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Abstract— A novel representation for the human component
of multi-step, human-robot collaborative activity is presented.
The goal of the system is to predict in a probabilistic manner
when the human will perform different subtasks that may
require robot assistance. The representation is a graphical
model where the start and end of each subtask is explicitly
represented as a probabilistic variable conditioned upon prior
intervals. This formulation allows the inclusion of uncertain
perceptual detections as evidence to drive the predictions.
Next, given a cost function that describes the penalty for
different wait times, we develop a planning algorithm which
selects robot-actions that minimize the expected cost based
upon the distribution over predicted human-action timings. We
demonstrate the approach in assembly tasks where the robot
must provide the right part at the right time depending upon
the choices made by the human operator during the assembly.

I. INTRODUCTION

Human-robot collaboration is rapidly gaining interest in a
broad range of applications, including industrial manufactur-
ing and assembly [1], as well as personal services [2]. In such
scenarios, human and robots work in a shared space, focused
on accomplishing a joint task. The successful performance
of this task requires that the human and robot work as an
effective team implying some notion of joint intention where
both parties maintain a set of shared beliefs about the state
of the world and the task being performed [3, 4]. One goal
of maintaining such shared beliefs is that both the human
and the robot should know when to perform specific actions
in support of the collaborative task; this synchronization is
informed by both knowledge of the task being performed
and perception of the human and environment.

Much prior work has focused on the first element above:
providing the robot with knowledge of the task either through
demonstration [5] or by explicit teaching. However, when
considered in a collaborative setting, most research assumes
that the sensing of the execution of the task is straightforward
and ignores real-world sensor effects like noise, drop-out, and
occlusion.

Despite great strides in recent years, in many uncontrolled
environments human action perception is still noisy and
unreliable. Furthermore, human collaborators can exhibit
great variability in the manner they perform tasks, such as
action speed and personal discretion. It is in this context
that the robot must determine the state of the collaborative
task being performed and it must infer both what to do and
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Fig. 1. Station where a Universal UR10 robot assists a human by
fetching and removing bins as needed by anticipating actions of the
human.

when to do it. In this paper we introduce a new, probabilistic
model and inference mechanism that permits the robot to
seamlessly infer the current state of the task and to predict
the distribution of when particular robot actions would be
appropriate. We will show how this representation allows for
the modeling of sensor uncertainty, human variability, envi-
ronmental constraints, and task structure to more accurately
deduce the timings of the human’s actions as more sensor
information is observed.

We organize the remainder of our paper as follows. After
discussing selected related work, we describe an example
task that will be used both to derive and explain the necessary
theory as well as to demonstrate in both simulation and with
actual human-robot execution. In Section IV we develop a
representation of activity that decomposes a task into a set
of sub tasks and permits reasoning about when a particular
sub-task is likely to be executed; this inference allows the
robot to appropriately anticipate when it should perform the
necessary collaborative action. Section V describes how an
action plan is formulated given the probabilistic assessment
of when human sub-tasks will occur. Simulations are then
provided that show how the system naturally handles vari-
ous uncertainties in a unified fashion, for example altering
the timing of planned actions based upon the certainty of
perceptual measurements. Finally, we demonstrate a robot
appropriately assisting a human by fetching correct parts at
the right time and removing used part-carriers when certain
they are no longer needed.

II. RELATED WORK

In robotics there has been significant recent study on the
role of prediction on the fluency of human-robot interac-



tions, along with the development of learning and planning
algorithms that perform action selection in a collaborative
context; such work usually presumes sensing is straight-
forward and that the challenge is making the right action
decision. A straightforward demonstration of the importance
of prediction on the fluency on HR collaboration is seen
in [6]. In that work a joint assembly task is specified by a
provided finite state machine representation (as in [2]) and
the robot learns to predict the next action of the human more
quickly by noticing repeated patterns of low level actions
such as grasping a part. By assuming that repeated low
level action imply repeated high level sub-task performance,
the robot learns to anticipate the human action and can
more quickly respond with the necessary assistive action. A
more sophisticated state/action model is found in [7] which
uses an adaptive Markov model to assign confidence about
predictions of the human partner’s actions. The uncertain
predictions are used in a cost-based framework to select the
best action. In both that work and subsequent efforts [8] the
benefits of employing anticipatory actions in a human-robot
task are well observed in human trials. In all these systems
the actions of the human are presumed to be clearly and
reliably observed.

Wilcox et. al. use strict temporal constraints to develop
robotic schedules for human-robot collaborative assembly
with the addition of preferences which optimize the plan
over the constraints [1]. While they accommodate human
variability by using different preferences for different be-
havior models, they do not address the issue of perceptual
ambiguity. We note that the work presented here also frames
action selection as minimum cost planning in the face of
probabilistic beliefs about when the human will perform
various sub-tasks.

Also from the robotics domain there has been a variety
of work on how to anticipate the actions of humans. These
efforts lie on a spectrum reflecting how much a priori
knowledge the system has about the task or domain. A
simple yet elegant approach is demonstrated by Huber et.al.
[9] where the robot has complete knowledge of the sub-
tasks performed by the human and it uses the sub-task
complexities to predict execution durations. Using a very
precise, top-down description of human behavior during
an assembly task, Fish et. al. are able to collect detailed
statistics about the human on a per-step basis, and use a
cognitive model to predict both duration variability over time
and error statistics [10]. Tenorth et. al. also observe human
performing actions to learn a probabilistic description of the
distributions of partially ordered human activities [11]. At the
far end of the spectrum is the work of Koppula and Saxena
[12] where the actions performed by a human in a given
domain is learned from observation training data. At run
time, the robot instantiates a set of probabilistically weighted
“anticipatory temporal conditional random fields” to predict
which actions the human may take and when. They only
report the accuracies of the predictions and do not develop
an action selection process based upon them. The work
presented here also explicitly model possible future sub-tasks

sequencings and maintain a probability for each based upon
prior info and current observations. But our possible futures
are defined by an a priori task description.

The other domain from which prior work is drawn is
computer vision, specifically activity recognition, where
there is a vast number of approaches to modeling activities
composed of sequences of actions. Perhaps the most relevant
work is that of Shi et.al. [13] where a Dynamic Bayes
Network variant was proposed to recognize partially ordered
sequential action. The network encodes activity’s structural
and temporal information. Inference is done by particle
filtering, where the states of particles represent the state
distribution of the activity at a particular time. In contrast, the
work developed here uses a graphical model that explicitly
represents when each action occurs whether it be the past or
future. Related to this line of work concerning parsing long
activity with complex structure, Albanese et al. [14] uses
probabilistic Petri nets to detect events while [15] learns
an activity’s decomposable structure of “actionlets” with
a probabilistic suffix tree; given that data structure, early
prediction of sub-action can be done. In [16], Tang et al.
demonstrated how to use a variable-duration Hidden Markov
Model to learn an action’s latent temporal structure and
showed it helps to improve detection results in the presence
of noisy sensors. Kitani et.al. [17] leverage Hidden variable
Markov Decision Processes to learn to predict activity from
noisy sensor measurements. Finally Ryoo [18] explicitly
develops a dynamic bag of words approach to recognize
partially completed action and predict near future action.

III. EXAMPLE APPLICATION DESCRIPTION

We first present a human-robot collaborative application
we use to motivate our investigation. A human sits at a table
across from a robot collaborator who is safely out of reach
of the human, but who can move a set of bins both into and
out of the reach of the human (Fig. 1). Each bin contains a
variable number of Baufix toys, a wooden construction set
of screws, nuts, and bolts which can be used to make small
model vehicles and other designs (Fig. 2).

For the task, the human is instructed to begin building a
specific model from the pieces in the bins. They are asked
to restrict their bin reaches to one part from a bin at a time.
Since the human cannot withdraw from a bin not in reach,
this imposes a task constraint which the robot must satisfy for
the pair to complete the task. Based on observations of the
human gathered from sensors in the environment, combined
with a model of the task, the robot begins delivering bins
the human might need. There are only M slots (M = 3 for
our experiments) in the human’s workspace into which the
robot can place bins, so eventually the robot must decide to
remove unneeded bins and deliver more demanded ones.

Though the order in which the human needs the bins is
fixed, the robot is allowed to be more flexible. In order to
accommodate the possibility of mistakenly removing bins be-
fore the human was done with them, the robot might deliver
bins in any order or redeliver bins previously removed.



Fig. 2. Example assembly task constructions. The human sits at
table and assembles a variety of objects. (a) The parts required for
each sub-task are in separate bins which are to be delivered to the
human. (b) A few different models the human could make.

IV. TASK REPRESENTATION

Our system models the task as a known sequence of human
actions, incorporating duration knowledge, task constraints,
and detector observations simultaneously (Sec. IV-A). Given
a history of task constraints and detector observations up
to the current time and an estimate of these values in the
future, the system infers the distribution over when human
actions occurred or will occur (Sec. IV-C). Using human
action prediction, we can reason about the human’s demands
on task constraint satisfaction (Sec. IV-D).

A. Linear chains: representing sequential actions

Figure 3 shows a schematic Bayes network of a task
consisting of K actions, where gsk and gek are random
variables representing the starting time and ending time of
action k. In this formulation, time will be discrete and for
now we assume a maximum fixed total task execution time
T , therefore 1 ≤ gsk < gek ≤ T . In the conclusion we discuss
why this is not a limitation.

Our linear chain makes a strong Markovian assumption
that the start of each action is dependent only upon the end of
the preceding action.1 We specify the conditional dependency
at each node in the network:

P (gek|gsk) ∝ Dk(gek − gsk) (1)

where Dk ≥ 0 is the distribution representing the duration
of action k. In our experiment, Dk is a truncated normal

1This is assumption prevents us from modeling global effects such as
speed - one user might be uniformly faster than another [9]. In practice
such a global parameter can be easily accommodated in the inference.

distribution either learned from training data or explicitly
provided. Though we assume that each action starts imme-
diately after the preceding one ends:

P (gsk+1|gek) =

{
1 if gsk+1 = gek
0 otherwise

(2)

that is not essential as we could have a distribution statisti-
cally describing the gap between any given two actions.

We also incorporate gating task constraints which must
be true for the human to perform a particular action. This
permits the system to reason about the impact of robot
actions on human actions; that if a necessary condition for
a given human action is not satisfied by the robot at the
current time, the human cannot proceed. In our example task,
it allows the system to recognize that if a particular bin is not
in the workspace, the human cannot have started withdrawing
parts from that bin. For a given action k we define an
observable constraint Ck: if at time step ti, the human is
supposed to perform action k, but the bin is not available
Ck(ti) = 0, then the human has to wait until a later time
tj , j > i when the bin becomes available Ck(tj) = 1. The
conditional probability is modified to model that constraint.

The system only incorporates this information with respect
to the current time and assumes that all bins will become
available when needed after the current time: Ck(ti >
tnow) = 1. This is effectively making an optimistic assump-
tion on the performance of the robot, that it is able to deliver
every needed bin in the future with perfect timing. In the
planning section developed later the system considers the
delay that will actually occur when delivering bins.

The final piece in our network is action k’s measurement
Zk. It is the observation over the whole task — all T
time steps from both past and future— indicating, for every
interval during the task, the likelihood of the observed
evidence given the interval describing when action k occurs:

P (Zk
1:T |gsk, gek) (3)

The idea is that all observations about all actions impact
the belief as to when a given action occurs. Because the
system must consider that an action occurs in the future, it
theoretically must consider future observations. Of course,
for future observations — observations later than the current
time step — only a prior distribution can be assumed. In
the next section, we describe model for detecting primitive
actions, and the detection score there will be used as an
observation likelihood.

A prior on P (gs1) is required to perform inference. For
simplification purposes, we simply use a uniform distribution
over the first several seconds.

B. Action detection

In our task, we define each primitive action to be getting a
piece from a bin and assembling it. The start of an action will
be when the hand touches the piece inside the bin, and the
end will be when the hand reaches for the next piece (which
is the start of the next action). The detection of an action
k is performed based on the positions of the hands and of



Fig. 3. The Bayes network representing the task structure.

the particular bin b(k) that has the corresponding piece. Let
Ht(b(k)) be the 3D position of the closest hand to b(k) at
time step t and represented in b(k) local frame coordinates.
If action k starts at some time step ti, then Hti(b(k)) is
likely to have a distinctive value (learned from training data)
independent of the bin’s position. We model that position by
a Gaussian distribution. Our detectors are therefore driven by
detecting such “action start” events where the hand touches
the bins:

fh(gsk, g
e
k) = N(Hgs

k
(bin(k));µh,Σh)

That is, in this particular experiment, our detectors are a
function only of when the action starts gsk and not when it
ends gek.

The detector above is subscripted with an h - indicating
that the detector is functioning correct and correctly observed
the action. It is a “hit” in pattern recognition parlance. While
this Gaussian component can handle systematic variance in
the offset of the hand, it does not represent the possibility
sensors completely fail to detect anything meaningful during
the start of an action. This sensor unreliability can occur
from either a weak detector or from occlusion by the robot
or some other body in the workspace. We therefore make
use of a second component with uniform value:

fm(gsk, g
e
k) = wm

representing a miss. When we are considering the likelihood
of a future observation, we also use a uniform distribution,
assuming the action detection could happen any time up to
T :

ff (gsk, g
e
k) = wf

The overall likelihood will be computed as weighted com-
bination of those 3 components:

F (gsk, g
e
k) =

{
fh(gsk, g

e
k) + wm if gsk ≤ tnow

wf otherwise
(4)

The probability distribution is then computed by normal-
izing the observation likelihood:

P (Zk
1:T |gsk, gek) ∝ F (gsk, g

e
k) (5)

The weights wm, wf > 0 control both the belief about
how the reliability of the sensor and the ability of the sensor
to render negative evidence about the state of the human.
A relatively high wm value will indicate low confidence in
the sensor and vice versa. A relatively high value for wf −
wm will mean that low fh values should be considered as a
greater likelihood it will happen in the future, whereas when

the two are equal wf = wm, low fh values will not increase
the likelihood the event happened now.

C. Inference

Our network has a chain-like structure, which allows for
efficient inference. The factorization of the entire network is:

P (g, Z) =

K∏
k=1

P (gsk|gek−1)P (gek|gsk)P (Zk|gsk, gek) (6)

where Z = Z1, Z2...ZK and g = gs1, g
e
1, g

s
2, g

e
2..., g

s
K , g

e
K

Given the network with the full conditional probability
table computed, we use the message-passing/junction-tree
algorithm to perform exact inference (Algorithm 1). In the
forward phase, as messages are passed from the beginning to
the end of the chain, the probability of each action takes into
account observations of all previous actions. In the backward
phase, it is the other way around. The final step combines
all messages to output the posterior of each action taking
into account all observations (including observations of other
actions both before and after). The inference finally outputs
the posteriors: P (gsk|Z), P (gek|Z) .

Algorithm 1 Message passing on our network
Input: P (gs1), P (gsk+1|gek), P (gek|gsk), P (Zk|gsk, gek)∀k

Note that all these formulas are computed for every value
of gsk and gek, which are 1→ T
[Forward phase]
for k = 1→ K do
P (Zk, gek|gsk) = P (gek|gsk)P (Zk|gsk, gek)
P (gek−1|Z1:k−1) =

∑
gs
k−1

P (gsk−1, g
e
k−1|Z1:k−1)

P (gsk|Z1:k−1) =
∑

ge
k−1

P (gsk|gek−1)P (gek−1|Z1:k−1)

P (gsk, g
e
k|Z1:k) ∝ P (gsk|Z1:k−1)P (Zk, gek|gsk)

end for
[Backward phase]
for k = K → 1 do
P (Zk+1:K |gsk+1) =∑

ge
k+1

P (Zk+1, gek+1|gsk+1)P (Zk+2:K |gek+1)

P (Zk+1:K |gek) =
∑

gs
k+1

P (gsk+1|gek)P (Zk+1:K |gsk+1)

end for
[Compute posterior by combining the messages]
for k = 1→ K do
P (gsk, g

e
k|Z) ∝ P (gsk, g

e
k|Z1:k)P (Zk+1:K |gek)

P (gsk|Z) =
∑

ge
k
P (gsk, g

e
k|Z)

P (gek|Z) =
∑

gs
k
P (gsk, g

e
k|Z)

end for
Output: P (gsk|Z), P (gek|Z)∀k

D. Human Constraint Satisfaction Demand

Using this inference result which models the human’s ac-
tions, their probabilistic demand on the bins can be estimated.
Let bsj and bej be random variables which represent the time
at which the demand for bin j starts and ends, respectively.
We define bsj to be the time at which the last reach from
the previous bin ends. This represents the time at which the



human starts waiting on the current bin if it’s unavailable, or
the time they make the first reach for the bin if it is available.
We define bej to be the time at which the last reach from the
current bin starts, the time when all of the reaches from the
current bin have been completed.

V. PLANNING BY ANTICIPATING

When the robot is not busy performing an action, it plans
actions which anticipate the human’s demands. Since the
number of bins which can be in the human workspace is
limited, the robot must eventually remove bins in order to
deliver others. This is the primary constraint driving robot
action decision: a competition between removing a bin before
the human is finished with it, and delivering a bin later than
they needed it. If the bin is removed too early, it can be
redelivered, but generally at the cost of a long wait. On the
other hand, we would prefer the robot anticipate the human’s
needs and keep them from waiting on a bin needed in the
near future.

A. Planner Outline

To plan, the robot first heuristically determines which bins
will be most needed for delivery in the future. It ranks bins
based on their expected starting time E[bsj ], but penalizes
bins which are probably no longer needed (P [bej < tnow] ≈
1). Here, tnow refers to the time at which the inference was
performed. The top 3 bins are selected from those not in
the human workspace for delivery, or fewer if their expected
need was excessively low. Several delivery sequences were
generated which deliver those bins in any permutation. For
each sequence, the robot plans delivers and removes such
that it delivers bins until there are no more empty slots, then
alternates removing and delivering.

Each action plan is associated with an optimization prob-
lem whose solution space is a schedule S of deliver and
remove action times for each step in the plan. We denote S’s
values as adj and arj to represent the times at which a bin j is
delivered or removed, respectively. For both of these actions,
we define cost functions φd(adj , b

s
j , b

e
j) and φr(arj , b

s
j , b

e
j),

described below (Sec. V-B). We use a constrained nonlinear
optimization algorithm (Matlab’s fmincon) to minimize the
sum expected cost for executing each action in the plan at a
given time:

S∗ = arg min
S

∑
ab∈S

EP (bsj ,b
e
j |ab)[φ] (7)

The optimizer enforces the constraint on S that each sub-
sequent action cannot begin until the previous is completed.
The action schedule with the lowest sum expected cost is
selected for decision making. Based on the timing of the
first action in the plan, the robot decides to either perform
that action, or wait until the next planning iteration.

We should note that though the sequence of deliveries is
known before optimizing, the sequence of removes is not.
The optimization function handles this by selecting the bin
with lowest removal cost among the bins in the workspace
at the time a removal is demanded. We will also point out

that the robot continuously re-plans, keeping no history of its
previous plans. Thus, plans for actions occurring later than
the planning cycle are subject to change.

B. Cost functions

In this section we qualitatively describe our cost heuristics.
In general, we try to make the cost equal to squared waiting
time to accomplish the goal of reducing both total wait time
and longest wait time. Though we make no claim that these
functions are optimal, they have shown reasonable results in
practice. The cost functions in our planner are developed to
account for several mutually exclusive events occurring.

When a bin is not in the workspace and the robot is
deliberating whether to deliver it, we consider 4 different
cases:
• If the bin demand has not started (bsj > tnow), then

if it delivers late (adj > bsj), then the cost is the
squared waiting time from the time the human started
demanding the bin to the time it is expected to be
delivered.

• If it has not started and delivers early (adj ≤ bsj), a small
reward is granted to deliver bins sooner when the robot
is otherwise idle.

• If the bin demand has already started but not yet ended
(bsj ≤ tnow < bej), then, under the assumptions of our
system, the bin has been removed preemptively, so we
give it a cost equal to the squared wait from the time the
bin was last removed to when it would be redelivered.

• Finally, if the bin demand has ended (bej ≤ tnow), we
give zero cost.

When a bin is in the workspace and the robot is deliber-
ating whether to remove it, we consider 3 different cases:
• If the bin is removed before its demand has ended (arj <
bej), then if it removes the bin, we penalize it a constant
value, equal to the squared wait time required to remove
the bin and deliver it back.

• If the bin is removed after its demand has ended (arj ≥
bej), we give zero cost

• Finally, if the probability that demand has ended is
very low, we give an enormous penalty. This keeps the
optimizer from delivering bins superfluously.

VI. EXPERIMENTATION

A. Task Descriptions

We developed a simple, illustrative task to demonstrate
the types of behavior our system exhibits in a collaborative
assembly scenario. The human is attempts to assemble a
toy whose parts are separated into 4 bins. The human’s
workspace can only maintain 3 workspace slots, requiring
that the robot must eventually remove the first bin the human
works on. The first bin is already in the human’s workspace
when the task starts. We require that the human perform one
reach for each part in the bin and there are total of 17 parts
which need to be assembled, 6 in bin 1, 2 in bin 2, 1 in bin
3, and 8 in bin 4. Since the time between the last reach into
bin 1 and the first reach into the bin 4 is short with respect
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Fig. 4. Examples of the simulation trials detailed in figure 5. Each box contains three plots representing the planning circumstances at
the current time tnow (the green vertical line), given different simulation detectors and different sensor models. Within each box: Top:
detection likelihood (Eq. 4) over time; Middle: The start and ending distributions for each bin’s demands (bsj and bej ); Bottom: The
execution history and projected plan of the planner. The thinner magenta bars represent the times each bin was in the human workspace
over time. The blue boxes left of tnow represent delivers the robot performed in the past, while red boxes represent removals. The boxes
to the right represent the robot’s best plan of action at the moment.

to the robot’s replacement time, the robot must replace bin
1 very soon after its last reach in order to keep the human
from waiting on bin 4.

B. Simulation

We developed a simulator which allowed us to evaluate
our planner in a controlled environment. The human agent
was programmed to reach towards bins based on random
times drawn from our duration model. If a necessary bin
was not available in the workspace, the agent would remain
stationary and wait.

In order to demonstrate the behavior of our system in
the face of detector unreliability, we purposefully altered the
behavior of the agent to simulate these effects. To simulate
detector failure, for two bin reaches, the detector generated
no response.

By altering the parameters of the sensor model, wm, wf ,
the system can seamlessly interpolate between relying on its
duration model and relying on its detections. We developed
2 sensor models, one which has high confidence in its
detector’s reliability, and one which has low confidence.
We ran N = 6 trials each for each of the 2 simulator
conditions against the each of the 2 sensor models. To
measure performance, we found the total wait time and the

total execution time for each run. The execution time is the
time between the first action in the task, and the last action.

Figure 4 illustrates a few exemplars of each trial set. The
differences between the four conditions can be seen in the
Detection Likelihood plots. For both of the reliable detectors,
we see 6 peaks for the Bin 1 detector, while we only see 4
peaks in the unreliable detector cases. For the low confidence
detectors, we can see that the miss likelihood is much higher
than the high confidence ones, representing far more of the
density.

These action schedules demonstrate that when your noise
model matches reality, your performance is improved. When
the high confidence model is applied to a reliable detector,
the system is very accurate in its estimation of when the
final reach for Bin 1 occurred. This can be seen in the
Bin Distributions plots where the distributions have far less
entropy than in its low confidence counterpart. Since the
demand for Bin 4 is rapidly rising, it wastes no time and is
already in the process of removing Bin 1. The low confidence
model, on the other hand, excessively distrusts the detector,
causing the system to wait about 6s more before swapping.

When the low confidence model is used on the unreliable
sensor, the system correctly relies on its duration priors,
whose influence can be seen in the wide Gaussian distri-



Simulation Results (s)
Reliable Det. Unreliable Det.

Sensor Model Wait Exec. Wait Exec.
High Conf. 1.5 102.2 23.6 125.3
Low Conf. 7.8 108.9 10.2 111.8

Fig. 5. Results from a set of N = 6 simulated trials for each
condition, presenting the average wait times and execution times
in seconds for each sensor model and simulation condition. Two
sensor models, each with low or high confidence in their sensor
reliability, are executed against two different simulator conditions:
a reliable detector and an unreliable detector.

butions. However, when the system overestimates the sensor
reliability, it ends up waiting for missed detections which
will never arrive.

The results from a series of 6 trials for each case are found
in figure 5. These statistics again lend support to the fact
that while having a better detector can improve performance,
matching the system with an appropriate sensor model can
improve the performance even more significantly.

C. Human-Robot Experiments

We also ran experiments with a real human-robot collabo-
rative team. The robot was a 6-DOF Universal Robots UR-10
mounted to a steel table with a Robotiq C-model parallel jaw
gripper. Above the robot, a webcam was mounted to track the
positions and orientations of the bins, affixed with Alternate
Reality (AR) tags. Above and in front of the human, an Asus
Xtion RGB-D sensor was mounted to sense the behavior of
the human. The entire system was calibrated such that the
locations of the bins are known with respect to both the robot
and the human sensing.

The task the human performed is exactly the same linear
task we tested in simulation. To track the human collabora-
tor’s hands, we used brightly colored surgical gloves and
implemented a color blob tracker on the RGB-D sensor.
Despite this seemingly reliable detector, frequent occlusion
by the robot causes the system to miss several bin reaches,
making this a fairly unreliable sensor (Fig. 6).

We ran 5 trials each on the parameters tuned for low
and high reliability sensors. The results for each of the
trials, sorted by total wait time, can be found in figure 7.
These results seem to reaffirm the results obtained in figure
5, that overconfidence in the detector can cause significant
performance loss. It seems that twice in the high confidence
case, occlusions were infrequent and the detector performed
as expected. However, in three others, the detector failed,
costing the system performance dearly. Airing on the safe
side will keep the system from suffering catastrophic fail-
ures at the cost of being consistently slower than the high
confidence’s best cases.

VII. DISCUSSION AND CONCLUSION

In both simulation and on the real robot, wait time is
at its lowest value when the system’s confidence in its
detector is matched with reality. When the simulation paired
a reliable detector with a high confidence sensor model, the

Fig. 6. In the trial experimentation, the robot often occludes the
human collaborator’s hands. Despite this, we were able to find
parameters which kept the wait times consistently low.

Human-Robot Results (s)
Sensor Model Sorted Waiting Times
High Conf. 0.0 0.5 24.5 32 35∗

Low Conf. 3.5 3.6 4.3 4.5 6.6
Fig. 7. Total wait times from a set of N = 5 human-robot trials for
a high confidence and low confidence sensor model applied to an
unreliable detector. Entries marked with an asterisk demonstrated
a preemptive bin removal. Though a high confidence detector can
occasionally produce little to no wait time, it can also suffer from
severe failures. A low confidence detector, however, can produce
consistently decent results.

system was able to exploit this knowledge to reduce the
waiting times significantly and become more responsive to
the collaborator’s actions. The application of the reliable de-
tector to the low confidence model shows the costs of being
overly conservative. Likewise, the overconfident detectors
were shown in both simulation and in real experimentation
that they either become too risky, and mistakenly remove a
bin too early, or become delayed, since they are counting on
those missed detections to arrive.

For sensing humans using visual sensors, noisy and un-
reliable detectors are, for many applications, unavoidable.
Furthermore, human variability will make incorporating sen-
sors necessary for fluent human-robot collaboration. Thus,
being able to gracefully tune the confidence of the robot in
it’s perception of the state of the world will allow robots
to more effectively exploit their sensing and task knowledge
and better anticipate the needs of human collaborators.

In this paper we have presented a human-robot collabo-
ration system which leverages both a duration model and
a sensor model to account for human variability and noisy
or unreliable sensors. By modelling the task probabilisti-
cally, we can produce distributions which allow us to make
the right decision over many possible futures. Our planner
leverages these distributions to weigh the cost of making the
costly error of removing a bin early versus the eventual cost
of a growing late time. We have evaluated the system on toy



cases in both simulation and in a real-world experiment.
We mention that having a fixed execution time T is not

a limitation. If T is chosen large enough to cover the entire
task the system observes all the actions and reasons about
them appropriately. However, the challenge arises that the
computational complexity of Algorithm 1 is O(T 2). We
are currently developing a variable time resolution method
that uses higher temporal precision around the current time
and uses coarser intervals further in the past and future.
This makes large T computations to remain real-time on
conventional hardware.

In future work, we will present a simple extension of this
work which reasons over multiple potential paths the human
can take. By accommodating human non-deterministic be-
havior, this system can be applied to a much broader class
of task descriptions. In addition, we should perform a more
rigorous evaluation of the system. For example, we should
show that our model works under a large range of tasks by
generating random task models performed by the human, and
available to the robot.
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