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SUMMARY 

The task of choosing between decision alternatives presented on a visual display is 

ubiquitous. Automated decision support systems (DSS) provide a powerful means of 

improving human decision-making outcomes, but they can also introduce deleterious 

effects in the form of automation bias (e.g., commission errors and errors of omission). 

Research has shown that informationally equivalent display designs can lead to significant 

differences in terms of decision-making outcomes. The current study examined how the 

influence of visual display design factors on decision making can be leveraged to increase 

compliance with an automated DSS and reduce potential automation bias. To this end, a 

series of four experiments were conducted. In each experiment, participants completed a 

simulated route navigation task in which they were tasked with choosing one of four 

different routes that were described by four different attributes in order to navigate to their 

destination. Experiments 1 and 2 were designed to explore how display design factors 

could be used to establish a decision environment that influenced participants choices in a 

predictable manner. Results revealed that highlighting an attribute in yellow to increase its 

perceptual salience increased the likelihood that participants would choose the route that 

was strongest on the salient attribute. Experiments 3 and 4 applied this salience effect to 

the design of an automated DSS which recommended one of the four routes to participants. 

By increasing the salience of an attribute, choice share in favor of the route recommended 

by the automated DSS increased by as high as 15%. However, this increase in compliance 

came at the cost of increasing commission errors; participants chose the recommended 

route even on trials in which it was inferior to other alternatives. For this reason, salience 



 x 

effects should be applied to cases in which the cost of commission errors is low or when 

automation reliability is high. Informationally equivalent display design factors can be 

manipulated to increase compliance, but to reduce automation bias, the display design must 

communicate the logic underlying the automation’s recommendations. 
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CHAPTER 1. INTRODUCTION 

The task of choosing between decision alternatives presented on a visual display is 

ubiquitous. Consider for example, a global positioning system (GPS) providing a series of 

potential routes for you to take to a new restaurant. Upon arriving at the restaurant, you 

view a food menu displaying several dishes, from which you choose one. Choice decision-

making tasks such as these are fairly common examples. However, choice tasks can range 

from the routine to more extreme, safety-critical environments such as a physician 

choosing a treatment plan from a set of pre-selected options to administer to a patient. In 

these examples, changing the manner in which decision information is displayed presents 

an opportunity to help people make better decisions. 

The way in which decision information is displayed can significantly influence how 

people choose among alternatives. Visual displays represent the medium through which 

decision information is communicated to, and subsequently processed by the decision 

maker. Research has shown that the same information, when presented using different 

display designs, can lead to significant differences in terms of decision-making outcomes 

(see Hegarty, 2011). Explaining the effect of display design on decision making, cognitive 

scientists have argued that informationally equivalent displays (those which contain the 

same information) are not necessarily computationally equivalent (Larkin & Simon, 1987). 

In other words, visual displays can be manipulated independent of the decision information 

that is being presented. For this reason, visual display design constitutes an important factor 

for understanding task performance in general, and decision-making outcomes in 
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particular. Understanding display design effects on decision making is an important part of 

designing a beneficial automated decision support system. 

In an effort to help people make better decisions, automated decision support 

systems can aid the human decision-making process. In general, automated decision 

support systems (DSS) present a set of decision alternatives, from which the human can 

choose. By leveraging the computational capabilities of automation, the DSS can examine 

more alternatives in less time than their human counterpart and recommend decision 

alternatives without restricting choice. However, imperfect automation can also introduce 

deleterious effects in the form of decision-making biases that arise from over or under 

relying on the automation (Goddard, Roudsari, & Wyatt, 2011). Therefore, leveraging 

display design effects on decision making offers the potential to influence how people use 

such automated DSS to ensure that people get the most out of such systems. 

The visual display is often the primary means through which such highly automated 

systems communicate decision information to the human. Highly automated systems are 

growing in ubiquity and are now being used in more safety-critical environments by well-

trained operators as well as by novice consumers at home and on the road (West, 2015). 

Designing for interactions with highly automated systems will become a more common, 

yet critical human factors challenge faced by designers across industries (Hancock, 2017). 

To this point, researchers have recently called for a paradigm shift in how we design for 

interacting with highly automated systems (de Visser, Pak, & Shaw, 2018). In the 

progression from automation to autonomy, the task of choosing among different plans of 

action for a highly automated system will likely become a more dominant paradigm of 
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interacting with technology. Therefore, understanding how to engineer a decision 

environment to influence choice can be directly applied to improve peoples’ interactions 

with highly automated systems. 

Seemingly insignificant visual display design factors can be leveraged to 

strategically influence peoples’ decision-making processes and ultimately their choice of 

alternatives. For this reason, visual display and graphical user interface (GUI) designers 

are uniquely positioned to help people make better decisions. There is almost no end to 

how a visual display can be manipulated. One can easily imagine how decision information 

could be displayed in a manner that all but omits decision-makers from considering one or 

more alternatives (e.g., the use of a micro font that significantly reduces legibility). On the 

other hand, subtle display factors such as the order in which alternatives are sequenced 

within the display can impact how people evaluate and choose an alternative. When 

considering how to engineer displays to influence choice, it is important that the user not 

be overly restricted in their ability to choose a given option, for doing so could instill 

distrust and contribute to disuse of the system (Szalma, 2014). Thus, rather than identify 

display design factors that influence choice at all costs, the current dissertation focused on 

identifying those display design factors that retain information equivalence but do not 

restrict the decision-maker’s ability to choose. Such display elements are an important 

consideration for the design of an automated DSS that encourages appropriate use of the 

automated decision aid. 

The main goal of this dissertation was to understand how to design a decision 

environment in order to influence how people used an automated DSS. To this end, 
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research at the intersection of visual display design, choice decision-making, and human-

automation interaction was reviewed. From this review, four fundamental characteristics 

of information displays were identified, each of which can be manipulated to influence 

decision making without displaying additional information to the user (i.e., retaining 

informational equivalence). By leveraging the predictable effects of display factors in the 

design of an automated DSS, the current study examined how automation designers can 

influence people to comply with the DSS when they otherwise might not have. 

Furthermore, going beyond influencing choice and increasing compliance, the current 

study explored how display design factors might be used to ultimately foster appropriate 

use of an automated DSS. 

1.1 Human-Automation Interaction and Automation Bias 

Automated DSS constitute a powerful method of improving human decision-

making. The enhanced computational abilities of automated systems allow for 

simultaneously evaluating numerous decision alternatives in a matter of milliseconds and 

recommending a subset of those alternatives to the human. Depending upon its level of 

reliability, automation can significantly improve decision-making performance over 

humans alone (Goddard et al., 2011). For instance, GPS navigation systems contain an 

automated decision aid that evaluates multiple routes to a given destination and offers 

recommendations to the driver. Moreover, DSS can reduce the prevalence of decision-

making biases that arise from the use of heuristic-based decision making and which result 

in poor choices or sub-optimal decisions (Kahneman & Frederick, 2002; Kahneman & 
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Tversky, 1979). Thus, automated DSS provide a way to influence peoples choices and help 

them make better decisions. 

Although automated DSS can improve decision-making performance, imperfect 

automation can be notorious for introducing new performance concerns, one of which is 

the phenomenon of automation bias (Goddard et al., 2014; Mosier, Skitka, Heers, & 

Burdick, 1998). In general, automation bias results from operators using the outcome of a 

decision aid as a heuristic, which replaces what would otherwise involve an effortful 

process of extracting and evaluating information required to reach a decision (Mosier & 

Skitka, 1996). The key distinction between automation-induced bias and well-established 

decision-making biases found in the decision-making literature is that the biases arise from 

the operator’s interaction with the automated system (Parasuraman & Manzey, 2010). For 

example, as an operator interacts with an automated DSS, it can lead to commission errors, 

which occur when people rely on the automation’s recommendations despite it being 

inaccurate or even though there is a better alternative readily available. 

The current study focused on designing a decision environment for decision support 

as opposed to supervisory control. However, researchers distinguish between supervisory 

control and decision support as two distinct categories of HAI paradigms in order to 

systematically study automation-induced biases (Parasuraman & Manzey, 2010). The 

supervisory control paradigm typically involves an operator using an automated 

monitoring system to perform routine checks on system states and alert the operator when 

a critical system state is immanent. An example of such supervisory control interactions is 

the modern air traffic controller using an automated aircraft conflict detection system. In 
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contrast, the decision support paradigm involves an automated decision aid that 

supplements the operator’s cognitive processes. Types of decision support interactions can 

range from simply cueing the operator to attend to specific information, to recommending 

and implementing a course of action (Parasuraman, Sheridan, & Wickens, 2000). For 

example, in-vehicle navigation systems provide a route and inform the driver when to turn 

at an intersection along that route.  

With each interaction paradigm there are different types of automation-induced 

biases that can lead to performance decrements. For the supervisory control paradigm, the 

main performance issue arises due to automation-induced complacency, which is defined 

as “poorer detection of system malfunctions under automation compared with under 

manual control” (Parasuraman & Manzey, 2010, p. 390). In contrast, the decision support 

paradigm leads to automation bias, the most relevant of which is a commission error. In 

the HAI literature, some researchers use the term automation bias to refer to any 

automation-induced bias. For the sake of clarity and given the focus on DSS in the current 

paper, automation bias is used to refer specifically to commission errors and errors of 

omission. 

Within a DSS, commission errors occur when people rely on the automation’s 

recommendations rather than examine the decision information and critically evaluate the 

automation’s recommendations (Parasuraman & Manzey, 2010). Researchers have 

proposed that one of the main factors contributing to the occurrence of commission errors 

is the human tendency to conserve cognitive effort (Mosier & Skitka, 1996; Wickens & 

Hollands, 2000). In a desire to conserve effort, people avoid the effortful process of 
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evaluating the available decision information and instead they willfully accept the 

automation’s recommendation regardless of its validity. Of course, compliance with the 

automation can lead to a positive outcome, so long as the automation is perfect; however, 

such perfectly reliable systems are nearly non-existent. 

In designing an automated DSS, manipulating the way that decision information 

and recommended alternatives are displayed presents an opportunity for improving HAI 

outcomes and reducing automation bias. Display design can significantly impact how 

people perceive and interact with automated systems; after all, “because direct observation 

of the automation is often impractical or impossible, perception of the automation-related 

information is usually mediated by a display” (Lee & See, 2004, p. 25). Leveraging display 

factors that influence choice in a predictable fashion, designers can directly address issues 

of increasing compliance and reducing automation bias. Recognizing the importance of 

display design for improving HAI outcomes, researchers have explored the notion of 

increasing automation transparency. 

1.2 Designing for Transparency in Automated Decision Support Systems 

Automation transparency is the extent to which the logic underlying an automated 

system is made available to the human operator (Seong & Bisantz, 2008). The level of 

transparency can be increased through display design in numerous ways including 

feedback for assessing performance and cueing people to attend to specific information. 

This latter approach to increasing automation transparency represents a direct application 

of using display design factors to influence decision-making processes. For example, 
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highlighting information can be used to capture an operator’s selective attention and help 

convey why an automated system is recommending one decision alternative over another. 

If an operator understands the logic underlying the automation’s recommendation, then 

they are more likely to accept the recommendation when it is valid and ignore it when it is 

not. Thus, it is tenable that visual display factors like highlighting can be used to increase 

transparency; in turn, reducing automation bias and encouraging appropriate use of 

automation. 

Researchers have decomposed the concept of automation transparency, proposed 

methods of designing for transparency, and examined its effects on HAI outcomes (Chen 

et al., 2014; Lyons, 2013; Ososky, Sanders, Jentsch, Hancock, & Chen, 2014). For 

example, Chen and colleagues (2014) proposed a situation awareness-based agent 

transparency (SAT) model that outlines transparency requirements at three different levels, 

which correspond with Endsley’s (1995) model of SA. At level 1, transparency should help 

the operator understand what the system is doing by providing basic information about the 

system’s current state, goals and planned actions. For level 2, operators should understand 

why the system is doing what it is doing by displaying information that establishes the 

rationale or logic underlying the system’s actions. At level 3, operators are provided with 

information regarding the projected future state of the system along with information 

regarding the anticipated consequences, probability of success, and level of certainty. Not 

all three levels are necessary in order to increase automation transparency; instead, each 

level simply represents a different aspect of the concept which can be designed for 
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accordingly. With this structured approach to transparency, the SAT model can be applied 

to user interface design to increase transparency and reduce automation bias.  

Increasing automation transparency through display design of an automated DSS 

can help reduce automation bias (Mercado et al., 2016; Rovira, Cross, Leitch, & Bonaceto, 

2014; Sadler et al., 2016; Stowers et al., 2016; Wright, Chen, Barnes, & Hancock, 2016a). 

If a person understands why the automated DSS has recommended a particular alternative 

(via increased automation transparency) then they are less likely to fall victim to 

automation bias and commission errors in particular. These studies involve similar versions 

of an automated decision support paradigm in which participants were tasked with 

managing unoccupied vehicles in varying work domains including air traffic control and 

military surveillance. Furthermore, transparency was manipulated by providing operators 

with additional information to convey the rationale regarding the system’s 

recommendations or provide a statement of risk associated with each recommendation.  

For example, Mercado et al. (2016) had participants manage multiple unoccupied 

vehicles and they were tasked with evaluating different plans of action for the vehicles. An 

automated decision aid supported participants’ decision-making by recommending one of 

two different plans. Participants were responsible for choosing a plan for the system to 

implement. There were three levels of automation transparency which correspond with the 

three levels in Chen et al.’s SAT model: Level 1 displayed basic information about the 

vehicles to be used in that plan; level 1+2 included the basic information plus information 

to establish the rationale underlying the system’s recommended plan (e.g., “arriving to 

destination faster with adequate coverage”); level 1+2+3 included basic information, the 
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rationale statement, and introduced a colored icon to convey the system’s level of 

uncertainty for that plan’s information. Automation reliability was fixed at 70%; thus, the 

recommended plan was inferior on 30% of trials. Analysis of plan selection data showed 

that the percentage of correct choices, both in terms of correct acceptance and correct 

rejection of the recommended plans increased as a function of the level of transparency. 

Thus, increasing transparency significantly reduced automation bias that might have 

otherwise led to misuse of the automation. 

To explain how increasing transparency can reduce automation bias, researchers 

have examined the relationship between transparency and trust in automation (Lyons et al., 

2017; Lyons et al., 2016; Rovira et al., 2014; Mercado et al., 2016; Sadler et al., 2016; 

Selkowitz, Lakhmani, Chen, & Boyce, 2015). For instance, Lyons and colleagues (2016) 

manipulated the level of transparency associated with an automated DSS’s recommended 

airport runway diversion and found that increasing levels of transparency led to a 

significant increase in participants’ trust in the automation. However, simply increasing 

trust in the automation does not translate to improved performance if the automation is 

imperfect. 

With imperfect automation, it is more important for designers to find ways to foster 

appropriate trust rather than pursue a general increase in trust levels (Lee & See, 2004). 

Blindly trusting the automation will lead to complacency and overreliance on the 

automation; therefore, display design factors intended to increase transparency need to help 

the human understand when they should trust the system, and thus foster appropriate trust 

in the automation. Indeed, some evidence suggests that increasing transparency can 
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increase trust, but further increasing the level of transparency does not necessarily lead to 

further increases in trust (Mercado et al., 2016; Wright et al., 2016a). Such results indicate 

that increasing transparency can help people understand why the system is recommending 

an alternative, in turn enabling people to better gauge when they should trust the 

automation.  

The majority of research demonstrating how transparency can reduce automation 

bias involves displaying additional information to the human. For example, to manipulate 

transparency of an automated DSS for managing unoccupied vehicles, Mercado et al. 

(2016) included a statement summarizing how the recommended plan compared to others 

on task-specific variables (e.g., “arriving to destination faster with adequate coverage”), in 

addition to basic information about the plan. Lyons et al. (2016; 2017) manipulated 

transparency by including a statement of risk associated with recommended airport runway 

diversions. Of course, these are valid approaches to increasing transparency; however, it is 

important to consider that increasing the amount of information might impact operator 

workload and increase the time taken to process and evaluate the decision alternatives. 

Research has shown that a moderate level of workload is optimal for helping 

operators maintain situation awareness and sustaining task performance levels (Durso & 

Alexander, 2010; Lee & See, 2004; Parasuraman & Wickens, 2008). Therefore, it is 

important to consider how different methods of increasing transparency might increase 

operator workload. For example, including an additional statement summarizing the risk 

associated with each plan recommended by the automation might increase workload, 

reduce situation awareness, and lead to performance decrements for concurrent tasks.  
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Several studies have investigated the effects of increasing transparency on operator 

workload, but the results are mixed. Some researchers have found that displaying 

additional information to increase transparency can increase subjective workload 

(Dorneich et al., 2017; Rovira et al., 2014) as well as objective measures of workload using 

eye tracking data (Wright et al., 2016b). Furthermore, there is evidence to suggest that 

increasing transparency can lead to increased decision response times (Helldin, 2014; 

Rovira et al., 2014; Wright et al., 2016b) which can indicate increased information 

processing demands and workload. However, other studies have used similar methods of 

increasing transparency yet found no effect on subjective workload (Selkowitz et al., 2015; 

Stowers et al., 2017), nor objective workload (Mercado et al., 2016). Suffice to say, the 

relationship between transparency and workload is complex. However, it is possible that 

displaying additional information to increase transparency might reduce automation bias 

at the cost of increasing workload. 

In comparison to the reviewed methods of designing for transparency, visual 

display designs that retain informational equivalence might provide a subtler means of 

influencing choice, increasing transparency, and reducing automation bias. The reviewed 

research on automation transparency has shown how displaying information that conveys 

the rationale and logic underlying an automated DSS can influence choice and reduce 

automation bias. Some researchers have argued that increasing transparency requires 

displaying additional information (Chen et al., 2014). Challenging this notion, the current 

study explored how strategically manipulating fundamental characteristics of a decision 

environment might influence choice and increase transparency of an automated DSS. 
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1.3 Visual Display Design and Decision Making 

Previous research has shown that the same information presented using a different 

display design can lead to significant differences in terms of decision-making outcomes 

(Hegarty, 2011). By leveraging the influence of visual display design on choice, 

automation designers can increase transparency without displaying additional information, 

which might otherwise increase decision-makers workload and time to choose. In the 

following subsections, an overview of the choice decision-making process is presented to 

establish how display design can systematically influence choice. Next, research 

investigating the effects of display design factors on decision making from several 

disciplines is briefly reviewed to establish how the current dissertation differs from other 

approaches. Finally, this section concludes with a summary and an introduction to the 

decision environment that was used in the current study. 

1.3.1 Overview of the Choice Decision-Making Process 

A conceptual understanding of the choice decision-making process is necessary to 

appreciate how display design can influence choice. Researchers have proposed that in 

general, people often approach a decision without clearly defined preferences for one 

alternative (Bettman, Luce, & Payne, 1998). Instead, people construct their preferences as 

they evaluate alternatives. This preference construction process can be depicted by 

multiple, interactive stages that represent decision processes.  

For Payne, Bettman, and Schkade (2000), the decision-making process involves 

four main stages which are depicted in Figure 1. First, people form an initial cognitive 
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representation of the decision problem as they recognize the decision space and begin 

forming expectations of the alternatives. Next, the decision maker allocates their selective 

attention in order to acquire and interpret the displayed decision information (e.g., 

identifying different attribute values and retaining them in working memory). The 

interpreted information is internally processed by combining different attributes and 

associating them with their respective alternatives. The information is then evaluated until 

one alternative exceeds a choice threshold and finally the decision-maker articulates their 

choice. 

 

Figure 1 – Conceptual model of the choice decision-making process recreated from 
Payne et al. (2000). Depicts multiple interacting stages of decision-making to capture 
how preferences are constructed. 
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Decision makers adopt various decision strategies (e.g., heuristics) to evaluate 

alternatives, construct preferences, and choose an alternative (Bettman et al., 1998; 

Bettman, Johnson, & Payne, 1991; Payne, Bettman, & Johnson, 1993; Payne et al., 2000). 

Bettman and colleagues (1998) proposed that information processing limitations associated 

with bounded rationality (Simon, 1955) lead people to adopt decision strategies that serve 

to facilitate the acquisition and evaluation of decision information. In effect, adopting 

decision strategies can reduce the cognitive effort associated with a particular decision 

process (e.g., information combination). 

Heuristic-based decision making can help people reduce cognitive effort in 

different ways, but it can also systematically bias how people evaluate decision information 

(Shah & Oppenheimer, 2008). Shah and Oppenheimer identified five methods for effort-

reduction: 1) examining fewer cues, 2) reducing the difficulty associated with retrieving 

and storing cue values, 3) simplifying the weighting principle for cues, 4) integrating less 

information, 5) examining fewer alternatives. According to Shah and Oppenheimer, every 

decision-making heuristic involves one or more of these effort-reduction methods. The 

effort-reduction methods that people use in a given situation can shape how people evaluate 

alternatives and systematically bias choice in a predictable fashion. Furthermore, the 

methods people use in a particular situation will depend upon several factors, including the 

way the information is displayed. 

The manner in which decision information is displayed can determine the amount 

of cognitive effort that is required to evaluate and choose an alternative (Hegarty, 2011; 

Shah & Oppenheimer, 2009). If two informationally equivalent displays are not 
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computationally equivalent, then the display design will determine what method of effort-

reduction people use. If the display design leads people to use a consistent method of effort-

reduction, then their choice among alternatives will be systematically biased in a 

predictable manner. Furthermore, the concreteness principle (Slovic, 1972) proposes that 

people tend to use only the displayed information and they use it in the way in which it is 

displayed, as opposed to converting it to better fit the task. Therefore, people are unlikely 

to restructure the information and instead conform to a given method of effort-reduction. 

For example, consider a list of decision alternatives described by multiple attributes. If the 

alternatives are sequenced by descending value on a “product quality” attribute, then the 

display design will lead people to simplify how attributes are weighted, thus increasing the 

likelihood that people will choose an alternative that is high on the product quality attribute. 

To summarize, display design can determine how people will conserve cognitive 

effort, which can systematically bias peoples’ decision-making process in favor of a 

particular alternative. Considering the context of an automated DSS, display design effects 

on choice can be leveraged to increase compliance and potentially reduce automation bias. 

1.3.2 Designing a Decision Environment to Influence Choice 

The influence of visual display design on choice has been researched across several 

disciplines including human factors, judgment and decision making, marketing, and 

consumer decision making. Within the field of human factors, the primary focus has been 

on improving task performance by increasing the legibility and usability of displayed 

information. Research from the consumer decision-making literature provides insights into 
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specific display design factors that have been shown to influence how consumers choose 

among products or decision alternatives. Furthermore, recognizing that the manner in 

which decision information is presented to people can significantly influence their 

decision-making behavior has led to the emergence of the field of choice architecture. 

Choice architecture studies how the manner in which choices are presented to 

people can significantly change their decision making and behavior (Johnson et al., 2012). 

The term choice architecture was coined by Thaler and Sunstein in reference to how the 

presentation of decision information provides the opportunity to nudge or “alter people’s 

behavior in a predictable way” (Thaler & Sunstein, 2008, p. 6). A nudge refers to an aspect 

of the decision environment that influences peoples’ choices and behavior (Thaler, 

Sunstein, & Balz, 2012). Choice architecture emerged from the application of behavioral 

economics with the goal of nudging people to make personally and socially beneficial 

choices (Thaler et al., 2012). A key assumption underlying choice architecture is that 

humans often act irrationally due to cognitive limitations associated with bounded 

rationality (Simon, 1955). Therefore, decision making is often biased in predictable ways 

that lead to suboptimal choices. Choice architecture proposes nudges or ways to influence 

choice by leveraging known decision-making biases in the design of the decision 

environment.  

Choice architecture offers methods of designing a decision environment to nudge 

people towards beneficial choices. The tools or methods of choice architecture can be 

grouped into those that involve setting up the task and those that describe the options 

(Johnson et al., 2012; Münscher, Vetter, & Scheuerle, 2015). Methods used for setting up 
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the task include reducing the number of alternatives and using default options. These 

methods primarily involve changing the decision information or altering the procedure 

itself. In comparison, methods for describing the options include partitioning options and 

rescaling attribute values to highlight differences between alternatives. Both categories 

constitute important aspects of designing a decision environment; however, many of the 

choice architect’s methods involve changing the decision information itself. The result is a 

display that is not informationally equivalent, or it impacts the decision-maker’s ability to 

choose, like in the case of the default options method. 

The main goal of the current dissertation was to create a decision environment that 

increased compliance with an automated DSS. Clearly, this goal falls under the umbrella 

of choice architecture in that designing a DSS involves designing a choice environment. 

However, the aim of choice architecture is broader in scope; choice architecture goes 

beyond identifying informationally equivalent display design factors that subtly influence 

choice. By focusing on visual display factors that retain informational equivalence, the 

current dissertation investigated aspects of the display design that have received less 

attention in the choice architecture literature. Regardless, the results of the current study 

might offer another set of tools for the choice architect. 

In terms of systematically examining how subtle display design factors influence 

choice, the consumer decision-making literature offers the most support. There are many 

ways to manipulate characteristics of visual displays to influence choice without 

introducing additional information. Kleinmuntz and Schkade (1993) identified three 

component characteristics of information displays that can impact decision-making 
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processes: Format, organization, and sequence. These three categories represent 

“fundamental characteristics of displays that one can, in principle, vary independently” 

(Kleinmuntz & Schkade, 1993, p. 222). In addition, I have identified a fourth category, 

referred to as information salience, which constitutes any manipulation to the perceptual 

salience of a specific piece of decision information as it is displayed to the decision maker. 

Research from the consumer decision-making literature has examined how manipulating 

factors from these categories can influence decision-making processes and ultimately 

choice among products. Consumer decision-making tasks often involve displaying several 

alternatives in a multi-attribute decision-making task, which is comparable to the decision-

making paradigm used in the current study.  

Designing a decision environment for the context of a multi-attribute choice 

decision task requires instantiating format, organization, sequence, and salience. Extant 

research regarding the influence of factors from each of the four categories was reviewed. 

By identifying how each factor impacted decision-making processes and influenced 

choice, previous research was used to inform the design of the decision environment used 

in the current study (see Appendix A for a literature review of each factor). 

1.4 The Current Study 

The current study investigated how to engineer the visual display of decision 

information to increase compliance with an automated DSS. To this end, a series of four 

experiments was conducted. Experiments 1 and 2 were designed to address open questions 

regarding how sequence and salience display factors should be manipulated. With an 
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understanding of how to design a decision environment that influences choice, experiments 

3 and 4 demonstrated how these display design effects can be used to increase compliance 

with an automated DSS.  

In the current study, the decision-making task was situated in the context of a 

simulated vehicle navigation task. Participants were responsible for choosing from a set of 

four different routes in order to navigate to their destination. Routes constituted decision 

alternatives and each route was described by four attributes. Visual display factors were 

manipulated to examine how they might influence choice in favor of a targeted route. 

The route displays were presented in a table format and organized by alternative. 

Each route (i.e., decision alternative) was presented as a table, which contained the route 

name and its four attributes. Tables have been shown to influence choice by encouraging 

people to selectively process decision information as opposed to comprehensively 

evaluating each decision alternative (Dilla & Steinbart, 2005). Furthermore, by facilitating 

selective processing, tables allow other display factors to exert influence on choice, such 

as information sequence and salience. Regarding organization, the route displays were 

organized by alternative as opposed to by attribute. That is, each route was displayed as a 

separate table on a separate screen. Using a table format that is organized by alternatives 

can lead people to selectively process the decision alternatives, which can bolster potential 

sequence and salience effects. 

To complete the design of the decision environment, information sequence and 

salience were instantiated. Although there is evidence that manipulating information 
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sequence and salience factors can influence choice (e.g., Jiang & Punj, 2010), it is unclear 

how both factors can be combined to strengthen their influence or if one factor is sufficient 

for influencing choice. To address this limitation, it was necessary to conduct two initial 

experiments. 

The sequence of alternatives and the salience of attributes were manipulated in 

experiments 1 and 2 to determine how each factor should be instantiated in the design of 

the automated DSS. The sequence manipulation determined the order in which alternatives 

were presented to participants. Specifically, route displays were presented in either 

descending attribute value or in a randomized order. Previous research suggests that 

ordering alternatives by descending attribute values can influence how people weigh the 

attributes, and thus increase choice in favor of an alternative that is higher on the sequenced 

attribute (e.g., Cai & Xu, 2008). The salience factor was manipulated at the attribute level 

by highlighting one of four attributes in yellow or with no highlighting to serve as a control. 

The rationale for highlighting an attribute was to capture participants’ selective attention, 

increase the weight given to that attribute, and bias evaluations of alternatives based on 

their highlighted attribute values. Manipulating the sequence of alternatives and salience 

of attributes provided a means of designing the decision environment that could influence 

choice in favor of a specific, targeted alternative. 

In summary, the goal of this dissertation was to design a decision environment that 

influenced choice of alternatives recommended by an automated DSS. In order to make an 

informed decision about how each factor should be configured in the automated DSS’s 

visual display, two experiments were conducted to investigate how sequence and salience 
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should be manipulated. Experiments 1 and 2 investigated the sequence and salience effects 

within the described decision environment and the results were used to inform the display 

design in experiments 3 and 4. Information format and organization were controlled across 

all four experiments, but both were instantiated based on how they facilitated sequence and 

salience effects. Therefore, the resulting display design allowed for examining sequence 

and salience effects, but it ultimately served as an important first step toward the goal of 

designing a decision environment that influenced choice. Armed with an understanding of 

how to instantiate sequence and salience, experiments 3 and 4 investigated how to leverage 

display design effects to increase compliance with an automated DSS.  
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CHAPTER 2. EXPERIMENT 1 

In this experiment, the sequence of alternatives and the salience of attributes was 

manipulated to inform how each factor should be manipulated in the design of an 

automated DSS. A significant sequence effect was predicted in that when alternatives were 

sequenced by descending value on a targeted attribute, choice share for the route highest 

on the targeted attribute would increase. Similarly, salience was predicted to increase 

choice share for the route highest on the targeted, salient attribute. Finally, a sequence by 

salience interaction was predicted in that combining sequence and salience effects would 

bolster the relative influence of each factor. In other words, the choice share of the targeted 

alternative would be higher than when either sequence or salience was manipulated in 

isolation. 

2.1 Method 

2.1.1 Participants 

A total of 76 undergraduates from the Georgia Institute of Technology participated 

in this experiment. Participants were enrolled in a psychology course and elected to 

participate in the study by selecting it from a list of experiments displayed in the SONA 

online experiment scheduler. The approximate 30-minute experiment was completed in 

partial fulfillment of a research familiarization requirement. 

2.1.2 Materials 
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The stimuli were 16 computer-generated tables, each of which constituted one route 

display (i.e., decision alternative). Figure 2 provides an example of a route display which 

includes the route name, separate columns for each attribute label, and the corresponding 

attribute value on the bottom row of the table. All text in the route display was presented 

in a 12-point Arial font. Each route display was given a unique name so that participants 

could distinguish each route within the set. Routes were named by randomly selecting 

street names from the United States using a list randomization tool 

(www.randomlists.com). 

 

Figure 2 – Example of a route display with no salience manipulation (top) and the 
same route display with the salience manipulation (bottom). Each route display 
included the name of the route, the four attribute labels and their corresponding 
values for that route. In this example, Road Quality constitutes the targeted attribute. 

On each trial, participants chose their preferred route from a set of four different 

routes (referred to as a route set) prior to navigating to their destination and delivering each 

package. All routes were described by four component attributes, which included road 

quality, speed, traffic flow, and fuel efficiency. Attribute values varied along a five-point 

scale with verbal descriptions for each discrete value (1 = “Very Low”, 5 = “Very High”); 
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higher values indicated positive valence (e.g., very high traffic flow indicated that traffic 

was moving quickly along that route).  

Each route’s overall attribute utility value was calculated by taking the sum of that 

route’s four attribute values. The highest utility value that a given route could have was 20 

(i.e., “Very High” for all four attributes) and the lowest was 4 (i.e., all four attribute values 

were “Very Low”). In this experiment, the overall attribute utility value ranged from 11 to 

16. A list of each route’s attribute values and the overall utility is available in Appendix E. 

Of the 16 trials, four involved a route utility value of 11, eight trials with utility value of 

13, and four trials with utility value of 16. 

The overall attribute utility value for each route was controlled such that no route 

dominated the others within a given route set. For example, Route A might be dominant 

on fuel efficiency, but its remaining attribute values were instantiated such that its overall 

utility did not exceed that of the three remaining routes in its route set. Therefore, a given 

route might be dominant on one attribute, but no route was dominant when considering the 

overall attribute utility value of each route.  

The four route attributes were selected based on relevance to the vehicle navigation 

task and because each could be informative in terms of one’s preferences for a given route. 

Furthermore, the attributes were chosen in order to exclude attributes which might be 

overly diagnostic when evaluating a given route set. For instance, estimated trip duration 

was excluded from the set of attributes because it is arguably the most important attribute 

that people use when choosing among routes provided by a GPS roadway navigation 
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system. Excluding such attributes was intended to reduce the likelihood that participants 

would choose a route based solely on a single attribute, regardless of how display factors 

were manipulated. 

The GPS navigation animation constituted a low-fidelity, generic map that depicted 

the participant’s vehicle location as it traveled along the route to the destination for package 

delivery. A screenshot of the navigation animation is presented in Figure 3. The animations 

were designed to be similar to GPS roadway navigation commonly used on smartphone 

apps and in-vehicle displays. All GPS animations were created using the graphic design 

software, Sketch 3 (Bohemian Coding, The Hague, Netherlands) and exported to an 

animated graphic interchange format (GIF) file that was embedded within a survey page. 

The purpose of the navigation animation was to simulate a route monitoring task 

and establish a context that motivated participants choice of routes. By animating the route 

navigation, the intention was to create an experience in which the participants choice of 

routes had a direct impact on how they completed the task. The intended result was to 

provide motivation for participants to choose a route which they might otherwise lack. 
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Figure 3 – Example of the GPS navigation animation that participants monitored 
after selecting a route. The blue circle indicated the current position of the 
participants vehicle and the red pentagon indicated the destination. The duration of 
each animation was approximately 15 s and concluded when the vehicle symbol 
arrived at the destination symbol. 

The entire experiment procedure including the decision-making task and the GPS 

navigation animation were programmed using the Qualtrics web-based survey 

development platform (Qualtrics, Provo, UT). Participants indicated their preference for a 

given route by clicking a checkbox next to their desired route display. Responses were 
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automatically recorded along with the total time each route was viewed until the 

participants indicated a choice. 

2.1.3 Research Design 

Each participant completed a total of 16 trials which were divided into four blocks. 

Blocks were created for the purpose of controlling order effects and there was no 

discernable difference between blocks to participants. On each trial, participants first 

viewed a set of four different routes, each described by four attributes (i.e., fuel efficiency, 

speed, traffic flow, and road quality), then chose one of the four as their preferred route. 

After choosing a route, participants viewed a GPS map animation which simulated a route 

navigation monitoring task. After participants arrived at their destination, they received 

confirmation that the package had been delivered, thus concluding the trial. 

The experiment used a 2 (sequence; descending order of alternatives, randomized 

order) by 2 (salience; highlight attribute label and value, no highlighting) repeated 

measures design. The dependent measure was the participants choice of route. To examine 

the effects of sequence and salience on choice, participants’ route choice data were recoded 

into a binary variable based on whether participants chose the route that was highest on the 

targeted attribute versus one of the other three routes in the route set. 

Each participant completed a total of 16 trials (one route choice per trial) that were 

divided into four blocks. Within each block, the order of trials was randomized for each 

participant. All sequence and salience conditions were equally represented within each 

block. Table 1 includes a summary of the trial composition, the sequence and salience 
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conditions, and the corresponding targeted attributes. Participants completed four trials in 

each sequence and salience condition, and all four attributes were equally targeted.  

Within a block, there were 16 unique route displays; however, each block included 

the same route displays with a few exceptions. First, each route set was equally targeted by 

the four sequence and salience conditions. For example, in block 1, participants might view 

Route Set A displayed with the sequence manipulation present; however, in block 2, Route 

Set A would be displayed with the sequence randomized. Second, every route had a 

different name each time it was presented. Thus, in block 1, Route A might be named 

“Jefferson Avenue” whereas in block 2, that same route would have a different name, such 

as “Spring Street”. Routes were given unique names for each trial so that participants were 

less likely to feel as though they were seeing the same routes across the experiment. 
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Table 1 – Trial Composition for a Given Participant in Experiment 1. 

Block Trial Route Set Sequence Salience Targeted Attribute 
1 1 A Descending Highlight Speed 
1 2 B Descending None Fuel Efficiency 
1 3 C Randomized Highlight Traffic Flow 
1 4 D Randomized None Road Quality 
2 5 A Descending None Speed 
2 6 B Randomized Highlight Fuel Efficiency 
2 7 C Randomized None Traffic Flow 
2 8 D Descending Highlight Road Quality 
3 9 A Randomized Highlight Speed 
3 10 B Randomized None Fuel Efficiency 
3 11 C Descending Highlight Traffic Flow 
3 12 D Descending None Road Quality 
4 13 A Randomized None Speed 
4 14 B Descending Highlight Fuel Efficiency 
4 15 C Descending None Traffic Flow 
4 16 D Randomized Highlight Road Quality 

Four versions of the experiment were created to address potential carry-over effects 

associated with participants viewing the same route set four times across the experiment. 

The only difference between each version was the order of blocks; this allowed for an 

assessment of the sequence and salience conditions across versions for the first block of 

trials. This ensured that all four sequence and salience conditions were equally represented 

for each route set. 

Sequence was manipulated to examine how the order of processing alternatives can 

impact the choice share of a targeted alternative. The sequence manipulation determined 

the precise order in which participants viewed the four route alternatives. Specifically, 
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sequence was manipulated by ordering alternatives by descending value of an attribute, or 

in a randomized order. For example, routes could be sequenced by the fuel efficiency 

attribute in descending order; consequently, the route with the highest fuel efficiency value 

would be displayed first in the sequence. In this example, the sequence factor is targeting 

the fuel efficiency attribute (i.e., fuel efficiency would be the referred to as the targeted 

attribute). 

The salience factor was operationalized as highlighting the attribute label text and 

the value within each route display (see yellow highlighting in Figure 2). When the salience 

manipulation was present, one of the four attributes constituted the targeted attribute (e.g., 

fuel efficiency) which meant the corresponding attribute label and its value were 

highlighted in yellow. For trials with the salience manipulation present, the targeted 

attribute was highlighted on all four route displays; therefore, if road quality was 

highlighted on one display, it was also highlighted on the other three route displays for that 

trial in the exact same manner. In contrast, for trials when the salience manipulation was 

not present, no part of any route displays in the route set was highlighted. 

Sequence and salience conditions were associated with a targeted attribute. That is, 

the way in which each manipulation was instantiated depended upon which of the four 

attributes was targeted. Thus, when sequencing the routes by descending fuel efficiency 

values, fuel efficiency would constitute the targeted attribute. For trials in which both 

sequence and salience manipulations were present, then both factors targeted the same 

attribute. For such trials, if the targeted attribute were fuel efficiency, then the four routes 
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would be sequenced by descending fuel efficiency values and the fuel efficiency attribute 

label and value would be highlighted on all four routes. 

2.1.4 Procedure 

After enrolling in the experiment, participants were free to begin the experiment at 

their convenience by accessing the URL provided by the SONA system. All experiment 

procedures were presented online; therefore, participants were able to complete the 

experiment at their preferred time and location using a computer and web browser of their 

choice. 

Each session began with participants reviewing the informed consent form 

displayed on the first page of the web-based survey. After obtaining informed consent, 

participants were presented with an overview of the task procedure, detailed definitions of 

each component of the task, and specific instructions informing them of their goals for the 

experiment. Furthermore, participants were given precise definitions of the route attributes 

as well as example images of a trial timeline, route displays, and the GPS route navigation 

animation. An overview of the task information and instructions as they were presented to 

participants is available in Appendix B. 

Participants were instructed to choose a route based on the four attribute values. 

Assuming the role of a delivery service agent, participants were instructed to choose the 

route that they believed would lead them to arrive at their destination and deliver packages 

in a timely manner. However, they were told they should also choose a route that ensured 

their vehicle would operate efficiently and not encounter damage to their cargo. In effect, 
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participants were given the goal of choosing a route that was high on all four attributes to 

reduce the likelihood that they would choose a route based on one attribute, regardless of 

how the decision environment was designed. 

In the task instructions, participants were informed that on occasion, some route 

information would be highlighted in yellow to explore how display design factors might 

help people make decisions. However, they were explicitly told that the highlighted 

information did not indicate that the information was more or less important. Moreover, in 

an effort to prevent unintended bias towards the highlighted information, participants were 

told that their goal would remain the same on each trial, regardless of whether information 

was highlighted in the route display.  

After reviewing the task instructions, participants completed a practice trial in order 

to familiarize themselves with the task. The practice trial was identical to an experimental 

trial, but the salience manipulation was absent; that is, no attribute information was 

highlighted on the practice trial. Upon completion of the practice trial, participants began 

the experiment proper. 

A timeline depicting the sequence of events for a given trial is presented in Figure 

4.  Each trial could be divided into three main phases: 1) initial route display, 2) choice, 

and 3) navigation. During the initial route display phase, participants saw each route in the 

route set, one at a time as each route was presented on a separate page (i.e., organized by 

alternative). After reviewing the first route, participants pressed the “next” button to view 

the second route in the sequence. During the initial display phase, participants could not 
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return to the previous route, they could only press the next button to view the next route. 

Furthermore, participants could not choose a route during the initial display phase. 

Choosing a route was restricted to the choice phase. This restriction was implemented to 

ensure that participants were exposed to all four routes before making their choice. After 

viewing all four routes on separate pages, participants began the choice phase. 
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Figure 4 – Trial timeline for experiment 1, depicting the order of events for a given trial. During the initial route display 
phase, participants viewed each route on separate pages, then pressed the “next” button to view the next route in the sequence. 
During the choice phase, all four routes were displayed on a single page and participants were able to select their preferred 
route. 
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During the choice phase, all routes were presented on a single page and participants 

could choose a route by clicking a check box next to their preferred route to indicate their 

choice. If sequence and salience were manipulated in the initial display phase, then they 

were also manipulated in the choice phase. Thus, the only differences between the initial 

route display and choice phases was that participants could view all four routes on a single 

page and they were able to choose their preferred route. Upon choosing a route, participants 

pressed the “next” button, marking the beginning of the navigation animation phase. 

During the route navigation animation phase, participants monitored their vehicle’s 

progress along the route as it navigated to the destination. The navigation animation lasted 

approximately 15 s and the participants’ vehicle was depicted as a blue circle with a point 

indicating the vehicle’s direction of travel. After participants’ vehicle arrived at the 

destination marked on the map, a confirmation screen was displayed to indicate that the 

package had been delivered, thus concluding the trial. At this point, participants were 

instructed to press the “next” button to choose their next route to their next destination. 

All participants viewed 16 identical navigation animations in the same sequence 

across the experiment, regardless of which route participants chose. In doing so, this 

ensured equivalence in terms of feedback regarding the participants choice of route; 

therefore, any interpretation of causality between participants’ chosen route and the manner 

in which the navigation was depicted would be coincidental. To clarify, participants were 

not given any explicit feedback regarding the accuracy or validity of the route that they 

chose. Thus, it was unlikely that the animation would constitute feedback that subsequently 

influenced how participants interpreted route attribute values and their route preferences. 
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Upon completion of the 16 trials, participants completed a post-study questionnaire. 

In addition to demographic information, the questionnaire included items assessing 

participants’ perceived importance of each route attribute on a scale from 0 to 100. After 

completing the questionnaire, participants pressed a submit button, were thanked for their 

participation, and returned to the SONA website where they were automatically granted 

SONA credit. 

2.2 Results and Discussion 

Participants’ route choice data were analyzed to determine how sequence and 

salience influenced choice of routes. Each route choice was coded as a binary variable 

referred to as targeted route choice, which was based on whether participants chose the 

route highest on the targeted attribute (i.e., highlighted attribute or sequencing attribute) or 

one of three route alternatives in the route set. A binary logit regression model was used to 

examine sequence and salience effects (e.g., Dhar, Nowlis, & Sherman, 2000). The model’s 

dependent variable was whether participants chose the targeted route, as a function of 

sequence, salience, and the two-way interaction between sequence and salience. The 

targeted route choice share for each sequence and salience condition is presented in Figure 

5.  

There was a marginally significant effect of salience on targeted route choice share, 

c2 (1) = 3.41, p = .064. Highlighting a targeted attribute led to a 4% increase in choice 

share for the route highest on the targeted attribute. Although only marginal, the observed 

salience effect supports the interpretation that highlighting increases attribute salience and 
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encourages participants to selectively process the highlighted attributes. Previous research 

regarding salience effects showed that increasing attribute salience led to a similar effect 

in terms of encouraging people to selectively process alternatives based on the salient 

attribute (Jiang & Punj, 2010).  

 

Figure 5 – Targeted route choice share for all sequence and salience conditions, 
depicting a marginally significant main effect of salience on targeted route choice 
share. Illustrates how highlighting a targeted attribute can influence people to choose 
an alternative that is highest on the highlighted attribute. 

In addition, the salience effect observed in the current experiment demonstrates that 

highlighting might be sufficient for influencing choice. Jiang and Punj (2010) used 

highlighting in combination with increased font size; therefore, the effects of highlighting 

were confounded with font size. By isolating salience to include only highlighting, the 
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current experiment provides some evidence that highlighting alone might be sufficient to 

influence choice. 

Analyses revealed there was no sequence effect alone nor in combination with 

salience on participants’ choice of routes. Participants choices were not influenced by 

whether the routes appeared in a randomized order in comparison to sequenced by 

descending value on a targeted attribute. Thus, results failed to support the hypothesized 

main effect of sequence and sequence by salience interaction.  

Before ruling out the potential for sequence effects in the current decision-making 

paradigm, it is important to review how the choice phase procedure was designed. In the 

current study, the decision-making task was divided into two phases: an initial display 

phase and a choice phase. During the initial display phase, each route display was presented 

on a single page and participants could not choose their preferred route. For the choice 

phase, participants viewed all four routes on a single page with the ability to choose their 

preferred route by clicking a checkbox next to that route (see Figure 4 for a depiction of 

the choice phase).  

The purpose of separating the task into initial display and choice phases was to 

ensure that participants viewed all four routes in the order that was prescribed by the 

sequence manipulation, before they could indicate their choice. However, an unintended 

consequence of doing so was that participants could have viewed the initial display phase 

as an unnecessary step in the process, because all routes would be presented on a single 

page during the choice phase anyways. It is possible that participants ignored the decision 
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information during the initial display phase and only began truly evaluating the routes 

during the choice phase. Therefore, it is unclear whether participants experienced the 

sequence manipulation as it was intended. Experiment 2 further investigated sequence 

effects to rule out this alternative explanation.   
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CHAPTER 3. EXPERIMENT 2 

Building upon experiment 1, the goal of experiment 2 was to validate the salience 

effect and to explore the alternative explanation for null sequence effects. To address this 

alternative explanation, experiment 2 involved changing the choice phase procedure to rule 

out the explanation that participants did not evaluate the routes in the order prescribed by 

the sequence manipulation. If a sequence effect were observed in experiment 2, this would 

indicate that the null effect in experiment 1 was likely due to the fact that participants were 

free to evaluate the routes in any order they preferred during the choice phase. 

With regard to salience, experiment 2 was designed to address two research 

objectives. First, replicate the salience effect observed in experiment 1. The salience effect 

on targeted route choice was marginally significant; therefore, validation was necessary to 

bolster confidence in the salience effect before ultimately applying these effects to the 

design of an automated DSS. Second, replicate and extend the salience effect to include 

decision tasks involving stacked displays. There are many applications in which screen real 

estate is limited (e.g., smartphones and in-vehicle displays). To address such scenarios, 

designers can stack information displays within the screen, as opposed to distributing them 

across a single screen (Jang, Trickett, Schunn, & Trafton, 2012). In experiment 2, the 

modified choice phase presented one route per page, thus creating a decision-making 

procedure that involved displaying routes in a stacked manner (i.e., one route display 

presented at a time, in a serial manner). Demonstrating salience effects in a stacked display 

context would extend its application to additional use cases and display design contexts. If 
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no salience effect were observed, then it might suggest that salience effects are constrained 

to applications in which displays are distributed across a single screen. 

3.1 Method 

A total of 80 undergraduates (42 female, Mage = 20.24 years, SDage = 2.96) 

participated in this experiment. The approximate 30-minute experiment was completed in 

partial fulfillment of a research familiarization requirement. Experiment 2 used the same 

method as experiment 1 with the exception being a change to the trial procedure. 

Specifically, the choice phase procedure was changed to ensure participants were viewing 

the routes in the same sequence as during the initial route display phase. To this end, the 

choice phase involved presenting one route per page, just as in the initial display phase. 

Thus, in experiment 2, the only difference between the initial display and choice phases of 

the trial was that in the choice phase, participants were able to click a checkbox next to 

their preferred route whenever it was displayed on their screen. Figure 6 depicts the trial 

timeline for experiment 2 and illustrates this change in the choice phase of the trial 

procedure. 
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Figure 6 – Initial display and choice phase for experiment 2. Arrows within initial display and choice phases correspond with a 
required user interaction before changing the page. Illustrates how participants only viewed one route per page during both 
initial display and choice phases, in contrast to experiment 1 in which all routes were displayed on a single page during the 
choice phase.  
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3.2 Results and Discussion 

To examine potential sequence and salience effects, participants’ route choices 

were analyzed. As in experiment 1, route choices were coded as a binary variable based on 

whether participants chose the targeted route or one of the other three alternatives in the 

given route set. Targeted route choice share was analyzed using the same binary logit 

regression model as experiment 1 and examined how targeted route choice share varied as 

a function of sequence, salience, and their interaction. The targeted route choice for each 

sequence and salience condition is available in Figure 7. 

 

Figure 7 – Targeted route choice share for all sequence and salience conditions. 
Illustrates how salience increased choice share, regardless of how alternatives were 
sequenced. 
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There was a significant effect of salience on targeted route choice share, c2 (1) = 

5.35, p < .05. As depicted in Figure 8, choice share for the route highest on the targeted 

attribute increased by 5% when the targeted attribute was highlighted. This salience effect 

validates the marginally significant effect observed in experiment 1 and extends it to 

include the context of stacked displays. The salience effect can be explained by 

encouraging selective processing of a targeted attribute, influencing people to choose the 

alternative that is highest on the targeted attribute when they might not have otherwise. 

Taken together, these results justify manipulating salience in the design of an automated 

DSS in order to increase compliance with the automation. 

 

Figure 8 – Main effect of salience on targeted route choice. Highlighting a targeted 
attribute increased the choice share for the route highest on the targeted attribute. 
Validates the marginally significant salience effect observed in experiment 1. 
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Demonstrating salience effects on choice in a decision environment in which 

information was stacked, as opposed to distributed, bolsters the ecological validity of these 

salience effects. Previous research on salience effects in multi-attribute choice decision-

making tasks have used grouped or list organization containing all the alternatives and their 

attributes. However, it is not always feasible to make all the decision information readily 

available to the decision maker within one display; that is, sometimes it must be stacked 

and require user intervention to change what is displayed. Experiment 2 demonstrated how 

salience effects can occur with such stacked displays; thus, salience effects can be applied 

to decision environments that are characterized by reduced screen real estate.  

Analyses revealed no significant effects of sequence, neither alone nor in 

combination with salience. Thus, despite changing the decision-making procedure which 

forced participants to view each route in the prescribed order, sequencing alternatives by 

descending targeted attribute value had minimal impact on choice. The lack of sequence 

effects in experiment 2 indicate that the null effects observed in experiment 1 were not 

simply explained by the decision-making procedure. 

The null sequence by salience interaction suggests that combining these factors 

does not enhance the relative influence of each factor. However, the results from 

experiments 1 and 2 showed that combining sequence with salience did not minimize the 

salience effect. The implication is that if both factors target the same attribute, designers 

can combine sequence and salience manipulations without ramification because doing so 

is unlikely to mitigate the relative influence of either factor. Given that designing a decision 
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environment requires sequencing the alternatives in some manner, this null interaction 

suggests that sequence can be combined with other factors without interference.   
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CHAPTER 4. EXPERIMENTS 3 AND 4: INFLUENCING 

CHOICE IN AUTOMATED DECISION SUPPORT SYSTEMS 

The goal of experiments 1 and 2 was to determine how sequence and salience 

should be manipulated in the visual display used for an automated DSS. To this end, 

experiment 1 established and experiment 2 validated that highlighting was a viable method 

of increasing attribute salience to significantly influencing choice. For sequence, results 

failed to support the notion that manipulating the sequence of alternatives would 

significantly influence choice in favor of the targeted alternative. Although sequence had 

no effect on choice, it is worth noting that sequence did not mitigate or minimize the 

salience effects when both factors targeted the same attribute. This was evidenced by the 

lack of a sequence by salience interaction in both experiments 1 and 2. Armed with an 

understanding of how to design a decision environment that predictably influences choice 

in favor of a specific alternative, experiments 3 and 4 investigated how salience effects can 

be applied to influence choice and increase compliance with an automated DSS.  

Research has shown that introducing an automated DSS can improve decision-

making performance, but imperfect automation can also introduce deleterious effects in the 

form of automation bias (Goddard et al., 2011). To address issues of automation bias, 

researchers have shown that displaying additional information to increase automation 

transparency can help reduce automation bias and encourage appropriate use of automation 

(e.g., Ososky et al., 2014; Rovira et al., 2014). Thus, by helping operators understand why 

an automated DSS is recommending one alternative over another, it is tenable that 
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manipulating informationally equivalent display design factors can increase automation 

transparency. 

Chen et al. (2014) argued that increasing automation transparency necessarily 

requires displaying additional information. However, displaying additional information 

can lead to increased workload and time spent processing the information (e.g., Dorneich 

et al., 2017; Wright et al., 2016b), as well as require greater effort from automation 

designers to implement. For this reason, it would be beneficial to identify informationally 

equivalent display design factors that could influence choice and increase automation 

transparency. As experiments 1 and 2 demonstrated, manipulating informationally 

equivalent display factors like salience can influence choice; however, it is unclear whether 

salience effects can be used to increase compliance and ultimately increase automation 

transparency. 

Experiments 3 and 4 set out to demonstrate how salience effects could be applied 

to increase compliance with an automated DSS. Furthermore, by examining salience 

effects on choice and automation bias, experiments 3 and 4 explored whether salience 

effects can be used to ultimately increase automation transparency. If so, then manipulating 

salience would constitute a subtle method of influencing choice and improving how people 

interact with highly automated systems. In addition, if salience contributes to reducing 

automation bias, then this would demonstrate how designers can increase transparency 

without concern for potential side effects associated with presenting additional 

information.   
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CHAPTER 5. EXPERIMENT 3 

The goal of experiment 3 was to explore how salience effects could be applied to 

the design of an automated DSS in order to influence choice and increase automation 

transparency. Results from experiments 1 and 2 were used to inform the display design 

used in experiment 3. Furthermore, experiment 3 used the same decision-making task as 

that described in experiment 2 with the one major exception being the introduction of the 

automated DSS that recommended one alternative on each trial. In experiment 3, sequence 

was not manipulated as an experimental factor; instead, focus was given to demonstrating 

how salience effects could be used to increase compliance with the automation’s 

recommended alternative. It was predicted that salience would reduce automation bias. 

That is, salience would increase compliance with the DSS when its recommended route 

was superior than others but not when the recommended route was inferior. 

5.1 Method 

5.1.1 Participants 

A total of 80 undergraduates from the Georgia Institute of Technology participated 

in experiment 3 to satisfy a research familiarization requirement. Participants were 

recruited by electing to participate using the SONA online experiment enrollment system. 

5.1.2 Materials 
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The stimuli included 48 computer-generated tables, each of which constituted one 

route display. The design of the route displays was identical to that of experiments 1 and 

2. All routes were described by the four attributes used in experiments 1 and 2 (fuel 

efficiency, speed, traffic flow, and road quality). As in the previous experiments, the four 

attributes were organized in alphabetical order, from left to right across the route display. 

In experiment 3, the main difference in materials was that route attribute values were 

systematically varied to create three different trial types, which is discussed in detail below. 

5.1.3 Research Design 

The research design constituted a 2 (salience; highlight, no highlight) by 3 (trial 

type; inferior, equal, superior) repeated measures design. Salience, format, and 

organization were manipulated in the same manner as in experiment 2. Instead of 

manipulating the sequence of alternatives, route displays were always sequenced in 

descending order of the targeted attribute. The dependent measure was participants’ route 

choice which was recoded into a binary measure of whether participants chose the route 

recommended by the automation or not. 

Participants completed a total of 16 trials which were divided into two blocks of 

eight trials. Blocks were created for the purpose of the experiment design and they were 

not distinguishable to participants. On each trial, participants viewed a set of four different 

routes, each of which was displayed on a separate page. After participants viewed each 

route, they were able to choose their preferred route. This initial display and choice phase 

followed the same one used in experiment 2. 
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The main difference in the design was the introduction of the automated DSS. To 

simulate the DSS, on each trial, the automation recommended one of four routes to 

participants. The recommended route was always the first route that was presented to 

participants. For trials in which the salience manipulation was present, the salient attribute 

always supported the recommended alternative. For example, if the automation 

recommended Route A and the salient attribute was fuel efficiency, then Route A had the 

highest fuel efficiency value. 

The automated DSS was designed to be an imperfect automated system in order to 

examine how salience effects might impact rate of compliance and the prevalence of 

automation bias. To this end, three trial types were created based on the recommended 

route’s attribute utility value relative to the other alternatives in the route set: Equal, 

superior, and inferior. For equal trial type, each route was equal in terms of overall attribute 

utility value to ensure that no route constituted a dominant alternative. For the superior trial 

type, the automation’s recommended route had an overall attribute utility value which was 

superior to the three alternative routes. For inferior trial type, the recommended route had 

an overall attribute utility value which was lower than all route alternatives in its route set. 

As in experiments 1 and 2, a route’s utility value was computed by taking the sum 

of its four attribute values which ranged on a 5-point scale. Therefore, the highest overall 

attribute utility value a route could have would be 20 (i.e., “Very High” for each attribute) 

and the lowest would be four (i.e., “Very Low” for each attribute). In experiment 3, the 

lowest overall attribute utility value was 10 and the highest was 13. A summary of overall 

attribute utility values for each trial type is presented in Table 2. For superior trial types, 
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the recommended route was only 1-point higher in terms of overall attribute utility value 

than the other three routes in its route set. Similarly, for inferior trial types, the 

recommended route was always 1-point lower in utility value than the alternative routes. 

Therefore, this created a context in which the recommended route was either equal, slightly 

better (i.e., superior), or slightly worse (i.e., inferior) than the other routes in the route set. 

A comprehensive list of the attribute values and overall utility value for each route is 

available in Appendix F. 

Table 2 – Overall Attribute Utility Values for Each Trial Type 

Trial Type 

 Utility Value 
 Recommended Route  Other Routes in Route Set 

Superior  13  12 
Equal  10, 11, 12, 13  10, 11, 12, 13 

Inferior  11  12 

 

Within a block, there were 32 different route displays presented to participants 

(eight route sets, each of which contained four different routes). Within a session, each 

participant viewed each route twice, but only once per block. Thus, if a participant viewed 

route set A with attribute Z highlighted in block 1, then they would view route set A with 

no attribute highlighted in block 2.  

Each block contained four equal, two superior, and two inferior trial types. Trial 

type was inherent to its route set; thus, it did not vary from block to block. The justification 

for this composition of trial types within each block was that it allowed for multiple 

opportunities to measure when the automation made a “mistake” (i.e., automated DSS 
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recommended an inferior alternative). Moreover, by including twice as many equal as 

inferior trial types, the intention was to create the perception that the automation was 

moderately reliable. That is, for equal trial types, no route was clearly better than another; 

therefore, participants would be able to justify the automation’s recommendations on equal 

trial types, without the need to increase the number of superior trial types. Moreover, 

influencing choice in favor of a recommended alternative when each alternative is equal in 

terms of attribute utility provides a stronger test of the salience effects than when the 

recommended alternative is superior to the other routes. 

For trials in which the salience manipulation was present, the highlighted attribute 

always supported the recommended route. In other words, regardless of trial type, the 

highlighted attribute (i.e., targeted attribute) was always high. For example, on an inferior 

trial type, the recommended alternative would have the lowest overall attribute utility 

value; however, the recommended route’s targeted attribute would be the strongest of any 

alternative in the route set. The reason for this was to prevent the scenario in which the 

recommended alternative was displayed with its lowest attribute highlighted. Otherwise, 

doing so could have led to unintended misuse of the salience manipulation.  

Four versions of the experiment were created to ensure that each of the four 

attributes constituted the targeted attribute and that each was targeted on an equal number 

of trials. Furthermore, each version of the experiment included a different order of the 

blocks to account for potential carry-over effects. Participants were assigned to one version 

of the experiment using block randomization. The order of trials within each block was 

randomized for each participant. 
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5.1.4 Procedure 

All experiment procedures were presented online using the Qualtrics web-based 

survey platform (Qualtrics, Provo, UT). Experiment 3 followed the same overall sequence 

of events as the previous experiments and involved the same decision-making task and 

procedure that was used in experiment 2 with a few exceptions. First, the description of the 

decision-making paradigm as it was provided to participants was altered to include details 

regarding an automated DSS which recommended one of the four routes within each trial. 

Information regarding the DSS was provided to participants at the beginning of the 

experiment when they reviewed the task instructions.  

A copy of the instructions that were provided to participants at the beginning of 

experiment 3 is available in Appendix C. Participants were informed that an automated 

system would recommend one route on each trial. Participants were told that the automated 

system’s route recommendations were 70% reliable in terms of recommending the optimal 

route or equal to other high-performing routes. Participants were informed that the first 

route in the sequence would always constitute the automation’s recommended route and it 

would be followed by three route alternatives. In addition, text was added to the first route 

display to communicate to participants that it was the route being recommended on each 

trial. An example of the recommended route display is presented in Figure 9. 
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Figure 9 – Example of a recommended route display. The recommended route always 
appeared first in the sequence on each trial, along with the text “Recommended 
Route” above the page indicator. Note that this route display was viewed under the 
“no highlight” condition. 

Participants were told to consider the automation’s recommended route, but that 

they should still evaluate all routes and choose the one they believed would lead to the best 

performance. Participants were informed that a high performing route was characterized as 

one that ensured the vehicle and cargo were not damaged in transit, that enabled efficient 

travel to their destination and that the package was delivered in a timely manner. Thus, 

these task instructions presented participants with the nearly impossible goal of choosing 

a route that was optimized on all four attributes. 

Similar to the previous experiments, participants were given general information 

about the salience manipulation. Specifically, participants were informed that occasionally, 

some route’s attributes would be highlighted in yellow and that these attributes were chosen 

by the automated system in order to convey why it was recommending a given route. 

However, participants were told that highlighting did not convey that an attribute was any 

more or less important. Moreover, participants were informed that their goal of choosing a 
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high performing route would remain the same, regardless of whether information was 

highlighted. 

After reviewing the task instructions, participants completed a practice trial in order 

to familiarize themselves with the task, followed by the experimental trials. The practice 

trial was identical to the experimental trial, but the salience manipulation was absent (i.e., 

no attribute information was highlighted on the practice trial). Upon completion of the 

practice trial, participants began the experiment proper. 

Experiment 3 followed the same general decision-making procedure as that of 

experiment 2 (see Figure 6 for an overview of the trial timeline). In short, each trial was 

divided into three phases, initial route display, choice, and navigation. Each route was 

presented on a separate page. During the initial display phase, participants reviewed each 

route display, then pressed the “next” button to view the next route in the sequence. After 

reviewing all four routes in the route set, participants began the choice phase, which 

appeared identical to the initial display phase with the one exception being that participants 

were now able to choose their preferred route. Participants chose a route by clicking on a 

checkbox located under each route display, then pressing the “next” button to effectively 

submit their choice. After choosing a route, participants began the navigation phase of the 

trial, in which the participant’s vehicle was animated to depict it navigating to its 

destination on a computer-generated map. Experiment 3 used the same animations as 

experiments 1 and 2. All other aspects of the experiment procedure and the materials was 

identical to that of experiment 2. 
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In summary, the only difference in the methods between experiments 2 and 3 was 

the introduction of the automated DSS and the use of three different trial types. To establish 

the automated DSS, participants received additional instructions regarding the automation, 

and the first route display in the route set included text which simply indicated it was the 

recommended route for that trial (see Figure 9). Three trial types were created by 

manipulating the recommended route’s attribute utility value relative to the others in its 

route set. Trial type served two main purposes: 1) create a context in which the automation 

had a moderate level of reliability yet was demonstrably imperfect, and 2) examine whether 

salience effects could increase compliance without increasing commission errors. 

Furthermore, examining how salience effects might differ depending on trial type provided 

a way to examine potential boundary conditions for the salience effect (e.g., if salience 

effect were limited to one trial type). 

5.2 Results and Discussion 

Participants’ route choices were analyzed to determine how salience influenced 

whether people complied with the automated DSS. Therefore, route choice data were 

recoded into a binary variable based on whether participants chose the route recommended 

by the automation or one of the three route alternatives within that route set. The 

recommended route choice share data are presented in Figure 10 for each trial type with 

separate data series for each salience condition. 
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Figure 10 – Recommended route choice share for each salience and trial type 
condition. Illustrates how recommended route choice share increased due to 
highlighting, regardless of trial type. 

The first analysis examined whether people complied with the automated DSS. If 

the automated DSS had no impact and people chose routes at random, then the 

recommended route choice share should be approximately 25%. Across salience and trial 

type, participants chose the recommended route on 40% of trials, which was significantly 

greater than chance, t (80) = 7.801, p < .001. This result indicates that participants relied 

on the DSS to inform their choice of routes. 

There was a significant main effect of salience on recommended route choice share, 

c2 (1) = 9.86, p < .05. The choice share for when the recommended route was not 

highlighted vs. highlighted is presented in Figure 11. Whether participants chose the route 
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recommended by the automation depended upon whether the targeted attribute was 

highlighted (43%) versus not highlighted (36%). In other words, highlighting a targeted 

attribute which supported the automation’s recommended route significantly increased 

compliance with the automated DSS by 7% across trial type. 

 

Figure 11 – Main effect of salience on recommended route choice share. Highlighting 
the targeted attribute, which supported the automation’s recommended route, 
increased recommended route choice share by 7%.  

There was a significant main effect of trial type on recommended route choice 

share, c2 (2) = 48.18, p < .05. The recommended route choice share for each trial type is 

displayed in Figure 12. This result illustrates how the recommended route choice share 

increased as its overall attribute utility value increased. Across salience conditions, 

recommended route choice share increased from inferior (17%) to equal (43%) and from 
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equal to superior (56%), ps < .01. This trial type effect validates the method of 

manipulating the recommended route attributes to create a hierarchy based on utility value. 

Indeed, participants were clearly able to detect the relatively minor changes in overall 

attribute utility values which were used to create the different trial types. Moreover, the 

observed trial type effect confirms that participants did not overly rely on the automation. 

 

Figure 12 – Main effect of trial type on recommended route choice share. Illustrates 
how manipulating route attribute utility value to create trial types significantly 
impacted participants choices. 

Results revealed no salience by trial type interaction effect, indicating that the 

salience effect on recommended route choice share did not depend on trial type. As 

depicted in Figure 10, salience increased recommended choice share regardless of whether 

that recommended route was the best alternative available or not. This result suggests that 

salience increased compliance at the cost of increasing commission errors. 
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The observed main effect of salience reinforces the explanation established in 

experiments 1 and 2 which showed that highlighting can be used to increase compliance 

with an automated DSS. Specifically, increasing attribute salience serves to facilitate 

selective processing of the salient attribute, increasing the weight given to the salient 

attribute in the evaluation of each alternative, and subsequently influencing choice in favor 

of the route highest on the salient attribute. This interpretation can explain how salience 

effects increase compliance with the automated DSS. In experiment 3, the recommended 

route was always high on the targeted attribute, even for inferior trial types. Therefore, if 

salience encouraged selective processing of attributes and increased the weight given to 

the salient attribute, then it would explain how salience can increase recommended route 

choice share even for inferior trial types. After all, if participants compared alternatives 

based on the salient attribute alone, then they would be able to use it as justification for 

what is otherwise an inferior alternative when considering its overall attribute utility value. 

Experiment 3 demonstrated how salience effects could be used to increase 

compliance but at the cost of potentially increasing commission errors. Highlighting an 

attribute significantly influenced choice in favor of the alternative recommended by the 

automation, regardless of whether that alternative was superior or not. Such an effect on 

compliance is desirable when the alternative is superior; however, increasing compliance 

only addresses one aspect of automation bias, namely errors of omission (i.e., failure to 

accept/comply with the automation’s recommendation when it is valid). Often, it is equally 

important to reduce commission errors in order to foster appropriate automation use 

(Parasuraman & Manzey, 2010).  
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For designers to leverage salience effects to increase automation transparency, then 

salience must increase compliance without increasing commission errors. However, results 

from experiment 3 showed that salience increased compliance even when the 

recommended route was inferior. Thus, highlighting an attribute might be insufficient for 

increasing automation transparency. Nevertheless, for applications in which the cost of 

commission errors is low and increasing compliance is the primary concern, then the results 

from experiment 3 suggest that salience effects can be applied to influence people to 

comply with an automated DSS.   
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CHAPTER 6. EXPERIMENT 4 

Experiment 4 investigated how increasing the reliability of the automated DSS 

might impact salience effects observed in experiment 3. To this end, experiment 4 was 

designed to address two main goals. First, replicate and extend the salience effects from 

experiment 3 to include an automated DSS with higher reliability. Given that increasing 

automation reliability generally increases compliance (e.g., Bagheri & Jamieson, 2004), it 

is tenable that increasing reliability will serve to reinforce the salience effect and lead to 

further increases in compliance. On the other hand, increasing reliability might naturally 

increase compliance leaving little room for salience to influence choice and increase 

compliance. If such a ceiling effect were to occur, then higher automation reliability would 

represent an important boundary condition for which salience effects could be leveraged 

in automation design. Furthermore, automation reliability was increased for the sake of 

bolstering ecological validity. Considering that automated DSS vary in their level of 

reliability depending upon the given application, it is necessary to demonstrate that salience 

effects can be applied to influence choice in systems with increased reliability. 

The second main goal of experiment 4 was to explore how increasing automation 

reliability might impact automation bias. Results from experiment 3 revealed that salience 

increased compliance with the automated DSS, even when the recommended alternative 

was inferior. This finding was taken to suggest that highlighting an attribute might be a 

viable method of increasing compliance but insufficient for increasing automation 

transparency. However, by increasing automation reliability, it is conceivable that 
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compliance will naturally increase to the point that salience effects are limited to cases in 

which the automated DSS recommends a superior alternative. Experiment 4 further 

examined whether increasing attribute salience can be used as a method to increase 

automation transparency. To this end, analysis of the salience by trial type interaction is of 

particular interest. If salience increases compliance for superior but not inferior trial types, 

then it would indicate that salience can be used to increase automation transparency and 

reduce automation bias. Alternatively, if it does not, then it would suggest that application 

of salience effects might be limited to cases in which automation designers wish to increase 

compliance at all costs, regardless of whether it increases commission errors. 

6.1 Method 

A total of 83 undergraduates from the Georgia Institute of Technology participated 

in experiment 4. Participants elected to participate by selecting the experiment from the 

SONA experiment schedule system. Participants completed the approximate 30-minute 

experiment in partial fulfillment of a research familiarization requirement. 

Experiment 4 used the same research design and procedures of experiment 3 with 

two exceptions. First, the stated reliability of the automated DSS was increased to 90%. 

Participants were informed of the automation’s reliability during the introduction and 

overview of the task. Second, to influence participants perception of automation reliability, 

the number of superior trials was increased from four to eight. Experiment 4 used the same 

method of manipulating overall attribute utility value to form three trial types as used in 

experiment 3 (see Table 2 for a summary of the attribute utility values for each trial type). 
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A summary of the trial type, salience conditions, and targeted attribute which 

comprised experiment 4 is presented in Table 3 The order of trials was arranged to ensure 

that the first four trials were always of the superior trial type. Trials 1 through 4 were 

randomized, but they were always the first four trials presented to participants. The 

remaining 12 trials were presented to participants in a randomized order. All remaining 

aspects of the method and task procedure were identical to that of experiment 3. 

Table 3 – Example of Trial Composition for Experiment 4 

Block Trial Route Set Salience 
Targeted 
Attribute Trial Type 

1 1 A None Road Quality Superior 
1 2 B Highlight Speed Superior 
1 3 C None Fuel Efficiency Superior 
1 4 E Highlight Traffic Flow Superior 
2 5 F None Road Quality Superior 
2 6 G None Speed Superior 
2 7 F Highlight Road Quality Superior 
2 8 G Highlight Speed Superior 
2 9 H None Fuel Efficiency Equal 
2 10 I None Traffic Flow Equal 
2 11 H Highlight Fuel Efficiency Equal 
2 12 I Highlight Traffic Flow Equal 
2 13 J None Road Quality Inferior 
2 14 K None Speed Inferior 
2 15 J Highlight Road Quality Inferior 
2 16 K Highlight Speed Inferior 

 

The purpose of inflating perceived reliability was to examine how salience effects 

on choice might be impacted by increasing automation reliability. The actual reliability of 

the automation as participants experienced was about 75%. However, the perceived 

reliability was inflated by ensuring that the first four trial types that participants 
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experienced were superior trial types (see “block 1” in Table 3). Participants were told that 

the system was 90% reliable and the first four trials reinforced this notion that the 

automation was highly reliable. The justification for separating perceived from actual 

reliability was that it was necessary in order to collect sufficient data on each trial type, 

particularly when the automation was “incorrect” as was the case for inferior trial types.  

Otherwise, to create a system that was truly 90% reliable would require significantly more 

trials and time to acquire the necessary number of data points. 

6.2 Results and Discussion 

The recommended route choice share for each trial type is depicted in Figure 13 

with separate data series for each salience condition. Across trial type and salience, 

participants chose the recommended route on 42% of trials, which was significantly higher 

than chance, t (82) = 7.998, p < .01. Although 42% is higher than the 25% that would be 

expected if participants randomly chose a route, it is lower than one might expect given the 

stated reliability of 90%. Thus, the observed recommended route choice share indicates 

that participants did not over rely on the automation’s recommendations. In fact, 

participants frequently disregarded the automation’s recommendations. To be clear, this is 

not to say that the recommendation had no impact on which route participants chose; 

instead, it is an indication that participants were engaged in the task and appear to have 

taken their goal of choosing an optimal route seriously.  
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Figure 13 – Recommended route choice share for each trial type and salience 
condition in experiment 4. When a targeted attribute was highlighted, the 
recommended route choice share increased across all levels of trial type. 

There was a main effect of salience on recommended route choice share, c2 (1) = 

14.03, p < .05. The recommended route choice share for when the targeted attribute was 

highlighted and not highlighted is presented in Figure 14. When the targeted attribute was 

highlighted, the recommended route choice share increased by 10%. This result replicates 

and extends the salience effect of increasing compliance that was observed in experiment 

3 to include an automated DSS with increased reliability. 
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Figure 14 – Main effect of salience on recommended route choice share. Highlighting 
the targeted attribute that supported the automation’s recommended route increased 
the likelihood that people would choose that route. 

The recommended route choice for each trial type is presented in Figure 15. There 

was a main effect of trial type on recommended route choice share, c2 (2) = 37.36, p < .05. 

As expected, choice share increased as a function of the trial type’s support for the 

recommended route. Choice share increased from 23% to 45% to 59% for inferior, equal, 

and superior trial types, respectively. This result replicates the trial type effect from 

experiment 3, further validating that manipulating the overall attribute utility value for the 

recommended route to form distinct trial types had the intended effect. Furthermore, the 

observed trial type effect indicates that participants evaluated the routes and did not blindly 

accept the automation’s recommendation despite its increased reliability. 
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Figure 15 – Main effect of trial type on recommended route choice share. Trial type 
was defined by the recommended route’s attribute utility value relative to other 
alternatives in the route set. As the recommended route’s overall utility value 
increased, participants were more likely to choose the recommended route. 

Analysis of the salience by trial type interaction revealed no significant effect on 

recommended route choice share. As depicted in Figure 13, highlighting the targeted 

attribute consistently increased the recommended route choice share across all three trial 

types. Thus, salience increased compliance with the automation’s recommendation 

regardless of whether the recommended alternative was superior or not. Despite increasing 

automation reliability, salience increased compliance with the automated DSS when the 

recommended route was superior, but at the cost of increasing compliance on inferior trial 

types. It was an open question as to whether an informationally equivalent display design 

factor like salience could be used to increase automation transparency and reduce 
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automation bias. However, these results suggest that salience effects might be limited to 

increasing compliance but insufficient for increasing automation transparency. 

In summary, experiment 4 validated that salience effects can be used to increase 

compliance with an automated DSS despite increasing the reliability of the automation. 

This indicates that designers can leverage salience effects to foster compliance with an 

automated DSS. However, careful consideration should be given to the cost of increasing 

commission errors (i.e., choosing the automation’s recommendation even though there is 

a superior alternative available).   
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CHAPTER 7. GENERAL DISCUSSION 

The goal of this dissertation was to demonstrate how the influence of display design 

factors could be leveraged to increase compliance and foster appropriate use of an 

automated DSS. To this end, four experiments were conducted with the overarching goal 

of designing a decision environment that influenced peoples’ choices in favor of a targeted 

alternative that they might not have otherwise chosen. Moreover, the intention was to 

identify display factors that could be manipulated while retaining information equivalence, 

without restricting the individual’s decision autonomy. Designing such a decision 

environment required instantiating the format, organization, sequence, and salience. 

Previous research guided how to instantiate format and organization, and experiments 1 

and 2 examined how to manipulate sequence and salience to influence choice in favor of a 

specific alternative. After validating that salience could be manipulated to reliably 

influence choice among alternatives, experiments 3 and 4 demonstrated how salience 

effects could be applied to increase compliance with an automated DSS.  

Experiments 1 and 2 established how increasing the salience of an attribute can 

influence people to choose the alternative that was highest on the salient attribute. Based 

on previous research, sequence and salience effects on choice were predicted, yet results 

revealed only salience increased targeted route choice. Research on salience effects in 

choice decision making literature has shown that highlighting in combination with 

increased font size can influence choice among alternatives (Jiang & Punj, 2010). Given 

the observed salience effects in all four experiments, the current dissertation provides 
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evidence that highlighting (without changes to font size) is sufficient to increase attribute 

salience and influence choice.  

The observed salience effect can be explained in terms of increasing the selective 

processing of alternatives based on the salient attribute. By increasing the salience of an 

attribute, participants selectively processed the salient attribute on each route display. As a 

result, salience effects impacted how participants weighted the salient attribute and led 

participants to choose the route that was highest on the salient attribute (i.e., recommended 

route). This explanation of the salience effect is consistent with similar interpretations of 

salience effects on choice (e.g., Jiang & Punj, 2010). 

As an alternative explanation, one could argue that the salience effects were due to 

a simple demand characteristic. That is, instead of encouraging selective processing of 

attributes, highlighting the attribute served to signal to participants which route to choose 

to support their perception of the hypothesis. In effect, salience led participants to take on 

the good-participant role (Weber & Cook, 1972). Although no data were collected that 

refute this explanation, there are two points to consider. First, participants were explicitly 

told that the highlighted information was not an indication of its importance or validity. 

Thus, participants would have needed to violate this instruction in order for the salience 

effect to be attributed to a demand characteristic. Second, in an applied context, such a 

demand characteristic effect contributes to what the designer is aiming to achieve in that it 

influences the decision-maker’s choice in alignment with the designer’s intentions. 

Nevertheless, one way to rule out the demand characteristic explanation would be to 

conduct post-experiment interviews inquiring about participants awareness of the 
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hypotheses. Correlating participants’ responses in the interview with their choice data 

would reveal whether participants knowledge of the hypothesized salience effect was 

associated with choosing the recommended alternative. 

Experiments 3 and 4 leveraged salience effects to increase compliance and foster 

appropriate use of the automated DSS. The results demonstrated that highlighting a 

targeted attribute can increase compliance with the automation’s recommended alternative. 

However, salience increased compliance at the cost of increasing commission errors (i.e., 

complying with the automation on inferior trial types). Specifically, in both experiments 3 

and 4, salience increased recommended route choice share, regardless of whether the 

automation’s recommendation was the superior alternative or not. The conclusion drawn 

from these results was that although highlighting can be used to influence choice and 

increase compliance, it will not necessarily lead to better overall system performance. That 

is, for applications in which the cost of commission errors is exceptionally high, then the 

potential increase in compliance due to salience will be outweighed by the high cost of 

more commission errors. 

One of the goals of experiments 3 and 4 was to investigate how manipulating 

attribute salience might be used to increase automation transparency. Results from 

experiments 3 and 4 suggest that increasing the salience of strategically selected 

information is an insufficient method of increasing transparency. Chen and colleagues 

(2014) argued that increasing automation transparency necessarily requires displaying 

additional information to help the human understand the automation’s actions. Challenging 

this notion, the current dissertation explored how informationally equivalent display design 
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factors can be used to increase transparency without displaying additional information or 

restricting the decision-maker’s autonomy.  

For the current study to demonstrate that salience effects could be used to increase 

automation transparency, salience would need to increase compliance without increasing 

commission errors. To test this, the salience by trial type interaction was examined in 

experiments 3 and 4. Results would have needed to show that salience increased 

compliance for superior and equal trial types yet decreased compliance for inferior trial 

types. However, the results failed to support this outcome as salience increased compliance 

across all trial types in both experiments. Therefore, salience can be used to increase 

compliance, but it may not adequately reduce automation bias in terms of commission 

errors.  

This is not to say that salience effects cannot be leveraged to increase transparency. 

However, it does suggest that for salience manipulations to effectively increase automation 

transparency, it must clearly communicate some aspect of the automation’s underlying 

logic. Within Chen et al.’s SAT model, this would correspond with level 2 transparency, 

the goal of which is to support the human’s understanding of why the automation is doing 

what it is doing. In terms of the current study, this implies that the salience factor would 

need to clearly convey why the automation is recommending that alternative in order to 

sufficiently increase transparency. Although this was in fact part of the intention for 

highlighting attributes in the current study, the results suggest that informationally 

equivalent display design factors alone might not be able to adequately communicate the 

rationale and logic underlying an automated system. 
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Future research should explore how informationally equivalent display design 

factors like salience might be leveraged to support other display manipulations. For 

example, in an effort to increase transparency, Rovira et al. (2014) used a color-coded 

highlighting scheme to communicate to participants the level of automation reliability as it 

changed from trial to trial. Their results suggest that using salience effects in combination 

with additional information that communicates the automation’s status can help people 

calibrate trust and foster appropriate use of automation. Rovira et al.’s results illustrate how 

the salience manipulation needs to clearly communicate a fundamental aspect of the logic 

underlying the automation and not rely on simply capturing selective attention. In 

summary, enhancing the perceptual salience of strategically selected information might 

increase compliance with an automated system’s recommendations but it is unlikely to 

decrease commission errors unless it increases automation transparency. 

7.1 Salience Effects on Decision-Making Strategies 

The manner in which decision information is displayed can encourage people to 

use sub-optimal decision-making strategies (i.e., heuristics). People tend to use heuristics 

in order to reduce effort, which can lead to suboptimal decision-making outcomes (Simon, 

1990). Extending this to the current study, increasing attribute salience encouraged people 

to use a noncompensatory heuristic that consistently supported participants’ choice of the 

automation’s recommended route, even when that route was inferior. 

In the current study, salience fostered the use of a simple noncompensatory 

heuristic despite being suboptimal for completing the task. Participants were instructed to 
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choose a route that was ultimately high on all four attributes. However, route attributes 

were instantiated such that choosing an alternative that aligned with this goal required 

making trade-offs among attributes. Given these task instructions, participants should have 

used an equal weight model that constituted a compensatory strategy. Using such an equal 

weight strategy would have involved acquiring each attribute, summing the values for each 

alternative, holding those values in memory to evaluate alternatives, then choosing the 

alternative with the highest utility value. If participants applied this strategy, they should 

not have complied with the automation whenever it recommended an inferior alternative. 

Nevertheless, results showed that manipulating salience led participants to do just that. One 

reason for this is that people avoid expending the effort required to use a compensatory 

strategy and instead implement a noncompensatory single-cue heuristic like Take the Best 

(Gigerenzer et al., 1999; Gigerenzer & Gaissmaier, 2011). As a result, participants simplify 

the process of acquiring and evaluating attributes (i.e., cues) but doing so comes at the 

potential cost of choosing an inferior alternative.  

Salience increased compliance by fostering the use of a noncompensatory heuristic 

in which the alternatives were evaluated based on a single-attribute (i.e., cue). Highlighting 

the targeted attribute indicated to participants a path of least resistance, as opposed to the 

optimal yet effortful compensatory strategy like the equal weigh model. When the salience 

manipulation was present, participants simply compared routes by their highlighted 

attribute values and chose the best one. When the recommended route was inferior, this 

salience heuristic led participants to choose an inferior alternative. However, for superior 

trials, salience fostered the use of noncompensatory heuristic that happened to lead 
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participants to choosing the best alternative because the salient attribute always supported 

choosing the recommended route, regardless of trial type. When the recommended route 

was superior, then the salience heuristic happened to yield a valid outcome; on the other 

hand, when it was inferior, then it led to suboptimal choices. In summary, the salience 

factor wiped out the use of an equal weight model that more optimal based on the task 

instructions by influencing people to use a simple and easy to implement heuristic.  

To explain how salience led people to consistently use a similar noncompensatory 

heuristic, consider how heuristics can reduce cognitive effort. For Shah and Oppenheimer 

(2008, 2009), heuristics tend to influence our decisions by simplifying one or both of cue 

acquisition and evaluation. For example, instead of considering all attributes in their 

evaluation of alternatives, decision makers might choose to examine only a subset of those 

attributes. In a similar sense, display design factors like salience can simplify the 

acquisition of attributes by highlighting those attributes, capturing selective attention, and 

leading people examine and evaluate fewer attributes. Applying this to the current 

dissertation, highlighting the targeted attribute offered a noncompensatory single-attribute 

heuristic which simplified acquisition and evaluation of attributes. Consequently, 

alternatives were evaluated based only on their salient attribute, which consistently 

increased compliance with the automation because the recommended alternative was 

always high on the salient attribute. In summary, display design factors such as salience 

can be strategically manipulated, serving to signal to participants the path of least resistance 

and fostering the use of noncompensatory heuristics, which can lead to predictable effects 

on choice. 
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7.2 Limitations 

The route navigation paradigm was created to simulate the task of selecting a route 

from a GPS system and monitoring the vehicle’s position along the route. The goal was to 

leverage an existing paradigm in which participants were familiar with making decisions 

and that they would be motivated to evaluate the alternatives. However, given the low 

fidelity simulation and the fact that it was a web-based experiment, it is reasonable to 

assume that the task might have affected participant motivation. Consequently, salience 

effects might not generalize to tasks in which the stakes are high or in which people are 

highly motivated to choose the perceived best alternative at all costs. Despite these 

concerns, analysis of participants’ route choice data showed that they did not randomly 

choose their routes. Instead, it appears that participants were at least moderately engaged 

in and motivated to complete the task as they were instructed. 

The route displays were partially designed to create a canvas on which sequence 

and salience could be easily manipulated. This meant that format and organization were 

controlled across the experiment. Thus, additional research is needed to understand how 

salience effects might depend upon the use of a table format that is organized by alternative. 

Although, it reasonable to assume that salience effects would apply to additional display 

design contexts, the scope of the observed effects cannot be determined based only on 

results from the current dissertation. However, considering the results from experiments 1 

and 2, salience effects did not rely upon direct comparisons between alternatives. This 

suggests that salience effects would apply to a variety of information organizations beyond 
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that used in the current study. Additional research is needed to explore potential boundary 

condition for salience effects. 

The effect of salience in terms of increasing compliance might be limited to cases 

in which the difference between alternatives utility value is small. In experiments 3 and 4, 

superior and inferior trial types were created to understand how salience effects might 

differ depending upon the validity of the automation’s recommended alternative. 

Specifically, the recommended alternative’s utility value was decreased by one value for 

inferior and increased by one for superior trial types. As the results showed, salience 

increased compliance with the automated DSS, regardless of trial type. However, it is 

worth noting that one utility value was the smallest possible difference between alternatives 

utility value. Therefore, it is unclear whether salience effects only influence choice when 

the differences between alternatives is minimal. Presumably, there is a range of differences 

between alternatives that salience can influence choice, but outside of which salience 

effects are null. For example, if the recommended alternative is dominated on all attributes, 

then any motivated decision-maker is unlikely to choose the recommended alternative, 

regardless of any salience manipulation. However, precisely at what point do salience 

effects begin to diminish is an open question. Future research should investigate the 

relationship between increasing attribute utility value and the efficacy of salience 

manipulations.  

Across all four experiments, it is worth noting the relatively small size of the 

salience effect on choice. The salience manipulation led to a 4%, 5%, 7%, and 10% increase 

in recommended choice share for experiments 1, 2, 3, and 4, respectively. Depending upon 
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the application, it could be argued that 4% to 10% is practically insignificant. However, it 

is worth considering two points. First, these effects on choice were made by simply 

highlighting an attribute in yellow on each route display. This means that salience effects 

can be easily implemented by designers in a wide array of applications. Furthermore, 

leveraging salience effects does not require presenting additional information, nor does it 

restrict the decision maker’s ability to choose. Second, in many cases 4% to 10% is not 

trivial, especially considering how such effects could compound over time and as the 

application scales up to include a larger portion of the population. Take for example the 

Google Maps application for smartphones which has over 1 billion active users (Lardinois, 

2016). At such a large scale and on repeated exposure, these small effects could be used to 

influence many people to make better decisions.  

7.3 Theoretical Implications 

The current dissertation offers evidence that increasing the salience of an attribute 

in a multi-attribute choice decision-making task can influence choice by encouraging 

people to selectively process attributes. By capturing selective attention, salience increases 

the likelihood that people will choose an alternative based on its salient attribute value. 

Researchers have proposed similar explanations for salience effects (e.g., Jiang & Punj, 

2010; Lurie & Mason, 2007; Mukherjee & Srinivasen, 2013), and the current dissertation 

provides further evidence for this underlying mechanism. Building upon the extant 

research, the current study showed that salience effects do not rely upon an organization 

which facilitates direct comparisons between alternatives’ salient attributes. This finding 
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reinforces the notion that salience effects rely upon encouraging people to selectively 

process attributes. 

Combining sequence and salience factors to influence choice in favor of one 

alternative does not enhance the relative influence of each factor. In experiments 1 and 2, 

a sequence by salience interaction was predicted but results failed to support this effect. 

The rationale for this hypothesis was that both factors targeted the same attribute and 

combining factors should have reinforced the effects of one another. Research has shown 

that when sequence and salience target different attributes, then combining these factors 

mitigates the relative influence of each factor and encourages people to choose an 

alternative which is moderate on both attributes (Jing & Punj, 2010). Given the limited 

nature of research investigating sequence and salience effects, the current dissertation 

offers the first evidence that combining sequence and salience factors that target the same 

attribute does not produce an additive influence on choice among alternatives. 

Nevertheless, it is important to note that combining sequence and salience did not minimize 

the salience effect. These results lead to the conclusion that combining factors which target 

the same attribute might not strengthen their relative influence, but it is unlikely to 

minimize it either. 

In order to increase automation transparency, display design factors must go 

beyond capturing selective attention in order to increase compliance and reduce 

commission errors. Researchers have shown that displaying additional information to 

convey the logic underlying the automation’s recommendations can significantly reduce 

automation bias (e.g., Mercado et al., 2016). The current dissertation explored whether 
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subtly changing the way that information was displayed, rather than displaying additional 

information, could be used to similarly increase automation transparency. Results from 

experiments 3 and 4 showed that increasing salience can increase compliance. However, 

increasing compliance only addresses one aspect of automation bias; it is also important to 

reduce commission errors. The implication is that in order to increase compliance and 

decrease commission errors, one must validate that the display design factors support the 

human’s understanding of the logic underlying the automation’s recommended 

alternatives. 

7.4 Practical Impact 

The use of highlighting text can be sufficient to increase salience and influence 

choice. In the current study, salience was manipulated by simply highlighting a targeted 

attribute label and value in yellow. Previous research has demonstrated salience effects on 

choice by manipulating the relative brightness of alternatives (e.g., Milosavljevic et al., 

2012) or combined highlighting with other factors like increased font size (e.g., Jiang & 

Punj, 2010). Isolating the salience effect to highlighting offers a method for designers to 

leverage salience effects without introducing additional information or restricting the 

decision-makers choice. Furthermore, the salience effect was measured in terms of whether 

it influenced choice in favor of a specific alternative. The practical impact is that salience 

can be used to increase the choice share of a targeted alternative and not just a subset of 

alternatives. For example, suppose it was desirable for a nurse to choose a treatment option 

that had the quickest rate of recovery. Treatment options could be displayed to the nurse 

with the rate of recovery attribute highlighted. The current study suggests that doing so 
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would increase the likelihood that the nurse would select the treatment with the highest rate 

of recovery rather than one that was middling to high. 

Enhancing the salience of a strategically selected attribute can significantly increase 

compliance with an automated DSS, but it does so at the cost of increasing commission 

errors. In both experiments 3 and 4, salience increased the recommended route choice 

share, regardless of trial type. This effect for inferior trial type means that salience 

influenced people to choose a route that was inferior to others, which is equivalent to a 

commission error in the automation bias and HAI literature. Therefore, automation 

designers should carefully consider whether such salience effects should be applied in a 

DSS. The following are a few conditions which if met could be used to justify the use of 

such salience effects in an automated DSS: a) the decision-making context and domain 

establish that the cost of commission errors is relatively low, b) automation reliability and 

performance is high such that the rate of commission errors is inherently low, and c) the 

automated DSS is supporting preference-based decision making and performance 

measurements are subjective or abstract. This latter point warrants further explanation. In 

preference-based choice, the decision-maker constructs their preferences as they evaluate 

information, and thus do not necessarily know what option they want to choose (Bettman 

et al., 1998). In this case, it might be preferable to nudge the decision maker using salience 

effects and increase compliance, despite the fact an imperfect automation’s 

recommendation will occasionally be inferior to another alternative that is readily 

available. 
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For example, consider a farmer operating a combine harvester, which is highly 

automated but still requires a human-in-the-loop. To run the combine, the farmer chooses 

a harvesting strategy and the combine automatically adjusts numerous settings in 

accordance with the harvesting strategy. Choice among harvesting strategies is largely 

based on preferences and the degree to which the strategy achieves the farmer’s higher-

level goals for their farming operation. For instance, one harvesting strategy optimizes 

combine settings adjustments for grain savings and another optimizes for machine 

efficiency. Farmer preferences will vary but the combine manufacturer might prefer the 

farmer experience the combine operating at its highest level of efficiency. To this end, 

designers could present harvesting strategies to the farmer and highlight the attribute which 

offers the strongest support for the machine efficiency strategy. The machine efficiency 

strategy might be inferior for a particular farmer on a given day, but the notion of this being 

a commission error in the broader sense is practically irrelevant.  

In summary, there are applications in which the trade-off between increasing 

compliance by increasing commission errors is less costly or perhaps irrelevant. In such 

applications, the current study illustrates one way in which salience effects can be applied 

to influence choice and increase compliance with an automated DSS. Of course, such 

decisions regarding automation design should not be taken lightly because increased 

exposure to automation-induced errors can lead to automation misuse and disuse (Lee, 

2008).   



 

 

86 

CHAPTER 8. CONCLUSION 

This dissertation presented research at the intersection of display design, decision 

making, and human-automation interaction to examine how display design can be used to 

influence peoples’ choices and increase compliance. Along the path from automation to 

autonomy, our interactions with highly automated systems will grow in ubiquity (Hancock, 

2017). More and more of our interactions with technology will involve choosing among 

decision alternatives that constitute plans or general strategies for the highly automated 

systems to execute. To shape how people might choose among such alternatives, the 

current dissertation demonstrated how increasing attribute salience can subtly influence 

peoples’ choices and increase compliance with an automated DSS. However, the observed 

salience effect increased compliance at the cost of increasing commission errors. This 

suggests that informationally equivalent display design factors like salience might be 

insufficient for increasing automation transparency, specifically in terms of reducing 

commission errors. Nevertheless, the current study illustrates how designers can leverage 

salience effects to subtly yet predictably influence choice in favor of a specific alternative 

and thus increase compliance with an automated DSS. In doing so, designers can help 

people to make better decisions and create more enjoyable interactions with highly 

automate systems, without the human sacrificing their autonomy in the decision process.   
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APPENDIX A. LITERATURE REVIEW OF INFORMATION 

DISPLAY FACTORS ON CHOICE DECISION MAKING  

In the following subsections, four categories of display factors are defined and 

research regarding their effects on choice is reviewed in order to inform how to design a 

visual display to influence choice. In addition, some research regarding the interaction of 

display factors is reviewed in the final sub-section. Each subsection concludes with a 

summary of the research and consideration is given to how these display factors can be 

applied to the design of an automated decision support system in order to influence 

operators’ choices and improve HAI outcomes. 

8.1 Format 

Decision information can take a variety of forms and the information format 

category captures this component of the visual display design. For example, decision 

information regarding different cell phone attributes (e.g., battery life, processor, storage 

capacity) can be displayed in a table format or bar graph format. Each of these means of 

describing cell phone attributes represents a distinct form of presenting decision 

information that can lead to systematic differences in how people evaluate the decision 

information. 

Graphs and tables are examples of two different formats, which research has shown 

each can lead to differences in terms of how people process decision information (e.g., 

Meyer, Shamo, & Gopher, 1999). Graphical formats tend to leverage advantages associated 
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with rapid visual-spatial processing in order to aid decision makers by revealing trends and 

relationships in the data (Few, 2004). In contrast, tabular formats (e.g., series of rows and 

columns with separate columns for each attribute and separate rows for each decision 

alternative) are generally conducive to extracting precise pieces of information. Research 

has shown that format can influence choice by determining the cognitive effort required to 

process the decision information (Dilla & Steinbart, 2005; Schkade & Kleinmuntz, 1994) 

as well as influence the perceived differences between decision alternatives and their 

attribute values (Sun, Li, & Bonini, 2010). 

Dilla and Steinbart (2005) demonstrated a graphical-tabular format effect, 

illustrating how format can influence choice. Participants were given the role of a business 

manager tasked with selecting one of four different environmental cleanup plans (i.e., 

decision alternatives). On each trial, participants were tasked with indicating their preferred 

cleanup plan based on the range of costs associated with the plan. The format of the four 

plans was manipulated between subjects as each plan’s range of costs were displayed using 

either a tabular or graphical format. Participants assigned to the graphical format condition 

chose fewer dominated alternatives (i.e., cleanup plans that were inferior to others in terms 

of the range of costs) than participants in the tabular format condition. In other words, 

although there was no optimal cleanup plan, participants in the tabular format condition 

were more likely to choose a plan that was inferior to others. 

Graphical-tabular format effects can be explained by differences in the amount of 

cognitive effort required to accurately evaluate the alternatives (Dilla & Steinbart, 2005). 

With a graphical format, people can use rapid, visual-spatial processing to acquire 
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information about differences between alternatives with minimal cognitive effort. In 

contrast, a tabular format requires considerable effort to acquire information for one 

alternative, hold it in memory, and evaluate differences between alternatives. To reduce 

effort associated with using tables, people used decision-making heuristics that involved 

integrating less information which does not adequately account for differences between 

alternatives. Consequently, tables led participants to choose more dominated alternatives 

in comparison to the graphical format. In short, the graphical-tabular format effect 

demonstrates how format can determine the level of cognitive effort involved in acquiring 

information and evaluating alternatives, which in turn influences choice. By leveraging 

such format effects, designers can increase the likelihood that people will process the 

information in a particular fashion that leads to the preferred or targeted choice outcome.  

To summarize, decision alternatives can be displayed in different forms and 

systematic differences in the effort required to evaluate information and choose an 

alternative. Graphs and tables are two instantiations of format that are commonly used to 

display decision information to people. Graphs tend to influence choice by allowing people 

to quickly acquire information about fluent differences among alternatives via visual-

spatial processing. In contrast, tables tend to influence choice by encouraging people to 

selectively acquire and process decision information. Due to increased cognitive effort 

involved in acquiring a comprehensive evaluation of and comparisons between 

alternatives, tables are more likely to lead people to integrate less information and 

potentially bias choice. When people seek to conserve effort, tables can enable other factors 
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to capture attention and influence choice, which might otherwise have no impact when 

used with graphs. 

8.2 Organization 

Organization refers to the way in which decision information is arranged within or 

across displays. Decision information can be organized to form groups or patterns, which 

can ultimately impact how individuals acquire and evaluate decision information 

(Kleinmuntz & Schkade, 1993). For example, Russo (1977) used a simple organization 

manipulation by arranging unit price information associated with consumer products into 

a list, in contrast with traditional unit price organization (i.e., located directly next to the 

product itself on the product shelf). Russo found that the list organization significantly 

influenced participants purchase decisions by increasing the number of products purchased 

with lower unit prices. The list organization reduced the cognitive effort needed to acquire 

and combine unit price information, thus influencing which products people chose to 

purchase. 

Organization by alternatives and organization by attributes are two different yet 

commonly used types of information organization. Organization by alternatives is typically 

manipulated in multi-attribute choice tasks by displaying all of the attribute values 

associated with a single alternative and separate displays for each alternative. In contrast, 

organization by attributes involves displaying the values of an attribute for multiple 

alternatives, with separate displays for each attribute. 
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Organization can determine how people acquire decision information, which can 

shape how alternatives are evaluated. In general, organization by alternatives leads to 

alternative-based processing, in which people first acquire information about all of the 

attributes associated with a single alternative before acquiring information about 

subsequent alternatives (Payne et al., 1994). Organization by alternatives tends to highlight 

differences between the alternative’s attributes rather than between the alternatives 

themselves, which can enhance perception of each alternative’s stronger attributes. 

Using tables, Chang and Liu (2008a) demonstrated how organization influences 

how people process information which can lead to systematic differences in terms of choice 

among alternatives. Chang and Liu compared alternative and attribute organizations in a 

preference-based choice task in which participants chose from a set of consumer products 

to purchase (e.g., digital cameras) which were described by two attributes (e.g., reliability 

and picture quality).  

The results from Chang and Liu (2008a) showed that participants chose the 

compromise option (i.e., alternative with the same value for both attributes) more often 

when information was organized by alternatives than when organized by attributes. 

Furthermore, participants chose the middle alternative (i.e., the alternative presented 

second in the list) more often when information was organized by attributes. In effect, 

organization influenced which option appeared to be the true compromise. Chang and Liu 

explained this organization effect on choice by extending previous research on compromise 

effects (e.g., Chernev, 2004; Simonson, 1989). When organized by alternative, the true 

compromise option (i.e., same value for both attributes) was more salient than the middle 
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option (i.e., the alternative presented second in the list). In contrast, when organized by 

attribute, the middle option appeared to be the compromise. 

In summary, organization constitutes a fundamental characteristic of an 

information display that can be manipulated to influence people to engage in alternative or 

attribute-based processing which can influence choice. Consistent with the concreteness 

principle (Slovic, 1972), people tend to process decision information in a manner that is 

consistent with the organization. Organization by alternative leads to alternative-based 

processing in which people are more likely to process information across attributes to form 

a holistic evaluation of the alternative. In contrast, organization by attributes leads to 

attribute-based processing or within-attribute processing, which can bias evaluation of 

alternatives based on a single attribute as opposed to consideration of all attributes (i.e., 

examining fewer cues and integrating less information). 

8.3 Sequence 

Information sequence refers to the ordering of decision and attribute information 

within the display. Decision information can be sequenced in a number of ways including 

alphabetical order of the alternative’s names or by descending attribute values. For 

example, cell phones could be sequenced in a table by descending values in storage 

capacity. Manipulating the sequence of decision information can directly impact the order 

in which people acquire and process the information. As a result, sequence effects can 

significantly change how people weigh the information. For instance, sorting cell phones 
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by descending storage quality can subtly change how people weigh the storage capacity 

attribute in their evaluations of the cell phones. 

Carlson, Meloy, and Russo (2006) demonstrated how the sequence in which 

attributes were presented could be manipulated to influence choice in favor of one 

alternative. In study 1 of Carlson et al., participants chose between two consumer products 

(e.g., backpacks) that were described by six attributes appearing in a table format. Two 

attributes were diagnostic (i.e., one favored alternative A, one favored alternative B), and 

the remaining attributes were neutral (i.e., did not favor an alternative). The sequence of 

the attributes was manipulated such that the first and fourth attributes in the order were 

diagnostic and the other attributes were neutral. After reviewing all attributes, participants 

chose one alternative they preferred. Analysis of the choice frequency data showed that the 

sequence of the diagnostic attributes significantly influenced participants’ choices between 

two alternatives. Specifically, whichever alternative the first diagnostic attribute favored 

(i.e., the first attribute participants saw) was chosen about 70% of the time. In other words, 

when the first attribute that participants reviewed significantly favored alternative A, 

participants were more likely to choose alternative A.  

Information sequence can influence choice by changing how people weight 

decision information that is processed early in the sequence, which can frame how 

subsequent information is evaluated. Carlson and colleagues (2006) proposed that by 

placing an attribute that favored one alternative early in the sequence instilled a leader-

driven primacy effect. Sequence manipulations can determine the order in which attributes 

are acquired and processed, which can influence evaluations that occur downstream. As a 
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result, participants’ evaluations of subsequent attributes were biased to favor the alternative 

that was supported by the first attribute in the sequence. By carefully sequencing attributes 

and positioning an attribute that favors one alternative early in the sequence, designers can 

increase the likelihood that people will choose that alternative. 

Russo, Carlson, and Meloy (2006) further examined how attribute sequence can 

even influence people to choose an inferior alternative in terms of its attribute utility value. 

Using a choice task paradigm and sequence manipulation similar to that of Carlson et al. 

(2006), Russo and colleagues traced the decision process and were able to find converging 

evidence that the leader-driven primacy effect does indeed influence choice by changing 

how attributes are weighted which shapes how participants evaluate subsequent decision 

information. Assuming that preferences are constructed in the moment (Bettman et al., 

1998; Payne et al., 2000), subsequent attribute information is evaluated in a manner that is 

biased towards supporting the leading alternative. The sequencing effects also suggest the 

reduction of cognitive effort by simplifying the weighting of attribute information during 

information combination (Shah & Oppenheimer, 2008). That is, reducing the cognitive 

operations involved in making trade-offs among the alternatives, strategically manipulating 

sequence can lead to the observed systematic biases in choice. 

In addition to attribute sequence effects, manipulating the order in which 

alternatives are presented can influence choice (Cai & Xu, 2008). Participants browsed a 

simulated retail website that included a tabular display containing nine digital cameras, 

each of which were described by price as well as six attributes pertaining to quality (e.g., 

number of megapixels). Sequence was manipulated by sorting alternatives based on an 
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overall quality attribute either in ascending, descending, or random order. Results showed 

that sequencing alternatives by descending quality led participants to select cameras that 

were of higher quality than when the alternatives were ordered by ascending quality or 

randomized. Moreover, sequencing alternatives by descending quality led participants to 

rate quality as a more important factor than price in their decision. Cai and Xu (2008) 

explain the effect of descending quality on choice by using the principle of concreteness 

(Slovic, 1972) and loss aversion (Kahneman & Tversky, 1979). In accordance with the 

concreteness principle, participants used the quality attribute information in the manner in 

which it was displayed; therefore, descending quality led people to value quality as more 

important when evaluating alternatives and including them in their consideration set. 

Furthermore, with a descending order of quality, higher quality alternatives are established 

as a reference point at which subsequent comparisons of alternatives are made. Therefore, 

people choose superior quality alternatives because quality is promoted as a distinguishing 

factor and because subsequent alternatives are evaluated as a loss in quality (due to loss 

aversion). 

In summary, sequence influences choice by determining the order in which 

information is likely to be processed, which can impact how subsequent attributes are 

weighted when evaluating alternatives. As a fundamental characteristic of the information 

display, sequence can be manipulated in any multi-attribute choice decision context, 

regardless of format or organization.  

8.4 Salience 
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The salience category of display factors refers to perceptual manipulations (as 

opposed to cognitive or internal salience) that change the perceptual salience of specific 

alternatives or attributes. In general, salience manipulations influence decision processes 

by impacting how people allocate their selective visual attention towards specific pieces of 

decision information. According to Wolfe’s (2007) Guided Search Model, selective visual 

attention is influenced by bottom-up activation (i.e., local differences in perceptual values) 

and top-down activation (i.e., similarity of visual stimuli to an internal representation). 

Manipulating the salience of decision information offers a means of influencing such 

bottom-up activation levels. Salience effects on selective attention can influence whether 

people will attend to a specific decision alternative or attribute and the duration for which 

they do so. The consequence of which ultimately determine whether people will choose 

one alternative over another (e.g., Towal, Mormann, & Koch, 2013). 

In the human factors literature, researchers have been interested in how 

manipulating salience can influence selective visual attention and aid decision-making 

performance (e.g., Bennett, Naggy, & Flach, 2006; Nikolic, Orr, & Sarter, 2004; Wickens, 

McCarley, & Steelman-Allen, 2009). For example, Nikolic and colleagues showed how 

manipulating the visual salience of alert information by altering location, color, and 

movement can increase the likelihood that operators will attend to and process the alert, 

which can lead to improve system performance. Research from the HAI literature suggests 

that manipulating salience can play an important role in improving HAI outcomes. In an 

effort to increase automation transparency and reduce automation biases, Rovira et al., 

(2014) used a color-coded highlighting scheme to convey changes in the reliability of the 
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automation over time. They found that manipulating salience of the automation’s reliability 

increased appropriate usage of the automation by participants. These studies illustrate how 

human factors researchers have applied salience effects to address visual display design 

problems and improve performance. However, these results are limited when considering 

how to engineer a decision environment for a multi-attribute choice decision-making 

context.  

In the consumer decision-making literature, researchers have investigated how 

salience manipulations can lead to a visual bias effect on choice. The visual bias effect 

refers to the finding that the amount of relative visual attention allocated towards a given 

alternative can serve as an important predictor of people’s choice among alternatives 

(Armel, Beaumel, & Rangel, 2008; Krajbich & Rangel, 2011; Pieters & Warlop, 1997; 

Towal et al., 2013). For example, Armel et al. (2008) manipulated the presentation duration 

of alternatives and found that people generally preferred the alternative that was presented 

for a longer duration. This suggests that increasing time spent examining an option will 

influence the individual’s preference for that option. In an eye tracking study by Pieters 

and Warlop (1997), eye movement measures were used to successfully predict participants’ 

choices. Participants fixated chosen alternatives more often than non-chosen alternatives 

and participants skipped fixating fewer visual elements associated with the chosen 

alternative. Additional eye tracking studies provide further support for the visual bias effect 

on choice and extend it to include fixation duration as a predictive measure of choice 

(Krajbich & Rangel, 2011; Towal et al., 2013). Thus, the relative visual attention allocated 
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towards a given alternative constitutes an important factor in the decision-making process, 

which can determine whether an individual will choose a particular alternative. 

In an effort to leverage the visual bias effect on choice, researchers have explored 

how the relative brightness of alternatives can be manipulated to increase salience. 

Milosavljevic, Navalpakkam, Koch, and Rangel (2012) manipulated the relative brightness 

of an alternative displayed to participants by decreasing the brightness of other alternatives 

in the display by 65%. Results showed the salience manipulation significantly increased 

the likelihood that people would choose the salient alternative. These results can be 

explained in terms of a visual bias effect on the allocation of selective visual attention in 

favor of the salient alternative. 

In addition to relative brightness, researchers have examined other methods of 

increasing perceptual salience of decision information including highlighting text and 

increasing font size. Specifically, Jiang and Punj (2010) highlighted attribute information 

(i.e., restaurant atmosphere ratings and price) in green and increased the font size to 

enhance salience. The results showed that in contrast to the non-salient attribute, 

participants examined more alternatives that were high in value for the salient attribute and 

increased the likelihood that participants would choose an alternative that was superior in 

terms of the salient attribute. Therefore, enhancing attribute salience appears to lead people 

to acquire information and process alternatives based on the salient attribute. This 

interpretation is similar to that of the previously discussed visual bias effect in that 

highlighting an attribute can increase the relative visual attention allocated to those 

attributes. Consequently, highlighting attributes biases selective visual attention, framing 
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how the attributes are processed and evaluated, which influences choice in favor of the 

alternatives that are high on the salient attribute. 

To summarize, salience is a fundamental characteristic of an information display 

that can be manipulated to influence the allocation of selective visual attention and change 

how people evaluate alternatives. The visual bias effect shows that the way people allocate 

their visual attention can shape how decision alternatives are evaluated. By manipulating 

the information salience in the design of a decision environment, designers can tap into the 

visual bias effect in predictable ways by increasing the likelihood that people allocate their 

visual attention to the salient information. Although there are numerous methods available 

for designers to increase salience, the efficacy of different salience factors is unclear due 

to limited research investigating salience effects on choice.  

8.5 Interactions of Display Factors 

Designing a visual display of decision information involves instantiating format, 

organization, sequence, and salience. Research investigating how display factors combine 

to impact decision-making is limited but there is some evidence to indicate that certain 

combinations of display factors can minimize their influence on choice. Therefore, it is 

crucial to consider the confluence of display factors on decision making processes and 

choice. 

Considering the interaction of sequence and salience, there is some evidence to 

suggest that manipulating the sequence of alternatives can attenuate salience effects on 

choice (Jiang & Punj, 2010). Specifically, salience was manipulated by highlighting and 
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increasing the font size associated with one of two attributes; sequence was manipulated 

by ordering alternatives either by name (in alphabetical order) or by descending values for 

the non-salient attribute. The results showed that when alternatives were sequenced by 

name, choice share for alternatives that were high on the salient attribute increased. 

However, when alternatives were sequenced by the non-salient attribute, there was no 

difference in choice share between alternatives that were high on the salient attribute and 

those that were high on the non-salient attribute. Thus, the combination of the salience and 

sequence manipulations cancelled out the potentially influential effects of each 

manipulation. 

Organization has been shown to moderate the influence of sequence (Carlson et al., 

2006). In study 3 of Carlson et al., sequence was manipulated in a multi-attribute binary 

choice task by ordering attributes such that the first attribute significantly favored one 

alternative, the fourth attribute favoring the other alternative, and the remaining attributes 

constituting neutral attributes. Information organization was manipulated by organizing the 

information either by attribute (i.e., simultaneous display of attributes for both alternatives) 

or by alternative (i.e., separate displays; one containing attributes for alternative A and one 

for alternative B). Analysis of participants’ choices revealed a significant difference 

between the attribute and alternative organization conditions. For the attribute 

organization, 86% of participants chose the alternative that was favored by the first 

attribute. However, for the alternative organization condition, only 58% of participants 

chose the alternative which the first attribute favored. This result indicates that 
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manipulating information organization reduced the leader-driven primacy effect that was 

attributed to the sequence manipulation. 

These studies illustrate the importance of considering potential interactions of 

display factors. Furthermore, due to the limited available research, it remains unclear how 

display factors can be combined to enhance their relative influence on choice. For example, 

Jiang and Punj (2010) showed that sequence can minimize salience effects when each 

factor is in conflict, but it is unclear if both factors encouraged processing of the same 

attributes whether that would strengthen their influence in favor of alternatives that were 

high on that sequenced and salient attribute. By considering the potential interactions, 

designers can better predict how a given display design will impact decision making. 

Furthermore, understanding how a given configuration of display factors impacts decision 

making is critical for applying display design effects to improve real world decision making 

like that involved in human-automation interaction. After all, designing a display for an 

automated decision support system involves the interaction of numerous display factors.   



 

 

102 

APPENDIX B. TASK INSTRUCTIONS FOR EXPERIMENT 1 

Introduction 
Hello and thank you for agreeing to participate in this experiment. Please 
carefully read the following instructions before you begin the experiment. 
 
In this experiment, you will take on the role of a package delivery service agent. 
Your task will be to navigate to various destinations to deliver packages. To 
deliver each package, you will choose one of four different routes for each of 
your deliveries. After choosing a route, you will navigate to your destination by 
monitoring your vehicle's position along the route. During transit, you 
will not control the vehicle, but you need to make sure that each package is 
delivered. After delivering the package, you will choose from a new set of routes 
in order to deliver the next package to the next destination. 
 
Each delivery will involve the following procedure: 

1. Review 4 different routes, each displayed on a separate page 
2. Choose your preferred route from the 4 routes 
3. Monitor your vehicle's position as it navigates to the destination 
4. Await confirmation that the package has been delivered 
5. Begin next delivery 

 
Press NEXT to learn more about how the routes are presented. 

 
 

Routes 
Below is an example of a single route display with the four route attributes. Note 
each part of the route display as each delivery will require that you review four 
routes presented in this same format. 
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A) Route sequence indicator 

• Only one route will be displayed per page and this indicator depicts which 
route in the set of 4 is being displayed. 

  
B) Route name 

• Each route will have a unique name and the route name identifies each 
route. 

  
C) Route attributes 

• Depicts the name of each attribute with the correspond value directly 
below that attribute. Route attributes can range in value from: 

o Very Low - Low 
o Low - Moderate 
o Moderate - High 
o High - Very High 

  
D) Next Route button 

• Advances to the next route in the sequence of routes. 
 
Route Attributes 
 
Each route will be described by 4 attributes and each attribute will range in value 
from "Very Low" to "Very High".  All routes are described by each of these four 
attributes.  You should consider these attributes as you evaluate and choose a 
route.  It is important that you only consider the attributes as they are defined 
below.  Please carefully read each attribute definition before beginning the 
experiment. 
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Fuel Efficiency 
• The level of fuel efficiency for your vehicle along the route. 
• "Very Low" fuel efficiency indicates that your vehicle will have poor fuel 

mileage along that route because your vehicle must work harder to travel 
to the destination. 

• "Very High" fuel efficiency indicates that your vehicle runs at optimal 
efficiency along this route, thereby using less fuel to travel along this 
route. 

 
Road Quality 

• Road quality refers to the actual road or street conditions and how the 
road conditions will impact your vehicle's operating condition, your comfort 
from within the cabin of the vehicle, as well as the cargo you're delivering. 

• "Very Low" road quality indicates that your vehicle is more likely to be 
damaged. You and your cargo are also more likely to be jostled or moved 
about within the vehicle as you navigate to your destination. 

• "Very High" road quality indicates that you are unlikely to encounter poor 
road conditions that could damage your vehicle and jostle or move you 
and the cargo within the vehicle. 

 
Speed 

• Speed is determined by the average speed of your vehicle along the 
route, which is due to the speed limit on the roadways, in addition to 
other factors. 

• "Very Low" speed indicates that your vehicle will travel slowly along the 
route. 

• "Very High" speed indicates that your vehicle will travel quickly along the 
route. 

 
Traffic Flow 

• Traffic flow refers to the efficiency with which traffic is moving along the 
route. 

• "Very Low" traffic flow indicates that traffic is not flowing smoothly due to 
higher traffic density and congestion, in addition to other factors. 

• "Very High" traffic flow indicates that traffic is flowing smoothly because 
there is low traffic density and less congestion along this route. 

 
Please note that Speed and Traffic Flow do NOT necessarily determine how 
quickly you will arrive at your destination because the estimated time of arrival 
and the duration of travel along each route are unknown by the system.  
 
Remember, there are no right or wrong answers. We want you to choose the 
route that you prefer, but you should only consider these 4 attributes when you're 
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evaluating and choosing a route. 
 
As a delivery service agent, it is important that you deliver the packages in a 
timely fashion. However, it is equally important that you choose the routes that 
allow your vehicle to operate efficiently, and that your vehicle and the cargo are 
not damaged. 
 
You will notice that some route displays may have some attribute information 
highlighted in yellow.  The purpose for highlighting information is to determine 
whether this might help people make their decisions.  The highlighted information 
does not indicate that it is any more or less important.  Please use this 
highlighted information however you would like. 
 

Examples  
Below are some pictures that depict the sequence of events for each package 
you will deliver. 
 

1. You will first review the 4 routes on separate pages.  
2. After you review a given route, you can press the "Next Route" button 

to begin viewing the next route's attributes. 
3. After reviewing all 4 routes, you will be able to choose your preferred 

route among all 4 routes. 
 

 
 
During the first time through each set of 4 routes, you will not be able to choose 
a route. Just press the "Next Route" button to advance to the next route. 
 
After you have reviewed the 4th route, press the "Next" button. 
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At this point, you will be able to choose 1 of the 4 routes by clicking on the radio 
button next to your preferred route: 
 

 
 
 
After choosing a route, you will view the GPS route system display. Your 
vehicle's location will be displayed as a blue circle and your destination will be 
marked as a red pentagon. Your task is to monitor your vehicle's position along 
the route to ensure that the package is delivered. 
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APPENDIX C. TASK INSTRUCTIONS FOR EXPERIMENT 3 

Automated System and Route Recommendations 
For each delivery, an automated system will recommend 1 of the 4 routes for you 
to choose. The system’s recommended route is based on an evaluation of each 
route’s projected attribute values as well as other information such as weather 
forecast. 
 
 
Through extensive testing, we have determined that the automation’s 
recommendations are only 70% reliable. This means that 70% of the time, the 
automation recommended a route which was optimal or equivalent to other high 
performing routes. On the other hand, 30% of the time, the recommended route 
was sub-optimal and performed poorly in comparison to one or more of the other 
routes that were available. The system will only recommend a route; it will not 
automatically choose a route for you. For each delivery, the first of the 4 routes 
will be the systems recommended route, followed by 3 alternative routes. 
 
 
You should consider the system’s recommended route, but you should 
also evaluate all the other routes and choose the one you believe will lead 
to the best performance. 
 
 
Again, your goal as a delivery service agent is to choose a route that achieves 
the following: 

• Deliver cargo/packages in a timely fashion 
• Ensure your vehicle will operate efficiently along the route 
• Your vehicle and the cargo/packages are not damaged during transport 

due to route conditions 
 
 
Finally, you will notice that some of the attributes are highlighted in yellow. These 
highlighted attributes are chosen by the automated system and convey why the 
system is recommending that route. You should use this highlighted information 
however you prefer. 
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APPENDIX D. TASK INSTRUCTIONS FOR EXPERIMENT 4 

Automated System and Route Recommendations 
For each delivery, an automated system will recommend 1 of the 4 routes for you 
to choose. The system’s recommended route is based on an evaluation of each 
route’s projected attribute values as well as other information such as weather 
forecast. 
 
 
Through extensive testing, we have determined that the automation’s 
recommendations are 90% reliable. This means that 90% of the time, the 
automation recommended a route which was optimal or equivalent to other high 
performing routes. On the other hand, 10% of the time, the recommended route 
was sub-optimal and performed poorly in comparison to one or more of the other 
routes that were available. The system will only recommend a route; it will not 
automatically choose a route for you. For each delivery, the first of the 4 routes 
will be the systems recommended route, followed by 3 alternative routes. 
 
 
You should consider the system’s recommended route, but you should 
also evaluate all the other routes and choose the one you believe will lead 
to the best performance. 
 
You will notice that sometimes an attribute will be highlighted in yellow. These 
highlighted attributes are chosen by the automated system and are intended to 
convey why the system is recommending that route. However, this does not 
mean that the system's recommendation is any more or less valid. Please use 
this highlighted information however you would like to help you choose your 
route. 
 
Again, your goal as a delivery service agent is to choose a route that achieves 
the following: 

• Deliver cargo/packages in a timely fashion 
• Ensure your vehicle will operate efficiently along the route 
• Your vehicle and the cargo/packages are not damaged during transport 

due to route conditions 
  



 

 

109 

APPENDIX E. ROUTE ATTRIBUTE UTILITY VALUES FOR 

EXPERIMENTS 1 AND 2 

Table 4 – Route Attribute Utility Values for Experiments 1 and 2 

Trial 
Route 

Set Route 
Target 
Route Seq. Sal. 

Target 
Attrib. 

Road 
Qual. Speed 

Fuel 
Effic. 

Traffic 
Flow Utility 

1 4 A D Yes Yes Speed 3 4 1 5 13 
1 4 B D Yes Yes Speed 5 1 3 4 13 
1 4 C D Yes Yes Speed 4 3 5 1 13 
1 4 D D Yes Yes Speed 1 5 4 3 13 
2 12 A D Yes No Fuel 

Efficiency 
2 5 2 4 13 

2 12 B D Yes No Fuel 
Efficiency 

4 2 2 5 13 

2 12 C D Yes No Fuel 
Efficiency 

5 2 4 2 13 

2 12 D D Yes No Fuel 
Efficiency 

2 4 5 2 13 

3 23 A A No Yes Traffic 
Flow 

1 4 1 5 11 

3 23 B A No Yes Traffic 
Flow 

5 1 1 4 11 

3 23 C A No Yes Traffic 
Flow 

4 1 5 1 11 

3 23 D A No Yes Traffic 
Flow 

1 5 4 1 11 

4 26 A C No No Road 
Quality 

3 5 4 4 16 

4 26 B C No No Road 
Quality 

4 4 3 5 16 

4 26 C C No No Road 
Quality 

5 3 4 4 16 

4 26 D C No No Road 
Quality 

4 4 5 3 16 

5 4 A D Yes No Speed 3 4 1 5 13 
5 4 B D Yes No Speed 5 1 3 4 13 
5 
 

4 C D Yes No Speed 4 3 5 1 13 

5 4 D D Yes No Speed 1 5 4 3 13 
6 12 A D No Yes Fuel 

Efficiency 
2 5 2 4 13 

6 12 B D No Yes Fuel 
Efficiency 

4 2 2 5 13 
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6 12 C D No Yes Fuel 
Efficiency 

5 2 4 2 13 

6 12 D D No Yes Fuel 
Efficiency 

2 4 5 2 13 

7 23 A A No No Traffic 
Flow 

1 4 1 5 11 

7 23 B A No No Traffic 
Flow 

5 1 1 4 11 

7 23 C A No No Traffic 
Flow 

4 1 5 1 11 

7 23 D A No No Traffic 
Flow 

1 5 4 1 11 

8 26 A C Yes Yes Road 
Quality 

3 5 4 4 16 

8 26 B C Yes Yes Road 
Quality 

4 4 3 5 16 

8 26 C C Yes Yes Road 
Quality 

5 3 4 4 16 

8 26 D C Yes Yes Road 
Quality 

4 4 5 3 16 

9 4 A D No Yes Speed 3 4 1 5 13 
9 4 B D No Yes Speed 5 1 3 4 13 
9 4 C D No Yes Speed 4 3 5 1 13 
9 4 D D No Yes Speed 1 5 4 3 13 
10 12 A D No No Fuel 

Efficiency 
2 5 2 4 13 

10 12 B D No No Fuel 
Efficiency 

4 2 2 5 13 

10 12 C D No No Fuel 
Efficiency 

5 2 4 2 13 

10 12 D D No No Fuel 
Efficiency 

2 4 5 2 13 

11 23 A A Yes Yes Traffic 
Flow 

1 4 1 5 11 

11 23 B A Yes Yes Traffic 
Flow 

5 1 1 4 11 

11 23 C A Yes Yes Traffic 
Flow 

4 1 5 1 11 

11 23 D A Yes Yes Traffic 
Flow 

1 5 4 1 11 

12 26 A C Yes No Road 
Quality 

3 5 4 4 16 

12 26 B C Yes No Road 
Quality 

4 4 3 5 16 

12 26 C C Yes No Road 
Quality 

5 3 4 4 16 

12 26 D C Yes No Road 
Quality 

4 4 5 3 16 

13 4 A D No No Speed 3 4 1 5 13 
13 4 B D No No Speed 5 1 3 4 13 
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13 4 C D No No Speed 4 3 5 1 13 
13 4 D D No No Speed 1 5 4 3 13 
14 12 A D Yes Yes Fuel 

Efficiency 
2 5 2 4 13 

14 12 B D Yes Yes Fuel 
Efficiency 

4 2 2 5 13 

14 12 C D Yes Yes Fuel 
Efficiency 

5 2 4 2 13 

14 12 D D Yes Yes Fuel 
Efficiency 

2 4 5 2 13 

15 23 A A Yes No Traffic 
Flow 

1 4 1 5 11 

15 23 B A Yes No Traffic 
Flow 

5 1 1 4 11 

15 23 C A Yes No Traffic 
Flow 

4 1 5 1 11 

15 23 D A Yes No Traffic 
Flow 

1 5 4 1 11 

16 26 A C No Yes Road 
Quality 

3 5 4 4 16 

16 26 B C No Yes Road 
Quality 

4 4 3 5 16 

16 26 C C No Yes Road 
Quality 

5 3 4 4 16 

16 26 D C No Yes Road 
Quality 

4 4 5 3 16 
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APPENDIX F. ROUTE ATTRIBUTE UTILITY VALUES FOR 

EXPERIMENTS 3 AND 4 

Table 5 – Route Attribute Utility Values for Experiments 3 and 4 

Trial
# 

Trial 
Type 

Route 
Set 

Route Rec. 
Route 

Targeted 
Attribute 

Road 
Qual. 

Speed Fuel 
Effic. 

Traffic 
Flow 

Utility 

1 Equal 
1 A A Road 

Quality 5 1 4 2 12 

1 Equal 
1 B A Road 

Quality 2 4 1 5 12 

1 Equal 
1 C A Road 

Quality 4 5 2 1 12 

1 Equal 
1 D A Road 

Quality 1 2 5 4 12 
2 Equal 2 A B Speed 1 3 4 5 13 
2 Equal 2 B B Speed 3 5 1 4 13 
2 Equal 2 C B Speed 5 4 3 1 13 
2 Equal 2 D B Speed 4 1 5 3 13 

3 Equal 
3 A C Fuel 

Efficiency 3 5 2 1 11 

3 Equal 
3 B C Fuel 

Efficiency 2 3 1 5 11 

3 Equal 
3 C C Fuel 

Efficiency 1 2 5 3 11 

3 Equal 
3 D C Fuel 

Efficiency 5 1 3 2 11 

4 Equal 
4 A D Traffic 

Flow 1 2 4 3 10 

4 Equal 
4 B D Traffic 

Flow 4 1 3 2 10 

4 Equal 
4 C D Traffic 

Flow 3 4 2 1 10 

4 Equal 
4 D D Traffic 

Flow 2 3 1 4 10 

5 
Superi

or 
5 A A Road 

Quality 
5 3 3 2 13 

5 
Superi

or 
5 B A Road 

Quality 
3 2 3 4 12 

5 
Superi

or 
5 C A Road 

Quality 
2 3 4 3 12 

5 
Superi

or 
5 D A Road 

Quality 
3 4 1 4 12 

6 
Superi

or 
6 A B Speed 4 2 3 3 12 
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6 
Superi

or 
6 B B Speed 3 5 2 3 13 

6 
Superi

or 
6 C B Speed 3 2 4 3 12 

6 
Superi

or 
6 D B Speed 1 4 3 4 12 

7 
Superi

or 
5 A A Road 

Quality 
5 3 3 2 13 

7 
Superi

or 
5 B A Road 

Quality 
3 2 3 4 12 

7 
Superi

or 
5 C A Road 

Quality 
2 3 4 3 12 

7 
Superi

or 
5 D A Road 

Quality 
3 4 1 4 12 

8 
Superi

or 
6 A B Speed 4 2 3 3 12 

8 
Superi

or 
6 B B Speed 3 5 2 3 13 

8 
Superi

or 
6 C B Speed 3 2 4 3 12 

8 
Superi

or 
6 D B Speed 1 4 3 4 12 

9 
Equal 11 A C Fuel 

Efficiency 
3 5 2 1 11 

9 
Equal 11 B C Fuel 

Efficiency 
2 3 1 5 11 

9 
Equal 11 C C Fuel 

Efficiency 
1 2 5 3 11 

9 
Equal 11 D C Fuel 

Efficiency 
5 1 3 2 11 

10 
Equal 12 A D Traffic 

Flow 
1 2 4 3 10 

10 
Equal 12 B D Traffic 

Flow 
4 1 3 2 10 

10 
Equal 12 C D Traffic 

Flow 
3 4 2 1 10 

10 
Equal 12 D D Traffic 

Flow 
2 3 1 4 10 

11 
Equal 11 A C Fuel 

Efficiency 
3 5 2 1 11 

11 
Equal 11 B C Fuel 

Efficiency 
2 3 1 5 11 

11 
Equal 11 C C Fuel 

Efficiency 
1 2 5 3 11 

11 
Equal 11 D C Fuel 

Efficiency 
5 1 3 2 11 

12 
Equal 12 A D Traffic 

Flow 
1 2 4 3 10 

12 
Equal 12 B D Traffic 

Flow 
4 1 3 2 10 

12 
Equal 12 C D Traffic 

Flow 
3 4 2 1 10 
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12 
Equal 12 D D Traffic 

Flow 
2 3 1 4 10 

13 
Inferior 13 A A Road 

Quality 
5 3 2 1 11 

13 
Inferior 13 B A Road 

Quality 
1 3 4 4 12 

13 
Inferior 13 C A Road 

Quality 
3 3 4 2 12 

13 
Inferior 13 D A Road 

Quality 
2 4 2 4 12 

14 Inferior 14 A B Speed 4 3 4 1 12 

14 Inferior 14 B B Speed 2 5 1 3 11 

14 Inferior 14 C B Speed 4 3 3 2 12 

14 Inferior 14 D B Speed 2 2 4 4 12 

15 
Inferior 13 A A Road 

Quality 
5 3 2 1 11 

15 
Inferior 13 B A Road 

Quality 
1 3 4 4 12 

15 
Inferior 13 C A Road 

Quality 
3 3 4 2 12 

15 
Inferior 13 D A Road 

Quality 
2 4 2 4 12 

16 Inferior 14 A B Speed 4 3 4 1 12 

16 Inferior 14 B B Speed 2 5 1 3 11 

16 Inferior 14 C B Speed 4 3 3 2 12 

16 Inferior 14 D B Speed 2 2 4 4 12 
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