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SUMMARY 

 

 

The key to understanding any system, including physiologic and pathologic systems, is to 

obtain a truly comprehensive view of the system.  The purpose of this dissertation was to 

develop foundational analytical and modeling tools, which would enable such a 

comprehensive view to be obtained of any physiological or pathological system by 

combining experimental, clinical, and theoretical viewpoints.  Specifically, we focus on 

the development of analytical and modeling techniques capable of predicting and 

prioritizing the mechanisms, emergent dynamics, and underlying principles necessary in 

order to obtain a comprehensive system understanding. Since physiologic systems are 

inherently complex systems, our approach was to translate the philosophy of complex 

systems into a set of applied and quantitative methods, which focused on the relationships 

within the system that result in the system’s emergent properties and behavior. The result 

was a set of developed techniques, referred to as relational modeling and analysis that 

utilize relationships as either a placeholder or bridging structure from which unknown 

aspects of the system can be effectively explored.  These techniques were subsequently 

tested via the construction and analysis of models of five very different systems:  synaptic 

neurotransmitter spillover, secondary spinal cord injury, physiological and pathological 

axonal transport, and amyotrophic lateral sclerosis and to analyze neurophysiological 

data of in vivo cat spinal motoneurons.  Our relationship-based methodologies provide an 

equivalent means by which the different perspectives can be compared, contrasted, and 

aggregated into a truly comprehensive viewpoint that can drive research forward.



 

1 

CHAPTER 1 

INTRODUCTION 

 

 

Ask any biomedical engineer, myself included, and they will say that one of the reasons 

they entered the field was to ‘make a difference’ or to ‘help others’ through the 

application of their skills to either prevent or treat human illness and disease or to 

positively impact the lives of patients with health or physical ailments. As in any 

engineering endeavor, whether it is designing an oil refinery, a river dam, an electric 

power plant, or yes, even a treatment for a medical pathology, the key to success is to 

truly understand the problem or process that constitutes intervention.  In fact, the actual 

task of comprehensively understanding and conceptualizing a problem, process, or 

system is a significant part of engineering.   It is the primary task emphasized in 

engineering education, and it is the first and arguably the most important task of any 

engineering project, regardless of discipline. However, a major challenge for biomedical 

engineers is that our ‘systems’, the physiologies and pathologies in which we wish to 

intervene or apply treatment, are amazingly complex.  This high degree of biological 

complexity has hampered our ability to comprehend and understand how these processes 

work.  In many devastating conditions such as secondary spinal cord injury and 

amyotrophic lateral sclerosis to name two specific examples, this inability has and 

continues to result in a host of failed clinical trials by treatments that initially, that is 

without our full understanding of the pathology, seemed promising.  Thus, irrespective of 

the specific type of physiology, pathology, ailment or condition being investigated, there 
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is a significant and fundamental need to obtain a comprehensive view of its inner 

workings in order to most effectively and efficiently identify, design, and apply 

interventions, which positively affect the lives of patients.  My over-arching research goal 

is to provide foundational research that enables comprehensive views of complex 

physiological and pathological systems to be obtained, and thus facilitates biomedical 

engineers in our ultimate goal, to help others—the patients that can benefit from the fruits 

of their collectively applied skills.   

 

A truly comprehensive view of any physiologic or pathologic system necessitates 

multiple perspectives, including clinical, experimental and theoretical viewpoints, which 

respectively address the questions of  ‘what’, ‘how’, and ‘why’.  Yet, the traditional 

approach to physiologic systems has rather single-handedly relied upon hypothesis-

driven experimentation, both in vitro and in vivo.  Clinical viewpoints, in which actual 

human data is collected, is less common, with most studies focusing on pathologies and 

therapeutics.  However, the use of system-level theory, such as quantitative meta-analysis 

or computational models is infrequent, with only a few small niches of research pursuing 

such views, particularly at the system level. 

 

While not as common in the study of physiologic systems, the tool that engineers have 

often employed in an attempt to obtain a comprehensive understanding of the inner 

workings or mechanisms of any number of studied systems is, in fact, the computational 

model. The purpose of the computational model is no different than any other kind of 

model or prototype used as a simplified representation or visualization.  A computational 
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model allows researchers to ‘conceptualize’ highly complex systems in a manageable, 

quantitative manner by translating the language of biology to the language of math.  

Perhaps a more applied analogy is to think of a computational model as a map.  The 

model has inputs, which signify the initial ‘starting point’ of the system, mathematical 

equations that represent the actual process path, parameters that represent the coordinates 

of that path, and outputs, which reveal the ‘final destination’ or process products or 

outcomes.  The system map represented by the computational model thus provides a 

means for engineers and scientists to explore the ‘landscape’ or inner workings of their 

systems. 

 

Using computational models to obtain an overall or system-level understanding of a 

physiological or pathological system has many potential advantages.  In contrast to 

experiments alone, which due to the inherent nature of their methodology are forced to 

focus on either a single or at most a couple of physiological or pathological factors at a 

time, models can simultaneously simulate the effects of multiple factors and their 

interactions.  Furthermore, preclinical experimentation and especially a clinical trial can 

take years and hundreds of thousands if not millions of dollars to screen a single therapy.  

Given the speed and efficiency at which a model can simulate (as quickly as seconds to 

minutes for a single treatment), models have the promise to be used as a financially 

inexpensive high-throughput test bed to screen thousands of possible mechanistic 

hypotheses and therapeutics, prior to committing to expensive and lengthy preclinical and 

clinical trials.  Thus, the computational model has the potential to not only provide the 

much needed comprehensive view and high level of understanding of the physiologies 
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and pathologies of the very patients that we wish to treat, but also to use that view to 

prioritize, predict, and speed the process from therapeutic identification through 

preclinical development to clinical success.   

 

Despite the many potential benefits of computational models, they are infrequently used 

as an exploratory or predictive biomedical research tool, and they are even more rarely 

used in the study of diseased states or pathologies.  Instead, models have lagged far 

behind their experimental counterparts, reserved as a confirmatory tool utilized mostly to 

look at the biophysics and function of normal non-diseased state physiologies.  Given the 

many advantages of models and their great promise, it leads one to ask the obvious 

question:  Why aren’t computational models currently employed to obtain the 

comprehensive and predictive views that are essential to biomedical engineers and 

biomedical scientists to explore, understand, an treat the complex pathologies that plague 

a multitude of patients?   

 

Two main obstacles have prevented the use of models as a means of early comprehensive 

system exploration and prediction, especially in the research of pathologies.  First and 

foremost, traditional techniques of model analysis are often unable to explain the 

emergent and robust complex and often adaptive behavior of the biological systems they 

are intended to represent.  This inability is largely due to the models being inherently 

reductionistic in nature, whereas the biological systems they are intended to convey are 

inherently complex.  Complex biological systems exhibit complicated patterns of 

emergence, behaviors that are irreducible to the system’s constituent parts.  Yet, how we, 
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as humans, go about conceptualizing and subsequently modeling such systems is 

precisely on a reductionistic, component-by-component basis, stringing together any 

number of conceptualized parts until the model exhibits one or more desired outcomes or 

properties. Because the whole is greater than the sum of its parts, it is unrealistic to 

assume that any model, regardless of its level of detail and number of parts or 

components, can fully represent the actual system, particularly when viewed solely at the 

component level. While models will always be reductionistic in that they will only 

consist of the conceptualized components that we as humans manage, our analytical 

techniques that we use to characterize models do not need to be restricted to such 

reductionism.  We contend that a primary problem with current model analytical 

techniques is that they do not fully consider, identify or address the complex nature, 

properties, and dynamics of the biological systems that they characterize.  Thus, what is 

needed to overcome this obstacle are techniques able to look through the model’s 

reductionism to unveil the complex system-level properties that lie beneath.  In essence, 

we need a technique that ‘raises the hood’ of the model to see how the set of components, 

as a whole, relate and interact to produce dynamics and properties that characterize the 

physiologies and pathologies that we wish to understand. 

 

Secondly, in addition to the short falls of model analysis, the approach utilized by 

traditional modeling methodology has prevented the construction of models early in the 

research process. While traditional modeling methodology has been successfully used to 

develop models that confirm theories and hypotheses regarding biological systems in 

which we already have some level of understanding, these model construction techniques 
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have not been amenable to the study of systems in which we do not have a great deal of 

information or pre-existing conceptualizations, particularly regarding system-level 

behavior.  This inability is largely due to the fact that the traditional approach to many 

biological models has been to model ‘deep’ instead of ‘wide’.  That is, biological models 

are often constructed by piling as much detail as possible into the individual components 

of a model until the model exhibits the desired properties.    Again, this reductionistic 

approach, which emphasizes the detailed properties of individual components rather then 

the holistic behavior and interactions of those components, which produce the system’s 

emergent behavior, requires too much upfront knowledge of a system.  This knowledge 

barrier prevents the development of a full-fledged system model on the front end of the 

research process, and limits the utilization of the model as an exploratory tool that 

complements and refines the experimental process rather than trailing and confirming it.  

It is for this reason that pathologies, for which there is even less understanding and fewer 

details known than in normal, non-diseased state physiologies, are highly under-modeled. 

 

Goal 

The goal of this dissertation is to lower these two aforementioned barriers by laying the 

necessary foundation to move models forward in the research process—from a 

confirmatory tool to an exploratory tool, which helps to direct and prioritize experimental 

and clinical research by providing the comprehensive, system level view of physiologies 

and pathologies that is needed in order to identify, develop, and evaluate effective 

therapeutic strategies.  
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Specific Objectives 

The specific objectives of this dissertation individually address each of the two 

aforementioned obstacles, which correspond to the short falls of current model analytical 

and development techniques to produce comprehensive system-level views of complex 

physiological and pathological systems: 

 

1) Develop and evaluate analytical tool(s) to tease out and explain the underlying 

mechanisms, organizing principles, and/or dynamics of emergent, complex 

adaptive behavior within computational models. 

2) Develop and evaluate methodology that enables initial, system-level “scaffolding” 

models to be quickly built and assessed based on available literature or 

experimental data without the need for unknown detailed component properties. 

 

Approach 

It is our assertion that the philosophy of complexity theory, the study of complex 

systems, can be utilized to develop methods capable of identifying, characterizing and 

even predicting the inner workings, dynamics, and emergent behavior of complex 

physiologies and pathologies.  Thus, the approach utilized to accomplish these objectives 

consists of using complex systems theory and philosophy to develop applied 

methodological and analytical modeling tools. The developed modeling tools are referred 

to as relational modeling and the analysis tools are referred to as relational analysis.  

These complex systems-based tools are developed and tested within five very different 

physiological and pathological systems whose only commonality is they are neural in 
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nature:  synaptic neurotransmitter spillover, axonal transport, spinal cord injury (SCI), 

amyotrophic lateral sclerosis (ALS), and motoneurons.  To insure the robustness of the 

developed analytical tools of relational analysis in examining complex system dynamics 

in all types of models, these systems were modeled using both a variety of traditional 

techniques, including mechanistic and conceptual modeling, in addition to the newly 

developed relational modeling technique.   In addition to testing on computational 

models, the usability and effectiveness of the relational analysis technique is also 

evaluated on experimental data using neurophysiological recordings from cat spinal 

motoneurons.  The relational modeling methodologies are used to construct 

comprehensive views of two highly clinically significant, yet lesser understood 

neuropathologies:  secondary SCI and ALS. 

 

Dissertation Organization 

The overall organization of this dissertation is by system test case study since the primary 

intent is to illustrate the use, applicability and efficacy of the developed methods within 

different physiological and pathological systems.  Chapters 2-3 lay the foundation of this 

dissertation by providing a literature review and the philosophy of approach.  Chapters 3-

6 focus on the developed relational modeling and analysis tools.  Chapters 7-10 are 

physiological and pathological test cases in which we develop and test our relational 

modeling and/or relational analysis tools.  Chapter 11 provides the conclusions of this 

work. 
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Outline of Chapters 

Chapter 2: Literature Review provides an overview and history of computational 

modeling and the theoretical fields that primarily use it, computational neuroscience 

and systems biology.  The field of complex systems is also reviewed. 

Chapter 3: Philosophy of Approach explains the complex systems based philosophy, 

which was used to develop the methodological tools, and how this philosophy was 

synthesized into an analytical approach.  Additionally it provides an overview of our 

generalized modeling process. 

Chapter 4: Relational Analysis discusses relational analysis in detail including why, 

when, and how to use it.  It also serves as a user’s guide for the relational analysis 

technique of search-survey-and-summarize (S3). 

Chapter 5: Component Analysis discusses component analysis, including the detailed 

steps.  It also illustrates an experimental test case in which neurophysiological data 

from in vivo cat spinal cord motoneurons is analyzed using component analysis. 

Chapter 6:  Relational Modeling discusses relational modeling in detail.  It also serves 

as a user’s guide for the relational modeling technique of review-relate-refine (R3). 

Chapter 7:  Synaptic Neurotransmitter Spillover encompasses the test case of 

neurotransmitter spillover.  It includes two publications.  The first develops and 

analyzes the primary spillover model using traditional methods (Mitchell et al 2007) 

and the second develops and uses relational analysis to differentiate between two 

different model implementations (Mitchell and Lee 2007). 
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Chapter 8:  Secondary Spinal Cord Injury includes the published spinal cord injury 

model (Mitchell and Lee 2008), the first relational model using our developed R3 

technique. 

Chapter 9:  Axonal Transport includes the physiologic portion of the axonal transport 

test case.  It includes the published cooperative axonal transport model (Mitchell and 

Lee 2009). 

Chapter 10:  Amyotrophic Lateral Sclerosis is aggregation of our work in ALS using 

our developed relational analysis and modeling methodologies. It includes a 

submitted publication of a computational model of ALS-disrupted axonal transport 

(Mitchell and Lee, in revision) and a preliminary relational model of the 

comprehensive ALS pathology (Mitchell and Lee, in preparation). 

Chapter 11:  Conclusions summarizes our conclusions on the developed methodologies, 

viewpoints, and a new approach to systems physiology. 
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CHAPTER 2 

LITERATURE REVIEW 

 

  

This chapter lays the background required to understand the philosophy of our approach 

(Chapter 3) by discussing the current research techniques and applications of 

computational modeling in the analysis of biological systems.  Within this chapter, the 

history of the field(s) which utilize computational modeling are discussed, as well as their 

current techniques, and the pros and cons of those techniques in regards to their ability to 

produce, analyze, and predict the emergent properties and dynamics of physiologic and 

pathologic systems. 

 

The field of computational modeling is, in and of itself, not a single field.  Rather, 

computational modeling exists among theoretical fields, which use it as a tool to 

investigate their respective systems.  Of fields that have extensively used computational 

models to study physiological systems, the theoretical fields of computational 

neuroscience and systems biology have used computational modeling and associated 

quantitative techniques the most.  While both systems biologists and computational 

neuroscientists have the same overall goal—the desire to better understand their 

respective systems, including mechanisms, dynamics, and organizing principles--- as a 

whole, each field has undertaken different means and methods to pursue their equivalent 

goals.  This chapter describes the history of computational neuroscience and systems 

biology, focusing on the advantages and disadvantages of their techniques and the traits 
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of their systems, which necessitate a certain technique. Finally, the chapter concludes 

with some necessary background on complex systems. 

 

Computational Neuroscience 

Computational neuroscience is a field that uses mathematics and theory in order to 

describe, examine and analyze the behavior, function, and dynamics of individual 

neurons, neural networks, and the brain and spinal cord, which comprise the central 

nervous system.  Computational neuroscience has made provided enormous contributions 

to computational modeling through the addition, application, and implementation of 

important quantitative techniques, particularly techniques such as the ‘black box’ model, 

large and complex mechanistic models, information theory, and parameter searches 

(which are all discussed in this section).  While computational neuroscientists have been 

quite successful in producing the emergent properties of the neurons in which they study, 

the field in general often falls short in explaining why and how these properties are 

produced, a key requirement for studying neural physiologies and especially pathologies. 

 

Though the term “computational neuroscience” did not appear until the mid-1980’s 

(Sejnowski et al. 1988), most consider the birth of the field to be in 1952 with the 

publication of the classic Hodgkin-Huxley neuron model, a quantitative description of 

neuronal membrane current and excitation using parameters obtained from the giant 

squid axon, developed by Alan L. Hodgkin and Andrew F. Huxley (Hodgkin and Huxley 

1952).  However, some argue that the true starting point of computational neuroscience 

was in 1907 when Louis Lapicque first introduced the integrate-and-fire neuron model 
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(Brunel and van Rossum 2007; Lapicque 1907).  These original models were more or less 

“black box” models that describe the neuron model using an input-output transform.  

They assumed that neurons were isopotential, and they ignored the contributions of 

dendrites.   

 

The next significant advance in computational neuroscience was by Wilfrid Rall who 

used the mathematics of the cable theory to show that the dendrites and their numerous 

arborizations largely affect the processing of synaptic input by the soma (Rall 1959; Rall 

1964; Rall 1962).  The neuronal models of today often incorporate hundreds of neuronal 

“compartments”  (e.g. individual pieces of a neuron which are computationally modeled 

as a single unit), mainly to account for the strong impact of these large dendrites (Rose 

and Cushing 2004; Shapiro and Lee 2007).  In addition to getting “larger”, recent neuron 

models have become increasingly more complex.  For example, some include numerous 

sodium channel subtypes rather than modeling sodium as a single influx (Naundorf et al. 

2006) or include detailed channel kinetics such as a 12-state Markov model for a single 

sodium channel (Kuo and Bean 1994), and active transporters and pumps (Lopreore et al. 

2008).  

 

While some of the newer, complex additions to neuronal models are mechanistic in 

nature, based off first-principles kinetics, diffusion, and electrotonics, much of neuronal 

modeling and computational neuroscience still remains largely “black box” intermixed 

with some degree of mechanistic modeling.  This is particularly true of large neuronal 

network models. Other than alleviating computational requirements, a feat that has been 
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greatly helped by the advent of new simulator technologies (Bower and Beeman 1998; 

Carnevale and Hines 2005; Graas et al. 2004; Weinstein and Lee 2006), the need for the 

black box approach largely remains for two reasons.    First, much is still unknown in 

regards to neuronal mechanisms and especially as to connectivity.  Secondly, 

computational neuroscience lacks the extensive databases that the systems biologists have 

at their disposal.  Thus, traditional data-driven techniques, which require very large, 

complete data sets, such as those used by systems biologists to explore the enormous 

genomics and proteomics databases, are not amenable to most of computational and 

experimental neuroscience.  Therefore, the current analytical approaches that best lend 

themselves to computational neuroscience include information theoretic approaches such 

as infomax learning (Okajima 2004) and Bayesian methods (Pearl and Russell 2003) and 

other traditional input-output transformation techniques; for a review of computational 

neuroscience techniques see (Dayan and Abbott 2001; Rieke et al. 1997).   Another 

common technique set includes monte-carlo or random analysis in which random 

parameter sets (i.e. parameter searches) and/or connectivities are simulated to aid in the 

investigation of dynamics(Goldman et al. 2001; Mitchell and Lee 2007; Prinz et al. 2004; 

Van Geit et al. 2008).  However, the pitfalls of such methods is that, though they allow us 

to recapitulate experimental outputs, they do not give us insight as to how or why we 

have reached them.  Thus, mechanistic deduction from such methods alone becomes very 

difficult. 
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Systems Biology 

Systems biology is a field that attempts to take a ‘systems’ or ‘top down’ approach to the 

analysis of biological systems.   Instead of focusing on the individual components within 

a system, the goal of systems biology is to look at multi-scale interactions, functions and 

dynamics across different physiological levels, such as cellular, tissue, and body systems.  

However, while most in the field would agree with this overall goal, much of what is 

currently considered ‘systems biology’ typically does not work at the true systems level 

nor does it focus on system-level interactions.   Instead, most research focuses on one or 

two scalar levels and looks only at the implications of those levels on the system.  Many 

researchers reside in the areas of metabolics, genomics, and proteomics where high-

throughput arrays, analyses and databases can be used to quantify how specific individual 

changes affect all of metabolism, the genome or proteome.  Thus, systems biologists 

often focus on the relationships within their studied systems.  In fact, much can be 

learned from systems biology given that it has pioneered the application of multi-variate 

statistics to extract important system relationships from large datasets.  However, systems 

biology has been unable to ‘drill’ through a system and utilize the relationships to look at 

how the components of a system interact to produce the emergent properties, dynamics, 

and organizing principles which encompass the physiologies and pathologies that we 

wish to explore.  In this section, the history of systems biology is highlighted along with 

currents relationship-extracting techniques currently utilized by the field. 

 

Similarly to computational neuroscience, systems biology was also rediscovered and 

defined far after its origin. Ludwig von Bertalanffy is often considered the father of the 
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field for his work in general systems theory applied to biological systems, work that first 

appeared around 1950 but was not recognized until the mid-1960’s  (von Bertalanffy 

1968; von Bertalanffy 1950). After Bertanlanffy, some of the earliest contributions to the 

field came in the 1970’s from the very independent and isolated efforts of a variety of 

fields, including metabolism (Savageau 1969), cardiophysiology (Heppner and Plonsey 

1970; Melbin and Patterson 1970), and developmental biology (Meinhardt and Gierer 

1974), to name a few. 

 

However, “systems biology” as we currently know it did not become popularized until 

the late-1990’s.  Its rebirth was largely due to the advent of high-throughput experimental 

technologies such as the gene chip and microarray (Lashkari et al. 1997), which 

revolutionized the study of genomics (Collins et al. 1998), proteomics (Anderson and 

Anderson 1998), and other ‘omic’ fields by providing large compilations and databases 

of quantitative metrics and output that could describe a system in its entirety, such as the 

Human Genome Project (Collins et al. 1998).  In sharp contrast to computational 

neuroscience, the chief issue of systems biology is an overwhelming availability of 

extremely complex experimental data.  Since theses large experimental databases serve as 

the primary source of data, systems biology became data-driven resulting in the need for 

interpretative data analysis and manipulation techniques.   

 

Because the data pool is so overwhelmingly large, systems biologists spend a good deal 

of time determining the “importance” of various metrics by looking at their correlations 

using multi-variate statistics (Hair et al. 2006).  In addition, graph theory is used to unveil 
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the topology of detailed genetic and molecular networks in an effort to determine their 

underlying organizing principles and dynamics (Strogatz 2001; Wouters et al. 2003).  

Thus, the tools of systems biologists lean towards systems theory in order to describe 

how the numerous components in their databases result in a functional “system”.   

 

Complex Systems 

While systems biology and complex systems are presently distinct fields, they share 

underlying principles and foundational mathematic origins, as well as many mathematical 

research contributors, including Ludwig von Bertalanffy.  However, the two fields 

diverged not long after their birth when early system biologists turned to “reductionist” 

approaches, which attempt to study the global properties of a system by the independent 

study and combining of its simpler, sub-system components (Ricard, 2006).  

 

However, real systems, including biological systems, have properties that cannot be seen 

when viewed solely from the independent component perspective. For example, say that 

a real system, XY, can be defined by a mathematical function H(X,Y) = H(X) + H(Y) 

that describes its properties or degrees of freedom using two independent subsystems, 

H(X) and H(Y).  The result of H(X,Y) produces integrated properties that cannot be seen 

when the two subsystems are considered independently.  These integrated properties are 

referred to as emergent and the system is said to be complex (Ricard, 2006).  Neurons are 

a perfect example of how combining different subsystems (channel kinetics) can result in 

an action potential, an emergent property of the neural system.   
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Typically, complex systems are very robust.  They possess the ability to undergo radical 

qualitative change while maintaining systemic integrity.  Complex systems theorists 

attribute such innate ability to undergo change to the fact that complex systems show a 

domain between deterministic order and randomness (Cilliers 1998), which is complex 

and often referred to as “the edge of chaos” (Bak 1996).  Unlike chaotic systems, 

complex systems develop far from equilibrium at the edge of chaos and are history-

dependent (Buchanan 2000). Complex systems evolve at a critical state built up by a 

history of irreversible and unexpected events.  These additional defining attributes of 

complex systems add to the balance of adaptability and predictability of their 

functionality (Buchanan 2000). 

 

In fact, it is this very lack of robustness that results in the inability of reductionistic 

computational models to either fully produce or uncover the rich emergent features of 

many physiological systems. From a modeler’s standpoint, some of the larger pitfalls 

with reductionism, listed in no particular order, include the following: 

• Failure to produce any or all of the emergent properties 

• Failure to be as robust as the real system 

• “Breaking” of fundamental system component relationships (i.e. wrong 

correlation sign or magnitude) in order to produce desired features 

• Inability to explain how or why an emergent feature appears 

• Inability to characterize the dynamics of emergent features 
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Not surprisingly, it has become increasingly obvious to modelers and non-modelers alike, 

that the global properties of a system cannot always be predicted from the independent 

study of corresponding sub-systems (Ricard, 2006).  In a series of articles published in 

Science entitled “Beyond Reductionism”, scientists from several fields including 

neuroscientists, chemists, physicists, biologists, and social scientists reached the same 

conclusion that the study of emergent global properties of a system of interactions 

between local subsystems is essential to understand their physical nature in quantitative 

scientific terms (Gallagher and Appenzeller, 1999).  To date, despite the common 

agreement that the study of emergent properties is one of the keys to understanding 

physical mechanisms of models, there is little to no consensus as to how to go about 

quantitatively and methodically studying them.  Instead, the field still remains largely 

philosophical. 

 

The methods that do exist to study complexity are centered on quantifying the flow of 

information, often referred to as information theory. The methods of information theory 

are based on probability theory and statistics. The most important metrics used are 

entropy, the information in a random variable, and mutual information, the amount of 

information in common between two random variables.  While information theory has 

been used to model and characterize some aspects of physiological systems, such as 

quantifying the complexity of the brain to determine the segregation of areas of function 

(Tononi 1994), this technique is not amenable or applicable as a general modeling tool 

for constructing and analyzing most physiological and pathological systems.   
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Table 2.1. Summary of methods used by computational neuroscientists, systems 

biologists, and complex systems theorists, including their advantages and disadvantages. 

 

Field Methods Advantages Disadvantages 

Computational 

Neuroscience 

• Information 
Theory 

• Bayesian 
networks 

• Random analysis 
• Parameter 

searches 

• Able to achieve output 
goals 

• Requires no knowledge 
of mechanisms 

• Requires less data 

• Difficult to infer 
mechanisms from 
non-unique 
solutions 

• Do not know 
“why” outputs are 
achieved 

Systems 

Biology 

• Graphical theory 
• Cluster analysis 
• PCA 

• Able to handle large 
data sets 
 

• Overly restrictive 
assumptions 

• Inability to look at 
all “layers” of the 
system 

Complex 

Systems 

• Information 
theory 

• Uses simple 
relationships to explain 
complex behavior 

• Does not require that 
mechanisms be known 

• Largely 
philosophical 

• Currently no 
applications-based 
methods 

• Information theory 
is not amenable to 
all biological 
questions 
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CHAPTER 3 

PHILOSOPHY BEHIND THE APPROACH 

 

 

The disconnect between the computational models of the physiological systems that we 

wish to explore and the actual systems, themselves, is the gulf that lies between 

reductionism and complexity.  It is a requirement that our models be reductionistic in 

nature, yet, the physiologies and pathologies that we wish to study are quite obviously 

complex.  To date, this inescapable fact has left biomedical engineers in a quandary 

since, as noted in the background, most of what has been proposed to analyze complex 

systems has fallen into the category of ‘descriptive philosophy’.  Unfortunately, this 

philosophy alone does not solve the biomedical engineers’ quandary.  This fact is perhaps 

best exemplified by a quote of a very famous scientist, which has served as a source of 

inspiration for this entire project: 

 

“The love of complexity without reductionism makes art; the love of complexity 

with reductionism makes science.” --Edward O. Wilson, Consilience 

 

The above quote eloquently states our methodological goal: to make science by 

developing an analytical approach that would allow the complex properties and dynamics 

of physiologic and pathologic systems to be explored through what are unavoidably 

reductionistic computational models. To do this, we translated the philosophical art, 
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which describes the rich features, properties, and characteristics of complex systems into 

a set of applied quantitative techniques. 

 

This chapter describes the perspective and philosophy from which our methodologies are 

derived.  The first section of this chapter describes our over-arching view of physiologic 

systems, as complex biological systems, and discusses their conserved fundamental 

properties.  The second section of this chapter describes how we utilize the 

aforementioned complex systems philosophy as an analytical approach to develop 

methods capable of exploring complex biological systems.  In the third and final section 

in this chapter our generalized modeling process is outlined.   

 

Physiologic systems described as complex systems 

Real physiologic systems are inherently complex in that a huge number of inputs, 

governed under an extremely dynamic set of relationships, are used to generate a large set 

of robust yet predictable behavioral patterns which are said to be “emergent”.  This 

fundamental feature of biological systems was first described by Csete and Doyle (Csete 

and Doyle 2004) as the “bowtie” effect.  A critical principle of the bowtie is dimensional 

restriction.  That is, a large number of inputs (i.e. multi-dimensional system input) are 

transformed or dimensionally restricted through mechanisms governed by underlying 

relationships to produce emergent, complex adaptive behavior (i.e. multi-dimensional 

system output) as shown in Figure 1.  The system utilizes positive and negative feedback 

to alter or “tune” these relationships to respond to changing input or environmental 

conditions or to initiate a change in behavioral output.  
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As shown in Figure 1, it is the inner relationships and emergence, which form the “knot” 

or “pinch point” of the bowtie.  It is at this pinch point where the driving mechanics of a 

system reside.  Therefore, it is our ability to ‘see’ what happens inside the pinch point, 

which holds the key to unlocking the mechanisms, dynamics, and organizing principles 

that are central to bioscientific and clinical research.  Thus, we focus our methodological 

development on the relationships that specify the dimensional restriction and emergence, 

which, together, encompass the pinch point. 

 

Figure 3.1.  The bowtie effect of complex biological systems.  Multi-dimensional input is 
dimensionally restricted via local relationships that govern system mechanisms to 
produce multi-dimensional complex adaptive behavior.  The system uses positive and 
negative feedback in order to “tune” the behavioral response. 
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There are two critical aspects or properties of complex biological systems that influence 

the relationships and resulting dimensional restriction and emergence seen at the pinch 

point--redundancy and degeneracy.  Redundancy is defined as identical structural units or 

subsystems which perform the same function, whereas degeneracy is defined as 

structurally different units or subsystems which can perform the same function (Tononi et 

al. 1999).  These properties can affect the magnitude, probability or certainty of an 

emergent property or response.  For example, a neuronal cell contains numerous identical 

or redundant sodium channels that can affect the magnitude and certainty of its 

fundamental emergent property, the action potential.  Simultaneously, sodium channels 

can be degenerate in that there are different types of sodium channels (e.g. Nav 1.6 vs 

Nav 1.3), which are structurally different but perform the same function of controlling 

sodium influx into the cell.  However, the best example of degeneracy is the brain.  The 

brain has multiple activation pathways that can be used in order to accomplish a task.  

Such degenerate paths become apparent particularly in brain-injured patients such as 

those who have incurred a traumatic brain injury, had brain surgery, or experienced a 

stroke.  These patients often have damage, which initially limits certain motor tasks or 

skills such as speech or language.  However, with time, these patients adapt by activating 

degenerate networks, which enable them to “regain” lost functions.  Such adaptability 

makes complex biological systems extremely robust. 

 

While complex biological systems are extremely robust over long periods of time, they 

also have the ability to undergo radical qualitative change while maintaining systemic 

integrity.  For example, consider a patient with a prosthetic arm/hand who has undergone 



 25

the relatively new procedure to redirect cutaneous sensation from the hand to the chest 

skin of human amputees with targeted reinnervation (Kuiken et al. 2007).  Such patients 

learn to activate their prosthetic hand using the chest muscles and “feel” the sensation 

from objects touching their prosthetic hand as if is was their real hand except this 

sensation is mapped to the chest.  The sensory map is transformed such that literally 

touching the area where the prosthesis is reinnervated is as if the physiological hand were 

being touched. This adaptability is so superb that such a patient can even distinguish 

sensations as being felt from individual fingers.   

 

Complex systems philosophy utilized as an analytical approach 

We assert that the redundancy and degeneracy within complex systems directly results in 

the flexibility and robustness that is seen in complex biological systems.  The remainder 

of this chapter discusses how these fundamental properties of complex systems, 

particularly the formation of pinch points, can be used to model complex biological 

systems, including physiologies and pathologies. 

 

In the Introduction, a model was described as a system map in which the inputs signify 

the initial starting point, equations represent the system path(s), parameters specify the 

coordinates of the path(s), and outputs specify the final destination or system outcome.  

Typically most modelers will fixate on the final destination (the outputs).  However, as is 

shown in the bowtie effect, it is in the path where the complex relationships between 

inputs and outputs are created which result in the emergent properties and behavior that 

characterize a particular system.  Thus, it is this path, the pinch point that contains critical 
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information about the underlying physiological mechanisms involved in a biological 

process.  Models, just like maps, can include varying levels of details and complexity, 

which illustrate the system paths.  For example, a simple model may only show major 

highways similar to a road map, whereas a more complex model may include additional 

features, similar to the mountains, rivers, and elevations shown on a more detailed 

physical or topological map.  The level of complexity included in a model may or may 

not affect the measured outputs.  However, it can definitely influence the model 

dynamics, what happens between the starting point and final destination, and it is these 

dynamics, which are a measure of the relationships within a system.   

 

Thus, using traditional output-value based analytical techniques, there is no way of 

knowing whether the model implemented, whether a detailed mechanistic model or a 

high-level ‘black box’ model, correctly illustrates the dynamics that occur at the pinch 

point.  Furthermore, because there is little to aid in the determination of the input-output 

function, typical output value based techniques of modeling and analysis are highly 

reliant upon knowing or understanding a considerable amount about a system—either 

bottom-level detailed, mechanisms or top-level, higher conceptual understanding. 

 

In contrast, our general approach to modeling methodology and analysis is to shift the 

attention back to the ‘pinch point’, where the mechanisms and organizing principles that 

we wish to reveal are actually contained, by focusing on the relationships within a system 

rather than purely its quantitative output values.  We use these system relationships as 

either a placeholder or bridging structure from which unknown aspects of a system can be 
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effectively explored.  For example, our data analysis technique, relational analysis, 

utilizes the intrinsic relationships among the system outputs in order to deduce the 

mechanisms and dynamics, which are occurring inside the pinch point.  Similarly, 

relational modeling, utilizes the measured intrinsic experimental relationships within the 

system in order to reproduce the dynamics, which specify the outputs.   

 

Our generalized bridging framework for biological and neural complex systems, termed 

Heuristic Emergence via Dimensional Restriction (HEDR), is the philosophical basis 

from which relational modeling and relational analysis are derived. HEDR has become 

our (the Lee lab’s) ‘manifesto’ for the exploration and analysis of complex biological 

systems, and has been formally written as the following: 

 

We believe that the structural similarities we observe reflect a fundamental 

feature of biological systems at all levels.  We refer to this common feature as a 

“pinch point” –a dimensional reduction producing the emergence of functional 

behaviors.  Furthermore, we believe that the overabundance of dimensions, due to 

redundancy/degeneracy, provides the key building material from which these 

pinch points are formed.  By warping, squeezing and folding, the nonlinear 

dynamics of specific mechanisms within the underlying system transform these 

dimensions.  The redundancies/degeneracies in the system are critical for 

robustness, allowing adaptation and reconfigurability that would be impossible in 

an actual, low-dimensional system. Finally, we believe that each pinch point 

implements what can be considered a heuristic solution for producing a behavior, 
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with the “degree” of pinch being tied to the degree of emergence and to the 

“certainty” of the heuristic.   

 

The development of our relational analysis and relational modeling methodologies using 

HEDR principles is discussed in the methodology chapters:  Chapters 4 for relational 

analysis, Chapter 5 for the close relative of relational analysis, component analysis, and 

Chapter 6 for relational modeling.  Furthermore, it is in these aforementioned chapters 

where the detailed steps of these methodologies are specifically laid out.  However, the 

application of these methodologies is discussed within the specific system test case 

chapters, 7-10 for relational analysis, and 8 and 10 for relational modeling.  Examples of 

component analysis, including its use to analyze experimental data, are given both 

specifically within the component analysis (Chapter 5) and within the relational analysis 

test cases. 

 

Generalized Modeling Process 

In this section, our generalized modeling process is outlined.  Figure 2 illustrates our 

generalized modeling workflow.  The overall process is an iterative approach that 

incorporates experimental, clinical, and theoretical data/input into a ‘working model’ that 

is evaluated and refined with the techniques developed in this dissertation, namely 

relational and component analysis.  
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Figure 3.2.  Modeling Process Workflow.  The diagram illustrates the major steps of our 
modeling process.  The overall process is an iterative approach that includes 
experimental, clinical, and theoretical input into the construction of a ‘working model’ 
that is evaluated and refined using our complex systems based approaches of relational 
and component analysis. 
 

The process begins with identification of the system to be studied.  In general, system 

identification is based on the interests of the researcher and the type of question the 

researcher wishes to investigate.  In this work, our scientific/research interest in particular 

systems did influence the types of systems that we chose to model.  For example, our 

particular research interests favor neural systems, both physiological and pathological.  

As such, that is the one commonality between all of the test case systems.  However, 

specific system selection for the test cases was also influenced by the properties of the 

system. We wanted to insure our developed methods were robust enough to handle a 

wide range of systems modeled using a variety of model construction techniques.  Thus, 

we desired to have a diverse range of systems—systems that varied in their properties, 
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the level to which they had been experimentally investigated, and our level of a priori 

knowledge. 

 

The next stage of the process works towards developing a ‘preliminary model’, a ‘back of 

the envelope’ calculation or general estimate of the primary system behavior/emergent 

property(ies).  It is at this point when the translation from the ‘language of biology to the 

language of mathematics’ first occurs.  This initial translation is usually quite crude, 

consisting of a few simple relationships or generalized mathematical functions to 

estimate one or more aspects of system behavior.  In fact, this initial or preliminary 

model may or may not be an actual computational model in the traditional sense of a 

formally coded computer program; it could be as simple as a theoretical 

conceptualization within a spreadsheet. This ‘back of the envelope’ calculation is the 

starting point from which the model is first synthesized from multiple influencing 

perspectives, including the experimental/clinical literature (labeled as ‘non-modeling 

literature’ in Figure 2) and theoretical literature stemming from existing theories or 

computational models within the field (labeled as ‘modeling literature’ in Figure 2).    

 

After a few iterations with a preliminary model based on input from multiple sources and 

perspectives, a working model is developed.  This working model is the traditional 

computer model, but the label of ‘working model’ is used instead to signify that the 

model evolves through an iterative process of evaluation and refinement.  It is during this 

stage when the model strategy (bottom-up/top-down/middle-out) and type are chosen 

based on the properties of the system, the type of data available and the status of the field 
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(i.e. the level to which either detailed mechanisms and/or comprehensive theories have 

been developed). With each iteration, the model is re-evaluated not just at the quantitative 

level (i.e. parameters, etc), but also at the conceptual level to insure that the model is not 

forcing the modeler’s assumptions inappropriately onto the modeled system, a common 

issue particularly in black-box or higher level mechanistic models. Thus, even the model 

strategy and type can continue to change or evolve very late in the process.   

 

The iterative process of evaluation and refinement (see Figure 3) is accomplished using 

our repertoire of analytical techniques, namely relational and component analysis. The 

process begins with an initial ‘base case’ simulation from which output values are 

extracted using system-specific metrics that characterize the model’s behavior or 

emergent property(ies).  Next, data is collected that represents multiple or different 

system responses or ‘model operating points’.  Once data is collected, relational and 

component analysis are used to evaluate both system and component level properties, 

respectively.  As previously mentioned, these techniques focus on the relationships 

within the system, which result in the emergence and dimensional restriction that occurs 

at the pinch point.  Specifically, the quantitative output relationships are qualitatively 

visualized on a map referred to as a ‘landscape’.  This detailed map provides critical 

system insight that can be used to predict and prioritize mechanisms and dynamics and to 

identify areas of the model that need improved and refined.  
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Figure 3.3.  Model Evaluation and Refinement.  This diagram shows the basic process 
beginning with the initial simulation, extraction of output metrics characterizing the 
model’s behavior or emergent property(ies),  accumulation of data representing multiple 
model operating points and/or behaviors, and model evaluation via relational and 
component analysis.  The product of relational and component analysis, the system 
landscape, is used to refine the model. 
 

Different Viewpoints 

We recognize three basic modeling viewpoints, each which uses a different general 

approach in the model development and construction process:  bottom-up, top-down, and 

middle-out.  Each type of model can offer a very different and unique perspective into a 

system.  However, despite the benefits of multiple viewpoints, typically modelers’ tend to 

use only a single viewpoint, the viewpoint that most assists with the efficient construction 

and implementation of their system model.  In some cases, depending on the amount and 
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type of a priori knowledge of a system, there may be no initial choice in which viewpoint 

to utilize.  These viewpoints include: 

1. Bottom-up.  The bottom up viewpoint is a detailed-oriented perspective that 

is used to lay the foundation of the model. It typically utilizes individual 

mechanisms and first principles, customary to the typical mechanistic model 

with which scientists are most familiar. 

2. Top-down.  The top down viewpoint is less focused on structurally 

recapitulating the detail of individual mechanisms, but rather, it instead 

utilizes higher level theories from which the components of the model are 

conceptualized.  Thus, top down models are often referred to as ‘conceptual 

models’. 

3. Middle-out.  The term ‘middle-out’ is not one that is likely to be seen in the 

standard computational modeling literature. Rather, it is a term that we have 

coined to refer to models, which are data-centric.  This viewpoint is thus 

dependent upon experimental data, not only for validation, but also for its 

structural foundation, construction, and implementation.  The ‘middle-out’ 

viewpoint is best described by our newly developed approach of relational 

modeling using the R3 technique. 
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CHAPTER 4 

RELATIONAL ANALYSIS 

 

 

As bioscientists and bioengineers, the goal of our models is to identify, understand, and 

predict the mechanisms, dynamics, and organizing principles that are central to our 

respective physiological and pathological systems and their respective emergent 

property(ies). Using complex systems theory as a methodological guide, the bowtie effect 

states that the inner workings that we wish to reveal occur at the dimensionally restrictive 

“pinch point”.  Therefore, what is needed is an analytical method to view the inner 

workings of pinch points.   The set of analytical tool(s) we have developed for this exact 

purpose we refer to as “relational analysis”.  Relational analysis allows us to “pop the 

hood” on the model and to see what happens beneath the surface, inside the pinch point.  

With this inside view, we can assess, characterize, and predict system dynamics, behavior 

and emergent properties in ways not possible with traditional methods used alone. 

 

The philosophical basis of relational analysis is rooted in complex systems theory in that 

it uses the system’s underlying relationships and emergence.  The relational analysis 

methods that we developed can be thought of as a camera that can see through a low-

dimensional pinch point, revealing the warping, squeezing and folding of the underlying, 

high-dimensional, redundant/degenerate mechanisms.  This relational analysis camera 

can be used to assess origin and degree of pinch, thereby helping us to assess the 

implications of the pinch point on model behavior.  Thus, relational analysis is simply an 
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analytical technique that allows us quantify the relationships within the model or system, 

which are a result of the pinch point.  The main product of relational analysis is the model 

or system landscape, which reveals the “shape” or topology of the system under a certain 

set of specified model conditions.  This landscape, composed of a cross-correlation 

matrix of the system’s or model’s outputs, reveals the relationships or interactions which 

comprise the system’s dynamics and describe the system’s emergent property(ies).  By 

revealing the topology of the system, a series of landscapes of the system and/or of its 

components can unveil dynamics, which can be used to pose hypotheses regarding 

system mechanisms and behavior.   

 

Search-survey-and-summarize (S3) 

While relational analysis is composed of several techniques or subsets of techniques, our 

overall strategy or technique is referred to as “search-survey-and-summarize”, or S3 for 

short.  As the name implies, the standard S3 method contains three basic parts: search for 

a set of parameter values that give rise to the selected target output values (we define 

each set as a homologue), survey the model output landscape by cross-correlating 

sensitivity analyses for each homologue and summarize by statistical analysis of the 

population of homologue landscapes.  Essentially S3 looks to assess the model at various 

operating points of interest, collect data regarding the sensitivity and robustness of those 

operating points, evaluate and visualize the output relationships which are created at the 

specified operating point(s) within a model landscape, and to compare and contrast the 

dynamics illustrated within a landscape or set of landscapes to explore or formulate 

hypotheses regarding both mechanistic and system-level behavior.  The basics of 
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relational analysis and specifically the technique of S3 are published (Mitchell and Lee, 

2007), but this chapter expounds on those basics and focuses on the what, when, where, 

how and why of the process. 

 

Before beginning S3… 

Before relational analysis can be performed, a model must be up and running.   Different 

ways to construct a model are discussed in the General Modeling Methodology section of 

Chapter 3.  However, beyond the model construction, the next step is specifying the 

outputs that are to be included as part of the relational analysis.  This section briefly 

outlines model output selection. 

 

Output types.  The first step to relational analysis is defining the relationships that are to 

be analyzed.  The analyzed relationships of relational analysis are typically the model 

output relationships.  Although not a requirement, the output metrics and their 

relationships usually describe or quantify one or more emergent properties of the system.  

Relational analysis does not discriminate the types of model outputs.  That is, any metric 

that is a single, quantifiable entity can be used as an output, and these output metrics need 

not be of the same type or units.  However, if a model utilizes graphical output or 

“traces” to represent an emergent property or other characterizing feature, then such a 

graphical output will need to be decomposed into a set of metrics which describe or 

characterize the graph or trace. An example of such a graphical trace is the emergent 

property and output of a neuron model, the action potential.  Thus, typical outputs for 

relational analysis of a neuron model might include spike height, spike width, time of 
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onset, half-activation and time constants, etc.  Other possibilities for outputs, particularly 

in models that include kinetics or pathways, include concentrations (such as measures of 

glutamate), degrees of activation (such as receptor or enzyme activation) or percent or 

fractional compositions.  Whether measurements are electrical, physical, chemical, 

statistical, and/or combination thereof, or even something else not mentioned here in this 

text makes no difference since all of the output metrics will be analyzed relative to one 

another.   

 

Minimum outputs. While the type(s) of outputs do not matter for relational analysis, the 

number of outputs does influence the outcome and particularly the efficacy of relational 

analysis.  In general, more outputs are better.  In fact, it is helpful if some outputs are 

‘degenerate’ in that they are different methods that ultimately measure the same thing or 

‘redundant’ in that they are the same metrics measured at different time points or 

different conditions.  More outputs equate to more insight into the system and give more 

discriminatory power to differentiate, compare, and contrast models, properties and/or 

systems.  Based on the test cases in this dissertation in which relational analysis was 

applied to models of varying complexity and size and at various stages within model 

development, the loose ‘minimum’ number of outputs is about 8-10.  

 

Maximum outputs.  Also, since the general method of relational analysis arises from 

statistical techniques adapted to larger data sets, relational analysis itself is also best 

suited for visualizing and analyzing multiple outputs. While there is no set maximum, 

analyzing or visualizing more than 30 outputs at a time and particularly in a single 
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landscape, can be a little difficult to intuit in one setting.  However, despite this difficulty, 

much information can be honed from the system-wide landscape.  To aid in visualization 

and analysis in a case where there are large numbers of outputs that make the overall 

landscape difficult to singly intuit, component analysis is especially helpful to dissect the 

system into smaller sub-systems and smaller landscapes, which parse the total number of 

outputs (see Chapter 5 for a discussion and user guide on Component Analysis).  

 

Other metric types.  Relational analysis can potentially be applied to any set of metrics 

that describe the system, not just the final model output metrics.  Other examples include 

experimental metrics, intermediate metrics within a model or sub-model, state variable 

metrics, or possibly model parameter metrics within an automated search.  While these 

“others” do not strictly fit within the main technique of relational analysis, the search-

survey-and-summarize, they often fit modified forms of it, “survey and summarize”, or 

fit within the relational analysis technique of component analysis. 

 

Search 

The first step of relational analysis is to gather output data from various model operating 

points, typically through either a series of manual or automated searches using one or 

more optimization techniques.  As defined in the background, a search seeks to find one 

or more parameter value sets that result in a specified set of quantitative model outputs 

call the target output values or simply the ‘target’.  We define such multiple, non-unique 

parameter value sets, which are capable of producing the same quantitative target output 

values as ‘homologues’.   



 39

 

There are three common reasons that engineers typically perform a search:  1) To find 

parameter value sets that produce the target output values of a characterized behavior in a 

mechanistic model in which experimental parameter values are either unknown or 

questionable.  2) To ‘fit’ output data in which mechanisms are not clearly known as in a 

black box model.  3) To analyze different structures or ‘circuitry’ of a system as in 

computational neuroscience neural networks.  While we also believe the search to be 

useful in the above three purposes, our main purpose of the search is to exploit parameter 

non-uniqueness to gain additional ‘views’ of the system as explained in the ‘Why Search’ 

section below. 

 

Why Search?  Although this step is not required and it may not even be possible with 

every model, it definitely adds to the versatility and robustness of the analysis by giving 

as many ‘views’ through the pinch point as possible.  These views can later be used to 

compare and contrast the underlying relationships and dynamics of different sets of 

unique model operating points or solutions or different sets of non-unique solutions based 

on their parameter values (i.e. orientation in the parameter space). Continuing with the 

traditional neuron model example, there may be several different neuronal behaviors, 

which we desire to characterize, such as bursting, amplification, or bistability, and each 

behavior can potentially have its own parameter value set(s) and target output values.   

 

An additional benefit of searches is that, by requiring that the quantitative output metrics 

be the same (within convergence or specified error criteria), searches are an excellent 
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vehicle for examining the differences between different model or sub-model 

implementations.  Such an analysis can be invaluable for determining the implications of 

both the level of complexity and the type of mechanism(s) or concept(s) to be included in 

the model.  Thus, the relational analysis of several prospective models can be compared 

to a relational analysis of an experimental data set such that the model with the closest 

match is chosen to represent the real system.  A detailed example of such a comparison is 

given in the glutamate spillover test case where the simpler, 5-state Lester and Jahr 

NMDA receptor model compared to the more complex, 8-state Banke and Traynelis 

NMDA receptor model both intrinsically and extrinsically within the context of a 

glutamate spillover model.  

 

When should a search be performed?  Searches work best in a mechanistic model, but 

they can also be of aid in a conceptual model.  Searches are particularly helpful for 

models that have either a large number of inputs or parameters or multiple “operating 

points” that exemplify different system properties or behaviors. 

 

What should be included in a search?  At first, the answer to this question may seem 

painfully obvious—parameters, of course.  But actually, it can be more complicated. How 

many parameters should be searched at once?  How does one go about choosing which 

parameters to search?  When should a particular parameter be searched?  These are just a 

few questions that relate to what to search.  There are not precise answers to these 

questions.  In fact, the best rule of thumb is ‘when in doubt, try it’.  If analyzing a single 

model, we typically begin by searching for every parameter within the model.  The 
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advantage of this is that searching every parameter gives greater insight into the 

sensitivity and robustness of the parameter and its overall impact on the system at 

different operating points.   

 

However, there is also great value in dividing the parameter set and only searching for a 

specified segment of parameters.  Parameter segregation is particularly advantageous 

when comparing and contrasting sub-models or components of the system.  It is 

analogous to ‘doing an experiment’ on a sub-model or component.  Just like an 

experimentalist typically only varies one variable at a time when performing a test to 

determine the impact of an experimental factor, a modeler can also vary one component 

or sub-system at a time to determine its impact on a system.  This is precisely what was 

done in the spillover test case to compare the LJ and BT NMDA-R models within a 

spillover model.  However, there are other possible ways of segregation that are not on a 

strictly component or sub-model basis.  One example is to do it on a factor basis.  For 

example, in a neuron model, one may choose to vary every parameter that directly affects 

calcium.  Thus, calcium parameter values would be changed in perhaps the calcium 

channel(s), calcium pump(s), and the calcium buffer(s), with each of the aforementioned 

three being considered its own ‘component’ or sub-model. 

 

How is a search performed?  While not the focus of this particular work, much research 

has gone into determining the best ways or methods to search.  Basically, no one search 

or ‘optimization’ method or technique is perfect for every problem.  All techniques have 
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their advantages and disadvantages.  However, all optimization techniques follow the 

same basic workflow:   

 

1) Start. Choose a random starting point for input(s) or parameters to be 

optimized. This starting point may or may not be bounded within a pre-

determined range.  Choose a desired set of metric and values to serve as 

the target output values and a set of convergence criteria, which state 

how closely the search must match the target output values. 

2) Evaluate. The model is run at the starting point values.  A ‘cost function’ 

or equation, which determines the ‘error’ in the outputs, their deviation 

from the target output values, is used to correct the search variable(s). 

The cost function may or may not be ‘weighted’ such that one or more 

outputs are deemed more ‘important’.  Depending on the technique, one 

or more variables may be moved at a time. 

3) Correct.  The details of this step depend largely on the search algorithm or 

technique.  Essentially, the algorithm corrects one or more search 

variables by moving them in the appropriate direction(s) toward the 

target output values. 

4) Iterate.  Repeat steps 2-3 for all search variables. 

5) Stop.  There are different forms of stop criteria.  Most set the stop criteria 

to the convergence criteria, but if the search has not converged on a 

solution, or homologue, after a specified number of iterations, then the 
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search either stops completely or starts over at step one with a new 

starting point. 

 

Considerations to be made in choosing a search or optimization technique include the 

stability and robustness of the model, the properties of the underlying model 

mathematics, the number of parameters included in the search, computational 

requirements, and ease of implementation.  Different types of techniques include gradient 

descent, genetic or evolutionary algorithms, bifurcation analysis, or hybrid methods.  

While it is best to choose an optimization technique that best fits the properties of your 

particular model or problem, like any given technique or set of techniques, individual 

researchers tend to have their favorite or preferred methods of searching.  Our preferred 

method, which works well in our models and in neural models in general, happens to be 

gradient descent.  A gradient descent type of search was used in our work with the 

spillover test case. 

 

Survey 

Surveying a model is very similar to surveying a construction site.  The purpose of 

surveying the model is to determine the topology or characteristics of the model under a 

particular set of conditions, or model operating point.  Surveying a model, just as in an 

actual construction site survey, consists of two parts: data collection, which includes 

quantitative measurements of the variability around the model operating point and 

visualization through a blueprint or map, which comprises the output relationships of the 
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model.  The data collection process is performed via sensitivity analyses and the 

visualization is performed via the formation of the model landscape. 

 

Sensitivity Analysis 

The sensitivity analysis (SA) is typically defined as the study of how the variation or 

uncertainty in the output of a mathematical model can be apportioned, qualitatively or 

quantitatively, to different sources of variation in the input of a model.  However, this 

definition need not be restricted solely to true ‘input’.  That is, this definition can extend 

to parameters as well since parameters can also greatly affect model output.  To modelers 

in other fields, particularly sociology and economics, the SA is quite commonplace.  

However, it has been used to a lesser extent in biological models.   

 

Typical SA’s vary inputs or parameters or both over varied ranges that are typically set to 

one to two experimental standard deviations.  Typically one input or parameter is varied 

at a time and the change that input or parameter has on the output is recorded, typically 

graphically.  Therefore, we define the sensitivity itself as the linear relationship between 

a parameter and its output.  Thus, the sensitivity is often characterized as a slope.  An 

output that is sensitive to a particular input or parameter will reflect a steep slope in its 

sensitivity analysis. 

 

Why perform a sensitivity analysis?  Typically, an SA, when performed over what is 

thought to be an experimental or valid input or parameter range, is as much a necessary 
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validation technique as it is an analytical technique. Questions the SA helps to address 

include: Can the model hold up under some uncertainty or does it fall apart?  Is the model 

as robust as the complex biological system, or more specifically, the experimental 

preparation, which it is supposed to simulate?  While the SA still serves as a validation 

technique as one of its functions, it’s primary purpose within relational analysis, and 

specifically the search-survey-and-summarize technique, is as the name implies, to 

‘survey’ the system or model.   

 

The only way to survey the model is to see how it responds.  However, with most models, 

unless the model is stochastic or already has some degree of variability built into it such 

as ‘white noise’, the model will always produce the same quantitative output values with 

a given input or parameter set.  Thus, to survey the model, we have to introduce some 

variability into the system by the way of altering inputs and parameters.  Surveying the 

model via a SA allows the model dynamics to be characterized within the landscape by 

providing the data sets from which relationships are extracted among the outputs. 

 

When should a sensitivity analysis be performed?  The answer to this general question is 

rather simple, always!  A SA is a necessary part of both the model validation and analysis 

process, regardless of the type of model or system.  However, in regards to relational 

analysis technique of S3, a SA should be performed of every homologue from the search.  

Note that as part of some searches, such as the searches we perform, SA’s are embedded 

within the search and are used to ‘guide’ the search by surveying the landscape around 

the starting point and directing the search in the appropriate direction towards values that 
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are closer to the target output value(s).  These SA’s are specifically for the purposes of 

the search.  Since they are done at the beginning or during the search, they typically are 

sensitivity analyses of a set of inputs or parameters, which do not produce the target 

output values.  Therefore, these intermediate SA’s do not replace the ‘final SA’, which is 

performed around the product of a single successful search, the homologue that produces 

the target output values. It is these final SA’s, the sensitivity analyses of the homologues, 

that are used in relational analysis to make the landscape. If a search is not performed on 

the model, then a SA is done on every input and/or parameter set, which produces the 

target output values.  

 

What should be included in a sensitivity analysis?  In this respect, the SA is similar to the 

search.  Typically, we begin by performing an overall SA in which every input or 

parameter is varied, depending on the requirements.  (Note that for the test cases included 

in this work, the SA was always for parameters.)  However, as was also the case in the 

search, there are additional benefits to performing the SA simply on one segment of the 

model, such a single component or factor that is of interest (see Chapter 5). 

 

How to perform a sensitivity analysis?  Many modelers simply hand tune their models by 

manually moving one input or parameter at a time and recording the output values.  

However, the easiest method is to automate the SA.  Our typical method is to simply 

specify a deviation interval and set up a script that runs the model at specified points 

within the interval.  Precisely what the analysis interval is will depend on the specifics of 

the model, particularly its robustness, but also on the availability of experimental data.  
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For the spillover model, the interval was equal to two experimental standard deviations.  

For the spinal cord injury model, experimental deviations were not known.  Though the 

parameter ranges were not precisely known, they were known to be quite large.  Thus, a 

SA was performed by varying each parameter individually by a specified interval of ± 

50%, and the sensitivities were calculated by evaluating the model in eight 6.25% 

increments.  While we use linear SA’s in the test cases presented in this dissertation, a 

non-linear method SA could be implemented.  The type of SA utilized will not affect the 

outcome of S3. 

 

When determining what interval over which to perform the SA for relational analysis, 

one has to remember both the purpose of the SA and the purpose of the model landscape.  

The purpose of the SA is to provide the data from which relationships are extracted in the 

model landscape, and the purpose of the model landscape is to access the system’s inner 

working and dynamics.  Thus, the data included in the landscape from the SA needs to be 

robust in that it needs both quantitatively measurable and meaningful variability in the 

outputs in order to effectively illustrate the output relationships.  Since the correlation 

technique to make the landscape uses the differences between values and not the values 

themselves, too much or too little variability can alter the landscape both qualitatively 

and quantitatively.  Too little variability (i.e. too small of a SA interval) and the 

landscape will either not reveal any relationships or it could vastly under or overestimate 

them due to the differences in small numbers.  Too large of a variability (too large of a 

SA interval), and the landscape may ‘average out’ relationships or show a relationship 

average which quantitatively skews the relationships in one direction or the other.  
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There are a few ‘rules of thumb’ tests to check the SA interval.  First, look at the 

differences in the output.  Use intuition and knowledge of the model’s robustness to get a 

feel if the differences seem comparatively small or large. Also, check the magnitudes and 

signs of the slope.  Are they consistent?  If the sensitivities are plotted, do they appear 

linear?  Are the signs all the same (i.e. do they go positive say, for example, 4 of your 6 

points and negative for the remaining 2 points)?  If the slopes are not consistent in 

magnitude or sign or they have large ‘gaps’ or ‘jumps’ in magnitude, the SA interval may 

be the wrong size.  Typically, if the aforementioned is true, the SA interval would be too 

large, but if the differences themselves are extremely small (e.g. out past the decimal 

point), then one might suspect the SA is too small; thus, the differences being measured 

are really just stochastic or rounding error.  If the model’s tolerance to variability is just 

inherently small and therefore the SA must be kept proportionately small, it is sometimes 

helpful to increase the sample size over the SA interval.  Furthermore, if the model has 

built-in variability, as in a stochastic model, then the sample size will definitely need to 

be larger, and the SA interval may need to be on the larger side. 

 

However, it should be noted that there might be cases where inconsistencies in magnitude 

or sign of the slopes are permissible.  An example of such a case is when an ‘overall’ 

landscape of the ‘average’ system dynamics is desired over a determined operating range.  

In that particular case, the SA interval would likely be an interval that is known to be a 

viable operating range for the complex system being modeled, perhaps an experimentally 

determined range.  Over such a range changes in sign or magnitude of the relationships 

might naturally occur. 



 49

Model Landscape 

Why make a model landscape?  A model landscape allows the output relationships of the 

system to be easily visualized, both in magnitude and/or sign.  It is the underlying 

premise of relational analysis that based on complex systems philosophy, these 

relationships represent the inner workings and dynamics of a system.  Thus, the 

landscape is both a critical and central product of relational analysis.  It is from the model 

landscape or a set of model landscape(s) from which summarizing with exploratory data 

analysis techniques leads to new hypotheses regarding system mechanisms, behaviors, 

and/or functions. Visualizing these output relationships in a systematic way via a 

landscape allows their impact, influence, and overall interacting dynamics to be more 

easily identified and evaluated.  This is particularly true in models where there are many 

outputs. 

 

When to make a landscape?  When performing relational analysis, their should always be 

at least one landscape which illustrates the relationships of the outputs under the primary 

set of specified conditions, or the primary operating point.  However, landscapes ‘have 

power in numbers’.  The ability to compare and contrast landscapes is what makes 

relational analysis truly powerful.  For ideas of different types or sets of landscapes 

which are particularly helpful in model analysis, see the “How should one summarize?” 

section of text.   

 

What should be included in the landscape?  Granted, there are different possible types of 

landscapes and thus what goes in the landscape depends on what type of landscape it is—
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output landscape, parameter landscape, etc.  However, landscapes have one thing in 

common—they all reveal relationships among the variables that they visualize.  The main 

type of landscape is the model output landscape.  The landscapes included in this work in 

the test cases are all model output landscapes but are simply referred to as the ‘model 

landscape’.  Model landscapes are the cross-correlation of the model output values 

obtained from a set of sensitivities extracted from a parameter sensitivity analysis.  The 

standard model output landscape includes all of the model outputs.  However, there is 

also value in just viewing the landscape, or the cross correlation of outputs, of a specific 

component or sub-model.  

 

How to make a model landscape?  A landscape can be made by cross-correlating the 

calculated sensitivities for each set of output values to be included in the landscape or by 

cross-correlating the actual output values, themselves.  Cross-correlation analysis can be 

performed in any statistical software such as MATLAB ™ or Systat ™.  However, it is 

important to pay attention to which cross-correlation technique is used and any user-

specified options.  It is our experience that different cross-correlation methods and 

options produce subtle to negligible variability in the results.  However, it is important 

that any set of landscapes that are to be compared or contrasted be constructed using the 

same cross-correlation technique and options.  

 

While there is no maximum on the number of ‘runs’/model evaluations/sets of model 

output values to be included in the landscape, there can be a minimum.  The ‘minimum’ 

number of model evaluations to include depends on the variability among the runs within 
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the group.  Bootstrap analysis, a re-sampling technique, can be used to determine the 

minimum number of model evaluations in order for the landscape to be significant.  This 

is discussed in greater detail in Chapter 5.  The definition typically used as ‘significant’ 

for any particular landscape that is based on a segmented set of model evaluations is that 

the standard deviation of the magnitude of all the individual relationships within the 

segmented data set landscape must be less than the standard deviation, and preferably less 

than 50% of the standard deviation, of the landscape for the full data set.  As a general 

rule, it is best to include at least 8 different model evaluations or sets of model output 

values in each landscape.  

 

Note that quantitative correlations for any given cross-correlation matrix, or landscape, 

should range from -1 to +1 inclusive.  The higher the absolute value of the cross-

correlation, defined as the correlation magnitude, the greater the degree of correlation 

between two outputs.  The sign of the correlation simply indicates its direction.  Thus, a 

cross-correlation of positive one (+1) indicates that the two outputs are completely, 

positively correlated, a cross-correlation of negative one (-1) indicates that the two 

outputs are completely, negatively correlated, and a cross-correlation of zero (0) indicates 

no correlation between the two outputs.  In some systems, the sign of the relationships are 

either arbitrary to the output definition, not particularly meaningful, or are simply 

‘confusing’ to the analysis.  For those cases, it can be best to remove the sign by taking 

the absolute value of the entire matrix. 

 

Once the cross-correlations have been produced, they must be visualized graphically.  
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Typically, this is done with a ‘heat map’.  In a heat map, differences in magnitude are 

represented by different colors or hues of colors.  The basic landscape of overall 

dynamics is best visualized using a grayscale heat map to avoid the confusion of many 

colors.  In such a map, darker hues represent larger magnitudes (black is usually used to 

illustrate a correlation of 1) and lighter hues represent less correlation magnitudes (white 

is usually used to illustrate a zero correlation).  However, if the intent of the analysis is 

especially focused on small differences in relationship magnitude, a color heat map may 

be necessary.   

 

If it is not necessary to visualize the sign of the relationships within a certain landscape, it 

is best to take the absolute value of the cross-correlation matrix before plotting the graph.  

However, if differences in relationship signs are important in the system or analysis, there 

are three ways to both easily illustrate magnitude and sign.  First, if very small 

differences in magnitude are not that important, plotting the positive relationships in one 

color (such as red) and the negative relationships in another color (such as blue) and 

using hues of either color to indicate magnitude is a good illustration technique.  If 

grayscale is preferred, sign can be indicated by shape.  However, if fine gradation is 

necessary to differentiate relationship magnitude, a heat map that has a colorbar for the 

entire positive and negative spectrum may be required. 

 

Finally, there is great benefit to sorting the outputs on the axes.  One sorting method that 

is beneficial, particularly when viewing a single landscape, is to sort such that the outputs 

that are the most related appear next to each other on the axes.  This sorting helps to 
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identify patterns of relationship within a landscape.  Such a sorting technique can be done 

manually by visualization, quantitatively by using the values of the cross-correlations 

themselves, or statistically using a technique such as cluster analysis.  If a group of 

landscapes are to be compared, it is best to sort them such that the outputs appear in the 

same order on the axes of each landscape.  Note that regardless of the method of sorting, 

sorting in no way changes the quantitative values of the relationships, their meaning or 

even what is in the landscape.  Sorting only assists in evaluating and analyzing the 

landscape by giving different perspectives. 

 

Summarize 

Summarize is perhaps the least defined procedure in the S3 technique.  We loosely define 

‘summarize’ as the analytical process by which we evaluate the ‘pictures’ (i.e the model 

landscapes) we have taken inside the pinch point to view the inner workings of our 

system. Thus, in general, ‘summarizing’ is the process of comparing and contrasting, 

performing multi-variate statistics, and posing hypotheses based on the model 

landscape(s). 

 

Why summarize?    If we do not summarize, or explore or put into perspective the results 

of our analyses, then our results are little more than statistical tests without biological 

meaning.  Thus, without summarizing, we are simply left with general characterizations 

such as “the model exhibits parameter non-uniqueness” and “the model is or is not 

robust”.  It is the act of summarizing where the analytical techniques are applied to gain a 

comprehensive insight into the system.  Summarizing is as much, if not more, of a 
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process of thinking, hypothesizing and evaluating, as it is a specific quantitative test or 

method. 

 

When should one summarize?  Based on why we summarize, the answer to this question 

is a resounding always!  Regardless of the model type, complexity or the specifics of the 

number of outputs, homologues, or operating points or systems, the model (perhaps best 

stated as ‘the system’) should always be summarized.  Summarizing is particularly 

helpful to analyze, compare, and contrast the dynamics of a model over time and at 

different operating points.  It is also helpful in determining the differences between 

different model implementations or the contributions of different model or factor 

components. 

 

What should one summarize?  This is a question with an infinite number of answers.  

What is summarized often depends on the system specifics or what is desired from the 

analysis.  In general, the landscapes should always be summarized and in as many ways 

as possible to hone as much information about the system.  Summarizing by time, by 

component, homologue, target output values, and system factors are just a few ideas.  

Dimensionality is something else that can be summarized.  A measurement of 

dimensionality is a measure of the ‘degree of pinch’ in the pinch point. 

 

How should one summarize?  Again, how to go about summarizing can be as varied as to 

what should be summarized.  The key is to initially be systematic in summarizing.  Set up 

a few different things or ways in which the system will be summarized.  Then, be open in 
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letting the results of those initial summaries lead to other possible summaries from which 

more information can be honed.  The act of summarizing is as much an art as it is a 

science.  It is dependent on the generation of ideas to explore.  However, coming up with 

such ideas is usually not difficult.  The results of even one or two initial ideas or analyses 

typically generate many more.  In general, we try to incorporate several different 

analytical or statistical tests as part of the summarizing process, such as factor or 

principal component analysis and bootstrap analysis.  However, the way we go about 

summarizing is best described as exploratory data analysis. The goal is to use statistics 

and analytical techniques to explore or generate hypotheses rather than confirm them.   

 

Rather than laying out a specific recipe for summarizing here, it is more beneficial to 

review the test cases themselves.  Perhaps the best two examples to compare and contrast 

different ways of summarizing are the spillover and spinal cord injury model test cases. 

In the spillover case, summarizing focused on comparing and contrasting the differences 

between two different model implementations.  In the spinal cord injury case, 

summarizing focused on characterizing the type and number of system interactions in the 

landscape and how those interactions changed with time (i.e. the analysis focused on 

hypotheses regarding system dynamics).   

 

Below is a ‘top 10’ list of the most common ways to summarize: 

1) Compare and contrast landscapes at different time points 

2) Compare and contrast landscapes spatially (if model has spatiality) 

3) Compare and contrast landscapes of different model components 
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4) Compare and contrast landscapes of different homologues 

5) Compare and contrast the standard deviation in segregated group(s) of landscapes 

6) Compare and contrast landscapes of different model or mechanistic 

implementations 

7) Compare and contrast the landscapes of categories of model factors 

8) Compare and contrast the dimensionality of different components 

9) Compare and contrast the dimensionality of different model implementations 

10) Compare and contrast the factor or principal component analysis of a landscape or 

group of landscapes  
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CHAPTER 5 

COMPONENT ANALYSIS 

 

 

The relational analysis presented in Chapter 4 uses the relationships within a system to 

determine the overall system dynamics and behavior and to make system-level 

mechanistic and/or clinical hypotheses.  However, there are times in which scientists and 

engineers need to hone in on a specific aspect of a system, to essentially place a 

magnifier on a smaller segment, or component, while still being able to view such a 

component in terms of the full system.  This need to view the inner workings of a system 

is no different than that of the mechanic who must raise the hood of a car to view the 

components of the engine, which are responsible for making the car run.  The tool that we 

have devised to do precisely this task is component analysis.  Whereas relational analysis 

allows us to pop the hood to view the ‘engine’ itself, component analysis allows us to go 

deeper and discriminate the relationships and contributions of individual engine parts.  

Another way to think about component analysis is that it allows one to ‘peel off’ the 

individual layers of a system, analogous to peeling away the layers of an onion.  This 

peeling uncovers the embedded relationships and reveals the corresponding dynamics 

that are hidden from sight when the system is viewed simply at the outer-most level 

alone.  This chapter serves as a user guide on when, why, and how to perform component 

analysis.  Additionally, this chapter includes a detailed example of how component 

analysis can be used to extract component and system properties from experimental data. 
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Component analysis is a form of relational analysis that focuses on the relationships 

induced by an individual system component and reveals the impact of that component on 

the system landscape.  That is, it is an analytical technique that quantifies the cross 

correlations, namely the system output cross correlations, which are specifically 

attributable to a system component.  A component can be any segment of a model (e.g. 

such as subsystem or a category of factors or mechanisms that have a regulatory or 

functional commonality, etc.) or a portion or sub-set of experimental data within a single 

study (e.g. different cell types, cells with different properties, etc.).  Examples of 

potential components: 

• A factor or output that is affected by multiple mechanisms.  For example, the 

‘calcium component’ in a traditional neuron model may be defined as every 

‘mechanism’ that has something to do with calcium, such as all calcium channels, 

pumps, and buffers. 

• A single mechanism responsible for a specific function, such as the NMDA 

receptor model within a glutamate spillover model. 

• Any category or group of similar factors, such as ‘apoptosis’ or ‘free radicals’ 

within the spinal cord injury model. 

• A single factor or factor property that determines any given system-level 

property(ies):  the conductance of a neuron, the glutamate concentration within 

the soma, the length of the axon, etc. 

• A degenerate mechanism, whether mathematical (5-state receptor model versus 8-

state receptor model) or biological (sodium channel Nav 1.3 versus sodium 

channel Nav 1.6). 
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Why and when to use component analysis 

As stated above, the purpose of component analysis is to study a single component within 

the context and view of the larger system. Component analysis within a larger model, 

compared to isolated analysis of a component outside the system model, is analogous to 

the benefits of an in vivo experiment over an in vitro one.  Just like an in vivo 

experiment, component analysis gives a more realistic picture of how a factor, 

mechanism or therapy affects the whole system by analyzing that component within the 

full system itself.  Component analysis is an excellent tool for either general system 

analysis, in order to understand the deeper ‘layers’ of a system, or for a more specific or 

detailed analysis of the component itself.  Thus, component analysis can be used with 

specific intent in order to go after a pre-existing hypothesis regarding a component or 

system function or it can be used to generate new hypotheses at both the component and 

system level.  Thus, component analysis is an excellent tool for nearly every model type, 

and should be included as part of the relational analysis of any model. 

 

How to perform component analysis 

The general steps are the same regardless of the type of component to be examined and 

regardless of whether the data is of computational or experimental origin.  Like regular 

relational analysis, component analysis closely follows the search-survey-and-summarize 

or S3 technique.  For details on S3, please see Chapter 4.  

 

Step 1:  Primary data collection, relational analysis, and landscape construction.  Before 

beginning component analysis, it is best to have already collected the primary data set 
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and to have performed relational analysis on the overall set.  That is, one should have 

already obtained the ‘primary’ system landscape, a cross-correlation of all the system 

outputs based on the primary data set.  As stated in Chapter 4, typically this primary data 

set contains the sensitivity analyses of a model solution, which produces the target output 

values.  This primary data set typically contains multiple sensitivity analyses, one for 

each homologue, if a search has been performed.  However, it must contain at least one 

sensitivity analysis, which corresponds to at least a single solution that produces the 

target output values.   

 

There are several reasons for starting with an overall or primary system landscape.  First, 

having an initial primary landscape can be helpful for manual component identification 

using the summarize technique.  Secondly, it is also necessary to aid in the validation of 

component analysis.  Finally, it is necessary in order to compare the effect(s) of the 

component and separate those from the rest of the system. 

 

Step 2:  Determine the standard deviations of the correlations within the primary 

landscape.  These standard deviations will be used to calculate what the maximal 

deviations in correlations are allowed to be within the component subset data.  The 

standard deviation is simply calculated for every correlation within the primary 

correlation matrix or landscape from step 1 by bootstrapping.  Bootstrapping is a 

statistical re-sampling technique, which allows properties, such as variance, to be 

measured from an approximating distribution (Hair, 2006). Bootstrapping allows one to 

gather many alternative versions of a single statistic, such as a standard deviation, that 
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would ordinarily be calculated from one sample.  We cannot possibly obtain the 

sensitivity analysis for every homologue or model solution in order to calculate the true 

standard deviation of all possible homologues of the system. From our sample of data, 

only one value of a statistic can be obtained, i.e one mean, or one standard deviation etc., 

and hence we don't see how variable that standard deviation is for any particular 

homologue or set of homologues. When using bootstrapping, we randomly extract a new 

sample of N runs out of the sampled homologues or model operating points, where each 

homologue can be selected many times. By doing this several times, we create a large 

number of datasets that we ‘might have seen’ and compute the standard deviation for 

each of these datasets. Thus, we get an estimate of the distribution of standard deviations 

we might have seen.  By taking the standard deviation of this distribution of standard 

deviations, we can determine what the ‘allowable’ standard deviation is for any set of 

homologues or model operating points.  This allowable standard deviation determines the 

number of homologues or model operating points that must be included.  Essentially, 

there must be enough data sets such that the standard deviation of the group is not above 

the calculated expected standard deviation for the set as determined by bootstrapping. 

 

Step 3:  Determine what to include as a component.  Typically, there is a specific 

component that the modeler or experimentalist has already identified as ‘interesting’ or 

worthy of further examination either from the overall relational analysis from Step 1 or 

based on other analytical data or hypotheses in the field.  However, if not, interesting 

components can be identified through a series of statistical tests using the correlations 

from the primary landscapes.  Statistical tests that can be used to group potential outputs 
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in the landscape to formulate components include:  factor analysis, cluster analysis, and 

categorical analysis, to name just a few.  Categorical analysis and cluster analysis are 

perhaps the most preferable as they are best suited for the purpose of grouping 

relationships whereas factor analysis is best suited as a dimensionality assessment 

technique.  For example, cluster analysis assigns objects (and in the case of component 

analysis on the cross-correlated outputs which comprise the landscape, the objects are the 

outputs) into groups called clusters so that the objects or outputs from the same cluster 

are more similar to each other than outputs from different clusters.  Using cluster 

analysis, the major interesting components, which could be pursued, include the groups 

of outputs that form the nodes of the cluster. 

 

Bootstrap analysis can be used to determine if there is anything that is both interesting 

and significant within the groups produced by the statistical tests.  Using bootstrap 

analysis, the data is ‘parsed’ into distinct but random subsets for each identified group or 

component.  These subsets can then be statistically compared to determine if specific 

correlation patterns are both evident and significant.  If the patterns appear in multiple 

bootstrapped subsets, they may be worth pursuing.  Bootstrap analysis can also reveal 

how many data sets are necessary to analyze a component using the process outlined in 

Step 2.  This is also discussed further in Step 6. 

 

Step 4:  Obtain data for the component.  The purpose of this step is to ‘peel’ away the 

component so that its effects on the system landscape can be visualized.  This ‘peeling’ 

can occur by either sorting the existing data set used to formulate the primary landscape, 
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or by generating new data sets through either additional simulations or experiments, 

which directly separate the effects of the component.  In essence, the goal is to isolate the 

variability and corresponding relationships, which are attributable to the component.  

Whether the data is simply sorted into segregated groups, which isolate the component in 

question or whether additional data is collected that isolates the component will depend 

on the nature of the component and the ease of which additional data can be obtained.   

 

For component analysis on experimental data, this typically involves just segregating the 

data set by sorting by the properties, metrics, and/or outputs of the component.  For 

example, in the motoneuron experimental input conductance component test case, the 

data was simply sorted by the measured input conductance magnitude.  If such a sort is 

not possible or there is no variability among the metrics or outputs belonging to the 

component in question, additional experiments may need to be performed to obtain the 

variation in the component metrics and outputs such that their relationships to other 

system variables can be examined. 

 

For a component analysis on computational data, usually a separate search or at the very 

least a separate sensitivity analysis will need to be run on the inputs and parameters 

which are directly related to the component. Using the example of a motoneuron calcium 

component mentioned previously, the parameters of all the calcium channels, pumps, and 

buffers would need to be varied to produce a data set that is simply a function of the 

‘calcium component’.  This variation could be done through a search in an attempt to 

reach a particular target output, as was done in the comparison of the two NMDA 



 64

receptor models in the spillover test case, or it could simply mean doing a sensitivity 

analysis that varies all involved component inputs or parameters.  Typically, unless 

comparing two degenerate models, a sensitivity analysis will suffice for the first pass at 

component analysis.  

 

Step 5:  Construct component landscape and determine standard deviation.  To construct 

a landscape, simply cross-correlate all of the model or experimental outputs, using the 

data generated from Step 4 just as is done in Relational Analysis (see the landscape 

section in Relational Analysis, Chapter 4).  Additionally, if multiple data sets (such as 

multiple homologues from a search or multiple sets of experimental data) are included in 

the aforementioned component landscape, cross correlate each data set independently to 

make a landscape for each data set and calculate the standard deviation of each 

correlation in the set of landscapes. 

 

Step 6:  Perform bootstrap analysis to determine the minimum number of points within a 

component.    In this step, bootstrap analysis is used to determine either the minimum 

number of experiments or model simulations necessary to produce a ‘significant’ 

landscape for that component.  To do this, the standard deviation, which was calculated 

during Step 2, is utilized.  The criterion for significance is the number of points in the 

bootstrapped data set that results in an average standard deviation that is equal to total 

standard deviation of the overall landscape divided by the number of components into 

which the model has been separated.  However, because the definition of a ‘component’ 

is somewhat subjective, particularly when using a non-mathematical definition, factor 
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analysis can be used to determine the number of dimensions in the data.  The number of 

dimensions can then be taken as the number of components by which the overall standard 

deviation should be divided.  However, a simpler rule of thumb if factor analysis cannot 

be readily performed is just to take the component landscape standard deviation ‘cut-off’ 

as being ~20-30% of the overall standard deviation because most systems rarely have 

more than 3-5 major dimensions in the data set.  If the standard deviation of the data set 

of component sensitivity analyses for a set of homologues is within ~ 30% of the primary 

landscape standard deviation, the component is likely significant.  However, due the 

limitations and assumptions of bootstrapping this significance must be manually verified 

as discussed in Step 7. 

 

Step 7: Inspect the component landscape to verify component analysis 

significance/criteria.  This is the final validation step to insure that component analysis 

has correctly and adequately ‘peeled off’ the intended layer.  For example, in the 

motoneuron test case the intent was to ‘peel off’ size so that the relationships that lie 

‘under’ the dominant ‘size principle’ correlations could be revealed.  Thus, conductance 

relationships should be minimized within the individual component landscapes (i.e. the 

landscapes of the small, medium, and large motoneurons).  If these correlations are still 

significant, then the intended layer has not been adequately peeled, and the component 

criterion for sorting needs to be re-evaluated.  Typically, Step 6 will catch ‘inadequate 

peeling’, but Step 7 is an easy and effective check.  For example, in the small 

motoneuron group landscape, Step 6 revealed that there were not enough points, and this 
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was visually evident in Step 7 as the landscape still showed significant conductance 

correlations, as shown in Figure 1A. 

 

Step 8 (optional):  Repeat for different model operating points.  Just as in regular 

relational analysis, it is often beneficial to repeat the component analysis at different 

points of model operation or different sets of conditions.  For example, repeating the 

component analysis at different times or under different input(s). 

 

Step 9:  Summarize.  It is in this step that both component and/or system-level hypotheses 

can be either evaluated and/or identified.  See Summarize section of Relational Analysis. 

 

Step 10: Repeat or iterate for additional components.  Often it is helpful to test the 

robustness of a component by comparing landscapes with other components such that the 

true contribution of a single component can be better compared and quantified in relation 

to other system components.   

 

Component analysis to evaluate experimental motoneuron data 

Motoneurons are classified according to their firing properties as: slow (type S) and fast 

(type-F).  Type-F motoneurons can be further classified as fatigue resistant (type-FR), 

and fast fatigueable type-FF). The classification of motoneuron type is important because 

it is related to the overall function of the motoneuron within the neuromuscular system.  

Type-S motoneurons tend to respond to more stable inputs and participate in longer-term 

functions such as posture.  Type-F motoneurons tend to respond to transient inputs and 
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participate in more short-term or ‘active’ movements.  Elucidating the different intrinsic 

properties of these motoneuron types has been a key goal of scientists within the field. 

 A common finding in both experimental data and in computational models is that the 

firing properties of motoneurons are highly related or correlated to the size of their 

conductance.  Note that the conductance value is also directly proportional to motoneuron 

size or area.  Lower conductance or smaller motoneurons are typically type-S whereas 

higher conductance or larger motoneurons are typically type-F.  This size-based effect on 

the firing properties of motoneurons is often referred to as the ‘size principle’.  The size 

principle is typically the first noticeable trait of any landscape of motoneuron data, 

especially data generated from motoneuron computational models.  In fact, because the 

properties of motoneurons are so closely tied with conductance, the conductance-based 

correlations end up dominating the landscape, making any other properties ‘beneath the 

size principle’ very difficult to reveal. 

 

In this test case, component analysis is used to study in vivo cat spinal cord motoneuron 

experimental data from neurophysiology experiments performed by Dr. Robert Lee.  The 

specific intent of this study was to analyze the underlying properties of motoneurons as a 

function of size.  Thus, the purpose of performing component analysis for this study was 

to ‘peel off’ the conductance such that the underlying properties of these motoneurons, 

categorized by type, could be revealed within the landscape.  

  

Since the component of interest had already been identified (input conductance), the data 

was automatically sorted using the input conductance measure (G_leak) into three 
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categories labeled as small, medium, and large.  Figure 1 shows the conductance 

component analysis results for each of these three motoneuron sizes.  As expected, 

component analysis was able to strip away the conductance layer of relationships, as 

noted by the absence of any correlations with input conductance (G_leak) in all panels of 

Figure 1. 

 

The most apparent immediate observation is that the relationships among each group of 

motoneurons are in fact, different.  This immediately supports the hypothesis that the 

motoneurons are not merely just different sizes of the exact same cell type.  If this were 

the case, we would have expected the correlations to be very similar, with perhaps only a 

few small quantitative differences.  Instead, we see that there are multiple differences in 

the sheer number of correlations, their magnitude, and their sign.  The most striking 

difference at first glance is that there are far more correlations in the smaller motoneurons 

with the number of correlations decreasing with size. 

 

Beyond the overall, holistic differences in the landscapes, there are many specific 

differences in the individual relationships, which suggest differences in regulation and 

function among the different motoneuron sizes.  There are far too many notable 

correlations, both correlations that are similar among types and correlations that are very 

different, to mention each explicitly, but a few of the major ones are highlighted.   

 

Major similarities among groups.  Starting with the most recognizable pattern of 

correlation, there is a large block of strong, positive correlations (denoted in red) in all 
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three motoneuron groups that signify a potential ‘excitability’ mechanism.  The group is 

composed of namely the spike properties (height, gain, slope, etc) and persistent sodium 

peak (Ifast peak).  The number of factors included in this mechanism varies among the 

size groups, with strongest and greatest number of correlations appearing in the middle 

group, followed by the small group, and trailed by the large group, in which only a few of 

the correlations within the group remain.  Another notable correlation similarity is the 

block of correlations relating the half-activation (GNaP_Vh and the AHP Bottom).  

Unlike the previous block of correlations, these correlations were not ‘expected’ and thus 

could potentially represent a mechanism or function that is yet to be determined. 

 

Major differences among groups.  The largest block of differences, other than the notable 

differences within the excitability block, are among the persistent sodium relationships 

(GNaP).  In the small group, these correlations are numerous and strongly negative 

(denoted in blue) whereas in the middle group they are fewer but opposite in sign; finally, 

in the large group the same relationships are nearly non-existent, with only one or two 

major correlations showing up as strongly negative, namely the relationships between 

GNaP max (the peak of persistent sodium) and the GNaP rate (the rate of persistent 

sodium).  Persistent sodium is known to have a strong effect on the types of firing, and 

thus, the relationships could be potentially meaningful in designating the mechanisms 

behind the firing of each group of motoneurons.  

 

Finally, it should be noted, as is mentioned in step 7 of “How to perform component 

analysis”, that the major correlations in the small group to conductance suggests that the 
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sample size is still too small for this group.  The bootstrap analysis from step 6 had 

already suggested this, but it is apparent in the landscape as well by the appearance of 

these relationships, which should have been ‘peeled off’ or at the very least, minimized.  

To correct this, the input conductance magnitude inclusion criteria should be lowered and 

more cells that meet the new criteria should be included. 

 

Figure 5.1.  Input conductance component analysis landscapes for experimental 
motoneuron data (Mitchell and Lee, In prepartion).  (A)  Small conductance motoneuron 
landscape (B) Middle conductance motoneuron landscape (C) Large conductance 
motoneuron landscape 
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Component analysis to compare model implementations 

As part of the spillover test case, two degenerate NNMDA receptor model 

implementations (the 8-state Banke and Traynelis model versus the 5-state Lester and 

Jahr model) are compared within the context of a larger neurotransmitter spillover model.  

In this test study, component analysis revealed the differences between the two models, 

including differences that were intended or expected as well as differences that were not.  

See Chapter 7 for details. 
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CHAPTER 6 

RELATIONAL MODELING 

 

 

As stated in the Introduction, the second key limitation that has prevented the use of the 

model as an exploratory tool is the inability to construct relevant computational models 

of physiologies and especially pathologies very early in the research process, a limitation 

largely attributable to the requirements of traditional model construction techniques 

requiring a vast amount of upfront knowledge of a system.  That is currently modelers, 

analogous to map-making cartographers, must know with great detail what their system 

looks like before they can even begin to create their system maps.  For example, the most 

common modeling technique, mechanistic modeling, requires that the modeler be able to 

both synthesize and construct the system at the most detailed or ‘bottom’ level, deriving 

and compiling mechanistic components from first principles.  Other existing model 

construction techniques such as the traditional ‘black box’ modeling method and the 

relatively newer technique of conceptual modeling, require less detailed information 

regarding system mechanisms, but they do require a good deal of ‘top’ level knowledge 

and intuition regarding the overall properties of the system and its outputs.  (For a review 

of traditional modeling methods see Background.) 

 

The ideal system-level exploratory technique would not be at all reliant upon our current 

understanding but rather would rely on our naivety to the system such that our answers or 
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findings are not unintentionally preordained.  Thus, such a method would neither require 

the holistic understanding of a top-down approach nor the detailed mechanisms of a 

bottom-up approach, but would instead utilize a ‘middle-out’ approach that simply 

incorporates the existing data of a system, such as the individual experimental 

studies/findings within the field.  Whether in a relatively new physiological or 

pathological field or a long-standing field that lacks comprehensive understanding, there 

are typically numerous such ‘findings’ embedded in the literature of the field, literature 

that can range from 50 to 100 studies on the smaller end of the spectrum, to hundreds and 

even thousands on the larger end.   

 

The method that we developed in order to construct models early in the research process 

is referred to as relational modeling.  Relational modeling uses simply correlations (or 

relationships) and time constants extracted from experimental data to create a system of 

piece-wise linear first order differential equations that approximate the dynamics of a 

system.  Note that the basics of this method are published within our spinal cord injury 

publication (Mitchell and Lee, 2008).  Relational modeling fits all of the above criteria in 

that it simply aggregates and recapitulates the findings of numerous experimental studies 

of a physiology or pathology in order to provide a comprehensive, system-level view.  

Relational modeling, like relational analysis, is derived from complex systems 

philosophy in that it is based on the foundation that it is the system’s relationships that 

result in the emergent properties and behaviors of that system.   Furthermore, relational 

modeling exploits the fact that most individual experimental studies are detailed 

investigations of a single interaction between two system factors (often referred to in the 
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literature as the experimental correlation).  Our general technique to develop and 

construct relational models is referred to as review-relate-refine (R3):  review the 

literature, relate the factors, and refine to meet validation criteria.  The remainder of this 

chapter describes in detail the steps of this technique.   

 

Review-relate-refine (R3) 

Relational modeling, using the R3 technique, directly translates a system’s numerous 

measured experimental relationships into a literal network or map of system factors and 

interactions, a map which can be further translated into a set of differential equations that 

can mathematically model the temporal and/or spatial dynamics of a system.  The first 

step is to review the experimental literature/data to identify the known key aspects of a 

system, referred to as factors.  Next is to relate the factors using their experimental 

correlations to create a network or ‘map’ of factors that illustrates all of their interactions 

and to translate this map into a system of mathematical equations.  Finally, the translated 

factor network, or ‘model’, is refined to meet validation criteria by using relational 

analysis to identify areas that need improvement or further detail.  Additional 

relationships and intermediate factors are added until a set of specified output criteria, as 

determined from the experimental literature, is reached.  Once validation criteria are met, 

relational analysis can be used to make clinical and mechanistic predictions about the 

system.  Thus, relational modeling using the R3 technique enables ‘scaffolding’ models to 

be quickly and efficiently built.  These system scaffolds can then be filled with either 

additional or more detailed relationships, or segments can be replaced with detailed 

mechanisms or concepts as research moves forward and information becomes available. 
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There are three major ‘parts’ to a relational model:  factors, categories, and gains.  

Factors are distinct quantitative entities that represent the major parts or ‘players’ in the 

physiological or pathological system as defined by the literature in the field.  For 

example, reactive oxygen species (ROS) and nitric oxide (NO) can be described as two 

potential factors of the pathology of spinal cord injury. Categories represent collections 

of factors commonly categorized or grouped together by scientists in the field.  In the 

previous example, ROS and NO could be a part of a category called ‘free radicals’.  Last 

but not least, gains are quantitative metrics determined from experimental data, which 

represent the one-way interactions or relationships between factors.  For example, the 

gain, GNO-ROS, would determine how a change in NO would quantitatively impact ROS.   

 

Figure 1a shows an example relational model for spinal cord injury where boxes denote 

factors and categories (energetics, excitotoxicity, free radicals, necro-apoptosis, 

inflammation, and other) are labeled and denoted by factor box color.  Figure 1b 

illustrates the overall process of how experimental literature is used to extract gains that 

are translated into a system map.  Essentially, one-way piece-wise linear correlations are 

exracted along with the time constant over which the correlation is valid.  From this map, 

a set of first order differential equations are formed which reprsent the dynamics of the 

system.  Using our relational and component analysis techniques, the system 

relationships are quantified and used to characterize and visualize emerging dynamics.  

Finally, the relationships and their resulting dynamics are used to make mechanistic and 

clinical predictions. 
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Figure 6.1.  Construction of a relational model of spinal cord injury. (A) The boxes 
represents tracked factors.  Necro-apoptosis, energetics, excitotoxicity, free radicals, 
inflammation, and other represent different categories as factors, indicated by color.  (B)  
The relational model is developed by identifying important system factors (review), 
deriving experimentally determined relationships or gains from the literature and 
translating them into a network to construct a relational model (relate), and by performing 
relational analysis to analyze system wide behavior, make clinical and mechanistic 
predictions, and to improve the model (refine). 
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A relational model, like any model, is a form of map.  In fact, it is most analogous to a 

map with which many engineers are familiar, a process flow diagram or a system control 

diagram.  In R3, the quantitative relationships extracted from the literature that are used to 

connect factors within the system map are referred to as ‘gains’, analogous to the 

proportional gains used in linear control systems.   Just as in controls, the gain in a 

relational model specifies the output-input relationship between two factors.  The gain in 

a control system is used to adjust the error between the current system operating point 

and the desired operating point.  In a physiological system, the gain would likely have the 

same purpose.  However, in a pathological system, the ‘gain’ may not always reduce the 

‘error’ or the disease, but rather it may be a part of its propagation.  At any rate, the gains, 

or the relationships between factors in a pathology, whether they help to reduce or to 

propagate, do determine the pathology’s operating point.  Figure 2 illustrates how the 

gains in a relational model are equivalent to the gains in a linear control system. 
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Figure 6.2.  A relational model as analogous to a control system.  The figure illustrates 
how a relational model uses experimentally determined relationships, or ‘gains’ between 
two pathological factors to determine the pathological output analogously to how and an 
engineered plant uses a proportional gain controller to alter its response.  (A) A typical 
engineering ‘plant’ with proportional control feedback, as indicated by the output-input 
gain, GOI.  The gain is used to adjust the error between the current output and the desired 
or target output by altering the plant’s input.  (B) The diagram illustrates a portion of a 
generic relational model and exemplifies how Factor X impacts Factor Y via the 
experimentally determined relationship or gain, GYX.  The dotted lines represent 
connections to factors not shown. (C) The diagram ‘converts’ the relational model map to 
the equivalent control diagram having equivalent mathematics.  Note the dotted line that 
was exiting Factor Y in (B), was moved to show that it has the same quantitative value as 
the solid line labeled Factor Y output.  
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Review 

As with any literature review, the key is to be systematic and agnostic.  With a relational 

model, it is important to be open and objective, to ‘pull’ out or away one’s own 

knowledge and opinions of the system, such that the entirety of literature in a system or 

the system’s field can be reviewed without bias or a tendency to ‘pick and choose’ what 

goes into the relational model.  The great advantage of a relational model is that it can 

bring a system into focus, highlighting the ‘key’ or most important or highest-impacting 

factors.  Thus, it is important not to unintentionally blur or skew this advantage by over-

filling the model with a certain type or kind of factors, which from the beginning, points 

or leans toward a certain preconceived idea or theory.  Once an overall system has been 

made and the most important factors objectively identified, then additional detail and 

filling may be done with certain system aspects or factors, which support an identified 

theory or mechanism. 

 

Step 1a:  Creating the database.  One of the most important steps to success in a 

relational model is superb recordkeeping.   It is nearly impossible to hold hundreds of 

papers in one’s head, particularly long term.  Thus, before one even begins to look at a 

single paper, it is important to create an initial database.  Typically, we would 

recommend three databases.  One database, the primary database, keeps track of every 

article that one finds interesting enough to download at least its abstract, whether or not 

that article is eventually read or used directly in the model does not matter.  For this big 

database, EndNote™ or other similar reference managing system is excellent.  

EndNote™, for example, can store and sort by all of the typical author, date, and journal 
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information, stores the abstract, and it can be used to directly search and download 

references from a source such as PubMed (www.pubmed.gov).  Furthermore, a 

downloaded pdf version of the paper can be stored with is entry in the EndNote™ library.  

All literature searches should be performed within this primary database (e.g. the 

EndNote™ library). 

 

The second database is referred to the literature database.  This database contains all of 

the papers that are downloaded or either partially or fully read, regardless of whether 

direct information or values is used from them in the final model.  However, more 

importantly, this literature database has important summary information about the papers, 

which could potentially be incorporated into the model.  The literature database, probably 

best implemented in either Microsoft Excel™ or Access™ gives each paper a primary 

and secondary category name.  Additionally, it keeps track of important specific 

information pertinent to the system or pathology being modeled.  For example, in the SCI 

model, we kept track of which nervous system the data was derived (CNS or PNS), 

whether it was from (brain, spinal cord or other), experimental type (in vivo or in vitro), 

experimental preparation (cat, rat, mouse, co-culture, human, etc).  In the preliminary 

ALS model, we added database columns that kept track of particular ALS forms (familial 

or sporadic), the type of mutation involved (G93A, G85, etc).  In addition, it is important 

to keep track whether or not the article is a ‘review’ article.  Finally, besides the category 

assignments, perhaps the most important entry for each article in the database is a short 

one-line summary highlighting the major factors, a correlation or other quantitative 

finding of the article.  The third and final database is simply the ‘model database’.  This 
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database keeps track of all the quantitative values used in the model (i.e. the gains, time 

constants, equation forms) and all of the values used as validation criteria (factor output 

values at certain time points, experimental correlations, etc).  Like the literature database, 

Excel™ is a good platform because it also can allow for easy quantitative manipulation 

and calculation. With each recording, pertinent information regarding the source is also 

kept in addition to a one-line description of how the value was determined (figure 

number, graphical estimation, etc). 

 

Step 1b: Reviewing the reviews. This step consists of reading the major literature reviews 

done within the system or the system’s field within about the last decade.  The purpose of 

this step is to get familiar with the field, particularly if it is a system in which you have no 

prior knowledge, as was the case with the two relational modeling test cases in this work 

for spinal cord injury and amyotrophic lateral sclerosis.  However, this step is important 

even if one does have a good deal of initial knowledge.  Reading several different 

reviews gives different perspectives of the system, aiding both the familiar and unfamiliar 

modeler to obtain a multi-perspective, balanced view.  Furthermore, it is important to 

read not simply the most current review but also some older reviews.  There is some truth 

to the saying that ‘your first instinct is usually correct’.  Thus, there are often some ideas 

in older literature that have much value.  Unfortunately, such ideas are often dismissed or 

cast aside due to one or two studies, which have results that suggest an alternative or 

different view.  This is not to say that the older view is correct and the newer one is not or 

vice versa.  It could very well be that both views are correct and represent different 

aspects of an emergent property of the system.  Remember that the goal of the relational 
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modeling process is not to pick the ‘right’ view from the onset but rather incorporate all 

views by tying together the experimental research pieces, the relationships or 

correlations, that represent each and let the relational analysis process bring the system-

level or big-picture view into focus. 

 

Thus, as a general rule of thumb it is important to read at least 5-10 comprehensive 

system reviews of the physiology or pathology to be modeled, if available.  Additionally, 

particularly if the system is a pathological or diseased-state system, it is helpful to read a 

few clinical reviews or even case studies to really connect at both a scientific and human 

level to the pathology.  Furthermore, reading both the experimental or preclinical 

literature in addition to the clinical literature helps to identify relationships between the 

two particularly later on.  Being able to relate experimental factors to clinical outputs or 

effects is critical in the analysis of a pathology.  Be sure to record to the primary and 

literature databases as appropriate. 

 

Step 2:  Initial identification of major categories.  Using these initial reviews, obtain a list 

of ‘categories’.  These categorical groups or classifications will later be used to organize 

individual factors that describe a system function, mechanism, intermediate process, 

pathway or theory.  Note that while ‘categories’ of factors are typically more easily or 

readily identified than individuated factors, particularly within reviews, it is both possible 

and allowable to reverse steps two and three, and thus identify a list of the most pertinent 

factors first and then subsequently classify those factors into categories. 
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Step 3: Identify initial factors within major categories.  Use the initial reviews to identify 

factors within the major categories.  These initial factors are typically more obvious in 

their association with a category.  For example, caspase would be a factor in the category 

of apoptosis. 

 

Step 4: Review detailed reviews of categories and/or individual factors.  In this step, seek 

out literatures reviews, which are more detailed or specific.  Such reviews will typically 

focus on a single aspect of a pathology, typically a category or a factor.  Use these 

reviews to understand the more detailed workings of the system and to ‘fill in gaps’. Be 

careful to record all pertinent information to the appropriate databases. 

 

Step 5: First expansion of factors and/or categories.  Use the information from the 

detailed reviews to expand the list of initial factors and/or categories.  To aid in deciding 

what to include as categories and factors, it’s often helpful to map out the process or 

cascade or theory presented in each detailed review.  Often times, such maps are already 

presented within a figure in the review.  If so, use the figure given.  Within the map, 

every major ‘block’ typically becomes a factor and the map itself typically becomes a 

category.   

 

Step 6:  Key word searches for factors and categories.   In this step, key word searches 

are initiated to find actual experimental and clinical studies that are not simply literature 

reviews.  Typically, two key word searches are done for every factor.  The first keyword 

search utilizes the pathology name as one keyword, for example “amyotrophic lateral 
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sclerosis”, the factor’s category name as the second keyword, for example “apoptosis” 

and the third keyword is the factor name, itself, such as “caspase”.  The second keyword 

search expands the search to include just the first and third keywords from the first 

search, that is simply the pathology and factor names, such that the expanded search can 

find studies in which caspase was studied but perhaps not as part of apoptosis or not 

exclusively as part of apoptosis.  The Boolean operators (and, or, not) can also be helpful.  

This expanded search is critical to aid in finding indirect ‘paths’ where a factor ties in to 

other factors or categories.   

 

With some pathologies, the number of searches turned up may still be overwhelmingly 

large.  If this is the case, it may be helpful to limit the scope of the search again by 

another criteria, such as experimental preparation or mutation.  For example, in the case 

of ALS, one criteria used was ‘G93A’ to represent a certain mutation known to cause 

ALS that is used to create an ALS mouse model that is a common experimental 

preparation.  

 

Another helpful search tactic is to use the abstracts to manually cull through the pile, 

looking for studies that appear largely quantitative or focus on a specific output, factor 

relationship or correlation or a ‘finding’ or property of the pathology that is found at a 

certain time point.  Remember that, other than output criteria, which state the specific 

value of a certain factor at a certain time, the relational model is a collection of 

relationships, and thus, the majority of the literature search should be focused on finding 

relationships.  While the quantitative identification of relationships (i.e. the numerical 
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value of the factor gains) does not occur until the relate process, it is important that the 

papers identified during the review process contain these relationships.  By knowing what 

words signify a possible experimental relationship, one can generally just use the abstract 

during the review process to collect potential papers for the literature database. Typical 

relationship-signifying words or phrases to look for in the abstract include: in relation, 

correlate, increase, decrease, compared to, etc.  Examples of such statements found in 

actual abstracts from papers included in a literature database for ALS are compiled 

below, with the relationship-signifying word(s) in bold italics:  

 

• “Compared to sham-treated G93A animals, 30-day calcium blocker infusions 

markedly diminished the loss of both motoneurons and of astrocytic GLT-1 

labeling. (Yin 2007)” 

• “Treatment with the antioxidant 5,5-dimethyl-1-pyrroline N-oxide resulted in 

inhibition of protein oxidation and decrease in proteasome activity to the basal 

levels. (Aquilano 2003)” 

• “The temporal ordering of changes in cytoplasmic and intramitochondrial 

calcium levels in relation to mitochondrial reactive oxygen species accumulation 

and membrane depolarization was examined in cultured neural cells exposed to 

either an apoptotic or necrotic [modulator]. (Kruman 1999)”  

• “These findings suggest a causal relationship between enhanced oxidative stress 

and mutant SOD1-mediated motor neuron degeneration, considering that 

enhanced oxygen free radical production results from the SOD1 structural 

alterations.”(Liu 2002) 
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• This process accounts for up to 50% of the glutamate accumulation during energy 

deprivation.  Enhanced action potential-independent vesicular release also 

contributes to the increase in glutamate, by 50%, but only once glutamate uptake 

is inhibited. (Jabaudon 2000) 

• Here, we show that the increased denitrosylase activity of SOD1 mutants leads to 

an aberrant decrease in intracellular protein and peptide S-nitrosylation in cell and 

animal models of ALS. (Schonhoff 2006) 

• While intra-mitochondrial calcium levels were elevated in SOD1G93A 

motoneurons, changes in mitochondrial function did not correlate with [Ca2+]. 

 

Typically, such direct qualitative and sometimes even quantitative relationship findings, 

as in the last bulleted point, are highlighted in the abstract.  A paper that lists a key 

quantitative finding is a definite keep to file in the EndNote™ and literature databases.  

However, if an abstract has direct or indirect qualitative relationships in the abstract, as 

shown by the majority of the examples above, it should also be included in the 

EndNote™ and literature databases.  While many authors are not completely forward 

with the quantitative value of such a mentioned qualitative relationship or a factor’s gain 

either in the abstract or within the paper itself, typically data is presented from which the 

quantitative values can be extracted (this process is explained in the relate section). 

Finally, note that at this point, the date of publication range can be quite large.  A 

preferred range may include studies within the last 10-15, but with some factors, 

including studies done over 20 years ago is not uncommon.  Regardless of whether a 
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study has a factor or data point that you think you will want to include, record it to the 

EndNote™ database. 

 

Step 7:  Second expansion of factors and/or categories.  Review the literature found as a 

result of the searches.  Use the key word searches from step six to identify and expand 

especially new factors but also factor categories.  At this point, it’s good to have between 

6-10 papers for each factor, if possible.  Similarly, for something as complex as a 

pathology, there are typically between 5-10 obvious categories.  The decision on what is 

a category can be defined by a function (such as apoptosis), a malfunction (such as 

excitotoxicity), a physiological process (such as axonal transport), or other obvious 

commonality among a group of factors (such as ‘systemic effects’, which represents all of 

the external effects on all bodily systems other than the one being modeled).  Making and 

splitting categories is subjective, but the relational analysis during the refine process will 

be able to pick up on whether a factor has been wrongly categorized since factors of the 

same category typically have a high degree of correlation among themselves.  Typically 

at this point, for an initial relational model, there are between 6-10 categories.  Note that 

the number of categories will depend on the breadth of the pathology and the literature 

review, whereas the number of factors typically depends on the level of detail in the field 

and the literature review of the field.   

 

It is difficult to assign a standard number of factors for a category.  The number of factors 

within a category could easily range from 2-6, but could be as high as 10 or more. The 

rule of thumb for an initial model is there should be at least one factor for each major 
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‘output’ of the category (an example is cell death for apoptosis) and one factor for each of 

the major players in the category.  Using apoptosis as an example, there could be factors 

for the two end or decision points, which determine apoptotic initiation, caspase and Bcl-

2; factors to represent each receptor type in the pathway such as the cytokine EGF 

receptor, survival/growth RTK receptor, chemokine or GPCR receptor, death or Fas 

receptors, etc; or more general factors that represent specific apoptosis initiators such as 

calpain, calcium, gene regulation, etc.  A modeler may choose to represent apoptosis with 

one or all of those schemes, depending on how apoptosis is presented in his/her system. 

 Continuing with our apoptosis category example, intermediates, such as p53, FADD, mt 

and other apoptotic-associated signals that occur in mid-cascade, are generally not 

included as factors at this point.  Admittedly, sometimes it is difficult to distinguish a 

‘major player’ from an ‘intermediate’.  However, this determination becomes more 

evident during the relate process.  During the relate process, when relationships are being 

identified and extracted from the literature, what one may think of as an ‘intermediate’ 

may actually need to be included as a factor since intermediates are often used as metrics 

of comparison or correlation to the main player, determining the main player’s or factor’s 

response.  Because such intermediates will be used to alter the main players in the model 

through their gains, it will be necessary at that point to add in intermediates as actual 

factors. 

 

What ends up being a factor for any particular category ultimately ends up being 

whatever the field defines as a ‘major player’ via what they measure as part of the 

experiments.  Whether the factor is truly a ‘major player’ in terms of impact, as defined 
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by the field, will be determined by the relational analysis and not by the decision to 

include it in the model.  Thus, if in doubt, include as many factors as there is relationship 

data during this second expansion.  Once the factors are translated into a map, it will 

become apparent if there are interactions that will warrant keeping these questionable or 

extra/extraneous factors. 

 

Finally, a critical part of this step is once again good record keeping.  Carefully record all 

pertinent information to the primary and literature databases.  Keep an, active up-to-date 

list of factors and categories. 

 

Relate 

It is in this step that all of the real work and ‘magic’ happens because it is here where the 

model really starts to come together and where major decisions are made.  In this step, 

the relationships that represent the inner workings of the system are identified from the 

literature for each factor and are translated into a map or network of factors, which are 

connected by their relationships, or interactions.  Typically, such a map looks very much 

like a process flow diagram, commonly used by chemical engineers to represent a power 

plant or refinery or a systems control diagram, commonly used my control engineers to 

operate such a plant.  Every line connecting two factors is called a ‘gain’, where the gain 

is the one-way quantitative value of the relationship or correlation between two factors, 

as taken from the experimental literature.  This gain can be thought of as either a slope or 

sensitivity that represents the linear change between two factors, X and Y, such as the 

gain imposed on X by Y is equal to dY/dX.  Conversely, the gain imposed by X on Y is 



 90

dX/dY.  However, note that these two gains do NOT have to be reciprocals of one 

another nor do the two gains need to have any quantitative relationship of any kind in 

respect to one another.  In fact, two factors may have only a single one-way relationship 

in which factor X causes a change in factor Y but factor Y does not cause a change in 

factor X. 

 

The primary intent of the relate process is to create a relational model that connects and 

illustrates factor relationships.  However, as part of that process, it can be helpful to first 

go through the relate process with only categories.  That is, in essence, make a relational 

model based only on categories.  A category model uses very rough or ‘back-of-the-

envelope’ estimates to determine the relationship or gain that each category has on every 

other category and to determine the corresponding time constant associated with each 

category.  These category gains and time constants are essentially aggregated factor gains 

and time constants, which can be very roughly estimated from the literature.   

The benefit of a category model is that, because there are fewer things to quantify, it can 

be very quickly constructed, and thus provide very fast feedback and insight into a 

system.  The insight gained from a category model can then be used to hypothesize which 

parts of the relational model have the highest impact and when that impact occurs.  This 

insight, in turn, can be used to determine which categories may require the most detail 

(i.e. additional factors), and when the most detail is needed (i.e. an estimate in the number 

of time constants required—see step 10). Furthermore, the category model can give 

insight into what additional factors may be needed to compensate within a category such 
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as, for example, factors which will provide negative feedback on the category to aid in 

making the pathology or system more stable. 

 

One critical reminder, however, is that one must keep in mind that the category model is 

simply a very rough estimate.  It cannot possibly represent all of the dynamics of the 

factor model.  Once factors are inserted and a true relational model of factors is 

constructed and simulated, the factor model could show different or even contradicting 

results.  However, this comparing and contrasting can be enlightening and beneficial in 

and of itself, helping to further stimulate hypotheses and conceptual system insight.  

The major steps of the relate process as described below are the same overall steps 

whether making a category or factor model.  However, there are some specific details, 

which differ between the two.  The major difference being that quantitative data for 

factors are taken directly from literature whereas the quantitative data for categories are 

roughly estimated by the modeler using his/her aggregated insight obtained from reading 

the literature.   Thus, this distinction between factor and category model details is made 

clear in each step.   

 

Step 8:  Determine the relationships.   In this step, the specific relationships are 

identified.  That is, every ‘line’ or ‘arrow’ connecting the categories or factors is 

identified.   

 

For factors, this means first connecting every direct relationship.  The ‘direct’ 

relationships are those that are directly stated or measured from the literature.  For 
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example, “an increase in calcium resulted in a subsequent increase in free radicals.”  

However, one must be wary of relationships that are not directly apparent from the 

literature.  In fact, it may be the modeler who actually identifies an indirect relationship 

by combining the results of two different studies, which have a common thread.  Also, 

there may be times when an apparent relationship is obvious from what is known about 

the non-diseased physiology, but such a relationship may not have yet been directly 

measured in the pathological literature in which case it must be estimated using other 

literature or data points.  In summary, it is up to the modeler to synthesize all of the 

literature and identify all pertinent relationships. 

 

For categories, determining the relationships simply means asking the question “Does 

Category A in any way have an effect on Category B?”  The answer to this question can 

be very complicated and daunting, and it’s easy to miss especially smaller or indirect 

effects.  This is why it is important to keep in mind that the category model is simply an 

estimate.  Thus, simply recognizing obvious or direct effects is enough for a model at this 

very rough, category level.  Determining the relationships between categories involves 

synthesizing what is known about both the normal physiology and the diseased 

pathology.  For example, in the normal motoneuron axonal transport physiology it is 

known that the energetics category affects the axonal transport category. Thus, whether 

there is a pathological ALS study that directly quantifies the effects of these two 

categories does not matter.  The relationship would be inferred from the physiology and 

thus recorded as ‘present’ in a category model of ALS.  Another pointer is that it may be 

helpful to think in terms of factors.  Is there any factor in Category A that impacts any 
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factor in Category B?  If yes, then there is likely a relationship between the two 

categories, however big or small it may be does not matter, since the primary intent of 

this step is simply to identify relationships. 

 

Step 9:  Determine the direction of the relationships.  The purpose of this step is to 

determine the direction of each one-way gain, ‘up’ (positive or increasing) or ‘down’  

(negative or decreasing).  This gives more intuition as to how each factor or category 

affects the movement of another factor or category.  It also aids in determining the sign 

convention of a factor or category, as in whether the feedback is positive or negative. 

For factors, this sign convention will come directly from experimental data.  It will 

typically follow a shown graphical or visual trend.  Thus, there is typically nothing tricky 

about determining the sign of a factor gain.  The exception is when factor have resource 

constraints or multiple feedbacks that have different signs.  For example, glutamate can 

be increased by NMDA activation and decreased by uptake by glutamate transporters.  

The overall sign of glutamate will depend on which relationship or interaction is 

‘winning’ at the measured time point.  The possibility of a direction switch should be 

denoted at this time such that it is not forgotten later.  But, at this point, the direction can 

simply be taken as the direction that causes the highest degree of pathological impact.  

For example, in the case of glutamate, increasing glutamate via NMDA causes 

excitotoxicity whereas decreasing glutamate, for most part, does not impose a 

pathological effect.  Thus, the sign of glutamate would be recorded as positive. 

For categories, the sign can be trickier since different factors within a category can 

potentially push the category different ways, similar to the factor case described with 
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glutamate above.  Again, the rule of thumb is to go with what the majority of the factors 

within the category do to increase the pathological effect(s) on the system. 

 

Step 10:  Determine the time constant for a factor or category.  The time constant is used 

to determine the time-dependent behavior of a factor or category.  It is a necessary 

component to translate and construct the differential equations, which describe the 

network of factors. 

 

For factors, a time constant is determined directly from experimental data using the peak 

or maximal impact as the point of measurement.  For example, if the peak glutamate 

concentration occurred at 1 hour, the time constant, as typically defined by engineers, 

would be 67% of 1 hour, or ~ 40 minutes. 

 

Of note, is that a factor may need to have multiple time constants.  Since the relationship 

gain being taken from literature is assumed to be linear over a short period of time, there 

may need to be several ‘pieces’ of time which the factor is modeled with a different time 

constant.  This is analogous to having a smaller mesh size or time step for a differential 

equation solver in areas in which a function is experiencing frequent or high degrees of 

change.  If a factor’s gain significantly changes with time, such as the glutamate case 

described in step 9, then there must be a time constant to represent each piece-wise 

change represented.   
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In general, the model must be split in order to accommodate these piece-wise changes.  

For example, in the SCI model, there are two such splits.  There are time constants to 

represent the ‘acute’ period, the first hour post-insult, and time constants to represent the 

‘sub-acute’ period, hours 2-16 post-insult.  These splits can only be determined by 

validating the factor values at known time points to experimental data during the refine 

process.   If a factor’s output values track experimental data well at first but then begin to 

not follow the experimental data over longer time periods, then there needs to be a split 

and another time constant to be identified and used when the significant deviation from 

experimental values occurs.  Essentially, the number of time constants and time splits 

required will depend on the system and the relationships of its individual factors.  While 

this process is not a curve fit, it is analogous to the piece-wise process used to fit different 

parts of a function during a curve fit. 

 

For categories, the time constants can be estimated based on when the main outputs or 

factors of the categories express their peak impact.  Thus, the estimate is based on the 

‘majority’ of impact within the category.  Typically, this is not a difficult estimate as 

factors within a category are typically very inter-related and thus have similar time 

constants; thus, the aggregated time constant for the category is comparable to the factor 

time constants.  Such an estimate definitely does not require knowing each factor’s time 

constant.  Typically, most experimental papers, and particularly high-level overall 

physiology or pathology reviews, such as those used in step 1, are forthcoming in making 

statements that hint to a category’s time constant.  For example, a review in ALS may 
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state the following: “Axonal transport defects are evident by day 60 in the G-93 mouse 

model.”  

 

For a physiology or pathology with a large number of categories, it may be helpful to 

simply divide the time constants into ‘fast’, ‘medium’ and ‘slow’.  For example, a 

relational category model of ALS uses time constants that indicate key pathological 

presentations of the G93A mouse model at 60, 90, and 120 days.  A quantitative value, 

based roughly on data for the system can be assigned to each time constant speed.  For 

the purpose of getting a preliminary system overview, obtaining more gradated or 

accurate versions of the time constant magnitudes does not add a considerable amount to 

the analysis since there the entire category model will be based largely on estimation. 

 

Step 11: Translate the relationships into a relational map.  It is at this point where 

overall system map can be constructed.  As in the example shown in Figure 1 for spinal 

cord injury, a box should represent every factor and an arrow in the appropriate direction 

between two factors should indicate every relationship or ‘gain’.  Using the number of 

total connections to each factor can help with ideal spatial placement of factors in order 

to minimize the number of line crossings and clutter.  The factors with a higher number 

of relationships should be placed more towards the middle of the map. 

 

Step 12a:  Determine the magnitude of the relationships or ‘gains’.  It is in this step that 

the literature relationships are turned into quantitative values that can be used in Step 14 

to form differential equations.  
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Determining the magnitudes for gains of factors can be either extremely easy—a matter 

of simply reading the text and extracting the stated value or it could be as difficult as 

synthesizing multiple studies, crudely measuring, comparing, or averaging a handful of 

things and then making a determination.  However, the majority of the time, the value is 

not simply stated.  Even if a factor’s relationship is directly stated, it definitely does not 

appear in the paper as “The gain of factor X on factor Y is 3.2”.  Unfortunately, the 

majority of the time, it takes a good amount of ‘work’ to find a gain in the text or even 

obtain the data necessary to ‘calculate’ a gain, particularly for the first 10 or so gains for 

any given system.  In general, scientists in a particular field tend to present their data in a 

similar way and, within reason, they even organize their findings in specific ways (e.g. 

explicit types of graphs or visualizations) or patterns within the journal article (e.g. 

location and organization of data within the results section).  Thus, once one has become 

more familiar with such ways and patterns of a particular field, gains are determined 

more easily and efficiently as the extraction process continues. 

 

The most important thing to keep in mind or remember whether trying to cull the 

literature text to find the quantitative values directly or using the presented data to 

calculate a value, is the definition of what the gain is:  the gain is most simply stated as 

the slope between two factors.  Another way to think about it is like the proportional gain 

on a controls diagram.  The gain allows the change in a factor to be calculated, and within 

the model this change can then be added back to the previous value of the factor to 

determine the new factor value. 
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If a gain is directly quantitatively stated in a paper, it often appears in a figure caption 

that describes the data being measured or near where a figure is cited in the text.  For 

example, “Figure 1 illustrates a five-fold increase in glutamate at 15 minutes post-insult”.  

Note that the same relationship-signifying words as previously mentioned during the 

review process in Step 6 still apply when looking for actual quantitative values within the 

text.   However, there is one important warning to be aware of when taking what appear 

to be quantitative values or relationships from the text.  Typically, papers do not present 

factor relationships as an actual ‘gain’ or slope.  Instead, they present a gain as a 

proportional difference in a factor between two different points of measurement, as in the 

example above.  That is, the relationship presented is usually a dX or dY and not the 

slope dY/dX or dX/dY, which is required for a relational model.  This can be easily 

corrected by using the dX or dY given in combination with ‘base’ value points of X and 

Y or the experimentally varied points of X and Y to calculate a slope.  ‘Base’ values, if 

not shown in the data presentation (table or figure) often appear in the methods.  Also, 

‘base’ values can have many potential names or descriptions within the literature such as 

physiological, non-diseased, normal, wild type, sham, or control.  Another cautionary 

reminder is to be careful of not flipping the gain the wrong way; this is a particularly easy 

mistake to make for two factors which have a two-way relationship to each other.  

There are quite possibly a nearly infinite number of ways for a relationship or ‘gain’ to be 

presented within the data of a paper.  The most common data presentations from which 

gains can be extracted are listed below.  However, it is important to keep in mind that a 

couple of different data sources, whether within the same paper or whether from different 
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papers but comparable studies, may be needed in order to determine quantitative gains.  

For example, one experiment may identify that a relationship between Factor X and 

Factor Y simply exists, while the results of another experiment presented in one or more 

graphs may enable the change or slope to be calculated. 

 

• Bar graphs.  Bar graphs are probably the most highly favored data presentation 

technique of experimentalists, mainly because most experiments aim to directly 

compare a relatively few number of points.  Such graphs typically have multiple 

bars to show either different factors or different experimental variations of a 

factor.  If making measurements about the pathology in its native environment, 

most will compare the values of two different pathological factors over time.  A 

slope can easily be extracted from data in this form.  However, it is not 

uncommon for factors to have different gains over time.  Thus, one should check 

the gain at multiple time points, if possible.  An example gain extraction is given 

in Figure 3:  Qualitatively, the slope between the 0 and 4 hour time points is about 

the same as the slope between 4 and 8 hour time points.  However, the slope is 

visually different between between the 8, 12, and 15 hour time points.  Thus, there 

would be two gain extracted for this data, one gain for hours 0-8 and another gain 

for hours 8-16.   The gain dY/dX or GYX would be ~ 2 for hours 0-8.  This gain 

can be obtained by averaging the slope between 0 and 4 hours and 4 and 8 hours 

or by taking the slope across the entire 0-8 hour interval.  Taking the slope across 

the entire interval, the slope dY/dX or GYX calculation is:  (3-2) / (1-0.5), where 3 

and 2 correspond to the values of Factor Y and 1 and 0.5 correspond to the values 
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of Factor X at the time points of 8 and 0 hours, respectively. Using the same 

process, the gain can be calculated for hours 8-16 to be approximately 5.  In 

summary, this is an excellent example of when a model ‘split’ with two time 

constants may be needed, as described in Step 10.   

 

 

Figure 6.3.  Two-factor temporal bar graph.  The figure illustrates one of the more 
common bar graph presentation forms from which a gain can be extracted.  In this 
particular example, two factors of a pathology are measured at different time points.  For 
this example, assume that it is given in the literature that Factor X has a one-way 
relationship which impacts the value of Factor Y.  Using this information, we know 
which direction the slope must be calculated.  By simply looking at the figure, it is 
evident there are two different gains—one gain that remains fairly constant from 0-8 hrs 
and another quantitatively different gain that represents the relationship between Factor X 
and Factor Y from 8-16 hrs.  The slope can be calculated between each of the two sets of 
points.   Slopes of similar magnitude can be averaged to determine the average gain over 
a time frame. 
 

Another common bar graph presentation is to illustrate how an experimental variable, 

such as Factor Y, responds to a controlled level of another impacting factor, such as 

Factor X (see Figure 4 below).  This is a typical presentation especially in in vitro 

experimental studies where individual factors can be more easily controlled.  It is also a 

very common data presentation form for a therapeutic study or a study where a drug, such 
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as receptor blocker or antagonist, is used to measure the response of one or more 

pathological factors.  A slope can still be calculated as long as the control values are 

given. 

 

 

Figure 6.4.  Single factor or therapy bar graph.  This example illustrates two data 
presentation possibilities.  One possibility is that the categories presented represent an 
experimentally controlled concentration of Factor X, and thus, this graph alone can be 
used to determine the slope or gain of the impact of Factor X on Factor Y 
(dFactorX/dFactorY).  Taking the slope between the control and 2mM of Factor X, the 
gain would be (2-0)/(8-10) = 2/(-2) = -1.  The negative sign indicates that Factor X 
decreases Factor Y.  Another possibility is that the example represents the change in Y 
when exposed to a therapeutic.  If it were a therapeutic example, unless the therapy itself 
actually represented Factor X, then another data presentation form would be necessary to 
determine the presence of a relationship between X and Y and to determine the change in 
X with the same therapeutic or within the same experimental preparation. Combined, the 
latter two data forms could be used to determine the gain imposed by Factor X on Factor 
Y. 
 

• Traditional scatter plots.  Such plots typically will either directly plot the 

relationship, Factor Y vs Factor X, (as shown in Figure 4) or will plot a single 

factor (Y or X) over time.  The factor versus time plots are the easiest for 

obtaining output validation criteria at multiple time points and for determining 

when the model will need to be ‘split’ with multiple factor time constants.  If a 
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single factor is plotted, data may need to be combined with another data source in 

the same paper or from a different paper. 

• Tables.  Sometimes quantitative data is presented in tables.  This data presentation 

form is typically very accessible for calculating a gain.  However, it often requires 

reading the text to determine which and how what factors are related in the table. 

• Gene microarrays.  These typically just give a ‘fold difference’ increase or 

decrease in the expression of a gene or other marker.  If the ‘mechanism’ or how 

two factors are related is known (either from experiment or from the normal 

physiological system), two microarray correlations can be combined to obtain a 

one-way factor gain. 

• Protein gels (western blot).  These are largely qualitative and simply show if a 

relationship is present.  However, they are often combined with other analytical 

tests and visualization methods that do quantify the fold-difference.  Thus, they 

can be combined with such aforementioned tests or other analytical tests to 

determine a gain. 

• Histological micrographs.  These are by far the most difficult to obtain gains from 

because very often they are heavily qualitative.  Typically, relationships are 

obtained when a drug, such an agonist or antagonist, is applied to increase or 

decrease a factor, such as Factor X, so that the corresponding qualitative change 

in Factor Y can be determined by change in dye ‘color intensity’.  However, there 

are a few cases in which quantitative gains can be extracted when no other data 

source is available.  The primary example is when the factor is manually 

‘countable’, as in the case of detecting the presence of macrophages or microglia. 
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If two micrographs of the same magnification are shown (either a before and after 

treatment or two different time points), then counting within each micrograph 

enables a factor difference obtained.  This difference can then be combined with 

data from another factor, either from the micrographs themselves (such as 

treatment levels) or another data format.  Another example is if the geometric area 

of the micrograph covered by a certain color is the qualitative indicator, then this 

area can be measured in order to compare micrographs and obtain a factor 

difference, which like in the previous example, can be used in the construction of 

a gain. 

• Electrophysiology.  Traces of neural activity can be difficult to compare in and of 

themselves.  Metrics from such traces like frequency, firing rate, and 

amplification provide the best means of comparison to calculate a relational 

model gain or slope.  The appropriate metric to choose will depend on what 

relationship one is trying to illustrate. 

• Combining data sources.  There are a few intuitive pointers to keep in mind when 

combining data sources.  First, one must know how and when the relationship 

exists between two factors.  Knowing the how and when allows one to decide 

what data is valid to measure a relationship or gain.  Second, to the fullest extent 

possible, it is best if the two data sources were measured at the same conditions 

(same protocol, preparation, etc).  This usually means that it is preferable to use 

data that is within the same study or paper.  However, there may be times when 

using data from the same study is simply not feasible.  In those cases, one must 

simply match data sources as best as possible. 
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As values are recorded, it is important to keep track of them in the model database. 

Minimally, one must record the gain type, its value and the source.  However, because 

obtaining gains can be subjective and they can vary at different experimental conditions, 

it is also important to keep more details such as the figure or table number from which it 

was extracted, the time points used, the numbers used in calculating the slope (if 

applicable), and how the gain was determined.  Additionally, finding and recording a 

rough estimate of both the standard experimental error (mean or deviations) is helpful 

and can be used during the refine process.  Also, making a note of the general accuracy of 

how the gain was extracted is helpful.  For example, there is much more error by the 

modeler in obtaining a gain from micrographs compared to graphical or tabular data. 

Finally, upon reviewing and reading the literature in the current EndNote™ and literature 

databases, one may find that there are still quantitative values that are missing for some 

of the gains illustrated on the relational map and one may even find that there are possible 

relationships that have not been appropriately illustrated on the map.  If more data is 

needed to fill these gaps, go to Step 12b.    

 

Step 12b:  Third expansion of factors—after reading this step, return to Review step 7.  

Sometimes it becomes apparent during Step 12a that there are documented relationships 

that have no current papers in the EndNote™ or literature databases that have measured 

the relationships in a way that a quantitative gain can be identified or extracted.  This 

especially tends to happen when there are indirect relationships in a model that have been 

inferred from a physiology or when a quantitative measurement has not been made of the 
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pathological relationship.  If this is the case, the literature review must be expanded 

beyond the pathology to other sources of information---either literature of the normal 

physiology or a related pathology.  For example, in the spinal cord injury relational 

model, traumatic brain injury data was often used as the ‘next source’ when useable, 

quantitative data for a particular relationship was not available in the SCI literature.  For 

‘normal’ physiology data in the SCI model, central nervous system data was used.  

Ultimately, a number from an expanded source is better than no number at all or a 

complete guess.  However, as with any review, one must set and record inclusion and 

exclusion criteria for gain data sources for accuracy and consistency. 

 

It is also at this point when the factors are reviewed to determine which ones of the 

‘questionable’ or ‘intermediate’ factors identified from Step 7 should remain included in 

the model and which ones should be excluded from the model.  There is a rule of thumb:  

In general, each factor in question should have at least two relationships, one of which 

must induce feedback. Two exceptions are if a factor is a major input or output of the 

system, like an input used to ‘initiate’ the pathology (as shown in Figure 5D), such as a 

gene mutation, or an output used to validate the model (as shown in Figure 5E) or 

represent a clinical presentation. The most common example of an intermediate that 

should be excluded as a factor is shown in Figure 5A, where the intermediate simply 

serves to connect two factors, but the intermediate has no feedback.  For such a case 

where there is no feedback, the intermediate can be excluded from the relational model 

because the information extracted from the literature to obtain GIX and GYI can be used to 

determine GYX.  As long as the intermediate in question has feedback, whether external 
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(Figure 5B) or internal (Figure 5C), then the intermediate should be included as a factor 

in the relational model.   

 

Note that there may be other cases not shown in Figure 5 in which there is no feedback 

but an intermediate may wish to be included, such as an intermediate that has 

relationships to multiple factors.   While there is no ‘harm’ in including intermediates as 

actual factors, frequently doing so unnecessarily can make the model more cumbersome 

and computationally slower.  However, most importantly, unnecessarily including every 

intermediate as a factor will make the model more difficult to analyze and interpret by 

adding extra ‘clutter’, particularly in pathologies that already have a very large number of 

factors that must be tracked and visualized. 
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Figure 6.5.  Determining when to make an intermediate an actual factor in the model.  
Note that dotted arrows represent relationships to factors not shown.  A.  This example 
illustrates the most common example of when an intermediate should be excluded as a 
factor.  This ‘linear’ scenario has no feedback and thus there is no reason to include it.  B.  
This example illustrates an intermediate with external feedback that should be included as 
a factor in the relational model.  C.  This example illustrates an intermediate with internal 
or self-feedback that should be included as a factor in the relational model.  D.  This 
example illustrates an intermediate that also serves as a model output, and thus, should be 
included as a factor in the relational model.  E.  This example illustrates an intermediate 
that also serves as a model output, and thus, should be included as a factor in the 
relational model. 
 

For categories, once again, the values must be estimated.  However, as before with the 

time constants, reviews provide a good source to obtain some estimates as to what a 

category of aggregated factor gains might look like.  Similar to the recommendation 

made in Step 10 for category time constants, category gains can also be assigned as 

having magnitudes that are ‘small’, ‘medium’ or ‘large’.  These magnitudes are assigned 

relative to one another.  Since the goal of a category model is to get an idea of system 

behavior and not to precisely match quantitative values, keeping the category gains in 
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roughly the correct proportions relative to one another is more important the actual values 

used. 

 

Step 13:  Determine the ‘output’ value criteria.  When it comes to output criteria, more is 

better as additional outputs only help to further analyze and validate the model.  

Remember that the relational analysis techniques actually perform better with larger 

numbers of outputs.  There are not very many rules when it comes to outputs. The one 

rule is that there needs to be at least some outputs which come from data sources that are 

not used to construct the model.  This keeps the validation from becoming ‘biased’.  

However, given the availability of data it is practically impossible to have an external 

output for every factor.  In fact, a good majority of the outputs may in fact come from the 

same study from which the factor’s gain and/or time constant was taken.  Thus, it is 

important to keep track of where the outputs come from exactly, including the paper, 

figure number, etc.  Furthermore, it is helpful to categorize outputs such as ‘primary’, 

‘secondary’, and ‘tertiary’.  Primary outputs are completely external to the model.  

Secondary outputs may have come from a study in which indirect information was 

extracted for the model, taken either from different sub-study within the publication or 

from a study in which only factor time constant information was extracted (since factor 

time constants are less study-specific compared to factor gains).  Tertiary outputs come 

from papers or studies in which one or more factor time constants were extracted.  

Despite being ‘closest’ to the model, tertiary outputs are often still not completely 

internalized because there are typically many factor gains that go into the calculation of a 

factor.  Thus a tertiary reference only contributes to a portion of the factor’s output value. 
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For categories, there is little to be done in getting actual category output validation 

criteria in terms of quantitative values since such data typically is not readily available 

from the literature or even in the reviews.  Thus, categories must be analyzed relative to 

one another and based on their time courses rather than their actual quantitative output 

values/magnitudes. 

 

Step 14:  Determine the form of the equations for each factor or category. Although this 

entire step is written in terms of factors, please note that the mechanics of this step are the 

same whether doing a factor or category relational model. The form of the equations for 

individual factors can be of any type and each factor can have a different form if one so 

chooses.  However, in general, the expected value for most factors, Fexpected, can be 

determined using this simple linear form where the gain of the influencing factor, Gi-Factor, 

is multiplied by the influencing factor value, Factori, and all such products for all 

influencing factors one through N are summed: 

 

   
Factorexpected = Gi−Factori=1

i= N∑ ⋅ Factori    Equation 6.1 

 

There are exceptions where the above does not work well.  One example of a factor that 

was not well represented by the above was the Na-K-ATPase pump in the SCI model, in 

which the above equation had to be altered (see Methods of the SCI test case in Chapter 

8). It is possible that the above only works well for factors that are unidirectional in sign 

over the selected model time ‘split’ or time constant.  The SCI test case supports this 
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hypothesis as the Na-K-ATPase pump was the only factor in the SCI model which had a 

significant change in sign during a single time split.   

 

Typically, the differential equations, themselves, for most factors can be represented in 

typical Euler form where the subscripts expected and previous denote the expected and 

previous factor values, usually in terms of time: 

 

  

d Factor
dt

=
Factorexpected − Factorprevious

τ Factor    Equation 6.2
 

 

Step 15:  Construct and simulate a relational model.  The construction part of this 

particular step is really no different then implementing any other computational model.   

The modeler can pick his/her favorite modeling platform such as MATLAB (The 

MathWorks, Inc.), C/C++, Pascal, or FORTRAN.  

 

As for the simulation part, review the chapter on relational analysis methodology.  The 

model will need to be simulated at multiple operating points.  Some helpful pointers 

include: separating the time ‘splits’ such that their results or outputs can be viewed 

separately, automating sensitivity analyses for factor gains and/or time constants, and 

automating the relational analysis landscapes. 
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Refine 

Step 16:  Perform relational analysis.  See the relational analysis instructions (Chapter 

4.)  Note that, in general for a relational model, only the survey and summarize parts of 

the S3 relational analysis technique can be used on a relational model.  Use the recorded 

standard experimental errors (means or deviations) to aid in the sensitivity analysis 

ranges. 

 

Step 17:  If possible, validate the relationships with experimental correlations.  This step 

is usually done jointly with Step 18, although it easier to start with validating correlations 

before trying to obtain specific values.  See the relational analysis instructions and 

particularly the landscape text.  Check the correlation of each factor at its experimentally 

determined time.  Ask the following questions:  Does the model show the expected 

correlations?  Do the sign and/or magnitude(s) change with time?  For the predicted 

correlations, do they make sense?  Can a mechanism be hypothesized?   

If there are known differences in the model and experimental data, these differences will 

need to be addressed.  First check to see if the simulated factor correlation was sampled 

at the same time period as the experimental data since correlations can actually change 

with time.  If not, then re-do the landscape at the experimental time frame for the factor 

in question.  Once the time frames are the same, check the factor gains including their 

directionality (impact of X on Y vs impact of Y on X, if applicable), magnitude and sign.  

If these are all correct, more detail may be needed (see Step 19).  If these are incorrect, 

make a series of landscapes over time.  If and when do any of the series of landscapes 

have the correct correlation?  Next, check the time constants to see if they need to be 
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split.  This is usually evidenced by a factor following the proper trend for a while and 

then suddenly falling away from the experimental trend. Next, check the form of the 

factor-gain equation to see if it adequately represents the trend of the experimental data.  

Finally, sample the space with a broad-based sensitivity analysis to check the robustness 

of the factor and its broader behavior and stability. 

 

Step 18:  Validate values by comparing single factors with experimental data.  There are 

a multitude of ways to go about refining the model to obtain the proper output values.  If 

the correlations are correct over time (from Step 17), the first thing to check is the 

relative trend of the factor.  Does it look like its experimental counterpart?  If not, return 

to the troubleshooting tips in Step 17.  If all of those criteria have been met, then the 

model may simply need more detail (see Step 19), both in terms of time constants and/or 

factor gains.  If the trends are correct, but the quantitative values are merely wrong, 

perform an extended sensitivity analysis using the standard experimental error and 

approximated error during the gain extraction process.  This allows the proper gain to be 

‘tuned’ to the correct value. 

 

Step 19: Determine which categories or factors need more detail.  Steps 17 and 18 

outlined many trouble shooting tips for factors, which did not in one way or another meet 

some portion of the validation criteria.  Once the factors are ‘close’ to experimental 

correlations, the best way to determine if a category or factor needs more detail is to 

perform relational analysis and component analysis on specific factors by both 

subtracting and adding more detail (i.e. making the model bigger by adding in more 
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factors or intermediates and smaller by subtracting them).  Once the model gets to the 

point to where both qualitative and quantitative changes seem tolerably small and the top 

5 or so influencing factors are stable (in that they are the same regardless of model 

operating point), it can be safely assumed that the model has sufficient detail to make 

system-level hypotheses about dynamics. In the case with SCI, there was little difference 

between the final implementation versus the version before it, which included about 25% 

fewer papers.  Thus, a stopping point was reached for the first system-level model of SCI.  

This is not to say that more detail or outputs and such could not be added and more 

insight gained.  The ‘stopping point’ simply means that the answers the model produced 

could be trusted. 

 

Step 20:  Iterate until the appropriate relationships and criteria have been satisfied.  

Expect around 3 iterations to get a base model up and running. 

If doing a preliminary or category model, return to step eight to make a factor model. 
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CHAPTER 7 

NEUROTRANSMITTER SPILLOVER 

 

 

Neurotransmitter spillover was chosen as the first system test case.  It was a reasonable 

‘starter system’ in that it is a system in which we have some prior familiarity, and is 

scientifically interesting in that it re-opens the long-standing debate in neuroscience that 

synapses are truly independent.  In section one of this chapter, the ‘base’ neurotransmitter 

spillover model is developed and the system is analyzed using traditional analytical 

techniques such as a parameter sensitivity analysis.  In section two of this chapter, 

degenerate versions of the neurotransmitter spillover model are developed in order to 

refine our relational analysis technique of search-survey-and-summarize (S3) and to 

develop the related component analysis technique. 

 

Neurotransmitter spillover was chosen as the methodological development system for 

three reasons:  1) It is a relatively simple system that can be modeled as two sub-systems 

or components which can be independently analyzed, a glutamate diffusion model and a 

neurotransmitter receptor model;  2) A neurotransmitter spillover model is a mechanistic 

model, the most common type of model implementation, and its diffusion and kinetic 

mechanics are representative of a large portion of traditional biological models and 3)  

While the sub-system or component properties are well-characterized, the dynamics or 

properties emerging from the interaction of the two sub-systems are not; thus, there were 
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opportunities to “check” the method for what was known and to “test” the predictability 

of the method to identify dynamics and/or mechanisms which were unknown. 

 

The first study of spillover in the cerebellar glomerulus, the mechanistic model of the 

system, was implemented and the amount of spillover seen within the cerebellar 

glomerulus was calculated under a wide range of physiological parameters.  This study 

utilized a sensitivity analysis of the geometric parameters to determine the percent 

contribution of NMDA-R activation to spillover at the cerebellar glomerulus.  The major 

finding of the study was that spillover results in NMDA-R open probabilities that are 

79% of what is seen during a direct release.  The paper, “An analysis of glutamate 

spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus”, as 

published in the Journal of Neural Engineering 4(3): 276-282 (Mitchell et al, 2007), is 

presented in its entirety. 

 

Study two focuses on the methodological development of the relational analysis 

technique.  In this study, relational analysis is used to discern the difference between two 

degenerate models—the 8-state BT NMDA-R model and the 5-state LJ NMDA-R model, 

both individually and within the context of the larger spillover model.  The underlying 

thought was that the ability to discern between two models capable of producing the same 

output [i.e. two degenerate models] would be a critical test of the robustness and 

effectiveness of the relational analysis method to reveal complex system dynamics.  

Furthermore, the study was an interesting exercise in determining the necessity of 
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complexity within a model—a judgment that must often be made by modelers to balance 

computational requirements, run time, and model robustness.   

 

Ironically, the idea to compare the two degenerate versions of the NMDA-R model was 

spurred by the comments of a reviewer of the first spillover paper who stated in his 

review:  “Why is the Banke and Traynelis model used instead of the Lester and Jahr 

model?  I see no need to implement the more complex BT model over the LJ model as 

they both accurately model NMDA-R behavior.”  His reasoning was similar to that of 

most modelers—if a model produces the right “answer” (i.e. it meets the appropriate 

quantitative output criteria), then it is “good enough” and there should be no need for 

additional model complexity.   

 

However, the findings of this study illustrates that there is much more to a model and its 

dynamic behavior than simply meeting target output criteria.  Using the developed 

relational analysis technique of search-survey-and-summarize, this paper highlights how 

relational analysis is able to “raise the hood of the model” to view the important 

dynamics that lie beneath that contribute to the model’s robustness and ability to predict 

unknown or emergent behavior using the product of relational analysis, the model’s 

landscape, which consists of a visual representation of its quantitative output 

relationships.  The key result of the paper, in regards to spillover, is that though both the 

BT and LJ NMDA-R models are able to reproduce overall spillover model target output 

criteria, the BT model more accurately represents the dynamical relationships of synaptic 

geometry, a critical predictive feature particularly once spillover analysis is moved from 
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the well-characterized geometry of the cerebellar glomerulus to less-characterized 

synapses.  Furthermore, the presence of a “pinch point” or dimensional reduction within 

the spillover model is determined and characterized. The paper “Output-based 

comparison of alternative kinetic schemes for the NMDA receptor within a glutamate 

spillover model” as published in the Journal of Neural Engineering 4(4): 380-389 

(Mitchell and Lee, 2007) is given in its entirety. 

 

System Background:  Neurotransmitter spillover 

The concept of synaptic independence has been a long-standing theorem in neuroscience 

upon which nearly all mechanistic single cell and neural network models are based.  In 

fact, the very foundation of our neuroscientific thought hinges upon the dogma that 

synapses are truly independent.  However, increasing experimental and theoretical 

evidence has suggested that this may not be the case.  Synaptic neurotransmitter 

spillover, defined by Diamond (2002) as the escape of neurotransmitter from a synapse of 

an intentionally or directly activated neuron to a neighboring, quiescent synapse resulting 

in the neighbor’s indirect activation (see Figure 1), has remained a topic of much debate.  

Whether intentional whereby spillover has the potential to increase transmission 

reliability or network synchronization (Nielson, 2004) or unintentional whereby spillover 

has the potential to trigger pathological responses such as aberrant firing (Rusakov and 

Kullmann, 1999), spillover most certainly impacts and adds additional layers of 

complexity to neuronal dynamics and firing properties.  The significance of spillover to 

experimental and theoretical neuroscientists alike is without question, and as such, 
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neurotransmitter spillover makes for an interesting test case from which further system 

exploration using complex systems based methods is both necessary and warranted. 

 

 

 

 

Figure 7.0.1. Diagram of neurotransmitter spillover.  The pre-synaptic terminal of 
Synapse A is intentionally activated, resulting in the release of neurotransmitter from its 
synaptic cleft (denoted by the red boxes).  Under the theory of true synaptic 
independence, this neurotransmitter simply diffuses across the synaptic cleft of Synapse 
A, resulting in receptor activation in the post-synaptic terminal and subsequent action 
potential initiation.  However, when neurotransmitter spillover occurs, the 
neurotransmitter from Synapse A escapes, diffuses into neighboring Synapse B, and 
results in indirect receptor activation of the post-synaptic terminal of Synapse B and 
subsequent action potential initiation. 
 

The properties of neurotransmitter spillover, and neural transmission in general, are 

largely dependent upon the specific properties of the synapses being studied including 

geometry, intrinsic properties, uptake transporters, etc. In order to keep our analysis 

tractable, both for the sake of understanding the system being explored and to assist in 

methodological development, we chose to model the cerebellar glomerulus for which 

much data already exists.  The glomerulus consists of a relatively enclosed complex of 

synapes having a mossy fiber at its core synapsing with axons of Golgi type II neurons 
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tractable, both for the sake of understanding the system being explored and to assist in 

methodological development, we chose to model the cerebellar glomerulus for which 

much data already exists.  The glomerulus consists of a relatively enclosed complex of 

synapes having a mossy fiber at its core synapsing with axons of Golgi type II neurons 

and dendrites of granule cells (Kandell et al, 2004).  Because of it relatively large size, its 

geometric properties have been thoroughly experimentally examined.  An additional 

advantage is that uptake of the active neurotransmitter, glutamate, is accomplished by an 

enclosed sheath around the complex that houses glutamate transporters (Overstreet et al, 

1999).  Because nearly all glutamate uptake occurs at the boundary of this sheath, there is 

little need to model individual glutamate transporters.  Instead, glutamate uptake can be 

modeled using its residence time; when glutamate reaches the sheath, it is extracted from 

the active synaptic system. 

 

The synaptic transmission itself is accomplished via the activation of the glutamatergic 

receptors, the N-methyl-D-aspartate receptor (NMDA-R) and alpha-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPA-R). The role of AMPA-Rs had been 

both experimentally and theoretically characterized by previous studies (DiGregorio et al, 

2004; Saftenku, 2005).  However, while no prior theoretical study had been conducted to 

characterize the role of NMDA-Rs, prior experimental studies showed conflicting results 

regarding the impact of NMDA-Rs in neurotransmitter spillover (Rossi et al, 2002, 

Sargent et al, 2005; Cathala et al, 2003).  
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With these simplifications in mind, a neurotransmitter spillover model which explores the 

synaptic spillover of glutamate within the cerebellar glomerulus consists of two sub-

models: 1) a diffusion model which simulates the diffusion of glutamate between the 

synapses within the cerebellar glomerulus and its uptake at the outer ensheathing 

boundary and 2) a receptor kinetics model which simulates the binding and activation of 

synaptic NMDA-Rs responsible for neural transmission.  We chose to use existing 

theoretical models, which accurately represented each sub-model system.  The 

implemented diffusion model was that developed and used by Saftenku (2005) to study 

the effects of glutamate spillover on AMPA-Rs at the cerebellar glomerulus.  The 

implemented NMDA-R model was one of two published models:  the 5-state Lester & 

Jahr (LJ) model (Lester and Jahr, 1992) and the 8-state Banke and Traynelis (BT) model 

(Banke and Traynelis, 2003).   

 

This chapter is divided into two sections, each representing one of two published papers 

on spillover at the cerebellar glomerulus.  The first section or paper highlights the 

spillover model development and the major conclusions regarding the impact of 

glutamate spillover on the activation of NMDA-Rs at the cerebellar glomerulus.  The 

second section or paper highlights the methodological development of the search-

sensitivity-and-summarize technique of relational analysis and illustrates the 

effectiveness of the method to identify complex system dynamics by using the method to 

discern between two degenerate models (i.e. the BT and LJ NMDA-R models) within the 

context of the larger spillover model. 
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Abstract 

Glutamate spillover is thought to play a significant role in increasing neural transmission 

at the mossy fiber/granule cell cerebellar glomerulus.  Glutamate spillover has been 

shown to activate AMPA receptors at the glomerulus, and here we complete the 

characterization of spillover at the glomerulus by investigating the role of glutamate 

spillover in N-methyl-D-aspartate receptor (NMDA-R) activation.  We present a 

quantitative model of glutamate spillover combining recent models of glutamate diffusion 

and NMDA-R binding to determine the open probabilities of NMDA-Rs over time at a 

neighbor synapse. Simulation results from a baseline set of physiologically realistic 
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parameters show that glutamate spillover onto a single neighbor synapse, created by 

glutamate that diffuses from a point source into a restricted fractional 2D-3D space and 

the glutamate concentration created by neighboring glutamate release sites, is sufficient 

to elicit an NMDA-R peak open probability of 0.23, approximately 79% of that obtained 

by a direct release (peak open probability of 0.29).  Thus, it would appear that glutamate 

spillover at the glomerulus at NMDA receptors is even more substantial than that seen at 

AMPA receptors.  

Keywords 

synaptic crosstalk, NMDA receptor, cerebellar glomerulus, computer model, 

extrasynaptic diffusion 

 

Introduction  

Glutamate spillover, defined as the escape of neurotransmitter from the synapse into 

which it is released to neighboring, quiescent synapses thereby activating receptors  

(Diamond 2002), is thought to play a critical role in synaptic transmission at the 

cerebellar glomerulus, a complex structure surrounded by a glial sheath where the mossy 

fiber terminal forms glutamatergic synapses on the dendrites of granule cells (Palay and 

Chan-Palay 1974). Glutamate spillover has the potential to increase transmission 

reliability (Saftenku 2005; Sargent et al. 2005) and to help synchronize granule cell firing 

(DiGregorio et al. 2002).  Most previous experimental and theoretical work has focused 

on glutamate spillover on AMPA receptors (DiGregorio et al. 2002; Nielsen et al. 2004; 

Saftenku 2005) which have shown considerable activation, >50%, via glutamate 
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spillover.  Since NMDA receptors have a higher affinity for glutamate than AMPA 

receptors, it is plausible that they, too, would be greatly influenced by glutamate 

spillover. Thus, it has been hypothesized that glutamate spillover on NMDA does occur 

at the cerebellar glomerulus.   However, current experimental results looking at the 

effects of glutamate spillover on NMDA receptors at the cerebellar glomerulus are 

mixed.  NMDA receptors contribute to quantal excitatory post synaptic currents (EPSCs) 

at immature granule cell synapses, but multiquantal release was required to activate 

NMDA receptors at mature synapses (Cathala et al. 2003).  Consequently, further 

investigation is warranted. 

 

We examine the spillover of glutamate on NMDA receptors (NMDA-R) located at the 

mossy fiber/granule cell synapse in the cerebellar glomerulus.  A quantitative model of 

NMDA spillover at the cerebellar glomerulus will complete the characterization of 

spillover at this synapse.  Using known glomerulus geometry from electromicrographs 

and combining two published models of glutamate diffusion (Saftenku 2005) and NMDA 

receptor kinetics (Banke and Traynelis 2003), we present spillover in terms of glutamate 

concentration profiles and NMDA receptor open probability profiles. Specifically, we 

explore the role of geometry, glutamate diffusion and uptake, receptor properties, and 

cumulative glutamate release from multiple neighboring synapses.  Additionally, the 

effects of quantal release, receptor number per synapse, number of release sites, the 

effective diffusion coefficient, nerve diameter, and location of glutamate uptake are 

investigated. 
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Our results indicate that the effects of glutamate spillover on NMDA receptors of the 

cerebellar glomerulus are substantial with approximately 79% of the response obtained 

by “normal” direct release.. Sweeps of model parameters indicate that substantial 

glutamate spillover occurs in the majority of cases, including the cases that would 

currently be considered physiological, suggesting that some level of spillover is the norm 

rather than the exception in the cerebellar glomerulus.   

 

Methods & Materials 

Diffusion Model 

The Saftenku diffusion model (Saftenku 2005) was chosen because it includes several 

key features that limit the number of unknown parameters, and has already been 

successfully used to characterize AMPA receptors at the cerebellar synapse.  The more 

complex, bounded cylindrical geometry well represents the actual neural environment 

based on electron micrographs of the cerebellar glomerulus measuring the geometric 

distances and parameters.  Also, glutamate uptake is handled by an absorbing boundary 

derived from the residence time of the glutamate in the extracellular space 

(Trommershauser et al. 1999).  Additionally, this model integrates the probability of 

glutamate release from multiple neighboring synapses.  Finally, the analytical nature of 

this model allows for rapid computations (91 seconds per 60 ms simulation). 

 

The glomerulus contains a mossy fiber at its center that is 3-4μm in diameter (RMF) and 

6.5-10μm in length; the glial sheath is about 1-1.5μm from the mossy fiber terminal (Xu-
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Friedman and Regehr 2003).  Hence, the absorbing boundary in the radial direction, rabs, 

is 2.5-3.5μm measured from the center of the mossy fiber.  The normal direction 

absorbing boundary (Rdd) is equal to the difference between rabs and RMF.  When 

glutamate molecules reach rabs in a radial direction or Rdd in the normal direction, they are 

absorbed by the glial sheath. 

 

The diffusion model assumes instantaneous release of glutamate with an initial 

concentration, c0, of 8.77mM, equivalent to one vesicle containing 4,000 molecules of 

glutamate corresponding to a vesicle concentration of 100mM.  Multi-vesicle release is 

simulated by varying c0 at 4.385, 8.77, and 17.54mM to represent 0.5, 1, and 2 vesicles, 

respectively.   There are many citations for possible diffusion coefficient values 

(Nicholson and Sykova 1998; Saftenku 2005), etc.  Accounting for the effects of 

macromolecule obstacles and overcrowding, the glutamate diffusion coefficient is 

0.2μm2/ms (Saftenku 2005). The highest diffusion coefficient, describing diffusion within 

the synaptic cleft, is thought to be 0.76 μm2/ms (Barbour 2001). The value of 0.41 

μm2/ms represents the aqueous glutamate diffusion coefficient corrected for temperature 

and a brain tortuosity of 1.6 (Nicholson and Sykova 1998).  Table 1 lists the diffusion 

model parameter base values, physiological ranges, and references.  Note that to be 

conservative in our estimate of spillover, we use slightly different base case parameter 

values than those used by Saftenku 2005.  However, our base case parameter values lie 

closer to the mean of the experimentally determined values shown in Table I, and most of 

the parameter values used by Saftenku 2005 lie within the parameter ranges we test (see 

Table 2). 
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Table 7.1.1.   Diffusion model parameter definitions, values and references. 

Description 

N
am

e 

B
as

e 
V

al
ue

 

Ph
ys

io
-

lo
gi

ca
l 

R
an

ge
 

Reference 

Mossy fiber radius (μm) RMF 1.5 1.5-2 (Hamori et al. 1997; Xu-
Friedman and Regehr 
2003) 

Distance from center of 
mossy fiber to glial sheath 
(μm) 

rabs 3.0 RMF+1.5 Xu-Friedman & Regehr, 
2003 

Distance from mossy fiber 
to glial sheath (μm) 

Rdd 1.5 1-1.5 Saftenku, 2005 

Radius of circle 
containing one release 
site πsv=  (μm) 

rMD 2.17 1.25-2.8 Saftenku, 2005 
(equation) 
See vs references  

Initial glutamate 
concentration (mM) 

C0 8.77 4.39-17.54 Xu-Friedman & Regehr, 
2003 

Effective diffusion 
constant  
(μm2/ms) 

Deff 0.41 0.41-0.76 Saftenku, 2005 ; 
Barbour, 2001 ; 
Nicholson & 
Sykova,1998 ; Nielson, 
2004. 

Average release site 
density  
(μm-2) 

vs 1.5 1.5-3.5 (Rusakov et al. 1999; 
Sorra and Harris 1998; 
Xu-Friedman and 
Regehr 2003) 

Average radius of post-
synaptic density (μm) 

a 0.11 0.11 Xu-Friedman & Regehr, 
2003 

 

 

NMDA-R Binding Model 

To investigate glutamate spillover, we examine the binding kinetics of the two NR2 

subunits, even though co-agonist binding is necessary to open the ion channel.  Each NR2 

subunit can independently bind glutamate, and glycine concentration is assumed to be 

high enough such that the NR1 subunits are saturated.  To simulate NMDA-R activation, 
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the diffusion profile concentrations were fed into the Banke and Traynelis model (Banke 

and Traynelis 2003) 

 

The Banke and Traynelis model incorporates two desensitized receptor states and two 

transition states representing a fast and a slow conformation change. The 2-glutamate 

bound state, the two transition states, and the activated receptor state comprise a loop 

(Figure 1) which allows for two conformational changes to proceed before receptor 

activation.  

 

 

Figure 7.1.1.  Banke and Traynelis NMDA-R binding model.  The desensitized states are 

labeled RA2d1 and RA2d2, and the transition states are labeled RA2f and RA2s. The 

activated state is RA2* (Adapted from Banke and Traynelis, 2003). 

 

Spillover Model Analysis 

Model output is in the form of glutamate concentration profiles and open probability 

profiles.  Given a parameter set, glutamate concentration profiles show the time course of 

glutamate concentration, at a distance of 0.46μm from the center of the cleft, arising from 

summary contribution of spillover from all neighboring release sites.  Similarly, the open 
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probability profiles show the time course of open probability when a synapse at the 

aforementioned distance is exposed to a given concentration profile.   

 

The implementation of the diffusion model was confirmed by comparison of the base 

[Glu]ts profile to that reported by Saftenku (not shown);  note that the glutamate 

concentration traces shown in this work (Figure 2) appear different than Saftenku because 

of the differences in parameter values chosen (to keep the spillover estimate more 

conservative)  The implementation of the Banke and Traynelis NMDA-R model was 

verified by comparison of the NMDA-R open probability (PO) distribution generated 

when exposed to 1000μM glutamate to that reported by Banke and Traynelis (2003) (not 

shown).  The model is implemented in MATLAB R14 and runs at a time step of 10μs.  

Use of smaller time steps has negligible impact on the results. 

 

A sensitivity analysis was performed by varying parameters independently. The 

individual effects of Deff, rabs, RMF, c0, vs, and receptor number on the concentration and 

open probability profiles are assessed while using base values for the rest of the 

parameters.   

 

Results 

A summary of effects of each parameter on peak glutamate concentration, peak open 

probability, and the time point of the peak open probability are presented in Table 2. 

Simulation of the model with the midpoint physiological parameter values (base values in 
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Table III) led to a peak glutamate concentration (peak [Glu]ts) of 126μM and a peak open 

probability (peak PO) of 23% occurring 16.47ms after initial glutamate release.  

Exploration of the details of the results is presented below.  

 

Table 7.1.2.  Summary of simulated parameter values and their effects on peak [Glu]ts, 
peak PO, and time of peak PO. 

 

Concentration Profiles 

The glutamate concentration profile versus time was examined as a function of the 

various model parameters within their respective physiological ranges (Figure 2).  The 

base case (Figure 2A) represents the mid-range of the physiologically relevant 

parameters and, as previously stated, generates a peak [Glu]ts of 126μM.  Peak [Glu]ts is 

relatively insensitive to varying the effective diffusion constant (Deff), the distance from 

the center of the mossy fiber to the glial sheath (rabs), or the radius of the mossy fiber 

(RMF) (Figure 2B-D). However, the time course of [Glu]ts is substantially affected by the 

parameters, particularly Deff.  Decreasing Deff delays the arrival of glutamate at the glial 

sheath, resulting in a prolonged concentration increase.  Increasing rabs increases the 

Name Base 

Value 

Simulated 

Range 

Peak [Glu] 

(μM) 

Peak [Glu] 

Trend 

Peak PO Peak PO Trend 

RMF (μm) 1.5 1-2 102-131 Mixed 0.16-0.24 Mixed 
 

rabs (μm) 3.0 2-3.5 103-126 ↑ rabs = ↑ [Glu] 0.06-0.25 ↑ rabs = ↑ PO 

c0 (mM) 8.77 4.39-17.54 63-252 ↑ c0 = ↑ [Glu] 0.14-0.28 ↑ c0 = ↑ PO 

Deff (μm2/s) 0.41 0.2-0.76 126 ↑ Deff = ↓ [Glu] 0.15-0.28 ↑ Deff = ↓ [Glu] 

vs (μm) 1.5 0.5-2.5 23-246 ↑ vs = ↑ [Glu] 0.04-0.28 ↑  vs = ↑ [Glu] 
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distance the glutamate must travel before being taken up by the glial sheath thereby 

lengthening the time course.  Varying RMF has a mixed effect: at an RMF = 1.5μm peak 

[Glu]ts is higher than that at an RMF = 1μm, and the time course of uptake is dominated by 

the effect of the increased number of release sites, making it slower. (Increasing RMF 

increases the surface area of the mossy fiber which in turn increases the number of 

glutamate release sites.) At an RMF = 2μm the peak [Glu]ts is lower and the time course of 

uptake is dominated by the effect of the shorter distance to the glial sheath, making it 

faster. Thus, the distance glutamate must travel to reach the glial sheath decreases as RMF 

increases and glutamate is taken up more quickly.  

 

Conversely, both the initial glutamate concentration (c0) and the number of glutamate 

release sites (vs) significantly alter peak [Glu]ts, but neither has a significant impact on the 

concentration time course (Figure 2E-F).  The effects of c0 and vs on peak [Glu]ts are 

scaled.  Increasing either parameter results in a proportional increase in peak [Glu]ts. 
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Figure 7.1.2.  Glutamate concentration profiles for parameters varied within the 
physiological range.  A. The base case concentration profile.  B.  The effect of Deff, the 
effective diffusion constant.  C.  The effect of rabs, the distance from the center of the 
mossy fiber to the glial sheath.  D.  The effect of RMF, the radius of the mossy fiber.  E.  
The effect of C0, the initial concentration.  F.  The effect of vs, the number of release 
sites.  
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Open Probability Profiles 

Ultimately, it is the action of glutamate on receptors that determines the relevance of 

spillover.  Thus, open probability (PO) versus time was examined as a function of the 

various model parameters within their respective physiological ranges (Figure 3).  The 

base case (Figure 3A) generates a peak PO of 0.23.  However, the PO remains above 0.15 

for up to 60ms.  

 

All of the parameters included in the parameter analysis have a meaningful impact on 

peak PO.  In general, the greater the impact the parameter has on the [Glu]ts profile, the 

greater its impact on peak PO.  The geometric parameters (rabs, RMF) when varied within 

the physiological range have less of an impact than the intrinsic parameters (Deff, c0, and 

vs). Variation of rabs within the physiological range results in peak open probabilities 

between, 0.19 and 0.25, increasing as rabs is increased (Figure 3B).  The mixed effects of 

varying RMF, as discussed previously for the [Glu]ts profiles, are again apparent in the PO 

profiles (Figure 3C).  The higher peak [Glu]ts seen with an RMF = 1.5μm results in a 

higher peak PO than when RMF =2 μm.  Receptor number (varied between 250 and 1,000) 

has no effect on peak PO (not shown). 

 

The parameters that have the highest impact on peak PO when varied within their 

physiological range are Deff, c0, and vs. Variation of either c0 or Deff within the 

physiological range results in a peak PO from approximately 0.14-0.28 (Figure 3D-E).  

The effect of varying vs within its physiological range from 1-2.5μm-2 results in a peak PO 

range of 0.16 to 0.28 (Figure 3F).  
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Figure 7.1.3.  Open probability profiles for parameters varied within the physiological 
range.  A.  The base case open probability.  B.  The effect of rabs, the distance from the 
center of the mossy fiber to the glial sheath.  C.  The effect of RMF, the radius of the 
mossy fiber.  D. The effect of Deff, diffusion coefficient. E.  The effect of C0, the initial 
concentration.  F.  The effect of vs, the number of release sites. 
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Limiting Cases 

The lowest peak PO found by varying model parameters one at a time within their 

physiological ranges was 0.15 (Deff = 0.76).  To even reach a peak open probability of 

0.05 (approximately 15% of the direct release open probability of 0.29 in the Banke and 

Traynelis model) multiple parameters had to be varied to their minimizing limit within 

their physiological range (Deff, vs and rabs). Of course, with expanded parameter ranges 

beyond the stated physiological range it is possible to achieve a PO at or below 0.05 with 

several combinations of parameter values.  However, the plausibility of these 

combinations is highly questionable given the extent to which multiple parameters would 

need to be beyond their established physiological ranges. 

 

Comparison to Direct Release 

To determine the impact of spillover, the base case open probability profile for the 

NMDA-R was simulated using only direct release as was done by Saftenku (2005) for the 

AMPA-R.  The spillover peak open probability for direct release on NMDA is 0.29 

compared to spillover release which results in a peak open probability of 0.23.  Thus, in 

this model, spillover can generate up to 79% of the NMDA-R open probability see from 

direct release. 

 

Discussion 

Our results demonstrate that glutamate spillover on NMDA-Rs does result in significant 

open probabilities.  Our base case exhibits a peak NMDA PO that is roughly 79% of that 
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associated with direct release (base case PO = 0.23, direct release PO = 0.29).  The higher 

percentage of peak NMDA PO in comparison to AMPA (Saftenku 2005) may be 

attributable to the receptor’s higher affinity for glutamate and could also be responsible 

for spillover activation of extrasynaptic NMDA receptors.   Our results support the 

hypothesis that spillover plays an important role in synaptic transmission in the cerebellar 

glomerulus.   While it is not surprising that spillover on NMDA-Rs is probable at this 

synapse, the magnitude of effect, as predicted here, is remarkable.  

 

Comparison to Experiment 

Previous experimental work (DiGregorio et al. 2002; Nielsen et al. 2004) and theoretical 

work (Saftenku 2005) has shown that AMPA is activated by spillover of glutamate at the 

cerebellar glomerulus.  Given the NMDA receptor’s higher affinity for glutamate  

(Diamond 2002) and the restricted area for diffusion in the glomerulus, perhaps our 

results are not too surprising.  The closed cerebellar glomerulus geometry and relatively 

large size may explain why much higher open probabilities can be obtained via spillover 

compared to smaller, isolated synapses such as hippocampal or pyramidal cells (Barbour 

2001; Diamond 2001; Rusakov et al. 1999). 

 

Unfortunately, no direct comparison of the spillover calculation with experiment is 

possible (the inability to directly measure open probabilities associated with glutamate 

spillover is what originally spurred this modeling work). Rossi et al (2002) measured the 

EPSCs associated with spillover, but had no way of knowing the relationship of each of 

the neighbor synapses which was contributing to the EPSCs.  That is, was there one 
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neighbor or five, etc?  Without this geometric information there is no way to convert the 

data generated by the EPSC into a calculation that is directly comparable to the 

geometry-specific open probabilities generated by this work. 

 

Furthermore, experimental work on some mature mossy fiber granule cells has suggested 

that NMDA-Rs are located outside the synapse (Cathala et al. 2003). If this were the case, 

glutamate spillover may be the only means of activation. In fact, Rossi et al found that 

extrasynaptic NMDA receptor‐mediated EPSCs activated by glutamate spillover 

contribute 23% of the synaptic charge of single NMDAR EPSCs (Rossi et al. 2002).    

 

Model Limitations 

One of the key limitations of the spillover model presented here is that the Saftenku 

diffusion model we implement lacks glutamate transporters.   Experimentally it has been 

shown that inhibiting transporters has little effect on the spillover-mediated component of 

single EPSCs which suggests that glial transporters in mossy fiber–granule cell synapses 

are not interposed between release sites and granule cell dendrites, but are situated mainly 

at a distance from the mossy fiber terminal on the glial sheath, which surrounds the 

glomerulus.  Hence, most of the uptake transporters are located at this outer boundary 

(Saftenku 2005) where 100% absorption of glutamate is assumed.  The glial transporter 

subtype GLAST is suggested to be most responsible for glutamate uptake within this 

structure (Overstreet et al. 1999) but, unfortunately, we know little about the actual 

parameters of uptake as the author of the cerebellar glomerulus diffusion model states 
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(Saftenku 2005).  Since transporters are not perfectly efficient, the absorbing boundary 

assumption may overestimate the actual amount of uptake.   

 

Implications 

This work completes the preliminary theoretical characterization of glutamate spillover at 

the cerebellar glomerulus.  Although the results of this work can only be applied to the 

cerebellar glomerulus, it does revive the long-debated topic of neurotransmitter spillover 

and synaptic independence.  Although the geometry and transporters at this synapse 

suggest that spillover could very well be intentional to help aid in neurotransmission, it 

remains to be seen how spillover could affect other synapse types.  Pursuit of spillover 

studies in other synapse types, both theoretical and experimental, will aid in our ability to 

understand synaptic cross-talk and the implications it has in our current neuron models 

and neuroscientific thought.   
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Abstract 

Recent experimental and theoretical work continues to explore the mechanisms and 

implications of neurotransmitter spillover.  Here we examine N-methyl-D-aspartate 

receptor (NMDA-R) kinetics to determine their implication(s) in glutamate spillover by 

comparing two mechanistically different NMDA-R models, the 5-state Lester and Jahr 
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(LJ) model and the 8-state Banke and Traynelis (BT) model, within the context of a 

glutamate spillover model.  We employ a search-survey-and-summarize strategy to 

analyze the relationships within model behavior (model relational analysis) and form a  

model output landscape.  Our results indicate that model relational analysis can reveal 

differences in models whose outputs would be considered the same.  The analysis reveals 

that the BT model, with its more complex kinetics, is less reliant on diffusion compared 

to the LJ version, resulting in differences in the relationships between open probability 

and glutamate concentration despite the fact that both model versions were able to 

produce the same target output values.  Additionally, model relational analysis is able to 

distinguish between the BT and LJ NMDA-R model versions even though factor analysis 

indicates that the overall model output space dimensions are the same for both NMDA-R 

models.   Furthermore, the work presented here suggests that model relational analysis 

may be broadly applicable as a means to examine the complex interactions hidden within 

overall model behavior. 

 

Introduction 

There has been a recent resurgence of interest in synaptic cross-talk or “neurotransmitter 

spillover” with the mechanisms and implications of spillover being examined on many 

fronts (e.g. DiGregorio et al. 2007; Logan et al. 2007; Marcaggi and Attwell 2007; 

Mitchell et al. 2007; Sun and June Liu 2007; Szapiro and Barbour 2007; Waxman et al. 

2007).  Glutamate spillover is defined as the escape of glutamate from the synapse into 

which it is released to neighboring, quiescent synapses thereby activating receptors 

(Diamond 2002).  Thus, our spillover model (Mitchell et al. 2007a) includes both a 
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glutamate diffusion model to provide time-dependent glutamate concentration and an 

NMDA-R kinetic model to produce time-dependent receptor open probabilities.  Many 

different kinetic models have been proposed for NMDA-Rs, two of which include the 5-

state Lester and Jahr (1992) model and the 8-state Banke and Traynelis (2003) model.  At 

first appearance, it would seem plausible and it has therefore been suggested that in the 

case of glutamate spillover, the type of NMDA-R model implemented is unimportant.  

The work presented here examines this supposition to determine the implications of 

NMDA-R kinetics based on a relational analysis of model behavior (i.e. an analysis of the 

inherent relationships exhibited by a model, independent of output values).  Specifically, 

we address the question “Is matching output sufficient to declare that different internal 

mechanisms are functionally the same?”    

 

Degeneracy (i.e. the ability of elements that are structurally different to perform the same 

function), is a prominent property of many biological systems, including neural networks 

(Price and Friston 2002; Tononi et al. 1999) and is thought to increase the system’s 

robustness (Csete and Doyle 2002).  Just as degeneracy is present in real biological 

systems, it is also present in computational models (Marder and Prinz 2002) in that often 

two mechanistically different models can often produce the same output.   However, like 

the physiology that the models represent, producing the same output at a single functional 

point of assessment may not equate to the models actually being the same.   

 

Here we explore degeneracy in the context of spillover using a “search-survey-and-

summarize” strategy to perform a model relational analysis to compare the more complex 
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BT NMDA-R model to the simpler LJ NMDA-R model.  Our approach consists of 

performing multiple automated parameter searches (“search”), parameter sensitivity and 

multivariate correlation analyses (“survey”), and population statistics (“summarize”) to 

obtain a landscape of the model based on output relationships. Our data indicate that this 

landscape can reveal inherent output relationship differences in models whose outputs 

would otherwise be considered the same. 

 

Methods 

The cerebellar glomerulus glutamate spillover model employed here (Mitchell et al. 

2007a)  consists of the Saftenku glutamate diffusion model (Saftenku 2005) and an 

NMDA-R kinetic model, either the Banke and Traynelis (2003) or the Lester and Jahr 

(1992) model.  The glutamate concentration profile produced by the diffusion model is 

fed into the NMDA-R kinetic model to obtain an open probability profile.  We utilize 10 

outputs that describe the glutamate diffusion and open probability profiles (Table 1). 

Metrics 3-4 and 8-10 correspond to outputs derived from the glutamate concentration 

([Glu]) profiles, which are only dependent upon the diffusion model, while metrics 1-2 

and 5-7 are derived from the open probability (Po) profiles, which are functions of both 

the diffusion and NMDA-R models.  The output values in Table 1 are deemed the 

“target” output values, or simply the target, because they are the output values of the 

previously published physiological base case cerebellar glomerulus glutamate spillover 

model (Mitchell et al. 2007a).  
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Table 7.2.1.  Target output values.   

No. Output Metric Value
1 Peak open probability 0.24
2 Half-peak open probability 0.12
3 Peak glutamate concentration (μM) 126.0
4 Half-peak glutamate concentration (μM) 65.82
5 Time of peak open probability (ms) 16.47
6 Time of half-peak open probability (ms) 4.22
7 Time of decay half-peak open probability (ms) 99.74
8 Time of peak glutamate concentration 0.37
9 Time of half-peak glutamate concentration (ms) 0.10
10 Time of decay half-peak glutamate concentration (ms) 1.60  

 

Saftenku Cerebellar Glomerulus Glutamate Diffusion Model.   

The Saftenku glutamate diffusion model utilizes a cylindrical geometry to represent 

glutamate diffusion from a point source that includes neighbor synapse contributions and 

a simple residence time based method for glutamate uptake to represent the transient 

glutamate concentration at a single neighbor synapse.  Glutamate diffuses from the mossy 

fiber until it is taken out of the glomerulus by the glial sheath which surrounds the mossy 

fiber.  The model has six free parameters:  the initial glutamate concentration released 

from the activated neighbor (C0), the radius of the mossy fiber (RMF), radius from the 

center of the mossy fiber to the glial sheath (rabs), the effective diffusion constant (Deff), 

the release site density (vs), and the number of NMDA-Rs (R).  The diffusion model base 

parameters are given in Table 2A and are the same as those used in the previously 

published spillover model (Mitchell et al. 2007a). 
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Banke and Traynelis NMDA-R model 

The Banke and Traynelis (BT) model incorporates two desensitized receptor states and 

two transition states representing a fast and a slow conformation change. The 2-glutamate 

bound state, the two transition states, and the activated receptor state comprise a loop 

(Figure 1B), which allows for two conformational changes to proceed before receptor 

activation. Each NR2 subunit can independently bind glutamate, and glycine 

concentration is assumed to be high enough such that the NR1 subunits are saturated.  

Rate constants are the free parameters and are as denoted in Figure 1B with base values 

taken as published in ChanneLab (software by Stephen Traynelis) in Table 2B.   

 

Lester and Jahr NMDA-R model 

 The Lester and Jahr (LJ) model is similar to the Banke and Traynelis model.  The key 

difference is the absence of transition states and presence of only one desensitized state 

(RA2d) instead of two (Figure 1A).  Rate constants are as illustrated.  The base values of 

the LJ kinetic rate constants are taken from Lester and Jahr (1992) in Table 2C.   
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Figure 7.2.1.  Comparison of the LJ and BT NMDA-R Models.  A.  Lester and Jahr, 
1992.  The simpler LJ model contains an unbound receptor, R; 1-glutamate bound state, 
RA; a 2-glutamate bound state, RA2; a single desensitized state, RA2d; and an open state, 
O.  B.  Banke and Traynelis, 2003.  The more complex BT model contains the same 
states as the LJ model except that there are two desensitized states, RA2d1 and RA2d2, and 
two transition states, RA2s (slow conformation change) and RA2f (fast conformation 
change). 
 

Overview of the S3 Method 

  As the name implies, the search-survey-and-summarize (S3) method contains three basic 

steps:  search for a set of parameter values that give rise to the selected target output 

values (we define each set as a homologue), survey the model output landscape by cross-

correlating sensitivity analyses for each homologue, and summarize by statistical analysis 

of the population of homologue landscapes.  The steps of this general method are 

presented below. 

 

Search 

 1)  Determine a list of model output values to serve as the point of assessment (base 

case).   

 2)  Segregate parameters into regions of interest (e.g. intrinsic vs extrinsic) 
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 3)  Randomly determine a set of starting point parameter values for the search.  

 4)  Perform an initial sensitivity analysis around the starting point  

 5)  Use an optimization method to search for a parameter value set that generates the 

chosen base case output values (i.e. a homologue to the base case)   

Survey 

 6)  Perform a final sensitivity analysis of the homologue.  

 7)  Generate a model output landscape based on a cross-correlation (output vs output) 

matrix from the sensitivity analysis, to obtain the model output landscape.  

Summarize 

 8)  Repeat steps 3-7 to generate additional homologues 

 9)  Examine the variation of the model output landscapes by determining the standard 

deviation of each point in the matrix across the set of homologues. 

10) Perform multi-variate statistics on the population of homologues. 

  

Sensitivity analyses 

 A sensitivity analysis is performed by varying each parameter individually by a specified 

amount to measure its effect on the model output values.  The sensitivity is defined as the 

linear relationship of a parameter to its output.  We perform sensitivity analyses before 

and after the search with the final sensitivity analysis being used in the calculation of 

output cross-correlations for the model output landscape.   
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Partitioning of parameter set 

  Parameters are divided into “intrinsic” (parameters that are internal to the NMDA-R 

model, i.e. the NMDA-R model kinetic rate constants), and “extrinsic” (parameters that 

are external to the NMDA-R model, i.e. the diffusion model parameters).  Note, we use 

the term “full” to denote to the entire set of parameters (i.e. intrinsic plus extrinsic).   

Segregating the parameter sets this way allows the contributions of each respective 

NMDA-R model to be compared separately from the diffusion model. 

 

Automated Parameter Search 

  Before the two models can be compared, they must be made equivalent in that they must 

be forced to produce the target output values.  To accomplish this, an automated 

parameter search is used to obtain multiple homologues, parameter value sets that 

produce the target output values within a specified error set by the convergence criteria. 

Each homologue produces the same output values using the 10 metrics described 

previously but from a different parameter value set.  For the purposes of the analysis 

presented here, we obtain multiple homologues by either varying the intrinsic or extrinsic 

parameters, but not both simultaneously. 

 

The general optimization method is a gradient-based search algorithm that utilizes a 

modified secant method (Reklaitis et al. 1983)  to obtain a set of homologues.  The secant 

method fits a second order polynomial to a function whose x-coordinate consists of the 

parameter value and the y-coordinate is the corresponding cost function value.  The cost 

function value is defined as the sum of the square of the difference in the “target” output 
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values to the output values of the homologue generated by the search.  The first 

derivative of the fitted polynomial is used to minimize the cost function over a parameter 

range.  The entire parameter set is optimized by tuning each parameter, one at a time. 

 

The algorithm details are as follows:  Initial starting point parameters for the search are 

randomly determined and allowed to vary +/- 15% from the base values; this range 

insures good coverage of the parameter space but is still tight enough to allow for good 

convergence. Since parameters are varied individually, the order of parameter evaluation 

is randomly determined at the beginning of each search.  This insures good coverage of 

the parameter space so that the search is not biased towards moving the same parameter 

the same way each time. An initial sensitivity analysis is run to determine the baseline 

sensitivity and to point the search in the right direction.  Six different parameter values 

which range between +/-10% of the starting point values are evaluated for each parameter 

for the sensitivity analysis, and those points and their respective cost function values 

make the polynomial for the first secant minimization.  After each secant minimization, 

the model is re-evaluated, and the new parameter value and its cost function value are 

included in a new polynomial which is re-fitted and re-minimized; this continues for a 

maximum of ten secant minimizations.  Note that extrinsic parameter search values are 

bounded by their physiological ranges, approximately +/-50%, and intrinsic parameter 

searches are bounded by their published experimental standard deviations, approximately 

+/- 35%.  After each parameter is tuned, the parameter set is updated, and a new single-

parameter sensitivity analysis is run for the next parameter to be evaluated to start its 

secant minimizations.  This is repeated for all parameters remaining in the parameter set.   



 150

Convergence criteria are based on a standard sum of squares cost function with the 10 

output metrics.  Scaling factors are often used to “weight” certain outputs in the cost 

function by making the error between the target output value and the search output value 

appear bigger by multiplying the square of the difference of an individual output value by 

a scaling factor.  For all searches in this work, the cost function weights for all outputs 

were set to be equal.  However, the convergence criteria for the outputs were not equal.  

The tightest convergence criterion is on peak open probability which is allowed to vary 

between +/- 3% from the target output value while all other outputs can vary by +/- 5%.  

However, since the most sensitive output tends to be peak open probability, practically all 

homologues result in the remaining outputs varying by less than 3%.  Regardless, the 

convergence criteria result in outputs that are qualitatively indistinguishable.   

 

Cross-correlation Matrix 

  Cross-correlation analysis has been used in applications for DNA fingerprinting (Arnold 

and Reilly 1998); here we propose cross-correlation analysis as a form of model 

fingerprinting to obtain the model output landscape.  A correlation matrix is a statistical 

measure that shows the strength of the interrelationships among variables  (Hair et al. 

2006) or in our case, outputs. Individual correlations can range from +/-1.  The sign 

indicates the direction (positive or negative) of the correlation.  The magnitude indicates 

the strength of the correlation with one being completely correlated and zero completely 

uncorrelated.  The correlation matrix, which forms the landscape, consists of the 

correlation values obtained by correlating all outputs against one another based on the 

sensitivity analysis data.  Since any given output will correlate perfectly with itself, the 
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correlation matrix contains a diagonal line of identity and is symmetric along the 

diagonal axis of the square.    Since each homologue can generate such a matrix, the 

average and standard deviation of each correlation value within the matrix is determined 

to assess the robustness of the matrix with respect to position within the parameter space. 

 

Output Space Dimensionality 

 Another means of comparing the model output spaces is to look at the relative size, or 

dimensionality, of the output space instead of just examining individual outputs.  One 

way to examine dimensionality is using the multi-variate statistical technique, factor 

analysis.  In factor analysis, linear combinations of the original variables (or in this case, 

model outputs), called factors, are used to represent underlying dimensions.  Specifically, 

we use a form of factor analysis called principal component analysis.  Typically the 

Eigenvalue (sometimes called the latent) of each factor generated by the factor analysis is 

used to determine the number of dimensions; a plot of each factor’s Eigenvalue versus 

the factor number is called a scree plot.  The cut-off for what is “significant” enough to 

be a dimension is somewhat subjective. Two possible criteria that are commonly used 

alone or in combination are: 1) All factors whose Eigenvalue is greater than one are 

counted as dimensions 2) Factors shown to have substantial amounts of common variance 

(i.e. factors before the inflection point or natural “break” of the scree plot) (Hair et al. 

2006) are counted as dimensions. 
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Implementation 

  The entire spillover model, automated parameter search, sensitivity analyses, and cross-

correlation analysis is implemented and performed in MATLAB R2006b (The 

MathWorks Inc).  Factor analysis is performed in the statistical software program Systat 

(Systat Software Inc.).  Simulations were run on Windows personal computers (Core 2 

Duo Intel processor, and 2 GB RAM). 

 

Results 

Based on the automated parameter search process, multiple homologues were generated 

that met the convergence criteria.  For our main example, we use four cases that produce 

the target output values listed in Table 1.  Each test case required its own set of searches 

and resulted in its own set of homologues.  These four cases consist of using either the 

BT or LJ NMDA-R model inside the spillover model and varying either the extrinsic 

(diffusion model parameters) or intrinsic (NMDA-R rate constants) parameter sets.  

Approximately 100 searches were run for each test case; the exception was the LJ 

intrinsic case for which 200 were run due to the low rate of convergence.  The 

convergence rate for the BT and LJ extrinsic models were 95% and 40%, respectively.  

The intrinsic convergence rates were substantially less, 58% for BT and 7% for LJ.  

Initially, all homologues were included in the cross-correlation analysis. Bootstrapping, a 

re-sampling technique that can estimate variance based on an approximating distribution 

(Efron 1979), was performed in Systat (Systat Software Inc.) to determine the appropriate 

number of homologues required to construct the correlation matrix;  “appropriate” was 

defined as the number of homologues required such that the no correlation was changed 



 153

beyond its standard deviation, approximately less than +/-0.2.  The required number of 

homologues, as determined by bootstrapping, was six.  However, we include twelve, 

randomly chosen, for each landscape presented.  The base case parameter values and the 

maximum, minimum, median and standard deviations are shown for the converged 

parameter sets in Table 2.  Examples of model output using two randomly chosen 

homologues are shown for both the BT and LJ models in Figure 2.  Note how the 

solutions are qualitatively indistinguishable. 
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Figure 7.2.2.  Comparison of homologues generated by the parameter search.  These 
two figures illustrate that the search can find parameter sets that result in qualitatively 
indistinguishable spillover models outputs using either the LJ or BT NMDA-R models.  
A.  Glutamate concentration ([Glu]) profiles.  B.  Open probability profiles (Po). 
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Table 7.2.2.  Extrinsic and Intrinsic Parameter Values.  All base values are in 
parentheses.  The maximum (max), minimum (min), median (med), and standard 
deviation (SD) are given for the converged parameter sets for each case.   
 

A 

Extrinsic Parameter Max Min Med  SD Max Min Med  SD
initial concentration (8.77mM), C0 9.38 7.69 8.66 0.41 10.80 7.85 9.01 0.99
radius from center of mossy fiber to 
glial sheath (3 um), rabs 3.28 2.92 3.04 0.08 3.13 2.80 2.95 0.11

diffusion constant (0.41 um2/ms), D 0.45 0.38 0.42 0.01 0.48 0.43 0.44 0.02
radius of mossy fiber (1.5 um), RMF 1.64 1.42 1.51 0.05 1.65 1.28 1.50 0.13
receptor number (500), R 915 418 525 69.6 551.9 350 416 75
release site density (1.5um-2), vs 1.84 1.29 1.52 0.09 1.62 1.50 1.57 0.05

BT Extrinsic LJ Extrinsic

 

 

B          C 
Intrinsic Intrinsic

Parameter Max Min Med  SD Parameter Max Min Med  SD
k1  (9.5 μM-1s-1) 9.42 8.11 9.06 0.45 k1  (5 μM-1s-1) 5.10 4.21 4.36 0.17
k2  (29 s-1) 33.82 29.06 30.30 1.67 k2  (6.6 s-1) 7.56 6.19 6.77 0.34
k3  (45 s-1) 56.88 45.55 49.18 4.22 k3  (15.2 s-1) 18.38 8.46 16.21 2.62
k4  (0.5 s-1) 0.57 0.45 0.54 0.04 k4  (9.4 s-1) 10.87 9.61 10.23 0.40
k5  (70 s-1) 73.20 52.13 71.66 8.11 k5  (83.8 s-1) 92.16 82.38 84.89 2.96
k6  (2.8 s-1) 3.72 2.78 2.94 0.36 k6  (83.8 s-1) 96.88 81.65 85.66 4.14
k7  (1557 s-1) 2296.24 1557.73 1644.33 257.40
k8  (182 s-1) 236.50 169.21 188.77 21.57
k9  (89 s-1) 99.37 86.36 92.58 4.00
k10 (135 s-1) 141.89 134.91 137.87 2.99

BT Intrinsic LJ Intrinsic

 

 

Determining model output landscape 

 We determine the model output landscapes for four different cases (BT extrinsic, LJ 

extrinsic, BT intrinsic, and LJ intrinsic) which produce the target output values listed in 

Table 1.  The landscapes for the cases where the extrinsic parameters are varied give the 

full landscape for all ten outputs.  Since the NMDA-R model does not change the outputs 
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associated with glutamate concentration, there are only five outputs which appear in the 

intrinsic case landscapes and also later in the intrinsic dimensionality assessment.  Thus, 

the landscapes for the cases where intrinsic parameters are varied show only the 

contribution of the NMDA-R model to the total landscape.   

 

The landscapes for all four cases are presented in Figure 3 along with the landscapes for 

the full parameter sets .  The numbers on the axes identify the outputs based on their 

given output identification number in Table 1.  Looking at each correlation individually, 

we can gain insight into the inter-relatedness of the outputs.  Although there are some 

characteristic features shared across all cases, there are also some unique features 

depending on the NMDA-R model (BT vs LJ) and the parameter set varied (extrinsic 

versus intrinsic).  These differences are consistent for each case as shown by the small 

standard deviation for the BT Extrinsic case (Figure 3E). The standard deviations for 

each of the cases are quite small and look very similar to the representative example 

shown in Figure 3G.   

 

Similarities in landscape across partitioned cases 

 It is immediately noticeable that all the cross-correlation matrices have a wide swath of 

high cross-correlation near the diagonal line of identity (Figure 3).  This structure was 

imposed by sorting the outputs to group correlated outputs near one another (see table 1 

for a listing of the outputs).  These “blocks” of correlations represent each of the four 

main categories of output types that make up the ten output metrics:  1,2-peak open 

probabilities, 3,4-peak glutamate concentrations, 5,6,7-times of peak open probabilities, 
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and 8,9,10-times of peak glutamate concentrations.  Within these category blocks, the 

outputs correlate well with one another across all cases.  For example, it is evident that 

1,2-peak open probabilities correlate well to each other as do 3,4-peak glutamate 

concentrations. 

 

Differences in landscape across partitioned cases 

  While some cases look qualitatively similar, there are many quantitative differences 

between the correlations matrices of the four cases illustrated in Figure 3.  These 

differences are too numerous to list individually.  Below we focus on the major 

differences.   

 

At first glance, the most obvious difference seen between the two models (LJ vs BT) 

whether varying intrinsic (kinetic parameters) or extrinsic (diffusion parameters), is seen 

in the cross-correlations involving times of occurrence in open probability (5-time of 

peak, 6-time of half-peak, and 7-time of decay).  The correlations of 5,6-open probability 

times to 1,2-peak and half-peak open probability are substantial in the LJ-E model 

compared to the minimal, opposite in sign, correlations seen in the BT-E model.  

Similarly the second major difference seen between the two models consists of the 

correlations which relate the 5,6-times of occurrence in open probability to the 8,9-times 

of occurrence of the peak and half-peak glutamate concentrations.  The LJ model has 

substantially higher correlations for these relationships compared to the BT model, and 

also notable is that there are differences in the direction, or sign, of the correlation, 

particularly for the correlations involving 7-time of the decaying half-peak open 
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probability.  Thus, the LJ model tends to have stronger correlations that relate outputs 

which are dominated exclusively by the diffusion model and the extrinsic parameters 

while most of the strong correlations seen in the BT model are to outputs that are affected 

by both the diffusion and NMDA-R model.  (Note that unlike the diffusion model, there 

is no output metric that can be solely attributed to the NMDA-R model itself.) 

 

By dividing the searches into intrinsic and extrinsic parameters, we are able to see which 

part(s) of the model are contributing where.  The spillover model makes an excellent test 

case for this because there are only two sub-models, the independent diffusion model and 

the diffusion-dependent NMDA-R model. For example, we can see that the strength of 

the relationships among 1,2-peak open probabilities, themselves, and between 1,2-peak 

open probabilities and 5,6,7-times of peak open probabilities is intrinsic to the receptor 

models and projected from there into the extrinsic parameter correlations.   

 

In the case of the NMDA-R models, it is actually known what the difference between the 

LJ and BT model is “supposed to be”, and we can use this knowledge to test the ability of 

our S3 method to find the difference.  The motivation for the additional states (2 transition 

states and an additional desensitized state) in the BT model compared to the LJ model 

was to better fit the receptor shut times (Banke and Traynelis 2003).  Our closest output 

which would account for shut time is 7-time of the decaying half-peak open probability.  

In the BT model, there are strong correlations between the 7-time of the decaying half-

peak open probability and 5-time of the peak open probability and 6-time of the half-peak 

open probability.  However, in the LJ model the correlation for 7-time of the decaying 
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half-peak open probability is much stronger with 3-peak glutamate concentration and 4-

half-peak glutamate concentration.  So, basically, “control” over correlations involving 7-

time of the decaying half-peak open probability is shifted from exclusively the diffusion 

model in the LJ model to both the diffusion and NMDA-R models in the BT case.  That 

is, the BT model is better able to control the time of decaying half-peak open probability, 

just as it was intended.  However, changes in the relationships with 7-time of the 

decaying half-peak open probability were not the only correlation changes seen in the 

entire spillover landscape, as previously illustrated.  Thus, it can be concluded that the S3 

generated landscape is capable of picking up changes that we would expect to see 

between the two different NMDA-R model versions as well as changes that we might not 

expect to see, or at the very least, changes that are not obvious until we “look backwards” 

after performing the relational analysis. 

 

Partitioned landscapes versus the full landscape 

 Comparing the four cases to the landscapes for the full parameter set, it can be seen that 

the effect of extrinsic parameters dominate the full landscapes with the exception of 7-

time of peak open probability, which appears to be dominated by the intrinsic parameters.  

 

Other test cases 

 To test the robustness of the S3 method, other model variants and simulations using 

different target output values were used.  For brevity and simplicity, the results of these 

test cases will only be discussed below and not shown.   
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Just as two mechanistically different NMDA-R models can be distinguished based on 

landscape, two mechanistically different diffusion models can also be distinguished using 

model relational analysis.  A simplified version of the Saftenku diffusion model, basically 

a model without glutamate uptake, was compared to the original Saftenku diffusion 

model using the S3 method.  Since glutamate uptake actually ends up being a critical 

aspect to the diffusion model, convergence of the no-uptake model to the target output 

metrics listed in Table 1 was practically negligible.  Regardless, the two model 

landscapes comparing the original Saftenku diffusion model and the no-uptake model 

were vastly different, as expected.   

 

To test how the functional point of assessment affects the analysis, target output values 

were chosen such that each output value was within 5% of the original value shown in 

Table 1.  The new output values became the new target for the parameter search.  

Convergence was less than with the original target output values, but still good, >40% in 

most cases.  The landscapes revealed that models could be differentiated not only based 

on model type and parameter set varied, but also by there functional point of assessment.  

That is, models which are analyzed at two different target output values can have two 

different landscapes;  hence, the sensitivities of the outputs can be different at different 

model operating points.  This is also supported by the fact that there is, though small, a 

standard deviation seen between the sensitivities generated between different homologues 

as shown in Figure 3G. 
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Figure 7.2.3. Comparison of Model Output Landscapes.  Color intensity represents the 
correlation magnitude (i.e. darker colors represent stronger correlations) while the shape 
represents the correlation sign (i.e. squares represent positive correlations and circles 
represent negative correlations).   Note the correlations which lie on the diagonal line of 
identity (cross-correlations of an output to itself) have been removed for clarity. The 
numbers on the axes identify the outputs based on their given output identification 
number in Table 1.  A-C.  Landscapes utilizing the BT NMDA-R model.  D-F.  
Landscapes utilizing the LJ NMDA-R model.  G. Representative standard deviation of a 
typical spillover model landscape (using the standard deviation of BT Extrinsic as the 
example).   
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Output Space Dimensionality 

Dimensionality assessment provides a means to compare the size of the output spaces as 

whole.  We compute the output dimensionality of the entire spillover model and the 

contributions of the diffusion and NMDA-R models by performing factor analysis using 

Systat (Systat Software Inc.). Several factor rotation methods were tried, but all resulted 

in approximately the same Eigenvalues, within +/- 0.1.  Like the full parameter set cases, 

the extrinsic cases can have a maximum of ten factors (or dimensions), potentially one 

factor for every output. The intrinsic cases can only have a maximum of five potential 

factors, potentially one factor for each of the NMDA-R model outputs (the diffusion 

model outputs are constant for the intrinsic cases and therefore cannot be included in the 

factor analysis).  Looking at the scree plot it is evident that the extrinsic cases carry an 

additional dimension compared to the intrinsic cases (Figure 4).  Careful comparison of 

the extrinsic cases to the full parameter sets reveals that the full parameter sets carry 

about an extra one-half to one dimension (seen in between factors 4 through 6).  Thus, it 

can be concluded that the extrinsic parameter set is contributing most of the 

dimensionality to the model output space.  In fact, the model output space is severely 

sublinear.  That is, the dimensions imposed by the extrinsic parameter set (~ 4) and the 

intrinsic set (~ 3) are not linearly additive. The full parameter set has only 4.5-5 

dimensions instead of 7.  Of particular note is the lack of difference in dimensionality 

between the BT and LJ models for intrinsic, extrinsic or the full parameter sets.  
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Figure 7.2.4.  Scree plot.  Comparison of factors (or dimensions) for the four different 
cases.  
 

 

Discussion 

Here we perform a model relational analysis to obtain a model output landscape using the 

search-survey-and-summarize (S3) method.  Based on the results, the two receptor 

models, in the context of the larger spillover model, can result in the same overall model 

output but yield differing sensitivities and therefore different cross-correlations of outputs 

or landscapes.  For the case of spillover, we are able to pick up the subtle differences 

purposely imposed by the BT NMDA-R model, the ability to improve shut time, as well 

as other differences, which were not intentional.  In fact, utilizing the model output 

landscape, we were able to differentiate between models that produce the same 

quantitative output based on: 1) model type (BT versus LJ), 2) parameter set varied 
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(extrinsic versus intrinsic), and 3) target output values.  What does this mean for 

spillover?  The true differences in the NMDA-R models appear benign if only looked at 

in the context of the NMDA-R models themselves; however, the differences imposed by 

the NMDA-R model type in the larger, more complex spillover model become very 

apparent in the landscape.  In the case of spillover, the BT model does do what it was 

intended to do, and it is less reliant on the diffusion model parameters to do so.  Thus, in 

this specific study of spillover at the cerebellar glomerulus either the BT or LJ NMDA-R 

model could be safely used to simply determine the presence of spillover, but the BT 

model will give a better picture of what is happening at the mechanistic level without 

being quite as dependent upon diffusion and geometric parameters.  This could be 

advantageous when spillover analysis moves beyond the well-studied geometry of the 

cerebellar glomerulus to less known synaptic geometries in the brain.   

 

Applications of model relational analysis 

  Systems biology has pushed computational models from being reduced to complex and 

hypothesis driven (Baldi et al. 1998; Lee 2007; Shapiro and Lee 2007).  There is an 

increasing desire to use computational models to reveal deeper understanding into 

cellular and system organization and interactions and their respective implications 

(Coveney and Fowler 2005).  Thus there is increasing need to balance computational load 

induced by these large models as well as the need to be able to meaningfully analyze such 

models where often many of the parameters are unknown.   
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Previous attempts to characterize models have focused on parameter relationships via 

careful and methodical tuning of the model (Achard and De Schutter 2006; Prinz et al. 

2004; Vanier and Bower 1999).  A model analysis that relies solely on parameter 

relationships has the potential to be somewhat difficult to interpret given the known 

existence of parameter non-uniqueness (Goldman et al. 2001; Hooper 2004) , i.e. the 

presence of homologues.  Furthermore, not all parameters can be experimentally 

validated nor is their physiological range always known.  Here we propose to analyze 

models based on their inherent output relationships by exploiting parameter non-

uniqueness.  We believe model relational analysis using the S3 method to be 

advantageous because 1) output relationships can provide a unique, distinguishable 

landscape and 2) since most model outputs are derived from experimental outputs or 

metrics, output analysis can be used on model and experimental data as a basis for an 

additional layer of analysis, comparison, and/or validation.   

 

The ability to distinguish between mechanistically different model implementations 

solely based on output relationships is a useful tool that opens the door to higher level 

analysis.  There are times when several degenerate models may describe a system, and 

the “best” model may not always be the “correct” model (Judd and Nakamura 2006).  

When possible, landscapes to various computational models of a system can be compared 

to the experimental output landscape (i.e. cross-correlations of experimental outputs) to 

help decide which model is “best” (fits the data) and “correct” (accurately represents the 

underlying mechanisms and interactions) for a given system or application.  Additionally, 

landscapes can be used to determine the most appropriate model for the desired 
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computational load.  Modelers can “see” what the difference is between models and 

decide what differences in landscape are tolerable for a given problem to save on 

computation time.  Finally, it is possible that landscapes could be used to help identify 

new correlations which can be used to guide further model development or experimental 

work. 

 

Dimensionality assessment is another potentially useful tool which can be used in 

conjunction with model output landscapes as part of the model relational analysis.  

Dimensionality assessment has been employed in various forms in biological science to 

analyze and categorize different forms of multi-variate data sets (Cangelosi and Goriely 

2007; Lin et al. 2003; Ly and Tranchina 2007).  The ability to determine how various 

model interactions and sub-components are contributing to the dimensionality of a 

system is helpful in understanding complex interactions.  For example, we were able to 

use dimensionality assessment to determine that the majority of output space size is 

coming from the extrinsic parameter set.    

 

It has been suggested that a simplified model can exhibit dimensional reduction 

(Gallagher  and Appenzeller 1999; Ricard 2006; Teodoro et al. 2003).  In the case of the 

spillover model, the apparent reduction from 7 to about 4.5 dimensions noted in Figure 4 

would seem to support this assertion.  However, it is difficult to see the reduction in 

dimensionality from the slightly more complex BT model compared to the slightly 

simpler LJ model because the models are so mechanistically and structurally similar.  In 

contrast, the model output landscape can detect these differences.  We suggest that the 
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dimensionality of the model output space is analogous to the size of the output space 

while the landscape is analogous to the shape of the model output space.  The dimensions 

imparted by the NMDA-R model have already been collapsed to the point that no 

difference can be seen between the BT and LJ models and therefore their output spaces 

remain the same size.  However, the shape of the spaces is different, and this difference is 

detected by the landscape.   

 

Applications to Degeneracy 

 As has been discussed previously, there are many reasons why a modeler may desire to 

differentiate between two different degenerate models.  Three common such reason 

include: 1) to aid in model selection and construction 2) to balance computational load 3) 

to validate a mechanistic model implementation.  However, what underlies the 

differences imparted by mechanistically different models? It is likely that the differences 

seen between two degenerate models are largely a function of the difference in their 

sensitivities to input parameter sets and parameter values.  These differences in 

sensitivities, which are apparent in the model output landscapes, likely determine the 

robustness of the model.  The model’s ability to alter its sensitivities is probably a 

function of its complexity.   More parameters and dimensions (i.e. degrees of freedom) 

allow the model to adjust to conditions that extend beyond its optimal base case.  In 

essence it can be hypothesized that more complex degenerate models will have larger 

possible output ranges.  The BT model’s ability to better control its own properties 

intrinsically and its higher rate of convergence to multiple target output values supports 

this hypothesis. 
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Limitations 

  As with any form of data analysis, model relational analysis cannot be simply used 

blindly.  If there are not enough model outputs or if there is a “wrong” or “missing” 

output, model relational analysis may not accurately represent the model.  Additionally, 

intuition must be used as a sanity check in viewing the cross-correlation values in the 

model output landscape.  The landscape is based on cross-correlation coefficients which 

are a function of output variance;  an output that generally always has a small variance 

(i.e. an output that remains relatively constant) may have an exaggerated correlation 

coefficient (usually either approximately 1 or 0) that is not representative of model 

behavior.  Alternatives to using cross-correlation coefficients are possible and would 

involve normalizing regression slopes based on something other than variance (e.g. 

subjective scaling factors).  Finally, as mentioned previously, there are limitations to 

factor analysis.  Factor analysis assumes orthogonality, and there is subjectivity in 

determining the number of factors. 
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CHAPTER 8 

SPINAL CORD INJURY 

 

 

In addition to being an amenable test case to our set of complex system-based analytical 

techniques, referred to as relational analysis, secondary SCI is a system that was ideally 

suited for the development and implementation of our complex-systems based modeling 

technique, referred to as relational modeling. Typical of most pathologies, no 

comprehensive computational model of secondary SCI had previously existed.  The 

under-utilization of models in pathologies like SCI directly corresponds to both our lack 

of understanding of pathologies and the lack of detailed information that is typically 

required to make traditional mechanistic computational models.  However, in the case of 

secondary SCI, where detailed experimental research of several individuated factors or 

mechanistic concepts has yet to translate into reliable and predictable clinical therapies 

(Hall and Springer, 2004) and where numerous possibilities for additional research and 

combinations of therapeutic trials seems infinite (Faden and Stoica, 2007), the 

empowering ability of a computational model as an exploratory tool to predict and 

prioritize was quite needed. 

 

In this published study (Mitchell and Lee, 2008) the relational modeling methodology is 

developed and implemented to produce a comprehensive computational model of 

secondary SCI by simply aggregating and translating experimental literature-derived 

relationships or correlations into a network of time-varying factors.  This network 
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exhibits the same output relationships and dynamics of the real system and provides a 

means or test bed by which comprehensive mechanistic and therapeutic theories can be 

identified, explored, and analyzed.  Using the relational modeling methodology of 

review-relate-refine, we successfully developed the first comprehensive model of SCI, 

which recapitulated the findings of over 250 experimental papers.  Using relational 

analysis to analyze the underlying dynamics and relationships illustrated within the 

model landscape, we were able to generate novel mechanistic, dynamical, and therapeutic 

insights (Mitchell and Lee 2008). The results of this study challenge pre-existing 

hypotheses surrounding the pathology dynamics of SCI and the subsequent therapeutic 

direction of the SCI field.  Our quantitative assessment of thousands of potential 

therapeutic strategies has resulted in new and exciting ideas for potential therapeutic 

alternatives. As such this initial relational model serves as a “scaffold” from which 

further relational, conceptual or mechanistic modeling can be used to investigate areas of 

interest in more detail.  The papers “Pathology dynamics predict spinal cord injury 

therapeutic success” as published in the Journal of Neurotrauma 25(12): 1483-1497 is 

presented in its entirety (Mitchell and Lee, 2008). 

 

Background:  Secondary Spinal Cord Injury 

The spinal cord serves as a conduit for over 13 million neurons, which directly conduct 

signals from the brain to the rest of the body (Kandel et al, 2000).  Spinal cord injury can 

result in a devastating loss of function below the level of insult, including the inability to 

breathe (in upper level C1-C3 cervical injuries), the loss of sensation, the loss of 

voluntary motor control, and the loss of bladder and bowel control, to name just a few of 
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the primary consequences.  To date, despite promising in vitro and in vivo experimental 

studies, there are no effective and reliable therapies to directly address the neural damage 

and subsequent functional losses associated with SCI (Hall and Springer, 2004).  With 

over 11,000 new injuries each year in the United States alone that result in these 

aforementioned catastrophic clinical consequences (according to the 2008 National 

Spinal Cord Injury Database), SCI is both a relevant and significant clinical pathology 

worthy of further system exploration.  Notably, much of the damage associated with SCI 

occurs post-insult as a result of a complex cellular cascade referred to as “secondary 

injury” in which the body’s own response to the mechanical insult, including the failure 

of cellular respiration, the accumulation of excitotoxic and free radical factors, the 

initiation of necrotic-apoptotic cascades, and the activation of the immune system, results 

in an increase in lesion size over the following weeks and months (Schwab, 1996; Park, 

2004).  This increase in lesion size can have perilous effects on the outcome of SCI that 

results in the accumulation of additional permanent losses (Hall and Springer, 2004; 

Schwab, 2006).  The large number of interactions among these pathological factors 

across multiple physiological and time scales makes both the experimental and 

theoretical characterization and examination of secondary injury as a whole extremely 

difficult.  However, such an interactive and truly complex biological system is the ideal 

test case for employing complex systems-based analytical methods.   
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Figure 8.0.1. Propagation of Spinal Cord Injury.  The figure illustrates SCI lesion 
expansion from the initial primary mechanical or traumatic insult due to “secondary 
injury”, damage that is initiated from within the cellular environment of the primary 
injury. Secondary injury can expand a couple of vertebrae above and/or below the 
primary insult, resulting in additional sensory and/or functional losses.  Image credit:  the 
brain and cord figure is adapted from IC Irvine Reeve-Irvine Research Center.  Anatomy 
101: Spinal Cord and Central Nervous System. Website: 
www.reeve.uci.edu/anatomy/images/scns_1b.gif  Downloaded on1/19/2009. 
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Pathology Dynamics Predict Spinal Cord Injury Therapeutic Success  
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Abstract  

(Secondary injury, the complex cascade of cellular events following spinal cord injury 

(SCI), is a major source of post-insult neuron death.  Experimental work has focused on 

the details of individual factors or mechanisms that contribute to secondary injury, but 
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little is known about the interactions among factors leading to the overall pathology 

dynamics that underlie its propagation.  Prior hypotheses suggest the pathology is 

dominated by interactions, with therapeutic success lying in combinations of 

neuroprotective treatments. In this study, we provide the first comprehensive, system-

level characterization of the entire secondary injury process using a novel relational 

model methodology that aggregates the findings of ~250 experimental studies. Our 

quantitative examination of the overall pathology dynamics suggests that while the 

pathology is initially dominated by “fire-like”, rate-dependent interactions, it quickly 

switches to a “flood-like”, accumulation-dependent process with contributing factors 

being largely independent. Our evaluation of ~20,000 potential single and combinatorial 

treatments indicates this flood-like pathology results in few highly influential factors at 

clinically realistic treatment time frames with multi-factor treatments being merely 

additive rather than synergistic in reducing neuron death.  Our findings give new 

fundamental insight into the understanding of the secondary injury pathology as a whole, 

provide direction for alternative therapeutic strategies, and suggest that ultimate success 

in treating SCI lies in the pursuit of pathology dynamics in addition to individually 

involved factors.  

Key Words 

Secondary insult, spinal cord injury, traumatic brain injury, combination therapy, 

neuroprotection, therapeutic treatment window 
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Introduction 

Despite their promise, translating in-vitro and in-vivo experimental SCI treatments into 

effective and repeatable clinical therapies has been problematic (Blight and Tuszynski 

2006; Faden and Stoica 2007; Hall and Springer 2004).  It is therefore often concluded 

that the progression of neuronal death in secondary injury must be dominated by complex 

interactions, rather than any given single factor, and that the solution must therefore lie in 

multi-faceted treatments aimed at simultaneously targeting several secondary injury 

factors (Faden and Stoica 2007; Hall and Springer 2004).  However, the overall dynamics 

of the processes underlying the pathology remain unknown.  

 

At a conceptual level, the secondary injury process is often thought to behave like a forest 

fire.  That is, a propagating wave of death that results in a slowly expanding lesion, 

driven by multiple factors, often referred to as the necrotic-apoptotic continuum 

(PorteraCailliau et al. 1997).  Thus, the assumption is that a critical intervention in one or 

more factors might arrest the propagation, thereby preventing subsequent damage.  The 

most commonly pursued secondary injury factors can be categorized into excitotoxic, 

energetic, inflammatory, “necro-apoptotic”, and free radical.  The excitotoxic factors 

arise from a cascade originating from the initial mechanical insult, leading to the direct 

disruption of ion gradients (e.g. sodium, calcium) and the escape of neurotransmitters 

such as glutamate (Agrawal and Fehlings 1996; Park et al. 2004; Schwab and Bartholdi 

1996).  These effects, in turn, cause activation of metabotropic and ionotropic receptors, 

further increasing external glutamate and internal calcium concentrations, thereby 

perpetuating the excitotoxic response (Agrawal and Fehlings 1997; Park et al. 2004).  
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Energetic factors arise from the cell’s attempt to maintain homeostasis in the face of the 

above cascade (Ahmed et al. 2002).  Thus, cellular respiration falls off as mitochondrial 

dysfunction occurs (Sullivan et al. 2007) and local ATP concentrations decrease 

(Anderson et al. 1980), compromising the cell’s energy supply (Sullivan et al. 2007) and 

hampering the ability of ionic pumping mechanisms, such as the Na-K-ATPase 

transporter (Faden et al. 1987; Li and Stys 2001), to restore ionic homeostasis.  Free 

radical factors, including nitric oxide (NO) (Hamada et al. 1996; Merrill et al. 1993) and 

reactive oxygen species (ROS) (Hall and Braughler 1993), accumulate, damaging DNA.  

Necro-apoptotic (i.e. necrotic and apoptotic) factors arise from these damaged cells as 

well as those with increased membrane permeability (Farkas et al. 2006; Shi and 

Whitebone 2006) from membrane damage. Cells that do not die necrotically initiate 

apoptotic cascades (Crowe et al. 1997; Lu et al. 2000) via caspase and calpain activation 

(Crowe et al. 1997). Inflammatory factors are activated (Beattie 2004; Dusart and 

Schwab 1994), including microglia (Gomes-Leal et al. 2004; Merrill et al. 1993), 

macrophages (Giulian and Robertson 1990) and astrocytes (O'Brien et al. 1994), resulting 

in the production of pro-inflammatory cytokines (Bartholdi and Schwab 1997; Klusman 

and Schwab 1997; Pineau and Lacroix 2007).  Other secondary injury factors include 

demyelination (Totoiu and Keirstead 2005), oligodendrocyte death (Crowe et al. 1997), 

and axon damage (Shi and Whitebone 2006).   

 

Experimental investigation of individual secondary injury factors has resulted in a 

substantial, yet disparate pool of single factor data, making the interpretation of multi-

factor effects difficult.  Recently, we have developed a methodology (Mitchell and Lee 
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2007) that greatly facilitates pooling disparate data, enabling a novel, comprehensive 

view into the pathology of secondary injury across time points, preparations, and 

protocols.  We developed a system-wide relational model of secondary injury by 

aggregating the relevant relationships between factors commonly believed to be involved 

in the progression of secondary injury from over 250 experimental papers. This relational 

model represents a comprehensive view of the progression of neuron death following 

mechanical insult by directly incorporating the literature-derived experimental 

relationships into a network of time-varying factors.  Thus, the dynamics of the entire 

secondary injury process, including potential treatments, can be quantitatively examined. 

This systems-based relational modeling approach encompasses and recapitulates 

experimental data without having to assume the detailed and cumbersome mathematics of 

numerous unknown mechanisms.  

 

Methods 

General strategy 

  The secondary injury model is characterized as a relational model (see Figure 1a), 

which uses intrinsic relationships identified in the experimental data to aggregate and 

recapitulate the findings of hundreds of experimental findings to make predictions 

regarding pathology dynamics and interactions over time. Based on over 250 research 

articles, we constructed a 20-output, 26-differential equation, 85-relationship system that 

transformed the individual experimentally derived relationships into a model that 

exhibited the known behaviors of secondary injury in the spinal cord. 
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Figure 8.1.1. Comprehensive pathology of secondary injury post-SCI.  (a) The diagram 
represents the structure of the relational model, which is an embodiment of the published 
literature.  The model permits cross-factor examination of the pathology and treatment 
responses of the secondary injury process.  Boxes represent tracked factors in the model.  
Categories of factors (shown in differing colors) represent established theories from the 
literature regarding secondary injury:  necro-apoptosis, energetics, excitotoxicity, free 
radicals, inflammation, and other.  (b)  The figure illustrates how the extraction of 
experimental relationships results in a relational model capable of making clinical and 
mechanistic predictions.  Each arrow in Figure 1a represents an experimentally derived 
relationship or “gain”, which is extracted from the experimental relationship between 2 
factors.  Altogether, these gains are used to form the relational model’s differential 
equations, which transcribe the relationships into a network of time-varying factors.   
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The general relational modeling strategy utilizes the review-relate-refine technique as 

summarized in Table 1:  review the literature to identify pertinent factors, relate the 

factors into a map transcribing a system of differential equations, and refine the model to 

meet validation criteria.  Specific methodological and analytical details central to the 

secondary injury relational model are outlined in the sections of text below. As an aid to 

the reader, Table 2 summarizes pertinent terminology used to convey dynamical 

concepts, methodology, illustrations, and treatments, which appear throughout this 

article. 

 

Table 8.1.1.  Relational modeling technique:  Review-Relate-Refine. 
 

 

Review 

1)  Determine criteria for primary literature reference inclusion. 

2)  Determine a base list of references and system factors for inclusion 

3)  Record references, categorized by factor, in an annotated database. 

4)  Expand scope of literature base manual searches. Record new or additional 

factors. 

Relate 

5)  Devise a “map” that illustrates how identified factors are related.  Include 

relevant system output(s). 

6)  For each 2-way relationship, extract a value from the literature that quantitatively 

describes the relationship (e.g a gain). 

7)  Translate the map into a system of equations  

 Refine 

8)  Validate using experimental data  

9)   Repeat steps 3-7 for areas that need improvement 
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Table 8.1.2.  Glossary of terminology used to describe dynamical concepts, 
methodology, illustrations, and treatments.  Note that  the treatment portion of Table 
8.1.2 is continued on the next page. 
 
 
Dynamical Concepts  
fire Describes rate-dependent dynamics in which a high degree 

of interaction between factors drives the propagation of the 
secondary injury process. 

flood Describes accumulation-dependent dynamics in which the 
accumulation of independent factors drives the propagation 
of the secondary injury process. 

Methodology  
relational model Aggregates multiple 2-way experimental relationships at 

discrete time points to predict the interactions and 
dynamics of all involved factors over a continuous time 
frame. 

relational analysis Set of analytical techniques that evaluates and 
subsequently uses the relationships among parameters, 
variables, and especially model outputs to hypothesize 
process dynamics, mechanisms, and/or functions (for 
details see (Mitchell and Lee, 2007). 

factor Quantifiable entity or output that has a measurable impact 
on the process outcome. 

factor category Set of factors, which have been grouped together as 
‘similar’ by scientists in the field, based on their function, 
mechanism, or impact on process outcome. 

factor gain Value that quantitatively specifies the one-way impact of 
an inter-related or interacting factor.   

factor time constant Calculated using the factor peak value over its 
experimentally measured range and used to form the 
factor’s differential equation. 

Dynamics Illustration  
landscape Matrix of correlations, which quantifies the inter-

relatedness of model outputs (or factors) and is 
representative of their degree of interaction (i.e. a measure 
of ‘fire’.) 

pathology diagram A map/survey of the overall system operation, including 
the changes in factor size, impact, and “flow” (i.e. a 
measure of accumulation). 
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Table 8.1.2 (continued) 

Treatments  
reducing treatment Targets factor accumulation by reducing the existing factor 

(e.g. a free radical scavenger actively reduces existing free 
radicals) 

inhibiting treatment Targets the interactions by inhibiting formation of a factor 
(e.g a free radical anti-oxidant inhibits the formation of 
free radicals). 

single [factor] 
treatment 

A single treatment, either reducing or inhibiting, applied 
independently to target one factor. 

combination treatment An n-number of inhibiting or reducing treatments given in 
combination targeting n-number different factors. 

 

Derivation of equations 

  Differential equations are of the standard Euler form.  The derivative for each factor at 

each time step is calculated using its relationships to the other factors and then integrated 

numerically.  Every arrow pointing to a specific factor in Figure 1 represents a 

relationship between the two factors (see Figure 1b for illustration of extraction method). 

For example, NMDA activation is mediated by calcium and glutamate. The relationships 

between factors are taken or measured from the experimental data, and are effectively 

linear gains denoted by ‘G’ (Table 3).   Similarly, time constants for each factor, denoted 

by τ, are calculated from experimental data and represent the time constants for the acute 

and sub-acute secondary injury periods (Table 4). Therefore, for our example with 

NMDA we have:  

 

  NMDAexpected = GNMDA−Glu ⋅ Glu + GNMDA−Ca ⋅ Ca Equation 8.1.1 
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dNMDA
dt

=
NMDAexpected − NMDAprevious

τ NMDA

  Equation 8.1.2 

 

The one non-linear exception to the form of Equation 1 is for the factor ATP, (Equation 

3) which reflects the production of ATP by the mitochondria and the consumption of 

ATP by the Na-K-ATPase pump.  However, the Euler differential equation still has the 

same form as the other factors as shown in Equation 2. 

 

           ATPexpected = 1 GATP−Mito ⋅ Mito + GATP−NaKATPase ⋅ NaKATPase( )            Equation 8.1.3  

 

The model was split into two parts to better mathematically represent the fast or “acute” 

period (<1 hour after injury) and slow or “sub-acute” (>1 and < 16 hours after injury).  

The acute and sub-acute parts each have their own time constants (Table 4) to represent 

the changing dynamics seen experimentally between these two time periods.  However, 

depending on a factor’s split dynamics, it may only exhibit substantive changes in one 

period or the other. For a validated comparison between simulated factor values and 

experimental data, see Table 5.  Note that by splitting the time constants into smaller 

time frames, the relationship equations, like Equation 1, can be safely approximated as 

piece-wise linear. However, this linear approximation does not specify that the resulting 

trajectories of factor values be linear, as shown in the Results in Figure 2.  
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Table 8.1.3. Table of model gains for the calculation of secondary injury factors. How to 
read the table:  Each gain represents the relationship between two factors as shown in 
Figure 1.  The first part of the hyphenated gain name states the name of the factor being 
calculated while the second part of the gain name states the influencing factor that the 
gain relates. See main text (equation 1) for the example with NMDA. A. Energetic gains. 
B. Excitotoxicity.  C. Inflammation.  D.  Free radical.  E. Necro-apoptotic.  F.  Other. 
 
Table 8.1.3A.  Energetics 

 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

ATP-Mitochondria 0.40 (Nicholls and Budd 2000)     x x   

ATP-NaKATPaseFactor 1.00 (Green and Kroemer 1998)     x x   

Blood-Blood 0.50 (Yanase et al. 1995)   x   x   

Glucose-Blood 0.50 (Anderson et al. 1980)   x   x   

Mitochondria-Calcium 0.10 (White and Reynolds 1996) x     x   

Mitochondria-Glutamate 0.15 (Ankarcrona et al. 1995) x   x     

Mitochondria-ROS 0.05 (Azbill et al. 1997)   x   x   

Mitochondria-Sodium 0.40 (Iwai et al. 2002) x       x 

 

Table 8.1.3B. Excitotoxicity 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

AMPA-Calcium 0.10 (Yanase et al. 1995)   x   x   

AMPA-Glutamate 0.55 (Saftenku 2005)         x 

Calcium-AMPA 0.23 (Carriedo et al. 1998) x   x     

Calcium-

Calcium(uptake) -3.50 (Wingrave et al. 2003)   x   x   

Calcium-Mitochondria 1.50 (Wingrave et al. 2003)   x   x   

Calcium-NMDA 0.28 (Carriedo et al. 1998) x   x     

Calcium-Membrane 

Damage 0.25 (Yoshioka et al. 1996) x   x x   

Glutamate-AMPA 1.10 (Saftenku 2005)         x 

Glutamate-

Glutamate(uptake) -3.50 (Xu et al. 2004)   x   x   
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Table 8.1.3B (Continued) Excitotoxicity 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

Glutamate-NMDA 1.30 (Mitchell et al. 2007)         x 

Glutamate-Membrane 

Damage 0.25 (LaPlaca and Thibault 1998) x   x     

Glutamate-ROS 0.02 (Volterra et al. 1994) x   x     

NMDA-Calcium 0.10 (Zhang et al. 1996) x   x     

NMDA-Glutamate 0.60 (Mitchell et al. 2007)         x  

Sodium-AMPA 1.10 (Agrawal and Fehlings 1996) x     x   

Sodium-NaKATPase 1.00 (Agrawal and Fehlings 1996) x     x   

Sodium-NMDA 1.30 (Agrawal and Fehlings 1996) x     x   

Sodium-Membrane 

Damage 0.10 

(Schwartz and Fehlings 

2001)   x   x   

 

Table 8.1.3C.  Inflammation 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

Astrocyte-Calcium 0.30 (Schnell et al. 1999)   x x x   

Astrocyte-Cytokine 2.00 (Gomes-Leal et al. 2004)   x   x   

Astrocyte-Glutamate 0.50 (Schnell et al. 1999)   x x x   

Cytokine-Astrocyte 1.20 

(Klusman and Schwab 

1997)   x   x   

Cytokine-Microglia 2.00 

(Klusman and Schwab 

1997)   x   x   

Macrophage-Microglia 4.50 (Tian et al. 2007)   x   x   

Microglia-

Demyelination 0.33 (Blight 1985)   x    x  

Microglia-Macrophage 0.30 (Dusart and Schwab 1994)   x   x   

Microglia-NO 0.20 (Zhao et al. 2004) x      x  

Sodium-NaKATPase 1.00 

(Agrawal and Fehlings 

1996) x     x   
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Table 8.1.3D. Free Radicals 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

NO-Microglia 0.27 (Merrill et al. 1993) x      x  

NO-Oligodendrocyte 0.57 (Zhao et al. 2004) x      x  

ROS-AMPA 2.50 (Carriedo et al. 1998) x   x     

ROS-Cytokine 0.40 (Hu et al. 1997) x   x x   

ROS-Mitochondria 0.20 (Azbill et al. 1997)   x   x   

ROS-NMDA 2.00 (Carriedo et al. 1998) x   x     

ROS-NO 0.10 (Mattiasson 2004) x       x 

 

 

Table 8.1.3E.  Necro-apoptosis 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

Caspase-Calcium 2.00 (Wingrave et al. 2003)   x   x   

Caspase-Glutamate 0.20 (Liu et al. 1999)   x   x   

Caspase-Mitochondria 0.20 (Krajewski et al. 1999) x  x x     

Caspase-Membrane 

Damage 1.00 

Kacy Cullen, PhD and 

Michelle LaPlaca, PhD 

(unpublished data) x   x     

Neuron-Caspase Factor 2.43 (Hartmann et al. 2000)   x     x  

Neuron-Macrophage 2.03 (Tian et al. 2007)   x   x   

Neuron-Mitochondria 0.16 (Sullivan et al. 2007)   x   x   

Neuron-Oligodendrocyte 0.27 (Zhao et al. 2004) x      x  

Neuron-Membrane 

Damage 0.81 (Cullen and LaPlaca 2006a) x   x     

Membrane Damage-

Caspase 1.00 (Wingrave et al. 2003)   x   x   

Membrane Damage-ROS 1.00 (Mattiasson 2004)  x     x  
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Table 8.1.3F.  Other 

Gain V
al

ue
 

Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

O
th

er
 

Axon-Microtubule 2.00 

(Pettus and Povlishock 

1996) x   x     

Axon-Neurofilament 2.00 

(Pettus and Povlishock 

1996) x   x     

Axon-Membrane 

Damage 0.20 

(Pettus and Povlishock 

1996) x   x     

Demyelination-Axon 0.30 (Lovas et al. 2000)   x     x 

Demyelination-

Oligodendrocyte 3.00 (Kandel et al. 2000)         x 

Neuron-Glutamate 0.09 (Ankarcrona et al. 1995) x   x     

Oligodendrocyte-AMPA 0.89 (Yoshioka et al. 1996)  x  x x   

Oligodendrocyte-

Cytokine 0.50 (Louis et al. 1993) x       x 

Oligodendrocyte-

Demyelination 0.20 (Yoshioka et al. 1996) x   x x   

Oligodendrocyte-NO 0.10 (Merrill et al. 1993) x      x  
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Table 8.1.4. Time constants used in the model.  Fast time constants are used for the acute 
(<=1 hr post-insult) and slow time constants are used for the sub-acute period (> 1 hr and 
< 16 hr). 
 

Factor 

Fast 

(hrs) 

Slow 

(hrs) Reference In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

NMDA Activation 0.33 3.35 (Zhang et al. 1996) x   x   

AMPA Activation 0.33 3.35 (Goforth et al. 2004) x   x   

NaKATPase 

Transporter 0.67 24.00 (Faden et al. 1987)  x  x 

     (Anderson et al. 1980)  x  x 

Reactive Oxygen 

Species (ROS) 2.5 24.0 (Hall and Braughler 1993)     x 

     (Hamada et al. 1996)  x  x 

Glutamate 

Concentration 0.22 3.35 (Xu et al. 2004)  x  x 

     (Liu et al. 1999)  x  x 

Calcium Concentration 0.22 3.35 

(LaPlaca and Thibault 

1998) x   x   

Sodium Concentration 1.00 24.00 (Lemke et al. 1987)  x  x 

     

(Fehlings and Agrawal 

1995) x    x 

Mitochondria 

Dysfunction 1.00 24.00 (Alano et al. 2002) x   x   

ATP Concentration 0.67 24.00 (Anderson et al. 1980)  x  x 

Membrane Damage 0.67 24.00 (Shi and Whitebone 2006)  x  x 

     

(Cullen and LaPlaca 

2006b) x   x   

     (Barut et al. 2005)  x  x 

Microglia Activation -- 4.00 (Dusart and Schwab 1994)  x  x 

     (Carlson et al. 1998)  x  x 

     (Vela et al. 2002)  x x   

Cytokine Concentration -- 12.00 (Pineau and Lacroix 2007)  x  x 

     

(Klusman and Schwab 

1997)  x  x 
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Table 8.1.4. (continued) 

Factor 

Fast 

(hrs) 

Slow 

(hrs) Reference 

In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

Astrocyte Activation 6.7 5.00 (O'Brien et al. 1994)   x  x 

Macrophage Activation -- 5.00 (Carlson et al. 1998)  x  x 

     (Vela et al. 2002)  x x   

     (Fleming et al. 2006)  x  x 

Oligodendrocyte Death -- 12.00 (Crowe et al. 1997)  x  x 

Demyelination -- 24.00 

(Totoiu and Keirstead 

2005)  x  x 

Nitric Oxide (NO) -- 8.00 (Xiong et al. 2007)  x  x 

Caspase Activation 5.4 24.00 (Springer et al. 1999)  x  x 

Axonal Damage -- 12.00 

(Pettus and Povlishock 

1996)  x x   

Neuron Death 1.4 12.00 (Gaviria et al. 2006)  x  x 

    24.00 (Fujiki et al. 2005)   x   x 
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Table 8.1.5.  Factor validation comparison to experimental data. The model is “unitless” 
in that the model generates factor values that are ratios to the baseline values, with all 
baseline values (values immediately post-insult) starting at one.  For example, a factor 
value of three means that the factor value is three times the baseline value.  References 
listed in bold type indicate primary (i.e. external or independent) validation criteria in 
which no data from the reference was used to calculate the corresponding validated factor 
value.  References in italic type indicate secondary validation criteria from which only 
time constant information was extracted.  Thus, these secondary references had no impact 
on their corresponding resulting factor relationships.  The remaining references in regular 
type, with the exception of axonal damage, indicate tertiary validation criteria from which 
the indicated reference was only one of several references that data was extracted from as 
part of the calculation of the corresponding factor value.  Thus, these tertiary references 
have only a partial role in determining the impact of their listed factor values and 
resulting relationships.  Limitations imposed by the quantity, applicability and 
extractability of available data make the prediction and validation of axonal transport 
more difficult than the other factors.   
 

Factor 

M
od

el
 

V
al

ue
 

E
xp

. 
V

al
ue

 
T

im
e 

Po
in

t 
(h

rs
) 

Reference 

In
vi

tr
o 

In
vi

vo
 

T
B

I 

SC
I 

NMDA Activation 2.53 2.5 < 1 (Zhang et al. 1996) x   x   

AMPA Activation 2.31 2.2 < 1 (Goforth et al. 2004) x   x   

    2.5 1 (Li and Stys 2001) x     x 

NaKATPase 
Transporter 

0.67 0.7 24 (Faden et al. 1987)   x   x 

    0.7 24 (Li and Stys 2001) x     x 

Reactive Oxygen 
Species (ROS) 

5.11 4-5 1 (Hall and Braughler 1993)       x 

  1.77 2.5 0.5 (Hamada et al. 1996)   x   x 

Glutamate 
Concentration 

4.1 4-7 0.75 (Xu et al. 2004)   x   x 

Calcium 
Concentration 

2.5 2.5-
3 

4 (Wingrave et al. 2003)   x   x 

Sodium 
Concentration 

2.43 2 1 (Lemke et al. 1987)   x   x 

Mitochondria 
Dysfunction 

1.3 1.2 6 (Sullivan et al. 2007)   x   x 

ATP Concentration 0.8 0.7 1 (Anderson et al. 1980)   x    x 

Membrane Damage 4.5 2-7 <1  (Choo et al. 2007)   x   x  

Microglia 
Activation 

3.6 3 6 (Dusart and Schwab 1994)   x   x 

Cytokine 
Concentration 

2.6 2-5 6 (Bartholdi and Schwab 
1997) 

  x   x 
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Table 8.1.5 (continued) 

Factor 

M
od

el
 

V
al

ue
 

E
xp

. 
V

al
ue

 
T

im
e 

Po
in

t 

Reference 

In
vi

tr
o 

In
vi
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T
B

I 

SC
I 

Astrocyte 
Activation 

2.1 2-4 4 (O'Brien et al. 1994)   x   x 

Macrophage 
Activation 

11.1 11 16 (Giulian and Robertson 
1990) 

  x   x 

Oligodendrocyte 
Death 

1.7 2 6 (Crowe et al. 1997)   x   x 

Demyelination 2.7 ~ 
2.5 

12# (Totoiu and Keirstead 
2005) 

  x   x 

Nitric Oxide (NO) 1.5 2-5 6 (Merrill et al. 1993) x    x 

Caspase Activation 2.5, 3-
3.5 

4 (Wingrave et al. 2003)   x   x 

  3.3   6 (Springer et al. 1999)    x   x  

Axonal Damage 2.2 >2 6 (Pettus and Povlishock 
1996) 

  x     

 

 

Parameter value extraction 

When using experimental literature to obtain parameter values (Tables 4 and 5), primary 

reference selection was based on the quantifiability of the parameter.  All parameters 

were extracted from central nervous system data, and when possible, data measured in 

the spinal cord and spinal cord injury.  However, when insufficient quantifiable data was 

not available from the spinal cord literature, parameters were extracted from the 

traumatic brain injury literature.  This distinction is made in the tables. 

 

Justification for factor inclusion/exclusion 

This model is based on what is already known about secondary injury.  Therefore, factors 

included in the model were limited to those known to contribute to secondary injury 
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during the studied time frame and for which there was sufficient experimental data 

available for obtaining parameter values and validating results.  Consequently, mediation 

factors (factors that mediate cell death), which have been understudied in this early time 

frame, are difficult to include.  Thus, such explicit factors, like remyelination, were 

excluded from the relational model. Some factors of secondary injury, such as 

inflammation, are thought to have mediating as well as deleterious effects.  In the model 

presented here, only the deleterious effects are explicitly included, mainly due to the lack 

of consistent, quantitative information currently available. Thus, it is implicitly assumed 

that the impact of mediation factors during the time frames examined in this study is 

negligible.  However, we do not discount their potential importance; in the future, as 

more experimental information becomes available, inclusion may be appropriate.  

 

In general, this study only includes direct factors for which experimental data among 

various studies is qualitatively consistent.  If there was discordant experimental data for a 

factor, the factor was not directly or explicitly included, but rather implicitly modeled 

using related indirect factors and/or mechanisms for which experimental data was 

qualitatively consistent.  For example, we recognize the potential importance of cell 

volume regulation, or edema, in the secondary injury process. However, conflicting 

experimental results make direct inclusion as an individuated factor very difficult.  

Several studies have documented a 2-3% change in spinal cord volume post-SCI, and 

each of these studies states to have reduced this volume change by approximately the 

same amount using very different methods corresponding to different potential 

mechanisms—by reducing NMDA receptor activation (Churchwell et al. 1996), 
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macrophage/microglia activation (Tian et al. 2006), ATP depletion (Jurkowitzalexander 

et al. 1992), and sodium (Ates et al. 2007), to name a few. Thus, in this study, we elect to 

model the effects of edema indirectly by inclusion of these aforementioned indirect 

mechanisms. Without a direct connection between edema and neuron death, it is possible 

that factors likely to contribute to edema, such as sodium, may have their impact on 

neuron death slightly underestimated, but the actual values of the indirect factors 

themselves remain in line with experimental data (see Table 5). 

 

Other model assumptions and limitations 

 It is true that there are implicit assumptions with each factor that are inherently 

associated with the conditions, assumptions and limitations associated with the 

experiment from which each gain was extracted including the experimental model type, 

time frame of data collection, etc. (for a list of such publications, see Table 3).  There are 

also limitations based on the information available for a certain factor.  Another implicit 

assumption lies in the limitation imposed during data extraction from the literature.  

However, the more general assumptions of the model are:  1)  A quantitative 

experimental correlation specifies an interaction which can be modeled in differential 

form resulting in both inherent and emergent predictions which reflect the interactive and 

temporal dynamics of the process. 2)  No “events” occur between the discrete time points 

extracted experimentally, and thus temporal dynamics can be interpolated between 

discrete points by using an experimentally derived time constant in the translated 

differential equations.  
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Sensitivity analysis 

A sensitivity analysis was performed by varying each parameter individually by a 

specified amount (± 50% in eight 6.25% increments) to measure its effect on the model 

output (i.e. factor and neuronal death) values.  Sensitivity data was used to obtain the 

correlations between factors for the landscape.  Additionally, the sign of the slope of the 

linear regression between each gain and neuronal death was used to calculate which 

direction a gain must be moved to minimize neuron death when specifying inhibiting 

treatments.  

 

Secondary Injury Landscape(s) 

The landscapes reveal the inter-relatedness of the factors and thus are illustrative of 

interaction dynamics.  The correlation matrix, which forms the landscape, consists of 

correlation values obtained by correlating all outputs against one another based on the 

sensitivity analysis data.  Note that landscapes are based on peak or maximal impact of 

each factor rather than ending impact.   “Maximal impact” was defined as the minimum 

factor value occurrence over 12 hours for factors that decrease with neuron death (e.g. the 

Na-K-ATPase transporter and ATP) and the maximum factor value for the remaining 17 

factors, which increase with neuron death.  Neuron death values for each sensitivity 

analysis run were taken at their maximal value (i.e. at 12 hours). 

 

Since any given output will correlate perfectly with itself, the correlation matrix contains 

a diagonal line of identity and is symmetric along the diagonal axis of the square.  

Correlations range from zero to one, with zero being completely uncorrelated and one 
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completely correlated (for method details see (Mitchell and Lee 2007)).  The factors were 

sorted based on their correlation coefficients using hierarchical cluster analysis such that 

the most correlated factors were located near each other in the landscape.  This sorting 

does not change the correlations in the landscape but rather makes correlations easier to 

illustrate and readily identifies “groups” of related factors based on correlation.  

 

Pathology Diagrams 

  Pathology diagrams serve not only as a map but also as a survey of the overall system 

operation, including the changes in factor size, impact, and “flow”.  Since the purpose of 

the diagrams is to provide insight into the operation of the system as a whole, additional 

scaling was applied to determine line thicknesses/saturation levels etc.   The overall intent 

was to scale in a manner that kept all lines and boxes visible and yet still provide 

meaningful individuation of effect.  Qualitatively, greater intensity (darkness/saturation) 

indicates greater impact on neuron death with the scaling being roughly logarithmic.   

Thus, each increment in intensity is approximately a 2.5-fold increase in impact on 

neuron death.  In contrast, size (box or line) is an indicator of magnitude.  Box size (area) 

scaling is roughly linear with factor magnitude relative to its peak value.  Line thickness 

is scaling is roughly logarithmic as impacts range over approximately 5 orders of 

magnitude.  Thus, each increment in thickness is worth approximately a 2.7-fold increase 

in impact.   
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Inhibiting treatments 

Inhibiting treatments (treatments that inhibit the growth of a factor) were simulated by 

co-varying all of the experimentally derived relationships (gains) directly governing a 

given factor (i.e. all parameters, excluding the time constants, appearing in the 

mathematical calculation of a factor) by a specified amount or “dose” in a direction that 

reduces neuron death. For inhibiting treatments, doses were simulated by moving the 

individual gains, G, that govern a factor or combination of factors between 1-95%.  The 

direction that each individual gain must be varied to reduce neuron death was determined 

from a parameter sensitivity analysis.   

 

Reducing treatments 

Reducing treatments (treatments that directly reduce a factor) were performed by 

subtracting a factor-dependent ‘dose’, by multiplying the current factor value at each time 

step by a “reducing gain” that was roughly based on the sum of all gains (Gtotal, factor) for 

each factor.  However, to facilitate comparison, the exact scaling of reducing gains was 

set so that reducing and inhibiting resulted in the same effect at very small dosing levels 

under the premise that reducing and inhibiting should become indistinguishable as dosing 

approaches zero.  The specific scaling point was a 1% inhibiting treatment dose at time 

zero.  Thus, a 1% reducing treatment at time zero was defined as the gain that produced 

the same change in neuron death as the 1% inhibiting treatment.  Reducing gains were 

then varied between 1-1000%.  Summarizing by continuing with our example with 

NMDA, the concentration-dependent dose that would be subtracted from Equation 2 to 
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reduce NMDA is represented by Equation 4, where SNMDA is the applied scaling factor as 

described above. 

 

NMDAreduced = NMDA ⋅ Gtotal ,NMDA
⋅ SNMDA ⋅ dose    Equation 8.1.4 

 

Combination treatments 

A factorial design was used to test single factor and multi-factor (simultaneously varying 

2-5 factors) treatment combinations.  The maximum of five was determined by a 

dimensionality analysis of the system (see (Mitchell and Lee 2007)). 

 

Implementation 

 The model is implemented in MATLAB R2007a (The Mathworks, Inc.). Secondary 

injury simulations, sensitivity analyses, cross-correlation analysis for the landscape, and 

treatments were performed in MATLAB. Hierarchical clustering analysis for the sorting 

of the factors in the landscape was performed in Systat (Systat Software, Inc.). Pathology 

diagrams were created in SmartDraw (SmartDraw.com).  

 

Results 

Characterization of overall pathology 

  A key goal of this study was to examine the overall pathology of secondary injury at the 

system level, including the process dynamics. As a starting point, two generalized 
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mechanisms of secondary injury propagation were examined.  The first is a rate-

dependent process, similar to a burning forest fire, where damage is driven by 

interactions between factors.  Using this analogy, a fire is critically dependent upon the 

interactions between fuel availability, wind speed, humidity, etc. and even small changes 

in any one of these can have dramatic effects on the fire’s progression and the extent of 

its damage.  The second mechanism is an accumulation-dependent process that is 

analogous to a rising flood, where damage is driven by the accumulation of factors.  

Using this analogy, the flood is dependent upon summation over time of flow rates, 

geographic contours, etc. and small changes in these factors generally result in only small 

effects on the overall flood and extent of its damage.   The prevailing view of secondary 

injury would be akin to the fire analogy.  Thus, our initial expectation was that the system 

would be driven by ongoing, rate-dependent interactions of factors.  

 

We began our examination of the secondary injury pathology by investigating the time 

course of individual factors and neuron death.  The primary model output used to signify 

the propagation of secondary injury is neuron death as a function of time.  In actuality, 

“neuron death” represents the aggregation of all indicators of dead, dying and/or marked 

for death neurons.  As such, it encompasses both the volume affected and the fraction of 

dying cells within that volume.  In the first hour post-insult, the model predicts 

approximately a three-fold increase in neuron death.  This first hour shows greatest 

activity in the excitotoxic factors (Figure 2) whose relationships were predominately 

based on in vitro literature.  Subsequently, neuron death increases at a slower, but still 

substantial pace resulting in an additional three-fold increase over the next fifteen hours.  
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This sub-acute period shows substantial activity in the necro-apoptotic and inflammatory 

factors (Figure 2) and is based heavily on in vivo literature.  The model was validated by 

comparing its output to experimental data (see Table 5), and especially, when possible, to 

experimental data not used as part of the model construction.  Based on comparison to 

experimental data, the model appears to be valid out to 16 to 18 hours post-insult.  

However, the dearth of experimental data points between 12 and 24 hours make a precise 

determination difficult.  Consequently, we limit our examination to the first 12 hours 

post-insult. 
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Figure 8.1.2. Progression of factors over time.  For illustration purposes, the trajectories 
shown are relative to one another in that factors are scaled based on the average of all 19 
factors. For comparison of specific factor values to experimental values at specified time 
points, see Table 5.  Each category of factors is highlighted in an individual panel using a 
monochromatic color scheme that aligns with the category colors used in Figure 1a. Light 
gray lines in the background represent the non-highlighted factors in each respective 
panel and are shown for the purpose of comparing the different factor and factor category 
trajectories. (a) Excitotoxic factors (b) Energetic factors (c) Inflammatory factors (d) 
Necro-apoptotic factors (e) Free radical factors (f) Other factors.   
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Next, we assessed the simultaneous inter-relationships (i.e. correlations) among the 

nineteen factors and neuron death to obtain “snapshots” of the entire secondary injury 

process over time (Figure 3).  By looking at how these snapshots change over time, we 

can visualize the dynamics of propagation.  The landscapes (left Figure 3) represent both 

a summary of the two-way, experimentally observed correlations, and the model’s 

predictions regarding broader interactions among the factors.  The corresponding 

pathology diagrams (right Figure 3) indicate the relative flow and impact of factors, and 

thus represent the accumulation of factors over time. Initially, all factors are tightly 

coupled as denoted by the widespread, intense block of correlations in the landscape.  

This tight coupling results in a one-dimensional behavior that is indicative of a process 

that is dominated by interactions (i.e. the fire).  However, with time, the system 

decouples as the effects of interactions diminish.  Simultaneously, the effects of factor 

accumulation rise, eventually dominating the process as indicated in the pathology 

diagrams, and resulting in a pathology that behaves like multiple independent floods. 
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Figure 8.1.3.  Analysis of the fire versus flood dynamics of secondary injury pathology.  
(Left) Landscape of correlations quantifying the strengths of the inter-relationships or 
interactions among the factors and neuron death.  Correlation magnitudes are represented 
by the grayscale color, and range from zero (white, uncorrelated) to one (black, 
completely correlated), Colors on the axes represent the category to which the factor(s) 
belong as denoted in Figure 1. The matrix contains a diagonal line of unity, which has 
been removed for clarity. (Right) Pathology diagram signifying the “flow” versus 
accumulation of factors and their impact on neuron death.  Arrow line thickness 
illustrates the effect of one factor on another while line darkness represents the impact of 
that effect on neuron death.  The inner, colored box size illustrates "accumulation" of a 
factor and is scaled by the factor’s maximum, represented by its outline.  Box color 
saturation symbolizes the impact of the factor on neuron death. Continued on next page… 
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Figure 8.1.3 (continued). (a) One-hour snapshot.  All factors in the landscape are highly 
correlated, indicative of the very large interactions associated with a fire, with only 
minimal factors showing substantial accumulation in the pathology diagram. (b)  Two-
hour snapshot.  The system shows substantial decoupling in the landscape, and an 
increase in the number of accumulating factors in the diagram, indicating a mixed rate 
and accumulation-dependent pathology (i.e. fire and flood). (c) Eight-hour snapshot.  The 
system is functionally decoupled, and accumulation clearly dominates, indicative of 
pathology consisting of several independent floods. 
 
 

Our examination of secondary injury during the first 12 hours post-insult has revealed 

that while the commonly held view of the pathology as a propagating fire is consistent 

with the system behavior initially, it quickly transitions into “flood” dynamics where the 

accumulation of factors over time dominates neuron death (Figure 4).  Notably, this 

transition occurs relatively early, as a substantial majority of neuron death occurs during 

the flood phase.   
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Figure 8.1.4.  Summary of secondary injury pathology dynamics:  acute fire versus the 
sub-acute flood. The pathology dynamics consist of an early, acute fire of interactions 
chiefly dominated by excitotoxic factors followed by a larger, sub-acute flood of 
accumulating factors chiefly dominated by necro-apoptotic and inflammatory factors.  
The relative size of the arrows indicates the relative impact of the corresponding factor 
category on neuron death.  Excitotoxicity, necro-apoptosis, and inflammation all have a 
substantial impact on neuron death, while energetics, free radicals, and other factors have 
a still significant but smaller impact on neuron death.  Time of impact is indicated in 
parentheses. 

 

Single Factor Treatments.   

With the above view of the overall pathology in mind, we began our examination of 

hypothetical treatments by inhibiting the growth of single factors by doses ranging from 

10-95% inhibition (e.g. a 50% dose would be expected to reduce the growth of the factor 

by 50% if all else remained the same).  To determine the maximum possible impact of 

each factor on neuron death, calculated single factor treatments were initiated at time zero 
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(i.e. simultaneous with the insult - Figure 5A).   Based on a 50% inhibiting dose, the 

impact of these single factor treatments ranges from negligible to nearly a 20% decrease 

in neuron death.  However, treatment efficacy drops rapidly with time post-insult (Figure 

5B).  Notably, while the impact of all factors decreased substantially with treatment time, 

several factors that had been highly effective when treatment was initiated at time zero 

drop precipitously, making them low prospects as the basis for clinical treatment.  The 

net result is that the top 5 single factor treatments in the 2 to 8 hr treatment initiation 

window are:  phagocytes (e.g. macrophages, neutrophils, etc), immune activation (e.g. 

microglia), apoptotic mediators (e.g. caspase, calpain, etc), membrane damage, and 

cytosolic calcium. 

 

Combination Treatments. 

  To examine the supposition that multi-factor treatments would be more effective in 

treating secondary injury, we tested combinations of treating two to five factors.  The 

maximum of five was based on a statistical analysis of significance based on the system 

dimensionality (for dimensionality assessment method, see Mitchell and Lee, 2007).  The 

results indicate the effects of combination therapy during the first 12 hours post insult are 

substantially sublinear, rather than synergistic.  That is, of the approximately 20,000 

possible combinations, none performed better and most performed worse than what 

would be expected by adding the dose-proportional effects of single treatments together 

(Figure 5C).  Although more effect is gained with each additional factor treated, the 

majority of the impact resides in treating three factors. 
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Inhibiting versus Reducing Treatments 

 Based on our analysis of the overall system behavior, we explored alternative treatments 

beyond those that simply inhibit factor growth.  Most clinical therapies are aimed at 

decreasing neuron death by inhibiting the growth of a factor by acting via a specific 

mechanistic pathway. For example, a common experimental treatment is to inhibit 

NMDA activation using a receptor antagonist. These inhibiting treatments target 

interactions by preventing the rate-dependent growth of a factor and its subsequent 

interaction with other factors.  In contrast to this inhibiting treatment paradigm, we also 

examined reducing treatment paradigms to decrease neuron death (Figure 5C-D).  This 

paradigm targets the accumulation-dependent nature of the system by directly reducing a 

factor in a manner similar to adding a ‘drain’ to the flood analogy.  An example of a 

reducing treatment is a free radical scavenger, which actively seeks to ‘mop up’ free 

radicals, rather than prevent their formation. 

 

The switch from a rate-dependent propagation of secondary injury (i.e. the fire) to an 

accumulation-dependent process (i.e. the flood), is evident in the performance of the 

respective inhibiting and reducing treatment paradigms.  During the acute period, 

inhibiting treatments outperform their reducing counterparts, particularly at less 

aggressive treatment doses.  However, this difference becomes negligible by hour two for 

three-factor combination treatments and by hour four for two-factor combinations, 

(Figure 5D).  By hour eight, reducing treatments outperform inhibiting treatments in all 

treatment scenarios.   
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Figure 8.1.5.  Evaluation and ranking of various hypothetical single, reducing, inhibiting, 
and combination treatments.  (a) Impact ranking of individual secondary injury factors on 
neuron death as determined by immediate post-insult treatment initiation (zero hours) that 
inhibits single factors by 50%. (b) Impact of time of treatment initiation on neuron death 
over clinically relevant time frames.  The factors relevant at later, clinically relevant time 
points contrast from those shown at time zero. The top five single factors are shown in 
their respective category color (from Figure 1):  phagocytes, immune activation, 
apoptotic cascades, membrane damage, and calcium.  The remaining factors are shown in 
black.  (c) The effect of reducing and inhibiting single and combination treatments as a 
function of aggressiveness of treatment. The impact of treatment, especially combination 
treatments, is greatly increased by reducing paradigms (solid lines) which allow for much 
more aggressive treatment than inhibiting treatments (dashed lines). Aggressiveness of 
treatment measured relative to maximum (i.e. 100%) inhibiting treatment.  Thus, 
inhibiting treatments max out at 1.0 while reducing treatments can be much more 
aggressive.  (d)  Quantified advantage of reducing versus inhibiting combination 
treatment paradigms. The order of factors for each n-factor combination shown in (c) and 
(d) are:  phagocytes, immune activation, necro-apoptosis, membrane damage, and 
calcium. As shown in both (c) and (d), the majority of effective impact of combination 
treatments is contained within 3 factors. 
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Pathology-driven therapeutic strategies 

 Based on our results, the switch from the acute, highly interactive, rate-dependent 

pathology to a sub-acute lower interaction, accumulation-dependent pathology 

determines two critical aspects of secondary injury: 1) the strength of relationships 

governing a factor’s impact on neuron death (Figure 6) and 2) the time frame over which 

factors are relevant, referred to as the factor “treatment window” (Figure 4).  Since a truly 

effective treatment must take into account both of these components, ultimately only a 

few factors are highly influential at clinically relevant time frames. This would appear to 

explain the disconnect between promising experimental studies, which pre-treat or treat 

acute factors within minutes of insult (Blight and Tuszynski 2006; Faden and Stoica 

2007; Tolias and Bullock 2004), and clinical studies where treatment time frames are 

typically 4-8 hours (Tator and Fehlings 1999) as the effective treatment window for acute 

factors has been surpassed.  Furthermore, the lack of synergism predicted by the model 

for combination treatments is also a direct result of the early switch to a diverging, flood-

like pathology since synergism is derived from the sustained presence of strong 

interactions. 
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Figure 8.1.6.  Summary of the secondary injury pathology dynamics and the top model-
predicted therapeutic strategies at clinically relevant time frames. The diagram 
summarizes the flows and effects of factors on neuron death and the corresponding 
higher-impact inhibiting and reducing treatments over the 2-8 hr time frame. Circular 
arrows represent the best targets for reducing treatments:  membrane damage, apoptotic 
cascades, and phagocytes.  Inhibiting treatments are indicated by an “x” through the 
targeted interaction: interaction between NO and immune activation, non-neuronal death 
and immune activation, immune activation and phagocytes, calcium and apoptotic 
cascades, and membrane damage and apoptotic cascades.  Arrow line thickness to and 
from factors represents relative "flow" and is indicative of the relative rates coming into 
and out of factor while line darkness represents the impact of "flow" on neuron death. 
Box color saturation symbolizes the impact of a factor on neuron death. 
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Summary of Predictions 

 As shown, the presented secondary injury relational model is able to transcribe literature-

extracted relationships into a network of time-varying factors that reproduce a number of 

experimental results.  However, an important aspect of any model is the ability to 

characterize previously unknown dynamics, mechanisms, or functions.  In this work, we 

have made several predictions regarding the previously uncharacterized dynamics of 

secondary injury and its response to numerous hypothetical single and multi-factor 

combination treatment types.  A summary of the model’s testable predictions is given in 

Table 6. 

 

Table 6.  Summary of secondary injury dynamics and therapeutic predictions over the 0-
12 hour simulated time period.  Therapeutic predictions are continued on the next page. 
 
Dynamical Predictions 

• Dynamical Time Course:  Hours 1-2 are dominated by an acute “fire” of 

rate-dependent interactions.  Hours 2-6 exhibit a mixture of fire-like 

interactions and the flood-like accumulation of independent factors.  

Hours 6-12 reveal a nearly decoupled system analogous to a flood. 

• Factor Category Time Course:  Excitotoxicity and energetics peak in 

hours 1-2.  Free radical and necro-apoptosis peak during hours 2-6.  

Inflammation and “other” peak in the last hours of the sub-acute period 

(>6 hours). 

• Factor Impact on Neuron Death:  Excitotoxicity and energetics impact 

neuron death in the acute periods.  Impact of inflammation is in the sub-

acute period.  Impacts of necro-apoptosis, free radicals, and “other” can 

be seen throughout the entire time course. 
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Table 6 (continued). 

Therapeutic Predictions 

• Single Factor Treatments:  Best treatments during clinically relevant time 

frames (hours 2-8) are phagocytes, immune activation, apoptotic 

cascades, membrane damage, and calcium. 

• Combination Treatments:  Are additive rather than synergistic.  Majority 

of treatment impact obtained with 3 factors. 

• Inhibiting Treatments:  Target interactions; most effective 0-4 hrs post-

insult. 

• Reducing Treatments:  Target accumulation of factors; most effective >4 

hours post-insult.  Can have much higher doses compared to inhibiting 

treatments, making them the superior general clinical strategy. 

 
 

Discussion 

At first, it may seem that this characterization of the secondary injury pathology simply 

adds to the already disheartening picture painted by a host of failed clinical trials.  

However, our results may indicate quite the opposite.  The pathology characterization 

presented here identifies positive current and future directions to pursue based on 

fundamental pathology dynamics.  While multi-factor treatment combinations do not 

provide the much hoped-for synergistic effects, our results do suggest that some 

combinations would be functionally additive, namely factors with longer treatments 

windows, such as necro-apoptotic and inflammatory factors. Furthermore, the effects of 

combination treatments can be amplified with very aggressive reducing treatment 

paradigms.  Such paradigms may be possible with careful selection of existing 

pharmaceuticals.  Thus, multi-factor treatments may still play a role in treating SCI, but 
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expectations regarding their effectiveness should remain realistic with continued 

exploration being pragmatic.   

 

More importantly, our results suggest that the way forward may lie in pursuing the 

detailed dynamics of how the secondary injury process propagates rather than just the 

factors involved in that propagation.  For example, treatment of secondary injury based 

on a flood paradigm opens up therapeutic avenues not currently explored.  There are 

three possible ways to ‘treat’ a flood: 1) ‘wall off’ the flood by building a containment 

dam; 2) repair the source; and 3) distribute the flooding over a larger area/volume thereby 

minimizing its impact.   In the case of secondary injury, each has its pros and cons.  The 

physiological mechanism seems to be to wall off the area via inflammation and glial 

scarring (Fawcett and Asher 1999).  However, this approach sacrifices any surviving cells 

remaining within the walled area.  Repairing the source, which could involve repairing 

the damaged cells, possibly through membrane re-sealing (Liu-Snyder et al. 2007), may 

have a limited feasible treatment window but may still result in long-term success.  More 

radical would be attempting to distribute the flood in a regulated manner, possibly 

through controlled activation and inactivation of inflammatory factors over time to 

minimize overall damage. This last approach could potentially leverage the positive, 

mediating aspects of inflammation while minimizing the negative, sacrificial effects.  A 

key challenge for many of these alternative approaches lies in the ability to 

experimentally characterize and analyze the changing spatial and temporal dynamics of 

the pathology, such as the ability to differentiate early rate-dependent damage from later, 

accumulation-dependent damage.  
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While this model does provide the first, preliminary systems-level view of the secondary 

injury process and possible hypothetical treatments as a whole based on the current state 

of the field, it is merely scratching the surface.  Thus, admittedly, there are multiple 

factors, details, and mechanisms that will likely need to be added or modified in the 

future as new experimental findings allow us to hone in closer to the roots, inner-

workings, and related systems, which specify the underlying pathology and ultimately the 

efficacy of very specific treatments.  Specific examples of possible refinements include 

the addition of the mediating effects of inflammation and membrane re-sealing and a 

more detailed examination of underspecified factors, such axonal damage, where useable, 

available data is scarce.  Finally, in addition to the excluded mediating and discordant 

direct factors stated in the justification for factor inclusion/exclusion section, this model 

does not account for secondary injury occurring at the level of the organism (hypoxia and 

hypotension) resulting from dysfunction of other organ systems.  In the future, such 

aforementioned refinements will provide further confidence in our ability to predict 

clinical outcomes. 

 

We foresee this and similar forms of modeling and analysis, perhaps better classified as 

“theoretical physiology”, to be an invaluable complementary tool to the details and 

mechanisms identified and validated by spinal cord injury experimental and clinical 

studies by allowing a comprehensive, holistic view into the pathology dynamics and 

interactions.  Ultimately, with continued refinement, modeling may provide a high-

throughput screening process from which potential experiments, treatments, and detailed 
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protocols can be tested for feasibility and prioritization, thus speeding the time between 

therapeutic discovery and clinical success. 
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CHAPTER 9 

PHYSIOLOGICAL AXONAL TRANSPORT 

 

Interest in axonal transport has spiked in the last decade as deficits and disruptions in 

axonal transport have been implicated in pathological and neurodegenerative motoneuron 

diseases such as Amyotrophic Lateral Sclerosis (ALS) (e.g. Kieran et al, 2005).  

However, many questions remain to be answered about physiological transport before 

pathological transport can be addressed.  One such question is the role of multi-motor 

cooperativity in axonal transport.  The published model (Mitchell and Lee, 2009) 

presented in this section addresses the role of cooperativity and provides the foundation 

for our work in ALS as presented in Chapter 10. 

Because axonal transport is a highly interactive process and because of its small 

physiological scale over a longer time scale, it is a difficult process to fully characterize 

experimentally or theoretically.  While it works well to study some aspects of axonal 

transport using a full-fledged, purely mechanistic model on individual motors and cargos 

in a system aimed to look at population mechanics and behavior, it would limit the types 

of questions we want to address.    Additionally, many of the questions that we wanted to 

address would have been out of our reach if we were reliant on knowing detailed 

mechanisms.  Thus, a purely traditional mechanistic model was not the best tool to 

simulate this system.  Furthermore, because axonal transport has a large stochastic 

component and because it lacks the intricate feedback relationships that are seen with, for 

example, SCI, relational modeling is not an amenable methodology to this system either.  
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Instead, a hybrid mechanistic-conceptual approach is the method of choice as it provides 

the easiest means to implement and test higher level functional concepts, such as 

cooperativity, while maintaining the integrity of underlying mechanistic principles, such 

as motor kinetics, when possible and efficient. 

Briefly, two questions were addressed:  1) What forces do motors experience when 

transporting a cargo and how do these forces impact their velocity profile(s)?  and 2)  

How many motors of the same polarity (i.e. total number kinesins or total number of 

dyneins) is necessary to obtain velocity profiles that match those seen experimentally for 

either fast or slow axonal transport?  To answer these questions we combined an adapted 

stochastic-mechanistic model of motor to microtubule kinetics and two conceptual 

models to represent the effects of drag force and multi-motor cooperativity on transport 

velocity.  The paper as published in the Journal of Theoretical Biology 257(3): 430-437 

(Mitchell and Lee, 2009). 

 

Axonal Transport Background 

Motoneurons can have extremely long axons, which can extend up to a meter in length 

(Kandel et al, 2000).  Because axons are unable to manufacture their own proteins, 

axonal transport along the entire length of the axon, from the soma to the synapse and 

back, is essential to motoneuron function and survival (Goldstein and Yang, 2000).  

Axons contain microtubules that serve as a railroad for the transport of necessary 

constituents (including neurotransmitters, organelles, and proteins) needed for cellular 
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support from the soma to the synapse and the return of proteins destined for degradation 

from the synapse back to the soma (Figure 1). The transport carriers for this process are 

the molecular motors kinesin and dynein, which bind the cargos and take them to their 

destination.  Just like the microtubules upon which they bind, kinesin and dynein are 

directionally polarized.  Kinesin is responsible for anterograde transport of cargos from 

the soma to the synapse whereas dynein is responsible for the retrograde transport of 

cargos from the synapse back to the soma. Both kinesin and dynein utilize ATP to 

process along the microtubule.  Multiple kinesins or dyneins can carry cargos 

independently, together, or work in a concerted fashion, the latter two being defined as 

cooperative transport (Kural et al, 2005). 

There are different types of axonal transport, which are categorized based on the 

directionality and speed of cargo transport, with each type of transport having its 

preferential cargo types (Brown 2000):  Fast anterograde or fast retrograde axonal 

transport (200-400 mm/day) is largely responsible for the movement of most organelles 

and larger proteins.  Fast bi-directional transport (50-100 mm/day) is mainly responsible 

for the bi-directional movement of mitochondria throughout the axon, placing them 

where they are needed as a function of energy requirements and axonal growth.  Slow 

anterograde or slow retrograde transport (0.3-8 mm/day) is typically used to transport 

cytoskeletal structures such as neurofilaments and some smaller proteins to where they 

are needed along the axon.  
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Figure 9.0.1.  Overview of axonal transport.  (A) Cargos such as proteins, 
neurofilaments, organelles, and neurotransmitters are transported along polarized 
microtubules across the entire length of axon via molecular motors kinsesin (anterograde, 
+ end directed motor) and dynein (retrograde, - end directed motor).  (B) As shown in 
(1), a molecular motor is bound to the microtubule track until it acquires a molecule of 
ATP as shown in (2).  For every step, one molecule of ATP is utilized.  Due to either a 
random event or a predetermined chemical signaling event, such as a patch of tau or a 
phosphorylation site which dictates motor binding events, the motor detaches from the 
microtubule as shown in (3).  Figure 9.0B credit:  Special thanks to Brock Wester for the 
motor binding/unbinding illustrations. 
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Abstract 

Axonal transport, via molecular motors kinesin and dynein, is a critical process in 

supplying the necessary constituents to maintain normal neuronal function.  In this study, 

we predict the role of cooperativity by motors of the same polarity across the entire 

spectrum of physiological axonal transport.  That is, we examined how the number of 

motors, either kinesin or dynein, working together to move a cargo, results in the 

experimentally determined velocity profiles seen in fast and slow anterograde and 
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retrograde transport.  We quantified the physiological forces exerted on a motor by a 

cargo as a function of cargo size, transport velocity, and transport type. Our results show 

that the force exerted by our base case neurofilament (DNF=10nm, LNF=1.6μm) is 

~1.25pN at 600nm/s; additionally, the force exerted by our base case organelle 

(DOrg=1μm) at 1,000nm/s is ~5.7pN. Our results indicate that while a single motor can 

independently carry an average cargo, cooperativity is required to produce the 

experimental velocity profiles for fast transport.  However, no cooperativity is required to 

produce the slow transport velocity profiles; thus, a single dynein or kinesin can carry the 

average neurofilament retrogradely or anterogradely, respectively.  The potential role 

cooperativity may play in the hypothesized mechanisms of motoneuron transport diseases 

such as Amyotrophic Lateral Sclerosis (ALS) is discussed. 

Keywords 

neurofilament, axoplasm, microtubule, computational model, cooperative transport, drag 

force 

 

Introduction 

With axons being unable to manufacture their own proteins, axonal transport is a critical 

process responsible for providing essential cellular parts and materials throughout the 

entire axon and for returning molecules destined for degradation back to the lysosomes in 

the soma (Sabry et al. 1995). For a review of axonal transport, see (Goldstein and Yang 

2000).  With numerous recent experimental investigations pointing to the potential role of 

axonal transport in such devastating motoneuron diseases as Amyotrophic Lateral 
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Sclerosis (ALS) (Pantelidou et al. 2007; Rao and Nixon 2003; Zhang et al. 2007), Spinal 

Muscular Atrophy (Briese et al. 2005), and Charcot-Marie-Tooth disease (Brownlees et 

al. 2002; Lupski 2000), there is an ongoing effort to reveal the pathological mechanisms 

resulting in associated transport defects. However, many questions remain regarding the 

physiological mechanisms of axonal transport, and the answers to these questions lie in 

the path of our full understanding of transport-related diseases. 

 

One such question has been the identification and subsequent characterization of 

cooperative movement of cargos by multiple motors, which equally share load force.  

That is, how many motors does it take to move a cargo, and if and how is cooperativity 

affected by cargo type/size and transport speed?  Although it has been suggested that 

cooperativity does exist (Alano et al. 2002; Ashkin et al. 1990; Klumpp and Lipowsky 

2005; Kural et al. 2005), experimental validation has proven difficult.  Most work 

examining cooperativity has focused on the cooperative movement between motors of 

opposite polarity (Alano et al. 2002; Kural et al. 2005) (i.e. dynein and kinesin moving a 

cargo in a concerted fashion) rather than the cooperativity of multiple same polarity 

kinesins or dyneins working to move a cargo either anterogradely or retrogradely, 

respectively.  While optical trap experiments have characterized the maximum forces a 

molecular motor can withstand (Alano et al. 2002; Ashkin et al. 1990; Coppin et al. 

1995), little is known as to how these measured forces compare to what physiological 

forces a motor may experience when carrying cargos.   Therefore, it has been difficult to 

determine the number of motors necessary to overcome the forces imposed by moving a 

given cargo. 
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In this study, we quantitatively examine the role of same polarity multi-motor 

cooperativity as a function of cargo type/size, transport velocity, and transport type. We 

determine the forces imposed on a molecular motor under a wide physiological range of 

parameters.  Using these calculated forces in combination with an adapted version of an 

experimentally-derived kinetic model (Craciun et al. 2005), which accurately describes 

the appropriate states of the motor as it processes along the microtubule, we were able to 

quantify and characterize molecular motor cooperativity over established, experimentally 

determined, fast (200-400 mm/day)  and slow transport (0.3-8 mm/day) ranges (Brown 

2000; Brown et al. 2005; Kural et al. 2005; Shea and Flanagan 2001; Wang et al. 2000).  

Our results indicate under certain transport scenarios, cooperativity is necessary to 

achieve fast transport, but its role in slow transport is minimal.  Furthermore, our results 

suggest the potential for a substantial impact of cooperativity in transport disease 

pathologies.  

 

Methods 

The two most characterized cargo types are the neurofilaments, which undergo slow 

transport, and mitochondria, which undergo fast bi-directional transport.  Thus, we 

choose to focus the majority of our study on these two cargo populations. Table 1 lists the 

experimental velocity transport ranges for most common types of hypothesized and 

known cargo types.  
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Table 9.1.1.  Experimentally determined transport ranges and known/hypothesized 
transport types (adapted from Brown (Brown 2000)). 
 

Transport Type 

Velocity 

(mm/day)

Velocity 

(mm/s) Example Cargo Type(s) 

Fast      

  --Anterograde 200-400 

 

2.31-4.63 

Golgi-derived vesicles, 

tubules, neurotransmitters 

  --Retrograde 200-400 2.31-4.63 enodosomes, lysosomes 

  --Bidirectional 50-100 0.58-1.16 mitochondria 

Slow     

  --Component A 0.3-3 

0.003-

0.035 neurofilaments 

  --Component B  2-8 0.02-0.08 microfilaments, actin 
 

 

The general strategy was to determine the force imposed by various cargo types and to 

use this information to determine the number of bound motors required to move a 

specific cargo type at transport velocity ranges that match those determined 

experimentally using optical traps (Coppin et al. 1995).  This general strategy is based on: 

1) determining the force imposed by the cargo by calculating the drag force as a function 

of velocity and cargo geometry; 2) assuming the drag force is equivalent to the maximum 

force exerted by the cargo on the molecular motor; and 3) determining the velocity 

distributions for various cargo sizes and types undergoing transport by a specified 

number of bound motors using the appropriate transport kinetics to describe the 

interaction of the molecular motors with the microtubule for each specific transport type.   
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Drag Force Calculation 

  The drag force imposed by a cargo was represented by simplified equations derived 

from the Stokes-Einstein equation for a particle at a low Reynolds number, Re<<1 (Berg 

1993; Truskey et al. 2003).  The relationship of drag force, (FD), to velocity (V) for an 

arbitrarily shaped particle is described by Equation 1 where f is the frictional coefficient: 

 

FD = f ⋅ v       Equation 9.1.1 

The geometry-specific frictional coefficient, f, for a cylindrical neurofilament is 

calculated using Equation 2 (Truskey et al. 2003) where LNF is length, DNF is diameter, 

and μ is viscosity of the surrounding cytoplasm (sometimes referred to as the axoplasm). 

f =
4πμLNF

ln L (DNF /2)( )+ 0.193
    Equation 9.1.2 

 

Organelles carried in fast transport, such as mitochondria, are known to have a spherical 

geometry and were modeled as simple spheres.  The simplified geometry-specific 

frictional coefficient for a spherical organelle is given by Equation 3 (Berg 1993) where 

Dorg is the diameter of the organelle. 

 

f = 6πμ Dorg /2( )    Equation 9.1.3 

 

The maximum allowable drag force is calculated by multiplying the number of bound 

motors, NB, by their maximum force, Fs, for the appropriate motor type (Equation 4).  A 

motor’s maximum force can be assumed to be its measured “stall” force.  (The stall force 
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is the opposing force needed to slow a motor to zero velocity.)   The stall force has been 

experimentally determined to be ~1.2 pN for dynein (Gao 2006; Schmitz et al. 2000) and 

~5.65 pN for kinesin (Coppin et al. 1995; Kural et al. 2005) at physiological 

concentrations of available ATP; thus, we use these average experimental values of Fs in 

the this study. 

FDMAX
= Fs ⋅ NB    Equation 9.1.4 

The velocity of an individual cargo was determined by substituting the maximum drag 

force (FD,MAX) in Equation 4 for the drag force (FD) in Equation 1.  Thus, the cargo 

velocity calculation is given by Equation 5. 

 

    V = FDMAX
f      Equation 9.1.5 

 

Determination of drag force parameters.   

 Much care was taken to obtain values for all four of the drag force calculation 

parameters over their physiological ranges (see Table 2).  Three such aforementioned 

parameters describe cargo geometry:  the diameter of either an organelle (Dorg) or a 

neurofilament (DNF) and the length of a neurofilament (LNF).  Neurofilaments have been 

determined to be approximately 10nm in diameter (Lupski 2000), but their lengths have 

not yet been precisely determined. Neurofilaments are thought to be transported in their 

polymerized form, which implies that they could reach great lengths, ~1-3μm (Brown 

1998; Trivedi et al. 2007; Wagner et al. 2004), with an average around 1.8 μm.  

Neurofilaments contain “branches” or “side arms” due to the neurofilament medium and 
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heavy subunits (NF-M and NF-H, respectively), which provide the cross-linking and 

phosphorylation interaction and regulation sites (Marszalek et al. 1996).  However, we 

chose to assume a simpler, plain cylindrical shape to model the neurofilament geometry.  

As shown in the results, increasing the diameter to include the side arms has a minimal 

impact on the calculated force.  The size of fast transport particles can vary from the 

nanometer to micrometer scale.  The average size of mitochrondria is about 1 μm. Note 

that ‘reasonable’ instantaneous velocities (i.e. velocities <  ~3000 nm/s over a time period 

of ~ 5 seconds as shown by an invivo study slow transport of neurofilaments (Brown et 

al. 2005) and by an invivo study of quantum dot labeled fast transport (Yoo et al. 2008)) 

can only be attained with organelle diameters greater than approximately 200 nm.  

Diameters smaller than this are assumed to be kinetically limited, rather than force 

limited and thus are not included in this study. 

 

The fourth drag force parameter is the viscosity of the surrounding cytoplasm (or 

axoplasm).  Due to the anisotropic properties of the cytoplasm, a precise determination of 

viscosity is very difficult.  Bulk cytoplasm contains ~20% protein, which contributes to 

physical properties that mimic a weakly viscoelastic gel (Hou et al. 1990).  This gel is a 

result of the combined properties of the actin protein network, which provides 

cytoskeletal structure and support and the cytoplasmic fluid itself which is about 80% 

water (Hou et al. 1990).  Cytoplasmic viscosity measurements that do not include the 

protein/ actin component can be as small as 0.06 Poise (Haak et al. 1976).  However, 

viscosity measurements which look at the total cytoplasmic viscosity (actin + fluid) can 
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be orders of magnitude higher (Keller et al. 2003). Using data from (Keller et al. 2003), 

we estimate the viscosity to be about 6 Poise (or 0.6 Pa•s).  

 

Table 9.1.2.  Base parameter values, ranges, and references used for calculating drag 
force.  Note that the higher end of the neurofilament diameter range includes side arms, 
and that viscosity is that of measurements which include the cytoplasmic protein network 
in addition to the cytoplasmic fluid itself. 
 

Parameter Name Base

Primary 

Physiological 

Range Primary References 

Viscosity, m (Poise) 6 

unknown 

(see 

Methods) (Keller et al. 2003) 

Neurofilament 

length, LNF (mm) 1.6 1-3 

 (Trivedi et al. 2007; 

Wagner et al. 2004) 

Neurofilament 

diameter, DNF (nm) 10 10-50 (Marszalek et al. 1996) 

Organelle diameter, 

DOrg (nm) 1 200-2000 (Freitas 2003) 

Velocity, v (mm /s) 1 0.25-3 

(Brown et al. 2005; 

Klumpp and Lipowsky 

2005; Kural et al. 2005; 

Visscher et al. 1999)  

 

Motor to microtubule binding kinetics 

We adapt transport kinetics described by Craciun et al. (2005) in order to obtain 

physiological average velocities that take into account different possible motor-
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microtubule kinetic states.  This scheme, as shown in Figure 1, describes both retrograde 

and anterograde transport using the following five states:  SO) off-track, paused; SKP) 

kinesin, on-track, paused; SDP) dynein, on-track, paused; SKM) kinesin, on-track, moving 

anterogradely; SDM) dynein, on-track, moving retrogradely. The scheme is such that a 

cargo must disengage from the track before switching directions, and it must pass through 

an on-track paused state before moving.  

 

We implement the kinetic scheme using event-based simulation (Banks et al. 2005), a 

method that speeds simulation time by avoiding unnecessary repetitive calculations by 

predicting how long a cargo will remain in the same state.  The expected duration of each 

possible state, tstate, is calculated by multiplying the inverse of the state’s rate constant, k, 

by the natural log of a random number, rand, in the range 0-1 exclusive giving:  

 

tstate = −1/k ⋅ ln(rand)                    Equation 9.1.6  

 

The form of Equation 6 is chosen to fit the exponential first order process that is apparent 

in experimental data (Wang and Brown 2001) as published in Table 1 of (Brown et al. 

2005). The state with the shortest duration becomes the next state for that cargo. Based 

on the duration of the cargo’s current state and the current time in the simulation, a sorted 

list determines when each cargo should be re-evaluated so that not every cargo need be 

evaluated at every time step.  
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Rate constants for slow transport were adjusted from those originally published by 

(Craciun et al. 2005) (i.e. λ and γ and were varied while all other parameters were held 

constant) to fit our model implementation and still match the original outputs (for 

derivation details, see (Craciun et al. 2005)).  Briefly, γ and λ  were tuned such that the 

histogram of cargo velocities for a neurofilament matched those presented in Table 1 of 

(Brown et al. 2005) for an equivalent simulated period of 4.74 seconds, giving γ =  2.5 

and λ = 0.1.   

 

The same Craciun kinetic model, with different rate constants, was used to obtain fast 

transport kinetics. It has been shown that slow transport is ‘slow’ because of the long on- 

and off-track pauses that occur over a longer period, making the actual movement of slow 

transport fast, but asynchronous and intermittent (Brown 2000; Brown et al. 2005).  Thus, 

the instantaneous velocity ranges during the moving states (SKM and SDM) for transient 

movement during slow transport are relatively similar to that of fast transport, but the 

amount of time spent in the paused and off-track states (λ and γ respectively; see figure 

1) differs.   

 

Another potential difference between slow and fast transport Craciun kinetics concerns 

the directionality of cargos. In the case of slow transport, the directionality of 

neurofilaments was found to be net anterograde with a ratio of anterograde to retrograde 

movement approximately 2:1, resulting in a kinetic rate coefficient specifying the 

directionality to be 69/31 as illustrated in Figure 1.  In the case of fast transport of 

mitochondria, the net directionality is a function of axonal growth. During axonal growth 
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the direction of movement is net anterograde, and in non-growing periods the direction of 

movement is net retrograde (Morris and Hollenbeck 1993).  Nonetheless, the 

directionality ratio was similar to that of slow transport for separate net anterograde and 

retrograde populations.  That is, the rate of anterograde to retrograde movement is on 

average about 2:1 for a net anterograde population and approximately 1:2 for a net 

retrograde population (Morris and Hollenbeck 1993). To take into account this difference 

in directionality, net anterograde and net retrograde populations were modeled separately 

for fast axonal transport.   

 

Given that the directionality rate coefficients for fast transport are known, the kinetics 

described by the Craciun model can be made fast by simply adjusting the rate constants 

governing how long a cargo spends in the paused or off-track states (λ and γ).  To 

simulate fast transport, the rate parameters, λ and γ, were adjusted or ‘tuned’  (i.e. λ and γ 

and were varied while all other parameters were held constant) until the average velocity 

of a population of cargos with a single bound motor (NB = 1) over the duration of the 

entire simulation matched that seen experimentally (Visscher et al. 1999).  These 

adjustments (γ = 0.2 and λ = 10) increase the amount of total time spent in the moving 

states and decrease the amount of overall time spent in the paused and off-track states.  

Using these adjustments, the fast transport of net anterograde and net retrograde 

populations were modeled.  This adjustment of kinetic parameters to match fast 

experimental transport data was based on neurofilament cargos undergoing net 

anterograde fast transport both for consistency and in an attempt to keep the cargo sizes 

small (neurofilament cargos produce forces that are equivalent to ~250 nm spherical or 
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organelle cargo). Keeping the cargo sizes on the smaller end of the physiological and 

force-limited range kept the analysis of kinetics to be independent from that of 

cooperativity.  Rate constants were tuned such that the net anterograde population of 

cargos, each being carried by a single motor (NB = 1), had an average velocity equal to 

that shown by analysis of single kinesin molecules undergoing fast transport as studied 

under molecular clamp ( ~ 1 μm/s) (Visscher et al. 1999). 

 

 

 

Figure 9.1.1.  The motor-microtubule binding kinetics are adapted from Craciun et al 
(Craciun et al. 2005). The model contains five states, S, which are differentiated using the 
following subscript nomenclature: P represents a paused motor (i.e. V = 0), M represents 
a moving motor (i.e. V > 0), K represents the molecular motor kinesin, D represents the 
molecular motor dynein, and O represents an off-track motor. Using this nomenclature, 
we obtain the following states:  SO) off-track, paused; SKP) kinesin, on-track, paused; SDP) 
dynein, on-track, paused; SKM) kinesin, on-track, moving anterogradely; SDM) dynein, on-
track, moving retrogradely.  Rate constants are shown in parameter-form as given in 
Craciun et al (Craciun et al. 2005). The tuned slow transport rate parameters are γ = 2.5 
and λ = 0.1.  Fast transport rate parameters are γ = 0.2 and λ = 10.  For details regarding 
the derivation of rate constants and equations, see Craciun et al (Craciun et al. 2005). 
 

Model Implementation 

The entire model, including the calculation of drag force and motor kinetics is 

implemented in MATLAB 2007a (The Mathworks, Inc.).  Simulations were repeated for 

1,000 cargos to obtain the histogram velocity profiles.  For validation purposes, the 
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simulated time frame was 4.74 (or ~5) seconds, a time frame that is equivalent to the time 

frames and resolution of previous published experimental studies (Alano et al. 2002; 

Ashkin et al. 1990; Wang et al. 2000). 

 

Results 

Cargo imposed forces (i.e. drag force) 

 Geometry, viscosity, and velocity data taken from experimental studies were used to 

determine the average drag force for both neurofilaments (typical slow transport cargos) 

and organelles (typical fast transport cargos).  Note that from here forward, we use “drag 

force” and “cargo imposed force” interchangeably (see assumptions in the Methods). The 

drag force exerted by the base case neurofilament (DNF=10nm, LNF=1.6μm) is ~1.25pN at 

600nm/s; additionally, the drag force exerted by the base case organelle (DOrg=1μm) at 

1,000nm/s is ~5.7pN.   These values are functionally significant in that they align well 

with the experimentally determined maximum forces of kinesin and dynein (see 

Discussion).  

 

Figure 2 shows the relationship between the drag force and each parameter over its 

physiological range based on Equation 2 for neurofilaments and Equation 3 for 

organelles.  In general, the physiological range of calculated drag force is between 0.1-4 

pN for a neurofilament and between and 0.3-10 pN for an organelle. Viscosity has a 

potentially wide range depending on how it is measured (see determination of drag force 

parameters in the Methods).  However, viscosities lower than ~5 Poise or greater than ~7 
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Poise results in highly unrealistic velocity distributions (not shown).  As for geometry, 

the spherical organelle diameter has the largest impact. Notably, increasing the diameter 

of the cylindrical neurofilament to include the side arms of NF-H subunits does not have 

a dramatic effect on the resulting drag force, increasing it by only ~25%, thereby 

justifying the simpler cylindrical geometry excluding side arms (see Methods). While the 

physiological range of transport is, for the most part, between 1,000-3,000 nm/s, speeds 

up to 12,000 nm/s for a peroxisome have been observed (Kural et al. 2005), a velocity 

that would result in a ~68 pN drag force. 

 

 

Figure 9.1.2.  Range of drag force (FD) over physiologically relevant parameter ranges 
for cytoplasmic viscosity (m), cargo geometry, and cargo transport velocity (V) as listed 
in Table 2 for both a neurofilament and an organelle.  The x-axis ‘ratio to base value’ 
refers to the ratio of the base parameter value given in Table 2. A. Effect of cytoplasmic 
viscosity.  B.  Effect of cargo geometry: the diameter and length of a cylindrical 
neurofilament (DNF) and the diameter of a spherical organelle (DOrg).  C.  Effect of cargo 
velocity.  
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Effect of Cooperativity 

 Using the force values calculated for organelles and neurofilament transport along with 

the appropriate fast or slow transport kinetics, the number of bound molecular motors 

required to achieve a velocity profile matching experimentally measured velocity ranges 

was determined for each transport type:  fast anterograde and retrograde, ‘bi-directional’ 

anterograde and retrograde, and ‘net anterograde’ slow transport. The number of required 

bound motors to obtain the average velocity for each form of fast transport is illustrated 

in Figure 3 and summarized in Table 3.   

 

Table 9.1.3.  Number of bound motors (NB) required for various experimentally 
determined fast transport speeds and cargo sizes.  For experimental range categories, 
refer to Table 1. 
 
Average 

Velocity 

(mm/day) 

Average 

Velocity 

(mm/s) 

Cargo 

Diameter 

(nm) 

NB 

Retro-

grade 

NB 

Antero-

grade 

50-100 0.58-1.16 500 5-7 1-2 

50-100 0.58-1.16 1000 11-14 2-3 

200-400 2.31-4.63 200 9-12 2-3 

200-400 2.31-4.63 300 12-15 3-4 

200-400 2.31-4.63 500 26-30 6-8 

 

Fast transport 

 For fast bidirectional anterograde transport of a 1 μm organelle (Figure 3A), 2 motors 

results in an average velocity of 0.68 μm/s (59 mm/day) with a standard deviation of 0.11 

μm/s (9 mm/day).  For 3 motors (not shown) the average velocity is 0.97 μm/s (80 
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mm/day) with a standard deviation of 0.15 μm/s (13 mm/day).  Thus, both 2 and 3 motors 

result in profiles that could be classified as being within the experimentally observed 

range of 50 to 100 mm/day if the experimentally observed range is assumed to include at 

least the middle two standard deviations (i.e. +/- 1 standard deviation).  Likewise, 11-14 

motors result in profiles that could be classified as being within the experimentally 

observed range of 50 to 100 mm/day for fast bidirectional retrograde transport of a 1 μm 

organelle (see Figure 3B).   For fast anterograde and retrograde transport (200-400 

mm/day) of a 200 nm organelle, the number of motors required is 2-3 and 9-12, 

respectively (Figures 3C and 3D).  Interestingly, the number of bound motors for an 

anterogradely moving 200 nm organelle is comparable to what has been suggested 

experimentally for amoeba mitochondria of approximately the same size (Ashkin et al. 

1990). In general, the results in Table 3 illustrate that a substantially lesser amount of 

cooperativity is required for fast anterograde versus retrograde transport.  That is, a 

higher degree of cooperativity is required to retrogradely move cargos, particularly larger 

cargos, at the top fast transport speeds.  The large calculated values for retrograde 

cooperativity suggest a functional role for the lower stall force of dynein in sorting and 

maintaining proper transport directionality and give clues as to the types and 

characteristics of retrogradely-bound cargos (see Discussion). 
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Figure 9.1.3.  Velocity distributions over fast axonal transport ranges.  Anterograde 
transport by kinesin is represented by a positive sign convention while retrograde 
transport by dynein is represented by a negative sign convention.  The distributions 
represent the average velocity of a population of cargos over the 4.74 second simulated 
period.  The figure represents the minimum number of bound motors (NB) required to 
obtain a population of cargos whose average velocity is approximately centered at the 
average of the experimental ranges shown in Table 1. Vertical lines represent the edges 
of the experimental velocity ranges shown in Table 1.  The ordinate indicated the 
normalized percentage of cargos which fall within each velocity bin.  A.  Anterograde 
populations of 1mm spherical cargos representative of the ‘bi-directional’ transport range 
of ~0.58-1.16 mm/s (e.g. 50-100 mm/day) require greater than 2 bound kinesin motors 
per cargo. B.  Retrograde populations of 1mm spherical cargos representative of the ‘bi-
directional’ transport range of 0.58-1.16 mm/s (e.g. 50-100 mm/day) require 11 bound 
dynein motors.  C.  Anterograde populations of 200 nm spherical cargos representative of 
the fast transport range of ~2.31-4.63 mm/s (e.g. 200-400 mm/day) is obtained by a 
minimum of 2 bound kinesin motors per cargo.  D. Retrograde populations of 200 nm 
spherical cargos representative of the fast transport range of ~2.31-4.63 mm/s (e.g. 200-
400 mm/day) is obtained by a minimum of 9 bound dynein motors per cargo.  
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Slow transport 

  Slow transport of neurofilaments is net anterograde, with movements being in the 

anterograde direction 69% of the time and in the retrograde direction 31% of the time 

(Brown et al. 2005; Craciun et al. 2005), but due to the amount of time spent paused and 

off-track, there is little to no distinction between ‘retrograde’ and ‘anterograde’ 

populations.  The slow transport velocity profile for a population of neurofilaments 

(LNF=1.6 μm and DNF = 10nm) is equivalent the profiles published in (Brown et al. 

2005), with 83% of the motors being paused over a simulated period of 4.74 seconds 

(Figure 4).   Across the physiological range of neurofilament lengths (~1-3 μm), no 

cooperativity is required (i.e. within two standard deviations of experimental data). 

However, the best fit to experimental data is obtained when a fraction of neurofilaments 

have two motors bound, particularly for neurofilaments lengths ≥2 μm.  For example, to 

duplicate the velocity distribution given in (Brown et al. 2005) for a population of 2 μm 

neurofilaments, transport is accomplished with a single motor ~67% of the time and two 

motors ~33% of the time.  
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Figure 9.1.4.  Slow transport of neurofilaments.  To obtain an experimentally equivalent 
velocity profile for slow transport of neurofilaments, no cooperativity is required.  That 
is, only one bound motor is needed per cargo.  The figure shows the velocity histogram of 
a population of average-sized neurofilaments (LNF =1.6 mm and DNF = 10 nm).  Note that 
for visual clarity the zero velocity bin (0 mm/s ) as been moved to the inset.  Thus, the 
inset shows the number of cargos that remained paused during the length of the 
simulation (i.e. ~83% of cargos had velocities equal to 0 mm/s over the 4.74 second 
simulated period, similar to the 85% seen experimentally (Brown et al. 2005)). 
 

Summary of Predictions 

As we have shown, using a computational model that includes kinetics and cooperativity, 

we are able to reproduce the experimentally determined velocity ranges for the various 

fast and slow transport types.  However, an important aspect of any model is the ability to 

make specific predictions regarding previously uncharacterized dynamics or functions.  

Here we use our simulations to predict the following: 

 

• The physiological range of values for both velocity and geometry have 

substantial impacts on the cargo drag force (Figure 2).  While there is a large 

potential range for cytoplasmic viscosity, which in turn would drastically alter 
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the calculated drag forces, only the smaller simulated range (Figure 2) has an 

impact that mimics physiological forces that match experimental velocities.  

• Cooperativity is required by motors of the same polarity to produce fast 

transport profiles (Figure 3).  Thus, multiple motors are required for typical 

physiological fast transport. 

• No cooperativity is required by motors of the same polarity to produce slow 

transport profiles (Figure 4).  Neurofilaments are carried anterogradely or 

retrogradely by a single kinesin or dynein most of the time.  

 

Discussion 

In this study, we provide an initial quantitative characterization of cooperativity, 

including an assessment of the forces experienced by the molecular motors kinesin and 

dynein under physiological ranges of cargo type/size and transport velocity.  Our results 

indicate that kinesin and dynein are ideally suited to transport the average cargo at the 

average speed for slow transport and smaller cargos at the average speed for fast 

transport without the need for cooperativity.  However, cooperativity is crucial, 

particularly in fast transport, to obtain the full range of velocities observed 

experimentally. These results not only indicate possible functional outcomes of 

cooperativity in the regulation and maintenance of normal physiological transport, but 

also reveal its potential role in hypothesized pathological mechanisms of transport 

deficits associated with diseases such as ALS.  The details and implications of these 

results are discussed below. 
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Physiological role of cooperativity 

Our results show that the drag force exerted by our base case neurofilament and organelle 

are 1.25 pN and 5.7 pN, respectively.  It is likely no coincidence that these forces are near 

the experimental stall forces for a single dynein and kinesin, 1.2 pN (Gao 2006) and 5-6 

pN (Coppin et al. 1995), respectively.  Thus, it would seem that the “stall” or maximum 

generated forces are such that a single motor is generally able to carry the average 

neurofilament load; a single kinesin can move an average organelle at speeds up to 1 

μm/s while a single dynein reaches top speed with such an organelle cargo at ~200 nm/s.   

These results support the experimental evidence that slow transport of neurofilaments is 

accomplished by a single motor of each type (Howard et al. 1989), i.e. one kinesin for 

anterograde movement and one dynein for retrograde movement, and that larger 

organelle cargos undergoing fast transport require multiple motors (Kural et al. 2005), i.e. 

multiple kinesins or dyneins for anterograde or retrograde movement, respectively. This 

inherent ability of a single motor to be able to move a load is likely a key factor helping 

to maintain axonal traffic by preventing the pile-up of motors and/or cargos, which would 

occur if multiple motors would be required to move every single cargo.  Though 

cooperativity is not required to simply move an average cargo, it is required to move 

cargos at higher rates of speed and larger cargo sizes, particularly in the retrograde 

direction.  The ability of cooperativity to alter and organize the speeds of various cargo 

types traveling in a specific direction could be quite functional, serving as a potential 

‘pacing’ mechanism to prioritize which cargos are moving when and how fast. 
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The approximately five-fold difference between the stall forces of dynein and kinesin 

accounts for the equivalent linear increase in cooperativity that is required for dynein 

compared to kinesin.  This difference could have a functional purpose in that it helps the 

directionality and speeds of the transported cargos, aiding in transport kinetics.  That is, a 

bigger cargo headed anterogradely will tend to remain headed anterogradely due to the 

larger number of bound dyneins that would be required for it to reverse direction (i.e. the 

availability of dynein and their probability of binding is rate-limiting to the reverse 

reaction).  However, it could be that this difference simply indicates that, in general, 

retrogradely transported cargos are smaller.  It seems rather unlikely, for example, that 14 

dyneins would routinely bind to carry a larger cargo such as an organelle at top fast 

transport speeds of 400 mm/day.  Such extreme necessity for cooperativity involving 

very high-order kinetics would likely become an energetic burden resulting in possible 

local ATP depletion and ultimately a motor-limited transport process that would be 

extremely erratic and slow.  Having smaller retrograde cargos would seem to make 

intuitive sense given that most retrograde bound cargos are hypothesized to be destined to 

the lysosomes for degradation.  Thus, these cargos may have already undergone some 

preliminary form of degradation into smaller subunits or pieces at the synapse or in the 

axon.    

 

An interesting possibility is that the difference between fast and slow transport is not 

attributable to kinetics at all, but rather is based entirely on cooperativity.  A simple 

calculation indicates that fast transport speeds can be attained with slow transport kinetics 

applied to multiple motors acting cooperatively.  However, further investigation of the 
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interactions of multiple motors and their resulting kinetics will be necessary to decisively 

determine whether cooperativity can solely account for the differences seen in fast and 

slow transport.   

 

Pathological role of cooperativity   

The apparent role of cooperativity and its necessity, particularly in fast transport and in 

carrying larger cargos, increases the negative impact of potential hypothesized 

pathological mechanisms associated with disease-related transport deficits.  For example, 

some experimental models of ALS have been linked to mutations in either dynein or 

kinesin (Brownlees et al. 2002; Hafezparast et al. 2003; Hurd and Saxton 1996; Teuchert 

et al. 2006), which render a subpopulation of the motors ineffective (Jiang et al. 2005; 

Pantelidou et al. 2007; Rao and Nixon 2003).  A decrease in the number of functional 

motors available for transport would decrease the functional capability of cooperativity as 

transport became motor-limited, resulting in subsequent transport deficits.  In fact, one 

hypothesis for the therapeutic action of the ALS therapeutic drug riluzole is that by 

decreasing the excitability of neurons (Kuo et al. 2006), riluzole decreases the demand 

for axonal transport of cargos such as mitochondria and synaptic vesicles.  Such a 

pharmacological action would help to compensate in the disease-related increase in 

necessary cooperativity.  Another hypothesized pathological mechanism for which there 

is some experimental evidence is protein aggregation (Kieran et al. 2005; Wood et al. 

2003).  Protein aggregation could potentially increase the cargo sizes, via pathways such 

as misfolding or in the formation of dimers (Elam et al. 2003).  Additionally there is the 

possibility for aggregation of multiple cargos into a single ‘megacargo’ due to the pile-up 
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caused by slowed transport or a change in the inter-cargo distances, potentially due to 

changes in the stoichiometric composition of NF-H subunits (Meier et al. 1999), which 

normally regulates such spacing.  Thus, protein aggregation would necessitate additional 

cooperativity, which would eventually lead to a constrained motor population unable to 

keep up with demand.  Therefore, in summary, while cooperativity can potentially add 

more robustness and functionality to normal physiological transport, it can also amplify 

the impairments and deficits in pathological transport.  

 

Model Limitations 

  Perhaps the biggest limitation of the model is that it assumes the velocity of a cargo is 

limited by the force imposed by the cargo (i.e. the drag force) and not by the kinetics, 

themselves. For example, despite the fact that the drag force is much smaller for smaller 

cargos (such as cargos < 200 nm diameter cargo), the kinetics could impose a limitation 

such that these smaller cargos travel at or about the same speed as larger cargos (i.e. there 

is a motor kinetically-determined maximum velocity).  More generally stated, this 

assumption implies that the solution presented here could be non-unique in that different 

sets of force and kinetic contributions and/or parameters could result in the same 

experimentally observed velocity profiles and/or the same amount of calculated 

cooperativity.  

 

Another limitation of the model is the chosen Craciun kinetic scheme, which requires that 

a cargo go off-track before switching directions.  Very recent evidence has suggested that 



 252

perhaps the cargo does not have to fully disengage from the track in order to switch 

directions (Muller et al. 2008). It has been proposed that the effective cargo unbinding 

rate decreased exponentially with the number of bound motors (Klumpp and Lipowsky 

2005).  However, it is unclear if that applies only during motor over crowding or more 

generally.  Consequently, we chose to keep the binding rate constant to maintain 

independent analysis of cooperativity from kinetics 
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CHAPTER 10 

AMYOTROPHIC LATERAL SCLEROSIS 

  

 

 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is one of the 

most devastating and deadliest neural pathologies with a mean survival time of ~3-5 

years from the initial onset of symptoms (Bruijn, 2004).  It is a disease that affects 

especially the motoneurons, particularly the large motoneurons, causing them to retract 

from the neuromuscular junction and eventually die, resulting in the clinical presentation 

of muscle paralysis (Stieber, 2000).  Histologically, it typically presents with filamentous 

lesions which occur in the axon and are hypothesized to be the result of impeded axonal 

transport.  Additionally, it has many of the pathological characteristics of spinal cord 

injury, sharing such hallmark physiological dysfunctions as excitotoxicity, energetic 

failure, and inflammation (Bruijn, 2004).  Thus, in addition to our general scientific and 

personal clinical interests, ALS was a natural fit to our research in axonal transport, 

motoneuron physiology, and spinal cord injury, making it an ideal test case for 

aggregating multiple viewpoints.  Finally, because our exposure to ALS was only 

ancillary through related fields of research, we had no significant preconceived 

mechanistic hypotheses to ensure that our methodological development and evaluation 

process was unbiased. 

 

ALS represents the last test case included in this work.  However, this test case is 

different from the other test cases previously presented in that it is a work in progress.  
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Thus, while some aspects are more complete, such as our modeling work with ALS-

disrupted axonal transport, others, such as our relational model of the comprehensive 

ALS pathology and our experimental motoneuron research, which focuses on how the 

properties of motoneurons change based on their size (an important viewpoint since ALS 

seems to preferentially affect large motoneurons), are less complete. The purpose of 

including this ‘work in progress’ chapter into this dissertation is to give the reader a real 

sense or ‘snapshot’ inside our methodological process and in particular the process of 

gathering and aggregating viewpoints.  

 

The first study in this chapter highlights our work in ALS-disrupted axonal transport.  

This paper was originally submitted to the Journal of Neuroscience and is currently in 

revision.  Inside this paper, a version of the model presented in the axonal transport test 

case is used as the ‘base’ or physiological model to study axonal transport.  Conceptual 

modeling was the chosen technique to implement pathological transport within this 

physiological model.  Three different ALS-induced pathologies were ‘conceptualized’ 

based on experimental literature:  protein aggregation, mutations to the molecular motors 

kinesin and dynein that render the motors ineffective, and a constrained motor population 

due to either a genetic defect resulting in an inefficient production of molecular motors or 

a cargo population overload resulting in decreased availability of motors.  Our relational 

analysis technique is used to differentiate these pathologies, based on their landscapes.  

This differentiation is a critical step forward for the field because, to date, traditional 

analytical techniques based on using only metric or output values cannot be used to 
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differentiate these pathologies due to the high degree of variability within the 

experimental data and among experimental preparations. 

The second study in this chapter illustrates an early relational model of ALS.  The 

relational modeling process snapshot shown is about 30% through the process.  An ALS 

database has built with approximately 250 papers, categorized by factor.  The model that 

is presented here is a ‘category model’ that shows the time course and impact of the 

presented categories, which were constructed based on experimental data.  Already, even 

at the category level, this model has some interesting and significant findings.   

While still a critical viewpoint of this ALS research, the work on motoneurons is not 

presented in this chapter but instead is presented under Component Analysis, Chapter 5, 

as a test case in how to use the technique to examine experimental data.  Briefly 

summarized, our work with motoneurons examines the effects of motoneuron size on 

excitability and firing properties, both of which are known to markedly change in ALS 

(Kuo, 2004). 
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Neurofilament distributions differentiate ALS pathologies         
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Abstract                                                                                                                                                         

Impaired axonal transport is thought to be a key component of Amyotrophic Lateral 

Sclerosis (ALS).  Based on computer models of axonal transport of neurofilament cargos, 

we predict the “signatures” of three proposed categories of axonal transport impairment 

(protein aggregation, protein dysregulation, and molecular motor mutations) by analyzing 

their neurofilament distribution profiles. The ability to distinguish among these categories 

will aid in potential pathogenic mechanism identification and thus clinical treatments for 

ALS. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease 

characterized by loss of motoneurons in the spinal cord, brainstem, and motor cortex 

(Jiang et al. 2005).  Initial muscle weakness ultimately progresses to complete paralysis, 

and 50% of patients die within 3 years after the onset of symptoms (Beers 2004).  Several 

studies point to the involvement of axonal transport (a process by which the polarized 

molecular motors, dynein and kinesin provide retrograde and anterograde transport 

respectively in the axons motoneurons) (Elam et al. 2003; Jiang et al. 2005; Kieran et al. 

2005; Pantelidou et al. 2007; Rao and Nixon 2003; Wood et al. 2003).  Of the various 

types of axonal transport, ALS is thought to most affect the slow transport of 

neurofilaments (Rao and Nixon 2003; Zhang et al. 1997).  Based on current experimental 

evidence from superoxide dismutase 1 (SOD1) and neurofilament heavy (NF-H) 

transgenic mouse models, three categories of axonal transport impairment mechanisms 

have been hypothesized: 1) protein aggregation/misfolding (Cluskey and Ramsden 2001; 

Elam et al. 2003; Valentine and Hart 2003; Wood et al. 2003); 2) dysregulation of motor 

proteins and/or cargo (Jiang et al. 2005; Pantelidou et al. 2007; Rao and Nixon 2003); 

and 3) molecular motor mutations (Hafezparast et al. 2003; Kieran et al. 2005; Teuchert 

et al. 2006; Warita et al. 1999; Zhang et al. 1997).   However, little progress has been 

made in differentiating these pathologies, a critical step towards the development of ALS 

treatments.   

 

In this work, we address the question:  Can the mechanistic categories of ALS axonal 

transport impairment be differentiated based on the distribution of transported cargos?  
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Here we use a combination of published theoretical (Brown et al. 2005; Craciun et al. 

2005; Gao 2006; Klumpp and Lipowsky 2005) and experimental data (Kural et al. 2005; 

Wang and Brown 2001) to implement a computational model of neurofilament cargo 

transport that compares the normal, non-diseased state population distribution of cargo 

position over time to the distributions resulting from the modeled ALS mechanisms.  

Based on our findings, we conclude that the three ALS mechanistic categories can be 

distinguished by the “signature” of the population distribution.   

 

Methods 

The transport of neurofilaments is bi-directional with a net movement that is anterograde 

and accompanied by on- and off-track pauses (Brown et al. 2005; Craciun et al. 2005; 

Wang and Brown 2001).  Computational models have been used to validate pulse-

labeling experiments, which show that the velocity of neurofilament cargos is dependent 

upon the ATP concentration (Gao 2006), multi-motor cooperativity (i.e. several motors 

binding to and carrying a single cargo) (Klumpp and Lipowsky 2005; Kural et al. 2005), 

cargo load size (Gao 2006; Klumpp and Lipowsky 2005), and “stop-and-go” kinetics 

(Brown et al. 2005; Craciun et al. 2005).  Here we include all the aforementioned features 

collectively to examine the distribution of bi-directionally transported neurofilament 

cargos in both the normal and ALS disease states.  The “normal” model was verified by 

comparison to the experimental data from Wang and Brown (2001) as given in Brown et 

al (2005) for a simulation time of 4.73 s (not shown).  ALS pathology is modeled using a 

“black box” approach where ALS mechanisms are represented purely based on their 
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functional implication(s).  The model is implemented in MATLAB R2006b.  Simulations 

were run for 1,000 s for 10,000 neurofilament cargos.   

 

Protein Aggregation/Misfolding 

  Various types of proteins are seen in aggregates with the most common being misfolded 

SOD1, intermediate filament, neurofilament, and peripherin (Cluskey and Ramsden 

2001; Elam et al. 2003; Valentine and Hart 2003; Wood et al. 2003).  These aggregates 

are of high molecular weight, and when the cell’s ability to degrade them is exceeded, 

they are transported down the microtubules to the microtubule organizing center where 

they are incorporated into aggregsomes (Valentine and Hart 2003).  Thus, we assert that 

protein folding and aggregation can be modeled as an increase in the typical cargo load 

size.  For model implementation, see Load. 

 

Protein Dysregulation 

  Gene expression profiling has been used to show a decrease in expression of motor 

proteins associated either with dynein or kinesin (e.g. Jiang et al. 2005; Pantelidou et al. 

2007; Warita et al. 1999) and an overexpression of cargo-related proteins (Jiang et al. 

2005). Whether this dysregulation of proteins results in less motors or more cargos, the 

implication of either is a constrained motor population (i.e. not enough motors).  Thus, 

we assert that protein dysregulation can be modeled as a constrained motor population.  

For implementation of a constrained population, see Specifying the Motor Population. 
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Molecular Motor Mutations 

 Mutations can render the motors, whether retrograde (e.g. Hafezparast et al. 2003) or 

anterograde (e.g. Warita et al. 1999), to have limited or no functionality; the result is a 

population in which at least a portion of the motors are rendered ineffective thereby 

diluting the functioning motors.  Thus, we assert that molecular motor mutations can be 

modeled as a dilute population where the number of functioning motors available is 

sufficient to meet the transport needs, but in which non-functioning motors are 

interspersed.  For implementation of diluted populations, see Specifying the Motor 

Population. 

 

Specifying the Motor Population 

  In the real cells, the total number of molecular motors and the percentage of which are 

ineffective depends on the type and degree of dysfunction resulting from protein 

dysregulation or mutations.  We model the availability of motors for the “constrained” 

and “diluted” cases using conservation balances where the total number of motors and the 

percentage of motors deemed “functional” are specified.  A constant factor, kT, is used to 

scale the total number of motors in the population, Mtotal, with “just enough” motors 

defined as kT=1 as described by Equation 1.  The total number of cargos, Ctotal , is 10,000.  

The maximum allowable number of motors per cargo, N, is 12. (see Cooperativity). 

 

   total total TM C N k= ⋅ ⋅       Equation 10.1.1 
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Similarly, a functional motor factor, kF, is used to specify the percentage of total motors 

deemed “functional” (Equation 2) with 100% functionality described as kF=1.   

 

    ,F total total FM M k= ⋅     Equation 10.1.2 

 

Conservation balances (Equations 3-5) are used to keep track of how many functional 

(MF,avail), non-functional (MNF,avail), and total motors (Mtotal,avail) are available to be 

assigned to a cargo.   
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    ∑
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,,,   Equation 10.1.4 

   availNFavailFavailtotal MMM ,,, +=    Equation 10.1.5 

 

Given availability, the maximum total number of motors that can be assigned to any one 

cargo is specified by N (see Cooperativity), and the number of functional and non-

functional motors for each cargo is assigned randomly using kF as the probability 

criterion (i.e. if a random number between 0-1 is less than or equal to kF, the motor 

assigned is functional). 
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Kinetics 

We use the slow transport kinetics described by Craciun et al. (2005).  This scheme 

describes bidirectional transport of neurofilaments using the following five states:  0) off-

track, paused; 1) kinesin, on-track, paused; 2) dynein, on-track, paused; 3) kinesin, on-

track, moving anterogradely; 4) dynein, on-track, moving retrogradely.  States must 

proceed in the following manner:  

 

    31024 ⇔⇔⇔⇔    Equation 10.1.6 

 

That is, a motor must disengage from the track before switching directions, and it must 

pass through an on-track paused state before moving.  Since motors have been shown to 

work together in a concerted effort (Kural et al. 2005),  all of a cargo’s microtubule-

bound motors are assumed to be in the same state (either in state 1, 2, 3, or 4).  Similarly, 

in order to be “off-track” all of a cargo’s motors must be disengaged (in state 0).  All 

cargo states are initially set to state 0 at the beginning of the simulation.   

 

We implement this kinetic scheme using event-based simulation (Banks et al. 2005; 

Robinson 2004), a method that speeds simulation time by avoiding unnecessary repetitive 

calculations by predicting how long a cargo will remain in the same state.  The expected 

duration of each possible state, tstate, is calculated by multiplying the inverse of the state’s 

rate constant, k, by the log of a random number, rand, between 0-1 giving:  

 

    1 log( )statet k rand= − ⋅   Equation 10.1.7 
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The form of Equation 7 is chosen to fit the exponential first order process that is apparent 

in experimental data (Wang and Brown 2001). Rate constants and rate equations are 

given in (Craciun et al. 2005).  The state with the shortest duration becomes the next state 

for that cargo.  Based on the duration of the cargo’s current state and the current time in 

the simulation, a sorted list determines when each cargo should be re-evaluated so that 

not every cargo need be evaluated at every time step.  

 

ATP dependence 

ATP dependence was modeled using a constant ATP concentration.  The ATP-dependent 

stall force, Fs, of kinesin and dynein was adapted from Gao (2006).  A constant 

physiological ATP concentration of 1,000 μM was used giving dynein an approximate 1 

pN stall force and kinesin an approximate 5 pN stall force, comparable to experimental 

findings. 

 

Cooperativity 

 The number of motors bound to the microtubule for each cargo is determined by the 

equation proposed by Klumpp and Lipowsky (2005) (Equation 8), which assumes dilute 

enough motor coverage that exclusion effects are negligible.  The number of bound 

motors, Nb, is a function of the motor to microtubule binding (πAD) and unbinding (ε)  

rates, the previous state’s number of bound motors (n), the maximum allowable number 

of motors able to bind (N), the load (F), the detachment force, Fd = 3 pN  (Klumpp and 
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Lipowsky 2005), and the stall force (Fs).  The binding and unbinding rates are determined 

by the kinetic rates used to calculate the state duration.  The maximum allowable number 

of bound motors is 12 per cargo, as determined by experimental evidence from Kural et 

al (2005).  

 

  ( ) ( )[ ]
( )[ ] NN N

ad

N
adad

b 11
1 1

−+
+

=
−

επ
επεπ     Equation 10.1.8 

 

Load 

Each cargo’s size (F) was randomly determined over a set range starting at a minimum of 

0.1 pN (Gao 2006); using the experimental data from Wang and Brown (2001) as given 

in Brown et al. (2005) as the target output to tune the model, the maximum cargo size for 

“normal” transport was set to 4 pN.  To model the effect of an increased load due to 

protein aggregation and/or misfolding, we expand the range to 10 pN.  This 

approximation was based on the formation of dimers (Elam et al. 2003). The effect of 

load on the unbinding rate is calculated as described by Klumpp and Lipowsky (2005):   

 

   ( ) exp
d

FF n
nF

ε ε
⎛ ⎞

= ⋅ ⎜ ⎟
⎝ ⎠

    Equation 10.1.9 

 

Velocity 

   Based on the approximate linear proportional relationship of the number of bound 

motors to velocity as illustrated in the experimental data of (Kural et al. 2005), we obtain 
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the velocity for a cargo, i , as a function of the number of motors bound, load, and the 

ATP-dependent stall force.  vconst  is the average uncorrected constant velocity of kinesin 

and dynein , 1,000 μm/s (Klumpp and Lipowsky 2005). 

 

   ,
, ,

1 i
i const b i

b i s i

FV v N
N F

⎡ ⎤
= ⋅ − ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
    Equation 10.1.10 

 

Distributions 

  The main output of the model consists of a distribution of final cargo positions at the 

end of the simulated time.  The bin size of each distribution is scaled to the distribution’s 

range (the minimum and maximum cargo position).   

 

Results                                                                                                                                                           

Based on stacked histograms of position versus load (Figure 1), we find that each of the 

three categories of mechanisms shows a clearly recognizable pattern that is a “signature” 

of the mechanism.  The functional impact of the mechanistic categories can therefore be 

distinguished based on the distribution shape, height, and range as described below: 

 

Normal Physiology 

The shape of the “normal” transport distribution is bimodal with distributions lying on 

either side of 0 μm (see Figure 1a; note that the zero position bin has been moved to inset 
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for clarity).  That is, at the simulated time of 1,000 s, the normal case’s distribution has 

already separated into distinct anterograde and retrograde populations.  Note that we use 

the traditional sign convention to distinguish transport direction, positive (+) for 

anterograde and negative (-) for retrograde. The position range is about twice as large for 

the anterograde population compared to the retrograde population;  this is due to the 

kinetics imposed on the system based on experimental data showing that the ratio of 

anterograde to retrograde movement is approximately 2:1 (Brown et al. 2005; Craciun et 

al. 2005).  Under physiological conditions, the number of cargos that do not move is only 

about 5% (inset Figure 1a).The number of motors in the normal case is considered to be 

“just enough”.  That is, there are enough motors for every cargo to bind 12 motors, the 

maximum set by N, and all of the motors are “functional”.  We define this as being the 

“base population” with kT=1 and kF=1. Note that since our model assumes an equal 

dispersion of motors, specifying more motors than necessary (kT>1) does not change the 

normal case result since all motors are assumed to be functional under normal 

physiology. 

 

Protein aggregation/misfolding 

  Protein aggregation/misfolding is modeled as an increase in the maximum load size 

from 0.1-4 pN to 0.1-10 pN.  Protein aggregation/misfolding results in changing the 

shape of the distribution (Figure 1b).  At the simulated time of 1,000 s, protein 

aggregation results in a single, unimodal distribution centered at 0 μm (Figure 1b) 

compared to the bimodal normal case. Thus, in an ALS model where cargo load size is 

affected, the splitting of the population into retrograde and anterograde populations has a 
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definite delay in onset.  Consequently, even when the protein aggregated case has had 

enough time to become separated, the normal case will still have a larger gap between the 

anterograde and retrograde populations (not shown).  The overall scaled height of the 

distribution remains similar to the normal case except for the bins close to 0 μm due to 

the change of shape from bimodal to unimodal; for a load distribution between 0.1-10 

pN, this results in a 25% increase in the number of cargos in the zero position bin (inset 

Figure 1b).  The range of the distribution (i.e. the minimum and maximum position as 

shown on the x-axes) for the protein aggregation case remains relatively unchanged 

compared to the normal case.  For simple protein aggregation (Figure 1b), the motor 

population defined to be equal to the base population. 

 

Protein Dysregulation 

  Protein dysregulation is modeled as a constrained population.  That is, the scaling factor 

kT is used to specify the percentage of motors in the population in comparison to the 

normal case.  Protein dysregulation results in changing the height of the distribution over 

the simulated time (Figure 1c).  The heights of the non-zero bins decrease (i.e. fewer 

cargos per non-zero position bin) while the number of cargos in the zero bin increases to 

almost 80% in this example.  However, again, the range of the distribution does not vary 

substantially from the normal case.  That is, protein dysregulation results in a substantial 

increase in the number of total cargos that are not moving compared to the normal case, 

but the positions of cargos that are moving remains similar to the normal case.  While the 

constrained cases shown in Figure 1c and 1d represent a motor population that is 10% of 
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the normal population (kT=0.1, kF=1), the effect was noticeable with percentages as high 

as 70% over the 1,000 seconds of simulated time.  

 

Molecular Motor Mutations 

 Molecular motor mutations are represented by diluting the motor population.  Diluting 

the number of motors results in decreasing the heights of the non-zero bins and the range 

of the distribution.  In fact, in this example, the height of the distribution non-zero 

positions bins is approximately 10% of that of the normal case, and the position range is 

less than half of the normal range. That is, there are fewer total cargos that are moving 

(only 5%) compared to both the normal and constrained cases; additionally, those cargos 

that are moving are doing so at a slower velocity, resulting in the substantial decrease in 

the distribution position range.  Thus, having an ample number of motors, of which a 

large portion are ineffective, results in a much more severe axonal transport impairment 

compared to simply constraining the motors (see Discussion).  We define this 

phenomenon as “population dilution”.  For example, the diluted populations shown in 

Figures 1e and 1f have a motor population that is ten times larger (kT=10) than the 

normal case with 90% of this population being ineffective (kF=0.1) resulting in an 

equivalent number of functional motors.  When looking at a diluted population over 

1,000 s, the effects of dilution becomes quite noticeable when the ratio of total motors to 

effective motors is as low as 3:1 and increases proportionally as the number of total 

motors is increased and the number of effective motors is held constant.   
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Multi-factorial Pathology 

Some experimental evidence suggests that ALS is multi-factorial (Cluskey and Ramsden 

2001).  For example, what if there is protein dysregulation and protein aggregation?  The 

cargos would be both more numerous and heavy, resulting in a constrained distribution 

that would resemble Figure 1d.  Similarly, what if there was both protein aggregation and 

molecular motor mutations?  In that case, the cargos would be heavier and the motor 

population would be diluted as shown in Figure 1f.  As can be seen in these examples, the 

traits which distinguish a certain pathology are still evident even in mixed pathologies. 
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Figure 10.1.1.  Distributions of neurofilaments.  The figure illustrates the position 
distribution as a function of cargo size.  Negative (-) position represents retrograde 
movement via dynein whereas positive (+) position represent anterograde movement via 
kinesin. The 0 μm bin has been removed and is illustrated in the inset. The left column 
depicts normal size cargo distributions and the right column depicts heavier cargo size 
distributions. 
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Mapping the Pathologies 

One critical obstacle in the investigation of axonal transport, whether normal or 

pathological transport, is that there is great variability in the intrinsic properties and in 

velocity profiles among different experimental preparations.  For example, in vitro 

molecular motor studies may record velocities that are an order of magnitude larger or 

smaller than in vivo preparations.  Another issue with pathological transport is that 

transport deficits can be to a large degree a function of the type and severity of the 

mutation involved.  Thus, comparison using quantitative outputs alone can be misleading 

and confusing.  An analysis-based solution that allows different pathologies to be 

compared and contrasted is to look at the data sets relative to one another by viewing the 

relationships among the metrics or outputs using our relational analysis technique instead 

of comparing the exact quantitative values.  Additionally, this approach can be used to 

compare experimental data sets to model output data sets. Using relational analysis, the 

different pathological versions of axonal transport can each be individually visualized in 

a map of cross-correlations called a ‘landscape’.    

 

The landscape of the ‘base case’ (Figure 2A) or normal physiology (Figure 2B-G) is 

illustrated with the landscapes of each of the pathological versions of transport.  The 

major highlighted differences between the physiology and pathology landscapes are 

marked on the pathology landscapes.  The metrics used to create the landscape are shown 

to the right of Figure 2.  When comparing the landscapes, there are some definite 

generalized patterns that are attributable to the specific pathologies.  One particular 

pattern that is of interest is the conserved highly positively correlated block of velocity 
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correlations (large red block in the middle the normal physiology (Figure 2A). This block 

is affected in all of the pathologies.  However, in particular, this block is telling for the 

pathologies in which both motor types are affected.  For example, the velocity 

correlations for the neurofilaments at the upper end of the velocity distributions are 

nearly insignificant when both motor populations are affected (Figure 2D and 2G).  If 

either motor population is constrained or diluted (Figure 2B-C and E-F), the effects of the 

pathology are most apparent in the correlations that contain the separated average 

velocities of dynein and kinesin.  However, even these 4 pathologies, which are more 

similar, can still be differentiated.  The constrained populations have a very strong block 

of positive correlations among the correlations containing the number of bound motors 

that is not present in the mutated pathologies.  Finally, the type of motor population 

affected, whether kinesin or dynein, can be predicted based on the correlations containing 

the separated average velocities of dynein and kinesin.  If kinesin is mutated or 

constrained, both the dynein and kinesin velocity correlations are affected whereas if 

dynein is mutated or constrained, only the dynein velocity correlations show significant 

changes. 
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Figure 10.1.2.  Landscapes comparing the different pathology cases to the ‘normal’ case.   
Note that cargo size (protein aggregation) is excluded from these landscapes since there 
are no experimental correlations to have a basis of comparison.  (A) Normal physiology  
(B) Dynein Mutation (C) Kinesin Mutation (D) Kinesin and Dynein Mutations (E) 
Dynein Constrained Population (F)  Kinesin Constrained Population (G) Kinesin and 
Dynein Constrained Population. 
 

 

Discussion 

Our modeling results predict that the three proposed categories of impaired axonal 

transport mechanisms (and their respective combinations) can be distinguished by 

comparing distributions of cargo versus position over a specified time interval.  Protein 

aggregation/misfolding affects the distribution shape; protein dysregulation changes the 

distribution height, and molecular motor mutations alter the distribution height and range.  
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Thus, given the normal density of motors in a particular motoneuron type, histograms of 

cargo position versus time are a potential indicator of ALS pathology.  The predicted 

“signatures” provided by these modeled mechanisms will help plan and interpret future 

experimental data comparing ALS axonal transport to normal axonal transport, and thus 

take us one step closer in pinpointing a mechanism for which clinical treatments could be 

designed. 

 

Currently, the only treatment for ALS is the drug riluzole (Kuo et al. 2006; Wood et al. 

2003).  It is not known precisely how this drug slows ALS, but it is thought to 1) decrease 

the excitability of the motoneurons (Kuo et al. 2006), thus decreasing excitotoxicity and 

2)  decrease protein aggregation (Wood et al. 2003), thus reducing the effect of increased 

cargo size in axonal transport.  However, it is possible that excitotoxicity and impaired 

axonal transport are linked.  It is known that electrical activity cannot change the actual 

speed of transport (Jankowska et al. 1969) (i.e. the distribution range), but it could change 

the volume of cargos being shipped.  A motoneuron with a higher firing rate would 

require more energy via mitochondria (Kong and Xu 1998), more neurotransmitter, ionic 

channel parts, and “maintenance” proteins all of which are moved via axonal transport.  

Attempts to “ship” the required demand could speed the process of clogging the axonal 

microtubule tracks on which the molecular motors carry their cargo.  Thus, we would 

expect to see a distribution that is similar to the motor-constrained case. 

 

It would seem that the overall impact of the ALS mechanism is largely a function of 

cooperativity.  Cooperativity specifies the number of motors that are simultaneously 
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moving a cargo and, thus, helps to set the attainable velocity range and, by extension, the 

attainable position range.  Cooperativity relates to ALS pathology in that the number of 

motors bound is a function of load size and the number of available motors. The impact 

of cooperativity is apparent in every ALS case model here, but has a particularly strong 

impact on the diluted case and the retrograde subpopulations.   

 

For the diluted case, the chances of a cargo being assigned an ineffective motor is higher 

when there are more motors than when there are “just enough” or “not enough”.  This 

produces less effective transport overall, because the chance of multiple functional 

motors being bound to a cargo is greatly reduced.  Thus, in this case, it is almost 

beneficial for there to be fewer motors.  Where does the ample supply come from? It 

could be caused by a positive feedback loop telling the cells to produce more motors (of 

which a percentage are always ineffective) in an attempt to compensate for the impaired 

transport. 

 

As is seen experimentally in ALS, retrograde transport is more affected than anterograde 

transport (Kieran et al. 2005).  This holds true for all three categories of modeled 

mechanisms.  This is likely due to the stall force of dynein, which is approximately 1 pN 

(Gao 2006) compared to the approximate 5 pN (Klumpp and Lipowsky 2005) stall force 

of kinesin in physiological ATP concentrations (≥1,000 μM).  Because of its lower stall 

force, dynein is more dependent upon motor cooperativity than kinesin.  Hence, having a 

larger cargo or simply not having enough effective motors that can work together 

cooperatively has a much greater impact on retrograde transport. 
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 Relational Modeling Approach to ALS 

As was alluded to in the introduction, ALS is a disease that includes many factors.  In 

fact, there are so many factors and interactions, that scientists have yet to come up with a 

single comprehensive theory.  ALS is typically divided into two types—sporadic and 

familial.  Familial or inherited forms only make up about 10% of the documented cases.  

However, this is not to say that sporadic cases do not have a genetic component as many 

sporadic ALS patients have been found to have one or more genetic mutations which are 

thought to either cause or contribute to their diagnosis. The confusion as to how exactly 

ALS ‘works’ is not helped by the fact that there are literally hundreds of different 

documented genetic mutations, protein defects, aberrant chemistries and misfunctions 

which have been associated with several different variants of ALS.  With so many 

variants of ALS and so many involved factors, scientists and clinicans are left grasping to 

find a comprehensive theory, which would explain the strikingly common clinical 

presentation that results from what are very often seemingly different underlying 

pathological causes.  Given the number of factors present, the extent the field understands 

the diesease’s mechanisms, and the absence of solid conceptual theories describing the 

ALS process, relational modeling is the analytical method of choice for developing an 

initial system-level view of ALS. 

 

Upon performing the intial literature review of ALS, it became very apparent that the 

commonalities among the different forms of ALS were not just in the clinical or 

symptomatic presentation, but also at the physiological presentation.  Whether familial or 

sporadic, mutation or no mutation, there were ten very general commonalities that were 
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present.  The ten commonalities became the ten categories of the ALS model, and they 

essentially represent different paths or misfunctions that are present in ALS, any one of 

which could potentially be an underlying cause: axonal transport (AT), energetics (EN), 

excitotoxicity (EX), inflammation (IN), necro-apoptosis (NA), free radicals (FR), genetic 

mutations (GM), aberrant chemistry (CH), proteomics (PR), and systemic defects (SY).   

Based on this first literature review, it was at this point when we first hypothesized that 

perhaps ALS results not from a single mechanism but rather it emerges from the complex 

interactions and relationships of multiple mechanisms.  Thus, if this hypothesis is correct, 

ALS is in fact an emergent property that can be obtained from different possible 

mechanisms or combinations of different mechanisms.  If we think of each of these 

categories as a ‘knob’ that provides feedback to help control the signal(s) of the system 

(the motoneuron and surrounding environment), then turning any one mechanistic knob 

severely in the wrong direction or turning multiple knobs just slightly in the wrong 

direction could potentially cause a ‘loss in control’ of the physiological system that 

results in the ALS pathology. 

 

The literature review was expanded to include ~250 papers, but this expansion only 

resulted in an increase in the number of individual factors and not the number of 

categories.  From this second expansion it appeared that there would need to be at least 

40-50 factors in the ‘final’ factor-based relational model based on factors.  Thus, to help 

guide our research efforts, we decided to build a category model at this stage.  The 

resulting category ‘map’ or network of ALS categories and their interactions is presented 

in Figure 1. 



 285

 

 

 

 

Figure 10.2.1.  Category relational model of ALS.  The different size and hues of arrows 
represent the relative size of the hypothesized interaction.  The thick black arrow 
represents a ‘large’ interaction; the thick grey arrow represents a ‘medium’ interaction, 
and the thin grey arrow represents a ‘small’ interaction. 
 

In order to computationally model the interactions of the categories, category gains and 

time constants were estimated from the literature.  The extracted quantitative 

relationships or ‘gains’ and time constants represent the effects of ALS from the G93A 

(SOD1 mutation) in the mouse.  Table 1 illustrates the hypothesized size of the one-way 

interactions and their sign.  Note that the interaction is read in the “from to” direction.  
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For example, the sign of the interaction of free radicals to or ‘on’ excitotoxicity is listed 

as ‘+S’, a small positively correlated interaction. 

 

Table 10.2.1. Magnitudes and signs of the one-way category interactive gains as 
estimated from experimental literature. 
 

  

 

 

 

 

 

 

 

 

The quantitative values representing the small, medium, and large gains were varied 

using a sensitivity analysis and were found to not have a major impact on the time course 

of the category effects as long as their ratios were kept relatively constant.  However, for 

reference, the ‘base case’ category gains were selected to be 0.5, 1, and 1.5 to represent 

small, medium, and large respectively. Since at this stage, our main interest is simply 

view the ‘shape’ and main characteristics/features of the category time courses and their 

relative magnitudes to each other, the quantitative values of these categories themselves 

were irrelevant.  Time constants were chosen to reflect the life cycle and appearance of 
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ALS symptoms in the G93A mouse, with fast, medium, and slow representing 60, 90, 

and 120 days.  

 

To initiate ‘ALS’ one or more factors must be moved from their base values to start the 

simulation.  The simulation below is a case in which energetics was the initiator.  

However, a very rough sensitivity analysis indicates that the patterns of model behavior 

are very similar regardless of what category is used as the initiator.  Interestingly, the 

results of the category simulations already exhibit some findings which are also reflected 

in the experimental data.  For example, most of the factors do not move significantly 

from baseline until about 80 days out (see Figure 2), which is within the range that 

clinical presentation is exhibited in the G93A mouse.  Additionally, axonal transport 

(highlighted in red) and energetics (shown in yellow) have a very different looking 

pattern compared to the other categories. Finally, a major change happens at around day 

150, as all of the factors seem to ‘explode’, a trait of an unstable system.  Not 

coincidentally, day 150 is within the experimental range of when symptoms become very 

severe and marks the beginning of the sudden and severe decline seen in end-stage ALS 

mice. 

 

The results of this very preliminary relational model have generated a few hypotheses 

that we will test as we continue with our model development. For example, one 

hypothesis is that the emergence of the sudden decline seen in end-stage ALS is a result 

of a system instability.  Using the rules of control theory, if enough feedback could be 

apportioned correctly, the propagation of ALS would stop.  Thus, one potential 
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therapeutic concept is to add self-feedback to each category to investigate whether the 

system can be made stable.  As was the case in the spinal cord injury model, testing such 

theoretical ideas can potentially give way to hypothetical treatments, which can be 

examined for positive therapeutic effects. 

 

 

Figure 10.2.2.  Time course of categories in a preliminary category model of ALS.  The 
y-axis represents the magnitude of the category’s impact and the x-axis represents time in 
days.  Note that only relative category magnitudes are meaningful and not the actual 
quantitative values, themselves.  However, the quantitative values on the x-axis are 
meaningful as they represent the pathological time course of the G93A ALS mouse. 

 

Aggregating views 

These viewpoints (ALS-disrupted axonal transport model, motoneuron data, and the 

relational model) have and will continue to be used together to obtain a complete and 

comprehensive view of ALS.  For example, the correlations obtained from the velocity 

profiles of the ALS-disrupted axonal transport model were used to approximate gains and 
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time constants for the relational model as such gains and time constants were difficult if 

not impossible to obtain from the current pathological experimental data.  In fact, the lack 

of experimental data and our inability to properly characterize available data was 

precisely the motivation for the initial development of the conceptual-mechanistic model.  

Similarly, the identification of size related firing property relationships, which were not 

explicitly published in the ALS literature, influenced the selection of potential factors to 

include in the excitotoxicity component of the ALS model.  Thus, these more detailed 

‘category’ modeling viewpoints were able to ‘fill in’ the experimental gaps to construct 

an initial working relational model. 

 

Once a full relational model with individuated factors is complete, relational analysis will 

be used to indentify the key factors and their dynamic relationships and interactions. This 

system-level analysis will be used to distinguish areas that need further refinement and to 

replace high-impact categories with more detailed models, such as mechanistic or 

conceptual models.  Thus, further down the road, the relational model will feed back into 

the refinement of the axonal transport and motoneuron models and aid in the planning of 

future motoneuron experiments.  Other areas necessitating more detail are liable to 

warrant their own modeling viewpoints as well, and these will be identified and 

implemented as needed.  Therefore, in conclusion, the process will iterate with each 

addition and refinement, bringing a new and necessary perspective to complete our 

desired multi-dimensional view of ALS.  



 290

CHAPTER 11 

CONCLUSIONS 

 

 

In the Introduction, it was stated that the overall purpose of this work was to provide the 

foundational research that enables comprehensive views of complex physiological and 

pathological systems to be obtained.  In this chapter, we return to this purpose, discussing 

and evaluating the progress that was made through the development of methodologies to 

assist in the construction and analysis of computational models that provide unique 

viewpoints into the system.  The chapter concludes by presenting a new form of scientific 

inquiry, viewpoint aggregation, which is based upon the findings of this work and 

provides a new and exciting possibility for the future exploration and analysis of complex 

biological systems. 

 

Conclusions about a relational approach to modeling and analysis 

Using the philosophy of complex systems, namely the ‘bowtie effect’ theory of biological 

systems, we have developed novel methods to deduce complex multi-scale interactions 

and dynamics that occur at the critical ‘pinch point’ by either identifying and/or utilizing 

the inner relationships of a system, which result in its emergent properties.  Relational 

analysis, using the search-survey-and summarize technique (S3 -Mitchell and Lee 2007) 

to identify the complex relationships within a system, enables the characterization of both 

model and experimental data, permitting exploration and direct comparison of 
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mechanistic function, and generation of testable experimental and clinical hypotheses and 

predictions.  Relational modeling, using the review-relate-refine technique (R3-Mitchell 

and Lee 2009) to utilize complex system relationships identified within the experimental 

data, enables foundational models to be quickly and efficiently built that connect 

disparate pockets of detailed experimental data and provide a comprehensive view into 

the system as a whole and a preliminary basis upon which detailed bottom-up 

mechanisms and top-down theories can then be implemented and refined.   

 

Thus, in summary, relational analysis fulfills specific aim one by providing the analytical 

tools to tease out and explain the underlying mechanisms, organizing principles, and/or 

dynamics of emergent, complex adaptive behavior within computational models, and 

relational modeling fulfills specific aim two by providing a methodology that enables 

initial, system-level “scaffolding” models to be quickly built and assessed based on 

available literature or experimental data without the need for unknown detailed 

properties.  Together, these two additions to the repertoire of traditional modeling 

methodologies and data analysis tools provide the foundation necessary to help move the 

model from a confirmatory to an exploratory research tool.   

 

Conclusions regarding different viewpoints 

Using a variety of modeling techniques, we have traversed several different complex 

physiological and pathological systems, including synaptic neurotransmitter spillover 

(Mitchell et al. 2007; Mitchell and Lee 2007), normal and pathological axonal transport 

(Mitchell and Lee, 2009), secondary injury SCI (Mitchell and Lee, 2008), motoneurons 
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(Mitchell and Lee, 2009c in preparation) and most recently we have entered into 

Amyotrophic Lateral Sclerosis (Mitchell and Lee, 2009b in revision).  Along the way, we 

have come to appreciate the value multiple perspectives have when modeling a system.  

In this project, the differing perspectives are 1) “bottom-up” mechanism-centric 

approaches that seek to have higher-level function emerge;  2) “top-down” theory-centric 

approaches that seek to explain higher-level function in terms of lower-level 

mechanisms;  and 3) “middle-out” data-centric approaches that seek to recapitulate and 

predict experimental and clinical findings.  In conjunction with our relational analysis 

techniques, which enabled the construction of models that produced the desired emergent 

properties and the construction of landscape that revealed the underlying system 

dynamics, we found that each of these viewpoints gave us a unique, necessary and often 

even a new perspective into each of the studied test case systems.    

 

Although experimental and clinical research was not physically performed as part of this 

dissertation, actual data representing each view was analyzed from studies performed 

inside (motoneuron experimental data shown in Chapter 5) and outside our lab (not 

shown) utilizing our relational analysis techniques.  Using our developed relational 

analysis techniques to look through each system’s pinch point to either utilize or uncover 

the relationships that result in the system’s emergent properties and complex dynamics, 

we were able to produce different viewpoints into a system.  Below is a brief review of 

our experience with the three modeling viewpoints and with their experimental and 

clinical viewpoint counterparts. 

 



 293

Bottom-up Model View 

 In our experience with a bottom-up synaptic neurotransmitter spillover model (Mitchell 

et al. 2007b; Mitchell and Lee 2007c), we found that there was substantial non-

uniqueness in the parameters values (i.e. multiple parameter value sets could achieve the 

same target output goals).  Similarly, we found that in our mechanistic models of axonal 

transport, a few different degenerate models, each representing a different transport 

mechanism, could result in experimentally valid velocity profiles.  Thus, though we were 

able to successfully and efficiently reach our target output goals, we did not know why 

we had achieved them.  

 

Top-down Model View 

 We explored the use of top-down models, which use a hierarchical tree of hypotheses 

whose ramifications determined either the mechanism parameter values or the 

mechanisms themselves, to compare different hypotheses and conceptualizations.  Our 

conceptual models of ALS-disrupted axonal transport were able to differentiate between 

different pathological causes, such as protein aggregation and mutations, a feat that 

would not be possible in a mechanistic model.  Additionally, using a top-down 

motoneuron model (not presented in this dissertation) we were able to make explicit 

predictions regarding previously little understood functions, such as the role of the after 

hyper-polarization potential (AHP) in determining the motoneurons frequency-current 

gain (FI gain).  The top-down conceptualizations explicitly provided the “why” that was 

missing from the true bottom-up model.  However, the top-down model, while possible 
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for the study of smaller systems with a fewer number of factors, such as in axonal 

transport, or for larger but more well-characterized systems such as motoneuron 

neurophysiology, is not a good candidate for modeling comprehensive clinical 

pathologies (e.g. ALS and SCI)—systems that are both enormously large, containing 

multiple factors across several different categories, and for which few, if any, over-

arching theories are available. 

 

Relational or “Middle Out” Model View 

In the case of pathologies, such as spinal cord injury, starting with either a bottom-up or 

top-down model was essentially impossible without copious speculation due to the 

numerous gaps between detailed pockets of experimental data.  Consequently, a new 

modeling technique was developed in order to build the “scaffolding” that would be 

necessary to connect disparate sets of experimental data together before being able to 

look at mechanisms and high-level theories.  The chosen strategy was to build a 

“relational model” based exclusively on the relationships or correlations between various 

identified important factors within the substantial experimental data.  This relational 

model was able to predict previously uncharacterized system dynamics, providing the 

first system-level view into a large and complicated pathology.  Although the relational 

model is an excellent starting point to quickly obtain a holistic view of the system and 

make fundamental predictions early in the research process, it alone cannot provide the 

detailed, component-level insight of a mechanistic model or the explicit predictions of a 

top-down model. 
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Experimental View 

To date, experimental viewpoints have been and will continue to be an important aspect 

of systems physiology.  In fact, it is experimental data that provides the parameters, 

inputs, outputs, mechanisms and even the validation criteria of our models.  However, 

experimental data alone, outside the confines of a computational model, has its own 

unique viewpoint. Our work with experimental viewpoints, nominally with motoneurons 

and spinal cord injury data, has been helpful in providing the necessary viewpoint of 

‘how’ relationships result in the emerging dynamics seen within a system.  For example, 

it was through our experimental data that we were able to hypothesize how motoneuron 

size results in distinct firing properties, a task that was not possible through modeling 

alone. 

 

Clinical View 

Clinical viewpoints, in many ways, serve as the ‘final stamp of approval’ as to the 

correctness of our understanding and perhaps more importantly, the impact of our 

research, in terms of therapeutics to treat pathological conditions.  Only within the 

human, where all of the real complex system properties and characteristics are present, 

can the system function and behavior be fully analyzed. However, due to safety and 

ethical concerns, clinical studies are limited to the extent they can ‘alter the system’, 

whether through drugs, stimulation or other modalities, in order to evaluate the system’s 

robust behavior over multiple operating points.  We learned through the analysis of 

clinical spinal cord injury data, that the clinical viewpoint contributes the ‘what’ of 
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systems physiology (what is affected, what is the impact, what is the time course).  In 

fact, based on our work in SCI, it is our assertion that it is the difference between the 

‘what’ of experimental and clinical studies, which likely results in the failure of clinical 

trials that seemed promising at the experimental stage.   

 

Aggregating viewpoints  

While each of the viewpoints above gave us a necessary view into the studied system, 

none produced the full multi-scalar, integrative and comprehensive view that we as 

biomedical engineers desired—the type of complete and profound comprehensive view 

described in the Introduction, which is necessary in order to have the vast understanding 

and impact of physiologies and pathologies that is desired in order to completely change 

the lives of patients.  However, our experience with each of these viewpoints has lead us 

to what we believe is an approach, which is capable of producing the complete, multi-

scalar and comprehensive view that is needed.  We contend that the best approach to 

study a complex biological system is not contained within any one method or viewpoint, 

but rather the best approach is to aggregate and reconcile these differing points of view 

into a unified, but not necessarily monolithic whole. This unification process can be 

accomplished using our developed set of relational analysis techniques.  Because 

relational analysis focuses on the intrinsic relationships between system measures rather 

than on the quantitative values themselves, it provides an equivalent means to compare 

and contrast differing viewpoints through their system landscapes. We refer to this 

unification process as viewpoint aggregation (see Figure 1). Using relational analysis as 

the centerpiece, this truly comprehensive approach aggregates the viewpoints produced 
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from relational ‘middle-out’ scaffolding, top-down conceptualizations, bottom-up 

mechanisms, and experimental and clinical observations in an iterative loop of continual 

model refinement and subsequent experimental and clinical prediction and prioritization. 

 

 

 

 

Figure 11.1: Overview of viewpoint aggregation process. Using relational analysis as the 
centerpiece, we have developed a comprehensive approach, that aggregates the 
viewpoints produced from relational scaffolding, top-down conceptualizations, bottom-
up mechanisms, and experimental and clinical observations in an iterative loop of 
continual model refinement and subsequent experimental and clinical prediction and 
prioritization.  This loop brings the system into ever-greater focus with each iteration. 
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A new approach to systems physiology 

In summary, we conclude that the developed relationship-based analytical and modeling 

methods, in combination with multiple viewpoints, encompasses a new approach to 

systems physiology that will provide the multi-scalar, truly comprehensive views that we 

as engineers, scientists, and clinicians desire.  One of the key benefits of viewpoint 

aggregation by utilizing relationships is that it incorporates not just the modeling 

viewpoints discussed in the previous section, but also experimental and clinical 

viewpoints. This iterative loop is driven by the continuous act of comparing and 

contrasting theoretical, conceptual, experimental, and clinical viewpoints as each new or 

revised viewpoint becomes available. As such, with each iteration viewpoint aggregation 

brings the system into ever-greater focus. 

 

 In essence, viewpoint aggregation represents a new, integrative approach to systems 

physiology that focuses on the process of research exploration rather than the actual 

product.  This viewpoint aggregation process does not fit the typical research mold of 

hypothesis-driven inquiry, in that it is instead hypothesis challenging and generating 

inquiry, with hypothesis testing coming later in the process.  However, we believe this 

exploratory approach to be the key to obtaining truly multi-scalar, comprehensive views 

into the complex physiological and pathological systems that we as biomedical engineers 

need in order to accomplish our ultimate goal of helping patients.  
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APPENDIX A 

SCI RELATIONAL MODEL LITERATURE DATABASE 
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 Archives of 
Neurology 
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pharma-
cological 
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Clinical
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 Australian 
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Neuroprotection in 
brain and spinal cord 
trauma

Curr Opin 
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et al. 2004

The mitochondrial 
uncoupling agent 2,4-
dinitrophenol improves 
mitochondrial function, 
attenuates oxidative 
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 J 
Neurotrauma 
21(10): 1396-
404. x x
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uncoupling 
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Clinical
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A selective Sema3A 
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 Nat Med 
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et al. 2004
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 Spine J 4(4): 
451-64. x x

patho-
physiology 
and 
treatment 
strategies

Clinical

Lim, P. A. 
C. and A. 
M. Tow 2007

Recovery and 
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R. and 
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repair of the contused 
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A. I., P. 
H. Chan, 
et al. 1987

Alterations in lipid 
metabolism, Na+,K+-
ATPase activity, and 
tissue water content of 
spinal cord following 
experimental traumatic 
injury

 J 
Neurochem 
48(6): 1809-
16. x x

(cat) Na-K-
ATPase

Ener-
getics

Ferreira, 
I. L., C. 
B. 
Duarte, 
et al. 1997

'Chemical ischemia' in 
cultured retina cells: 
the role of excitatory 
amino acid receptors 
and of energy levels on 
cell death

 Brain Res 
768(1-2): 157-
66. x

(retina) mito-
chondrial 
function, ATP

Ener-
getics

Fiskum, 
G. 2000

Mitochondrial 
participation in 
ischemic and traumatic 
neural cell death

 Journal of 
Neurotrauma 
17(10): 843-
855. x

mitochondria 
& cell death

Ener-
getics

Hovda, 
D. A., D. 
P. 
Becker, 
et al. 1992

Secondary injury and 
acidosis

 J 
Neurotrauma 
9 Suppl 1: 
S47-60. x glucose

Ener-
getics

Iwai, T., 
K. 
Tanonak
a, et al. 2002

Sodium accumulation 
during ischemia 
induces mitochondrial 
damage in perfused rat 
hearts

 Cardiovasc 
Res 55(1): 
141-9. x

Na-induced 
mitochondral 
damage

Ener-
getics

Jacobs, 
T. P., O. 
Kempski, 
et al. 1992

Blood-Flow and 
Vascular-Permeability 
during Motor 
Dysfunction in a Rabbit 
Model of Spinal-Cord 
Ischemia

 Stroke 23(3): 
367-373. x x

(rabbit) blood 
flow & 
ischemia
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Jolivet, 
R. and P. 
Mag-
istretti 2007

Spike-frequency 
adaptation is 
modulated by 
interacting currents: 
Role of the Na, K-
ATPase

 Journal of 
Neurophysiol
ogy.

Na-K-
ATPase 
mechanics

Ener-
getics

Jurkowitz
alexande
r, M. S., 
R. A. 
Altschuld
, et al. 1992

Cell Swelling, Blebbing, 
and Death Are 
Dependent on Atp 
Depletion and 
Independent of 
Calcium during 
Chemical Hypoxia in a 
Glial-Cell Line (Roc-1)

 Journal of 
Neurochemis
try 59(1): 344-
352. x

(glial) ATP & 
calcium

Ener-
getics

Kadekar
o, M., A. 
M. 
Crane, et 
al. 1985

Differential-Effects of 
Electrical-Stimulation of 
Sciatic-Nerve on 
Metabolic-Activity in 
Spinal-Cord and Dorsal-
Root Ganglion in the 
Rat

 Proceedings 
of the 
National 
Academy of 
Sciences of 
the United 
States of 
America 
82(17): 6010-
6013. x x

(rat) 
metabolism 
vs. activity

Ener-
getics

Kandel, 
E. R., J. 
H. 
Schwartz
, et al. 2000

 Principles of Neural 
Science McGraw-Hill.

Na-K-
ATPase 
mechanisms

Ener-
getics

Kong, B. 
Y. and R. 
J. Clarke 2004

Identification of 
potential regulatory 
sites of the Na+,K+-
ATPase by kinetic 
analysis

Biochemistry 
43(8): 2241-
50. x    

function of 
Na-K-ATPase 
pump

Ener-
getics

Necro-
Apop-
tosis

Krajewsk
i, S., M. 
Krajewsk
a, et al. 1999

Release of caspase-9 
from mitochondria 
during neuronal 
apoptosis and cerebral 
ischemia

 Proc Natl 
Acad Sci U S 
A 96(10): 
5752-7. x x

caspase-9 
from 
mitochondria

Ener-
getics

Li, S. and 
P. K. 
Stys 2001

Na+-K+-ATPase 
inhibition and 
depolarization induce 
glutamate release via 
reverse Na+-
dependent transport in 
spinal cord white 
matter

 Neuro-
science 
107(4): 675-
683. x x Na-K-ATPase

Ener-
getics

Free 
Radicals

Mattiass
on, G. 2004

Analysis of 
mitochondrial 
generation and release 
of reactive oxygen 
species

 Cytometry 
Part A 
62A(2): 89-
96. x

ROS vs 
mitochondrial 
generation
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Nicholls, 
D. G. 
and S. L. 
Budd 2000

Mitochondria and 
neuronal survival

 Physiologica
l Reviews 
80(1): 315-
360. x x

mitochondria 
& neuronal 
survival

Ener-
getics

Free 
Radicals

Opii, W. 
O., V. N. 
Nukala, 
et al. 2007

Proteomic identification 
of oxidized 
mitochondrial proteins 
following experimental 
traumatic brain injury

 Journal of 
Neurotrauma 
24(5): 772-
789. x x

(rat) oxidized 
mitochondrial 
proteins

Ener-
getics

Robertso
n, C. S., 
J. C. 
Goodma
n, et al. 1992

Blood flow and 
metabolic therapy in 
CNS injury

 J 
Neurotrauma 
9 Suppl 2: 
S579-94. x

hyper-
rmetabolism

Ener-
getics

Sullivan, 
P. G., S. 
Krishnam
urthy, et 
al. 2007

Temporal 
characterization of 
mitochondrial Energetic 
after spinal cord injury

 J 
Neurotrauma 
24(6): 991-9. x x

temporal mito-
chondrial 
energetics

Ener-
getics

Necro-
Apop-
tosis

Sullivan, 
P. G., A. 
G. 
Rabchev
sky, et al. 2005

Mitochondrial 
permeability transition 
in CNS trauma: Cause 
or effect of neuronal 
cell death?" Journal of 
Neuroscience 
Research 79(1-2): 231-
239. x x

mitochondria 
& cell death

Ener-
getics

Sullivan, 
P. G., J. 
E. 
Springer, 
et al. 2004

Mitochondrial 
uncoupling as a 
therapeutic target 
following neuronal 
injury

 Journal of 
Energetic 
and 
Biomembran
es 36(4): 353-
356. x x

mito-
chondrial 
uncoupling

Ener-
getics

Necro-
Apop-
tosis

Tator, C. 
H. and 
M. G. 
Fehlings 1991

Review of the 
secondary injury theory 
of acute spinal cord 
trauma with emphasis 
on vascular 
mechanisms

 J Neurosurg 
75(1): 15-26. x

vascular 
mechanisms

Ener-
getics

Tator, C. 
H. and I. 
Koyanagi 1997

Vascular mechanisms 
in the pathophysiology 
of human spinal cord 
injury

 J Neurosurg 
86(3): 483-
92. x

(human) 
vascular 
permability, 
swelling

Ener-
getics

White, R. 
J. and I. 
J. 
Reynolds 1996

Mitochondrial 
depolarization in 
glutamate-stimulated 
neurons: an early 
signal specific to 
excitotoxin exposure

 J Neurosci 
16(18): 5688-
97. x x

mitochondria 
and calcium

Ener-
getics

Young, 
W. 1992

Role of Calcium in 
Central-Nervous-
System Injuries

 Journal of 
Neurotrauma 
9: S9-S25. x x calcium
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Allen, J. 
W., S. 
Vicini, et 
al. 2001

Exacerbation of 
neuronal cell death by 
activation of group 1 
metabotropic glutamate 
receptors: Role of 
NMDA receptors and 
arachidonic acid 
release

 Experimenta
l Neurology 
169(2): 449-
460. x x x NMDA

Excito-
toxicity

Ankarcro
na, M., J. 
M. 
Dypbukt, 
et al. 1995

Glutamate-Induced 
Neuronal Death - a 
Succession of Necrosis 
or Apoptosis 
Depending on 
Mitochondrial-Function

 Neuron 
15(4): 961-
973. x x

necrosis or 
apoptosis via 
glutamate

Excito-
toxicity

Arundine
, M. and 
M. 
Tymiansk
i 2004

Molecular mechanisms 
of glutamate-
dependent 
neurodegeneration in 
ischemia and traumatic 
brain injury

 Cellular and 
Molecular 
Life Sciences 
61(6): 657-
668. x x

NMDA 
activation 
mechanisms

Excito-
toxicity

Arundine
, M., G. 
K. 
Chopra, 
et al. 2003

Enhanced vulnerability 
to NMDA toxicity in 
sublethal traumatic 
neuronal injury in vitro

 Journal of 
Neurotrauma 
20(12): 1377-
1395. x x NMDA

Excito-
toxicity

Ates, O., 
S. R. 
Cayli, et 
al. 2007

Comparative 
neuroprotective effect 
of sodium channel 
blockers after 
experimental spinal 
cord injury

 Journal of 
Clinical 
Neuroscienc
e 14(7): 658-
665. x x

(rat) 
sodium/effect
s channel 
blockers

Excito-
toxicity

Bakiri, Y., 
N. B. 
Hamilton, 
et al. 2008

Testing NMDA receptor 
block as a therapeutic 
strategy for reducing 
ischaemic damage to 
CNS white matter

 Glia 56(2): 
233-40. x x x

oligodendrogl
ial 
excitotoxicity

Excito-
toxicity

Car-
bonell, 
W. S. 
and M. 
S. Grady 1999

Evidence disputing the 
importance of 
excitotoxicity in 
hippocampal neuron 
death after 
experimental traumatic 
brain injury

 Neuroprotect
ive Agents: 
Fourth 
International 
Conference 
890: 287-
298. x x

contribution 
of 
excitotoxicity 
to neuronal 
death

Excito-
toxicity

Carriedo, 
S. G., H. 
Z. Yin, et 
al. 1998

Rapid Ca2+ entry 
through Ca2+-
permeable 
AMPA/kainate 
channels triggers 
marked intracellular 
Ca2+ rises and 
consequent oxygen 
radical production

 Journal of 
Neuroscienc
e 18 x x

calcium via 
AMPA
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Choi, D. 
W. 1992 Excitotoxic cell death

 J Neurobiol 
23(9): 1261-
76. x x

excitotoxic 
mechanisms

Excito-
toxicity

Choi, D. 
W. and 
S. M. 
Rothman 1990

The Role of Glutamate 
Neurotoxicity in 
Hypoxic-Ischemic 
Neuronal Death

 Annual 
Review of 
Neuroscienc
e 13: 171-
182. x x

glu 
neurotoxicity

Excito-
toxicity

Fehlings, 
M. G. 
and S. 
Agrawal 1995

Role of sodium in the 
pathophysiology of 
secondary spinal cord 
injury  Spine 20 x x

role of 
sodium

Excito-
toxicity

Goforth, 
P. B., E. 
F. Ellis, 
et al. 2004

Mechanical injury 
modulates AMPA 
receptor kinetics via an 
NMDA receptor-
dependent pathway

 Journal of 
Neurotrauma 
21(6): 719-
732. x x

AMPA-R 
activation via 
NMDA-R

Excito-
toxicity

Hilton, G. 
D., J. L. 
Nunez, 
et al. 2006

Glutamate-mediated 
excitotoxicity in 
neonatal hippocampal 
neurons is mediated by 
mGluR-induced 
release of Ca++ from 
intracellular stores and 
is prevented by 
estradiol

 European 
Journal of 
Neuro-
science 
24(11): 3008-
3016. x x

glutamate via 
metabotropic-
R

Excito-
toxicity

Kaptano
glu, E., I. 
Solaroglu
, et al. 2005

Blockade of sodium 
channels by phenytoin 
protects ultrastructure 
and attenuates lipid 
peroxidation in 
experimental spinal 
cord injury

 Acta Neuro-
chirurgica 
147(4): 405-
412. x x

(rat) 
sodium/effect
s channel 
blockers

Excito-
toxicity

Kimura, 
M., K. 
Katayam
a, et al. 1999

Role of glutamate 
receptors and voltage-
dependent calcium 
channels in glutamate 
toxicity in energy-
compromised cortical 
neurons

 Japanese 
Journal of 
Pharmacolog
y 80(4): 351-
358. x x

relationship 
of glu, ca, & 
energy

Excito-
toxicity

LaPlaca, 
M. C. 
and L. E. 
Thibault 1998

Dynamic mechanical 
deformation of neurons 
triggers an acute 
calcium response and 
cell injury involving the 
N-methyl-D-aspartate 
glutamate receptor

 Journal of 
Neuroscienc
e Research 
52(2): 220-
229. x x

calcium via 
NMDA
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LaPlaca, 
M. C., V. 
M. Y. 
Lee, et 
al. 1997

An in vitro model of 
traumatic neuronal 
injury: Loading rate-
dependent changes in 
acute cytosolic calcium 
and lactate 
dehydrogenase release

 Journal of 
Neurotrauma 
14(6): 355-
368. x x

calcium vs 
LDH

Excito-
toxicity

Lemke, 
M., P. 
Demediu
k, et al. 1987

Alterations in tissue 
Mg++, Na+ and spinal 
cord edema following 
impact trauma in rats

 Biochem 
Biophys Res 
Commun 
147(3): 1170-
5. x x

sodium, 
magnesium, 
water content

Excito-
toxicity

Inflam-
mation

Lima, R. 
R., J. 
Guimara
es-Silva, 
et al. 2007

Diffuse Axonal 
Damage, Myelin 
Impairment, 
Astrocytosis and 
Inflammatory 
Response Following 
Microinjections of 
NMDA into The Rat 
Striatum

 Inflammation
. x x

(rat) 
inflammation 
in response 
to NMDA-R 
activation

Excito-
toxicity

Liu, D., 
G. Y. Xu, 
et al. 1999

Neurotoxicity of 
glutamate at the 
concentration released 
upon spinal cord injury

 Neuroscienc
e 93(4): 1383-
1389. x x

glutamate 
concentration

Excito-
toxicity

Lusardi, 
T. A., J. 
A. Wolf, 
et al. 2004

Effect of acute calcium 
influx after mechanical 
stretch injury in vitro on 
the viability of 
hippocampal neurons

 Journal of 
Neurotrauma 
21(1): 61-72. x x

calcium influx 
via stretch or 
NMDA

Excito-
toxicity

Matute, 
C., E. 
Alberdi, 
et al. 2001

The link between 
excitotoxic 
oligodendroglial death 
and demyelinating 
diseases

 Trends in 
Neuro-
sciences 
24(4): 224-
230.

oligodendrogl
ial 
excitotoxicity

Excito-
toxicity

McBurne
y, R. N., 
D. Daly, 
et al. 1992

New CNS-specific 
calcium antagonists

 J 
Neurotrauma 
9 Suppl 2: 
S531-43. x x

role of ca & 
ca 
antagonists

Excito-
toxicity

Nesic, 
O., N. M. 
Svrakic, 
et al. 2002

DNA microarray 
analysis of the 
contused spinal cord: 
effect of NMDA 
receptor inhibition

 J Neurosci 
Res 68(4): 
406-23. x

effects of 
NMDA using 
DNA 
microarray

Excito-
toxicity

Necro-
Apop-
tosis

Park, E., 
Y. Liu, et 
al. 2003

Changes in glial cell 
white matter AMPA 
receptor expression 
after spinal cord injury 
and relationship to 
apoptotic cell death

 Experi-
mental 
Neurology 
182(1): 35-
48. x

white matter 
excitotoxicity-
mediated 
death
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Free 
Radicals

Park, E., 
A. A. 
Velumian
, et al. 2004

The role of 
excitotoxicity in 
secondary 
mechanisms of spinal 
cord injury: A review 
with an emphasis on 
the implications for 
white matter 
degeneration

 Journal of 
Neurotrauma 
21(6): 754-
774. x

white matter 
excitotoxicity 
free radical 
induced cell 
death

Excito-
toxicity

Free 
Radicals

Piani, D., 
K. Frei, 
et al. 1993

Glutamate Uptake by 
Astrocytes Is Inhibited 
by Reactive Oxygen 
Intermediates but Not 
by Other Macrophage-
Derived Molecules 
Including Cytokines, 
Leukotrienes or 
Platelet-Activating-
Factor

 Journal of 
Neuro-
immunology 
48(1): 99-
104. x x x

decreased 
glutamate & 
ROS uptake

Excito-
toxicity

Necro-
Apop-
tosis

PorteraC
ailliau, 
C., D. L. 
Price, et 
al. 1997

Non-NMDA and NMDA 
receptor-mediated 
excitotoxic neuronal 
deaths in adult brain 
are morphologically 
distinct: Further 
evidence for an 
apoptosis-necrosis 
continuum

 Journal of 
Comparative 
Neurology 
378(1): 88-
104. x

(rat) 
apoptosis vs 
necrosis/ role 
of NMDA vs 
non-NMDA

Excito-
toxicity

Regan, 
R. F. and 
D. W. 
Choi 1991

Glutamate 
Neurotoxicity in Spinal-
Cord Cell-Culture

 Neuropscien
ce 43(2-3): 
585-591. x x

glu 
neurotoxicity

Excito-
toxicity

Runnerst
am, M., 
F. Bao, et 
al. 2001

A new model for diffuse 
brain injury by 
rotational acceleration: 
II. Effects on 
extracellular glutamate, 
intracranial pressure, 
and neuronal apoptosis

 Journal of 
Neurotrauma 
18(3): 259-
273. x x

(rabbit) 
glutamate 
and 
apoptosis

Excito-
toxicity

Sattler, 
R., Z. G. 
Xiong, et 
al. 2000

Distinct roles of 
synaptic and 
extrasynaptic NMDA 
receptors in 
excitotoxicity

 Journal of 
Neuro-
science 
20(1): 22-33. x x x NMDA

Excito-
toxicity

Schwart, 
G. and 
M. G. 
Fehlings 2001

Evaluation of the 
neuroprotective effects 
of sodium channel 
blockers after spinal 
cord injury: improved 
behavioral and 
neuroanatomical 
recovery with riluzole

 Journal of 
Neuro-
surgery 
94(2): 245-
256. x x

sodium/effect
s channel 
blockers
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Free 
Radicals

Springer, 
J. E., R. 
D. Azbill, 
et al. 1999

Activation of the 
caspase-3 apoptotic 
cascade in traumatic 
spinal cord injury

 Nature 
Medicine 
5(8): 943-
946. x x

lipid 
peroxidation 
inhibits glu 
uptake

Excito-
toxicity

Takahas
hi, S., M. 
Shibata, 
et al. 1999

Role of sodium ion 
influx in depolarization-
induced neuronal cell 
death by high KCl or 
veratridine

 European 
Journal of 
Pharma-
cology 
372(3): 297-
304. x

role of 
sodium influx

Excito-
toxicity

Tenneti, 
L. and S. 
A. Lipton 2000

Involvement of 
activated caspase-3-
like proteases in N-
methyl-D-aspartate-
induced apoptosis in 
cerebrocortical neurons

 J 
Neurochem 
74(1): 134-
42. x

caspase-3 in 
NMDA 
induced 
apoptosis

Excito-
toxicity

Uhler, T. 
A., D. M. 
Frim, et 
al. 1994

The Effects of 
Megadose 
Methylprednisolone 
and U-78517f on 
Toxicity Mediated by 
Glutamate Receptors 
in the Rat Neostriatum

 Neuro-
surgery 
34(1): 122-
128. x x

(rat) methyl-
prednisolone 
glu-R 
neurotoxicity

Excito-
toxicity

Free 
Radicals

Volterra, 
A., D. 
Trotti, et 
al. 1994

Glutamate uptake 
inhibition by oxygen 
free radicals in rat 
cortical astrocytes

 J Neurosci 
14(5 Pt 1): 
2924-32. x x

ROS 
mediated 
decreased 
glutamate 
uptake 

Excito-
toxicity

Wrathall, 
J. R., Y. 
D. Teng, 
et al. 1997

Delayed antagonism of 
AMPA/kainate 
receptors reduces long-
term functional deficits 
resulting from spinal 
cord trauma

 Exp Neurol 
145(2 Pt 1): 
565-73. x x AMPA-R

Excito-
toxicity

Xin, W. 
K., X. H. 
Zhao, et 
al. 2005

The removal of 
extracellular calcium: a 
novel mechanism 
underlying the 
recruitment of N-methyl-
D-aspartate (NMDA) 
receptors in 
neurotoxicity

 European 
Journal of 
Neuroscienc
e 21(3): 622-
636. x x

calcium/ 
sodium 
impact on 
NMDA

Excito-
toxicity

Xu, G. Y., 
M. G. 
Hughes, 
et al. 2004

Concentrations of 
glutamate released 
following spinal cord 
injury kill 
oligodendrocytes in the 
spinal cord

 Exp Neurol 
187(2): 329-
36 x x

(rat) oligo-
dendroglial 
excitotoxicity
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Xu, G. Y., 
M. G. 
Hughes, 
et al. 2005

Administration of 
glutamate into the 
spinal cord at 
extracellular 
concentrations reached 
post-injury causes 
functional impairments

 Neuroscienc
e Letters 
384(3): 271-
276. x x

glutamate 
con-
centration

Excito-
toxicity Other

Yanase, 
M., T. 
Sakou, et 
al. 1995

Role of N-Methyl-D-
Aspartate Receptor in 
Acute Spinal-Cord 
Injury

 Journal of 
Neurosurgery 
83(5): 884-
888. x x

(rabbit) 
NMDA-R

Excito-
toxicity

Yoshioka
, A., B. 
Bacskai, 
et al. 1996

Pathophysiology of 
oligodendroglial 
excitotoxicity

 J Neurosci 
Res 46(4): 
427-37. x x x

oligo-
dendroglial 
excitotoxicity

Excito-
toxicity

Young, 
W. 1987

The post-injury 
responses in trauma 
and ischemia: 
secondary injury or 
protective mechanisms 

Cent Nerv 
Syst Trauma 
4(1): 27-51. x

emphasis on 
calcium

Excito-
toxicity

Yum, S. 
W. and 
A. I. 
Faden 1990

Comparison of the 
neuroprotective effects 
of the N-methyl-D-
aspartate antagonist 
MK-801 and the opiate-
receptor antagonist 
nalmefene in 
experimental spinal 
cord ischemia

 Arch Neurol 
47(3): 277-
81. x x

role of NMDA 
vs opiate 
receptors

Excito-
toxicity

Zhang, 
L., B. A. 
Rzigalins
ki, et al. 1996

Reduction of voltage-
dependent Mg2+ 
blockade of NMDA 
current in mechanically 
injured neurons

 Science 
274(5294): 
1921-3. x x NMDA

Free 
Radicals x x

lipid 
peroxidation/ 
oxygen 
radicals

Free 
Radicals

Inflam-
mation

Chalimon
iuk, M., 
K. King-
Pospisil, 
et al. 2006

Macrophage migration 
inhibitory factor 
induces cell death and 
decreases neuronal 
nitric oxide expression 
in spinal cord neurons

 Neuro-
science 
139(3): 1117-
1128. x x

macrophage 
and nitric 
oxide

Free 
Radicals

Dawson, 
T. M., V. 
L. 
Dawson, 
et al. 1994

Molecular mechanisms 
of nitric oxide actions in 
the brain

 Ann N Y 
Acad Sci 
738: 76-85. x nitric oxide
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Free 
Radicals

Dawson, 
T. M., J. 
Zhang, et 
al. 1994

Nitric oxide: cellular 
regulation and 
neuronal injury

 Prog Brain 
Res 103: 365-
9. x x nitric oxide

Free 
Radicals

Dohi, K., 
K. Satoh, 
et al. 2007

Does edaravone (MCI- 
186) act as an 
antioxidant and a 
neuroprotector in 
experimental traumatic 
brain injury?" Antioxid 
Redox Signal 9(2): 281-
7. x x

(rat) free 
radical 
scavenger, 
edaravone

Free 
Radicals

Genoves
e, T., E. 
Mazzon, 
et al. 2007

Role of endogenous 
glutathione in the 
secondary damage in 
experimental spinal 
cord injury in mice

 Neurosci 
Lett 423(1): 
41-6. x x

(mouse) free 
radical 
scavenger, 
glutathione

Free 
Radicals

Hall, E. 
D. 1992

The Neuroprotective 
Pharmacology of 
Methylprednisolone

 Journal of 
Neurosurgery 
76(1): 13-22. x

free radical 
neuro-
protection 
with methyl-
prednisolone

Free 
Radicals

Hall, E. 
D. and J. 
M. 
Braugh-
ler 1993

Free radicals in CNS 
injury

 Res Publ 
Assoc Res 
Nerv Ment 
Dis 71: 81-
105. x x

Free 
Radicals

Hall, E. 
D., J. M. 
Braugh-
ler, et al. 1992

Antioxidant Effects in 
Brain and Spinal-Cord 
Injury

 Journal of 
Neurotrauma 
9: S165-
S172. x x antioxidants 

Free 
Radicals

Hall, E. 
D., P. A. 
Yonkers, 
et al. 1992

Biochemistry and 
Pharmacology of Lipid 
Antioxidants in Acute 
Brain and Spinal-Cord 
Injury

 Journal of 
Neurotrauma 
9: S425-
S442. x x

lipid 
antioxidants

Free 
Radicals

Hamada, 
Y., T. 
Ikata, et 
al. 1996

Roles of nitric oxide in 
compression injury of 
rat spinal cord

 Free Radic 
Biol Med 
20(1): 1-9. x x

(rat) nitric 
oxide

Free 
Radicals

Huang, 
Z., P. L. 
Huang, 
et al. 1994

Effects of cerebral 
ischemia in mice 
deficient in neuronal 
nitric oxide synthase

 Science 
265(5180): 
1883-5. x

(rat) effects 
of NOS on 
ischemia

Free 
Radicals

Khaldi, 
A., C. C. 
Chiueh, 
et al. 2002

The significance of 
nitric oxide production 
in the brain after injury

 Nitric Oxide: 
Novel 
Actions, 
Deleterious 
Effects and 
Clinical 
Potential 
962: 53-59. x x x nitric oxide
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Free 
Radicals

Kirsch, J. 
R., M. A. 
Helfaer, 
et al. 1992

Evidence for Free-
Radical Mechanisms of 
Brain Injury Resulting 
from Ischemia 
Reperfusion-Induced 
Events

 Journal of 
Neurotrauma 
9: S157-
S163. x

free radical 
mechanisms

Free 
Radicals

Kwak, E. 
K., J. W. 
Kim, et 
al. 2005

The role of inducible 
nitric oxide synthase 
following spinal cord 
injury in rat

 J Korean 
Med Sci 
20(4): 663-9. x x

(rat) inducible 
nitrix oxide, I-
NOS

Free 
Radicals

Merrill, J. 
E., L. J. 
Ignarro, 
et al. 1993

Microglial cell 
cytotoxicity of 
oligodendrocytes is 
mediated through nitric 
oxide

 J Immunol 
151(4): 2132-
41. x x

microglia, 
oligodendroc
ytes, nitric 
oxide

Free 
Radicals

Ohta, S., 
Y. 
Iwashita, 
et al. 2005

Neuroprotection and 
enhanced recovery 
with edaravone after 
acute spinal cord injury 
in rats

 Spine 
30(10): 1154-
1158. x x

(rat) free 
radical 
scavenger, 
edaravone

Free 
Radicals

Schreibe
rova, A., 
M. 
Lackova, 
et al. 2006

Neuronal nitric oxide 
synthase 
immunopositivity in 
motoneurons of the 
rabbit's spinal cord 
after transient 
ischemia/reperfusion 
injury

 Cellular and 
Molecular 
Neurobiology 
26(7-8): 1483-
1494. x

(rabbit) nitrix 
oxide 
synthase 
(NOS)

Free 
Radicals

Sharma, 
H. S., J. 
Westman
, et al. 1996

Involvement of nitric 
oxide in acute spinal 
cord injury: an 
immunocytochemical 
study using light and 
electron microscopy in 
the rat

 Neurosci 
Res 24(4): 
373-84. x x

(rat) nitric 
oxide

Free 
Radicals

Topsakal, 
C., N. 
Kilic, et 
al. 2003

Effects of prostaglandin 
E1, melatonin, and 
oxytetracycline on lipid 
peroxidation, 
antioxidant defense 
system, paraoxonase 
(PON1) activities, and 
homocysteine levels in 
an animal model of 
spinal cord injury

 Spine 
28(15): 1643-
52. x x

(rat) lipid 
peroxidation, 
prostaglandin
, melatonin

Free 
Radicals

Xiong, Y., 
A. G. 
Rabchev
sky, et al. 2007

Role of peroxynitrite in 
secondary oxidative 
damage after spinal 
cord injury

 J 
Neurochem 
100(3): 639-
49. x x

(rat) nitric 
oxide 
synthase 
radical, 
peroxynitrite
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Free 
Radicals

Inflam-
mation

Zhao, 
W., W. 
Xie, et al. 2004

Activated microglia 
initiate motor neuron 
injury by a nitric oxide 
and glutamate-
mediated mechanism

 J 
Neuropathol 
Exp Neurol 
63(9): 964-
77. x x

microglia 
activation via 
nitric oxide

Inflam-
mation

Bartholdi, 
D. and 
M. E. 
Schwab 1997

Expression of pro-
inflammatory cytokine 
and chemokine mRNA 
upon experimental 
spinal cord injury in 
mouse: an in situ 
hybridization study

 Eur J 
Neurosci 
9(7): 1422-
38. x x

(rat) 
cytokines 
and 
chemokines

Inflam-
mation

Blight, A. 
R. 1985

Delayed demyelination 
and macrophage 
invasion: a candidate 
for secondary cell 
damage in spinal cord 
injury

 Cent Nerv 
Syst Trauma 
2(4): 299-
315. x x

macrophage 
and 
demyelinatio
n time line

Inflam-
mation

Blight, A. 
R. 1992

Macrophages and 
inflammatory damage 
in spinal cord injury

 J 
Neurotrauma 
9 Suppl 1: 
S83-91. x x

(rat) 
mononuclear 
phagocytes, 
astrogliosis

Inflam-
mation

Carlson, 
S. L., M. 
E. 
Parrish, 
et al. 1998

Acute inflammatory 
response in spinal cord 
following impact injury

 Experimenta
l Neurology 
151(1): 77-
88. x x

(rat) 
macrophages
, microglia & 
neutrophils; 
time line

Inflam-
mation

Conrad, 
S., H. J. 
Schluese
ner, et al. 2005

Spinal cord injury 
induction of lesional 
expression of 
profibrotic and 
angiogenic connective 
tissue growth factor 
confined to reactive 
astrocytes, invading 
fibroblasts and 
endothelial cells

 Journal of 
Neurosurgery-
Spine 2(3): 
319-326. x x

(rat) 
astrocytosis 
and glial scar 
formation

Inflam-
mation

de Leme, 
R. J. and 
G. Chadi 2001

Distant microglial and 
astroglial activation 
secondary to 
experimental spinal 
cord lesion

 Arquivos De 
Neuro-
Psiquiatria 
59(3A): 483-
492. x x

(rat) 
microglia & 
astrocyte 
activation

Inflam-
mation

Dusart, I. 
and M. 
E. 
Schwab 1994

Secondary Cell-Death 
and the Inflammatory 
Reaction after Dorsal 
Hemisection of the Rat 
Spinal-Cord

 European 
Journal of 
Neuroscienc
e 6(5): 712-
724. x x

(rat) inflam-
mation. 
Macro-
phages, 
microglia; 
lesion size 
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Fleming, 
J. C., M. 
D. 
Norenber
g, et al. 2006

The cellular 
inflammatory response 
in human spinal cords 
after injury

 Brain 129(Pt 
12): 3249-69. x x

(human) 
microglia, 
macrophage, 
neutrophil, & 
lymphocyte 
timcourse

Inflam-
mation Other

Frei, E., 
I. 
Klusman, 
et al. 2000

Reactions of 
oligodendrocytes to 
spinal cord injury: Cell 
survival and myelin 
repair

 Experimenta
l Neurology 
163(2): 373-
380. x x

(rat)relations
hip between 
oligo-
dendrocyte 
death & 
inflammation; 
myelination

Inflam-
mation

Giulian, 
D. and C. 
Robertso
n 1990

Inhibition of 
mononuclear 
phagocytes reduces 
ischemic injury in the 
spinal cord

 Ann Neurol 
27(1): 33-42. x x

(rabbit) 
mononumcle
ar 
phagocytes

Inflam-
mation

Giulian, 
D., J. 
Woodwar
d, et al. 1988

Interleukin-1 Injected 
into Mammalian Brain 
Stimulates Astrogliosis 
and Neovascularization

 Journal of 
Neuroscienc
e 8(7): 2485-
2490. x x astrogliosis

Inflam-
mation

Gomes-
Leal, W., 
D. J. 
Corkill, et 
al. 2004

Astrocytosis, microglia 
activation, 
oligodendrocyte 
degeneration, and 
pyknosis following 
acute spinal cord injury

 Experimenta
l Neurology 
190(2): 456-
467. x x

(rat) 
astrocytes, 
microglia, 
oligodendroc
ytes

Inflam-
mation

Gonzalez
, R., J. 
Glaser, 
et al. 2003

Reducing inflammation 
decreases secondary 
degeneration and 
functional deficit after 
spinal cord injury

 Experimenta
l Neurology 
184(1): 456-
463. x x

(rat) 
lymphocytes 
and lesion 
evolution

Inflam-
mation

Kigerl, K. 
A., V. M. 
McGaug
hy, et al. 2006

Comparative analysis 
of lesion development 
and intraspinal 
inflammation in four 
strains of mice 
following spinal 
contusion injury

 J Comp 
Neurol 
494(4): 578-
94. x x

(mouse) 
comparing 
genetic and 
inflammatory 
factors to 
lesion size

Inflam-
mation

Kimelber
g, H. K. 1992

Astrocytic edema in 
CNS trauma

 J 
Neurotrauma 
9 Suppl 1: 
S71-81. x x

astrocytic 
edema

Inflam-
mation

Klusman, 
I. and M. 
E. 
Schwab 1997

Effects of pro-
inflammatory cytokines 
in experimental spinal 
cord injury

 Brain 
Research 
762(1-2): 173-
184. x x

(mice) 
cytokines
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Lee, Y. 
L., K. 
Shih, et 
al. 2000

Cytokine chemokine 
expression in contused 
rat spinal cord

 Neurochem 
Int 36(4-5): 
417-25. x x

(rat) 
cytokines 
and 
chemokines

Inflam-
mation

Louis, J. 
C., E. 
Magal, et 
al. 1993

Cntf Protection of 
Oligodendrocytes 
against Natural and 
Tumor Necrosis Factor-
Induced Death

 Science 
259(5095): 
689-692. x

TNF-induced 
oligo-
dendrocyte 
death

Inflam-
mation Other

MacFarla
ne, S. N. 
and H. 
Son-
theimer 1997

Electrophysiological 
changes that 
accompany reactive 
gliosis in vitro

 J Neurosci 
17 x x

electro-
physiological 
changes with 
reactive 
gliosis

Inflam-
mation

McKay, 
S. M., D. 
J. 
Brooks, 
et al. 2007

Distinct types of 
microglial activation in 
white and grey matter 
of rat lumbosacral cord 
after mid-thoracic 
spinal transection

 J 
Neuropathol 
Exp Neurol 
66(8): 698-
710. x x

(rat) white vs 
grey matter 
microglial 
activation

Inflam-
mation Other

Mills, L. 
R., A. A. 
Velumian
, et al. 2004

Confocal imaging of 
changes in glial 
calcium dynamics and 
homeostasis after 
mechanical injury in rat 
spinal cord white 
matter

 Neuroimage 
21(3): 1069-
1082. x x

(rat) glial 
calcium 
dynamics

Inflam-
mation

Nakamur
a, M., R. 
A. 
Houghtlin
g, et al. 2003

Differences in cytokine 
gene expression profile 
between acute and 
secondary injury in 
adult rat spinal cord

 Exp Neurol 
184(1): 313-
25. x x

(rat) 
cytokines 
and 
chemokines

Inflam-
mation

O'Brien, 
M. F., L. 
G. 
Lenke, et 
al. 1994

Astrocyte response 
and transforming 
growth factor-beta 
localization in acute 
spinal cord injury

 Spine 
19(20): 2321-
9 x x

(rat) 
astrocyte 
activation

Inflam-
mation

Perry, V. 
H., P. B. 
Andersso
n, et al. 1993

Macrophages and 
Inflammation in the 
Central-Nervous-
System

 Trends in 
Neuroscienc
es 16(7): 268-
273.

macrophage, 
inflammation

Inflam-
mation

Piani, D., 
K. Frei, 
et al. 1993

Glutamate Uptake by 
Astrocytes Is Inhibited 
by Reactive Oxygen 
Intermediates but Not 
by Other Macrophage-
Derived Molecules 
Including Cytokines, 
Leukotrienes or 
Platelet-Activating-

 Journal of 
Neuroimmun
ology 48(1): 
99-104. x x x

role of 
macrophages
/cytokines in 
glutamate 
uptake

Inflam-
mation

Pineau, I. 
and S. 
Lacroix 2007

Proinflammatory 
cytokine synthesis in 
the injured mouse 
spinal cord: multiphasic 
expression pattern and 
identification of the cell 

 J Comp 
Neurol 
500(2): 267-
85. x x

(mouse) 
cytokines
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Resnick, 
D. K., S. 
H. 
Graham, 
et al. 1998

Role of 
cyclooxygenase 2 in 
acute spinal cord injury

 J 
Neurotrauma 
15(12): 1005-
13. x x

(rat) prosta-
glandins

Inflam-
mation

Rosenbe
rg, L. J., 
L. J. Zai, 
et al. 2005

Chronic alterations in 
the cellular composition 
of spinal cord white 
matter following 
contusion injury

 Glia 49(1): 
107-20. x x

density of 
oligodendroc
ytes, 
astrocytes, 
microglia, 
and 
macrophage

Inflam-
mation

Schnell, 
L., S. 
Fearn, et 
al. 1999

Acute inflammatory 
responses to 
mechanical lesions in 
the CNS: differences 
between brain and 
spinal cord

 European 
Journal of 
Neuroscienc
e 11(10): 
3648-3658. x x x

(rat) 
comparing 
TBI and SCI 
inflammatory 
response

Inflam-
mation

Skaper, 
S. D. 2003

Poly(ADP-ribose) 
polymerase-1 in acute 
neuronal death and 
inflammation - A 
strategy for 
neuroprotection

 Neuropro-
tective 
Agents 993: 
217-228. x x

Poly(ADP-
ribose) 
polymerase-1 
in acute 
neuronal 
death and 
inflammation

Inflam-
mation

Takahas
hi, S., M. 
Shibata, 
et al. 2000

Astroglial cell death 
induced by excessive 
influx of sodium ions

 European 
Journal of 
Pharmacolog
y 408(2): 127- x x x

astroglial 
death via 
sodium

Inflam-
mation

Takuma, 
K., A. 
Baba, et 
al 2004

 Astrocyte apoptosis: 
implications for 
neuroprotection

 Progress in 
Neurobiology 
72(2): 111-
127. x x

astrocyte 
apoptosis

Inflam-
mation

Taoka, 
Y., K. 
Okajima, 
et al. 1997

Role of neutrophils in 
spinal cord injury in the 
rat

 Neuroscienc
e 79(4): 1177-
82. x x

(rat) 
neutrophils

Inflam-
mation

Vela, J. 
M., A. 
Yanez, et 
al. 2002

Time course of 
proliferation and, 
elimination of 
microglia/macrophages 
in different 
neurodegenerative 
conditions

 Journal of 
Neurotrauma 
19(11): 1503-
1520. x x

microglia/ma
crophage 
time course

Necr-
Apop-
tosis

Green, 
D. and 
G. 
Kroemer 1998

The central 
executioners of 
apoptosis: caspases or 
mitochondria?

 Trends Cell 
Biol 8(7): 267-
71. x x

mitochondria 
and 
caspases in 
apoptosis

Necr-
Apop-
tosis

Bartus, 
R. T. 1997

The calpain hypothesis 
of neurodegeneration: 
Evidence for a 
common cytotoxic 
pathway

 Neuroscienti
st 3(5): 314-
327. x x

role of 
calpain
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Necr-
Apop-
tosis

Free 
Radicals

Barut, S., 
A. 
Canbolat
, et al. 1993

Lipid-Peroxidation in 
Experimental Spinal-
Cord Injury - Time-
Level Relationship

 Neurosurgic
al Review 
16(1): 53-59. x x

(rat) lipid 
peroxidation 
& treatment 
window

Necr-
Apop-
tosis

Barut, S., 
Y. A. 
Unlu, et 
al. 2005

The neuroprotective 
effects of z-DEVD.fmk, 
a caspase-3 inhibitor, 
on traumatic spinal 
cord injury in rats

 Surg Neurol 
64(3): 213-20 x x

(rat) lipid 
peroxidation/ 
time course

Necr-
Apop-
tosis

Beattie, 
M. S. 2004

Inflammation and 
apoptosis: linked 
therapeutic targets in 
spinal cord injury

 Trends Mol 
Med 10(12): 
580-3. x

inflammation 
& apoptosis/ 
treatments

Necr-
Apop-
tosis

Beattie, 
M. S., G. 
E. Her-
mann, et 
al. 2002

Cell death in models of 
spinal cord injury

 Spinal Cord 
Trauma: 
Regeneration
, Neural 
Repair and 
Functional 
Recovery 
137: 37-47. x

cell death 
models: 
apoptosis & 
necrosis

Necr-
Apop-
tosis

Bendel, 
O., I. A. 
Langmoe
n, et al. 2004

Crush injury induces 
NMDA-receptor-
dependent delayed 
nerve cell death in rat 
entorhinal-hippocampal 
slice cultures

 Brain Res 
1025(1-2): 35-
42. x x

NMDA-
induced early 
& late cell 
death

Necr-
Apop-
tosis

Braughle
r, J. M. 
and E. D. 
Hall 1992

Involvement of Lipid-
Peroxidation in Cns 
Injury

 Journal of 
Neurotrauma 
9: S1-S7. x x

lipid 
peroxidation/ 
oxygen 
radicals

Necr-
Apop-
tosis

Byrnes, 
K. R., B. 
A. 
Stoica, et 
al. 2007

Cell cycle activation 
contributes to post-
mitotic cell death and 
secondary damage 
after spinal cord injury

 Brain 130: 
2977-2992. x x

(rat) cell 
cycle 
activation, 
neuronal & 
oligodendrogl
ial apoptosis, 
glial scar, 
microglia

Necr-
Apop-
tosis

Free 
Radicals

Clausen, 
F., H. 
Lundqvis
t, et al. 2004

Oxygen free radical-
dependent activation of 
extracellular signal-
regulated kinase 
mediates apoptosis-
like cell death after 
traumatic brain injury

 Journal of 
Neurotrauma 
21(9): 1168-
1182. x x

(rat) 
apoptosis via 
free radicals

Necr-
Apop-
tosis

Crowe, 
M. J., J. 
C. 
Bresnah
an, et al. 1997

Apoptosis and delayed 
degeneration after 
spinal cord injury in 
rats and monkeys

 Nat Med 
3(1): 73-6. x x

(rat, monkey) 
apoptosis, 
oligodendroc
ytes, and 
demyelinatio
n
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Necr-
Apop-
tosis

Cullen, 
D. K. and 
M. C. 
LaPlaca 2006

Neuronal response to 
high rate shear 
deformation depends 
on heterogeneity of the 
local strain field

 J 
Neurotrauma 
23(9): 1304-
19. x x

cell viability 
vs shear 
deformation

Necr-
Apop-
tosis

Cullen, 
D. K. and 
M. C. 
LaPlaca 2006

The Effects of Shear 
vs. Compressive 
Loading in 3-D 
Neuronal-Astrocytic Co-
Cultures

Neurotrauma
, St. Louis, 
MO. x x

permeability 
vs death

Necr-
Apop-
tosis

Di 
Giovanni, 
S., V. 
Movsesy
an, et al. 2005

Cell cycle inhibition 
provides 
neuroprotection and 
reduces glial 
proliferation and scar 
formation after 
traumatic brain injury

 Proc Natl 
Acad Sci U S 
A 102(23): 
8333-8. x x

(rat) caspase 
& apoptosis 
& glial scar

Necr-
Apop-
tosis

Emery, 
E., P. 
Aldana, 
et al. 1998

Apoptosis after 
traumatic human spinal 
cord injury

 Journal of 
Neurosurgery 
89(6): 911-
920. x x

(human) 
apoptosis, 
oligodendroct
yes, caspase-
3

Necr-
Apop-
tosis

Farkas, 
O., J. 
Lifshitz, 
et al. 2006

Mechanoporation 
induced by diffuse 
traumatic brain injury: 
An irreversible or 
reversible response to 
injury?" Journal of 
Neuroscience 26(12): 
3130-3140. x x

(rat) 
mechanopor
ation/ 
membrane 
permeability

Necr-
Apop-
tosis

Farkas, 
O., R. 
Single-
ton, et al. 2004

Traumatic neuronal 
plasmalemmal 
disruption can lead to 
cell death not 
necessarily associated 
with concomitant 
calpain activation

 Journal of 
Neurotrauma 
21(9): 1291-
1291. x

membrane 
permeablity 
in cell death

Necr-
Apop-
tosis

Fujiki, 
M., Y. 
Furukaw
a, et al. 2005

Geranylgeranylacetone 
limits secondary injury, 
neuronal death, and 
progressive necrosis 
and cavitation after 
spinal cord injury

 Brain Res 
1053(1-2): 
175-84. x x

(rat) 
neutrophils;  
lesion size/ 
volume

Necr-
Apop-
tosis

Galle, B., 
H. 
Ouyang, 
et al. 2007

Correlations between 
tissue-level stresses 
and strains and cellular 
damage within the 
guinea pig spinal cord 
white matter

 Journal of 
Biomechanic
s 40(13): 
3029-3033. x x

(guinea pig) 
cellular 
damage/per
meability
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Necr-
Apop-
tosis

Goetz, 
P., A. 
Blamire, 
et al. 2004

Increase in apparent 
diffusion coefficient in 
normal appearing white 
matter following human 
traumatic brain injury 
correlates with injury 
severity

 Journal of 
Neurotrauma 
21(6): 645-
654. x x

(human) 
vascular 
permeability

Necr-
Apop-
tosis

Free 
Radicals

Hall, E. 
D. 1991

Inhibition of lipid 
peroxidation in CNS 
trauma

 J 
Neurotrauma 
8 Suppl 1: 
S31-40 x

lipid 
peroxidation 
& treatment 
window

Necr-
Apop-
tosis

Hartman
n, A., S. 
Hunot, et 
al. 2000

Caspase-3: A 
vulnerability factor and 
final effector in 
apoptotic death of 
dopaminergic neurons 
in Parkinson's disease

 Proc Natl 
Acad Sci U S 
A 97(6): 2875-
80. x

(human) 
caspase-3 
and 
apoptosis

Necr-
Apop-
tosis

Inflam-
mation

Hu, S., P. 
K. 
Peterson
, et al. 1997

Cytokine-mediated 
neuronal apoptosis

 Neurochem 
Int 30(4-5): 
427-31. x x

(human) 
cytokines 
and nitric 
oxide

Necr-
Apop-
tosis

Inflam-
mation

Kang, S. 
K., J. E. 
Yeo, et 
al. 2007

Cytoplasmic extracts 
from adipose tissue 
stromal cells alleviates 
secondary damage by 
modulating apoptosis 
and promotes 
functional recovery 
following spinal cord 
injury

 Brain Pathol 
17(3): 263-
75. x x

apoptosis 
inhibition

Necr-
Apop-
tosis

Katoh, 
K., T. 
Ikata, et 
al. 1996

Induction and its 
spread of apoptosis in 
rat spinal cord after 
mechanical trauma

 Neuroscienc
e Letters 
216(1): 9-12. x x

(rat) 
induction of 
apoptosis

Necr-
Apop-
tosis

Keane, 
R. W., A. 
R. Davis, 
et al. 2006

Inflammatory and 
apoptotic signaling 
after spinal cord injury

 J 
Neurotrauma 
23(3-4): 335-
44. x

TNF, 
inflammation 
& apoptotic 
signaling

Necr-
Apop-
tosis Other

Li, G. L., 
G. 
Brodin, 
et al. 1996

Apoptosis and 
expression of Bcl-2 
after compression 
trauma to rat spinal 
cord

 Journal of 
Neuropatholo
gy and 
Experimental 
Neurology 
55(3): 280-
289. x x

(rat) 
oligodendroc
yte 
apoptosis/ 
Bcl-2

Necr-
Apop-
tosis

Ling, X. 
and D. 
Liu 2007

Temporal and spatial 
profiles of cell loss after 
spinal cord injury: 
Reduction by a 
metalloporphyrin

 J Neurosci 
Res 85(10): 
2175-85. x x

temporal & 
spatial 
profiles of 
cell loss
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Necr-
Apop-
tosis

Liu-
Snyder, 
P., M. P. 
Logan, et 
al. 2007

Neuroprotection from 
secondary injury by 
polyethylene glycol 
requires its 
internalization

 J Exp Biol 
210(Pt 8): 
1455-62. x x

membrane 
permeability/ 
repair by 
polyethylene 
glycol

Necr-
Apop-
tosis

Liu, N. 
K., Y. P. 
Zhang, et 
al. 2006

A novel role of 
phospholipase A2 in 
mediating spinal cord 
secondary injury

 Ann Neurol 
59(4): 606-
19. x x x

role of 
phospholipas
e (PLA2)

Necr-
Apop-
tosis

Lu, J., K. 
W. 
Ashwell, 
et al. 2000

Advances in secondary 
spinal cord injury: role 
of apoptosis

 Spine 
25(14): 1859-
66. x

role of 
apoptosis

Necr-
Apop-
tosis

Ray, S. 
K., S. 
Karmaka
r, et al. 2006

Inhibition of calpain 
and caspase-3 
prevented apoptosis 
and preserved 
electrophysiological 
properties of voltage-
gated and ligand-gated 
ion channels in rat 
primary cortical 
neurons exposed to 
glutamate

 Neuroscienc
e 139(2): 577-
595. x x

caspase-3 & 
apoptosis in 
glutamate 
toxicity

Necr-
Apop-
tosis

Ray, S. 
K., G. G. 
Wilford, 
et al. 1999

Calpeptin and 
methylprednisolone 
inhibit apoptosis in rat 
spinal cord injury

 Ann N Y 
Acad Sci 
890: 261-9. x x

(rat) role of 
calpain/ 
treatments

Necr-
Apop-
tosis

Free 
Radicals

Scholpp, 
J., J. K. 
Schubert
, et al. 2004

Lipid peroxidation early 
after brain injury

 Journal of 
Neurotrauma 
21(6): 667-
677. x x

(human) lipid 
peroxidation

Necr-
Apop-
tosis Other

Shi, R. 
and J. 
Whitebon
e 2006

Conduction deficits and 
membrane disruption 
of spinal cord axons as 
a function of magnitude 
and rate of strain

 Journal of 
Neurophysiol
ogy 95(6): 
3384-3390. x

(guinea pig) 
membrane 
permeability; 
axonal 
damage

Necr-
Apop-
tosis Other Shi, R. Y. 2004

The dynamics of 
axolemmal disruption 
in guinea pig spinal 
cord following 
compression

 Journal of 
Neurocytolog
y 33(2): 203-
211. x x

(guinea pig) 
membrane 
permeability 
and 
conduction 
deficits

Necr-
Apop-
tosis Other

Shuman, 
S. L., J. 
C. 
Bresnah
an, et al. 1997

Apoptosis of microglia 
and oligodendrocytes 
after spinal cord 
contusion in rats

 Journal of 
Neuroscienc
e Research 
50(5): 798-
808. x x

(rat) 
apoptosis of 
oligodendroc
ytes/role of 
demyelin-
ation
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Necr-
Apop-
tosis

Srinivasa
n, A., K. 
A. Roth, 
et al. 1998

In situ 
immunodetection of 
activated caspase-3 in 
apoptotic neurons in 
the developing nervous 
system

 Cell Death 
Differ 5(12): 
1004-16. x

caspase-3 
and 
apoptosis

Necr-
Apop-
tosis

Sullivan, 
P. G., A. 
J. Bruce-
Keller, et 
al. 1999

Exacerbation of 
damage and altered 
NF-kappaB activation 
in mice lacking tumor 
necrosis factor 
receptors after 
traumatic brain injury

 J Neurosci 
19(15): 6248-
56. x x

TNFalpha 
neuro-
protection

Necr-
Apop-
tosis

Sullivan, 
P. G., J. 
N. Keller, 
et al. 2002

Cytochrome c release 
and caspase activation 
after traumatic brain 
injury

 Brain 
Research 
949(1-2): 88-
96. x x

cytochrome-c 
and caspase-
3; time line

Necr-
Apop-
tosis

Tarabal, 
O., J. 
Caldero, 
et al. 2005

Protein retention in the 
endoplasmic reticulum, 
blockade of 
programmed cell death 
and autophagy 
selectively occur in 
spinal cord 
motoneurons after 
glutamate receptor-
mediated injury

 Molecular 
and Cellular 
Neuroscienc
e 29(2): 283-
298. x x

(chick 
embryo) 
NMDA and 
cell death

Necr-
Apop-
tosis

Inflam-
mation

Tian, D. 
S., M. J. 
Xie, et al. 2007

Cell cycle inhibition 
attenuates microglia 
induced inflammatory 
response and 
alleviates neuronal cell 
death after spinal cord 
injury in rats

 Brain 
Research 
1135(1): 177-
185. x x

(rat) cell 
cycle & 
apoptosis; 
astroglial 
scar

Necr-
Apop-
tosis

Inflam-
mation

Tian, D. 
S., Z. Y. 
Yu, et al. 2006

Suppression of 
astroglial scar 
formation and 
enhanced axonal 
regeneration 
associated with 
functional recovery in a 
spinal cord injury rat 
model by the cell cycle 
inhibitor olomoucine

 Journal of 
Neuro-
science 
Research 
84(5): 1053-
1063. x x

(rat) 
astroglial 
scar 
relationship 
to cell cycle; 
treatment 
with 
olomoucine

Necr-
Apop-
tosis

Vaquero, 
J., M. 
Zurita, et 
al. 2006

Early administration of 
methylprednisolone 
decreases apoptotic 
cell death after spinal 
cord injury

 Histology 
and 
Histopatholo
gy 21(10): 
1091-1102. x x

(rat) 
apoptosis & 
methylpredni
solone
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Necr-
Apop-
tosis

Villapol, 
S., L. 
Acarin, et 
al. 2007

Distinct spatial and 
temporal activation of 
caspase pathways in 
neurons and glial cells 
after excitotoxic 
damage to the 
immature rat brain

 J Neurosci 
Res 85(16): 
3545-56. x x

(rat) spatial & 
temporal 
caspase 
activation

Necr-
Apop-
tosis

Excito-
toxicity

Wingrave
, J. M., K. 
E. 
Schaech
er, et al. 2003

Early induction of 
secondary injury 
factors causing 
activation of calpain 
and mitochondria-
mediated neuronal 
apoptosis following 
spinal cord injury in 
rats

 J Neurosci 
Res 73(1): 95-
104. x x

(rats) 
relationship 
between 
calpain, 
calcium & 
mito-
chondrial 
damage

Necr-
Apop-
tosis

Yakovlev, 
A. G. and 
A. I. 
Faden 2004

Mechanisms of neural 
cell death: implications 
for development of 
neuroprotective 
treatment strategies

 NeuroRx 
1(1): 5-16.

cell death 
mechanisms/ 
neuroprotecti
on

Other

Azanchi, 
R., G. 
Bernal, 
et al. 2004

Combined 
demyelination plus 
Schwann cell 
transplantation therapy 
increases spread of 
cells and axonal 
regeneration following 
contusion injury

 Journal of 
Neurotrauma 
21(6): 775-
788. x x x

demyelinatio
n and 
Schwann cell 
transplantatio
n

Other

Churchw
ell, K. B., 
S. H. 
Wright, et 
al. 1996

NMDA receptor 
activation inhibits 
neuronal volume 
regulation after 
swelling induced by 
veratridine-stimulated 
Na+ influx in rat cortical 
cultures

 J Neurosci 
16(23): 7447-
57. x x

cell volume 
regulation

Other

Fawcett, 
J. W. and 
R. A. 
Asher 1999

The glial scar and 
central nervous system 
repair

 Brain 
Research 
Bulletin 
49(6): 377-
391. x glial scar

Other

Fitch, M. 
T., C. 
Doller, et 
al. 1999

Cellular and molecular 
mechanisms of glial 
scarring and 
progressive cavitation: 
In vivo and in vitro 
analysis of 
inflammation-induced 
secondary injury after 
CNS trauma

 Journal of 
Neuro-
science 19 x x

glial scarring, 
cavitation & 
inflammation
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Other

Fuller, M. 
L., A. K. 
DeChant, 
et al. 2007

Bone morphogenetic 
proteins promote 
gliosis in demyelinating 
spinal cord lesions

 Ann Neurol 
62(3): 288-
300. x x

(rat) gliosis 
and bone 
morphogenet
ic proteins

Other

Gaviria, 
M., J. M. 
Bonny, et 
al. 2006

Time course of acute 
phase in mouse spinal 
cord injury monitored 
by ex vivo quantitative 
MRI

 Neurobiol 
Dis 22(3): 
694-701. x x

(mouse) time 
course acute 
phase sci via 
MRI

Other

Guest, J. 
D., E. D. 
Hiester, 
et al. 2005

Demyelination and 
Schwann cell 
responses adjacent to 
injury epicenter cavities 
following chronic 
human spinal cord 
injury

 Exp Neurol 
192(2): 384-
93. x x

(human) 
demyelinatio
n

Other

Gupta, A. 
K., D. A. 
Zygun, et 
al. 2004

Extracellular brain pH 
and outcome following 
severe traumatic brain 
injury

 Journal of 
Neurotrauma 
21(6): 678-
684. x x

(human) 
extracellular 
pH

Other

Hagg, T. 
and M. 
Oudega 2006

Degenerative and 
spontaneous 
regenerative processes 
after spinal cord injury

 Journal of 
Neurotrauma 
23(3-4): 264-
280. x

axonal 
degeneration 
and 
regeneration

Other

Lovas, 
G., N. 
Szilagyi, 
et al. 2000

Axonal changes in 
chronic demyelinated 
cervical spinal cord 
plaques

 Brain 123 ( 
Pt 2): 308-17. x

(human) 
axonal 
damage

Other

McDonal
d, J. W. 
and V. 
Belegu 2006

Demyelination and 
remyelination after 
spinal cord injury

 J 
Neurotrauma 
23(3-4): 345-
59. x

demyelin-
ation and 
remyelin-
ation

Other

McGaver
n, D. B., 
P. D. 
Murray, 
et al. 1999

Quantitation of spinal 
cord demyelination, 
remyelination, atrophy, 
and axonal loss in a 
model of progressive 
neurologic injury

 J Neurosci 
Res 58(4): 
492-504. x x

demyelinatio
n, 
remyelination 
& axonal loss

Other

Mitchell, 
C. S., S. 
S. Feng, 
et al. 2007

An analysis of 
glutamate spillover on 
the N-methyl-D-
aspartate receptors at 
the cerebellar 
glomerulus

 J Neural Eng 
4(3): 276-82.

NMDA and 
glutamate 
relationships
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Other

Park, E., 
A. A. 
Velumian
, et al. 2004

The role of 
excitotoxicity in 
secondary 
mechanisms of spinal 
cord injury: A review 
with an emphasis on 
the implications for 
white matter 
degeneration

 Journal of 
Neurotrauma 
21(6): 754-
774. x

demyelin-
ation

Other

Pettus, 
E. H. and 
J. T. 
Povlisho
ck 1996

Characterization of a 
distinct set of intra-
axonal ultrastructural 
changes associated 
with traumatically 
induced alteration in 
axolemmal 
permeability

 Brain 
Research 
722(1-2): 1-
11. x x

(cat) axonal 
damage

Other
Saftenku, 
E. E. 2005

Modeling of slow 
glutamate diffusion and 
AMPA receptor 
activation in the 
cerebellar glomerulus

 J Theor Biol 
234(3): 363-
82.

AMPA and 
glutamate 
relationships

Other

Schwab, 
M. E. 
and D. 
Bartholdi 1996

Degeneration and 
regeneration of axons 
in the lesioned spinal 
cord

 Physiol Rev 
76(2): 319-
70. x

regeneration 
of axons

Other

Totoiu, 
M. O. 
and H. S. 
Keirstead 2005

Spinal cord injury is 
accompanied by 
chronic progressive 
demyelination

 J Comp 
Neurol 
486(4): 373-
83. x x

(rat) 
demyelin-
ation

Other

Vick, R. 
S., T. J. 
Neuberg
er, et al. 1992

Role of adult 
oligodendrocytes in 
remyelination after 
neural injury

 J 
Neurotrauma 
9 Suppl 1: 
S93-103. x x

remyelin-
ation by oligo-
dendrocytes

Other
Waxman, 
S. G. 1992

Demyelination in spinal 
cord injury and multiple 
sclerosis: what can we 
do to enhance 
functional recovery?

J 
Neurotrauma 
9 Suppl 1: 
S105-17. x

demyelin-
ation

Other

Waxman, 
S. G., B. 
R. 
Ransom, 
et al. 1991

Nonsynaptic 
Mechanisms of Ca2+-
Mediated Injury in Cns 
White Matter

 Trends in 
Neuroscienc
es 14(10): 
461-468. x

conduction of 
CNS white 
matter

Other

Xu, R. 
and C. 
Luo 2001

Relationship between 
changes of N-methyl-D-
aspartate receptor 
activity and brain 
edema after brain 
injury in rats

 Chin J 
Traumatol 
4(3): 135-8. x x

volume 
regulation/ 
edema 
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Other

Zhang, 
S. X., J. 
W. 
Geddes, 
et al. 2005

X-irradiation reduces 
lesion scarring at the 
contusion site of adult 
rat spinal cord

 Histology 
and 
Histopatholo
gy 20(2): 519-
530. x x

(rat) lesion 
scarring
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Axon 
Trans-
port

Ener-
getic

Hollenbeck, 
P. J., D. 
Bray, et al 1985

 Effects of the 
uncoupling agents 
FCCP and CCCP 
on the saltatory 
movements of 
cytoplasmic 
organelles

 Cell Biol 
Int Rep 
9(2): 193-
9 x

transport 
correlation to 
mitochondrial 
potential 
and/or ATP

Axon 
Trans-
port

Ener-
getic

Miller, K. E. 
and M. P. 
Sheetz 2004

 Axon mitochondrial 
transport and 
potential are 
correlated

 J Cell 
Sci 
117(Pt 
13): 
2791-
804 x

mitochondrial 
transport and 
its role in 
potential, 
apoptosis

Axon 
Trans-
port

Excito-
toxicity

Ilieva, H. 
S., K. 
Yamanaka, 
et al 2008

 Mutant dynein 
(Loa) triggers 
proprioceptive axon 
loss that extends 
survival only in the 
SOD1 ALS model 
with highest motor 
neuron death

 Proc 
Natl 
Acad Sci 
U S A 
105(34): 
12599-
604 F Loa

Loa dynein 
and their 
paradoxical 
effect on ALS

Axon 
Trans-
port

Excito-
toxicity

Kanai, A. 
J., L. L. 
Pearce, et 
al 2001

Identification of a 
neuronal nitric 
oxide synthase in 
isolated cardiac 
mitochondria using 
electrochemical 
detection. x

inhibition of 
transport by 
calcium

Axon 
Trans-
port

Excito-
toxicity

Kato, S., M. 
Kato, et al 2005

 Redox system 
expression in the 
motor neurons in 
amyotrophic lateral 
sclerosis (ALS): 
immunohistochemic
al studies on 
sporadic ALS, 
superoxide 
dismutase 1 
(SOD1)-mutated 
familial ALS, and 
SOD1-mutated ALS 
animal models

 Acta 
Neuropa
thol 
110(2): 
101-12 F/S invivo

hu-
man

expression of 
redox genes
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Axon 
Trans-
port

Excito-
toxicity

Kendal, W. 
S., Z. J. 
Koles, et al 1983

Oscillatory motion 
of intra-Axon 
organelles of 
Xenopus laevis 
following inhibition 
of their rapid 
transport

J Physiol 
345: 501-
13 x

inhibition of 
transport by 
calcium

Axon 
Trans-
port Genetic

Meyer, M. 
A. and N. T. 
Potter 1995

 Sporadic ALS and 
chromosome 22: 
evidence for a 
possible 
neurofilament gene 
defect

 Muscle 
Nerve 
18(5): 
536-9 S invivo

hu-
man

defect in NF-H 
causes SALS

Axon 
Trans-
port Genetic

Pantelidou, 
M., S. E. 
Zographos, 
et al 2007

 Differential 
expression of 
molecular motors in 
the motor cortex of 
sporadic ALS." 
Neurobiol Dis 
26(3): 577-89 S invivo

hu-
man x

reduction of 
KIF3Abeta 
protein levels

Axon 
Trans-
port Multiple

Gonatas, 
N. K., A. 
Stieber, et 
al 2006

 Fragmentation of 
the Golgi apparatus 
in 
neurodegenerative 
diseases and cell 
death

 J Neurol 
Sci 
246(1-
2): 21-30 F invivo

G93
A x

golgi aparatus 
fragmentation 
associated w/ 
Axon transport 
defects & 
other signs of 
neurodegener

Axon 
Trans-
port

Necro-
Apop-
tosis

Xue, L., G. 
C. Fletcher, 
et al. 2001

Mitochondria are 
selectively 
eliminated from 
eukaryotic cells 
after blockade of 
caspases during 
apoptosis

 Curr 
Biol 
11(5): 
361-5 x

correlation 
between 
transport and 
apoptosis

Axon 
Trans-
port None

Kieran, D., 
M. 
Hafezparas
t, et al 2005

 A mutation in 
dynein rescues 
Axon transport 
defects and 
extends the life 
span of ALS mice

 J Cell 
Biol 
169(4): 
561-7 F invivo Loa x

impaired Axon 
transport

Axon 
Trans-
port None

Tateno, M., 
S. Kato, et 
al 2008

Mutant SOD1 
impairs Axon 
transport of choline 
acetyltransferase 
and acetylcholine 
release by 
sequestering KAP3

Hum Mol 
Genet F invivo

G93
A x

choline 
acetyltransfer
ase transport 
impairment, 
KAP3
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Axon 
Trans-
port None

Teuchert, 
M., D. 
Fischer, et 
al 2006

A dynein mutation 
attenuates motor 
neuron 
degeneration in 
SOD1(G93A) mice

 Exp 
Neurol 
198(1): 
271-4 F invivo

G93
A/Lo
a x

role of 
retrograde 
transport in 
ALS

Axon 
Trans-
port None

Zhang, F., 
A. L. Strom, 
et al 2007

 Interaction 
between familial 
amyotrophic lateral 
sclerosis (ALS)-
linked SOD1 
mutants and the 
dynein complex

 J Biol 
Chem 
282(22): 
16691-9 F invitro

G93
A & 
G85
R x

dynein, 
retrograde 
transport

Axon 
Trans-
port

Prot-
eomic

Wong, N. 
K., B. P. 
He, et al 2000

 Characterization of 
neuronal 
intermediate 
filament protein 
expression in 
cervical spinal 
motor neurons in 
sporadic 
amyotrophic lateral 
sclerosis (ALS)

 J Neuro-
pathol 
Exp 
Neurol 
59(11): 
972-82 S invivo

hu-
man

NF-M, NF-H, 
tubuliln, 
aggregates

Chem-
istry ?

Ludolph, A. 
C. 2006

 Matrix 
metalloproteinases--
a conceptional 
alternative for 
disease-modifying 
strategies in 
ALS/MND?

 Exp 
Neurol 
201(2): 
277-80 ? ? ?

metalloprotein
ases

Chem-
istry

Free 
Radical

Bredesen, 
D. E., M. 
Wiedau-
Pazos, et 
al. 1996

 Cell death 
mechanisms in 
ALS." Neurology 
47(4 Suppl 2): S36-
8 F invitro

G93
A x

copper 
chelators, 
diethyldithioca
rbamate and 
penicillamine, 
inhibited the 
mutants' 
peroxidase 
activity,

Chem-
istry

Free 
Radical

Carroll, M. 
C., C. E. 
Outten, et 
al 2006

 The effects of 
glutaredoxin and 
copper activation 
pathways on the 
disulfide and 
stability of Cu,Zn 
superoxide 
dismutase

 J Biol 
Chem 
281(39): 
28648-
56 F both A4V x

balance b/w 
cellular 
reductant 
glutaredoxin 
and copper 
activation 
pathways 



332

Cat-
egory 1

Cat-
egory 2 Author Year Title Journal A

LS
 ty

pe

Ex
p 

Ty
pe

M
od

el

SO
D

R
/O

Factor 
Description

Chem-
istry

Free 
Radical

Tokuda, E., 
S. Ono, et 
al 2008

 Ammonium 
tetrathiomolybdate 
delays onset, 
prolongs survival, 
and slows 
progression of 
disease in a mouse 
model for 
amyotrophic lateral 
sclerosis

 Exp 
Neurol 
213(1): 
122-8 F invivo

G93
A x

aberrant 
chemisty, lipid 
peroxidation

Chem-
istry Genetic

Banci, L., I. 
Bertini, et al 2008

 SOD1 and 
amyotrophic lateral 
sclerosis: mutations 
and oligomerization

 PLoS 
ONE 
3(2): 
e1677 F invivo mult x

SOD1 mutant 
oligomerizatio
n

Chem-
istry Genetic

Banci, L., I. 
Bertini, et al 2007

 Metal-free 
superoxide 
dismutase forms 
soluble oligomers 
under physiological 
conditions: a 
possible general 
mechanism for 
familial ALS

 Proc 
Natl 
Acad Sci 
U S A 
104(27): 
11263-7 F invivo

mult/ 
hu-
man x

cysteine role 
in 
ollgomerizatio
n in SOD1 
aggregation

Chem-
istry None

Tiwari, A., 
Z. Xu, et al 2005

Aberrantly 
increased 
hydrophobicity 
shared by mutants 
of Cu,Zn-
superoxide 
dismutase in 
familial amyotrophic 
lateral sclerosis

 J Biol 
Chem 
280(33): 
29771-9 F invivo mult x

cellular 
disulfide 
reducing 
environment 
and zinc loss 
converts/desta
bilizes SOD1

Chem-
istry None

Watanabe, 
S., S. 
Nagano, et 
al 2007

 Increased affinity 
for copper 
mediated by 
cysteine 111 in 
forms of mutant 
superoxide 
dismutase 1 linked 
to amyotrophic 
lateral sclerosis

 Free 
Radic 
Biol Med 
42(10): 
1534-42 F invivo A4V x

stability of 
SOD1
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Chem-
istry

Proteom
ic

Furukawa, 
Y. and T. V. 
O'Halloran 2006

  Posttranslational 
modifications in 
Cu,Zn-superoxide 
dismutase and 
mutations 
associated with 
amyotrophic lateral 
sclerosis

 Antioxid 
Redox 
Signal 
8(5-6): 
847-67 F

inviv
o ? x

role of SOD1 
in aggregates

Chem-
istry

Proteom
ic

Nordlund, 
A. and M. 
Oliveberg 2006

 Folding of Cu/Zn 
superoxide 
dismutase 
suggests structural 
hotspots for gain of 
neurotoxic function 
in ALS: parallels to 
precursors in 
amyloid disease

 Proc 
Natl 
Acad Sci 
U S A 
103(27): 
10218-
23 F invivo ? x

misfolding of 
SOD w/ and 
w/ 
aggregation

Ener-
getic None

Niessen, H. 
G., G. 
Debska-
Vielhaber, 
et al 2007

 Metabolic 
progression 
markers of 
neurodegeneration 
in the transgenic 
G93A-SOD1 
mouse model of 
amyotrophic lateral 
sclerosis

 Eur J 
Neurosci 
25(6): 
1669-77 F invivo

G93
A x

N-acetyl 
aspartate, 
glutamine, 
GABA; 
metabolic 
markers

Ener-
getic

Inflam-
mation

Cassina, P., 
A. Cassina, 
et al 2008

 Mitochondrial 
dysfunction in 
SOD1G93A-
bearing astrocytes 
promotes motor 
neuron 
degeneration: 
prevention by 
mitochondrial-
targeted 
antioxidants

 J 
Neurosci 
28(16): 
4115-22. F invivo

G93
A x

mitochondrial 
dysfunction in 
astrocytes; 
help w/ anti-
oxidants 

Ener-
getic

Excito-
toxicity Beal, M. F. 1992

 Does impairment 
of energy 
metabolism result 
in excitotoxic 
neuronal death in 
neurodegenerative 
illnesses?

 Ann 
Neurol 
31(2): 
119-30 F/S x

mitochondrial 
energy 
metabolism & 
glutamate
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Ener-
getic

Excito-
toxicity

Nicholls, D. 
G., S. 
Vesce, et al 2003

 Interactions 
between 
mitochondrial 
bioEnergetic and 
cytoplasmic 
calcium in cultured 
cerebellar granule 
cells

 Cell 
Calcium 
34(4-5): 
407-24 invitro x

Ca, AMPA, 
NMDA, & 
mitochondrial 
function

Ener-
getic

Free 
Radical

Krishnan, 
J., K. 
Vannuvel, 
et al 2008

 Over-expression of 
Hsp27 does not 
influence disease in 
the mutant 
SOD1(G93A) 
mouse model of 
amyotrophic lateral 
sclerosis

 J 
Neuroch
em 
106(5): 
2170-83 invivo

G93
A x

single 
transgenic 
hHsp27 were 
protected f/ 
ischemia but 
SOD1 were 
not

Ener-
getic

Free 
Radical

Lev, N., D. 
Ickowicz, et 
al 2008

 DJ-1 Changes in 
G93A-SOD1 
Transgenic Mice: 
Implications for 
Oxidative Stress in 
ALS

 J Mol 
Neurosci
. F invivo

G93
A x

correlation b/w 
oxidative 
stress and 
mitochondrial 
dysfunction

Ener-
getic

Free 
Radical

Mattiazzi, 
M., M. 
D'Aurelio, 
et al 2002

 Mutated human 
SOD1 causes 
dysfunction of 
oxidative 
phosphorylation in 
mitochondria of 
transgenic mice

 J Biol 
Chem 
277(33): 
29626-
33 F invivo

G93
A x

Mitochondrial 
respiration, 
electron 
transfer chain, 
ATP, 
lipid/protein 
oxidation

Ener-
getic Genetic

Ferraiuolo, 
L., P. R. 
Heath, et al 2007

 Microarray 
analysis of the 
cellular pathways 
involved in the 
adaptation to and 
progression of 
motor neuron injury 
in the SOD1 G93A 
mouse model of 
familial ALS

J 
Neurosci 
27(34): 
9201-19 F invivo

G93
A x

downregulatio
n of metabolic 
function

Ener-
getic

Inflam-
mation

Ellis, D. Z., 
J. Rabe, et 
al 2003

 Global loss of 
Na,K-ATPase and 
its nitric oxide-
mediated regulation 
in a transgenic 
mouse model of 
amyotrophic lateral 
sclerosis

 J 
Neurosci 
23(1): 43-
51 F invivo

G93
A x

losses and 
dysfunction of 
Na-K-ATP 
pump
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Ener-
getic Multiple

Kaal, E. C., 
A. S. Vlug, 
et al 2000

 Chronic 
mitochondrial 
inhibition induces 
selective 
motoneuron death 
in vitro: a new 
model for 
amyotrophic lateral 
sclerosis

 J 
Neuroch
em 
74(3): 
1158-65 invitro x

Free Radical, 
AMPA, ATP; 
malonate-
induced MN 
death

Ener-
getic Multiple

Mattson, M. 
P., W. A. 
Pedersen, 
et al 1999

 Cellular and 
molecular 
mechanisms 
underlying 
perturbed energy 
metabolism and 
neuronal 
degeneration in 
Alzheimer's and 
Parkinson's 
diseases

 Ann N Y 
Acad Sci 
893: 154-
75 x

oxidative 
stress disrupts 
energy 
metabolism, 
glu transport

Ener-
getic

Necro-
Apoptos
is

Fornai, F., 
P. Longone, 
et al 2008

 Lithium delays 
progression of 
amyotrophic lateral 
sclerosis

 Proc 
Natl 
Acad Sci 
U S A 
105(6): 
2052-7 F invivo

G93
A x

lithium 
reduced the 
slow necrosis 
by 
mitochondrial 
vacuolization 

Ener-
getic

Necro-
Apop-
tosis

Kirkinezos, 
I. G., S. R. 
Bacman, et 
al 2005

 Cytochrome c 
association with the 
inner mitochondrial 
membrane is 
impaired in the 
CNS of G93A-
SOD1 mice

 J 
Neurosci 
25(1): 
164-72 F invivo

G93
A x

role of 
cytochrome c

Ener-
getic

Necro-
Apop-
tosis

Kong, J. 
and Z. Xu 1998

 Massive 
mitochondrial 
degeneration in 
motor neurons 
triggers the onset 
of amyotrophic 
lateral sclerosis in 
mice expressing a 
mutant SOD1

 J 
Neurosci 
18(9): 
3241-50 F invivo

G93
A x

mitochondrial 
vacuolization 
occurs before 
MN death
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Ener-
getic None

Browne, S. 
E., L. Yang, 
et al 2006

 Bioenergetic 
abnormalities in 
discrete cerebral 
motor pathways 
presage spinal cord 
pathology in the 
G93A SOD1 mouse 
model of ALS

 Neurobi
ol Dis 
22(3): 
599-610 F invivo

G93
A x

glucose 
impairment; 
brain 
degeneration 
primary to 
spinal cord

Ener-
getic None

Mali, Y. and 
N. Zisapels 2008

 Gain of interaction 
of ALS-linked G93A 
superoxide 
dismutase with 
cytosolic malate 
dehydrogenase

 Neurobi
ol Dis 
32(1): 
133-41 F ?

G93
A x

Mitochondrial 
NADH/NAD+ 
ratio is also 
elevated; 
higher lactate 
levels

Ener-
getic None

Wendt, S., 
A. 
Dedeoglu, 
et al 2002

 Reduced creatine 
kinase activity in 
transgenic 
amyotrophic lateral 
sclerosis mice

 Free 
Radic 
Biol Med 
32(9): 
920-6 F invivo

G93
A x

CK activity 
decreased to 
49% and in 
mitochondrial 
fractions to 
67%

Ener-
getic None

Wiedeman
n, F. R., G. 
Manfredi, et 
al 2002

 Mitochondrial DNA 
and respiratory 
chain function in 
spinal cords of ALS 
patients." J 
Neurochem 80(4): 
616-25. F/S invivo

hu-
man x

respiratory 
chain, 
mitochondrial 
decrease, 
DNA

Ener-
getic

Prot-
eomic

Higgins, C. 
M., C. 
Jung, et al 2003

 ALS-associated 
mutant SOD1G93A 
causes 
mitochondrial 
vacuolation by 
expansion of the 
intermembrane 
space and by 
involvement of 
SOD1 aggregation 
and peroxisomes

 BMC 
Neurosci 
4: 16

mitochondrial 
vacuolization, 
degeneration, 
leakeate, and 
aggregation

Ener-
getic

Prot-
eomic

Xu, Z., C. 
Jung, et al 2004

 Mitochondrial 
degeneration in 
amyotrophic lateral 
sclerosis

 J 
Bioenerg 
Biomem
br 36(4): 
395-9 F invivo ? x

lysosomes, 
peroxisomes, 
mitochondria, 
vacuolization
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Ener-
getic

Sys-
temic

Dupuis, L., 
J. L. 
Gonzalez 
de Aguilar, 
et al 2004

 Mitochondria in 
amyotrophic lateral 
sclerosis: a trigger 
and a target

 Neurod
egener 
Dis 1(6): 
245-54 F x

mitochdondrial 
dysfunction in 
motoneurons 
& systemic

Ener-
getic

Sys-
temic

Echaniz-
Laguna, A., 
J. Zoll, et al 2002

Mitochondrial 
respiratory chain 
function in skeletal 
muscle of ALS 
patients

 Ann 
Neurol 
52(5): 
623-7 S

hu-
man

mitochdondrial 
dysfunction in 
motoneurons 
but not 
systemic in 
SALS

Ener-
getic Clinical

Bucher, S., 
K. E. 
Braunstein, 
et al 2007

 Vacuolization 
correlates with spin-
spin relaxation time 
in motor brainstem 
nuclei and 
behavioural tests in 
the transgenic 
G93A-SOD1 
mouse model of 
ALS

 Eur J 
Neurosci 
26(7): 
1895-
901 F invivo

G93
A x

mitochondrial 
vacuolization

Ener-
getic Clinical

Pena-
Altamira, 
E., C. 
Crochemor
e, et al 2005

 Neurochemical 
correlates of 
differential 
neuroprotection by 
long-term dietary 
creatine 
supplementation

 Brain 
Res 
1058(1-
2): 183-8 F invivo

G93
A x

 creatine 
supplementati
on increased 
the activity of 
the 
GABAergic 
enzyme, 
glutamate 
decarboxylase
,

Ener-
getic Genetic

Fukada, K., 
F. Zhang, et 
al 2004

 Mitochondrial 
proteomic analysis 
of a cell line model 
of familial 
amyotrophic lateral 
sclerosis

 Mol Cell 
Proteomi
c 3(12): 
1211-23 F invitro

G93
A x

role of 
mitochondrial 
proteins, such 
as VDAC2

Excito-
toxicity

Axon 
Trans-
port

Deitch, J. 
S., G. M. 
Alexander, 
et al 2002

 GLT-1 glutamate 
transporter levels 
are unchanged in 
mice expressing 
G93A human 
mutant SOD1

 J Neurol 
Sci 
193(2): 
117-26 F invivo

G93
A x

GLT-1 
glutamate 
transporters; 
change in 
mobility/distrib
ution
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Excito-
toxicity

Ener-
getic

Andries, 
M., P. Van 
Damme, et 
al. 2007

 Ivermectin inhibits 
AMPA receptor-
mediated 
excitotoxicity in 
cultured motor 
neurons and 
extends the life 
span of a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Neurobi
ol Dis 
25(1): 8-
16 F invivo

G93
A x

excitotoxic 
protection f/ 
AMPA by ATP, 
P2X4 receptor

Excito-
toxicity

Ener-
getic

Bittigau, P. 
and C. 
Ikonomidou 1997

 Glutamate in 
neurologic diseases

 J Child 
Neurol 
12(8): 
471-85 x

impaired 
metabolism 
relationship to 
glutamate

Excito-
toxicity

Ener-
getic

Ikonomidou
, C. and L. 
Turski 1996

 Neurodegenerative 
disorders: clues 
from glutamate and 
energy metabolism

 Crit Rev 
Neurobi
ol 10(2): 
239-63 F/S x

loss of Mg 
block on 
NMDA, 
glutamate 
uptake 
impairment by 
loss of energy

Excito-
toxicity

Ener-
getic

Jabaudon, 
D., M. 
Scanziani, 
et al 2000

 Acute decrease in 
net glutamate 
uptake during 
energy deprivation

 Proc 
Natl 
Acad Sci 
U S A 
97(10): 
5610-5 x

correlation 
between 
decreased 
energy and 
glutamate 
uptake

Excito-
toxicity

Ener-
getic

Jekabsons, 
M. B. and 
D. G. 
Nicholls 2004

 In situ respiration 
and bioenergetic 
status of 
mitochondria in 
primary cerebellar 
granule neuronal 
cultures exposed 
continuously to 
glutamate

 J Biol 
Chem 
279(31): 
32989-
3000 x

correlations of 
ATP, 
glutamate, 
respiration 
capacity, 
NMDA
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Excito-
toxicity

Free 
Radical

Sala, G., S. 
Beretta, et 
al 2005

 Impairment of 
glutamate transport 
and increased 
vulnerability to 
oxidative stress in 
neuroblastoma SH-
SY5Y cells 
expressing a Cu,Zn 
superoxide 
dismutase typical of 
familial 
amyotrophic lateral 
sclerosis

 Neuroc
hem Int 
46(3): 
227-34 F invitro

hu-
man x

EAAT, 
glutmate 
transport, 
antioxidants

Excito-
toxicity Genetic

Kawahara, 
Y., K. Ito, et 
al 2004

 Glutamate 
receptors: RNA 
editing and death of 
motor neurons

 Nature 
427(697
7): 801 S ? ? ?

mRNA editing 
of th AMPA 
subunit GluR2

Excito-
toxicity Genetic

Lipton, S. 
A. 2004

 Sporadic ALS: 
blame it on the 
editor

 Nat 
Med 
10(4): 
347 S x

mRNA editing 
of th AMPA 
subunit GluR2

Excito-
toxicity

Inflam-
mation

Dunlop, J., 
H. Beal 
McIlvain, et 
al 2003

 Impaired spinal 
cord glutamate 
transport capacity 
and reduced 
sensitivity to 
riluzole in a 
transgenic 
superoxide 
dismutase mutant 
rat model of 
amyotrophic lateral 
sclerosis

 J 
Neurosci 
23(5): 
1688-96 F invivo

G93
A x

glutatmate 
transport by 
GLT-1 and 
EAAC-1

Excito-
toxicity

Inflam-
mation

Sasabe, J., 
T. Chiba, et 
al 2007

 D-serine is a key 
determinant of 
glutamate toxicity in 
amyotrophic lateral 
sclerosis

 EMBO J 
26(18): 
4149-59 F/S both mult x

D-serine, 
glutamate, 
microglia, glia

Excito-
toxicity

Inflam-
mation

Yin, H. Z., 
D. T. Tang, 
et al 2007

 Intrathecal infusion 
of a Ca(2+)-
permeable AMPA 
channel blocker 
slows loss of both 
motor neurons and 
of the astrocyte 
glutamate 
transporter, GLT-1 
in a mutant SOD1 
rat model of ALS

 Exp 
Neurol 
207(2): 
177-85 F invivo

G93
A x

Ca, AMPA, 
glutamate 
transporter, 
astrocytes
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Excito-
toxicity Multiple

Gibb, S. L., 
W. Boston-
Howes, et 
al 2007

 A caspase-3-
cleaved fragment of 
the glial glutamate 
transporter EAAT2 
is sumoylated and 
targeted to 
promyelocytic 
leukemia nuclear 
bodies in mutant 
SOD1-linked 
amyotrophic lateral 
sclerosis

 J Biol 
Chem 
282(44): 
32480-
90 F both

G93
A x

inhibit EAAT2 
by triggering 
caspase-3 
cleavage of 
EAAT2; 
targeted to 
promyelocytic 
leukemia 
nuclear bodies 
invovled w/ 
gene 
transcription

Excito-
toxicity

Necro-
Apop-
tosis

Guo, H., L. 
Lai, et al 2003

 Increased 
expression of the 
glial glutamate 
transporter EAAT2 
modulates 
excitotoxicity and 
delays the onset 
but not the 
outcome of ALS in 
mice

 Hum 
Mol 
Genet 
12(19): 
2519-32 F both

G93
A x

EAAT 
overexpressio
n by 2-fold 
delays 
caspase 
activation

Excito-
toxicity None

Arundine, 
M. and M. 
Tymianski 2003

 Molecular 
mechanisms of 
calcium-dependent 
neurodegeneration 
in excitotoxicity

 Cell 
Calcium 
34(4-5): 
325-37 x

calcium influx, 
saturatio, 
glutamate 
receptor-
mediated 
excitotoxicity

Excito-
toxicity None

Carunchio, 
I., C. 
Mollinari, et 
al 2008

 GAB(A) receptors 
present higher 
affinity and 
modified subunit 
composition in 
spinal motor 
neurons from a 
genetic model of 
amyotrophic lateral 
sclerosis

 Eur J 
Neurosci 
28(7): 
1275-85 F invivo

G93
A x

functionality 
and 
expression of 
GABA(A) 
receptors are 
altered

Excito-
toxicity None

Corona, J. 
C., L. B. 
Tovar-y-
Romo 2007

 Glutamate 
excitotoxicity and 
Clinical targets for 
amyotrophic lateral 
sclerosis

 Expert 
Opin 
Ther 
Targets 
11(11): 
1415-28 F/S x

excitotoxicity 
and clinical 
treatmetns
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Excito-
toxicity None

Guatteo, 
E., I. 
Carunchio, 
et al 2007

 Altered calcium 
homeostasis in 
motor neurons 
following AMPA 
receptor but not 
voltage-dependent 
calcium channels' 
activation in a 
genetic model of 
amyotrophic lateral 
sclerosis

 Neurobi
ol Dis 
28(1): 90-
100 F invitro

G93
A x

calclium 
dynamics 
altered by 
AMPA

Excito-
toxicity None

Ikonomidou
, C., Y. Qin 
Qin, et al 1996

 Motor neuron 
degeneration 
induced by 
excitotoxin agonists 
has features in 
common with those 
seen in the SOD-1 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 J 
Neuropa
thol Exp 
Neurol 
55(2): 
211-24 F invivo

G93
A x x

effects of 
NMDA and 
AMPA in ALS 
and 
neurodegener
ation

Excito-
toxicity None

Kuner, R., 
A. J. 
Groom, et 
al 2005

 Mechanisms of 
disease: 
motoneuron 
disease aggravated 
by transgenic 
expression of a 
functionally 
modified AMPA 
receptor subunit

Ann N Y 
Acad Sci 
1053: 
269-86 F invivo

G93
A x

elevated Ca 
influx via 
glutamate 
AMPA 
channels 
causes 
degeneration

Excito-
toxicity None

Kuo, J. J., 
M. 
Schonewill
e, et al 2004

 Hyperexcitability of 
cultured spinal 
motoneurons from 
presymptomatic 
ALS mice

 J 
Neuroph
ysiol 
91(1): 
571-5 F invivo

G93
A x

electrophysiol
ogical 
properties/hyp
erexcitability

Excito-
toxicity None

Pieri, M., I. 
Carunchio, 
et al 2008

 Increased 
persistent sodium 
current determines 
cortical 
hyperexcitability in 
a genetic model of 
amyotrophic lateral 
sclerosis

 Exp 
Neurol. F invitro

G93
A x

firing 
properties, 
PIC, sodium, 
riluzole, 
hyperexcitabili
ty
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Excito-
toxicity None Sandyk, R. 2006

 Serotonergic 
mechanisms in 
amyotrophic lateral 
sclerosis

 Int J 
Neurosci 
116(7): 
775-826 F/S invivo

hu-
man
/G93
A x

glutamate, 5-
HT, serotonin

Excito-
toxicity None

Turner, M. 
R., E. A. 
Rabiner, et 
al 2007

 Cortical 5-HT1A 
receptor binding in 
patients with 
homozygous D90A 
SOD1 vs sporadic 
ALS

 Neurolo
gy 
68(15): 
1233-5. F/S invivo

D90
A x

5-HT, 
serotonin

Excito-
toxicity None

Van 
Damme, P., 
M. 
Leyssen, et 
al 2003

 The AMPA 
receptor antagonist 
NBQX prolongs 
survival in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Neurosc
i Lett 
343(2): 
81-4 F invitro

G93
A x

effect of 
AMPA; 
intracellular 
Ca

Excito-
toxicity None

von 
Lewinski, 
F., J. 
Fuchs, et al 2008

 Low Ca2+ 
buffering in 
hypoglossal 
motoneurons of 
mutant SOD1 
(G93A) mice

 Neurosc
i Lett 
445(3): 
224-8 F invivo

G93
A x

Ca buffering 
effects

Excito-
toxicity None

Vucic, S., 
G. A. 
Nicholson, 
et al 2008

 Cortical 
hyperexcitability 
may precede the 
onset of familial 
amyotrophic lateral 
sclerosis

 Brain 
131(Pt 
6): 1540-
50 F/S invivo

hu-
man x

cortical 
hyperexcitabili
ty precedes 
the 
development 
of clinical 
symptoms

Excito-
toxicity None

Zona, C., 
M. Pieri, et 
al 2006

 Voltage-dependent 
sodium channels in 
spinal cord motor 
neurons display 
rapid recovery from 
fast inactivation in a 
mouse model of 
amyotrophic lateral 
sclerosis

 J 
Neuroph
ysiol 
96(6): 
3314-22 F invitro

G93
A x

Na channel 
properties
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Excito-
toxicity

Proteom
ic

Avossa, D., 
M. 
Grandolfo, 
et al. 2006

 Early signs of 
motoneuron 
vulnerability in a 
disease model 
system: 
Characterization of 
transverse slice 
cultures of spinal 
cord isolated from 
embryonic ALS 
mice

 Neurosc
ience 
138(4): 
1179-94 F invivo

G93
A x

AMPA, glia 
and myelin, 
mitochondrial 
vacuolization, 
protein 
aggregation

Excito-
toxicity Clinical

Boston-
Howes, W., 
E. O. 
Williams, et 
al 2008

 Nordihydroguaiaret
ic acid increases 
glutamate uptake in 
vitro and in vivo: 
Clinical implications 
for amyotrophic 
lateral sclerosis

 Exp 
Neurol 
213(1): 
229-37 F invivo

G93
A x

(NDGA), an 
anti-
inflammatory 
drug that 
inhibits 
lipoxygensase
s; drug 
resistance

Excito-
toxicity Clinical

Turner, M. 
R., E. A. 
Rabiner, et 
al 2005

 [11C]-WAY100635 
PET demonstrates 
marked 5-HT1A 
receptor changes in 
sporadic ALS

 Brain 
128(Pt 
4): 896-
905 F/S invivo ? x

5-HT, 
serotonin

Excito-
toxicity Clinical

Vogels, O. 
J., W. J. 
Oyen, et al 1999

 Decreased striatal 
dopamine-receptor 
binding in sporadic 
ALS: glutamate 
hyperactivity?

 Neurolo
gy 52(6): 
1275-7 S invivo

hu-
man x

dopamine 
effects on 
glutamate 
hyperactivity

Free 
Radical

Energeti
c

Ahtoniemi, 
T., M. 
Jaronen, et 
al. 2008

 Mutant SOD1 from 
spinal cord of G93A 
rats is destabilized 
and binds to inner 
mitochondrial 
membrane

 Neurobi
ol Dis 
32(3): 
479-85 F invivo

G93
A x

IMS binding 
and increased 
ROS 
production by 
destabilized 
SOD1 

Free 
Radical

Energeti
c

Liu, R., B. 
Li, et al 2002

 Increased 
mitochondrial 
antioxidative 
activity or 
decreased oxygen 
free radical 
propagation 
prevent mutant 
SOD1-mediated 
motor neuron cell 
death and increase 
amyotrophic lateral 
sclerosis-like 
transgenic mouse 
survival

 J 
Neuroch
em 
80(3): 
488-500 F invitro

G93
A x

cellular 
oxidative 
stress, 
mitochondrial 
dysfunction, 
cytochrome c 
release 
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Free 
Radical

Energeti
c

Muller, F. 
L., Y. Liu, et 
al 2008

 MnSOD deficiency 
has a differential 
effect on disease 
progression in two 
different ALS 
mutant mouse 
models

 Muscle 
Nerve 
38(3): 
1173-83 F invivo

G93
A 
and 
H46
R/H
48Q x

comparison to 
defficient 
mitochondrial 
anti-oxidants

Free 
Radical Genetic

Aguirre, N., 
M. F. Beal, 
et al. 2005

Increased oxidative 
damage to DNA in 
an animal model of 
amyotrophic lateral 
sclerosis 

Free 
Radic 
Res 
39(4): 
383-8 F invivo

G93
A x

8-Hydroxy-2'-
deoxyguanosi
ne (8OH2'dG) 
in the nuclear 
DNA 

Free 
Radical Genetic

Ignacio, S., 
D. H. 
Moore, et al 2005

 Effect of 
neuroprotective 
drugs on gene 
expression in 
G93A/SOD1 mice

 Ann N Y 
Acad Sci 
1053: 
121-36 F invivo

G93
A x

Clinical effects 
on genetic 
markers for 
methallothione
ins, EAAT2, 
NOS

Free 
Radical Genetic

Mitsumoto, 
H., R. M. 
Santella, et 
al 2008

Oxidative stress 
biomarkers in 
sporadic ALS

 Amyotro
ph 
Lateral 
Scler 
9(3): 177-
83 S invivo

hu-
man

genetic 
measures of 
oxidative 
stress

Free 
Radical

Inflam-
mation

Hozumi, I., 
M. Yamada, 
et al 2008

 The expression of 
metallothioneins is 
diminished in the 
spinal cords of 
patients with 
sporadic ALS

  Amyotr
oph 
Lateral 
Scler 
9(5): 294-
8 S invivo

hu-
man

metallothionei
ns (free rad 
scavengers) 
decreased in 
SALS

Free 
Radical

Inflam-
mation

Wu, D. C., 
D. B. Re, et 
al 2006

 The inflammatory 
NADPH oxidase 
enzyme modulates 
motor neuron 
degeneration in 
amyotrophic lateral 
sclerosis mice

 Proc 
Natl 
Acad Sci 
U S A 
103(32): 
12132-7 F both ? x

NADPH, IGF-
1,oxidative 
stress

Free 
Radical

Necro-
Apop-
tosis

Pehar, M., 
M. R. 
Vargas, et 
al 2007

 Mitochondrial 
superoxide 
production and 
nuclear factor 
erythroid 2-related 
factor 2 activation 
in p75 neurotrophin 
receptor-induced 
motor neuron 
apoptosis

 J 
Neurosci 
27(29): 
7777-85 F ?

G93
A x

NGF, p75, 
NO, 
mitochondrial 
superoxide
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Free 
Radical

Necro-
Apop-
tosis

Raoul, C., 
E. Buhler, 
et al 2006

 Chronic activation 
in presymptomatic 
amyotrophic lateral 
sclerosis (ALS) 
mice of a feedback 
loop involving Fas, 
Daxx, and FasL

 Proc 
Natl 
Acad Sci 
U S A 
103(15): 
6007-12 F invivo

G93
A & 
G85
R NO , FAS

Free 
Radical None

Pierce, A., 
H. Mirzaei, 
et al 2008

GAPDH is 
conformationally 
and functionally 
altered in 
association with 
oxidative stress in 
mouse models of 
amyotrophic lateral 
sclerosis

J Mol 
Biol 
382(5): 
1195-
210

G93
A or 
H46
R/H
48Q

creatine, 
GADPH, 
oxidative 
stress

Free 
Radical None

Yamashita, 
H., J. 
Kawamata, 
et al 2007

 Heat-shock protein 
105 interacts with 
and suppresses 
aggregation of 
mutant Cu/Zn 
superoxide 
dismutase: clues to 
a possible strategy 
for treating ALS

 J 
Neuroch
em 
102(5): 
1497-
505 F invivo

G93
A x

Hsp70 and 
Hsp27, 
aggregates

Free 
Radical

Proteom
ic

Schonhoff, 
C. M., M. 
Matsuoka, 
et al 2006

 S-nitrosothiol 
depletion in 
amyotrophic lateral 
sclerosis

 Proc 
Natl 
Acad Sci 
U S A 
103(7): 
2404-9 ? ? ? x

S-nitrosothiol, 
SNOS, 
GADPH, NO, 
protein 
aggregation

Free 
Radical Clinical

Boll, M. C., 
M. Alcaraz-
Zubeldia, et 
al 2003

 Raised nitrate 
concentration and 
low SOD activity in 
the CSF of sporadic 
ALS patients

 Neuroc
hem Res 
28(5): 
699-703 S invivo

hu-
man x

degeneration 
increases with 
increased NO 
production

Genetic
Chem-
istry

Alexander, 
M. D., B. J. 
Traynor, et 
al 2002

 "True" sporadic 
ALS associated 
with a novel SOD-1 
mutation

 Ann 
Neurol 
52(5): 
680-3 S invivo

hu-
man x

mutation 
(H80A) is 
believed to 
alter zinc 
ligand binding
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Genetic
Excito-
toxicity

Kawahara, 
Y., H. Sun, 
et al. 2006

 Underediting of 
GluR2 mRNA, a 
neuronal death 
inducing molecular 
change in sporadic 
ALS, does not 
occur in motor 
neurons in ALS1 or 
SBMA

 Neurosc
i Res 
54(1): 11-
4 F/S x

mRNA editing 
of th AMPA 
subunit GluR2

Genetic
Free 
Radical

Chou, C. 
M., C. J. 
Huang, et 
al 2005

 Identification of 
three mutations in 
the Cu,Zn-
superoxide 
dismutase (Cu,Zn-
SOD) gene with 
familial amyotrophic 
lateral sclerosis: 
transduction of 
human Cu,Zn-SOD 
into PC12 cells by 
HIV-1 TAT protein 
basic domain

 Ann N Y 
Acad Sci 
1042: 
303-13 F invivo

G93
A x

active Tat-
SOD protects 
against 
oxidative 
stress.

Genetic Multiple

Vargas, M. 
R., M. 
Pehar, et al 2008

 Transcriptional 
profile of primary 
astrocytes 
expressing ALS-
linked mutant 
SOD1

 J 
Neurosci 
Res 
86(16): 
3515-25 F invivo

G93
A x

transcription, 
signaling, cell 
proliferation, 
extracellular 
matrix 
synthesis, 
response to 
stress, and 
steroid and 
lipid 
metabolism, 
IGF

Genetic None

Lindberg, 
M. J., L. 
Tibell, et al 2002

 Common 
denominator of 
Cu/Zn superoxide 
dismutase mutants 
associated with 
amyotrophic lateral 
sclerosis: 
decreased stability 
of the apo state

 Proc 
Natl 
Acad Sci 
U S A 
99(26): 
16607-
12 F invivo mult x

higher the 
stability loss, 
the lower the 
mean survival 
time

Genetic None
Luquin, N., 
B. Yu, et al 2008

 An analysis of the 
entire SOD1 gene 
in sporadic ALS

 Neurom
uscul 
Disord 
18(7): 
545-52 S invivo

hu-
man x

genetic 
analysis of 
complete 
SOD1 gene in 
SALS
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Genetic None

Meyer, T., 
B. Alber, et 
al 2003

 High rate of 
constitutional 
chromosomal 
rearrangements in 
apparently sporadic 
ALS

Neurolo
gy 60(8): 
1348-
50.\ S invivo

hu-
man

genetic 
aberration is 
SALS

Genetic None

Watanabe, 
M., M. 
Jackson, et 
al 2006

 Genetic analysis of 
the cystatin C gene 
in familial and 
sporadic ALS 
patients

 Brain 
Res 
1073-
1074: 20-
4 S invivo

hu-
man x

biomarker for 
ALS

Genetic None

Zetterstrom
, P., H. G. 
Stewart, et 
al 2007

 Soluble misfolded 
subfractions of 
mutant superoxide 
dismutase-1s are 
enriched in spinal 
cords throughout 
life in murine ALS 
models

 Proc 
Natl 
Acad Sci 
U S A 
104(35): 
14157-
62. F invivo mult x

SOD1 
aggregates 
over entire life 
span of model

Genetic
Proteom
ic

Martin, I., P. 
Vourc'h, et 
al 2008

 Association study 
of the ubiquitin 
conjugating 
enzyme gene 
UBE2H in sporadic 
ALS

 Amyotro
ph 
Lateral 
Scler: 1-
4 S invivo ?

analysis of 
ubiquitin gene, 
specific one 
not implicated 
in SALS

Genetic
Proteom
ic

Offen, D., 
Y. Barhum, 
et al 2008

 Spinal Cord mRNA 
Profile in Patients 
with ALS: 
Comparison with 
Transgenic Mice 
Expressing the 
Human SOD-1 
Mutant

 J Mol 
Neurosci S invivo

hu-
man 
& 
G93
A

cathepsin, 
apolipoprotein 
E, EGF , 
ferritin, 
lysosomal 
trafficking 
marker

Genetic Clinical
Andersen, 
P. M. 2001

 Genetic of 
sporadic ALS

 Amyotro
ph 
Lateral 
Scler 
Other 
Motor 
Neuron 
Disord 2 
Suppl 1: 
S37-41 S invivo

hu-
man x

D90A  and the 
I113T; 
inheritance & 
penetrance



348

Cat-
egory 1

Cat-
egory 2 Author Year Title Journal A

LS
 ty

pe

Ex
p 

Ty
pe

M
od

el

SO
D

R
/O

Factor 
Description

Genetic Clinical
Aoki, M., S. 
Kato, et al 2005

 Development of a 
rat model of 
amyotrophic lateral 
sclerosis 
expressing a 
human SOD1 
transgene

 Neurop
athology 
25(4): 
365-70 F invivo

G93
A/ 
H46
R x

SOD1 
properties 
comparable to 
human SOD1

Genetic Clinical Armon, C 2005

 Acquired nucleic 
acid changes may 
trigger sporadic 
amyotrophic lateral 
sclerosis

 Muscle 
Nerve 
32(3): 
373-7 S invivo

hu-
man

effects of DNA 
alkylation 

Genetic Clinical

Broom, W. 
J., M. J. 
Parton, et 
al 2004

 No association of 
the SOD1 locus 
and disease 
susceptibility or 
phenotype in 
sporadic ALS

  Neurol
ogy 
63(12): 
2419-22 F/S invivo

hu-
man x

effects of 
mutations at 
the SOD1 
locus

Inflam-
mation

Excito-
toxicity

Rossi, D., 
L. 
Brambilla, 
et al 2008

 Focal 
degeneration of 
astrocytes in 
amyotrophic lateral 
sclerosis

 Cell 
Death 
Differ 
15(11): 
1691-
700 F invivo

G93
A x

gl receptor 
and astrocyte 
degeneration

Inflam-
mation

Free 
Radical

Liang, X., 
Q. Wang, et 
al 2008

 The prostaglandin 
E2 EP2 receptor 
accelerates 
disease 
progression and 
inflammation in a 
model of 
amyotrophic lateral 
sclerosis

 Ann 
Neurol 
64(3): 
304-14 F invivo

G93
A x

activation of 
pro-
inflammatory 
paths via E2 
receptor

Inflam-
mation

Free 
Radical

Liu, Y., W. 
Hao, et al 2008

 Expression of ALS-
linked SOD1 
mutant increases 
the neurotoxic 
potential of 
microglia via TLR2

 J Biol 
Chem F invitro

mult-
iple x

NADPH 
oxidase-
dependent 
ROS 
production, 
TLR-2, 
microglia

Inflam-
mation

Free 
Radical

Pehar, M., 
M. R. 
Vargas, et 
al 2005

 Complexity of 
astrocyte-motor 
neuron interactions 
in amyotrophic 
lateral sclerosis

 Neurod
egener 
Dis 2(3-
4): 139-
46 F invivo ? x

FGF, NGF, 
astrocytes, 
NO
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Inflam-
mation

Free 
Radical

Pehar, M., 
P. Cassina, 
et al 2004

 Astrocytic 
production of nerve 
growth factor in 
motor neuron 
apoptosis: 
implications for 
amyotrophic lateral 
sclerosis

 J 
Neuroch
em 
89(2): 
464-73 F invitro

G93
A x

astrocytes, 
NGF, NO, p75

Inflam-
mation

Inflam-
mation

Nagai, M., 
D. B. Re, et 
al 2007

 Astrocytes 
expressing ALS-
linked mutated 
SOD1 release 
factors selectively 
toxic to motor 
neurons.Nat 
Neurosci 10(5): 615-
22 F invivo ? x

role of 
astrocytes and 
factors they 
express

Inflam-
mation Multiple

Barbeito, L. 
H., M. 
Pehar, et al 2004

 A role for 
astrocytes in motor 
neuron loss in 
amyotrophic lateral 
sclerosis

 Brain 
Res 
Brain 
Res Rev 
47(1-3): 
263-74 F/S x

reactive 
astrocytes: 
ROS/NO prod, 
EAAT 
downreg, & 
apoptosis 
mediation

Inflam-
mation

Necro-
Apoptos
is

Di Giorgio, 
F. P., M. A. 
Carrasco, 
et al 2007

 Non-cell 
autonomous effect 
of glia on motor 
neurons in an 
embryonic stem 
cell-based ALS 
model

  Nat 
Neurosci 
10(5): 
608-14 F invitro

G93
A x

SOD1 glia 
cells affect 
motoneuron 
cell death in 
culture

Inflam-
mation

Necro-
Apop-
tosis

Kadoyama, 
K., H. 
Funakoshi, 
et al 2007

 Hepatocyte growth 
factor (HGF) 
attenuates gliosis 
and motoneuronal 
degeneration in the 
brainstem motor 
nuclei of a 
transgenic mouse 
model of ALS

 Neurosc
i Res 
59(4): 
446-56 F invivo

G93
A x

HGF reduces 
microglial 
accumulation; 
pro-apoptotic 
protein 
inhibition

Inflam-
mation

Necro-
Apop-
tosis

Li, L., X. 
Zhang, et al 2008

 Altered 
macroautophagy in 
the spinal cord of 
SOD1 mutant mice

 Autopha
gy 4(3): 
290-3 F invivo

G93
A x

role of 
autophagy
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Inflam-
mation None

Chung, Y. 
H., K. M. 
Joo, et al 2008

 Immunohistochemi
cal study on the 
distribution of 
glycogen synthase 
kinase 3alpha in 
the central nervous 
system of 
SOD1(G93A) 
transgenic mice

 Neurol 
Res 
30(9): 
926-31 F invivo

G93
A x

GSK3alpha-
immunoreactiv
e astrocytes 

Inflam-
mation None

Fendrick, 
S. E., Q. S. 
Xue, et al 2007

 Formation of 
multinucleated 
giant cells and 
microglial 
degeneration in rats 
expressing a 
mutant Cu/Zn 
superoxide 
dismutase gene

 J 
Neuroinfl
ammatio
n 4: 9 F invivo

G93
A x

microglia 
aggregation & 
abnormalities

Inflam-
mation None

Gowing, G., 
T. Philips, 
et al 2008

 Ablation of 
proliferating 
microglia does not 
affect motor neuron 
degeneration in 
amyotrophic lateral 
sclerosis caused by 
mutant superoxide 
dismutase

 J 
Neurosci 
28(41): 
10234-
44 F invivo

G93
A x

50% reduction 
in reactive 
microglia did 
not reduce 
neurodegener
ation

Inflam-
mation None

Hall, E. D., 
J. A. 
Oostveen, 
et al 1998

 Relationship of 
microglial and 
astrocytic activation 
to disease onset 
and progression in 
a transgenic model 
of familial ALS

 Glia 
23(3): 
249-56 F invivo

G93
A x

timecourse of 
microglia and 
astrocytic 
activation

Inflam-
mation None

Hensley, K., 
H. Abdel-
Moaty, et al 2006

 Primary glia 
expressing the 
G93A-SOD1 
mutation present a 
neuroinflammatory 
phenotype and 
provide a cellular 
system for studies 
of glial 
inflammation

 J 
Neuroinfl
ammatio
n 3: 2 F both

G93
A x

glial 
inflammation 
of microglia 
and astrocytes
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Inflam-
mation None

Kiaei, M., 
K. Kipiani, 
et al 2005

 Peroxisome 
proliferator-
activated receptor-
gamma agonist 
extends survival in 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Exp 
Neurol 
191(2): 
331-6 F invivo

G93
A x

PPARs role in 
inflammation

Inflam-
mation None

Lepore, A. 
C., C. 
Dejea, et al 2008

 Selective ablation 
of proliferating 
astrocytes does not 
affect disease 
outcome in either 
acute or chronic 
models of motor 
neuron 
degeneration

 Exp 
Neurol 
211(2): 
423-32 F invivo

G93
A x astrogliosis

Inflam-
mation None

Shibata, N., 
M. 
Kawaguchi-
Niida, et al 2008

 Effects of the 
PPARgamma 
activator 
pioglitazone on p38 
MAP kinase and 
IkappaBalpha in 
the spinal cord of a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Neurop
athology 
28(4): 
387-98 F invivo

G93
A x

PPAR gamma, 
p38, neuron 
and glial 
inflammation

Multiple
Excitoto
xicity

Bruijn, L. I., 
T. M. Miller, 
et al 2004

 Unraveling the 
mechanisms 
involved in motor 
neuron 
degeneration in 
ALS

 Annu 
Rev 
Neurosci 
27: 723-
49 x

excitoxicity & 
nonneuronal 
support cells

Multiple None
Bromberg, 
M. B. 1999

 Pathogenesis of 
amyotrophic lateral 
sclerosis: a critical 
review

 Curr 
Opin 
Neurol 
12(5): 
581-8 x

review of ALS 
pathogenesis

Multiple Clinical

de 
Belleroche, 
J., R. 
Orrell, et al 1995

 Familial 
amyotrophic lateral 
sclerosis/motor 
neurone disease 
(FALS): a review of 
current 
developments." J 
Med Genet 32(11): 
841-7 F x FALS review
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Multiple None

Martin, L. 
J., A. C. 
Price, et al 2000

 Mechanisms for 
neuronal 
degeneration in 
amyotrophic lateral 
sclerosis and in 
models of motor 
neuron death 
(Review)

 Int J 
Mol Med 
5(1): 3-
13 F/S x

review of ALS 
mechanisms

Necro-
Apop-
tosis

Ener-
getic

Benchoua, 
A., C. 
Guegan, et 
al 2001

 Specific caspase 
pathways are 
activated in the two 
stages of cerebral 
infarction

 J 
Neurosci 
21(18): 
7127-34 x

means of 
caspase 
activation: 
mitochondria 
indep & 
dependent 
paths

Necro-
Apop-
tosis

Ener-
getic

Guegan, 
C., M. Vila, 
et al 2001

 Recruitment of the 
mitochondrial-
dependent 
apoptotic pathway 
in amyotrophic 
lateral sclerosis

 J 
Neurosci 
21(17): 
6569-76 F invivo ? x

Bax, 
cytochrome c, 
caspase in 
apoptosis

Necro-
Apop-
tosis

Ener-
getic Ilzecka, J 2007

 Decreased 
cerebrospinal fluid 
cytochrome c levels 
in patients with 
amyotrophic lateral 
sclerosis

 Scand J 
Clin Lab 
Invest 
67(3): 
264-9 F/S invivo

hu-
man

cytochrome c 
measurement
s

Necro-
Apop-
tosis

Ener-
getic

Murakami, 
T., M. 
Nagai, et al 2007

 Early decrease of 
mitochondrial DNA 
repair enzymes in 
spinal motor 
neurons of 
presymptomatic 
transgenic mice 
carrying a mutant 
SOD1 gene

 Brain 
Res 
1150: 
182-9 F invivo ? x

expressions of 
DNA repair 
enzymes, 
dowregulated 
at 
mitochondria

Necro-
Apop-
tosis

Excito-
toxicity

Mattson, M. 
P. and W. 
Duan 1999

  "Apoptotic" 
biochemical 
cascades in 
synaptic 
compartments: 
roles in adaptive 
plasticity and 
neurodegenerative 
disorders

 J 
Neurosci 
Res 
58(1): 
152-66 x

caspase, 
proteoloysis of 
Glu-R 
subunits, Ca 
effects on 
glutamate
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Necro-
Apop-
tosis

Free 
Radical

Beere, H. 
M. 2004

 "The stress of 
dying": the role of 
heat shock proteins 
in the regulation of 
apoptosis."

 J Cell 
Sci 
117(Pt 
13): 
2641-51 x

role of Hsp in 
apoptosis

Necro-
Apop-
tosis

Free 
Radical

Gifondorwa
, D. J., M. 
B. 
Robinson, 
et al 2007

 Exogenous 
delivery of heat 
shock protein 70 
increases lifespan 
in a mouse model 
of amyotrophic 
lateral sclerosis

 J 
Neurosci 
27(48): 
13173-
80 F invivo

G93
A x role of HSP70

Necro-
Apop-
tosis

Free 
Radical

Kruman, II 
and M. P. 
Mattson 1999

 Pivotal role of 
mitochondrial 
calcium uptake in 
neural cell 
apoptosis and 
necrosis

 J 
Neuroch
em 
72(2): 
529-40 invitro x

time course of 
Ca, ROS 
production, 
caspase 
activation

Necro-
Apop-
tosis

Free 
Radical

Kruman, II, 
W. A. 
Pedersen, 
et al 1999

 ALS-linked Cu/Zn-
SOD mutation 
increases 
vulnerability of 
motor neurons to 
excitotoxicity by a 
mechanism 
involving increased 
oxidative stress and 
perturbed calcium 
homeostasis

 Exp 
Neurol 
160(1): 
28-39 F invitro ? x

overexpressio
n of Bcl-2 
blocked Ca; 
blocking of Ca 
prevented 
apoptosis

Necro-
Apop-
tosis

Free 
Radical

Malaspina, 
A., N. 
Jokic, et al 2008

 Comparative 
analysis of the time-
dependent 
functional and 
molecular changes 
in spinal cord 
degeneration 
induced by the 
G93A SOD1 gene 
mutation and by 
mechanical 
compression

 BMC 
Genomic
s 9: 500 F invivo

G93
A x x

cytoskeletal 
protein 
metabolism is 
central to SCI 
& ALS
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Necro-
Apop-
tosis

Free 
Radical

Nagata, T., 
H. Ilieva, et 
al 2007

 Increased ER 
stress during motor 
neuron 
degeneration in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Neurol 
Res 
29(8): 
767-71 F invivo

G93
A x

ER, caspase, 
oxidative 
stress

Necro-
Apop-
tosis

Inflam-
mation

Luo, Y., H. 
Xue, et al 2007

 Impaired 
SDF1/CXCR4 
signaling in glial 
progenitors derived 
from SOD1(G93A) 
mice

 J 
Neurosci 
Res 
85(11): 
2422-32 F invitro

G93
A x

ERTK 1/2 and 
CREB paths

Necro-
Apop-
tosis

Inflam-
mation

Wootz, H., 
E. Weber, 
et al 2006

 Altered distribution 
and levels of 
cathepsinD and 
cystatins in 
amyotrophic lateral 
sclerosis transgenic 
mice: possible roles 
in motor neuron 
survival

 Neurosc
ience 
143(2): 
419-30 F invivo ? x

caspases, 
astrocytes

Necro-
Apop-
tosis None

Dewil, M., 
V. F. dela 
Cruz, et al 2007

 Inhibition of p38 
mitogen activated 
protein kinase 
activation and 
mutant 
SOD1(G93A)-
induced motor 
neuron death

 Neurobi
ol Dis 
26(2): 
332-41 F invivo ? x

abnormal 
activation of 
p38 MAPK in 
mutant SOD1 
mice 

Necro-
Apop-
tosis None

Gonzalez 
de Aguilar, 
J. L., J. W. 
Gordon, et 
al 2000

 Alteration of the 
Bcl-x/Bax ratio in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis: evidence 
for the implication 
of the p53 signaling 
pathway

 Neurobi
ol Dis 
7(4): 406-
15 F invivo

G86
R x

p53, Bax/Bcl 
in apoptosis

Necro-
Apop-
tosis None

Guegan, C. 
and S. 
Przed-
borski 

 Programmed cell 
death in 
amyotrophic lateral 
sclerosis

J Clin 
Invest 
111(2): 
153-61. F/S invitro
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Necro-
Apop-
tosis None

Gajewski, 
C. D., M. T. 
Lin, et al. 2003

Mitochondrial DNA 
from platelets of 
sporadic ALS 
patients restores 
normal respiratory 
functions in rho(0) 
cells.

Exp 
Neurol 
179(2): 
229-35 F/S x

Necro-
Apop-
tosis None

He, B. P. 
and M. J. 
Strong 2000

 Motor neuronal 
death in sporadic 
amyotrophic lateral 
sclerosis (ALS) is 
not apoptotic. A 
comparative study 
of ALS and chronic 
aluminium chloride 
neurotoxicity in 
New Zealand white 
rabbits

 Neurop
athol 
Appl 
Neurobi
ol 26(2): 
150-60 F invivo ? ?

lack of 
apoptosis; 
TUNEL 
hybridization; 
DNA laddering

Necro-
Apop-
tosis None

Kiaei, M., 
K. Kipiani, 
et al 2007

 Matrix 
metalloproteinase-9 
regulates TNF-
alpha and FasL 
expression in 
neuronal, glial cells 
and its absence 
extends life in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Exp 
Neurol 
205(1): 
74-81 F invivo

G93
A x

TNF-alpha 
and Fas 
activation by 
metalloprotein
ase
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Necro-
Apop-
tosis None

Lee, J. K., 
J. H. Shin, 
et al 2008

 Tissue inhibitor of 
metalloproteinases-
3 (TIMP-3) 
expression is 
increased during 
serum deprivation-
induced neuronal 
apoptosis in vitro 
and in the G93A 
mouse model of 
amyotrophic lateral 
sclerosis: a 
potential modulator 
of Fas-mediated 
apoptosis

 Neurobi
ol Dis 
30(2): 
174-85 F invivo

G93
A x

 metalloprotei
nases, 
caspases, Fas 
in necro-
apoptosis

Necro-
Apop-
tosis None

Locatelli, F., 
S. Corti, et 
al 2007

 Fas small 
interfering RNA 
reduces 
motoneuron death 
in amyotrophic 
lateral sclerosis 
mice

 Ann 
Neurol 
62(1): 81-
92. F invivo

G93
A x

Fas-linked 
death, 
caspase, and 
cytochrome c

Necro-
Apop-
tosis None Martin, L. J. 1999

 Neuronal death in 
amyotrophic lateral 
sclerosis is 
apoptosis: possible 
contribution of a 
programmed cell 
death mechanism.

J 
Neuropa
thol Exp 
Neurol 
58(5): 
459-71 F/ invivo ? ?

Bax and Bak 
are elevate; 
Bcl-2 
decreased

Necro-
Apop-
tosis None

Pasinelli, 
P., D. R. 
Borchelt, et 
al 1998

 Caspase-1 is 
activated in neural 
cells and tissue 
with amyotrophic 
lateral sclerosis-
associated 
mutations in copper-
zinc superoxide 
dismutase

 Proc 
Natl 
Acad Sci 
U S A 
95(26): 
15763-8 F invitro ? x

caspase, 
xanthine/xanth
ine oxidase 
which triggers 
cleavage and 
secretion pro-
interleukin 
1beta, and 
induces 
apoptosis.
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Necro-
Apop-
tosis None

Pasinelli, 
P., M. K. 
Housewear
t, et al 2000

 Caspase-1 and -3 
are sequentially 
activated in motor 
neuron death in 
Cu,Zn superoxide 
dismutase-
mediated familial 
amyotrophic lateral 
sclerosis

 Proc 
Natl 
Acad Sci 
U S A 
97(25): 
13901-6 F ? ? x caspase

Necro-
Apop-
tosis None

Sathasivam
, S. and P. 
J. Shaw 2005

 Apoptosis in 
amyotrophic lateral 
sclerosis--what is 
the evidence

 Lancet 
Neurol 
4(8): 500-
9. F/S x

apoptosis, 
caspase, Bcl-
2, p53

Necro-
Apop-
tosis None

Sathasivam
, S., P. G. 
Ince, et al 2001

 Apoptosis in 
amyotrophic lateral 
sclerosis: a review 
of the evidence

 Neurop
athol 
Appl 
Neurobi
ol 27(4): 
257-74 F/S x

apoptosis, 
caspase, Bcl-
2, p53

Necro-
Apop-
tosis None

Tokuda, E., 
S. Ono, et 
al 2007

 Dysequilibrium 
between caspases 
and their inhibitors 
in a mouse model 
for amyotrophic 
lateral sclerosis

 Brain 
Res 
1148: 
234-42 F invivo

G93
A x caspase

Necro-
Apop-
tosis None

Vukosavic, 
S., M. 
Dubois-
Dauphin, et 
al 1999

 Bax and Bcl-2 
interaction in a 
transgenic mouse 
model of familial 
amyotrophic lateral 
sclerosis

 J 
Neuroch
em 
73(6): 
2460-8 F invivo

G93
A x

Bax & Bcl 
interaction; 
Bcl-2, Bcl-XL, 
Bad, and Bax

Necro-
Apop-
tosis None

Wengenack
, T. M., S. 
S. Holasek, 
et al 2004

 Activation of 
programmed cell 
death markers in 
ventral horn motor 
neurons during 
early 
presymptomatic 
stages of 
amyotrophic lateral 
sclerosis in a 
transgenic mouse 
model 

Brain 
Res 
1027(1-
2): 73-86 F invivo

G93
A x

MAP kinase, 
caspase
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Necro-
Apop-
tosis None

Yamazaki, 
M., E. 
Esumi, et al 2005

 Is motoneuronal 
cell death in 
amyotrophic lateral 
sclerosis 
apoptosis?

 Neurop
athology 
25(4): 
381-7 F/S invivo

hu-
man x

caspase, DNA 
fragmentation

Necro-
Apop-
tosis

Proteom
ic

Gould, T. 
W., R. R. 
Buss, et al 2006

 Complete 
dissociation of 
motor neuron death 
from motor 
dysfunction by Bax 
deletion in a mouse 
model of ALS

 J 
Neurosci 
26(34): 
8774-86 F invivo

G93
A x

Bax acts via a 
mechanism 
distinct from 
cell death 
activation; 
mitochondrial 
vacuolization 
& denervation

Necro-
Apop-
tosis

Proteom
ic

Oh, Y. K., 
K. S. Shin, 
et al 2008

 Superoxide 
dismutase 1 
mutants related to 
amyotrophic lateral 
sclerosis induce 
endoplasmic stress 
in neuro2a cells

 J 
Neuroch
em 
104(4): 
993-
1005. F invivo

G93
A & 
G85
R

ER, DNA nick 
labeling, 
apoptosis. Bcl

Necro-
Apop-
tosis Clinical

Li, M., V. O. 
Ona, et al 2000

 Functional role of 
caspase-1 and 
caspase-3 in an 
ALS transgenic 
mouse model

 Science 
288(546
4): 335-9 F invivo

G93
A x

correlations 
and 
expression of 
caspase(s)

Necro-
Apop-
tosis Clinical

Zhu, S., I. 
G. 
Stavrovska
ya, et al 2002

 Minocycline 
inhibits cytochrome 
c release and 
delays progression 
of amyotrophic 
lateral sclerosis in 
mice

 Nature 
417(688
4): 74-8 F invivo ?

cytochrome c, 
MAPK

Inflam-
mation

Energeti
c

Bilsland, L. 
G., N. 
Nirmalanan
than, et al 2008

 Expression of 
mutant SOD1 in 
astrocytes induces 
functional deficits in 
motoneuron 
mitochondria

 J 
Neuroch
em 
107(5): 
1271-83 F invivo

G93
A x

SOD1 in 
astrocytes: 
mito function 
did not 
correlate with 
Ca
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Prot-
eomic

Chemist
ry

Bergemalm
, D., P. A. 
Jonsson, et 
al 2006

 Overloading of 
stable and 
exclusion of 
unstable human 
superoxide 
dismutase-1 
variants in 
mitochondria of 
murine amyotrophic 
lateral sclerosis 
models

 J 
Neurosci 
26(16): 
4147-54 F invivo

G85
R 
and 
G12
7ins
TG
GG x

loading of 
G85R and 
G127insTGG
G in 
mitochondria

Prot-
eomic

Ener-
getic

Deng, H. 
X., Y. Shi, 
et al 2006

 Conversion to the 
amyotrophic lateral 
sclerosis phenotype 
is associated with 
intermolecular 
linked insoluble 
aggregates of 
SOD1 in 
mitochondria

 Proc 
Natl 
Acad Sci 
U S A 
103(18): 
7142-7 F invivo ? x

oxidation, 
protein 
aggregation, 
mitochondrial 
damage, and 
SOD1-
mediated ALS

Prot-
eomic

Ener-
getic

Liu, J., C. 
Lillo, et al 2004

 Toxicity of familial 
ALS-linked SOD1 
mutants from 
selective 
recruitment to 
spinal mitochondria

 Neuron 
43(1): 5-
17 F invivo ? x

protein 
aggregation in 
mitochondria

Prot-
eomic

Ener-
getic

Lukas, T. J., 
W. W. Luo, 
et al 2006

 Informatics-
assisted protein 
profiling in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Mol Cell 
Proteomi
c 5(7): 
1233-44 F invivo

G93
A x

expression: 
protein kinase 
signaling 
systems, ATP-
driven ion 
transport, and 
neurotransmis
sion

Prot-
eomic

Ener-
getic

Raimondi, 
A., A. 
Mangolini, 
et al 2006

 Cell culture models 
to investigate the 
selective 
vulnerability of 
motoneuronal 
mitochondria to 
familial ALS-linked 
G93ASOD1

 Eur J 
Neurosci 
24(2): 
387-99 F invitro

G93
A x

swelling & 
cristae 
remodeling of 
mitochondria
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Prot-
eomic

Free 
Radical

Aquilano, 
K., G. 
Rotilio, et al 2003

 Proteasome 
activation and 
nNOS down-
regulation in 
neuroblastoma 
cells expressing a 
Cu,Zn superoxide 
dismutase mutant 
involved in familial 
ALS

 J 
Neuroch
em 
85(5): 
1324-35 F invivo

G93
A x

ROS/NO 
interactions; 
proteasome 
inhbition

Prot-
eomic

Free 
Radical

Kikuchi, H., 
G. Almer, et 
al 2006

 Spinal cord 
endoplasmic 
reticulum stress 
associated with a 
microsomal 
accumulation of 
mutant superoxide 
dismutase-1 in an 
ALS model

 Proc 
Natl 
Acad Sci 
U S A 
103(15): 
6025-30 F invivo ? x

protein 
aggregation in 
ER

Prot-
eomic

Free 
Radical

Urushitani, 
M., J. 
Kurisu, et al 2002

 Proteasomal 
inhibition by 
misfolded mutant 
superoxide 
dismutase 1 
induces selective 
motor neuron death 
in familial 
amyotrophic lateral 
sclerosis

 J 
Neuroch
em 
83(5): 
1030-42 F invivo mult x

proteasome 
inhibition, 
oxidative 
stress

Prot-
eomic Genetic

Gal, J., A. 
L. Strom, et 
al 2007

 p62 accumulates 
and enhances 
aggregate 
formation in model 
systems of familial 
amyotrophic lateral 
sclerosis

 J Biol 
Chem 
282(15): 
11068-
77 F invivo ? x

p62 nuclear 
pore protein 
role in 
aggregate 
formation/ 
RNA 
trafficking
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Prot-
eomic Genetic

Nakamura, 
M., H. Ito, 
et al 2008

 Phosphorylated 
Smad2/3 
immunoreactivity in 
sporadic and 
familial amyotropc 
lateral sclerosis and 
its mouse model

 Acta 
Neuropa
thol 
115(3): 
327-34 F/S invivo

hum
an & 
G93
A x

lewi bodies, 
tau 
occlusions; 
effects of 
SMAD 
transcriptors

Prot-
eomic Genetic

Rakhit, R., 
J. 
Robertson, 
et al 2007

 An immunological 
epitope selective 
for pathological 
monomer-
misfolded SOD1 in 
ALS

 Nat 
Med 
13(6): 
754-9 F ?

G93
A, 
G85
R, 
G37
R x

quantification 
of SOD1 with 
an epitope

Prot-
eomic Genetic

Robertson, 
J., T. 
Sanelli, et 
al 2007

 Lack of TDP-43 
abnormalities in 
mutant SOD1 
transgenic mice 
shows disparity 
with ALS

 Neurosc
i Lett 
420(2): 
128-32 F invivo ? x

mislocationaliz
ation of TAR-
DNA binding 
protein

Prot-
eomic Genetic

Sau, D., S. 
De Biasi, et 
al 2007

 Mutation of SOD1 
in ALS: a gain of a 
loss of function

 Hum 
Mol 
Genet 
16(13): 
1604-18 F both

proteasome, 
oxidative 
stress
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Prot-
eomic

Inflam-
mation

Puttaparthi, 
K. and J. L. 
Elliot 2005

 Non-neuronal 
induction of 
immunoproteasom
e subunits in an 
ALS model: 
possible mediation 
by cytokines

 Exp 
Neurol 
196(2): 
441-51 F invivo

G93
A x

proteasome, 
TNF alpha, 
cytokines, 
aggregation

Prot-
eomic

Inflam-
mation

Puttaparthi, 
K., L. Van 
Kaer, et al 2007

 Assessing the role 
of immuno-
proteasomes in a 
mouse model of 
familial ALS.

Exp 
Neurol 
206(1): 
53-8 F invivo

G93
A x proteasome

Prot-
eomic

Necro-
Apoptos
is

Atkin, J. D., 
M. A. Farg, 
et al 2006

 Induction of the 
unfolded protein 
response in familial 
amyotrophic lateral 
sclerosis and 
association of 
protein-disulfide 
isomerase with 
superoxide 
dismutase 1

 J Biol 
Chem 
281(40): 
30152-
65 F invivo

G93
A x

unfolded 
protein 
response and 
ER stress-
induced 
apoptosis 

Prot-
eomic None

Cheroni, 
C., M. 
Marino, et 
al 2009

 Functional 
alterations of the 
ubiquitin-
proteasome system 
in motor neurons of 
a mouse model of 
familial 
amyotrophic lateral 
sclerosis

 Hum 
Mol 
Genet 
18(1): 82-
96 F invivo

G93
A x

ubiquitin-
proteasome 
system 
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Prot-
eomic None

Gomes, C., 
S. Keller, et 
al 2007

 Evidence for 
secretion of Cu,Zn 
superoxide 
dismutase via 
exosomes from a 
cell model of 
amyotrophic lateral 
sclerosis

 Neurosc
i Lett 
428(1): 
43-6 F invitro

G93
A x

p115 and 
calnexin; 
endosomal 
transferance 
of toxicity

Prot-
eomic None

Ratnaparkh
i, A., G. M. 
Lawless, et 
al 2008

 A Drosophila 
model of ALS: 
human ALS-
associated 
mutation in VAP33A 
suggests a 
dominant negative 
mechanism

 PLoS 
ONE 
3(6): 
e2334 F invivo

ALS
8 ?

VAPB, 
aggregates

Prot-
eomic None

Rumfeldt, 
J. A., J. R. 
Lepock, et 
al 2009

 Unfolding and 
folding kinetics of 
amyotrophic lateral 
sclerosis-
associated mutant 
Cu,Zn superoxide 
dismutases

 J Mol 
Biol 
385(1): 
278-98 F invivo mult x

measures of 
protein 
aggregation

Prot-
eomic None

Rumfeldt, 
J. A., P. B. 
Stathopulos
, et al 2006

 Mechanism and 
thermodynamics of 
guanidinium 
chloride-induced 
denaturation of ALS-
associated mutant 
Cu,Zn superoxide 
dismutases

 J Mol 
Biol 
355(1): 
106-23 F invivo mult x

protein 
aggregation, 
stability
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Prot-
eomic None

Shaw, B. F., 
H. L. Lelie, 
et al 2008

 Detergent-
insoluble 
aggregates 
associated with 
amyotrophic lateral 
sclerosis in 
transgenic mice 
contain primarily 
full-length, 
unmodified 
superoxide 
dismutase-1

 J Biol 
Chem 
283(13): 
8340-50 F invivo mult x

protein 
aggregate 
analysis

Prot-
eomic None

Teuling, E., 
S. Ahmed, 
et al 2007

 Motor neuron 
disease-associated 
mutant vesicle-
associated 
membrane protein-
associated protein 
(VAP) B recruits 
wild-type VAPs into 
endoplasmic 
reticulum-derived 
tubular aggregates

J 
Neurosci 
27(36): 
9801-15 F invivo

G93
A x

vesicle-
associated 
membrane 
protein (VAP), 
aggregation

Prot-
eomic None

Vlug, A. S. 
and D. 
Jaarsma 2004

 Long term 
proteasome 
inhibition does not 
preferentially afflict 
motor neurons in 
organotypical 
spinal cord cultures

 Amyotro
ph 
Lateral 
Scler 
Other 
Motor 
Neuron 
Disord 
5(1): 16-
21 F invitro

G93
A x

ubiquitin, 
proteasome, 
aggregation

Prot-
eomic None

Zhai, J., H. 
Lin, et al 2005

 HoxB2 binds 
mutant SOD1 and 
is altered in 
transgenic model of 
ALS

 Hum 
Mol 
Genet 
14(18): 
2629-40 F invivo

G93
A x

HoxB2 in 
aggregates
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Systemi
c

Ener-
getic

Gajewski, 
C. D., M. T. 
Lin, et al 2003

 Mitochondrial DNA 
from platelets of 
sporadic ALS 
patients restores 
normal respiratory 
functions in rho(0) 
cells

 Exp 
Neurol 
179(2): 
229-35 S invivo

hu-
man

platelets 
relieve 
respiratory 
dysfunction

Systemi
c

Ener-
getic

Wiedeman
n, F. R., K. 
Winkler, et 
al 1998

 Impairment of 
mitochondrial 
function in skeletal 
muscle of patients 
with amyotrophic 
lateral sclerosis

 J Neurol 
Sci 
156(1): 
65-72 S invivo

hu-
man

NADH, 
NADPH in 
muscles

Systemi
c Multiple

Cova, E., 
C. Cereda, 
et al 2006

 Modified 
expression of Bcl-2 
and SOD1 proteins 
in lymphocytes 
from sporadic ALS 
patients

 Neurosc
i Lett 
399(3): 
186-90 S invivo

hu-
man

mitochondria 
& Ca 
regulation 
dysfunction & 
Bcl-2 in 
peripheral 
lymphocytes

Systemi
c None

Banerjee, 
R., R. L. 
Mosley, et 
al 2008

 Adaptive immune 
neuroprotection in 
G93A-SOD1 
amyotrophic lateral 
sclerosis mice

 PLoS 
ONE 
3(7): 
e2740 F invivo

G93
A x

T-cell 
dysfunction
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D
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Systemi
c None

Hegedus, 
J., C. T. 
Putman, et 
al 2008

 Preferential motor 
unit loss in the 
SOD1 G93A 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 J 
Physiol 
586(14): 
3337-51 F invivo

G93
A x

FF motor units 
die first

Systemi
c Clinical

Chung, M. 
J. and Y. L. 
Suh 2002

 Ultrastructural 
changes of 
mitochondria in the 
skeletal muscle of 
patients with 
amyotrophic lateral 
sclerosis

 Ultrastr
uct 
Pathol 
26(1): 3-
7 F/S invivo

hu-
man

changes in 
muscle 
mitochondria

Clinical Genetic

Gamez, J., 
M. Corbera-
Bellalta, et 
al 2006

 Mutational analysis 
of the Cu/Zn 
superoxide 
dismutase gene in 
a Catalan ALS 
population: should 
all sporadic ALS 
cases also be 
screened for SOD1

 J Neurol 
Sci 
247(1): 
21-8 S x

prevalence of 
SOD1 
mutations in 
SALS

Clinical Genetic

Han-Xiang, 
D., J. 
Hujun, et al 2008

 Molecular 
dissection of ALS-
associated toxicity 
of SOD1 in 
transgenic mice 
using an exon-
fusion approach

 Hum 
Mol 
Genet 
17(15): 
2310-9 F both

T11
6X x

Genetic 
'sufficient' to 
cause ALS

Clinical Genetic

Urushitani, 
M., S. A. 
Ezzi, et al 2007

 Clinical effects of 
immunization with 
mutant superoxide 
dismutase in mice 
models of 
amyotrophic lateral 
sclerosis

 Proc 
Natl 
Acad Sci 
U S A 
104(7): 
2495-
500 F invivo

G93
A & 
G37
R x

SOD1 
immunization 
as a therapy
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Nagano, I., 
H. Ilieva, et 
al 2005

 Clinical benefit of 
intrathecal injection 
of insulin-like 
growth factor-1 in a 
mouse model of 
Amyotrophic 
Lateral Sclerosis

 J Neurol 
Sci 
235(1-
2): 61-8. F invivo

G93
A x

IGF-1 
intrathecallly 
improved 
motor scores, 
disease onset

Clinical
Inflam-
mation

Narai, H., I. 
Nagano, et 
al 2005

 Prevention of 
spinal motor 
neuron death by 
insulin-like growth 
factor-1 associating 
with the signal 
transduction 
systems in 
SODG93A 
transgenic mice

 J 
Neurosci 
Res 
82(4): 
452-7 F invivo

G93
A x

effects of IGF-
1 treatment

Clinical
Inflam-
mation

Schutz, B., 
J. 
Reimann, 
et al 2005

 The oral 
antidiabetic 
pioglitazone 
protects from 
neurodegeneration 
and amyotrophic 
lateral sclerosis-like 
symptoms in 
superoxide 
dismutase-G93A 
transgenic mice

 J 
Neurosci 
25(34): 
7805-12 F invivo

G93
A x microglia, NO

Clinical
Inflam-
mation

Wang, L. J., 
Y. Y. Lu, et 
al 2002

 Neuroprotective 
effects of glial cell 
line-derived 
neurotrophic factor 
mediated by an 
adeno-associated 
virus vector in a 
transgenic animal 
model of 
amyotrophic lateral 
sclerosis

 J 
Neurosci 
22(16): 
6920-8 F invivo

G93
A x

GDNF as a 
therapy

Clinical Multiple Benatar, M 2007

 Lost in translation: 
treatment trials in 
the SOD1 mouse 
and in human ALS

 Neurobi
ol Dis 
26(1): 1-
13 F/S x

prioritization of 
favorable 
clinical 
therapies: 
oxidation, anti-
inflammatory



368

Cat-
egory 1

Cat-
egory 2 Author Year Title Journal A

LS
 ty

pe

Ex
p 

Ty
pe

M
od

el

SO
D

R
/O

Factor 
Description

Clinical Multiple

Del 
Signore, S. 
J., D. J. 
Amante, et 
al 2008

 Combined riluzole 
and sodium 
phenylbutyrate 
therapy in 
transgenic 
amyotrophic lateral 
sclerosis mice

  Amyotr
oph 
Lateral 
Scler: 1-
10 F invivo

G93
A x

combination 
therapy 
impact on 
apoptosis & 
astrogliosis

Clinical Multiple

Nicaise, C., 
J. Coupier, 
et al 2008

 Gemals, a new 
drug candidate, 
extends lifespan 
and improves 
electromyographic 
parameters in a rat 
model of 
amyotrophic lateral 
sclerosis

 Amyotro
ph 
Lateral 
Scler 
9(2): 85-
90 F invivo

G93
A x

combination 
therapy

Clinical

Necro-
Apop-
tosis

Ohta, Y., T. 
Kamiya, et 
al 2008

 Clinical benefits of 
intrathecal protein 
therapy in a mouse 
model of 
amyotrophic lateral 
sclerosis

 J 
Neurosci 
Res 
86(13): 
3028-37.

TAT-modified 
Bcl-X(L) 
therapy, 
caspase

Clinical None

Andersen, 
P. M., G. D. 
Borasio, et 
al 2007

 Good practice in 
the management of 
amyotrophic lateral 
sclerosis: clinical 
guidelines. An 
evidence-based 
review with good 
practice points. 
EALSC Working 
Group.

 Amyotro
ph 
Lateral 
Scler 
8(4): 195-
213 F/S x

clinical 
approaches

Clinical None

Boucherie, 
C., A. S. 
Caumont, 
et al 2008

 In vitro evidence 
for impaired 
neuroprotective 
capacities of adult 
mesenchymal stem 
cells derived from a 
rat model of familial 
amyotrophic lateral 
sclerosis 
(hSOD1(G93A))

 Exp 
Neurol 
212(2): 
557-61 F both

G93
A x

clinical use of 
stem cells

Clinical None

Chandran, 
J., J. Ding, 
et al 2007

 Alsin and the 
molecular 
pathways of 
amyotrophic lateral 
sclerosis

 Mol 
Neurobi
ol 36(3): 
224-31 F invivo

ALS
2 x

relationship 
between alsin 
and motor 
dysfunction
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Corti, S., F. 
Locatelli, et 
al 2007

Neural stem cells 
LewisX+ CXCR4+ 
modify disease 
progression in an 
amyotrophic lateral 
sclerosis model

 Brain 
130(Pt 
5): 1289-
305 F invivo

G93
A x

stem cell 
protections, 
VEGF/IGF 
paths helped

Clinical None

Feng, H. L., 
Y. Leng, et 
al 2008

 Combined lithium 
and valproate 
treatment delays 
disease onset, 
reduces 
neurological deficits 
and prolongs 
survival in an 
amyotrophic lateral 
sclerosis mouse 
model

 Neurosc
ience 
155(3): 
567-72 F invivo

G93
A x

synergistic 
combination 
therapy with 
lithium and 
valpoic acid 

Clinical None

Garbuzova-
Davis, S., 
C. D. 
Sanberg, et 
al 2008

 Human umbilical 
cord blood 
treatment in a 
mouse model of 
ALS: optimization 
of cell dose

 PLoS 
ONE 
3(6): 
e2494 F invivo

G93
A x

anti-
infammatory 
effect of 
transplanted 
cells

Clinical None Lai, E. C. 1999

 Clinical 
developments in 
amyotrophic lateral 
sclerosis

 Expert 
Opin 
Investig 
Drugs 
8(4): 347-
61 F/S x

clincal 
therapies

Clinical None

Matias-
Guiu, J., J. 
A. Barcia, 
et al 2008

 [Cellular therapy in 
amyotrophic lateral 
sclerosis]

 Neurolo
gia 
23(4): 
226-37 F invivo

G93
A x x

evaluation of 
stem cell 
transplantatio
n

Clinical None

Miller, R., 
W. Bradley, 
et al 2007

 Phase II/III 
randomized trial of 
TCH346 in patients 
with ALS

 Neurolo
gy 69(8): 
776-84 F/S invivo

hu-
man

therapy had 
no effect

Clinical None

Shefner, J. 
M., M. 
Cudkowicz, 
et al 2006

Motor unit number 
estimation predicts 
disease onset and 
survival in a 
transgenic mouse 
model of 
amyotrophic lateral 
sclerosis

 Muscle 
Nerve 
34(5): 
603-7 F invivo

G93
A x

motor unit 
number 
estimation
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Tang, W., 
U. Tasch, et 
al 2009

Measuring early 
pre-symptomatic 
changes in 
locomotion of 
SOD1-G93A rats-A 
rodent model of 
amyotrophic lateral 
sclerosis

J 
Neurosci 
Methods 
176(2): 
254-62 F invivo

G93
A x

8 parameters 
to measure 
ALS

Clinical None

Weiss, M. 
D., J. M. 
Ravits, et al 2006

 A4V superoxide 
dismutase mutation 
in apparently 
sporadic ALS 
resembling 
neuralgic 
amyotrophy

Amyotro
ph 
Lateral 
Scler 
7(1): 61-
3 S invivo

hu-
man x

clinical 
presentation

Clinical None

Zhao, Z., D. 
J. Lange, et 
al 2008

 Vgf is a novel 
biomarker 
associated with 
muscle weakness 
in amyotrophic 
lateral sclerosis 
(ALS), with a 
potential role in 
disease 
pathogenesis

 Int J 
Med Sci 
5(2): 92-
9 F/S invivo

hu-
man

Vgf as a 
muscle 
weakness 
marker

Clinical None

Zhou, C., 
C. P. Zhao, 
et al 2007

 A method 
comparison in 
monitoring disease 
progression of 
G93A mouse model 
of ALS

 Amyotro
ph 
Lateral 
Scler 
8(6): 366-
72 F invivo ? x

motor unit 
number 
estimation

Clinical
Prot-
eomic

Watanabe, 
M., M. 
Dykes-
Hoberg, et 
al 2001

 Histological 
evidence of protein 
aggregation in 
mutant SOD1 
transgenic mice 
and in amyotrophic 
lateral sclerosis 
neural tissues

 Neurobi
ol Dis 
8(6): 933-
41 F invivo

G93
A x

GDNF as a 
therapy; AAV; 
protein 
aggreation

Clinical
Prot-
eomic

Kalmar, B., 
S. 
Novoselov, 
et al 2008

 Late stage 
treatment with 
arimoclomol delays 
disease 
progression and 
prevents protein 
aggregation in the 
SOD1 mouse 
model of ALS

 J 
Neuroch
em 
107(2): 
339-50 F invivo

G93
A x

upregulation 
of HSP 
decreases 
protein 
aggregates
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Kanje, M., 
A. Edstrom, 
et al 1981

 Inhibition of rapid 
Axon transport in 
vitro by the 
ionophores X-537 A 
and A 23187

 Brain 
Res 
204(1): 
43-50 x

inhibition of 
transport by 
calcium

Clinical
Sys-
temic

Hegedus, 
J., C. T. 
Putman, et 
al 2007

 Time course of 
preferential motor 
unit loss in the 
SOD1 G93A mouse 
model of 
amyotrophic lateral 
sclerosis

 Neurobi
ol Dis 
28(2): 
154-64 F invivo

G93
A x

time course of 
G93A ALS: 
MN axon 
length, size, 
motor unit 
pool size as 
outcome 
measures
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A Comprehensive Approach to Understanding Spinal Cord Injury  

2009 Christopher Reeves Foundation Symposium, Atlanta, GA,  

 

C.S. Mitchell, C.M. Simon, M.C. LaPlaca, R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

Trauma to the spinal cord launches a complex cascade of events that leads to 

progressive damage and loss of function.  Ultimately, spinal cord injury (SCI) 

outcome depends on the extent of secondary damage and the interactions among 

them, yet these mechanisms remain poorly understood. Several experimental 

studies have targeted certain hypothesized components of secondary damage such 

as excitotoxicity, energetics, free radical damage, inflammatory responses, and 

necroptosis.   However, the combined effects of these factors as well as their 

interactions have yet to be examined in a holistic fashion.  We have developed a 

comprehensive mathematical model of secondary injury based on the results of over 

300 published studies, permitting quantitative examination of the interactions 

among the key factors.  Results of the model indicate that relatively few factors are 

likely to be highly influential in early treatment.  One of the factors having a 

significant impact on outcome is plasma membrane damage in the acute post‐SCI 

period.   In parallel, we examined membrane damage as a function of time in a 

rodent model of SCI.   Fluorescent cell‐impermeant dyes were injected into the 

cerebrospinal fluid of adult male rats prior to contusion injury, and the anatomical 
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location of cell bodies and axons taking up the dye SCI was quantified acutely (10 

min), subacutely (24 hrs), and at chronically (3 days and 5 weeks).  Asymmetrical 

rostral‐caudal patterns of cell body permeability were observed at 10 minutes, but 

cell body damage was not extensive at other time points.  Axonal uptake, however, 

was seen at all time points in a symmetric distribution. These data indicate that 

early non‐specific damage is a key component of SCI pathology and persists in 

axons, possibly contributing to poor outcome and providing targets for developing 

novel treatment strategies. This two‐pronged−modeling and 

experimental−approach will permit us to delve into the mechanisms and 

interactions underlying key factors such as membrane damage and then to use the 

experimental results to iteratively improve the accuracy and predictive power of the 

model.   Ultimately, we expect this method to be a robust tool for designing pre‐

clinical studies to test effectiveness of mechanistically‐driven treatment(s).  Work 

supported by NIH NS045199 and NSF EEC‐9731643. 
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Figure D.1.   A Comprehensive Approach to Understanding Spinal Cord Injury 
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Comprehensive examination of secondary spinal cord injury and potential single 
and combinatorial neuroprotective therapeutic strategies  

2008 26th Annual National Neurotrauma Symposium, Orlando, FL. 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

Secondary injury, a complex cascade of cellular events, which results in post‐insult 

lesion expansion, is a major source of neuron death following spinal cord injury 

(SCI).  Unfortunately, despite decades of research and several promising 

experimental findings, highly effective and repeatable clinical treatments have yet to 

emerge. Experimental investigation of individual secondary injury factors (such as 

excitotoxic, necrotic‐apoptotic, free radical, inflammatory, and energetic factors) has 

resulted in a substantial, yet disparate pool of single factor data, making the 

interpretation of multi‐factor effects and interactions difficult. We hypothesize that 

a lack of understanding of how the secondary injury process functions as a whole 

results in the disconnect that is seen between primary research and clinical 

outcomes.  We developed methodology that greatly facilitates pooling disparate 

data, enabling a novel, comprehensive view into the pathology of secondary injury 

across time points, preparations, and protocols.  Using this methodology, we 

developed a system‐wide “relational model” of secondary injury by aggregating the 

relevant relationships between factors commonly believed to be involved in the 

progression of secondary injury from over 250 experimental papers. This relational 
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model represents a comprehensive view of the progression of neuron death 

following mechanical insult by directly incorporating the literature‐derived 

experimental relationships (for example, the relationship between free radicals and 

membrane damage) into a network of time‐varying factors.  Using this model, we 

quantitatively examined the entire secondary injury process, including the 

interactions and dynamics of ~20 of the most commonly studied secondary injury 

factors and the effects of ~20,000 different single and combination therapies in 

reducing secondary injury related neuron death.  Our results, which illustrate the 

impact‐ranking of individual factors on neuron death over time, reveal that 

relatively few factors are highly influential at clinically relevant timeframes (4‐8 

hours post‐insult).  Furthermore, our results suggest the importance of process 

dynamics in determining the success of specific therapeutic intervention types.  We 

expect further model refinement to lead to a high‐throughput screening process 

where potential experimental mechanisms and clinical therapeutics can be pre‐

tested and prioritized. 
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Figure D.2. Comprehensive examination of secondary spinal cord injury and potential 
single and combinatorial neuroprotective therapeutic strategies 
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A Re-examination of the AHP:  Is it diffusion limited? 

2008 Mechanisms of Plasticity and Disease in Motoneurons,  Seattle, WA. 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

 

Figure D.3. A Re-examination of the AHP:  Is it diffusion limited? 
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A quantitative assessment of secondary injury dynamics and potential multi-faceted 
neuroprotective therapeutics 

2008 Society for Neuroscience, Washington DC 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering 

 

Secondary injury, a complex cascade of cellular events, which results in post-insult lesion 

expansion, is a major source of neuron death following spinal cord injury (SCI). 

Experimentation has resulted in the detailed investigation of multiple individual 

secondary injury factors (such as excitotoxic, necrotic-apoptotic, free radical, 

inflammatory, and energetic factors), but little is known about their interactions and the 

overall process dynamics of secondary injury, which result in its propagation. Using our 

relational modeling and analysis techniques, we were able aggregate these detailed 

pockets of experimental findings into a relational model that recapitulates the findings of 

~250 experimental papers, allowing the first comprehensive view into the secondary 

injury dynamics, which result in the progression of neuron death following mechanical 

insult. Using this model, we quantitatively examined the entire secondary injury process, 

including the interactions and temporal dynamics of multiple secondary injury factors 

and the effects of thousands of various single and combination neuroprotective therapies. 

Our results reveal the large contribution of overall process dynamics and the critical 

importance of treatment window (i.e. time of treatment initiation) in determining the 

success of various single and multi-faceted treatments and intervention types. Our 

preliminary analysis of the overall process dynamics provides new experimental and 
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clinical research directions to pursue and novel conceptualizations for potential 

therapeutic strategies. 

 

Figure D.4. A quantitative assessment of secondary injury dynamics and potential 
multi‐faceted neuroprotective therapeutics 
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A Reconceptualization of the relationship between spike afterhypolarization and 
firing rate in lumbar motoneurons of the adult cat 

2008 Society for Neuroscience, Washington DC 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

While it is known that the afterhyperpolarization (AHP) following an  action potential is 

generated by the calcium-dependent potassium  channel SK, the relationship between 

dynamics of the action potential  and the dynamics of the AHP remain unknown.  The 

traditional view is  that AHP's summate and thereby slow firing.  However, recent 

evidence  from the Bennett lab, suggests that two populations of SK are present  in 

motoneurons and that they are associated with differing calcium  channels (N and L 

respectively).  What effect do these two  populations have on the relationship between 

action potentials/firing  rate and the AHP itself?  We use relational analysis (Mitchell and 

 Lee, 2007) to examine the effect of alternative conceptualizations of  how calcium and 

SK combine to form the AHP and what impact those  conceptualizations have on other 

motoneuron  properties.   Significantly, we conclude that the standard  conceptualization 

of "AHP summation" results in a negative  correlation between persistent sodium currents 

involved in spike  initiation and the primary range slope of the injected current-firing 

 rate relationship (i.e. F-I gain).   However, experimental data  suggests just the opposite. 

  We explore several alternative  conceptualizations of the link between the action 

potential waveform,  calcium dynamics and SK channel dynamics resulting in an AHP. 
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Figure D.5. A Reconceptualization of the relationship between spike afterhypolarization 
and firing rate in lumbar motoneurons of the adult cat 
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Comparison of degenerate NMDA-receptor models in the context of a larger model. 

2007 Society for Neuroscience, San Diego, CA. 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

One critical task each neural modeler must face, regardless of the system being studied, is 

balancing the level of physiological detail represented by the model with the 

computational load required by the model.  The judgment call for “appropriate level of 

detail” typically centers on the ability of the model to produce desired outputs.  This is 

based on the assumption that output is a good measure of model validity.  However, is 

matching output sufficient to declare that mechanistic differences imparted by differences 

in level of detail result in models that are the “same” (i.e. “degenerate”)?    We 

investigate this question by comparing two different NMDA receptor models within the 

context of a glutamate spillover model.  Using automated parameter searches and 

sensitivity profiles, we compare the cross-correlation matrices of the output metrics to 

establish a “model fingerprint”.  Based on the results presented here, the two receptor 

models, in the context of the larger spillover model, can result in the same overall model 

output but yield differing sensitivities and therefore different cross-correlations of 

outputs.  Thus, our results indicate that the model fingerprint can reveal differences in 

models whose outputs would otherwise be considered the same.  This opens the door to 

higher level analysis as a means to differentiate between model implementations and non-

unique parameter sets.  
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Figure D.6. Comparison of degenerate NMDA-receptor models in the context of a larger 
model. 



  388 

A computational model of secondary traumatic injury 

2007 Society for Neuroscience, San Diego, CA 

 

C.S. Mitchell and R.H. Lee 

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and 
Emory University, Laboratory for Neuroengineering, 313 Ferst Dr., Atlanta, GA 

 

 

The outcome of traumatic brain or spinal cord injury depends on the extent of secondary 

damage, often referred to as “secondary injury”, produced by a series of cellular and 

molecular events, which are initiated after the primary trauma.  To date, these secondary 

injury mechanisms and particularly their interactions remain poorly understood.  Several 

experimental studies have targeted certain hypothesized components of secondary 

damage such as excitotoxicity, free radical damage, decreased metabolism from 

mitochondrial damage, and inflammatory responses, to name a few.  However, no study 

has been able to analyze these hypothesized cascades of events as a whole and determine 

each mechanism’s contribution individually on the end result of secondary injury, cell 

death.  We implement a computational model of secondary injury, which includes the 

aforementioned players and the interactions which result from their feedback.  

Preliminary results suggest that the hypothesized mechanisms have relatively similar 

sensitivities. Thus, the secondary injury process is not completely driven by any one 

particular mechanism but rather by the combined effects of them all.  The significance of 

the model itself is that it allows various mechanisms to be tested theoretically and based 

on the results, can suggest future experimental avenues worthy of further investigation. 

This worked is supported by the National Science Foundation IGERT #DGE-0333411. 
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Figure D.7. A computational model of secondary traumatic injury 
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In the world of biomedical engineering, and especially neural engineering, models can 

give great insight into very dynamic, complex systems.   As the complexity of these 

models increases, it becomes more to difficult to know how much detail to include, how 

to determine parameter values, and how to analyze the model results.  Recent work has 

focused on the use of complexity to help analyze neurons and neural networks with a 

particular focus on degeneracy as it relates to parameter non-uniqueness.  This work uses 

two very different models, a model of glutamate spillover model at the cerebellar 

glomerulus and a model of axonal transport via molecular motors, to 1.) determine if 

parameter non-uniqueness, as seen in neuron models, is ubiquitous among different 

model types and to 2.)  determine if a combination of standard methods including 

parameter searches,  sensitivity analysis, factor analysis, and other complexity methods 

can be used to characterize and analyze model mechanisms, parameters, and outputs.   
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Figure D.8. Biological Model Analysis:  What Does Complexity Theory have to Offer?
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Neurotransmitter spillover, defined as the escape of neurotransmitter from the synapse 

into which it is released to neighboring, quiescent synapses thereby activating receptors, 

remains a topic of experimental and theoretical debate.  Spillover, if significantly present, 

would shatter the conventional wisdom behind independent synaptic transmission and 

plasticity.  Given the difficulty of assessing spillover experimentally, modeling remains 

the most feasible method of investigation.  The overall approach of this project is a 

broad-based assessment of all the factors governing spillover.  We present a 

representative model of spillover using the mossy fiber of the cerebellar glomerulus by 

combining recent models of glutamate diffusion and N-methyl-D-aspartate receptor 

(NMDA-R) binding to determine the open probabilities of NMDA-Rs over time at a 

neighbor synapse. Simulation results from a baseline set of physiologically realistic 

parameters show that glutamate spillover onto a single neighbor synapse, created by 

glutamate that diffuses from a point source into a restricted fractional 2D-3D space and 

the glutamate concentration created by neighboring glutamate release sites, is sufficient 

to elicit an NMDA-R peak open probability of 0.23.  However, simulations of limiting 

cases with parameter sets outside what is thought to be the physiological range did 
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produce peak open probabilities as low as 0.03 and as high as 0.28. The parameters that 

impact the degree of spillover the most when simulated with values inside the 

physiological range include the effective diffusion coefficient of glutamate in the 

extracellular space, the number of glutamate release sites in the cerebellar glomerulus, 

and the initial concentration of glutamate released.  We conclude that glutamate spillover 

cannot be simply dismissed or assumed to be insignificant, and that further exploration of 

this issue is necessary. 
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Figure D.9. A model of glutamate spillover on the N-methyl-D-aspartate receptors of the 
cerebellar glomerulus 
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