross-correlation analysis for the landscape, and
treatments were performed in MATLAB. Hierarchical clustering analysis for the sorting
of the factors in the landscape was performed in Systat (Systat Software, Inc.). Pathology

diagrams were created in SmartDraw (SmartDraw.com).

Results

Characterization of overall pathology

A key goal of this study was to examine the overall pathology of secondary injury at the

system level, including the process dynamics. As a starting point, two generalized
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mechanisms of secondary injury propagation were examined. The first is a rate-
dependent process, similar to a burning forest fire, where damage is driven by
interactions between factors. Using this analogy, a fire is critically dependent upon the
interactions between fuel availability, wind speed, humidity, etc. and even small changes
in any one of these can have dramatic effects on the fire’s progression and the extent of
its damage. The second mechanism is an accumulation-dependent process that is
analogous to a rising flood, where damage is driven by the accumulation of factors.
Using this analogy, the flood is dependent upon summation over time of flow rates,
geographic contours, etc. and small changes in these factors generally result in only small
effects on the overall flood and extent of its damage. The prevailing view of secondary
injury would be akin to the fire analogy. Thus, our initial expectation was that the system

would be driven by ongoing, rate-dependent interactions of factors.

We began our examination of the secondary injury pathology by investigating the time
course of individual factors and neuron death. The primary model output used to signify
the propagation of secondary injury is neuron death as a function of time. In actuality,
“neuron death” represents the aggregation of all indicators of dead, dying and/or marked
for death neurons. As such, it encompasses both the volume affected and the fraction of
dying cells within that volume. In the first hour post-insult, the model predicts
approximately a three-fold increase in neuron death. This first hour shows greatest
activity in the excitotoxic factors (Figure 2) whose relationships were predominately
based on in vitro literature. Subsequently, neuron death increases at a slower, but still

substantial pace resulting in an additional three-fold increase over the next fifteen hours.
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This sub-acute period shows substantial activity in the necro-apoptotic and inflammatory
factors (Figure 2) and is based heavily on in vivo literature. The model was validated by
comparing its output to experimental data (see Table 5), and especially, when possible, to
experimental data not used as part of the model construction. Based on comparison to
experimental data, the model appears to be valid out to 16 to 18 hours post-insult.
However, the dearth of experimental data points between 12 and 24 hours make a precise
determination difficult. Consequently, we limit our examination to the first 12 hours

post-insult.
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Figure 8.1.2. Progression of factors over time. For illustration purposes, the trajectories
shown are relative to one another in that factors are scaled based on the average of all 19
factors. For comparison of specific factor values to experimental values at specified time
points, see Table 5. Each category of factors is highlighted in an individual panel using a
monochromatic color scheme that aligns with the category colors used in Figure 1a. Light
gray lines in the background represent the non-highlighted factors in each respective
panel and are shown for the purpose of comparing the different factor and factor category
trajectories. (a) Excitotoxic factors (b) Energetic factors (¢) Inflammatory factors (d)
Necro-apoptotic factors (e) Free radical factors (f) Other factors.
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Next, we assessed the simultaneous inter-relationships (i.e. correlations) among the
nineteen factors and neuron death to obtain “snapshots” of the entire secondary injury
process over time (Figure 3). By looking at how these snapshots change over time, we
can visualize the dynamics of propagation. The landscapes (/eft Figure 3) represent both
a summary of the two-way, experimentally observed correlations, and the model’s
predictions regarding broader interactions among the factors. The corresponding
pathology diagrams (right Figure 3) indicate the relative flow and impact of factors, and
thus represent the accumulation of factors over time. Initially, all factors are tightly
coupled as denoted by the widespread, intense block of correlations in the landscape.
This tight coupling results in a one-dimensional behavior that is indicative of a process
that is dominated by interactions (i.e. the fire). However, with time, the system
decouples as the effects of interactions diminish. Simultaneously, the effects of factor
accumulation rise, eventually dominating the process as indicated in the pathology

diagrams, and resulting in a pathology that behaves like multiple independent floods.
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Figure 8.1.3. Analysis of the fire versus flood dynamics of secondary injury pathology.
(Left) Landscape of correlations quantifying the strengths of the inter-relationships or
interactions among the factors and neuron death. Correlation magnitudes are represented
by the grayscale color, and range from zero (white, uncorrelated) to one (black,
completely correlated), Colors on the axes represent the category to which the factor(s)
belong as denoted in Figure 1. The matrix contains a diagonal line of unity, which has
been removed for clarity. (Right) Pathology diagram signifying the “flow” versus
accumulation of factors and their impact on neuron death. Arrow line thickness
illustrates the effect of one factor on another while line darkness represents the impact of
that effect on neuron death. The inner, colored box size illustrates "accumulation” of a
factor and is scaled by the factor’s maximum, represented by its outline. Box color
saturation symbolizes the impact of the factor on neuron death. Continued on next page...
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Figure 8.1.3 (continued). (a) One-hour snapshot. All factors in the landscape are highly
correlated, indicative of the very large interactions associated with a fire, with only
minimal factors showing substantial accumulation in the pathology diagram. (b) Two-
hour snapshot. The system shows substantial decoupling in the landscape, and an
increase in the number of accumulating factors in the diagram, indicating a mixed rate
and accumulation-dependent pathology (i.e. fire and flood). (c¢) Eight-hour snapshot. The
system is functionally decoupled, and accumulation clearly dominates, indicative of
pathology consisting of several independent floods.

Our examination of secondary injury during the first 12 hours post-insult has revealed
that while the commonly held view of the pathology as a propagating fire is consistent
with the system behavior initially, it quickly transitions into “flood” dynamics where the
accumulation of factors over time dominates neuron death (Figure 4). Notably, this
transition occurs relatively early, as a substantial majority of neuron death occurs during

the flood phase.
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Figure 8.1.4. Summary of secondary injury pathology dynamics: acute fire versus the
sub-acute flood. The pathology dynamics consist of an early, acute fire of interactions
chiefly dominated by excitotoxic factors followed by a larger, sub-acute flood of
accumulating factors chiefly dominated by necro-apoptotic and inflammatory factors.
The relative size of the arrows indicates the relative impact of the corresponding factor
category on neuron death. Excitotoxicity, necro-apoptosis, and inflammation all have a
substantial impact on neuron death, while energetics, free radicals, and other factors have
a still significant but smaller impact on neuron death. Time of impact is indicated in
parentheses.

Single Factor Treatments.

With the above view of the overall pathology in mind, we began our examination of
hypothetical treatments by inhibiting the growth of single factors by doses ranging from
10-95% inhibition (e.g. a 50% dose would be expected to reduce the growth of the factor
by 50% if all else remained the same). To determine the maximum possible impact of

each factor on neuron death, calculated single factor treatments were initiated at time zero
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(i.e. simultaneous with the insult - Figure SA). Based on a 50% inhibiting dose, the
impact of these single factor treatments ranges from negligible to nearly a 20% decrease
in neuron death. However, treatment efficacy drops rapidly with time post-insult (Figure
5B). Notably, while the impact of all factors decreased substantially with treatment time,
several factors that had been highly effective when treatment was initiated at time zero
drop precipitously, making them low prospects as the basis for clinical treatment. The
net result is that the top 5 single factor treatments in the 2 to 8 hr treatment initiation
window are: phagocytes (e.g. macrophages, neutrophils, etc), immune activation (e.g.
microglia), apoptotic mediators (e.g. caspase, calpain, etc), membrane damage, and

cytosolic calcium.

Combination Treatments.

To examine the supposition that multi-factor treatments would be more effective in
treating secondary injury, we tested combinations of treating two to five factors. The
maximum of five was based on a statistical analysis of significance based on the system
dimensionality (for dimensionality assessment method, see Mitchell and Lee, 2007). The
results indicate the effects of combination therapy during the first 12 hours post insult are
substantially sublinear, rather than synergistic. That is, of the approximately 20,000
possible combinations, none performed better and most performed worse than what
would be expected by adding the dose-proportional effects of single treatments together
(Figure 5C). Although more effect is gained with each additional factor treated, the

majority of the impact resides in treating three factors.
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Inhibiting versus Reducing Treatments

Based on our analysis of the overall system behavior, we explored alternative treatments
beyond those that simply inhibit factor growth. Most clinical therapies are aimed at
decreasing neuron death by inhibiting the growth of a factor by acting via a specific
mechanistic pathway. For example, a common experimental treatment is to inhibit
NMDA activation using a receptor antagonist. These inhibiting treatments target
interactions by preventing the rate-dependent growth of a factor and its subsequent
interaction with other factors. In contrast to this inhibiting treatment paradigm, we also
examined reducing treatment paradigms to decrease neuron death (Figure SC-D). This
paradigm targets the accumulation-dependent nature of the system by directly reducing a
factor in a manner similar to adding a ‘drain’ to the flood analogy. An example of a
reducing treatment is a free radical scavenger, which actively seeks to ‘mop up’ free

radicals, rather than prevent their formation.

The switch from a rate-dependent propagation of secondary injury (i.e. the fire) to an
accumulation-dependent process (i.e. the flood), is evident in the performance of the
respective inhibiting and reducing treatment paradigms. During the acute period,
inhibiting treatments outperform their reducing counterparts, particularly at less
aggressive treatment doses. However, this difference becomes negligible by hour two for
three-factor combination treatments and by hour four for two-factor combinations,
(Figure 5D). By hour eight, reducing treatments outperform inhibiting treatments in all

treatment scenarios.
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Figure 8.1.5. Evaluation and ranking of various hypothetical single, reducing, inhibiting,
and combination treatments. (a) Impact ranking of individual secondary injury factors on
neuron death as determined by immediate post-insult treatment initiation (zero hours) that
inhibits single factors by 50%. (b) Impact of time of treatment initiation on neuron death
over clinically relevant time frames. The factors relevant at later, clinically relevant time
points contrast from those shown at time zero. The top five single factors are shown in
their respective category color (from Figure 1): phagocytes, immune activation,
apoptotic cascades, membrane damage, and calcium. The remaining factors are shown in
black. (¢) The effect of reducing and inhibiting single and combination treatments as a
function of aggressiveness of treatment. The impact of treatment, especially combination
treatments, is greatly increased by reducing paradigms (solid lines) which allow for much
more aggressive treatment than inhibiting treatments (dashed lines). Aggressiveness of
treatment measured relative to maximum (i.e. 100%) inhibiting treatment. Thus,
inhibiting treatments max out at 1.0 while reducing treatments can be much more
aggressive. (d) Quantified advantage of reducing versus inhibiting combination
treatment paradigms. The order of factors for each n-factor combination shown in (¢) and
(d) are: phagocytes, immune activation, necro-apoptosis, membrane damage, and
calcium. As shown in both (c) and (d), the majority of effective impact of combination
treatments is contained within 3 factors.
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Pathology-driven therapeutic strategies

Based on our results, the switch from the acute, highly interactive, rate-dependent
pathology to a sub-acute lower interaction, accumulation-dependent pathology
determines two critical aspects of secondary injury: 1) the strength of relationships
governing a factor’s impact on neuron death (Figure 6) and 2) the time frame over which
factors are relevant, referred to as the factor “treatment window” (Figure 4). Since a truly
effective treatment must take into account both of these components, ultimately only a
few factors are highly influential at clinically relevant time frames. This would appear to
explain the disconnect between promising experimental studies, which pre-treat or treat
acute factors within minutes of insult (Blight and Tuszynski 2006; Faden and Stoica
2007; Tolias and Bullock 2004), and clinical studies where treatment time frames are
typically 4-8 hours (Tator and Fehlings 1999) as the effective treatment window for acute
factors has been surpassed. Furthermore, the lack of synergism predicted by the model
for combination treatments is also a direct result of the early switch to a diverging, flood-
like pathology since synergism is derived from the sustained presence of strong

Interactions.
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Figure 8.1.6. Summary of the secondary injury pathology dynamics and the top model-
predicted therapeutic strategies at clinically relevant time frames. The diagram
summarizes the flows and effects of factors on neuron death and the corresponding
higher-impact inhibiting and reducing treatments over the 2-8 hr time frame. Circular
arrows represent the best targets for reducing treatments: membrane damage, apoptotic
cascades, and phagocytes. Inhibiting treatments are indicated by an “x” through the
targeted interaction: interaction between NO and immune activation, non-neuronal death
and immune activation, immune activation and phagocytes, calcium and apoptotic
cascades, and membrane damage and apoptotic cascades. Arrow line thickness to and
from factors represents relative "flow" and is indicative of the relative rates coming into
and out of factor while line darkness represents the impact of "flow" on neuron death.
Box color saturation symbolizes the impact of a factor on neuron death.
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Summary of Predictions

As shown, the presented secondary injury relational model is able to transcribe literature-
extracted relationships into a network of time-varying factors that reproduce a number of
experimental results. However, an important aspect of any model is the ability to
characterize previously unknown dynamics, mechanisms, or functions. In this work, we
have made several predictions regarding the previously uncharacterized dynamics of
secondary injury and its response to numerous hypothetical single and multi-factor
combination treatment types. A summary of the model’s testable predictions is given in

Table 6.

Table 6. Summary of secondary injury dynamics and therapeutic predictions over the 0-
12 hour simulated time period. Therapeutic predictions are continued on the next page.

Dynamical Predictions

e Dynamical Time Course: Hours 1-2 are dominated by an acute “fire” of
rate-dependent interactions. Hours 2-6 exhibit a mixture of fire-like
interactions and the flood-like accumulation of independent factors.
Hours 6-12 reveal a nearly decoupled system analogous to a flood.

e Factor Category Time Course: Excitotoxicity and energetics peak in
hours 1-2. Free radical and necro-apoptosis peak during hours 2-6.
Inflammation and “other” peak in the last hours of the sub-acute period
(>6 hours).

e Factor Impact on Neuron Death: Excitotoxicity and energetics impact
neuron death in the acute periods. Impact of inflammation is in the sub-
acute period. Impacts of necro-apoptosis, free radicals, and “other” can

be seen throughout the entire time course.
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Table 6 (continued).

Therapeutic Predictions

e Single Factor Treatments: Best treatments during clinically relevant time
frames (hours 2-8) are phagocytes, immune activation, apoptotic
cascades, membrane damage, and calcium.

e (Combination Treatments: Are additive rather than synergistic. Majority
of treatment impact obtained with 3 factors.

e Inhibiting Treatments: Target interactions; most effective 0-4 hrs post-
insult.

e Reducing Treatments: Target accumulation of factors; most effective >4
hours post-insult. Can have much higher doses compared to inhibiting

treatments, making them the superior general clinical strategy.

Discussion

At first, it may seem that this characterization of the secondary injury pathology simply
adds to the already disheartening picture painted by a host of failed clinical trials.
However, our results may indicate quite the opposite. The pathology characterization
presented here identifies positive current and future directions to pursue based on
fundamental pathology dynamics. While multi-factor treatment combinations do not
provide the much hoped-for synergistic effects, our results do suggest that some
combinations would be functionally additive, namely factors with longer treatments
windows, such as necro-apoptotic and inflammatory factors. Furthermore, the effects of
combination treatments can be amplified with very aggressive reducing treatment
paradigms. Such paradigms may be possible with careful selection of existing

pharmaceuticals. Thus, multi-factor treatments may still play a role in treating SCI, but
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expectations regarding their effectiveness should remain realistic with continued

exploration being pragmatic.

More importantly, our results suggest that the way forward may lie in pursuing the
detailed dynamics of how the secondary injury process propagates rather than just the
factors involved in that propagation. For example, treatment of secondary injury based
on a flood paradigm opens up therapeutic avenues not currently explored. There are
three possible ways to ‘treat’ a flood: 1) ‘wall off> the flood by building a containment
dam; 2) repair the source; and 3) distribute the flooding over a larger area/volume thereby
minimizing its impact. In the case of secondary injury, each has its pros and cons. The
physiological mechanism seems to be to wall off the area via inflammation and glial
scarring (Fawcett and Asher 1999). However, this approach sacrifices any surviving cells
remaining within the walled area. Repairing the source, which could involve repairing
the damaged cells, possibly through membrane re-sealing (Liu-Snyder et al. 2007), may
have a limited feasible treatment window but may still result in long-term success. More
radical would be attempting to distribute the flood in a regulated manner, possibly
through controlled activation and inactivation of inflammatory factors over time to
minimize overall damage. This last approach could potentially leverage the positive,
mediating aspects of inflammation while minimizing the negative, sacrificial effects. A
key challenge for many of these alternative approaches lies in the ability to
experimentally characterize and analyze the changing spatial and temporal dynamics of
the pathology, such as the ability to differentiate early rate-dependent damage from later,

accumulation-dependent damage.
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While this model does provide the first, preliminary systems-level view of the secondary
injury process and possible hypothetical treatments as a whole based on the current state
of the field, it is merely scratching the surface. Thus, admittedly, there are multiple
factors, details, and mechanisms that will likely need to be added or modified in the
future as new experimental findings allow us to hone in closer to the roots, inner-
workings, and related systems, which specify the underlying pathology and ultimately the
efficacy of very specific treatments. Specific examples of possible refinements include
the addition of the mediating effects of inflammation and membrane re-sealing and a
more detailed examination of underspecified factors, such axonal damage, where useable,
available data is scarce. Finally, in addition to the excluded mediating and discordant
direct factors stated in the justification for factor inclusion/exclusion section, this model
does not account for secondary injury occurring at the level of the organism (hypoxia and
hypotension) resulting from dysfunction of other organ systems. In the future, such
aforementioned refinements will provide further confidence in our ability to predict

clinical outcomes.

We foresee this and similar forms of modeling and analysis, perhaps better classified as
“theoretical physiology”, to be an invaluable complementary tool to the details and
mechanisms identified and validated by spinal cord injury experimental and clinical
studies by allowing a comprehensive, holistic view into the pathology dynamics and
interactions. Ultimately, with continued refinement, modeling may provide a high-

throughput screening process from which potential experiments, treatments, and detailed
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protocols can be tested for feasibility and prioritization, thus speeding the time between

therapeutic discovery and clinical success.
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CHAPTER 9

PHYSIOLOGICAL AXONAL TRANSPORT

Interest in axonal transport has spiked in the last decade as deficits and disruptions in
axonal transport have been implicated in pathological and neurodegenerative motoneuron
diseases such as Amyotrophic Lateral Sclerosis (ALS) (e.g. Kieran et al, 2005).
However, many questions remain to be answered about physiological transport before
pathological transport can be addressed. One such question is the role of multi-motor
cooperativity in axonal transport. The published model (Mitchell and Lee, 2009)
presented in this section addresses the role of cooperativity and provides the foundation

for our work in ALS as presented in Chapter 10.

Because axonal transport is a highly interactive process and because of its small
physiological scale over a longer time scale, it is a difficult process to fully characterize
experimentally or theoretically. While it works well to study some aspects of axonal
transport using a full-fledged, purely mechanistic model on individual motors and cargos
in a system aimed to look at population mechanics and behavior, it would limit the types
of questions we want to address. Additionally, many of the questions that we wanted to
address would have been out of our reach if we were reliant on knowing detailed
mechanisms. Thus, a purely traditional mechanistic model was not the best tool to
simulate this system. Furthermore, because axonal transport has a large stochastic
component and because it lacks the intricate feedback relationships that are seen with, for

example, SCI, relational modeling is not an amenable methodology to this system either.
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Instead, a hybrid mechanistic-conceptual approach is the method of choice as it provides
the easiest means to implement and test higher level functional concepts, such as
cooperativity, while maintaining the integrity of underlying mechanistic principles, such

as motor kinetics, when possible and efficient.

Briefly, two questions were addressed: 1) What forces do motors experience when
transporting a cargo and how do these forces impact their velocity profile(s)? and 2)
How many motors of the same polarity (i.e. total number kinesins or total number of
dyneins) is necessary to obtain velocity profiles that match those seen experimentally for
either fast or slow axonal transport? To answer these questions we combined an adapted
stochastic-mechanistic model of motor to microtubule kinetics and two conceptual
models to represent the effects of drag force and multi-motor cooperativity on transport
velocity. The paper as published in the Journal of Theoretical Biology 257(3): 430-437

(Mitchell and Lee, 2009).

Axonal Transport Background

Motoneurons can have extremely long axons, which can extend up to a meter in length
(Kandel et al, 2000). Because axons are unable to manufacture their own proteins,
axonal transport along the entire length of the axon, from the soma to the synapse and
back, is essential to motoneuron function and survival (Goldstein and Yang, 2000).
Axons contain microtubules that serve as a railroad for the transport of necessary

constituents (including neurotransmitters, organelles, and proteins) needed for cellular
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support from the soma to the synapse and the return of proteins destined for degradation
from the synapse back to the soma (Figure 1). The transport carriers for this process are
the molecular motors kinesin and dynein, which bind the cargos and take them to their
destination. Just like the microtubules upon which they bind, kinesin and dynein are
directionally polarized. Kinesin is responsible for anterograde transport of cargos from
the soma to the synapse whereas dynein is responsible for the retrograde transport of
cargos from the synapse back to the soma. Both kinesin and dynein utilize ATP to
process along the microtubule. Multiple kinesins or dyneins can carry cargos
independently, together, or work in a concerted fashion, the latter two being defined as

cooperative transport (Kural et al, 2005).

There are different types of axonal transport, which are categorized based on the
directionality and speed of cargo transport, with each type of transport having its
preferential cargo types (Brown 2000): Fast anterograde or fast retrograde axonal
transport (200-400 mm/day) is largely responsible for the movement of most organelles
and larger proteins. Fast bi-directional transport (50-100 mm/day) is mainly responsible
for the bi-directional movement of mitochondria throughout the axon, placing them
where they are needed as a function of energy requirements and axonal growth. Slow
anterograde or slow retrograde transport (0.3-8 mm/day) is typically used to transport
cytoskeletal structures such as neurofilaments and some smaller proteins to where they

are needed along the axon.
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Figure 9.0.1. Overview of axonal transport. (A) Cargos such as proteins,
neurofilaments, organelles, and neurotransmitters are transported along polarized
microtubules across the entire length of axon via molecular motors kinsesin (anterograde,
+ end directed motor) and dynein (retrograde, - end directed motor). (B) As shown in
(1), a molecular motor is bound to the microtubule track until it acquires a molecule of
ATP as shown in (2). For every step, one molecule of ATP is utilized. Due to either a
random event or a predetermined chemical signaling event, such as a patch of tau or a
phosphorylation site which dictates motor binding events, the motor detaches from the
microtubule as shown in (3). Figure 9.0B credit: Special thanks to Brock Wester for the
motor binding/unbinding illustrations.
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Abstract

Axonal transport, via molecular motors kinesin and dynein, is a critical process in
supplying the necessary constituents to maintain normal neuronal function. In this study,
we predict the role of cooperativity by motors of the same polarity across the entire
spectrum of physiological axonal transport. That is, we examined how the number of
motors, either kinesin or dynein, working together to move a cargo, results in the
experimentally determined velocity profiles seen in fast and slow anterograde and
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retrograde transport. We quantified the physiological forces exerted on a motor by a
cargo as a function of cargo size, transport velocity, and transport type. Our results show
that the force exerted by our base case neurofilament (Dnp=10nm, Lyp=1.6um) is
~1.25pN at 600nm/s; additionally, the force exerted by our base case organelle
(Dorg=1pum) at 1,000nm/s is ~5.7pN. Our results indicate that while a single motor can
independently carry an average cargo, cooperativity is required to produce the
experimental velocity profiles for fast transport. However, no cooperativity is required to
produce the slow transport velocity profiles; thus, a single dynein or kinesin can carry the
average neurofilament retrogradely or anterogradely, respectively. The potential role
cooperativity may play in the hypothesized mechanisms of motoneuron transport diseases

such as Amyotrophic Lateral Sclerosis (ALS) is discussed.

Keywords

neurofilament, axoplasm, microtubule, computational model, cooperative transport, drag

force

Introduction

With axons being unable to manufacture their own proteins, axonal transport is a critical
process responsible for providing essential cellular parts and materials throughout the
entire axon and for returning molecules destined for degradation back to the lysosomes in
the soma (Sabry et al. 1995). For a review of axonal transport, see (Goldstein and Yang
2000). With numerous recent experimental investigations pointing to the potential role of

axonal transport in such devastating motoneuron diseases as Amyotrophic Lateral
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Sclerosis (ALS) (Pantelidou et al. 2007; Rao and Nixon 2003; Zhang et al. 2007), Spinal
Muscular Atrophy (Briese et al. 2005), and Charcot-Marie-Tooth disease (Brownlees et
al. 2002; Lupski 2000), there is an ongoing effort to reveal the pathological mechanisms
resulting in associated transport defects. However, many questions remain regarding the
physiological mechanisms of axonal transport, and the answers to these questions lie in

the path of our full understanding of transport-related diseases.

One such question has been the identification and subsequent characterization of
cooperative movement of cargos by multiple motors, which equally share load force.
That is, how many motors does it take to move a cargo, and if and how is cooperativity
affected by cargo type/size and transport speed? Although it has been suggested that
cooperativity does exist (Alano et al. 2002; Ashkin et al. 1990; Klumpp and Lipowsky
2005; Kural et al. 2005), experimental validation has proven difficult. Most work
examining cooperativity has focused on the cooperative movement between motors of
opposite polarity (Alano et al. 2002; Kural et al. 2005) (i.e. dynein and kinesin moving a
cargo in a concerted fashion) rather than the cooperativity of multiple same polarity
kinesins or dyneins working to move a cargo either anterogradely or retrogradely,
respectively. While optical trap experiments have characterized the maximum forces a
molecular motor can withstand (Alano et al. 2002; Ashkin et al. 1990; Coppin et al.
1995), little is known as to how these measured forces compare to what physiological
forces a motor may experience when carrying cargos. Therefore, it has been difficult to
determine the number of motors necessary to overcome the forces imposed by moving a

given cargo.
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In this study, we quantitatively examine the role of same polarity multi-motor
cooperativity as a function of cargo type/size, transport velocity, and transport type. We
determine the forces imposed on a molecular motor under a wide physiological range of
parameters. Using these calculated forces in combination with an adapted version of an
experimentally-derived kinetic model (Craciun et al. 2005), which accurately describes
the appropriate states of the motor as it processes along the microtubule, we were able to
quantify and characterize molecular motor cooperativity over established, experimentally
determined, fast (200-400 mm/day) and slow transport (0.3-8 mm/day) ranges (Brown
2000; Brown et al. 2005; Kural et al. 2005; Shea and Flanagan 2001; Wang et al. 2000).
Our results indicate under certain transport scenarios, cooperativity is necessary to
achieve fast transport, but its role in slow transport is minimal. Furthermore, our results
suggest the potential for a substantial impact of cooperativity in transport disease

pathologies.

Methods

The two most characterized cargo types are the neurofilaments, which undergo slow
transport, and mitochondria, which undergo fast bi-directional transport. Thus, we
choose to focus the majority of our study on these two cargo populations. Table 1 lists the
experimental velocity transport ranges for most common types of hypothesized and

known cargo types.
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Table 9.1.1. Experimentally determined transport ranges and known/hypothesized
transport types (adapted from Brown (Brown 2000)).

Velocity  Velocity
Transport Type (mm/day) (mm/s) Example Cargo Type(s)

Fast
Golgi-derived vesicles,

--Anterograde 200-400  2.31-4.63  tubules, neurotransmitters
--Retrograde 200-400  2.31-4.63  enodosomes, lysosomes
--Bidirectional 50-100 0.58-1.16  mitochondria

Slow

0.003-

--Component A 0.3-3 0.035 neurofilaments
--Component B 2-8 0.02-0.08  microfilaments, actin

The general strategy was to determine the force imposed by various cargo types and to
use this information to determine the number of bound motors required to move a
specific cargo type at transport velocity ranges that match those determined
experimentally using optical traps (Coppin et al. 1995). This general strategy is based on:
1) determining the force imposed by the cargo by calculating the drag force as a function
of velocity and cargo geometry; 2) assuming the drag force is equivalent to the maximum
force exerted by the cargo on the molecular motor; and 3) determining the velocity
distributions for various cargo sizes and types undergoing transport by a specified
number of bound motors using the appropriate transport kinetics to describe the

interaction of the molecular motors with the microtubule for each specific transport type.
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Drag Force Calculation

The drag force imposed by a cargo was represented by simplified equations derived
from the Stokes-Einstein equation for a particle at a low Reynolds number, Re<<1 (Berg
1993; Truskey et al. 2003). The relationship of drag force, (Fp), to velocity (V) for an

arbitrarily shaped particle is described by Equation 1 where f'is the frictional coefficient:

F,=f-v Equation 9.1.1
The geometry-specific frictional coefficient, £, for a cylindrical neurofilament is
calculated using Equation 2 (Truskey et al. 2003) where Lyr is length, Dyr is diameter,

and p is viscosity of the surrounding cytoplasm (sometimes referred to as the axoplasm).

f= 47l Equation 9.1.2
In(L/(Dyy. /2))+0.193

Organelles carried in fast transport, such as mitochondria, are known to have a spherical
geometry and were modeled as simple spheres. The simplified geometry-specific
frictional coefficient for a spherical organelle is given by Equation 3 (Berg 1993) where

D, 1s the diameter of the organelle.

=6 ”ﬂ(Dmg / 2) Equation 9.1.3

The maximum allowable drag force is calculated by multiplying the number of bound
motors, Np, by their maximum force, F;, for the appropriate motor type (Equation 4). A

motor’s maximum force can be assumed to be its measured “stall” force. (The stall force
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is the opposing force needed to slow a motor to zero velocity.) The stall force has been
experimentally determined to be ~1.2 pN for dynein (Gao 2006; Schmitz et al. 2000) and
~5.65 pN for kinesin (Coppin et al. 1995; Kural et al. 2005) at physiological
concentrations of available ATP; thus, we use these average experimental values of Fs in
the this study.

Doy = Ng Equation 9.1.4
The velocity of an individual cargo was determined by substituting the maximum drag

force (Fpmax) in Equation 4 for the drag force (Fp) in Equation 1. Thus, the cargo

velocity calculation is given by Equation 5.

V=F, |f Equation 9.1.5

Determination of drag force parameters.

Much care was taken to obtain values for all four of the drag force calculation
parameters over their physiological ranges (see Table 2). Three such aforementioned
parameters describe cargo geometry: the diameter of either an organelle (D) or a
neurofilament (Dyr) and the length of a neurofilament (Lyr). Neurofilaments have been
determined to be approximately 10nm in diameter (Lupski 2000), but their lengths have
not yet been precisely determined. Neurofilaments are thought to be transported in their
polymerized form, which implies that they could reach great lengths, ~1-3um (Brown
1998; Trivedi et al. 2007; Wagner et al. 2004), with an average around 1.8 pm.

Neurofilaments contain “branches” or “side arms” due to the neurofilament medium and
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heavy subunits (NF-M and NF-H, respectively), which provide the cross-linking and
phosphorylation interaction and regulation sites (Marszalek et al. 1996). However, we
chose to assume a simpler, plain cylindrical shape to model the neurofilament geometry.
As shown in the results, increasing the diameter to include the side arms has a minimal
impact on the calculated force. The size of fast transport particles can vary from the
nanometer to micrometer scale. The average size of mitochrondria is about 1 um. Note
that ‘reasonable’ instantaneous velocities (i.e. velocities < ~3000 nm/s over a time period
of ~ 5 seconds as shown by an invivo study slow transport of neurofilaments (Brown et
al. 2005) and by an invivo study of quantum dot labeled fast transport (Yoo et al. 2008))
can only be attained with organelle diameters greater than approximately 200 nm.
Diameters smaller than this are assumed to be kinetically limited, rather than force

limited and thus are not included in this study.

The fourth drag force parameter is the viscosity of the surrounding cytoplasm (or
axoplasm). Due to the anisotropic properties of the cytoplasm, a precise determination of
viscosity is very difficult. Bulk cytoplasm contains ~20% protein, which contributes to
physical properties that mimic a weakly viscoelastic gel (Hou et al. 1990). This gel is a
result of the combined properties of the actin protein network, which provides
cytoskeletal structure and support and the cytoplasmic fluid itself which is about 80%
water (Hou et al. 1990). Cytoplasmic viscosity measurements that do not include the
protein/ actin component can be as small as 0.06 Poise (Haak et al. 1976). However,

viscosity measurements which look at the total cytoplasmic viscosity (actin + fluid) can
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be orders of magnitude higher (Keller et al. 2003). Using data from (Keller et al. 2003),

we estimate the viscosity to be about 6 Poise (or 0.6 Paes).

Table 9.1.2. Base parameter values, ranges, and references used for calculating drag
force. Note that the higher end of the neurofilament diameter range includes side arms,
and that viscosity is that of measurements which include the cytoplasmic protein network
in addition to the cytoplasmic fluid itself.

Primary

Physiological
Parameter Name Base Range Primary References

unknown
(see

Viscosity, m (Poise) 6 Methods) (Keller et al. 2003)
Neurofilament (Trivedi et al. 2007;
length, Lyr (mm) 1.6 1-3 Wagner et al. 2004)
Neurofilament
diameter, Dxr (nm) 10 10-50 (Marszalek et al. 1996)

Organelle diameter,

Dorg (nm) 1 200-2000 (Freitas 2003)
(Brown et al. 2005;
Klumpp and Lipowsky
2005; Kural et al. 2005;

Velocity, v (mm /s) 1 0.25-3 Visscher et al. 1999)

Motor to microtubule binding kinetics

We adapt transport kinetics described by Craciun et al. (2005) in order to obtain

physiological average velocities that take into account different possible motor-
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microtubule kinetic states. This scheme, as shown in Figure 1, describes both retrograde
and anterograde transport using the following five states: So) off-track, paused; Skp)
kinesin, on-track, paused; Spp) dynein, on-track, paused; Skm) kinesin, on-track, moving
anterogradely; Spym) dynein, on-track, moving retrogradely. The scheme is such that a
cargo must disengage from the track before switching directions, and it must pass through

an on-track paused state before moving.

We implement the kinetic scheme using event-based simulation (Banks et al. 2005), a
method that speeds simulation time by avoiding unnecessary repetitive calculations by
predicting how long a cargo will remain in the same state. The expected duration of each
possible state, #y4, is calculated by multiplying the inverse of the state’s rate constant, &,

by the natural log of a random number, rand, in the range 0-1 exclusive giving:

toue =—1/k-In(rand) Equation 9.1.6
The form of Equation 6 is chosen to fit the exponential first order process that is apparent
in experimental data (Wang and Brown 2001) as published in Table 1 of (Brown et al.
2005). The state with the shortest duration becomes the next state for that cargo. Based
on the duration of the cargo’s current state and the current time in the simulation, a sorted
list determines when each cargo should be re-evaluated so that not every cargo need be

evaluated at every time step.
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Rate constants for slow transport were adjusted from those originally published by
(Craciun et al. 2005) (i.e. A and y and were varied while all other parameters were held
constant) to fit our model implementation and still match the original outputs (for
derivation details, see (Craciun et al. 2005)). Briefly, y and A were tuned such that the
histogram of cargo velocities for a neurofilament matched those presented in Table 1 of
(Brown et al. 2005) for an equivalent simulated period of 4.74 seconds, giving y = 2.5

and A =0.1.

The same Craciun kinetic model, with different rate constants, was used to obtain fast
transport kinetics. It has been shown that slow transport is ‘slow’ because of the long on-
and off-track pauses that occur over a longer period, making the actual movement of slow
transport fast, but asynchronous and intermittent (Brown 2000; Brown et al. 2005). Thus,
the instantaneous velocity ranges during the moving states (Skm and Spwm) for transient
movement during slow transport are relatively similar to that of fast transport, but the
amount of time spent in the paused and off-track states (A and y respectively; see figure

1) differs.

Another potential difference between slow and fast transport Craciun kinetics concerns
the directionality of cargos. In the case of slow transport, the directionality of
neurofilaments was found to be net anterograde with a ratio of anterograde to retrograde
movement approximately 2:1, resulting in a kinetic rate coefficient specifying the
directionality to be 69/31 as illustrated in Figure 1. In the case of fast transport of

mitochondria, the net directionality is a function of axonal growth. During axonal growth
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the direction of movement is net anterograde, and in non-growing periods the direction of
movement is net retrograde (Morris and Hollenbeck 1993). Nonetheless, the
directionality ratio was similar to that of slow transport for separate net anterograde and
retrograde populations. That is, the rate of anterograde to retrograde movement is on
average about 2:1 for a net anterograde population and approximately 1:2 for a net
retrograde population (Morris and Hollenbeck 1993). To take into account this difference
in directionality, net anterograde and net retrograde populations were modeled separately

for fast axonal transport.

Given that the directionality rate coefficients for fast transport are known, the kinetics
described by the Craciun model can be made fast by simply adjusting the rate constants
governing how long a cargo spends in the paused or off-track states (A and y). To
simulate fast transport, the rate parameters, A and y, were adjusted or ‘tuned’ (i.e. A and y
and were varied while all other parameters were held constant) until the average velocity
of a population of cargos with a single bound motor (N = 1) over the duration of the
entire simulation matched that seen experimentally (Visscher et al. 1999). These
adjustments (y = 0.2 and A = 10) increase the amount of total time spent in the moving
states and decrease the amount of overall time spent in the paused and off-track states.
Using these adjustments, the fast transport of net anterograde and net retrograde
populations were modeled. This adjustment of kinetic parameters to match fast
experimental transport data was based on neurofilament cargos undergoing net
anterograde fast transport both for consistency and in an attempt to keep the cargo sizes

small (neurofilament cargos produce forces that are equivalent to ~250 nm spherical or
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organelle cargo). Keeping the cargo sizes on the smaller end of the physiological and
force-limited range kept the analysis of kinetics to be independent from that of
cooperativity. Rate constants were tuned such that the net anterograde population of
cargos, each being carried by a single motor (Ng = 1), had an average velocity equal to
that shown by analysis of single kinesin molecules undergoing fast transport as studied

under molecular clamp ( ~ 1 um/s) (Visscher et al. 1999).

Qe @ B =6
- - —_— E—

B — D —— - -

‘ 67/33 A ‘ 69/31Yy A YA ‘ 67/33 A

<

On-Track Off-Track On-Track >

Retrograde Anterograde

Figure 9.1.1. The motor-microtubule binding kinetics are adapted from Craciun et al
(Craciun et al. 2005). The model contains five states, S, which are differentiated using the
following subscript nomenclature: P represents a paused motor (i.e. V= 0), M represents
a moving motor (i.e. V"> 0), K represents the molecular motor kinesin, D represents the
molecular motor dynein, and O represents an off-track motor. Using this nomenclature,
we obtain the following states: Sp) off-track, paused; Skp) kinesin, on-track, paused; Spp)
dynein, on-track, paused; Skm) kinesin, on-track, moving anterogradely; Spm) dynein, on-
track, moving retrogradely. Rate constants are shown in parameter-form as given in
Craciun et al (Craciun et al. 2005). The tuned slow transport rate parameters are y = 2.5
and A = 0.1. Fast transport rate parameters are y = 0.2 and A = 10. For details regarding
the derivation of rate constants and equations, see Craciun et al (Craciun et al. 2005).

Model Implementation

The entire model, including the calculation of drag force and motor kinetics is
implemented in MATLAB 2007a (The Mathworks, Inc.). Simulations were repeated for

1,000 cargos to obtain the histogram velocity profiles. For validation purposes, the
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simulated time frame was 4.74 (or ~5) seconds, a time frame that is equivalent to the time
frames and resolution of previous published experimental studies (Alano et al. 2002;

Ashkin et al. 1990; Wang et al. 2000).

Results

Cargo imposed forces (i.e. drag force)

Geometry, viscosity, and velocity data taken from experimental studies were used to
determine the average drag force for both neurofilaments (typical slow transport cargos)
and organelles (typical fast transport cargos). Note that from here forward, we use “drag
force” and “cargo imposed force” interchangeably (see assumptions in the Methods). The
drag force exerted by the base case neurofilament (Dnp=10nm, Lyg=1.6pum) is ~1.25pN at
600nm/s; additionally, the drag force exerted by the base case organelle (Dor,=1pm) at
1,000nm/s is ~5.7pN. These values are functionally significant in that they align well
with the experimentally determined maximum forces of kinesin and dynein (see

Discussion).

Figure 2 shows the relationship between the drag force and each parameter over its
physiological range based on Equation 2 for neurofilaments and Equation 3 for
organelles. In general, the physiological range of calculated drag force is between 0.1-4
pN for a neurofilament and between and 0.3-10 pN for an organelle. Viscosity has a
potentially wide range depending on how it is measured (see determination of drag force

parameters in the Methods). However, viscosities lower than ~5 Poise or greater than ~7
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Poise results in highly unrealistic velocity distributions (not shown). As for geometry,
the spherical organelle diameter has the largest impact. Notably, increasing the diameter
of the cylindrical neurofilament to include the side arms of NF-H subunits does not have
a dramatic effect on the resulting drag force, increasing it by only ~25%, thereby
justifying the simpler cylindrical geometry excluding side arms (see Methods). While the
physiological range of transport is, for the most part, between 1,000-3,000 nm/s, speeds
up to 12,000 nm/s for a peroxisome have been observed (Kural et al. 2005), a velocity

that would result in a ~68 pN drag force.

A _
6 = - -
—_ n ”
Z& 4 -7 W <
i i — Mo - Dorg
..... Dyr
o Lur
| | | | | | | |
08 09 10 1.1 12 6 8 10
Ratio to Base Value Ratio to Base Value
16 —
124
% -
< 87
L|_ =
4 p—
0 p—

00051015202530
Ratio to Base Value

Figure 9.1.2. Range of drag force (Fp) over physiologically relevant parameter ranges
for cytoplasmic viscosity (m), cargo geometry, and cargo transport velocity (V) as listed
in Table 2 for both a neurofilament and an organelle. The x-axis ‘ratio to base value’
refers to the ratio of the base parameter value given in Table 2. A. Effect of cytoplasmic
viscosity. B. Effect of cargo geometry: the diameter and length of a cylindrical
neurofilament (Dnr) and the diameter of a spherical organelle (Dor). C. Effect of cargo
velocity.
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Effect of Cooperativity

Using the force values calculated for organelles and neurofilament transport along with
the appropriate fast or slow transport kinetics, the number of bound molecular motors
required to achieve a velocity profile matching experimentally measured velocity ranges
was determined for each transport type: fast anterograde and retrograde, ‘bi-directional’
anterograde and retrograde, and ‘net anterograde’ slow transport. The number of required
bound motors to obtain the average velocity for each form of fast transport is illustrated

in Figure 3 and summarized in Table 3.

Table 9.1.3. Number of bound motors (Ng) required for various experimentally
determined fast transport speeds and cargo sizes. For experimental range categories,
refer to Table 1.

Average Average Cargo Np N

Velocity Velocity Diameter | Retro- Antero-

(mm/day) (mm/s) (nm) grade grade
50-100 0.58-1.16 500 5-7 1-2
50-100 0.58-1.16 1000 11-14 2-3
200-400 2.31-4.63 200 9-12 2-3
200-400 2.31-4.63 300 12-15 34
200-400 2.31-4.63 500 26-30 6-8

Fast transport

For fast bidirectional anterograde transport of a 1 um organelle (Figure 3A), 2 motors
results in an average velocity of 0.68 um/s (59 mm/day) with a standard deviation of 0.11

pm/s (9 mm/day). For 3 motors (not shown) the average velocity is 0.97 um/s (80

242



mm/day) with a standard deviation of 0.15 um/s (13 mm/day). Thus, both 2 and 3 motors
result in profiles that could be classified as being within the experimentally observed
range of 50 to 100 mm/day if the experimentally observed range is assumed to include at
least the middle two standard deviations (i.e. +/- 1 standard deviation). Likewise, 11-14
motors result in profiles that could be classified as being within the experimentally
observed range of 50 to 100 mm/day for fast bidirectional retrograde transport of a 1 um
organelle (see Figure 3B). For fast anterograde and retrograde transport (200-400
mm/day) of a 200 nm organelle, the number of motors required is 2-3 and 9-12,
respectively (Figures 3C and 3D). Interestingly, the number of bound motors for an
anterogradely moving 200 nm organelle is comparable to what has been suggested
experimentally for amoeba mitochondria of approximately the same size (Ashkin et al.
1990). In general, the results in Table 3 illustrate that a substantially lesser amount of
cooperativity is required for fast anterograde versus retrograde transport. That is, a
higher degree of cooperativity is required to retrogradely move cargos, particularly larger
cargos, at the top fast transport speeds. The large calculated values for retrograde
cooperativity suggest a functional role for the lower stall force of dynein in sorting and
maintaining proper transport directionality and give clues as to the types and

characteristics of retrogradely-bound cargos (see Discussion).
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Figure 9.1.3. Velocity distributions over fast axonal transport ranges. Anterograde
transport by kinesin is represented by a positive sign convention while retrograde
transport by dynein is represented by a negative sign convention. The distributions
represent the average velocity of a population of cargos over the 4.74 second simulated
period. The figure represents the minimum number of bound motors (Ng) required to
obtain a population of cargos whose average velocity is approximately centered at the
average of the experimental ranges shown in Table 1. Vertical lines represent the edges
of the experimental velocity ranges shown in Table 1. The ordinate indicated the
normalized percentage of cargos which fall within each velocity bin. A. Anterograde
populations of Imm spherical cargos representative of the ‘bi-directional’ transport range
of ~0.58-1.16 mm/s (e.g. 50-100 mm/day) require greater than 2 bound kinesin motors
per cargo. B. Retrograde populations of Imm spherical cargos representative of the ‘bi-
directional’ transport range of 0.58-1.16 mm/s (e.g. 50-100 mm/day) require 11 bound
dynein motors. C. Anterograde populations of 200 nm spherical cargos representative of
the fast transport range of ~2.31-4.63 mm/s (e.g. 200-400 mm/day) is obtained by a
minimum of 2 bound kinesin motors per cargo. D. Retrograde populations of 200 nm
spherical cargos representative of the fast transport range of ~2.31-4.63 mm/s (e.g. 200-
400 mm/day) is obtained by a minimum of 9 bound dynein motors per cargo.
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Slow transport

Slow transport of neurofilaments is net anterograde, with movements being in the
anterograde direction 69% of the time and in the retrograde direction 31% of the time
(Brown et al. 2005; Craciun et al. 2005), but due to the amount of time spent paused and
off-track, there is little to no distinction between ‘retrograde’ and ‘anterograde’
populations. The slow transport velocity profile for a population of neurofilaments
(Lne=1.6 um and Dy = 10nm) is equivalent the profiles published in (Brown et al.
2005), with 83% of the motors being paused over a simulated period of 4.74 seconds
(Figure 4). Across the physiological range of neurofilament lengths (~1-3 um), no
cooperativity is required (i.e. within two standard deviations of experimental data).
However, the best fit to experimental data is obtained when a fraction of neurofilaments
have two motors bound, particularly for neurofilaments lengths >2 um. For example, to
duplicate the velocity distribution given in (Brown et al. 2005) for a population of 2 um
neurofilaments, transport is accomplished with a single motor ~67% of the time and two

motors ~33% of the time.
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Figure 9.1.4. Slow transport of neurofilaments. To obtain an experimentally equivalent
velocity profile for slow transport of neurofilaments, no cooperativity is required. That

is, only one bound motor is needed per cargo. The figure shows the velocity histogram of
a population of average-sized neurofilaments (Lyr =1.6 mm and Dyr = 10 nm). Note that
for visual clarity the zero velocity bin (0 mm/s ) as been moved to the inset. Thus, the
inset shows the number of cargos that remained paused during the length of the
simulation (i.e. ~83% of cargos had velocities equal to 0 mm/s over the 4.74 second
simulated period, similar to the 85% seen experimentally (Brown et al. 2005)).

Summary of Predictions

As we have shown, using a computational model that includes kinetics and cooperativity,
we are able to reproduce the experimentally determined velocity ranges for the various
fast and slow transport types. However, an important aspect of any model is the ability to
make specific predictions regarding previously uncharacterized dynamics or functions.

Here we use our simulations to predict the following:
e The physiological range of values for both velocity and geometry have

substantial impacts on the cargo drag force (Figure 2). While there is a large

potential range for cytoplasmic viscosity, which in turn would drastically alter
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the calculated drag forces, only the smaller simulated range (Figure 2) has an
impact that mimics physiological forces that match experimental velocities.

e Cooperativity is required by motors of the same polarity to produce fast
transport profiles (Figure 3). Thus, multiple motors are required for typical
physiological fast transport.

e No cooperativity is required by motors of the same polarity to produce slow
transport profiles (Figure 4). Neurofilaments are carried anterogradely or

retrogradely by a single kinesin or dynein most of the time.

Discussion

In this study, we provide an initial quantitative characterization of cooperativity,
including an assessment of the forces experienced by the molecular motors kinesin and
dynein under physiological ranges of cargo type/size and transport velocity. Our results
indicate that kinesin and dynein are ideally suited to transport the average cargo at the
average speed for slow transport and smaller cargos at the average speed for fast
transport without the need for cooperativity. However, cooperativity is crucial,
particularly in fast transport, to obtain the full range of velocities observed
experimentally. These results not only indicate possible functional outcomes of
cooperativity in the regulation and maintenance of normal physiological transport, but
also reveal its potential role in hypothesized pathological mechanisms of transport
deficits associated with diseases such as ALS. The details and implications of these

results are discussed below.
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Physiological role of cooperativity

Our results show that the drag force exerted by our base case neurofilament and organelle
are 1.25 pN and 5.7 pN, respectively. It is likely no coincidence that these forces are near
the experimental stall forces for a single dynein and kinesin, 1.2 pN (Gao 2006) and 5-6
pN (Coppin et al. 1995), respectively. Thus, it would seem that the “stall” or maximum
generated forces are such that a single motor is generally able to carry the average
neurofilament load; a single kinesin can move an average organelle at speeds up to 1
um/s while a single dynein reaches top speed with such an organelle cargo at ~200 nm/s.
These results support the experimental evidence that slow transport of neurofilaments is
accomplished by a single motor of each type (Howard et al. 1989), i.e. one kinesin for
anterograde movement and one dynein for retrograde movement, and that larger
organelle cargos undergoing fast transport require multiple motors (Kural et al. 2005), i.e.
multiple kinesins or dyneins for anterograde or retrograde movement, respectively. This
inherent ability of a single motor to be able to move a load is likely a key factor helping
to maintain axonal traffic by preventing the pile-up of motors and/or cargos, which would
occur if multiple motors would be required to move every single cargo. Though
cooperativity is not required to simply move an average cargo, it is required to move
cargos at higher rates of speed and larger cargo sizes, particularly in the retrograde
direction. The ability of cooperativity to alter and organize the speeds of various cargo
types traveling in a specific direction could be quite functional, serving as a potential

‘pacing’ mechanism to prioritize which cargos are moving when and how fast.
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The approximately five-fold difference between the stall forces of dynein and kinesin
accounts for the equivalent linear increase in cooperativity that is required for dynein
compared to kinesin. This difference could have a functional purpose in that it helps the
directionality and speeds of the transported cargos, aiding in transport kinetics. That is, a
bigger cargo headed anterogradely will tend to remain headed anterogradely due to the
larger number of bound dyneins that would be required for it to reverse direction (i.e. the
availability of dynein and their probability of binding is rate-limiting to the reverse
reaction). However, it could be that this difference simply indicates that, in general,
retrogradely transported cargos are smaller. It seems rather unlikely, for example, that 14
dyneins would routinely bind to carry a larger cargo such as an organelle at top fast
transport speeds of 400 mm/day. Such extreme necessity for cooperativity involving
very high-order kinetics would likely become an energetic burden resulting in possible
local ATP depletion and ultimately a motor-limited transport process that would be
extremely erratic and slow. Having smaller retrograde cargos would seem to make
intuitive sense given that most retrograde bound cargos are hypothesized to be destined to
the lysosomes for degradation. Thus, these cargos may have already undergone some
preliminary form of degradation into smaller subunits or pieces at the synapse or in the

axon.

An interesting possibility is that the difference between fast and slow transport is not
attributable to kinetics at all, but rather is based entirely on cooperativity. A simple
calculation indicates that fast transport speeds can be attained with slow transport kinetics

applied to multiple motors acting cooperatively. However, further investigation of the
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interactions of multiple motors and their resulting kinetics will be necessary to decisively
determine whether cooperativity can solely account for the differences seen in fast and

slow transport.

Pathological role of cooperativity

The apparent role of cooperativity and its necessity, particularly in fast transport and in
carrying larger cargos, increases the negative impact of potential hypothesized
pathological mechanisms associated with disease-related transport deficits. For example,
some experimental models of ALS have been linked to mutations in either dynein or
kinesin (Brownlees et al. 2002; Hafezparast et al. 2003; Hurd and Saxton 1996; Teuchert
et al. 2006), which render a subpopulation of the motors ineffective (Jiang et al. 2005;
Pantelidou et al. 2007; Rao and Nixon 2003). A decrease in the number of functional
motors available for transport would decrease the functional capability of cooperativity as
transport became motor-limited, resulting in subsequent transport deficits. In fact, one
hypothesis for the therapeutic action of the ALS therapeutic drug riluzole is that by
decreasing the excitability of neurons (Kuo et al. 2006), riluzole decreases the demand
for axonal transport of cargos such as mitochondria and synaptic vesicles. Such a
pharmacological action would help to compensate in the disease-related increase in
necessary cooperativity. Another hypothesized pathological mechanism for which there
is some experimental evidence is protein aggregation (Kieran et al. 2005; Wood et al.
2003). Protein aggregation could potentially increase the cargo sizes, via pathways such
as misfolding or in the formation of dimers (Elam et al. 2003). Additionally there is the

possibility for aggregation of multiple cargos into a single ‘megacargo’ due to the pile-up
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caused by slowed transport or a change in the inter-cargo distances, potentially due to
changes in the stoichiometric composition of NF-H subunits (Meier et al. 1999), which
normally regulates such spacing. Thus, protein aggregation would necessitate additional
cooperativity, which would eventually lead to a constrained motor population unable to
keep up with demand. Therefore, in summary, while cooperativity can potentially add
more robustness and functionality to normal physiological transport, it can also amplify

the impairments and deficits in pathological transport.

Model Limitations

Perhaps the biggest limitation of the model is that it assumes the velocity of a cargo is
limited by the force imposed by the cargo (i.e. the drag force) and not by the kinetics,
themselves. For example, despite the fact that the drag force is much smaller for smaller
cargos (such as cargos < 200 nm diameter cargo), the kinetics could impose a limitation
such that these smaller cargos travel at or about the same speed as larger cargos (i.e. there
is a motor kinetically-determined maximum velocity). More generally stated, this
assumption implies that the solution presented here could be non-unique in that different
sets of force and kinetic contributions and/or parameters could result in the same
experimentally observed velocity profiles and/or the same amount of calculated

cooperativity.

Another limitation of the model is the chosen Craciun kinetic scheme, which requires that

a cargo go off-track before switching directions. Very recent evidence has suggested that

251



perhaps the cargo does not have to fully disengage from the track in order to switch
directions (Muller et al. 2008). It has been proposed that the effective cargo unbinding
rate decreased exponentially with the number of bound motors (Klumpp and Lipowsky
2005). However, it is unclear if that applies only during motor over crowding or more
generally. Consequently, we chose to keep the binding rate constant to maintain

independent analysis of cooperativity from kinetics
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CHAPTER 10

AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is one of the
most devastating and deadliest neural pathologies with a mean survival time of ~3-5
years from the initial onset of symptoms (Bruijn, 2004). It is a disease that affects
especially the motoneurons, particularly the large motoneurons, causing them to retract
from the neuromuscular junction and eventually die, resulting in the clinical presentation
of muscle paralysis (Stieber, 2000). Histologically, it typically presents with filamentous
lesions which occur in the axon and are hypothesized to be the result of impeded axonal
transport. Additionally, it has many of the pathological characteristics of spinal cord
injury, sharing such hallmark physiological dysfunctions as excitotoxicity, energetic
failure, and inflammation (Bruijn, 2004). Thus, in addition to our general scientific and
personal clinical interests, ALS was a natural fit to our research in axonal transport,
motoneuron physiology, and spinal cord injury, making it an ideal test case for
aggregating multiple viewpoints. Finally, because our exposure to ALS was only
ancillary through related fields of research, we had no significant preconceived
mechanistic hypotheses to ensure that our methodological development and evaluation

process was unbiased.

ALS represents the last test case included in this work. However, this test case is

different from the other test cases previously presented in that it is a work in progress.
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Thus, while some aspects are more complete, such as our modeling work with ALS-
disrupted axonal transport, others, such as our relational model of the comprehensive
ALS pathology and our experimental motoneuron research, which focuses on how the
properties of motoneurons change based on their size (an important viewpoint since ALS
seems to preferentially affect large motoneurons), are less complete. The purpose of
including this ‘work in progress’ chapter into this dissertation is to give the reader a real
sense or ‘snapshot’ inside our methodological process and in particular the process of

gathering and aggregating viewpoints.

The first study in this chapter highlights our work in ALS-disrupted axonal transport.
This paper was originally submitted to the Journal of Neuroscience and is currently in
revision. Inside this paper, a version of the model presented in the axonal transport test
case is used as the ‘base’ or physiological model to study axonal transport. Conceptual
modeling was the chosen technique to implement pathological transport within this
physiological model. Three different ALS-induced pathologies were ‘conceptualized’
based on experimental literature: protein aggregation, mutations to the molecular motors
kinesin and dynein that render the motors ineffective, and a constrained motor population
due to either a genetic defect resulting in an inefficient production of molecular motors or
a cargo population overload resulting in decreased availability of motors. Our relational
analysis technique is used to differentiate these pathologies, based on their landscapes.
This differentiation is a critical step forward for the field because, to date, traditional

analytical techniques based on using only metric or output values cannot be used to
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differentiate these pathologies due to the high degree of variability within the
experimental data and among experimental preparations.

The second study in this chapter illustrates an early relational model of ALS. The
relational modeling process snapshot shown is about 30% through the process. An ALS
database has built with approximately 250 papers, categorized by factor. The model that
is presented here is a ‘category model’ that shows the time course and impact of the
presented categories, which were constructed based on experimental data. Already, even
at the category level, this model has some interesting and significant findings.

While still a critical viewpoint of this ALS research, the work on motoneurons is not
presented in this chapter but instead is presented under Component Analysis, Chapter 5,
as a test case in how to use the technique to examine experimental data. Briefly
summarized, our work with motoneurons examines the effects of motoneuron size on
excitability and firing properties, both of which are known to markedly change in ALS

(Kuo, 2004).
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Neurofilament distributions differentiate ALS pathologies

Submitted to Journal of Neuroscience. Currently in revision.
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Abstract

Impaired axonal transport is thought to be a key component of Amyotrophic Lateral
Sclerosis (ALS). Based on computer models of axonal transport of neurofilament cargos,
we predict the “signatures” of three proposed categories of axonal transport impairment
(protein aggregation, protein dysregulation, and molecular motor mutations) by analyzing
their neurofilament distribution profiles. The ability to distinguish among these categories
will aid in potential pathogenic mechanism identification and thus clinical treatments for

ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease
characterized by loss of motoneurons in the spinal cord, brainstem, and motor cortex
(Jiang et al. 2005). Initial muscle weakness ultimately progresses to complete paralysis,
and 50% of patients die within 3 years after the onset of symptoms (Beers 2004). Several
studies point to the involvement of axonal transport (a process by which the polarized
molecular motors, dynein and kinesin provide retrograde and anterograde transport
respectively in the axons motoneurons) (Elam et al. 2003; Jiang et al. 2005; Kieran et al.
2005; Pantelidou et al. 2007; Rao and Nixon 2003; Wood et al. 2003). Of the various
types of axonal transport, ALS is thought to most affect the slow transport of
neurofilaments (Rao and Nixon 2003; Zhang et al. 1997). Based on current experimental
evidence from superoxide dismutase 1 (SOD1) and neurofilament heavy (NF-H)
transgenic mouse models, three categories of axonal transport impairment mechanisms
have been hypothesized: 1) protein aggregation/misfolding (Cluskey and Ramsden 2001;
Elam et al. 2003; Valentine and Hart 2003; Wood et al. 2003); 2) dysregulation of motor
proteins and/or cargo (Jiang et al. 2005; Pantelidou et al. 2007; Rao and Nixon 2003);
and 3) molecular motor mutations (Hafezparast et al. 2003; Kieran et al. 2005; Teuchert
et al. 2006; Warita et al. 1999; Zhang et al. 1997). However, little progress has been
made in differentiating these pathologies, a critical step towards the development of ALS

treatments.

In this work, we address the question: Can the mechanistic categories of ALS axonal

transport impairment be differentiated based on the distribution of transported cargos?
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Here we use a combination of published theoretical (Brown et al. 2005; Craciun et al.
2005; Gao 2006; Klumpp and Lipowsky 2005) and experimental data (Kural et al. 2005;
Wang and Brown 2001) to implement a computational model of neurofilament cargo
transport that compares the normal, non-diseased state population distribution of cargo
position over time to the distributions resulting from the modeled ALS mechanisms.
Based on our findings, we conclude that the three ALS mechanistic categories can be

distinguished by the “signature” of the population distribution.

Methods

The transport of neurofilaments is bi-directional with a net movement that is anterograde
and accompanied by on- and off-track pauses (Brown et al. 2005; Craciun et al. 2005;
Wang and Brown 2001). Computational models have been used to validate pulse-
labeling experiments, which show that the velocity of neurofilament cargos is dependent
upon the ATP concentration (Gao 2006), multi-motor cooperativity (i.e. several motors
binding to and carrying a single cargo) (Klumpp and Lipowsky 2005; Kural et al. 2005),
cargo load size (Gao 2006; Klumpp and Lipowsky 2005), and “stop-and-go” kinetics
(Brown et al. 2005; Craciun et al. 2005). Here we include all the aforementioned features
collectively to examine the distribution of bi-directionally transported neurofilament
cargos in both the normal and ALS disease states. The “normal” model was verified by
comparison to the experimental data from Wang and Brown (2001) as given in Brown et
al (2005) for a simulation time of 4.73 s (not shown). ALS pathology is modeled using a

“black box” approach where ALS mechanisms are represented purely based on their
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functional implication(s). The model is implemented in MATLAB R2006b. Simulations

were run for 1,000 s for 10,000 neurofilament cargos.

Protein Aggregation/Misfolding

Various types of proteins are seen in aggregates with the most common being misfolded
SODI, intermediate filament, neurofilament, and peripherin (Cluskey and Ramsden
2001; Elam et al. 2003; Valentine and Hart 2003; Wood et al. 2003). These aggregates
are of high molecular weight, and when the cell’s ability to degrade them is exceeded,
they are transported down the microtubules to the microtubule organizing center where
they are incorporated into aggregsomes (Valentine and Hart 2003). Thus, we assert that
protein folding and aggregation can be modeled as an increase in the typical cargo load

size. For model implementation, see Load.

Protein Dysregulation

Gene expression profiling has been used to show a decrease in expression of motor
proteins associated either with dynein or kinesin (e.g. Jiang et al. 2005; Pantelidou et al.
2007; Warita et al. 1999) and an overexpression of cargo-related proteins (Jiang et al.
2005). Whether this dysregulation of proteins results in less motors or more cargos, the
implication of either is a constrained motor population (i.e. not enough motors). Thus,
we assert that protein dysregulation can be modeled as a constrained motor population.

For implementation of a constrained population, see Specifying the Motor Population.
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Molecular Motor Mutations

Mutations can render the motors, whether retrograde (e.g. Hafezparast et al. 2003) or
anterograde (e.g. Warita et al. 1999), to have limited or no functionality; the result is a
population in which at least a portion of the motors are rendered ineffective thereby
diluting the functioning motors. Thus, we assert that molecular motor mutations can be
modeled as a dilute population where the number of functioning motors available is
sufficient to meet the transport needs, but in which non-functioning motors are
interspersed. For implementation of diluted populations, see Specifying the Motor

Population.

Specifying the Motor Population

In the real cells, the total number of molecular motors and the percentage of which are
ineffective depends on the type and degree of dysfunction resulting from protein
dysregulation or mutations. We model the availability of motors for the “constrained”
and “diluted” cases using conservation balances where the total number of motors and the
percentage of motors deemed “functional” are specified. A constant factor, kr, is used to
scale the total number of motors in the population, M., with “just enough” motors
defined as kr=1 as described by Equation 1. The total number of cargos, Cipi, is 10,000.
The maximum allowable number of motors per cargo, N, is 12. (see Cooperativity).

M C

total

N -k, Equation 10.1.1

total —
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Similarly, a functional motor factor, kg, is used to specify the percentage of total motors

deemed “functional” (Equation 2) with 100% functionality described as ky=1.

k. Equation 10.1.2

F total = total
Conservation balances (Equations 3-5) are used to keep track of how many functional
(MF avair), non-functional (Myr avair), and total motors (My,i.qvair) are available to be

assigned to a cargo.

i=Cotal
MF,uvail = MF,tota[ - ZMFJ qulatiOIl 10.1.3
i=1
i:C/o/uI
MNF,avail = MNF,mzal - ZMNF,i Equation 10.1.4
i=1
Mtutul,avuil = MF,avai/ + MNF,avail Equation 10'1~5

Given availability, the maximum total number of motors that can be assigned to any one
cargo is specified by N (see Cooperativity), and the number of functional and non-
functional motors for each cargo is assigned randomly using kr as the probability
criterion (i.e. if a random number between 0-1 is less than or equal to kg, the motor

assigned is functional).
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Kinetics

We use the slow transport kinetics described by Craciun et al. (2005). This scheme
describes bidirectional transport of neurofilaments using the following five states: 0) off-
track, paused; 1) kinesin, on-track, paused; 2) dynein, on-track, paused; 3) kinesin, on-
track, moving anterogradely; 4) dynein, on-track, moving retrogradely. States must

proceed in the following manner:

4200013 Equation 10.1.6

That is, a motor must disengage from the track before switching directions, and it must
pass through an on-track paused state before moving. Since motors have been shown to
work together in a concerted effort (Kural et al. 2005), all of a cargo’s microtubule-
bound motors are assumed to be in the same state (either in state 1, 2, 3, or 4). Similarly,
in order to be “off-track™ all of a cargo’s motors must be disengaged (in state 0). All

cargo states are initially set to state 0 at the beginning of the simulation.

We implement this kinetic scheme using event-based simulation (Banks et al. 2005;
Robinson 2004), a method that speeds simulation time by avoiding unnecessary repetitive
calculations by predicting how long a cargo will remain in the same state. The expected
duration of each possible state, Z., 1s calculated by multiplying the inverse of the state’s

rate constant, &, by the log of a random number, rand, between 0-1 giving:

=-— l/k . log(rand) Equation 10.1.7

tstate
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The form of Equation 7 is chosen to fit the exponential first order process that is apparent
in experimental data (Wang and Brown 2001). Rate constants and rate equations are
given in (Craciun et al. 2005). The state with the shortest duration becomes the next state
for that cargo. Based on the duration of the cargo’s current state and the current time in
the simulation, a sorted list determines when each cargo should be re-evaluated so that

not every cargo need be evaluated at every time step.

ATP dependence

ATP dependence was modeled using a constant ATP concentration. The ATP-dependent
stall force, Fj, of kinesin and dynein was adapted from Gao (2006). A constant
physiological ATP concentration of 1,000 uM was used giving dynein an approximate 1
pN stall force and kinesin an approximate 5 pN stall force, comparable to experimental

findings.

Cooperativity

The number of motors bound to the microtubule for each cargo is determined by the
equation proposed by Klumpp and Lipowsky (2005) (Equation 8), which assumes dilute
enough motor coverage that exclusion effects are negligible. The number of bound
motors, N, is a function of the motor to microtubule binding (map) and unbinding (g)
rates, the previous state’s number of bound motors (#), the maximum allowable number

of motors able to bind (N), the load (F), the detachment force, F; =3 pN (Klumpp and
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Lipowsky 2005), and the stall force (F;). The binding and unbinding rates are determined
by the kinetic rates used to calculate the state duration. The maximum allowable number

of bound motors is 12 per cargo, as determined by experimental evidence from Kural et

al (2005).

_ (”ad /‘9)[1 + (”ad /8)]N71 ation
, = [1 " (ﬂad /g)]N . N Equation 10.1.8

Load

Each cargo’s size (F) was randomly determined over a set range starting at a minimum of
0.1 pN (Gao 2006); using the experimental data from Wang and Brown (2001) as given
in Brown et al. (2005) as the target output to tune the model, the maximum cargo size for
“normal” transport was set to 4 pN. To model the effect of an increased load due to
protein aggregation and/or misfolding, we expand the range to 10 pN. This
approximation was based on the formation of dimers (Elam et al. 2003). The effect of

load on the unbinding rate is calculated as described by Klumpp and Lipowsky (2005):

e(F)=ne-exp (LJ Equation 10.1.9

nk,

Velocity

Based on the approximate linear proportional relationship of the number of bound

motors to velocity as illustrated in the experimental data of (Kural et al. 2005), we obtain
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the velocity for a cargo, i, as a function of the number of motors bound, load, and the
ATP-dependent stall force. veonst 18 the average uncorrected constant velocity of kinesin

and dynein , 1,000 pm/s (Klumpp and Lipowsky 2005).

Vi=v,. {1— NF;? ]Nb,i Equation 10.1.10
.y

g7 s,

Distributions
The main output of the model consists of a distribution of final cargo positions at the
end of the simulated time. The bin size of each distribution is scaled to the distribution’s

range (the minimum and maximum cargo position).

Results

Based on stacked histograms of position versus load (Figure 1), we find that each of the

three categories of mechanisms shows a clearly recognizable pattern that is a “signature”
of the mechanism. The functional impact of the mechanistic categories can therefore be

distinguished based on the distribution shape, height, and range as described below:

Normal Physiology

The shape of the “normal” transport distribution is bimodal with distributions lying on

either side of 0 um (see Figure 1a; note that the zero position bin has been moved to inset
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for clarity). That is, at the simulated time of 1,000 s, the normal case’s distribution has
already separated into distinct anterograde and retrograde populations. Note that we use
the traditional sign convention to distinguish transport direction, positive (+) for
anterograde and negative (-) for retrograde. The position range is about twice as large for
the anterograde population compared to the retrograde population; this is due to the
kinetics imposed on the system based on experimental data showing that the ratio of
anterograde to retrograde movement is approximately 2:1 (Brown et al. 2005; Craciun et
al. 2005). Under physiological conditions, the number of cargos that do not move is only
about 5% (inset Figure 1a).The number of motors in the normal case is considered to be
“just enough”. That is, there are enough motors for every cargo to bind 12 motors, the
maximum set by N, and all of the motors are “functional”. We define this as being the
“base population” with kr=1 and ky=1. Note that since our model assumes an equal
dispersion of motors, specifying more motors than necessary (kr>1) does not change the

normal case result since all motors are assumed to be functional under normal

physiology.

Protein aggregation/misfolding

Protein aggregation/misfolding is modeled as an increase in the maximum load size
from 0.1-4 pN to 0.1-10 pN. Protein aggregation/misfolding results in changing the
shape of the distribution (Figure 1b). At the simulated time of 1,000 s, protein
aggregation results in a single, unimodal distribution centered at 0 um (Figure 1b)
compared to the bimodal normal case. Thus, in an ALS model where cargo load size is

affected, the splitting of the population into retrograde and anterograde populations has a
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definite delay in onset. Consequently, even when the protein aggregated case has had
enough time to become separated, the normal case will still have a larger gap between the
anterograde and retrograde populations (not shown). The overall scaled height of the
distribution remains similar to the normal case except for the bins close to 0 um due to
the change of shape from bimodal to unimodal; for a load distribution between 0.1-10
pN, this results in a 25% increase in the number of cargos in the zero position bin (inset
Figure 1b). The range of the distribution (i.e. the minimum and maximum position as
shown on the x-axes) for the protein aggregation case remains relatively unchanged
compared to the normal case. For simple protein aggregation (Figure 1b), the motor

population defined to be equal to the base population.

Protein Dysregulation

Protein dysregulation is modeled as a constrained population. That is, the scaling factor
kr is used to specify the percentage of motors in the population in comparison to the
normal case. Protein dysregulation results in changing the height of the distribution over
the simulated time (Figure 1c). The heights of the non-zero bins decrease (i.e. fewer
cargos per non-zero position bin) while the number of cargos in the zero bin increases to
almost 80% in this example. However, again, the range of the distribution does not vary
substantially from the normal case. That is, protein dysregulation results in a substantial
increase in the number of total cargos that are not moving compared to the normal case,
but the positions of cargos that are moving remains similar to the normal case. While the

constrained cases shown in Figure 1c and 1d represent a motor population that is 10% of
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the normal population (kr=0.1, kr=1), the effect was noticeable with percentages as high

as 70% over the 1,000 seconds of simulated time.

Molecular Motor Mutations

Molecular motor mutations are represented by diluting the motor population. Diluting
the number of motors results in decreasing the heights of the non-zero bins and the range
of the distribution. In fact, in this example, the height of the distribution non-zero
positions bins is approximately 10% of that of the normal case, and the position range is
less than half of the normal range. That is, there are fewer total cargos that are moving
(only 5%) compared to both the normal and constrained cases; additionally, those cargos
that are moving are doing so at a slower velocity, resulting in the substantial decrease in
the distribution position range. Thus, having an ample number of motors, of which a
large portion are ineffective, results in a much more severe axonal transport impairment
compared to simply constraining the motors (see Discussion). We define this
phenomenon as “population dilution”. For example, the diluted populations shown in
Figures le and 1f have a motor population that is ten times larger (kt=10) than the
normal case with 90% of this population being ineffective (kg=0.1) resulting in an
equivalent number of functional motors. When looking at a diluted population over
1,000 s, the effects of dilution becomes quite noticeable when the ratio of total motors to
effective motors is as low as 3:1 and increases proportionally as the number of total

motors is increased and the number of effective motors is held constant.
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Multi-factorial Pathology

Some experimental evidence suggests that ALS is multi-factorial (Cluskey and Ramsden
2001). For example, what if there is protein dysregulation and protein aggregation? The
cargos would be both more numerous and heavy, resulting in a constrained distribution
that would resemble Figure 1d. Similarly, what if there was both protein aggregation and
molecular motor mutations? In that case, the cargos would be heavier and the motor
population would be diluted as shown in Figure 1f. As can be seen in these examples, the

traits which distinguish a certain pathology are still evident even in mixed pathologies.
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Figure 10.1.1. Distributions of neurofilaments. The figure illustrates the position
distribution as a function of cargo size. Negative (-) position represents retrograde
movement via dynein whereas positive (+) position represent anterograde movement via
kinesin. The 0 um bin has been removed and is illustrated in the inset. The left column
depicts normal size cargo distributions and the right column depicts heavier cargo size
distributions.
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Mapping the Pathologies

One critical obstacle in the investigation of axonal transport, whether normal or
pathological transport, is that there is great variability in the intrinsic properties and in
velocity profiles among different experimental preparations. For example, in vitro
molecular motor studies may record velocities that are an order of magnitude larger or
smaller than in vivo preparations. Another issue with pathological transport is that
transport deficits can be to a large degree a function of the type and severity of the
mutation involved. Thus, comparison using quantitative outputs alone can be misleading
and confusing. An analysis-based solution that allows different pathologies to be
compared and contrasted is to look at the data sets relative to one another by viewing the
relationships among the metrics or outputs using our relational analysis technique instead
of comparing the exact quantitative values. Additionally, this approach can be used to
compare experimental data sets to model output data sets. Using relational analysis, the
different pathological versions of axonal transport can each be individually visualized in

a map of cross-correlations called a ‘landscape’.

The landscape of the ‘base case’ (Figure 2A) or normal physiology (Figure 2B-G) is
illustrated with the landscapes of each of the pathological versions of transport. The
major highlighted differences between the physiology and pathology landscapes are
marked on the pathology landscapes. The metrics used to create the landscape are shown
to the right of Figure 2. When comparing the landscapes, there are some definite
generalized patterns that are attributable to the specific pathologies. One particular

pattern that is of interest is the conserved highly positively correlated block of velocity
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correlations (large red block in the middle the normal physiology (Figure 2A). This block
is affected in all of the pathologies. However, in particular, this block is telling for the
pathologies in which both motor types are affected. For example, the velocity
correlations for the neurofilaments at the upper end of the velocity distributions are
nearly insignificant when both motor populations are affected (Figure 2D and 2G). If
either motor population is constrained or diluted (Figure 2B-C and E-F), the effects of the
pathology are most apparent in the correlations that contain the separated average
velocities of dynein and kinesin. However, even these 4 pathologies, which are more
similar, can still be differentiated. The constrained populations have a very strong block
of positive correlations among the correlations containing the number of bound motors
that is not present in the mutated pathologies. Finally, the type of motor population
affected, whether kinesin or dynein, can be predicted based on the correlations containing
the separated average velocities of dynein and kinesin. If kinesin is mutated or
constrained, both the dynein and kinesin velocity correlations are affected whereas if
dynein is mutated or constrained, only the dynein velocity correlations show significant

changes.
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Figure 10.1.2. Landscapes comparing the different pathology cases to the ‘normal’ case.
Note that cargo size (protein aggregation) is excluded from these landscapes since there
are no experimental correlations to have a basis of comparison. (A) Normal physiology
(B) Dynein Mutation (C) Kinesin Mutation (D) Kinesin and Dynein Mutations (E)
Dynein Constrained Population (F) Kinesin Constrained Population (G) Kinesin and
Dynein Constrained Population.

Discussion

Our modeling results predict that the three proposed categories of impaired axonal
transport mechanisms (and their respective combinations) can be distinguished by
comparing distributions of cargo versus position over a specified time interval. Protein
aggregation/misfolding affects the distribution shape; protein dysregulation changes the

distribution height, and molecular motor mutations alter the distribution height and range.
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Thus, given the normal density of motors in a particular motoneuron type, histograms of
cargo position versus time are a potential indicator of ALS pathology. The predicted
“signatures” provided by these modeled mechanisms will help plan and interpret future
experimental data comparing ALS axonal transport to normal axonal transport, and thus
take us one step closer in pinpointing a mechanism for which clinical treatments could be

designed.

Currently, the only treatment for ALS is the drug riluzole (Kuo et al. 2006; Wood et al.
2003). It is not known precisely how this drug slows ALS, but it is thought to 1) decrease
the excitability of the motoneurons (Kuo et al. 2006), thus decreasing excitotoxicity and
2) decrease protein aggregation (Wood et al. 2003), thus reducing the effect of increased
cargo size in axonal transport. However, it is possible that excitotoxicity and impaired
axonal transport are linked. It is known that electrical activity cannot change the actual
speed of transport (Jankowska et al. 1969) (i.e. the distribution range), but it could change
the volume of cargos being shipped. A motoneuron with a higher firing rate would
require more energy via mitochondria (Kong and Xu 1998), more neurotransmitter, ionic
channel parts, and “maintenance” proteins all of which are moved via axonal transport.
Attempts to “ship” the required demand could speed the process of clogging the axonal
microtubule tracks on which the molecular motors carry their cargo. Thus, we would

expect to see a distribution that is similar to the motor-constrained case.

It would seem that the overall impact of the ALS mechanism is largely a function of

cooperativity. Cooperativity specifies the number of motors that are simultaneously
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moving a cargo and, thus, helps to set the attainable velocity range and, by extension, the
attainable position range. Cooperativity relates to ALS pathology in that the number of
motors bound is a function of load size and the number of available motors. The impact
of cooperativity is apparent in every ALS case model here, but has a particularly strong

impact on the diluted case and the retrograde subpopulations.

For the diluted case, the chances of a cargo being assigned an ineffective motor is higher
when there are more motors than when there are “just enough” or “not enough”. This
produces less effective transport overall, because the chance of multiple functional
motors being bound to a cargo is greatly reduced. Thus, in this case, it is almost
beneficial for there to be fewer motors. Where does the ample supply come from? It
could be caused by a positive feedback loop telling the cells to produce more motors (of
which a percentage are always ineffective) in an attempt to compensate for the impaired

transport.

As is seen experimentally in ALS, retrograde transport is more affected than anterograde
transport (Kieran et al. 2005). This holds true for all three categories of modeled
mechanisms. This is likely due to the stall force of dynein, which is approximately 1 pN
(Gao 2006) compared to the approximate 5 pN (Klumpp and Lipowsky 2005) stall force
of kinesin in physiological ATP concentrations (=1,000 uM). Because of its lower stall
force, dynein is more dependent upon motor cooperativity than kinesin. Hence, having a
larger cargo or simply not having enough effective motors that can work together

cooperatively has a much greater impact on retrograde transport.
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Relational Modeling Approach to ALS
As was alluded to in the introduction, ALS is a disease that includes many factors. In
fact, there are so many factors and interactions, that scientists have yet to come up with a
single comprehensive theory. ALS is typically divided into two types—sporadic and
familial. Familial or inherited forms only make up about 10% of the documented cases.
However, this is not to say that sporadic cases do not have a genetic component as many
sporadic ALS patients have been found to have one or more genetic mutations which are
thought to either cause or contribute to their diagnosis. The confusion as to how exactly
ALS ‘works’ is not helped by the fact that there are literally hundreds of different
documented genetic mutations, protein defects, aberrant chemistries and misfunctions
which have been associated with several different variants of ALS. With so many
variants of ALS and so many involved factors, scientists and clinicans are left grasping to
find a comprehensive theory, which would explain the strikingly common clinical
presentation that results from what are very often seemingly different underlying
pathological causes. Given the number of factors present, the extent the field understands
the diesease’s mechanisms, and the absence of solid conceptual theories describing the
ALS process, relational modeling is the analytical method of choice for developing an

initial system-level view of ALS.

Upon performing the intial literature review of ALS, it became very apparent that the
commonalities among the different forms of ALS were not just in the clinical or
symptomatic presentation, but also at the physiological presentation. Whether familial or

sporadic, mutation or no mutation, there were ten very general commonalities that were
283



present. The ten commonalities became the ten categories of the ALS model, and they
essentially represent different paths or misfunctions that are present in ALS, any one of
which could potentially be an underlying cause: axonal transport (AT), energetics (EN),
excitotoxicity (EX), inflammation (IN), necro-apoptosis (NA), free radicals (FR), genetic
mutations (GM), aberrant chemistry (CH), proteomics (PR), and systemic defects (SY).
Based on this first literature review, it was at this point when we first hypothesized that
perhaps ALS results not from a single mechanism but rather it emerges from the complex
interactions and relationships of multiple mechanisms. Thus, if this hypothesis is correct,
ALS is in fact an emergent property that can be obtained from different possible
mechanisms or combinations of different mechanisms. If we think of each of these
categories as a ‘knob’ that provides feedback to help control the signal(s) of the system
(the motoneuron and surrounding environment), then turning any one mechanistic knob
severely in the wrong direction or turning multiple knobs just slightly in the wrong
direction could potentially cause a ‘loss in control’ of the physiological system that

results in the ALS pathology.

The literature review was expanded to include ~250 papers, but this expansion only
resulted in an increase in the number of individual factors and not the number of
categories. From this second expansion it appeared that there would need to be at least
40-50 factors in the ‘final’ factor-based relational model based on factors. Thus, to help
guide our research efforts, we decided to build a category model at this stage. The
resulting category ‘map’ or network of ALS categories and their interactions is presented

in Figure 1.
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Figure 10.2.1. Category relational model of ALS. The different size and hues of arrows
represent the relative size of the hypothesized interaction. The thick black arrow
represents a ‘large’ interaction; the thick grey arrow represents a ‘medium’ interaction,
and the thin grey arrow represents a ‘small’ interaction.

In order to computationally model the interactions of the categories, category gains and
time constants were estimated from the literature. The extracted quantitative
relationships or ‘gains’ and time constants represent the effects of ALS from the G93A

(SOD1 mutation) in the mouse. Table 1 illustrates the hypothesized size of the one-way

interactions and their sign. Note that the interaction is read in the “from to” direction.
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For example, the sign of the interaction of free radicals to or ‘on’ excitotoxicity is listed

as ‘+S’, a small positively correlated interaction.

Table 10.2.1. Magnitudes and signs of the one-way category interactive gains as
estimated from experimental literature.
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Proteomics (PR)|-M +M +S +S +M +M -S +M
Systemic  (SY) +S -S +S +S -S

The quantitative values representing the small, medium, and large gains were varied
using a sensitivity analysis and were found to not have a major impact on the time course
of the category effects as long as their ratios were kept relatively constant. However, for
reference, the ‘base case’ category gains were selected to be 0.5, 1, and 1.5 to represent
small, medium, and large respectively. Since at this stage, our main interest is simply
view the ‘shape’ and main characteristics/features of the category time courses and their
relative magnitudes to each other, the quantitative values of these categories themselves

were irrelevant. Time constants were chosen to reflect the life cycle and appearance of
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ALS symptoms in the G93 A mouse, with fast, medium, and slow representing 60, 90,

and 120 days.

To initiate ‘ALS’ one or more factors must be moved from their base values to start the
simulation. The simulation below is a case in which energetics was the initiator.
However, a very rough sensitivity analysis indicates that the patterns of model behavior
are very similar regardless of what category is used as the initiator. Interestingly, the
results of the category simulations already exhibit some findings which are also reflected
in the experimental data. For example, most of the factors do not move significantly
from baseline until about 80 days out (see Figure 2), which is within the range that
clinical presentation is exhibited in the G93A mouse. Additionally, axonal transport
(highlighted in red) and energetics (shown in yellow) have a very different looking
pattern compared to the other categories. Finally, a major change happens at around day
150, as all of the factors seem to ‘explode’, a trait of an unstable system. Not
coincidentally, day 150 is within the experimental range of when symptoms become very
severe and marks the beginning of the sudden and severe decline seen in end-stage ALS

mice.

The results of this very preliminary relational model have generated a few hypotheses
that we will test as we continue with our model development. For example, one
hypothesis is that the emergence of the sudden decline seen in end-stage ALS is a result
of a system instability. Using the rules of control theory, if enough feedback could be

apportioned correctly, the propagation of ALS would stop. Thus, one potential
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therapeutic concept is to add self-feedback to each category to investigate whether the
system can be made stable. As was the case in the spinal cord injury model, testing such
theoretical ideas can potentially give way to hypothetical treatments, which can be

examined for positive therapeutic effects.
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Figure 10.2.2. Time course of categories in a preliminary category model of ALS. The
y-axis represents the magnitude of the category’s impact and the x-axis represents time in
days. Note that only relative category magnitudes are meaningful and not the actual
quantitative values, themselves. However, the quantitative values on the x-axis are
meaningful as they represent the pathological time course of the G93A ALS mouse.

Aggregating views

These viewpoints (ALS-disrupted axonal transport model, motoneuron data, and the
relational model) have and will continue to be used together to obtain a complete and
comprehensive view of ALS. For example, the correlations obtained from the velocity

profiles of the ALS-disrupted axonal transport model were used to approximate gains and
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time constants for the relational model as such gains and time constants were difficult if
not impossible to obtain from the current pathological experimental data. In fact, the lack
of experimental data and our inability to properly characterize available data was
precisely the motivation for the initial development of the conceptual-mechanistic model.
Similarly, the identification of size related firing property relationships, which were not
explicitly published in the ALS literature, influenced the selection of potential factors to
include in the excitotoxicity component of the ALS model. Thus, these more detailed
‘category’ modeling viewpoints were able to ‘fill in’ the experimental gaps to construct

an initial working relational model.

Once a full relational model with individuated factors is complete, relational analysis will
be used to indentify the key factors and their dynamic relationships and interactions. This
system-level analysis will be used to distinguish areas that need further refinement and to
replace high-impact categories with more detailed models, such as mechanistic or
conceptual models. Thus, further down the road, the relational model will feed back into
the refinement of the axonal transport and motoneuron models and aid in the planning of
future motoneuron experiments. Other areas necessitating more detail are liable to
warrant their own modeling viewpoints as well, and these will be identified and
implemented as needed. Therefore, in conclusion, the process will iterate with each
addition and refinement, bringing a new and necessary perspective to complete our

desired multi-dimensional view of ALS.

289



CHAPTER 11

CONCLUSIONS

In the Introduction, it was stated that the overall purpose of this work was to provide the
foundational research that enables comprehensive views of complex physiological and
pathological systems to be obtained. In this chapter, we return to this purpose, discussing
and evaluating the progress that was made through the development of methodologies to
assist in the construction and analysis of computational models that provide unique
viewpoints into the system. The chapter concludes by presenting a new form of scientific
inquiry, viewpoint aggregation, which is based upon the findings of this work and
provides a new and exciting possibility for the future exploration and analysis of complex

biological systems.

Conclusions about a relational approach to modeling and analysis
Using the philosophy of complex systems, namely the ‘bowtie effect’ theory of biological
systems, we have developed novel methods to deduce complex multi-scale interactions
and dynamics that occur at the critical ‘pinch point’ by either identifying and/or utilizing
the inner relationships of a system, which result in its emergent properties. Relational
analysis, using the search-survey-and summarize technique (S3 -Mitchell and Lee 2007)
to identify the complex relationships within a system, enables the characterization of both

model and experimental data, permitting exploration and direct comparison of
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mechanistic function, and generation of testable experimental and clinical hypotheses and
predictions. Relational modeling, using the review-relate-refine technique (R3-Mitchell
and Lee 2009) to utilize complex system relationships identified within the experimental
data, enables foundational models to be quickly and efficiently built that connect
disparate pockets of detailed experimental data and provide a comprehensive view into
the system as a whole and a preliminary basis upon which detailed bottom-up

mechanisms and top-down theories can then be implemented and refined.

Thus, in summary, relational analysis fulfills specific aim one by providing the analytical
tools to tease out and explain the underlying mechanisms, organizing principles, and/or
dynamics of emergent, complex adaptive behavior within computational models, and
relational modeling fulfills specific aim two by providing a methodology that enables
initial, system-level “scaffolding” models to be quickly built and assessed based on
available literature or experimental data without the need for unknown detailed
properties. Together, these two additions to the repertoire of traditional modeling
methodologies and data analysis tools provide the foundation necessary to help move the

model from a confirmatory to an exploratory research tool.

Conclusions regarding different viewpoints
Using a variety of modeling techniques, we have traversed several different complex
physiological and pathological systems, including synaptic neurotransmitter spillover
(Mitchell et al. 2007; Mitchell and Lee 2007), normal and pathological axonal transport

(Mitchell and Lee, 2009), secondary injury SCI (Mitchell and Lee, 2008), motoneurons
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(Mitchell and Lee, 2009¢ in preparation) and most recently we have entered into
Amyotrophic Lateral Sclerosis (Mitchell and Lee, 2009b in revision). Along the way, we
have come to appreciate the value multiple perspectives have when modeling a system.
In this project, the differing perspectives are 1) “bottom-up” mechanism-centric
approaches that seek to have higher-level function emerge; 2) “top-down” theory-centric
approaches that seek to explain higher-level function in terms of lower-level
mechanisms; and 3) “middle-out” data-centric approaches that seek to recapitulate and
predict experimental and clinical findings. In conjunction with our relational analysis
techniques, which enabled the construction of models that produced the desired emergent
properties and the construction of landscape that revealed the underlying system
dynamics, we found that each of these viewpoints gave us a unique, necessary and often

even a new perspective into each of the studied test case systems.

Although experimental and clinical research was not physically performed as part of this
dissertation, actual data representing each view was analyzed from studies performed
inside (motoneuron experimental data shown in Chapter 5) and outside our lab (not
shown) utilizing our relational analysis techniques. Using our developed relational
analysis techniques to look through each system’s pinch point to either utilize or uncover
the relationships that result in the system’s emergent properties and complex dynamics,
we were able to produce different viewpoints into a system. Below is a brief review of
our experience with the three modeling viewpoints and with their experimental and

clinical viewpoint counterparts.
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Bottom-up Model View

In our experience with a bottom-up synaptic neurotransmitter spillover model (Mitchell
et al. 2007b; Mitchell and Lee 2007c), we found that there was substantial non-
uniqueness in the parameters values (i.e. multiple parameter value sets could achieve the
same target output goals). Similarly, we found that in our mechanistic models of axonal
transport, a few different degenerate models, each representing a different transport
mechanism, could result in experimentally valid velocity profiles. Thus, though we were
able to successfully and efficiently reach our target output goals, we did not know why

we had achieved them.

Top-down Model View

We explored the use of top-down models, which use a hierarchical tree of hypotheses
whose ramifications determined either the mechanism parameter values or the
mechanisms themselves, to compare different hypotheses and conceptualizations. Our
conceptual models of ALS-disrupted axonal transport were able to differentiate between
different pathological causes, such as protein aggregation and mutations, a feat that
would not be possible in a mechanistic model. Additionally, using a top-down
motoneuron model (not presented in this dissertation) we were able to make explicit
predictions regarding previously little understood functions, such as the role of the after
hyper-polarization potential (AHP) in determining the motoneurons frequency-current
gain (FI gain). The top-down conceptualizations explicitly provided the “why” that was

missing from the true bottom-up model. However, the top-down model, while possible
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for the study of smaller systems with a fewer number of factors, such as in axonal
transport, or for larger but more well-characterized systems such as motoneuron
neurophysiology, is not a good candidate for modeling comprehensive clinical
pathologies (e.g. ALS and SCI)—systems that are both enormously large, containing
multiple factors across several different categories, and for which few, if any, over-

arching theories are available.

Relational or “Middle Out” Model View

In the case of pathologies, such as spinal cord injury, starting with either a bottom-up or
top-down model was essentially impossible without copious speculation due to the
numerous gaps between detailed pockets of experimental data. Consequently, a new
modeling technique was developed in order to build the “scaffolding” that would be
necessary to connect disparate sets of experimental data together before being able to
look at mechanisms and high-level theories. The chosen strategy was to build a
“relational model” based exclusively on the relationships or correlations between various
identified important factors within the substantial experimental data. This relational
model was able to predict previously uncharacterized system dynamics, providing the
first system-level view into a large and complicated pathology. Although the relational
model is an excellent starting point to quickly obtain a holistic view of the system and
make fundamental predictions early in the research process, it alone cannot provide the
detailed, component-level insight of a mechanistic model or the explicit predictions of a

top-down model.
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Experimental View

To date, experimental viewpoints have been and will continue to be an important aspect
of systems physiology. In fact, it is experimental data that provides the parameters,
inputs, outputs, mechanisms and even the validation criteria of our models. However,
experimental data alone, outside the confines of a computational model, has its own
unique viewpoint. Our work with experimental viewpoints, nominally with motoneurons
and spinal cord injury data, has been helpful in providing the necessary viewpoint of
‘how’ relationships result in the emerging dynamics seen within a system. For example,
it was through our experimental data that we were able to hypothesize how motoneuron
size results in distinct firing properties, a task that was not possible through modeling

alone.

Clinical View

Clinical viewpoints, in many ways, serve as the ‘final stamp of approval’ as to the
correctness of our understanding and perhaps more importantly, the impact of our
research, in terms of therapeutics to treat pathological conditions. Only within the
human, where all of the real complex system properties and characteristics are present,
can the system function and behavior be fully analyzed. However, due to safety and
ethical concerns, clinical studies are limited to the extent they can ‘alter the system’,
whether through drugs, stimulation or other modalities, in order to evaluate the system’s
robust behavior over multiple operating points. We learned through the analysis of

clinical spinal cord injury data, that the clinical viewpoint contributes the ‘what’ of
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systems physiology (what is affected, what is the impact, what is the time course). In
fact, based on our work in SCI, it is our assertion that it is the difference between the
‘what’ of experimental and clinical studies, which likely results in the failure of clinical

trials that seemed promising at the experimental stage.

Aggregating viewpoints
While each of the viewpoints above gave us a necessary view into the studied system,
none produced the full multi-scalar, integrative and comprehensive view that we as
biomedical engineers desired—the type of complete and profound comprehensive view
described in the Introduction, which is necessary in order to have the vast understanding
and impact of physiologies and pathologies that is desired in order to completely change
the lives of patients. However, our experience with each of these viewpoints has lead us
to what we believe is an approach, which is capable of producing the complete, multi-
scalar and comprehensive view that is needed. We contend that the best approach to
study a complex biological system is not contained within any one method or viewpoint,
but rather the best approach is to aggregate and reconcile these differing points of view
into a unified, but not necessarily monolithic whole. This unification process can be
accomplished using our developed set of relational analysis techniques. Because
relational analysis focuses on the intrinsic relationships between system measures rather
than on the quantitative values themselves, it provides an equivalent means to compare
and contrast differing viewpoints through their system landscapes. We refer to this
unification process as viewpoint aggregation (see Figure 1). Using relational analysis as

the centerpiece, this truly comprehensive approach aggregates the viewpoints produced
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from relational ‘middle-out’ scaffolding, top-down conceptualizations, bottom-up
mechanisms, and experimental and clinical observations in an iterative loop of continual

model refinement and subsequent experimental and clinical prediction and prioritization.

System-wide

System-wide Conceptual Insights

model with a e cerieral :
ever-increasing [ O);penm?_ g

refinements » \\h servations B
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' - Relational
- b Analysis
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.
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Components

_ Clinical Treatment
Refined Predictions
Mechanisms

Figure 11.1: Overview of viewpoint aggregation process. Using relational analysis as the
centerpiece, we have developed a comprehensive approach, that aggregates the
viewpoints produced from relational scaffolding, top-down conceptualizations, bottom-
up mechanisms, and experimental and clinical observations in an iterative loop of
continual model refinement and subsequent experimental and clinical prediction and
prioritization. This loop brings the system into ever-greater focus with each iteration.
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A new approach to systems physiology
In summary, we conclude that the developed relationship-based analytical and modeling
methods, in combination with multiple viewpoints, encompasses a new approach to
systems physiology that will provide the multi-scalar, truly comprehensive views that we
as engineers, scientists, and clinicians desire. One of the key benefits of viewpoint
aggregation by utilizing relationships is that it incorporates not just the modeling
viewpoints discussed in the previous section, but also experimental and clinical
viewpoints. This iterative loop is driven by the continuous act of comparing and
contrasting theoretical, conceptual, experimental, and clinical viewpoints as each new or
revised viewpoint becomes available. As such, with each iteration viewpoint aggregation

brings the system into ever-greater focus.

In essence, viewpoint aggregation represents a new, integrative approach to systems
physiology that focuses on the process of research exploration rather than the actual
product. This viewpoint aggregation process does not fit the typical research mold of
hypothesis-driven inquiry, in that it is instead hypothesis challenging and generating
inquiry, with hypothesis testing coming later in the process. However, we believe this
exploratory approach to be the key to obtaining truly multi-scalar, comprehensive views
into the complex physiological and pathological systems that we as biomedical engineers

need in order to accomplish our ultimate goal of helping patients.
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‘e Research
52(2): 220-
229.

relationship
of glu, ca, &
energy

calcium via
NMDA
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§Cat-

%Lusardi,

TA,J
Excito- {A. Wolf,
toxicity iet al

Ef'fect of acute calcium

influx after mechanical

stretch injury in vitro on |
| the viability of
2004‘h|ppocampal neurons

{ Journal of

§Neurotrauma
i21(1): 61-72. |

g9
Cat- 1 335,
legory 1 _‘egory 2 Author  Year Title ‘Journal | £ | £ |~ [ »n Description
{An in vitro model of
; | traumatic neuronal
iLaPlaca, | linjury: Loading rate- |
IM.C., V. | idependent changes in | Journalof | | | |
MY, ‘acute cytosolic calcium {Neurotrauma = | |
Excito- Lee, et iand lactate 314(6): 355- . calciumyvs
“Biochem I
iLemke, §Alterat|0ns in tissue BiophysRes | | |
M., P. | iMg++, Na+ and spinal {Commun | isodium,
Excito- ‘Demediu | ‘cord edema following (147(3): 1170- | magnesium,
toxicity ik, etal. | 1987{impact traumainrats 5. | x| |x watercontent
3 ‘ {Diffuse Axonal ‘
‘Damage, Myelin
{Impairment,
§ § {Astrocytosis and
Lima, R. Inflammatory o (rat)
R., J. | {Response Following || | linflammation
5 ‘Guimara | ‘Microinjections of ‘ || inresponse
Excito- {Inflam- (es-Silva, | {INMDA into The Rat “Inflammation| | | ito NMDA-R
toxicity mation (et al. { 2007 {Striatum 3 | | xix! lactivation
‘Neurotoxicity of ‘ L
iLiu, D., | iglutamate at the - Neuroscienc
Excito- iG. Y. Xu, | concentration released ‘e 93(4): 1383 glutamate
toxicity ‘etal - 1999 upon spinal cord injury {1389. | x| | x concentration

calcium influx
via stretch or

'DNA microarray

§ {The link between { Trends in
iMatute, iexcitotoxic iNeuro-
C., E. 'oligodendroglial death sciences | oligodendrogl
Excito- §Alberd| ‘ tand demyelinating 124(4): 224- P dial
toxicity iet al. | 2001{diseases 1230. | | lexcitotoxicity
‘McBurne | J ;
iy, R. N., | ‘Neurotrauma | { | roleofca&
Excito- \D. Daly, New CNS-specific 9 Suppl 2: | | ca
toxicity etal. | 1992 calcium antagonists  |S531-43. | x x  lantagonists

Nesic, ‘analysis of the ‘ - leffects of
{0., N. M. | icontused spinal cord: | J Neurosci i  INMDA using
Excito- ‘Svrakic, | effect of NMDA Res 68(4): - DNA
toxicity et al. { 2002receptor inhibition 1406-23. | X :microarray
| | i{Changes in glial cell |
iwhite matter AMPA | Experi-
3 rreceptor expression  imental . iwhite matter
iNecro- {Park, E., | lafter spinal cord injury Neurology | excitotoxicity-
Excito- (Apop- Y. Liu, et | ‘and relationship to 1182(1): 35- . Imediated
toxicity itosis al. | 2003 apoptotic cell death 148. | x death
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A new model for dif'fuse

‘brain injury by

irotational acceleration: |

| o o
Cat-  Cat 1 255
legory 1 legory 2 Author Year T|tIe ‘Journal ' £ £ '~ | »n Description
5 5 % The role of : R
lexcitotoxicity in
'secondary
imechanisms of spinal
%cord injury: Areview | white matter
{Park, E., ‘with an emphasis on | Journal of excitotoxicity
| AL A. ithe implications for iNeurotrauma | free radical
Excito- [Free }Velumlan ‘white matter 21(6):754- | linduced cell
toxicity (Radicals |, etal. | 2004:degeneration {774, X ideath
| | | iGlutamate Uptake by Co
Astrocytes Is Inhibited
iby Reactive Oxygen
Intermediates but Not
iby Other Macrophage- |
‘Derived Molecules - Journal of
tIncluding Cytokines,  |Neuro-
3 {Piani, D., | {Leukotrienes or iimmunology decreased
Excito- Free  K.Frei, | Platelet-Activating- ~ 48(1):99- | glutamate &
toxicity (Radicals iet al. { 1993!Factor 1104, X x . x [ROS uptake
‘Non-NMDA and NMDA !
ireceptor-mediated
‘excitotoxic neuronal
ideaths in adult brain |
{PorteraC | :are morphologically | Journal of (rat)
ailliau, | distinct: Further ‘Comparative | apoptosis vs
iNecro- (C.,D.L. | levidence for an ‘Neurology | necrosis/ role
Excito- {Apop-  Price, et | ‘apoptosis-necrosis :378(1): 88- of NMDA vs
toxicity itosis ial. 1997 ccontinuum i104. X non-NMDA
iR. F. and §Glutamate Neuropscien
Excito- iD. W. NNeurotoxicity in Spinal- ice 43(2-3): = i iglu
toxicity Choi 1991 Cord Cell-Culture 3585 591. x| x neurotoxicity

‘Evaluation of the |
‘neuroprotective effects |
iof sodium channel

{Runnerst | {1l. Effects on i Journal of | (rabbit)
am, M., ‘extracellular glutamate, {Neurotrauma | . iglutamate
Excito- {F. Bao, et intracranial pressure, 18(3): 259- | and
toxicity ial. 2001 ‘and neuronal apoptosis | 273. | | x!x! lapoptosis
{Distinct roles of | oo
Sattler, | ‘'synaptic and - Journal of
R.,Z.G. | iextrasynaptic NMDA  {Neuro-
Excito- Xiong, et ' receptors in science
toxicity al. 2000 iexcitotoxicity 120(1): 22-33. x { x {NMDA

| | iblockers after spinal Journal of

iSchwart, ' icord injury: improved  |Neuro-

G.and | behavioral and ‘surgery sodium/effect
Excito- iM. G. | ineuroanatomical 194(2): 245- { | ischannel
toxicity {Fehlings | 2001 recovery with riluzole  256. i x | . x blockers
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§Cat-

Excito-
toxicity

Xin, W.
K, X H. |
iZhao, et |

Xu,G. Y.,

§The removal of |
lextracellular calcium: a |
‘novel mechanism ‘
tunderlying the

irecruitment of N-methyl- Journal of

{ European

D -aspartate (NMDA) ‘Neurosmenc
‘ receptors in ‘e 21(3): 622- | b
{ 2005;neurotoxicity 636. | X X

‘Concentrations of
iglutamate released

g9
Cat- 1 335,
legory 1 _‘egory 2 Author  Year Title ‘Journal | £ | £ |~ [ »n Description
ﬁSpringer, ﬁActivation of the Nature lipid
| J.E.,R. | icaspase-3 apoptotic  Medicine | peroxidation
Excito- [Free  |D.Azbill, | ccascade in traumatic  5(8):943- | | inhibits glu
toxicity |Radicals iet al. { 1999ispinal cord injury 1946. x| x uptake
‘ ‘ 3 {European | |
Role of sodiumion  Journal of
{Takahas | tinflux in depolarization- {Pharma-
thi, S., M. | linduced neuronal cell {cology |
Excito- Shibata, | death by high KClor ~ 1372(3): 297- role of
toxicity let al. ! 1999/ veratrldlne 1304. X sodium influx
ilnvolvement of
activated caspase-3-
| llike proteases in N- | caspase-3 in
Tenneti, | ‘methyl-D-aspartate-  Neurochem NMDA
Excito- iL.and S. | iinduced apoptosis in  [74(1): 134- | induced
toxicity {A. Lipton | 2000 cerebrocortical neurons42. I X apoptosis
3 3 {The Effects of | .
‘Megadose
{Methylprednisolone |
Uhler, T. ‘and U-78517f on - Neuro- (rat) methyl-
A, D. M. | { Toxicity Mediated by ‘surgery prednisolone
Excito- {Frim, et | ‘Glutamate Receptors  134(1): 122- = | glu-R
toxicity al. 1994 in the Rat Neostriatum 128 | | x ix! ineurotoxicity
Volterra, §Glutamate uptake ‘ mediated
3 A, D. | linhibition by oxygen | J Neurosci decreased
Excito- Free  Trotti, et | free radicals in rat 14(5Pt1): | | glutamate
toxicity {Radicals ial. { 1994 cortical astrocytes 12924-32. X | x| uptake
| | | {Delayed antagonism of | R
| | {AMPA/kainate ;
\Wrathall, rreceptors reduces Iong-§
J.R,Y. | iterm functional deficits | Exp Neurol
Excito- D. Teng, resulting from spinal 1452 Pt 1):
toxicity et al { 1997 cord trauma 565-73 X i X AMPA-R

calcium/
sodium
impact on
NMDA

ifollowing spinal cord
M. G. injury kill - Exp Neurol . i(rat) oligo-
Excito- {Hughes, | ollgodendrocytes in the | 187(2) 329- { | idendroglial
toxicity et al. | 2004 :spinal cord 136 | x| | x excitotoxicity
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Cat- Cat-

‘Journal

Invivo

SCI

Description

legory 1_egory 2 Author

M. G.
§Hughes
let al.

Excito-

M., T.
Excito-

toxicity al.

Xu,G. Y.,

{Sakou, et;

Year%TitIe

{Administration of
glutamate into the
ispinal cord at
iextracellular
‘concentrations reached
ipost -injury causes

Role of N-Methyl-D-
1Aspartate Receptor in
‘Acute Spinal-Cord

1 1995 InJury

Neuroscienc
ie Letters |
384(3): 271-

{ Journal of
‘Neurosurgery
83(5): 884- |
1888.

Invitro

R

glutamate
con-
centration

(rabbit)
NMDA-R

§Other

§k| et al.

Free
Radlcals

liuk, M.,

Free :Inflam- {Pospisil,

etal.

Radicals | matlon

T.M, V.
iL.
Free

Radicals | etal.

§Chalimon§

K. King-
‘Dawson,

Dawson, ‘
| 1994 'the brain

1996 |njured neurons

‘Macrophage migration '
linhibitory factor ‘
induces cell death and
idecreases neuronal
nitric oxide expression
2006 in spinal cord neurons

{Molecular mechanisms
:of nitric oxide actions in

- Neuro-
iscience
1139(3): 1117-‘
1128. |

ANY
‘Acad Sci
1738: 76-85.

peroxidation/
oxygen
radicals

{Yoshioka |

LA, B. jPathophysioIogy of  |JNeurosci = oligo-
Excito- §Bacskai, | ioligodendroglial Res 46(4): = dendroglial
toxicity let al. | 1996 |excitotoxicity 1427-37. Px excitotoxicity

‘The post-injury
iresponses in trauma | A

5 -and ischemia: CentNerv |
Excito- iYoung, | isecondary injury or iSyst Trauma | { | iemphasis on
toxicity W, 1987 protectlve mechanisms | 4(1): 27-51. . x |calcium

ﬁComparison of the ‘

ineuroprotective effects |

‘of the N-methyl-D- ‘

laspartate antagonist |

‘MK-801 and the opiate-

iYum, S ireceptor antagonist |

‘W. and inalmefene in {Arch Neurol = | @ | irole of NMDA
Excito- Al ‘ ‘experimental spinal ~ 47(3):277- | vsopiate
toxicity {Faden 1990 cord ischemia 181. X |x receptors

| ‘Reduction of voltage-

Zhang, ‘dependent Mg2+ ‘

iL., B.A. iblockade of NMDA | Science
Excito- ‘Rzigalins | ccurrent in mechanically {274(5294): |
toxicity 1921-3 X x. INMDA

X | X

macrophage
and nitric

‘nitric oxide
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Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
‘Dawson, | |
T.M,J. | INitric oxide: cellular | Prog Brain |
Free | Zhang, et regulation and Res 103: 365-
Radicals | ial. 1994§neuronal injury 9. : nitric oxide
Does edaravone (MCI- :
{186) act as an |
‘antioxidant and a
ineuroprotector in
| lexperimental traumatic (rat) free
Dohi, K., - brain injury?" Antioxid | radical
Free | {K. Satoh, | ‘Redox Signal 9(2): 281- scavenger,
Radicals | let al. 1 200717. edaravone
| | | iRole of endogenous
‘Genoves | glutathione in the ‘ (mouse) free
e, T, E. isecondary damage in | Neurosci radical
Free | ‘Mazzon, ‘experimental spinal  |Lett 423(1): scavenger,
Radicals | let al. 1 2007} cord injury in mice 141-6 glutathione
‘ 3 3 ? free radical
! ! neuro-
: ‘The Neuroprotective | Journal of protection
Free | iHall, E. | {Pharmacology of iNeurosurgery with methyl-
Radicals | iD. - 1992 Methylprednisolone  {76(1): 13-22. prednisolone
‘ Hall, E. f ' Res Publ
iD. and J. | {Assoc Res
M. ! ‘Nerv Ment
Free ‘ {Braugh- | {Free radicals in CNS  |Dis 71: 81-
Radicals | ler 1 1993 injury 105.
Hall, E. | ; { Journal of
D, J M. | Antioxidant Effects in  Neurotrauma |
Free ‘ {Braugh- | {Brain and Spinal-Cord {9: S165- ‘
Radicals | ler, etal. | 1992 Injury iS172. antioxidants
| | ‘Biochemistry and |
Hall,E. ‘Pharmacology of Lipid | Journal of
iD.,,P.A. | ‘Antioxidants in Acute  |Neurotrauma |
Free {Yonkers, ' {Brain and Spinal-Cord |9: S425- lipid
Radicals | etal. 1992 Injury 8442 antioxidants
Y, T §Ro|es of nitric oxide in | Free Radic
Free Ikata, et ‘compressmn injury of Biol Med (rat) nitric
Radicals | al. - 1996 rat spinal cord 20(1): 1-9. oxide
‘ {Huang, | [Effects of cerebral ‘
Z,P.L ischemia in mice - Science (rat) effects
Free | Huang, | ideficient in neuronal  {265(5180): of NOS on
Radicals | let al. | 1994 nitric oxide synthase  [1883-5. ischemia
Nitric Oxide: |
Novel |
{Actions,
§ {Deleterious
Khaldi, g [Effects and
iA.,C.C. | {The significance of {Clinical
Free : ‘Chiueh, nitric oxide production Potential |
Radicals | ‘et al. 1 2002:in the brain after injury 1962: 53-59. initric oxide
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Cat- Cat-

‘Journal

Invivo
Iscr

Description

legory 1 ?egoryz §Author §Year§TitIe
5 5 [Evidence for Free-

{Radical Mechanisms ofl

iKirsch, J. Brain Injury Resulting

i Journal of

§Neurotrauma
9: 8157-

{invitro
R

free radical
mechanisms

3 iR, M.A. | ifrom Ischemia
Free {Helfaer, | iReperfusion-Induced
Radicals | etal. | 1992 Events

| Kwak, E. | The role of inducible

3 K, W, nitric oxide synthase
Free Kim, et §following spinal cord

J Korean
§Med SC|

(rat) inducible
nitrix oxide, |-

Radicals | al.

| | ‘Mlcrogllal cell
iMerrill, J. | icytotoxicity of

| {E.,L.J. | ‘'oligodendrocytes is
Free Ignarro, imediated through nitric |
Radicals | etal. - 1993 ‘oxide

J Immunol |
151(4): 2132-

microglia,
oligodendroc
ytes, nitric
oxide

‘Neuroprotectlon and

Ohta, S., ‘enhanced recovery ‘ (rat) free
| Y. with edaravone after | Spine 1 radical
Free {lwashita, | acute spinal cord injury | 30(10): 1154- scavenger,
Radicals | let al. { 2005iin rats 1158. 5 edaravone
| | | iNeuronal nitric oxide |
'synthase
| | {immunopositivity in | |
‘Schreibe ‘motoneurons of the | Cellularand
irova, A., | irabbit's spinal cord iMolecular | (rabbit) nitrix
; M. lafter transient ‘Neurobiology | oxide
Free | Lackova, | ischemia/reperfusion  [26(7-8): 1483 synthase
Radicals | iet al. { 2006!injury 11494. ? (NOS)
| | | {Involvement of nitric
loxide in acute spinal
; 3 ‘cord injury: an
i{Sharma, | limmunocytochemical |
3 H.S.,J. | ‘study using lightand | Neurosci
Free iWestman | ielectron microscopy in {Res 24(4): (rat) nitric
Radicals | i, etal. | 1996! the rat {373-84. oxide
ﬁEf‘fects of prostaglandin§
{E1, melatonin, and ‘
§oxytetracycllne on I|p|d
{peroxidation, |
‘antioxidant defense
g g isystem, paraoxonase
‘Topsakal, ((PON1) activities, and (rat) lipid

3 iC., N. thomocysteine levels in
Free iKilic, et §an animal model of

' Spine |
28(15): 1643-

peroxidation,
prostaglandin
, melatonin

Radlcals al.

Xiong, Y.,

(rat) nitric

§Role of peroxynitrite in oxide
| A. G. 'secondary oxidative  INeurochem synthase
Free | ‘Rabchev ‘damage after spinal ~ {100(3): 639- radical,
Radicals | isky, et al. | 2007 icord injury 149. | iperoxynitrite
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§Cat-

Inflam- | |
mation | R.

iCarlson,

1 1985! |nJury

iMacrophages and
‘inflammatory damage

1992 |n spinal cord injury

iNeurotrauma
9 Suppl 1:
1S83-91. x

g9
Cat- 1 335,
legory 1 _‘egory 2 Author  Year Title ‘Journal | £ | £ |~ [ »n Description
i ? Activated microglia | J o
initiate motor neuron  {Neuropathol |
3 iZhao, linjury by a nitric oxide Exp Neurol | microglia
Free  iInflam- W., W. ‘and glutamate- 63(9): 964- . lactivation via
Radicals imation  |Xie, et al.| 2004 mediated mechanism 77. X | X initric oxide
‘ ‘ ‘ {Expression of pro- 3 Lo
inflammatory cytokine
§ § tand chemokine mRNA |
{Bartholdi, | iupon experimental { Eur J t o i(rat)
D.and 'spinal cord injury in  |Neurosci . icytokines
Inflam- M. E. | imouse: an in situ 9(7):1422- | | and
mation iSchwab | 1997 \hybridization study 138. | x| | x chemokines
Delayed demyelination '
iand macrophage ]
ﬁinvasion: a candidate Cent Nerv | macrophage
ifor secondary cell ‘Syst Trauma | and
Inflam- Blight, A. ‘damage in spinal cord 2(4): 299- demyelinatio
mation R. 315. X | x ntimeline

(rat)
mononuclear
phagocytes,
astrogliosis

iner, et al. |

1 -and M.
Inflam- | {E.
mation | ‘Schwab

ide Leme,
Inflam- R J.and |
mation \G. Chadi |

iDusart, l.

iDistant microglial and
‘astroglial activation
isecondary to
iexperimental spinal
cord lesion

2001

%Secondary Cell-Death
tand the Inflammatory
{Reaction after Dorsal

i iHemlsectlon of the Rat !
1994 :Spinal-Cord

1319-326.

- Arquivos De |
‘Neuro- |
\Psiquiatria
59(3A): 483-
492. I x

- European
iJournal of
iNeuroscienc |

le 6(5): 712-

724, x|

| | | | ()
1S. L., M. | | - Experimenta | {  imacrophages
{E. Acute inflammatory | Neurology ‘ { i, microglia &
Inflam- ﬁParrish, | response in spinal cord {151(1): 77- Lo neutrophils;
mation let al. - 1998 following impact injury 88. | x| |x timeline
1 3 ‘Spinal cord injury ‘ Lo
induction of lesional
lexpression of
profibrotic and 1
langiogenic connective |
3 itissue growth factor
Conrad, cconfined to reactive | Journal of - i(rat)
S, H.J astrocytes, invading  Neurosurgery- {  lastrocytosis
Inflam- iScthese fibroblasts and :Spine 2(3): - land glial scar
mation 2005 endothellal cells { x formation

imicroglia;
Jlesion size

(rat)
microglia &
astrocyte
activation
(rat) inflam-
mation.
Macro-
phages,

315



2003 'spinal cord injury
5 i{Comparative analysis

ﬁAstrocytosis, microglia

2490.

Experimenta
| Neurology
1190(2): 456- |

- Experimenta
I Neurology
184(1): 456-

Gomes- lactivation,
Leal, W., 'oligodendrocyte
D. J. | idegeneration, and
Inflam- Corkill, et ‘pyknosis following ‘ 1
mation | ial. { 2004 [acute spinal cord injury {467.
| | {Reducing inflammation |
‘Gonzalez: 'decreases secondary
LR, idegeneration and
Inflam- Glaser, ifunctional deficit after
mation let al 1463.

| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
1 1 - (human)
Fleming, | microglia,
iJ.C., M. | iThe cellular | | | | imacrophage,
iD. linflammatory response | { || | ineutrophil, &
Inflam- ‘Norenber ! in human spinal cords | Brain 129(Pt = | | lymphocyte
mation ig, etal. | 2006 after injury 12):3249-69.. x| x timcourse
’ ’ 3 ’ | \(rat)relations
| | | | ihip between
§ {Reactions of | {1 1 oligo-
Frei, E., | oligodendrocytesto | Experimenta: | | dendrocyte
il. 'spinal cord injury: Cell {INeurology @~ = = | death &
Inflam- Klusman, | survival and myelin ~ 1163(2):373- | linflammation;
mation |Other et al { 2000irepair 1380. . X | x myelination
3 Inhibition of
iGiulian, | imononuclear |11 i(rabbit)
D.and C.| \phagocytes reduces - mononumcle
Inflam- | {Robertso | lischemic injury inthe  {AnnNeurol | | | | ar
mation | in ! 1990ispinal cord 27(1):33-42. . x | x phagocytes
Giulian, Interleukin-1 Injected | Journalof |
iD., J. | into Mammalian Brain Neuroscienc = |
Inflam- | {Woodwar | iStimulates Astrogliosis e 8(7): 2485- | | |
mation | d,etal. | 1988 and Neovascularization .~ x x| astrogliosis

(rat)
astrocytes,
microglia,
oligodendroc

(rat)
lymphocytes
and lesion
evolution

iKIusman, iEf'fects of pro-

{ Brain

iof lesion development || | i(mouse)

‘and intraspinal | comparing

iKigerl, K. | iinflammation in four | J Comp | | | igeneticand

A, V.M. | istrains of mice iNeurol {1 i linflammatory
Inflam- ‘McGaug | following spinal 494(4):578- | | Ifactors to
mation ihy, et al. | 2006 icontusion injury 194. | x| |x lesion size

1 1 1 1 !

| | | ‘Neurotrauma |
Inflam- Kimelber | Astrocytic edemain 9 Suppl 1: | lastrocytic
mation g, H. K. | 1992/CNS trauma 1S71-81 x| x ledema

! l.and M. | inflammatory cytokines \Research
Inflam- | {E. | in experimental spinal 762(1-2): 173- i i(mice)
mation | i{Schwab | 1997 icord injury 1184. i | x icytokines
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| o o) ]
Cat- Cat- ‘ | £ E 35 6
legory 1 egory 2 Author | YearTitle ‘Journal ' £ £ '~ | »n Description
‘ Lee, Y. L (rat)
iL., K. (Cytokine chemokine | Neurochem = | cytokines
Inflam- | iShih, et | ‘expression in contused |Int 36(4-5): |1 1 iand
mation al. 12000 rat spinal cord 417-25 X | x chemokines

Louis, J. |

{Cntf Protection of

ﬁOIigodendrocytes ‘ | |TNF-induced
iC.,E. | lagainst Natural and | Science {1 | oligo-
Inflam- §Magal et/ ‘Tumor Necrosis Factor-259(5095): - dendrocyte
mation | ial. 1 1993/Induced Death 1689-692. x| | | death
‘ ‘MacFarla’ ; | lelectro-
ine, S. N. | {Electrophysiological .| physiological
andH. .changes that 3 | ichanges with
Inflam- | {Son- | ‘accompany reactive | JNeurosci | | | reactive
mation [Other  itheimer | 1997 gliosis in vitro 17 {x | x gliosis
‘ ‘McKay, ‘microglial activation in | J N
iS. M., D. | ‘white and grey matter Neuropathol | | (rat) white vs
J. ‘ of rat lumbosacral cord [Exp Neurol | grey matter
Inflam- {Brooks, | iafter mid-thoracic 166(8): 698- | 1 | microglial
mation iet al. | 2007 ispinal transection i710. | x | | x iactivation
| {Confocal imaging of
‘changes in glial ‘
; icalcium dynamics and |
Mills, L. ‘homeostasis after A
IR,ACA. imechanical injury in rat | Neuroimage . | | | (rat) glial
Inflam- ‘Velumian | spinal cord white 21(3):1069- = | icalcium
mation Other |, etal. | 2004 matter 11082. x| x dynamics
{Nakamur | leferences in cytokine |
a, M, R. .gene expression profile | o (rat)
A ‘ ibetween acute and {ExpNeurol = | = | icytokines
Inflam- ‘Houghtlin' 'secondary injury in 184(1):313- = | | and
mation ig, etal. | 2003{adult rat spinal cord 125. | x| |x chemokines
‘O'Brien, Astrocyte response | ‘
IM. F., L iand transforming |
G. : .growth factor-beta - Spine | (rat)
Inflam- | iLenke, et | {localization in acute ~ {19(20): 2321-‘ ‘ astrocyte
mation | ial. { 1994 {spinal cord injury {9 | | x| | x iactivation
‘ Perry, V. ‘Macrophages and ' Trendsin
iH., P.B. | {Inflammation in the iNeuroscienc |
Inflam- {Andersso! ‘Central-Nervous- les 16(7): 268- macrophage,
mation in, et al 273. | inflammation

- 1993 System

Astrocytes Is Inhibited
iby Reactive Oxygen
{Intermediates but Not

by Other Macrophage- ' role of
i i iDerived Molecules { Journal of 3 macrophages
Piani, D., Including Cytokines,  INeuroimmun | /cytokines in
Inflam- K. Frei, | {Leukotrienes or iology 48(1): glutamate
mation iet al. | 1993 Platelet-Activating- 199-104. X |uptake
: : [Proinmammatory ; T
cytokine synthesis in |
3 ‘ the injured mouse i J Comp
Pineau, I.. spinal cord: multiphasic Neurol N
Inflam- land S. | lexpression pattern and 500(2) 267- = | | (mouse)
mation Lacroix | 2007 iidentification of the cell |85. | x| | x cytokines

317




| o o) ]
Cat- Cat- ‘ | k= E 35 6
legory 1 egoryz Author i Year Title ‘Journal £ | £ ' ! » Description
| D.K.S. J I
H. Role of Neurotrauma | | | |
Inflam- iGraham, | cyclooxygenase 2in 315(12): 1005- | { | i(rat) prosta-
mation iet al. 1998 acute spinal cord |njury i13. | x | | x glandins
{ | idensity of
; | ‘oligodendroc
| | {Chronic alterations in | {1 iytes,
{Rosenbe | ithe cellular composition | | lastrocytes,
rg, L. J., | oof spinal cord white | 'microglia,
Inflam- iL. J. Zai, ‘matter following | Glia 49(1): { | iand
mation et al 2005 contusion injury 1107-20. X || x macrophage
iAcute inflammatory
'responses to - European L i(rat)
iSchnell, imechanical lesions in  {Journal of | { | icomparing
L,S. | the CNS: differences  |Neuroscienc | - TBland SCI
Inflam- | {Fearn, et | ibetween brain and ie 11(10): { | linflammatory
mation | al. | 1999 spinal cord 13648-3658. | X | x| x response
1 1 { | Poly(ADP-
‘Poly(ADP-ribose) ‘ | ribose)
ipolymerase-1 in acute | { | ipolymerase-1
‘neuronal death and | Neuropro- | linacute
§ linflammation - A itective { | ineuronal
Inflam- {Skaper, ‘strategy for {Agents 993: {  death and
mation S.D. 2003 neuroprotection 217-228. X | x_linflammation
hi, S., M. Astroglial cell death ﬁJournaI of | lastroglial
Inflam- iShlbata iinduced by excessive {Pharmacolog ‘ { | ideathvia
mation et al 'y 408(2): 127- | x | x isodium

2000 influx of sodium ions

{Takuma, { Progress in §
K,A Astrocyte apoptosis: Neurobiology =~ |
Inflam- | iBaba, et | limplications for 72(2):111- {  astrocyte
mation | ial | 2004 neuroprotection i127. | x| |x: iapoptosis
’ Taoka,
Y, Ko Role of neutrophils in | Neuroscienc |
Inflam- {Okajima, | splnal cord injury in the | e 79(4): 1177- | 1 (rat)
mation let al. { 1997 rat 82. . X | x Ineutrophils
| | {Time course of |
proliferation and,
ielimination of |
Vela, J. imicroglia/macrophages | Journal of |
M,A in different Neurotrauma =~ microglia/ma
Inflam- | {Yanez, et ‘neurodegenerative 19(11):1503- | icrophage
mation al. | 2002 condltlons 11520. | X | x . time course
Green, §The central § ~ mitochondria
Necr- | iD. and .executioners of i Trends Cell { | iand
Apop- G. ‘ ‘apoptosis: caspases or Biol 8(7): 267- | caspasesin
tosis | {Kroemer | 1998 mitochondria? 171. | | X | x japoptosis
{The calpain hypothesis
‘of neurodegeneration: | ;
Necr- ; {Evidence for a - Neuroscienti | P
Apop- Bartus, ‘common cytotoxic st 3(5): 314- - irole of
tosis R.T. i 1997 ipathway i327. i x | x icalpain
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§The neuroprotective

| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
Barut, S., Lipid-Peroxidation in 1 (rat)lipid
Necr- | A | {Experimental Spinal- | Neurosurgic . peroxidation
Apop- Free {Canbolat | Cord Injury - Time- lal Review || &treatment
tosis  Radicals ,etal. | 1993 Level Relationship 16(1):53-59. | x| x \window

Radlcals

Necr-
Apop-
tosis

t etal.

Crowe,
M. J, .
iC.

Bresnah
‘an, et al.

2004 traumatlc brain injury

Apopt03|s and delayed

degeneratlon after
‘splnal cord injury in

{ 1997 irats and monkeys

§Nmmm
3(1): 73-6.

| X |

{Barut, S., | leffects of z-DEVD.fmk, |
Necr- Y.A. 3 a caspase-3 inhibitor, A (rat) lipid
Apop- iUnlu, et | ion traumatic spinal ' SurgNeurol | | | | |peroxidation/
tosis ial. | 2005 cord injury in rats 164(3): 213-20/ | x = | x {time course
i ‘ /Inflammation and f Lo ‘
Necr- 3 ‘apoptosis: linked ' Trends Mol = inflammation
Apop- {Beattie, | itherapeutic targets in  {Med 10(12): i & apoptosis/
tosis iM. S. { 2004 spinal cord injury {580-3. Lo | X itreatments
| | | | Spinal Cord | |
Trauma: b
| 'Regeneration |
Beattie, , Neural
M. S., G. Repairand | | cell death
Necr- {E. Her- | | {Functional models:
Apop- ‘mann, et | Cell death in models of Recovery . apoptosis &
tosis al. { 2002{spinal cord injury 137:37-47. | | | x Inecrosis
Crush injury induces
iINMDA-receptor-
{Bendel, idependent delayed | {1 NMDA-
Necr- O, LA | nnerve cell death in rat | Brain Res | linduced early
Apop- iLangmoe | ientorhinal-hippocampal | 1025(1-2): 35 | & late cell
tosis in, etal. | 2004/ sllce cultures 142, { x| Ix! ideath
{Braughle | | {0 lipid
Necr- nJd.M §Involvement of Lipid- | Journal of | peroxidation/
Apop- tand E. D. | iPeroxidation in Cns ~ Neurotrauma | { | ioxygen
tosis iHall { 1992iInjury {9: S1-S7. ‘ { X | x iradicals
(rat) cell
cycle
3 § activation,
{Byrnes, | iCell cycle activation neuronal &
IK.R., B. | icontributes to post- oligodendrog|
Necr- A : ‘mitotic cell death and | ial apoptosis,
Apop- iStoica, et isecondary damage { Brain 130: glial scar,
tosis ‘ ‘ iafter spinal cord injury 2977-2992 microglia
iOxygen free radical- P
idependent activation of
3 | lextracellular signal- |
Clausen, | regulated kinase Journalof |
Necr- | {F., H. | ‘mediates apoptosis-  Neurotrauma | | {0 i(rat)
Apop-  [Free iLundqyvis ' like cell death after 121(9) 1168- | apoptosis via
tosis 1182. | x i x| freeradicals

(rat, monkey)
apoptosis,
oligodendroc
ytes, and
{  idemyelinatio
L x in
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Di
Giovanni,
S.v..
ﬁMovsesy |

jCeII cycle inhibition
iprovides
ineuroprotection and
reduces glial
iproliferation and scar
formation after

. 2005/ traumatlc brain injury

Proc Natl
‘Acad SciU S
‘A 102(23):
8333-8.

| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
‘Neuronal response to
iCullen, | thigh rate shear PJ I
Necr- iD. K. and | 'deformation depends  Neurotrauma ' | | cell viability
Apop- M.C. 'on heterogeneity of the 23(9): 1304- = | vs shear
tosis {LaPlaca | 2006ilocal strain field 19. 'x x| deformation
{The Effects of Shear
iCullen, | 'vs. Compressive |
Necr- D.K.and! Loading in 3-D Neurotrauma | | |
Apop- M. C. | ‘Neuronal-Astrocytic Co-|, St. Louis, .| ipermeability
tosis LaPlaca | 2006 Cultures ;MO. X | x| vsdeath

(rat) caspase
& apoptosis
& glial scar

Galle, B., |

;Correlatlons between
itissue-level stresses

| | i(human)
Emery, § {Journalof | | iapoptosis,
Necr- E. P ‘Apoptosis after Neurosurgery, | oligodendroct
Apop- Aldana, | itraumatic human spinal :89(6): 911- | | iyes, caspase-
tosis let al { 1998icord injury 1920. x| ixi3
| iMechanoporation |
induced by diffuse
itraumatic brain injury:
§ AAn irreversible or ‘ L (rat)
{Farkas, ireversible response to | | | | imechanopor
Necr- i0., J. linjury?" Journal of | ation/
Apop- Lifshitz, | Neuroscience 26(12): | membrane
tosis let al. { 2006:3130-3140. | X i x| ipermeability
| | { Traumatic neuronal
iplasmalemmal
3 disruption can lead to |
{Farkas, icell death not {Journalof | | |
Necr- O, R ‘necessarily associated (Neurotrauma ' | membrane
Apop- iSingle- | iwith concomitant i21(9):1291- | | ipermeablity
tosis iton, et al. | 2004 calpain activation 11291. | ixi lincelldeath
‘Geranylgeranylacetone |
| {limits secondary injury, |
{Fujiki, ineuronal death, and L (rat)
Necr- MY, progressive necrosis | Brain Res - Ineutrophils;
Apop- {Furukaw | ‘and cavitation after {1053(1-2): { | lesion size/
tosis ia, etal. | 2005 spinal cord injury 1175-84 X | x volume

iand strains and cellular | Journal of | i(guinea pig)
Necr- H. | ‘damage within the Biomechanic | - icellular
Apop- {Ouyang, | 'guinea pig spinal cord s 40(13): { | | damagelper
tosis let al. | 2007 iwhite matter 13029-3033. | x | | x imeability
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| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
? 5 Increase in apparent R
idiffusion coefficient in |
| ‘normal appearing white |
iGoetz, imatter following human | Journalof | |
Necr- P, A. {traumatic brain injury  Neurotrauma | | | | i(human)
Apop- Blamire, | correlates with injury  121(6): 645- - vascular
tosis iet al. { 2004 severlty 1654. | | x|{x i ipermeability
¥ T lipid
Necr- | §Inh|b|t|0n of lipid Neurotrauma | | Iperoxidation
Apop- Free  [Hall,E. \peroxidation in CNS 8 Suppl 1: | &treatment
tosis {Radicals D. { 1991 itrauma 1S31-40 | | | x iwindow
1 1 ‘Caspase-3: A ‘
ivulnerability factor and |
‘Hartman final effector in ‘ProcNatl | | | | (human)
Necr- in,A., S {apoptotic death of Acad SciUS| | |caspase-3
Apop- {Hunot, et 'dopaminergic neurons |/A97(6): 2875 | | and
tosis al. 2000 in Parkinson's disease 380. . x! | lapoptosis
Necr- | K. Neurochem = cytokines
Apop- iInflam- |Peterson | 'Cytokine-mediated Int 30(4-5): | | | iand nitric
tosis  mation |, etal. | 1997 neuronal apoptosis 427 31. X | | x oxide
3 ‘ Cytoplasmic extracts
ifrom adipose tissue
‘stromall cells alleviates |
isecondary damage by |
‘modulating apoptosis
iKang, S. iand promotes |
Necr- | K., J. E. ifunctional recovery ' Brain Pathol | |
Apop- Inflam- Yeo,et | following spinal cord  {17(3): 263- | apoptosis
tosis imation  {al. { 2007 injury \75. X | | | x iinhibition
| {Katoh, {Induction and its o
Necr- K, T. | 'spread of apoptosis in | Neuroscienc . = | | (rat)
Apop- Ikata, et rat spinal cord after e Letters | linduction of
tosis ial. 1996 mechanical trauma 216(1) 9-12. . x| x lapoptosis
Keane, ! J . INF
Necr- R.W, A Inflammatory and Neurotrauma | | | linflammation
Apop- iR. Davis, | lapoptotic signaling i23(3-4):335-| | | &apoptotic
tosis iet al. { 2006after spinal cord injury (44. | | | x signaling
| | | {Journalof | | | |
Neuropatholo, | |
{Apoptosis and igy and L (rat)
iLi, G. L., iexpression of Bcl-2 Experimental | oligodendroc
Necr- G. ‘after compression ‘Neurology L yte
Apop- | {Brodin, | trauma to rat spinal 155(3): 280- | | | iapoptosis/
tosis iOther  letal. i 1996 cord i289. | x| | xBcl2
3 ‘ ‘ ‘Temporal and spatial |
profiles of cell loss after | temporal &
Necr- iLing, X. ‘spinal cord injury: { J Neurosci | | | ispatial
Apop- andD. ‘Reduction by a lRes 85(10): - profiles of
tosis iLiu { 2007 imetalloporphyrin i2175-85. ' x | i x icellloss
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%Ray, S.

2000 of apoptosis

§Inh|b|t|0n of calpain
‘and caspase-3
iprevented apoptosis
-and preserved
ielectrophysiological
iproperties of voltage-

‘gated and ligand-gated

| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
Liu- ‘ ‘Neuroprotection from | membrane
{Snyder, isecondary injury by | | | ipermeability/
Necr- P, M. P. ipolyethylene glycol | J Exp Biol | | repairby
Apop- ‘Logan, et requires its 210(Pt 8): | polyethylene
tosis al. { 2007 linternalization {1455-62. | x| {xglycol
iLiu, N. ‘A novel role of Lo
Necr- K,Y.P. | iphospholipase A2in | Ann Neurol | role of
Apop- ‘Zhang, et ‘mediating spinal cord  159(4): 606- phospholipas
tosis al. { 2006{secondary injury i19. I x x| {xie(PLA2)
Lu, J, K
Necr- W, | {Advances in secondary | Spine
Apop- Ashwell, spinal cord injury: role 325(14) 1859- role of
tosis iet al | { X japoptosis

§Other

shi, R

Shi,R.Y.|

e 1 2006 and rate of strain

{The dynamics of
ﬁaxolemmal disruption
iin guinea pig spinal
.cord following

2004! compressmn
‘Shuman, | |
iS. L., J. {Apoptosis of microglia
C. ‘and oligodendrocytes
{Bresnah | lafter spinal cord
lan, et al. | 1997 icontusion in rats

§Conductlon deficits and

‘membrane disruption | Journal of
land J. | 'of spinal cord axons as |Neurophysiol |
{Whitebon | :a function of magnitude jogy 95(6):

3384 3390.

- Journal of
‘Neurocytolog |
v 33(2): 203-
211. ‘

- Journal of |
iNeuroscienc
‘e Research
50(5): 798-
808.

lion channels in rat ‘ 3 caspase-3 &

Necr- K,Ss. ‘primary cortical - Neuroscienc | apoptosis in
Apop- {Karmaka | ineurons exposed to e 139(2): 577~ glutamate
tosis ir,etal. | 2006/ glutamate 1595. 5 toxicity

iRay, S. iCaIpeptin and |
Necr- K,G.G. ‘methylprednisolone | AnnN'Y | (rat)role of
Apop- iWilford, | {inhibit apoptosis in rat {Acad Sci | | | icalpain/
tosis etal. ' 1999 spinal cord injury 1890: 261-9. X | x treatments

‘Scholpp, Journalof |
Necr- LK ‘ Neurotrauma |
Apop-  Free ‘Schubert | L|p|d peroxidation early {21(6): 667- - (human) lipid
tosis {Radicals |, et al 2004 after brain injury 677. | X | x| iperoxidation

(guinea pig)
membrane
permeability;
axonal

(guinea pig)
membrane
permeability
and
conduction
deficits

apoptosis of
oligodendroc
ytes/role of
demyelin-
ation
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{Sullivan,

| 1 998 system

[Exacerbation of
i{damage and altered

| o o .
Cat- Cat- 5 2 %35
legory 1 legory 2 Author Year T|tIe ‘Journal ' £ £ '~ | »n Description
5 : In situ 3 5
| | iimmunodetection of
‘Srinivasa | activated caspase-3in |
Necr- in, A., K. ‘apoptotic neurons in | Cell Death = caspase-3
Apop- {A. Roth, the developing nervous Differ 5(12): and
tosis etal 11004-16 X apoptosis

‘ : 'NF-kappaB activation
P.G,A. | in mice lacking tumor L
Necr- {J. Bruce- | inecrosis factor { J Neurosci {  {TNFalpha
Apop- Keller, et | receptors after 19(15): 6248- . neuro-
tosis ial. 1999 traumatlc brain injury  {56. L {  iprotection
iSullivan, ‘Cytochrome crelease | Brain I
Necr- P.G,J | ‘and caspase activation Research | | cytochrome-c
Apop- N. Keller, after traumatic brain ~ 1949(1-2): 88- .| land caspase-
tosis iet al. 2002 linjury 196. L xixi i3;timeline
’ Protein retention in the |
iendoplasmic reticulum, |
iblockade of
‘programmed cell death '
iand autophagy |
§ ‘selectively occurin | Molecular
{Tarabal, ispinal cord aand Cellular | | (chick
Necr- 0., J. ‘motoneurons after Neuroscienc | | | lembryo)
Apop- {Caldero, | %glutamate receptor- ©29(2):283- | | INMDAand
tosis iet al. 2005 mediated injury 1298. x| x celldeath
‘ : §CeII cycle inhibition | I
‘attenuates microglia
{induced inflammatory Lo i(rat) cell
| iresponse and { Brain |11 icycle &
Necr- | Tian, D. alleviates neuronal cell [Research ~~ apoptosis;
Apop- iInflam- {S., M. J. 'death after spinal cord 1135(1):177-. . lastroglial
tosis imation | Xie, et aI. 2007!injury in rats i185. x| xiscar
: : ‘ ‘Suppression of :
lastroglial scar
formation and L (rat)
ienhanced axonal | | | astroglial
iregeneration { Journal of || | iscar
‘associated with ‘Neuro- | relationship
| ifunctional recovery in a {science | | tocell cycle;
Necr- | Tian, D. 'spinal cord injury rat  |Research =~ | treatment
Apop- iInflam- {S.,Z.Y. ‘model by the cell cycle 84(5): 1053- 1 with
tosis ‘mation  'Yu, etal. | 2006 inhibitor olomoucine §1063. ‘ X | i x iolomoucine
‘ | [Early administration of | Histology P
\Vaquero, ‘methylprednisolone ;and | - i(rat)
Necr- iJ., M. | decreases apoptotic  {Histopatholo {  iapoptosis &
Apop- | Zurita, et | icell death after spinal gy 21(10): [ imethylpredni
tosis al. { 2006 cord injury 11091-1102. x| x solone
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2004 treatment strategies

11):

%Combined
i{demyelination plus
iSchwann cell

| o o
Cat-  Cat- | 2185
legory 1 legory 2 Author Year T|tIe ‘Journal ' £ £ '~ | »n Description
i i : Distinct spatial and Lo
itemporal activation of
‘caspase pathways in |
Villapol, ineurons and glial cells | | | i i(rat) spatial &
Necr- iS., L. lafter excitotoxic { J Neurosci | | | itemporal
Apop- Acarin, et ‘damage to the Res 85(16): | caspase
tosis al. { 2007 {immature rat brain 13545-56. | X | x| iactivation
‘ ‘ {Early induction of
'secondary injury 1 (rats)
{factors causing || | irelationship
3 3 ‘activation of calpain | between
iWingrave | {and mitochondria- - calpain,
LJo M, K imediated neuronal | | | icalcium &
Necr- | E. ‘apoptosis following | JNeurosci = | | | mito-
Apop-  Excito- Schaech | spinal cord injury in Res 73(1):95. | chondrial
tosis itoxicity ler, etal. | 2003irats {104. | | x| | xidamage
3 ‘ {Mechanisms of neural
‘Yakovlev, ccell death: implications | ~ cell death
Necr- iA. G. and {for development of ‘ { | imechanisms/
Apop- Al ‘ ‘neuroprotective { NeuroRx | neuroprotecti
tosis {Faden 5-16. [ on
X

3 transplantation therapy demyelinatio
{Azanchi, lincreases spread of | Journal of n and
R., G. icells and axonal ‘Neurotrauma | Schwann cell
Bernal, rregeneration following {21(6): 775- transplantatio
Other let al. 2004 contusion injury {788. X n
| | iNMDA receptor |
‘activation inhibits
ineuronal volume
{Churchw | iregulation after
el,K.B., | 'swelling induced by |
iS. H. | iveratridine-stimulated | J Neurosci = | |
Wright, et NNa+ influx in rat cortical 16(23): 7447-. | icell volume
Other al. 1996 cultures 57. . x x . iregulation
iFawcett, | Research
J.W. and ‘The glial scar and ‘Bulletin
IR.A. ‘central nervous system [49(6): 377-
Other Asher | 1999 irepair 1391, | x iglial scar
’ | Cellular and molecular |
imechanisms of glial
'scarring and |
progressive cavitation: |
{In vivo and in vitro
{Fitch, M. | lanalysis of ;
T,C. inflammation-induced | Journalof . iglial scarring,
iDoIIer et | 'secondary injury after |Neuro- | cavitation &
Other al. | 1999.CNS trauma iscience 19 | x | x iinflammation
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| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
ﬁFuIIer, M. ﬁBone morphogenetic | (rat) gliosis
L., A K. | iproteins promote { Ann Neurol | | | iandbone
‘DeChant,’ gliosis in demyelinating (62(3): 288- | morphogenet
Other iet al. { 2007 {spinal cord lesions 1300. | X | | x iic proteins
‘ {Time course of acute |
'Gaviria, | iphase in mouse spinal | | | | i(mouse)time
M, J M. | ‘cord injury monitored  Neurobiol | course acute
iBonny, et iby ex vivo quantitative |Dis 22(3): | | | iphase scivia
Other al. 12006 MRI 694-701. X x MRI
3 3 ‘Demyelination and |
‘Schwann cell ‘
| | iresponses adjacentto |
Guest, J. | injury epicenter cavities |
iD.,,E.D. | ifollowing chronic { Exp Neurol { i i(human)
Hiester, | thuman spinal cord 192(2):384- = | | demyelinatio
iGupta, A. | {Extracellular brain pH | Journal of
K,D.A. -and outcome following (Neurotrauma =~ | (human)
iZygun, et 'severe traumatic brain 21(6): 678- = | extracellular
Other tal. { 2004 {injury 1684. I x ix! ipH
| | {Degenerative and {Journalof | | | | iaxonal
Hagg, T. 'spontaneous Neurotrauma | | | | degeneration
land M. | regenerative processes (23(3-4):264- | and
Other ‘Oudega | 2006 |after spinal cord injury 280. .|| x iregeneration
iLovas, | {Axonal changes in |
G,N. chronic demyelinated - (human)
{Szilagyi, | icervical spinal cord {Brain123( | | | | jaxonal
Other let al. | 2000 plaques Pt2):308-17. | x . | damage
{McDonal | PJ | {  idemyelin-
d, J.W. ‘Demyelination and ‘Neurotrauma | . lation and
land V. | iremyelination after i23(3-4): 345- {  iremyelin-
Other iBelegu | 2006ispinal cord injury 159. | { x iation
{Quantitation of spinal |
‘McGaver | ccord demyelination, |
in, D.B., | iremyelination, atrophy, | {  demyelinatio
{P. D. 3 land axonal lossina | J Neurosci L oin,
‘Murray, ‘model of progressive  |Res 58(4): ‘ . iremyelination
Other let al. { 1999 ineurologic injury 1492-504. X | x & axonal loss
| | {An analysis of | L |
§ § iglutamate spillover on
‘Mitchell, the N-methyl-D- ‘
iC.S.,S. | laspartate receptors at | NMDA and
S.Feng, | the cerebellar - J Neural Eng. glutamate
Other ‘et al. 1 2007 iglomerulus 14(3): 276-82. | irelationships
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{Totoiu,

M.O.

| tand H. S. |

Other | Kelrstead

Vick, R.
ST

Other Bartholdi

1 Neuberg
Other | ler, et al.

§Spinal cord injury is

laccompanied by ‘Neurol |
‘chronlc progressive 486(4) 373- |
2005 demyellnatlon '83.

| o o) ]
Cat-  Cat- | $<s5
legory 1 legory 2 Author _: Year Title ‘Journal ' £ £ '~ | »n Description
5 5 The role of : R
lexcitotoxicity in
'secondary
imechanisms of spinal
cord injury: A review
{Park, E., iwith an emphasis on Journal of
AL A. | ithe implications for Neurotrauma
3 Velumian | ‘white matter 21(6): 754- demyelin-
Other | {,etal. | 2004|degeneration {774, ation
| | | {Characterization ofa |
distinct set of intra-
| iaxonal ultrastructural
{Pettus, | ichanges associated
E.H.and' ‘with traumatically ' Brain
J.T. f linduced alteration in  {Research
3 ‘Povlisho | ‘axolemmal 722(1-2): 1- (cat) axonal
Other | ick { 1996;permeability i11. damage
| | | Modeling of slow
glutamate diffusion and |
| 'AMPA receptor - J Theor Biol AMPA and
| {Saftenku, | lactivation in the 1234(3): 363- glutamate
Other | {E. E. | 2005 cerebellar glomerulus {82. | relationships
‘Schwab, ‘Degeneration and |
M. E. ‘ iregeneration of axons | Physiol Rev |
iand D. in the lesioned spinal 76(2) 319- regeneration
1996 ‘cord of axons

J Comp

§Role of adult

ioligodendrocytes in Neurotrauma
| ‘remyellnatlon after 9 Suppl 1:
1992 neural injury 1$93-103

%Demyellnatlon in spinal | |
icord injury and multiple | J
isclerosis: what can we Neurotrauma

o to enhance

1992 functlonal recovery?

iNonsynaptic

19 Suppl 1:
S105 17.

(rat)
demyelin-
ation

remyelin-
ation by oligo-
dendrocytes

demyelin-
ation

S.G,B § Trends in |
iMechanisms of Ca2+- Neuroscienc | conduction of
3 ‘Ransom, | ‘Mediated Injury in Cns es 14(10): CNS white
Other | et al. { 1991!{White Matter 1461-468. matter
‘ | | {Relationship between |
ichanges of N-methyl-D-
‘aspartate receptor
iXu, R. lactivity and brain { Chin J volume
§ andC. | ‘edema after brain Traumatol regulation/
Other | iLuo { 2001 !injury in rats 14(3): 135-8. iedema
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Cat- Cat-

E 8 iDescription

Invitro
Invivo

legory 1 _'egory 2 Author | Year Title ‘Journal
Zhang, - Histology
iS. X, J. | {X-irradiation reduces iand |
W llesion scarring at the  Histopatholo | | |
‘Geddes, | ‘contusion site of adult gy 20(2): 519- | (rat) lesion
Other | iet al. | 2005 irat spinal cord 1530. | x| |x iscarring
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® 'y
S
Cat- Cat- n . 8 0o o Factor
egory 1 iegory 2 Author Year Title Journal 3:' il Eo 8 { ¢ \Description
Effects of the oo
uncoupling agents |
FCCP and CCCP {  itransport
on the saltatory Cell Biol . icorrelation to
Axon Hollenbeck, movements of Int Rep {  imitochondrial
Trans- iEner- (P.J., D. cytoplasmic 9(2): 193 ipotential
port getic  |Bray,etal | 1985 organelles 9 x__‘and/or ATP
J Cell
Sci | 'mitochondrial
Axon mitochondrial | 117(Pt . itransport and
Axon Miller, K. E. transport and 13): | litsrolein
Trans- Ener- and M. P. potential are 2791- 3 . potential,
port getic Sheetz 2004 correlated 804 ix iapoptosis
Mutant dynein
(Loa) triggers Proc
proprioceptive axon {Natl
loss that extends  :Acad Sci P
llieva, H. survival only in the U SA . Loadynein
Axon S., K. SOD1ALS model 105(34): {  iand their
Trans- (Excito- iYamanaka, with highest motor 12599- {  iparadoxical
port  ‘toxicity letal 2008 neuron death 604 F Loa ~ effecton ALS
Identification of a
neuronal nitric
oxide synthase in
Kanai, A. isolated cardiac oo
Axon J, L. L mitochondria using . inhibition of
Trans- iExcito- |Pearce, et electrochemical itransport by
port toxicity al 2001 detection. ix icalcium
Redox system
expression in the
motor neurons in
amyotrophic lateral
sclerosis (ALS):
immunohistochemic
al studies on
sporadic ALS,
superoxide
dismutase 1 Acta
(SOD1)-mutated Neuropa
Axon familial ALS, and thol 5
Trans- [Excito- [Kato, S., M. | i SOD1-mutated ALS {110(2): | thu- | iexpression of
port itoxicity |Kato, etal | 2005 animal models 1101-12 F/Siinvivo man iredox genes
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Oscillatory motion
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Axon Kendal, W. following inhibition {J Physiol i linhibition of
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port toxicity Koles, etal = 1983 transport 13 x calcium
Sporadic ALS and o
chromosome 22:
evidence for a Muscle
Axon Meyer, M. possible Nerve §
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Differential
expression of
molecular motors in
Pantelidou, the motor cortex of i
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selectively
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A mutation in
dynein rescues
Kieran, D., Axon transport J Cell
Axon M. defects and Biol |
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Mutant SOD1
impairs Axon 3
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acetyltransferase lacetyltransfer
Axon Tateno, M., and acetylcholine §ase transport
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A dynein mutation |
Teuchert, attenuates motor Exp role of
Axon M., D. neuron Neurol 1G93 iretrograde
Trans- Fischer, et degeneration in 198(1) IAlLo itransport in
port None ial 2006 SOD1(G93A) mice 271-4 F linvivo a ALS
between familial 3
amyotrophic lateral
sclerosis (ALS)- J Biol 1G93 |
Axon Zhang, F., linked SOD1 Chem A& idynein,
Trans- A. L. Strom, mutants and the  282(22): G85 retrograde
port None etal 2007 dynein complex 16691-9 |F invitro |R itransport
Characterization of
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intermediate
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expression in J Neuro-
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motor neurons in  {Exp §
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Matrix
metalloproteinases--
a conceptional
alternative for Exp
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‘copper
ichelators,
diethyldithioca
irbamate and
Bredesen, Cell death ipenicillamine,
D. E., M. mechanisms in iinhibited the
Wiedau- ALS." Neurology imutants'
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The effects of |
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Chem- Free Outten, et superoxide 28648- lactivation
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- Ammonium
itetrathiomolybdate
idelays onset,
%prolongs survival,
tand slows
\progression of
idisease in a mouse | Exp ;
Tokuda, E., imodel for Neurol iaberrant
Chem- iFree S. Ono, et §amyotrophic lateral i213(1): 1 ichemisty, lipid
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- SOD1 and PLoS
‘amyotrophic lateral {ONE {SOD1 mutant
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isuperoxide J Biol ‘environment
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‘mediated by
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Chem- Nagano, et ito amyotrophic 42(10): istability of
istry None ial 2007 lateral sclerosis 1534-42 ‘F linvivo |A4V ix {SOD1
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Posttranslational
modifications in
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dismutase and Antioxid
mutations Redox
Furukawa, associated with Signal |
Chem- ProteomiY.and T. V. amyotrophic lateral {8(5-6): ﬁinviv §role of SOD1
istry ic O'Halloran | 2006 sclerosis 847-67 F o iin aggregates
Folding of Cu/Zn
superoxide
dismutase Proc
suggests structural |Natl
hotspots for gain of |Acad Sci |
neurotoxic function {U S A imisfolding of
Nordlund, in ALS: parallels to {103(27): {SOD w/ and
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Metabolic
progression
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icytoplasmic Cell i{Ca, AMPA,
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i DJ-1 Changes in |
'G93A-SOD1 icorrelation b/w
{ Transgenic Mice: §oxidative
Lev, N., D. §Imp|ications for J Mol istress and
Ener- Free Ickowicz, et {Oxidative Stress in {Neurosci 1G93 imitochondrial
getic  Radical al 2008 ALS F linvivo A dysfunction
i Mutated human ’ ‘Mitochondrial
§SOD1 causes irespiration,
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Mattiazzi, loxidative Chem ﬁtransfer chain,
M., M. ‘phosphorylation in  1277(33): IATP,
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analysis of the
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| Global loss of
‘Na,K-ATPase and
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imediated regulation |
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ﬁmotoneuron death i J {Free Radical,
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getic  Multiple (et al 2000 sclerosis 1158-65 invitro | ‘
| Cellular and ‘
‘molecular
imechanisms
'underlying
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‘metabolism and |
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Mattson, M. idegeneration in AnnNY §stress disrupts
P., W.A. §Alzheimer's and Acad Sci ienergy
Ener- Pedersen, {Parkinson's 893: 154- ﬁmetabolism,
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Proc Hithium
§ Natl rreduced the
Lithium delays Acad Sci islow necrosis
Necro- (Fornai, F., iprogression of USA § by
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{ Cytochrome c
-association with the
{inner mitochondrial
Kirkinezos, imembrane is J
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{ Massive
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Bioenergetic
abnormalities in i
discrete cerebral glucose
motor pathways 1 ; limpairment;
presage spinal cord | Neurobi | brain
Browne, S. pathology in the ol Dis . degeneration
Ener- E., L. Yang, G93A SOD1 mouse [22(3): 1G93 iprimary to
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of ALS-linked G93A INADH/NAD+
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Ener- Mali, Y. and cytosolic malate  132(1): G93 - higher lactate
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Reduced creatine | Free

Wendt, S., kinase activity in Radic 349% and in
A. transgenic Biol Med | imitochondrial
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Dupuis, L., | § P
J. L. ‘ i Mitochondria in Neurod ‘mitochdondrial
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getic  temic letal 2004 and a target 245-54 F & systemic
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correlates with spin-
ispin relaxation time
{in motor brainstem
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- Mitochondrial ‘
iproteomic analysis |
'of a cell line model | Mol Cell irole of
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Ener- F. Zhang, et §amyotrophic lateral |c 3(12): 1G93 iproteins, such
getic Genetic (al 2004 'sclerosis 1211-23 {F invitro |A las VDAC2
| GLT-1 glutamate iGLT-1
itransporter levels ﬁglutamate
Deitch, J. §are unchanged in J Neurol itransporters;
Axon S.,G. M. imice expressing Sci i §change in
Excito- iTrans- iAlexander, {G93A human 193(2): 1693 imobility/distrib
toxicity iport et al 2002 mutant SOD1 117-26 {F linvivo (A lution
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Ivermectin inhibits
AMPA receptor-
mediated
excitotoxicity in
cultured motor
neurons and
extends the life
span of a |
Andries, transgenic mouse | Neurobi lexcitotoxic
M., P. Van model of ol Dis iprotection f/
Excito- :Ener- Damme, et amyotrophic lateral {25(1): 8- |G93 {AMPA by ATP,
toxicity :getic al. 2007 |sclerosis 16 F linvivo |A X §P2X4 receptor
J Child ‘ limpaired
Bittigau, P. Neurol ﬁmetabolism
Excito- Ener- ‘and C. Glutamate in 12(8): irelationship to
toxicity igetic lkonomidou | 1997 :neurologic diseases471-85 iglutamate
loss of Mg
iblock on
'NMDA,
Neurodegenerative: Crit Rev iglutamate
lkonomidou disorders: clues Neurobi {uptake
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Proc correlation
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Jabaudon, Acute decrease in {Acad Sci idecreased
D., M. net glutamate USA §energy and
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In situ respiration |
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status of |
mitochondria in icorrelations of
primary cerebellar | J Biol IATP,
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Excito- (Ener- [D.G. continuously to 32989- icapacity,
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Impairment of
glutamate transport
and increased
vulnerability to
oxidative stress in
neuroblastoma SH-
SY5Y cells
expressing a Cu,Zn
superoxide §
dismutase typical of} Neuroc EAAT
Sala, G., S. familial hem Int | iglutmate
Excito- Free Beretta, et amyotrophic lateral {46(3): ﬁhu- ﬁtransport,
toxicity (Radical :al 2005 sclerosis 227-34 F linvitro i/man lantioxidants
Glutamate |
Kawahara, receptors: RNA Nature ImRNA editing
Excito- Y., K. lto, et editing and death of |427(697 §of th AMPA
toxicity {Genetic :al 2004 motor neurons 7):801 S ? ? isubunit GluR2
Nat §
Sporadic ALS: Med 'mRNA editing
Excito- Lipton, S. blame it on the 10(4) iof th AMPA
toxicity |Genetic |A. 2004 ieditor 347 S ‘'subunit GIuR2
Impaired spinal
cord glutamate
transport capacity
and reduced
sensitivity to
riluzole in a
transgenic
superoxide 3
Dunlop, J., dismutase mutant : J §glutatmate
H. Beal rat model of Neurosci itransport by
Excito- {Inflam- {Mcllvain, et amyotrophic lateral {23(5): 3693 §GLT-1 and
toxicity ‘mation al 2003 sclerosis 1688-96 F invivo A {EAAC-1
D-serine is a key ‘ 5
determinant of |
Sasabe, J., glutamate toxicity in{ EMBO J §D-serine,
Excito- iInflam- (T. Chiba, et amyotrophic lateral {26(18): iglutamate,
toxicity imation !al 2007 sclerosis 4149-59 F/S both |mult imicroglia, glia
Intrathecal infusion
of a Ca(2+)-
permeable AMPA
channel blocker
slows loss of both
motor neurons and
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glutamate Exp i{Ca, AMPA,
Yin, H. Z., transporter, GLT-1 Neurol iglutamate
Excito- ‘Inflam- D. T. Tang, in a mutant SOD1  {207(2): G93 transporter,
toxicity :mation et al 2007 rat model of ALS 177-85 (F iinvivo |A lastrocytes
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A caspase-3- inhibit EAAT2
cleaved fragment of iby triggering
ithe glial glutamate ‘caspase-3
itransporter EAAT2 icleavage of
is sumoylated and [EAAT2;
targeted to targeted to
promyelocytic {promyelocytic
ileukemia nuclear | J Biol leukemia
Gibb, S. L., §bodies in mutant Chem inuclear bodies
W. Boston- {SOD1-linked 282(44): linvovled w/
Excito- Howes, et lamyotrophic lateral :32480- G93 gene
toxicity Multiple ial 2007 sclerosis 90 F 'both A itranscription
' Increased f
‘expression of the
glial glutamate
itransporter EAAT2 5
‘modulates [EAAT
lexcitotoxicity and Hum loverexpressio
delays the onset Mol \n by 2-fold
Necro- but not the Genet idelays
Excito- {Apop- (Guo, H., L. ioutcome of ALS in  {12(19): G93 ‘caspase
toxicity itosis Lai, et al 2003 imi 2519-32 F i i
| icalcium influx,
| Molecular ‘saturatio,
§mechanisms of Cell iglutamate
Arundine, icalcium-dependent Calcium §receptor-
Excito- M. and M. ineurodegeneration 34(4-5): imediated
toxicity iNone i{Tymianski 2003§in excitotoxicity 325-37 lexcitotoxicity
- GAB(A) receptors |
ipresent higher
‘affinity and
imodified subunit |
ﬁcomposition in {functionality
ispinal motor -and
Carunchio, §neurons from a EurJ iexpression of
I, C. igenetic model of  {Neurosci § IGABA(A)
Excito- Mollinari, et tamyotrophic lateral {28(7): 3693 ﬁreceptors are
toxicity {None :al 2008 sclerosis 1275-85 {F invivo (A laltered
| Expert
| Glutamate Opin
Corona, J. ﬁexcitotoxicity and Ther i
C,L.B. {Clinical targets for |Targets ﬁexcitotoxicity
Excito- Tovar-y- lamyotrophic lateral (11(11): tand clinical
toxicity {None Romo 2007 isclerosis 1415-28 {F/S itreatmetns

340




® 'y
S &5
Cat- Cat- | n . 8 0o o Factor
egory 1 iegory 2 Author Year §Title Journal 3:' il Eo 8 { ¢ \Description
| Altered calcium ‘ P
‘homeostasis in
imotor neurons
ifollowing AMPA
receptor but not
ivoltage-dependent
‘calcium channels' ;
Guatteo, lactivation in a Neurobi icalclium
E., I igenetic model of ol Dis idynamics
Excito- Carunchio, §amyotrophic lateral {28(1): 90 ‘ ialtered by
toxicity None etal i 100 F linvitro X AMPA
Motor neuron
idegeneration
induced by
lexcitotoxin agonists
has features in |
icommon with those | J leffects of
iseen in the SOD-1 |Neuropa 'NMDA and
ﬁtransgenic mouse thol Exp {AMPA in ALS
Ikonomidou imodel of Neurol §and
Excito- , C., Y. Qin ﬁamyotrophic lateral {55(2): 1G93 ineurodegener
toxicity [None Qin, etal 1996 'sclerosis 211-24 F linvivo A X iation
- Mechanisms of
idisease: ;
imotoneuron ‘elevated Ca
§disease aggravated {influx via
{by transgenic ﬁglutamate
Kuner, R., §expression of a Ann NY {AMPA
A J. ifunctionally Acad Sci | ichannels
Excito- Groom, et ‘modified AMPA 1053: G93 ‘causes
toxicity {None al 2005§receptor subunit 269-86 F iinvivo |A X idegeneration
Hyperexcitability of | J 5
Kuo, J. J., §cultured spinal Neuroph ielectrophysiol
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ﬁhyperexcitability in {PIC, sodium,
Pieri, M., I. ia genetic model of §ri|uzole,
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- Serotonergic Int J hu-
imechanisms in Neurosci §man |
Excito- lamyotrophic lateral {116(7): 11G93 iglutamate, 5-
toxicity {None Sandyk, R. 2006§sclerosis 775-826 F/S iinvivo (A X {HT, serotonin
 Cortical 5-HT1A ‘ ‘
ireceptor binding in
Turner, M. ipatients with Neurolo
R., E.A. thomozygous D90A igy § §
Excito- Rabiner, et {SOD1 vs sporadic {68(15): D90 35-HT,
toxicity None ial 2007 ALS 1233-5. F/Siinvivo |A  x iserotonin
- The AMPA ‘
ireceptor antagonist
'NBQX prolongs
Van isurvival in a 3
Damme, P,, itransgenic mouse | Neurosc ﬁeffect of
M. ‘model of i Lett AMPA;
Excito- Leyssen, et tamyotrophic lateral {343(2): 3693 §intracel|u|ar
toxicity None al 2003 sclerosis 81-4 F invitro A i iCa
Low Ca2+ 5
buffering in 3
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Lewinski, ﬁmotoneurons of i Lett
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Excito- Nicholson, lamyotrophic lateral i6): 1540- ﬁhu- §of clinical
toxicity None ietal 2008 sclerosis 50 F/S linvivo jman ix isymptoms
- Voltage-dependent
isodium channels in
ispinal cord motor
‘neurons display
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Zona, C., imouse model of ysiol |
Excito- M. Pieri, et §amyotrophic lateral {96(6): 1G93 iNa channel
toxicity None ial | 2006 isclerosis 13314-22 [F linvitro A ix \properties
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| Early signs of ‘ P
‘motoneuron
ivulnerability in a
idisease model
‘'system:
{Characterization of §AMPA, glia
§transverse slice iand myelin,
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Free Energeti | Jaronen, et ﬁmitochondrial 32(3): 1G93 idestabilized
Radical ic al. 2008 membrane 479-85 F linvivo |A  ix {SOD1
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Pierce, A., ‘mouse models of  382(5): H46 'GADPH,
Free H. Mirzaei, ‘amyotrophic lateral |1195- IR/H loxidative
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' Heat-shock protein
1105 interacts with
‘and suppresses
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Yamashita, isuperoxide em
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{Chem- (Traynor, et | iwith a novel SOD-1 i52(5): | | lhu- | alter zinc
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- Genetic analysis of | Brain |
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imutant superoxide {Natl
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- Association study |
iof the ubiquitin Amyotro §analysis of
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‘Comparison with Ihu- E, EGF,
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| Development of a | P
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sclerosis Neurop G93 'SOD1
expressing a athology A/ iproperties
Aoki, M., S. human SOD1 25(4): {H46 icomparable to
Genetic |Clinical Kato, etal | 2005itransgene 365-70 {F linvivo R X ﬁhuman SOD1
Acquired nucleic
acid changes may | Muscle
trigger sporadic Nerve § i
amyotrophic lateral {32(3): hu- . leffects of DNA
Genetic |Clinical {Armon, C | 2005;sclerosis 373-7 S invivo man {  lalkylation
No association of
the SOD1 locus |
Broom, W. and disease Neurol ieffects of
J., M. J. susceptibility or ogy ﬁmutations at
Parton, et phenotype in 63(12): thu- ithe SOD1
Genetic {Clinical al 2004 sporadic ALS 2419-22 {F/Siinvivo iman ix ilocus
Cell ‘
Focal Death
Rossi, D., degeneration of Differ |
L. astrocytes in 15(11): \gl receptor
Inflam- Excito- Brambilla, amyotrophic lateral {1691- 3693 iand astrocyte
mation toxicity et al 2008!sclerosis 700 F invivo A X idegeneration
The prostaglandin 3 3
E2 EP2 receptor
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production of nerve
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Pehar, M., implications for em ;
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autonomous effect
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factor (HGF)
attenuates gliosis
and motoneuronal {HGF reduces
degeneration in the imicroglial
Kadoyama, brainstem motor Neurosc ﬁaccumulation;
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- Formation of ‘ P
imultinucleated
giant cells and
imicroglial
§degeneration in rats
lexpressing a J ;
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- Relationship of
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isclerosis: a critical

Curr
Opin
Neurol
12(5):
581-8

ireview of ALS

Multiple

Clinical

de
Belleroche,
J., R
Orrell, et al

1999 review

- Familial
tamyotrophic lateral
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A Comprehensive Approach to Understanding Spinal Cord Injury

2009 Christopher Reeves Foundation Symposium, Atlanta, G4,

C.S. Mitchell, C.M. Simon, M.C. LaPlaca, R.H. Lee

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA

Trauma to the spinal cord launches a complex cascade of events that leads to
progressive damage and loss of function. Ultimately, spinal cord injury (SCI)
outcome depends on the extent of secondary damage and the interactions among
them, yet these mechanisms remain poorly understood. Several experimental
studies have targeted certain hypothesized components of secondary damage such
as excitotoxicity, energetics, free radical damage, inflammatory responses, and
necroptosis. However, the combined effects of these factors as well as their
interactions have yet to be examined in a holistic fashion. We have developed a
comprehensive mathematical model of secondary injury based on the results of over
300 published studies, permitting quantitative examination of the interactions
among the key factors. Results of the model indicate that relatively few factors are
likely to be highly influential in early treatment. One of the factors having a
significant impact on outcome is plasma membrane damage in the acute post-SCI
period. In parallel, we examined membrane damage as a function of time in a
rodent model of SCI. Fluorescent cell-impermeant dyes were injected into the

cerebrospinal fluid of adult male rats prior to contusion injury, and the anatomical
375



location of cell bodies and axons taking up the dye SCI was quantified acutely (10
min), subacutely (24 hrs), and at chronically (3 days and 5 weeks). Asymmetrical
rostral-caudal patterns of cell body permeability were observed at 10 minutes, but
cell body damage was not extensive at other time points. Axonal uptake, however,
was seen at all time points in a symmetric distribution. These data indicate that
early non-specific damage is a key component of SCI pathology and persists in
axons, possibly contributing to poor outcome and providing targets for developing
novel treatment strategies. This two-pronged-modeling and
experimental-approach will permit us to delve into the mechanisms and
interactions underlying key factors such as membrane damage and then to use the
experimental results to iteratively improve the accuracy and predictive power of the
model. Ultimately, we expect this method to be a robust tool for designing pre-
clinical studies to test effectiveness of mechanistically-driven treatment(s). Work

supported by NIH NS045199 and NSF EEC-9731643.
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Computational Model of SCI
Cassie S. Mitchell & Robert H. Lee

Comprehensive Approach\

to SCI Research
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@ developed a system-wide relational model of secondary injury by aggregating the relevanl\
relationships between factors commonly believed to be involved in the progression of s
injury from over 250 experimental papers. Thus, the dynamics of the entire seoondaly |n]ury
process, |nc|udmg potential treatments, can be quantitatively examine
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Introduction

Experimentation has resulted in a large pool of disparate
detailed observations of single factors involved in  th
propagation of secondary-injury post-SCI.  Simultaneously,
computational modeling of SCI has resulted in a system-wide,
multi-factor perspective giving way into conceptual insights
and predictions regarding secondary injury dynamics. The
objective of this project is to consolidate these views points to
better enhance, refine, and extend our understanding of
secondary injury, and to incorporate this comprehensive
perspective into the investigation and prediction of clinical
therapies.  Our example for the application of this multi-
perspective approach is the investigation of the role plasma
membrane permeability in SCI.
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This multi-perspective approach will allow us to delve
into the mechanisms and interactions underlying the key
factors such as membrane damage and the use the
experimental results to iteratively improve the accuracy
and predictive power of the model. Ultimately, we expect
this method to be a robust tool for the designing of pre-
clinical studies to test the effectives of mechanistically-
driven treatments

Plasma Membrane Permeability

Celllar
Insult

Membrane permeabity was found to be a key player both in the
compuatonal model and the. experimental madel. () Membrane
permeabilty is first compromised during mechanical insult where holes are.
physically torn in the membrane. (B) Injured cells and their affected
neighbors iniiate cellular cascades, “secondary injury”, which results in new.
o additional membrane breakdown. Together, these events, are thought to

initate and perpetuate the secondary injury process.

Ghnugh gross anatomical changes occur immediately following SCI, more subtle primary damage
such as increased plasma membrane permeability may be an initiating factor for downstream
pathophysiological events. There is evidence in multiple injury models, both in vitro and in vivo, that
support the premise that membrane damage resuls from the primary injury and may be exacerbated
in the ensuing time, when multiple cellular factors tit the homeostatic scale toward destructive and
degradative processes.

The objective of this study was to characterize the extent of plasma membrane damage as a function
of time, injury severity, and location in a clinically relevant spinal cord contusion model.

Horizons SCI device: Precision Systems and Insirumentation, Lexington, KY).
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a Summary & Future Directions
We observed increases in neuronal membrane
permeability acutely after SCI, which persists for
days after the primary insult in axons. We
hypothesize that a compromise in membrane
integrity leads to persistent cellular damage and
or outcome. We plan to examine secondary
mechanisms that can contribute to ongoing
damage (e.g., PLA2, arachidonic acid) and use

this information for therapies targeted to
membrane preservation. J

Figure D.1. A Comprehensive Approach to Understanding Spinal Cord Injury
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Comprehensive examination of secondary spinal cord injury and potential single
and combinatorial neuroprotective therapeutic strategies

2008 26" Annual National Neurotrauma Symposium, Orlando, FL.

C.S. Mitchell and R.H. Lee

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA

Secondary injury, a complex cascade of cellular events, which results in post-insult
lesion expansion, is a major source of neuron death following spinal cord injury
(SCI). Unfortunately, despite decades of research and several promising
experimental findings, highly effective and repeatable clinical treatments have yet to
emerge. Experimental investigation of individual secondary injury factors (such as
excitotoxic, necrotic-apoptotic, free radical, inflammatory, and energetic factors) has
resulted in a substantial, yet disparate pool of single factor data, making the
interpretation of multi-factor effects and interactions difficult. We hypothesize that
a lack of understanding of how the secondary injury process functions as a whole
results in the disconnect that is seen between primary research and clinical
outcomes. We developed methodology that greatly facilitates pooling disparate
data, enabling a novel, comprehensive view into the pathology of secondary injury
across time points, preparations, and protocols. Using this methodology, we
developed a system-wide “relational model” of secondary injury by aggregating the
relevant relationships between factors commonly believed to be involved in the

progression of secondary injury from over 250 experimental papers. This relational
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model represents a comprehensive view of the progression of neuron death
following mechanical insult by directly incorporating the literature-derived
experimental relationships (for example, the relationship between free radicals and
membrane damage) into a network of time-varying factors. Using this model, we
quantitatively examined the entire secondary injury process, including the
interactions and dynamics of ~20 of the most commonly studied secondary injury
factors and the effects of ~20,000 different single and combination therapies in
reducing secondary injury related neuron death. Our results, which illustrate the
impact-ranking of individual factors on neuron death over time, reveal that
relatively few factors are highly influential at clinically relevant timeframes (4-8
hours post-insult). Furthermore, our results suggest the importance of process
dynamics in determining the success of specific therapeutic intervention types. We
expect further model refinement to lead to a high-throughput screening process
where potential experimental mechanisms and clinical therapeutics can be pre-

tested and prioritized.
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Secondary injury, a complex cascade of cellular events, which results in post-insult lesion
expansion, is a major source of neuron death following spinal cord injury (SCI).
Experimentation has resulted in the detailed investigation of multiple individual
secondary injury factors (such as excitotoxic, necrotic-apoptotic, free radical,
inflammatory, and energetic factors), but little is known about their interactions and the
overall process dynamics of secondary injury, which result in its propagation. Using our
relational modeling and analysis techniques, we were able aggregate these detailed
pockets of experimental findings into a relational model that recapitulates the findings of
~250 experimental papers, allowing the first comprehensive view into the secondary
injury dynamics, which result in the progression of neuron death following mechanical
insult. Using this model, we quantitatively examined the entire secondary injury process,
including the interactions and temporal dynamics of multiple secondary injury factors
and the effects of thousands of various single and combination neuroprotective therapies.
Our results reveal the large contribution of overall process dynamics and the critical
importance of treatment window (i.e. time of treatment initiation) in determining the
success of various single and multi-faceted treatments and intervention types. Our

preliminary analysis of the overall process dynamics provides new experimental and
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clinical research directions to pursue and novel conceptualizations for potential

therapeutic strategies.
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Introduction

it s known about the interactions among factors leading to the overall pathology
dynamics that underlie its propagation. Prior hypotheses suggest the pathology is
dominated by interactions, with therapeutic success lying in_combinations of
neuroproteciive treatments. In this study, we provide the first comprehensive, system-
level characterization of the entire Secondary injury process using a novel relational
model methodology that aggregates the relevant relationships_between factors
commonly believed to be involved in the progression of secondary injury from over 250
experimental papers. Thus, the dynamics of the entie secondary injury process,
including potential treatments, can be quantitatively examined.
As a starting point, two generalized mechanisms of secondary injury propagation were
examined. The frst is a rate-dependent process, similar to a buming forest fire, where
damage is driven by interactions between factors. Using this analogy, a fie is Critically
jpon the interactions between fuel avalabiliy, wind speed, humidity, etc. and
even small changes in any one of these can have dramatic effects on the progression
fire and extent of its damage. The second mechanism is an accumulation-dependent
process that is analogous to a fising flood, where damage is driven by the accumulation
of factors. Using this analogy, the flood is dependent upon summation over time of flow
rates, geographic contours, etc. and smal changes in these factors generally result in
only smal effects on the overal flood and extent of its damage. - The prevailing view of
secondary injury would be akin to the fire analogy. However, the results presented here
(Mitchell & Lee, In Press, J Neurotrauma), challenge this view.

Methods

d
(The model uses invinsi relaonships (method publshed i Miche and Lao, 2007, J')

4(4): 380-389) ideniied in the experimental data to aggregate and
recapilate the findings of hundreds of experimental findings to make predictions
regarding pathology dynamics and interactions over time. Based on over 250 research
articles, we constructed a 20-output, 26-diferential equation, 85-relationship system that
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Clinical Summary & Implications

+Few factors are highly influential at
cinically relevant timeframes.
+Reducing treatments, which can be
much more aggressive and directly
address the flood-iike accumulation of
a factor, are the superior therapeutic
strategies.

+Effects of combination treatments are
“additive” rather than *synergistic”.
«Highest  ranking therapeutic
strategies are shown (right), with an
an inhibiting
circular  arrow
representing a reducing treatment
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Figure D.4. A quantitative assessment of secondary injury dynamics and potential
multi-faceted neuroprotective therapeutics
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A Reconceptualization of the relationship between spike afterhypolarization and
firing rate in lumbar motoneurons of the adult cat

2008 Society for Neuroscience, Washington DC
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While it is known that the afterhyperpolarization (AHP) following an action potential is
generated by the calcium-dependent potassium channel SK, the relationship between
dynamics of the action potential and the dynamics of the AHP remain unknown. The
traditional view is that AHP's summate and thereby slow firing. However, recent
evidence from the Bennett lab, suggests that two populations of SK are present in
motoneurons and that they are associated with differing calcium channels (N and L
respectively). What effect do these two populations have on the relationship between
action potentials/firing rate and the AHP itself? We use relational analysis (Mitchell and
Lee, 2007) to examine the effect of alternative conceptualizations of how calcium and
SK combine to form the AHP and what impact those conceptualizations have on other
motoneuron properties. Significantly, we conclude that the standard conceptualization
of "AHP summation" results in a negative correlation between persistent sodium currents
involved in spike initiation and the primary range slope of the injected current-firing
rate relationship (i.e. F-I gain). However, experimental data suggests just the opposite.
We explore several alternative conceptualizations of the link between the action

potential waveform, calcium dynamics and SK channel dynamics resulting in an AHP.
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Introduction

'We use relational analysis (Mitchell and Lee, J Neural Eng, 2007)
to examine the relationships between 18 measures of fiing
properties and fast inward currents. We conclude that the standard
conceptualization of “AHP summation” results in a negative
correlation between spike properties and the primary range slope
of the injected current-firing rate relationship (i.e. F-l gain).

However, experimental data suggests just the opposite. We
explore several alternative conceptualizations of the link between
the action potential waveform, calcium dynamics and SK channel
dynamics resulting in an AHP.
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AHP-based F-I gain

~N

Conceptual Models

Threshold-based F-I gain

models that
F-I slopes were constructed so that many
conceptually different implementations could
be examined definitively and quickly. Shown
here are examples the represent the two
dominant themes.
Threshold
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Figure 1: Experimentally observed relationships.

Correlation matrix of 18 measures of firing and fast inward

currents. (red) positive correlations (blue) negative correlations.

Note that some measure have been inverted (shown with leading
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Figure 2: Example experimental firing protocol.
Rhythmic firing in response to a slowly rising current ramp.
Threshold measures are also shown.
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Figure 3: Threshold only conceptual models. Models
in this theme required algebraic summation of an “AfterSpike
Threshold De ) and p
reduction in ATD magnitude (i.e. saturation)

Figure 3A: AHP only conceptual models. Models in this
theme required algebraic summation of AHP and summation-
dependent reduction in AHP magnitude (i.e. saturation)

cor

Threshold Only
(+) Threshold vs firing rate
(+) F-1 Gain vs spike height
(0) F-I gain vs Blockers

AHP only
(-) AHP vs firing rate
(-) F-1 gain vs spike height
(+) F-1 gain vs Blockers/Modulators

/

Preliminary Conclusions
1) AHP must be involved in F-I gain (blocker data)
2) However, Relationship between spike properties and F-I gain is inconsistent with AHP-only based
mechanism for F-I gain
3) Addition of Threshold based mechanism to AHP-based mechanism could solve the problem

75.15
~
Proposed Model
Threshold
AHP+Threshold Implementation
(+) F-1 Gain vs spike height
(+) F-1 gain vs Blockers
N\ J
Ve N

Overall Conclusions

1) AHP implemented as Ca* dependent “SK”
channels + Voltage-dependent Ca channels
results in an overly spike sensitive AHP that
adversely affects F-I gain

2) ATD implemented as NaP/conductance
threshold that depends upon AHP can restore
proper relationship between spike properties
and F-I gain, but only if the AHP's spike
sensitivity is reduced.

3)More work is needed in the relationship
between AHP, calcium concentrations, and
spiking
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Comparison of degenerate NMDA-receptor models in the context of a larger model.
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C.S. Mitchell and R.H. Lee
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Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA

One critical task each neural modeler must face, regardless of the system being studied, is
balancing the level of physiological detail represented by the model with the
computational load required by the model. The judgment call for “appropriate level of
detail” typically centers on the ability of the model to produce desired outputs. This is
based on the assumption that output is a good measure of model validity. However, is
matching output sufficient to declare that mechanistic differences imparted by differences
in level of detail result in models that are the “same” (i.e. “degenerate”)? We
investigate this question by comparing two different NMDA receptor models within the
context of a glutamate spillover model. Using automated parameter searches and
sensitivity profiles, we compare the cross-correlation matrices of the output metrics to
establish a “model fingerprint”. Based on the results presented here, the two receptor
models, in the context of the larger spillover model, can result in the same overall model
output but yield differing sensitivities and therefore different cross-correlations of
outputs. Thus, our results indicate that the model fingerprint can reveal differences in
models whose outputs would otherwise be considered the same. This opens the door to
higher level analysis as a means to differentiate between model implementations and non-

unique parameter sets.
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Introduction
Recent experimental and theoretical work continues to explore the
of spillover. Here

we examine N-methyl-D-aspartate receptor (NMDA-R) kinetics to
determine their implication(s) in glutamate spillover by comparing
two mechanistically different NMDA-R models, the 5-state Lester
and Jahr (1992) (LJ) model and the 8-state Banke and Traynelis
(2003) (BT) model, within the context of a glutamate spillover
model (Mitchell et al, 2007a). Specifically, we address the question
“Is matching output sufficient to declare that different internal
mechanisms are functionally the same?” We employ a search-
survey-and-summarize strategy to analyze the relationships within
model behavior (model relational analysis) and form a model
output landscape.  Our results indicate that model relational
analysis can reveal differences in models whose outputs would be
considered the same. Note that this work has been accepted
for publication: J Neural Eng. Dec;4(4)2007. In press.

Ve

2
Models

Spillover Model

3

Diffusion Model + NMDA-R Model S Model Output,
(Saftenku 2005) (BT orLJ) =) | .ndscape

extrinsic intrinsic

parameters parameters
A B RALd, RAzl

LJ Model BT Model H ”

" ; w o
RDRAL m;#o RO>RA & **RA

i j

RAd RAzdz RAs.

The more complex BT model contains the same states as the LJ
model except that there are two desensitized states, RA,d, and
RA,d,, and two transition states, RA,s (slow conformation
change) and RA2f (fast conformation change).

Target output metrics and values

No. Output Metric Value
1 PeakPo 024
2 Half-peak Po 0.12
3 Peak [Glu] (uM) 126
4 Half-peak [Glu] (M) 65.82
5 Time of peak Po (ms) 16.47
6  Time of half-peak Po (ms) 422
7 Time of decay half-peak Po (ms) ~ 99.74
8 Time of peak [Glu] (ms) 0.37
9 Time of half-peak [Glu] (ms) 0.1
10 Time of decay half-peak [Glu] (ms) 1.60

BT Extrinsic BT Intrinsic

Model Output Landscapes
C

G Standard Deviation
| Correlation ~ Correlation
N Magnitude  Sign
3 10
. s @+
s 08
¢ os W -
7
N 02
o 00
10

12345678091

Generation of Model Output Landscapes using S3 method. As the name implies, the
search-survey-and-summarize (S3) method contains three basic steps: search for a set of
parameter values that give rise to the selected target output values (we define each set as a
homologue), survey the model output landscape by cross-correlating sensitivity analyses for
each homologue, and summarize by statistical analysis of the population of homologue

landscapes.

1. Search L4 2. Survey L d
Determine target output values  +Perform SA around each
“Determine starting point homologue

“Segregate parameter sets
(intrinsic vs extrinsic)
+Optimize to find homologues that

+Cross-correlate the outputs
generated by the SA for

each homologue
Qroduce the target output values

-Output by output correlation
matrix; correlations show the
inter-relatedness between
outputs

“Numbers correspond to output
metric number in table (left)
+Complete correlation
corresponds to one and non-
correlation corresponds to zero

3. Summarize
« Repeat for multiple

Landscape Interpretation
*Each model landscape has similarities and
differences in its output relationships.
«Intrinsic correlations can be reflected into extrinsic
and full landscapes
«Differences involving 7-time of half-peak decay,
outlined in red, are differences we would expect to see
between BT and LJ. Indicates that BT is better able to
control its own “timing’
«Differences involving 5,6 times of Po vs 1,2-peak Po
were unexpected. Suggest that LJ “timing” is more
dependent upon the diffusion model

J

S

N(

Dimensionality Assessment
Scree Plot of PCA Results

-0~ BT Intrinsic:

Eigenvalue

2 4 6 8 1
Factor Number

+Dimensions imposed by the extrinsic parameter set (~ 4)

and the intrinsic set (~ 3) are not linearly additive. The full

parameter set has only 4.5-5 dimensions instead of 7.

+No difference in dimensionality between the BT and LJ

\models for intrinsic, extrinsic or the full parameter sets.

J

N

Conclusions

+Differences appear benign if only looked at in the context of
the NMDA-R models themselves but are more apparent when
viewed through the context of a larger model

*Model relational analysis s able to distinguish between the BT
and LJ NMDA-R model versions even though factor analysis
indicates that the overall model output space dimensions are
the same for both NMDA-R models.

“Model relational analysis may be broadly applicable as a
means to examine the complex interactions hidden within
overall model behavior.

« Determine variation across
homologue sets

« Perform population statistics
on homologue sets

J
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Figure D.6. Comparison of degenerate NMDA-receptor models in the context of a larger
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A computational model of secondary traumatic injury

2007 Society for Neuroscience, San Diego, CA

C.S. Mitchell and R.H. Lee

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA

The outcome of traumatic brain or spinal cord injury depends on the extent of secondary
damage, often referred to as “secondary injury”, produced by a series of cellular and
molecular events, which are initiated after the primary trauma. To date, these secondary
injury mechanisms and particularly their interactions remain poorly understood. Several
experimental studies have targeted certain hypothesized components of secondary
damage such as excitotoxicity, free radical damage, decreased metabolism from
mitochondrial damage, and inflammatory responses, to name a few. However, no study
has been able to analyze these hypothesized cascades of events as a whole and determine
each mechanism’s contribution individually on the end result of secondary injury, cell
death. We implement a computational model of secondary injury, which includes the
aforementioned players and the interactions which result from their feedback.
Preliminary results suggest that the hypothesized mechanisms have relatively similar
sensitivities. Thus, the secondary injury process is not completely driven by any one
particular mechanism but rather by the combined effects of them all. The significance of
the model itself is that it allows various mechanisms to be tested theoretically and based
on the results, can suggest future experimental avenues worthy of further investigation.

This worked is supported by the National Science Foundation IGERT #DGE-0333411.
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Figure D.7. A computational model of secondary traumatic injury
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In the world of biomedical engineering, and especially neural engineering, models can
give great insight into very dynamic, complex systems. As the complexity of these
models increases, it becomes more to difficult to know how much detail to include, how
to determine parameter values, and how to analyze the model results. Recent work has
focused on the use of complexity to help analyze neurons and neural networks with a
particular focus on degeneracy as it relates to parameter non-uniqueness. This work uses
two very different models, a model of glutamate spillover model at the cerebellar
glomerulus and a model of axonal transport via molecular motors, to 1.) determine if
parameter non-uniqueness, as seen in neuron models, is ubiquitous among different
model types and to 2.) determine if a combination of standard methods including
parameter searches, sensitivity analysis, factor analysis, and other complexity methods

can be used to characterize and analyze model mechanisms, parameters, and outputs.
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Figure D.8. Biological Model Analysis: What Does Complexity Theory have to Offer?
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Neurotransmitter spillover, defined as the escape of neurotransmitter from the synapse
into which it is released to neighboring, quiescent synapses thereby activating receptors,
remains a topic of experimental and theoretical debate. Spillover, if significantly present,
would shatter the conventional wisdom behind independent synaptic transmission and
plasticity. Given the difficulty of assessing spillover experimentally, modeling remains
the most feasible method of investigation. The overall approach of this project is a
broad-based assessment of all the factors governing spillover. We present a
representative model of spillover using the mossy fiber of the cerebellar glomerulus by
combining recent models of glutamate diffusion and N-methyl-D-aspartate receptor
(NMDA-R) binding to determine the open probabilities of NMDA-Rs over time at a
neighbor synapse. Simulation results from a baseline set of physiologically realistic
parameters show that glutamate spillover onto a single neighbor synapse, created by
glutamate that diffuses from a point source into a restricted fractional 2D-3D space and
the glutamate concentration created by neighboring glutamate release sites, is sufficient
to elicit an NMDA-R peak open probability of 0.23. However, simulations of limiting

cases with parameter sets outside what is thought to be the physiological range did
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produce peak open probabilities as low as 0.03 and as high as 0.28. The parameters that
impact the degree of spillover the most when simulated with values inside the
physiological range include the effective diffusion coefficient of glutamate in the
extracellular space, the number of glutamate release sites in the cerebellar glomerulus,
and the initial concentration of glutamate released. We conclude that glutamate spillover
cannot be simply dismissed or assumed to be insignificant, and that further exploration of

this issue is necessary.
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Figure D.9. A model of glutamate spillover on the N-methyl-D-aspartate receptors of the
cerebellar glomerulus
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