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Abstract

Heterogeneity, decoupling, and dynamics in distributed, component-based applications indicate the
need for dynamic program customization and adaptation. Method Partitioning is a dynamic unit place-
ment based technique for customizing performance-critical message-based interactions between program
components, at runtime and without the need for design-time application knowledge. The technique
partitions message handling functions, and offers high customizability and low-cost adaptation of such
partitioning. It consists of (a) static analysis of message handling methods to produce candidate parti-
tioning plans for the methods, (b) cost models for evaluating the cost/benefits of different partitioning
plans, (c) a Remote Continuation mechanism that “connects” the distributed parts of a partitioned
method at runtime, and (d) Runtime Profiling and Reconfiguration Units that monitor actual costs of
candidate partitioning plans and that dynamically select “best” plans from candidates. A prototypical
implementation of Method Partitioning in the JECho distributed event system is applied to two dis-
tributed applications: (1) a communication-bound application running on a wireless-connected mobile
platform, and (2) a compute-intensive code mapped to power- and therefore, computationally limited
embedded processors. Experiments with Method Partitioning demonstrate significant performance im-
provements for both types of applications, derived from the fine-grain, low overhead adaptation actions

applied whenever necessitated by changes in program behavior or environment characteristics.
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1 Introduction

Heterogeneity, decoupling and dynamics are common characteristics of many distributed applications. This
is particularly the case for applications that are structured with dynamic participants using communication
paradigms like distributed messaging or publish/subscribe[1, 2, 3, 4]. Such applications exhibit heterogeneity
in application components’ behaviors and in their communication and computation resources. Components
of such applications can be decoupled in space (distributed), time (asynchronous) and design (components
from different sources). Such applications are also highly dynamic, as participants can come and go and in

that their components run in open environments subject to frequent changes in resource availability.

Heterogeneous, dynamic resources and the decoupled design of components indicate that it is impractical to
optimize such applications at design time. Further, application dynamics suggest that optimizations must
be delayed beyond deployment time, as well. Runtime component customization and adaptation, therefore,

are necessary ingredients of their execution frameworks.

Our work focuses on certain performance-critical elements of distributed, pervasive applications, namely,
on their component interaction. Sample components and applications addressed include (1) those that
implement sensor data transfers across wireless links, implying relatively lightweight processing actions like
data reduction[4, 5], and (2) compute-intensive pervasive applications, where data must be processed for
presentation to select clients, as in radar data processing or target identification[6]. For such applications,
past work has used dynamic unit placement as one key technique for runtime adaptation[18], where a
unit might be a function[36, 39, 7], a query[33, 3], an object[35, 4], or an agent[12, 9, 13, 10, 14, 16,
15, 11]. While work on adaptive systems and adaptation frameworks has addressed the algorithms and
mechanisms suitable for a range of applications [17, 18, 19, 20], for the distributed, component-based
systems driving new applications like cellphone-based video conferencing, ubiquitous presence, and remote
sensing, several additional issues must be addressed. Focusing on the dynamic placement of units as one

important customization method, the goal of our work is to achieve:

o Application Independence and Late Binding. While embedding adaptation into application can take
advantage of application specific adaptation, it can potentially complicate application development[17].
More importantly, it usually makes assumption on runtime resource constraints, and is consequently
less desirable for applications composed of independently developed components running in dynamic
pervasive computing environments. For dynamic unit placement based systems, it may not be ideal to

isolate, at design time, units suitable for dynamic replacement, as it is hard to anticipate all possible
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resource constraints without spending considerable extra effort. One of our goals thus is to delay the
identification of code modules that may be moved and the association of code that performs such
adaptations with the applications being adapted from design time until the time an application is

deployed.

e Fine-grain Customization. Units in unit-based dynamic placement are usually undivisible. In com-
parison to agent-based systems, for instance, where an agent migrates or stays as a whole, we aim to

dynamically identify the code portions to be placed or re-placed, using a compiler-based approach.

e Low Adaptation Cost. In mobile agent systems, migration implies the need to save, transport, and
restore an agent’s static and dynamic states, which could be costly. In our approach, static code

analysis is coupled with dynamically used “plans” (see below) to reduce such costs.

Our approach is based on the concept of Method Partitioning, targeting methods that handle messages used
for component interactions. Partitioning implies splitting the processing of a message into two parts, one
executed inside the sender of the message, the other in the message recipient. A method can have multiple
candidate partitioning plans that jointly define the space of available choices for dynamic customization
and adaptation. Switching plans is as efficient as changing flag values. Candidate partitioning plans are
generated by static program analysis, and the only programmer input required is the specification of a
customization criterion (e.g., minimizing network traffic). Such criteria are represented as cost models,
used in static analysis to produce candidate partitioning plans and used during runtime reconfiguration to
evaluate which partitioning plans to use. Finally, dynamic inputs to runtime reconfiguration are provided

by a Runtime Profiling Unit.

The implementation of Method Partitioning described in this paper is hosted in the JECho distributed event
system[4, 5]. Since method partitioning is applied to the “handlers” operating on the events/messages being
sent and received, this technique can be applied to any message-based implementation of a component-based
system, ranging from research systems like Cactus[25]to commercially available systems like JMS-based

business applications.

Method Partitioning is evaluated for both communication-bound and compute-bound applications. Our first
application emulates media playback in wireless environments. A stationary server sends image frames to a
handheld/laptop client through a wireless network. This application is communication-bound because of a
mismatch in the amount of data provided by the server and the speed of the network used for its transfer.

Realistic applications emulated by this scenario include the real-time display of video on handhelds[30].
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The message handlers to which Method Partitioning is applied dynamically resize and/or downsample the
data being sent, to customize image handling to different client needs and to dynamic changes in network

capacity.

Our second application emulates mobile sensors that have the ability to process captured data prior to
sending it to clients[21, 22]. This application is CPU resource-bound because of the potential complexity of
such processing[6, 29]. Processing loads change dynamically either because of changes in the complexities
of signals (e.g., the amounts of “interesting” vs. “uninteresting” data currently captured) or because of
competition from other applications. Method partitioning is used to evenly distribute processing load
across the sensor and client(s) depending on their respective current computational capabilities. The goal

is to minimize the average data processing time.

Experiments demonstrate significant performance improvements derived from using Method Partition-
ing. Results show that compared to statically optimized program configurations, Method Partitioning
(1) matches the performance of such manually optimized implementations, and (2) outperforms other non-
optimized manual implementations by as much as 223%. More importantly, when resources or application
behavior change dynamically, experiments demonstrate that Method Partitioning provides performance

improvements by 22% to 305% compared to implementations that cannot adapt to such changes.

The remainder of this paper is organized as follows. Section 2 presents the framework of Method Partition-
ing. For better readability, details of the static analysis part of the framework appear separately in Section
3. Section 4 uses two sample cost models, one defining cost as data size, the other focusing on program
execution time. These models are then used with the two applications described in Section 5, to evaluate

Method Partitioning. The paper concludes with related work and directions for future research.

2 Method Partitioning

2.1 Model and Approach

Method Partitioning is based on splitting the handling of a message into two parts, with the first part
executed inside the sender of the message (we name this part modulator), and the other part (named
demodulator) running inside the receiver. When a message is sent to a receiver, the message is first touched
by the sender using the receiver’s modulator, and any data emitted by the modulator is sent and then

touched by the demodulator in the receiver. A reieiver can apply handlers to messages received from
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Figure 1: Illustration of Method Partitioning with one message sender and two message receivers. The

shaded areas denote actual current partitioning plans.

multiple remote components, and a single method handler can be used to handle messages from multiple
senders. Finally, since a sender can send messages to multiple receivers, multiple modulators (some of which

may be derived from the same handling methods) may reside in a single sender.

Partitioning uses the Unit Graphs (UGs) of message handlers. A UG is similar to a Control Flow Graph
except that each node is an instruction instead of a basic block. In the UG of a modulator, “along” the
processing path of a message within a modulator, there are 0 to n Potential Split Edges (PSEs). A PSE is
where the modulator side processing of message could end, and further processing of the message continue
in the demodulator. For each PSE, there is a dedicated flag controlling whether actual splitting of the
processing will happen there. When the flag is set, a special ID for the PSE is sent to the demodulator
along with any relevant data. The demodulator uses this special ID to determine the location at which to
continue the processing of the message. At any given time, the set of PSEs with their flags set comprise

the actual partition of the handling method (see Figure 1).

An actual partitioning at a certain instance of time defines the current customization of the interaction
between the message sender and receiver. Changes of the actual partitioning over time reflects adaptation
to application and environment dynamics. Costs of partitioning plans are evaluated at runtime with regard
to cost model, which is specified at component deployment time. The goal of Method Partitioning is for
any actual partitioning having the lowest cost with respect to cost model and current environment. It has

four constituents:



e Static Analysisidentifies from all theoretically possible partitioning plans those plans that can possibly
lead to actual runtime partitionings. It achieves this by statically identifying PSEs. Specifically, it
uses the cost model associated with Method Partitioning to estimate the cost value of each edge in
the UG of the message handling method, and it marks each edge as a PSE that can potentially have
the least cost among all of the edges along any one of the valid execution paths. Static analysis
also generates the modulator/demodulator pair from the handling method, which involves inserting

profiling and other code along each PSE.

e Cost Models capture the costs of component interactions implied by method partitioning. Different
sender /receiver pairs may choose different cost models. For example, a sender/receiver pair in a
weakly connected environment might define the amount of data passed between them as cost, while
a sender/receiver pair in a CPU-constrained environment may use processing time as cost. Stated
more precisely, cost models capture the costs of edges in the UG. Different message handlers may use
different cost models. An example is a model that uses the total size of variables passed along an edge
as the cost of that edge. Since the costs of some edges cannot be determined at compile time, runtime

profiling is required.

o Remote Continuation is a mechanism[24] for continuing the processing of a message in a demodulator
after it has been partially performed in a modulator. This involves identifying the data the modulator
must hand over to the demodulator, and it involves defining how appropriate state should be restored

from this data.

e Runtime Profiling and Reconfiguration Units are subsystems that uses profiling code embedded in
the modulator/demodulator pair to measure the runtime costs of those PSEs whose costs cannot be
determined statically. Significant changes in such costs trigger a max-flow algorithm to re-select a

(near) optimal partition by setting the flags of the set of PSEs of that partition.

We next discuss in more detail cost models, PSEs, and their use for dynamic partitioning.

2.2 Cost Models

Cost Models are used to determine the costs of edges, and edge costs determine the costs of partitioning
plans. Such costs cannot be determined at compile time for two reasons: (1) the cost of an edge may not

be statically determinable since it depends on actual runtime use, and (2) the probability of going through
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Figure 2: Illustration of Remote Continuation.

a PSE in the partitioning plan may not be known. The challenges in designing a cost model is to help
static analysis reduce the number of PSEs, and to help the Runtime Profiling and Reconfiguration Units

efficiently calculate the runtime costs of PSEs.

Section 4 uses two sample cost models to further explain the role of cost models in Method Partitioning.

2.3 Static Analysis

Static analysis identifies PSEs and generates instrumented modulator/demodulator pairs. One challenge in
static analysis is to minimize the overhead caused by method partitions. This has two implications, one
being to minimize the number of PSEs, especially those with costs that cannot be determined statically, the
other being to minimize the interactions between the modulator and the demodulator that are caused by
method partitioning. Concerning the first point, our algorithm optimizes comparative costs. For the second
point, we ensure that the algorithm generates only convex partitions, thereby preventing data from flowing
back to the modulator from the demodulator. The details of the algorithm for identifying PSEs appear in

Section 3.

Another element of generating a modulator /demodulator pair is to insert instrumentation code along each
PSE. This code has two parts: the profiling code and the continuation code. The profiling code is cost model
specific. For example, in the cost model capturing data size, profiling code uses a size calculation tool to
derive the actual amount of data passed along a PSE. In the execution time cost model, profiling code
measures execution time. Profiling code can also be used to collect statistical data about actual execution

paths for path-sensitive optimization.



2.4 Remote Continuation

A Remote Continuation supports the seamless continuation of a “modulated” message’s processing in a
demodulator. This includes the modulator side informing the demodulator where its processing stopped and
identifying and transferring all variables required by the demodulator. Variable hand-over is based on live
variable analysis. It is carried out by the continuation code, including marshalling and unmarshalling these
variables. More specifically, static analysis inserts continuation code along a PSE on both the modulator
side and the demodulator side. At the modulator side, when the split flag of this PSE is set, the continuation
code packs live variables of the PSE (which, without any path-specific optimization, is the intersection of
the OUT set of the out node of the edge with the IN set of the in node) along with the unique ID for the PSE
into a continuation message. It then hands this message to the runtime system for delivery. At the receiver
side, this continuation message is delivered to the appropriate demodulator. Upon receiving a continuation
message, the demodulator side of the continuation code restores the values of live variables, jumps to the

appropriate PSE, and continues processing. Figure 2 illustrates the process of Remote Continuation.

2.5 Runtime Profiling and Reconfiguration Units

The profiling code inserted by static analysis is invoked by the Runtime Profiling Unit. The invocation
of such profiling code is conditional. For each PSE, there is another dedicated flag to control whether to
execute the profiling code. The purpose is to avoid excessive overhead caused by runtime profiling. For some
PSEs, continuous profiling is unnecessary because their runtime costs and/or their execution probabilities
do not vary much. If profiling is expensive, such costs can be reduced by periodic sampling, at the expense

of having less timely statistics.

In summary, the Runtime Reconfiguration Unit collects feedback containing profiling information from both
the modulator and demodulator sides. It invokes a max-flow algorithm to re-select the optimal partitioning
from the graph of PSEs when profiling data changes significantly. Finally, it sends a new partitioning plan

to the modulator side.

The location of the reconfiguration unit is variable. It may reside with the modulator, the demodulator,
or in a third party, the latter being appropriate when repartitioning requires large amounts of computation
(e.g., where there are a large number of PSEs). Concerning program monitoring[23], the exchange of such
information between the modulator and demodulator sides of an interacting component is activated by

application-defined triggers. For example, an application can choose to send feedback only when a certain



amount of time has elapsed (rate-triggered), or when the profiling data for one of the PSEs has changed
significantly (diff-triggered). The intent is for Method Partitioning to follow the “best practices” determined

by our past work on the efficient adaptation of distributed programs[19, 18].

2.6 Discussion

Several key elements of the Method Partitioning approach to optimizing distributed programs are:

o Minimal design/deployment-time knowledge. Since modulator/demodulator pairs are automatically
generated by the compiler, the only application-level knowledge required for Method Partitioning is
the cost model. The model is used to select appropriate modulator/demodulator pairs at deployment

time.

o Light-weight adaptation. The adaptations involved in Method Partitioning have small overheads. Once
the modulator has been sent to the message sender, there is no need for additional code migration,
and adaptations simply involve changes to a few flag values. In comparison, in Mobile Agent systems,

adaptation activation always involves transporting the code and state of a mobile agent!.

e High Customizability. Method Partitioning provides almost “continuous” customizability, in terms of

its ability to vary the amount of processing in message senders vs. receivers.

The next two sections first provide a detailed description of the static analysis algorithm, then discuss two

specific cost models, one for minimizing network traffic, the other for minimizing application execution time.

3 Algorithm for Static Analysis

Static analysis identifies PSEs and generates instrumented modulator/demodulator pairs. The algorithm
for marking PSEs uses both the UG and the Data Dependency Graph (DDG). It is based on a specified
cost model, which implies that the generated modulator /demodulator pair is valid only for that cost model.
One challenge is to minimize the overhead caused by method partitions. This involves (1) minimizing the
number of PSEs, especially those with costs that cannot be determined statically, and (2) minimizing the

remote interactions between the modulator and the demodulator. The algorithm address (1) by optimizing

1The remote continuations performed as part of Method Partitioning should not be counted as adaptation activation costs.

Their counterpart in mobile agent systems is that data sent frgm a mobile agent to its docking station after migration.



Algorithm ConvexCut
Begin
1. MarkStopNodes (ug);

foreach Edge(out, in) in the ddg do
foreach path p in ug that starts from in and ends at out do

Mark each edge in p with infinite cost
endfor

2

3

4

5

6. endfor
7. PSESet =null
8

9

foreach TargetPath p do
PSESet = PSESet + MinCostEdgeSet (p)

10. endfor

Figure 3: Algorithm for generating potential convex cuts.

comparative costs. Concerning (2), the algorithm’s current implementation guarantees that all generated
partitions are convexr. By convex we mean that data always flow from the modulator to the demodualtor,

never the other way around.

Analysis is based on the UG and the DDG. Each node in UG is a Jimple instruction instead of a basic
block[27], and has a corresponding node in the DDG, and vice versa. Each node is also associated with an

IN and an OUT set of live variables.

The following terms and definition are used in the algorithm description: StartNode is the starting node
for the algorithm. It excludes instructions “before” it that are used for renaming parameters and global
variables. StopNode is a node that has to reside at the receiver side. A node is a StopNode if the node is
a return instruction, uses variable(s) that are mutable outside the event handler, or if it references native
variables or invokes native methods. A TargetPath is a path in a UG that starts from StartNode, and ends
at either the ExitNode or a StopNode, where none of the intermediate nodes are StopNodes. Edge(out, in)
is a directed edge that goes from node out to node in. INTER(e) is the intersection of the outset of the out

node, and the inset of the in node of edge e. PSESet is the result set of potential split edges.

The algorithm proceeds as follows. It first finds all StopNodes. It then marks with infinite costs those edges
that could possibly cause reverse flows of data. The infinite values essentially prevent cuts occuring at these
edges. The algorithm then looks for the PSESet from all possible TargetPaths. Not shown in the algorithm
are instrumentation of the edges in these PSESets and the generation of modulator and demodulator classes.
MinCostEdgeSet(p) in the algorithm returns the set of edges with minimal cost among all of the edges
of path p. An edge has minimal cost among a set of edges if no other edge in the set has a determinably

smaller cost.
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public void push(java.lang.Object) {
Example r0;
java.lang.Object rl;
ImageData r2, $r3, r4;
boolean $z0;

10 := @this: Test;

rl := @parameterO: java.lang.Object;
$z0 =rl instanceof ImageData;

if $z0 ==0 goto labelO;

Eali N e

r2 = (ImageData) rl;

$r3 = new ImageData;

specialinvoke $r3.<ImageData: void <init>(ImageData, int, int)>(r2, 100, 100);
r4 = $r3;

staticinvoke <ehag.test2.Test: void displaylmage(ehag.test2.RawData)>(r4);

VRN

labelO:
10: return;

Figure 4: Jimple representation of the push method.

A simple example further explains the convex-cut algorithm. In this example, the consumer receives raw
image data from the sender. The raw image data is handed to the push() method, which checks whether
the event has the right format, then transforms the image to the size of 100x100, and finally calls a native
method to display the image. The Java source file of the example can be found in Appendix A. Figure 4

has the Jimple format representation of the push method, which serves as the message handling method.

Assume our purpose is to minimize the amount of data sent across the network. It is obviously desirable to
move the predicate at line 4 and all of the instructions preceding it to the sender’s side, so that events that
are not of type ImageData will be filtered out. Further, assume that images sent from the sender are of
different sizes, some larger than 100x100, while others are smaller (assuming color depth remains constant).
To minimize traffic, the program must perform transformations at the sender’s side for large images, and
at the receiver’s side for smaller images. Next we demonstrate how the algorithm finds potential cuts in the

push() method.

Figure 5 shows the combined control flow and data dependency graphs of the method, with the solid line
denoting control flow and the dotted line denoting data dependency. Figure 6 adds additional information
from the previous figure, by adding the INTER set for each edge in the control flow. The black node in the
latter graph is the StartNode, while the grey nodes are StopNodes. Node 9 is a StopNode as it invokes a

native method. Node 10 is a StopNode as well, because it is a return statement.

There are two TargetPaths in the graph: tp1={2,3,4,10}, and tp2={2,3,4,5,6,7,8,9}. For tp1, obviously

MinCostEdgeSet(tp1) should return {Edge(4,10)}. tp2 is more complicated: Edge(3,4) and Edge(6,7) can
11
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be trivially excluded as they have higher costs than at least one of their neighbors. Edge(2,3) and Edge(4,5)
have identical INTER sets, so we arbitrarily remove one of them, say Edge(4,5). A point-to analysis will
tell that Edge(2,3) and Edge(5,6) have identical costs. So again we can remove one of them, say Fdge(5,6).
Edge(7,8) and Edge(8,9) have a similar case. Here we assume that Edge(7,8) is removed, and eventually,
we get the result PSESet, which is {Edge(4,10), Edge(2,3), Edge(8,9)}.

4 Sample Cost Models

As stated earlier, different cost models result in different modulator/demodulator pairs. In this section, we
examine two sample cost models representing different customization/adaptation purposes. The first case
concerns using Method Partitioning to reduce network communication between the sender and receiver of
messages, while the second one aims at reducing the average amount of time spent on the computationally

intensive processing of messages.

4.1 Cost Model for Minimizing Network Communication

This cost model defines costs as proportional to the amount of data sent from the modulator to the demod-

ulator.
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Recall that, at a given PSE, the Continuation Message sent from modulator to demodulator consists of
live variables that are in the intersection of the out-set of the “out-node” and the in-set of the “in-node”
of the PSE. The cost of a PSE, hence, is the total runtime size of the unique objects “reachable” from
any of the variables in that intersection set, plus the total number of duplicated references to those unique
objects. Unfortunately, the total runtime size of a set of variables is not always determinable at the time of
static analysis, because programs can use interfaces, superclasses and arrays whose sizes are only known at
runtime. However, we can still figure out lower cost bounds for a non-determinable edge, and if this lower
bound is higher than the cost of a cost-determinable edge in a path, then we can exclude the edge with
non-determinable cost from the PSE set of the path. Further, for two edges with non-determinable costs,
each consisting of a determinitic partial cost and a non-deterministic partial cost, if their non-deterministic
partial costs consist of identical sets of variables (Techniques such as points-to analysis can be used to
identify variables with different names but identical costs) then we can eliminate one of them by comparing
their deterministic partial costs. Techniques such as points-to analysis can be used to identify variables

with identical costs.

Runtime profiling uses a customized object serialization algorithm to calculate the sizes of non-determinable
variables. This customized serialization is fast for variables referencing primitive arrays, because it only
performs size calculation but does not perform actual serialization of the arrays. For complex objects,
to avoid costly reflection-based object serialization, procedures used for self-describing methods can be
generated by the compiler to quickly calculate object sizes. A sample object with an attached size self-
describing method appears in Appendix B. Table 1 shows the effectiveness of such size self-describing
methods, especially for complex objects. The first column of the table lists four different classes used in the
experiment, where Int100(w/ wrapper) is a wrapper class for an array of 100 ints, Int100(w/o wrapper) is a
primitive array of 100 ints, AppBase is a classes several fields of primitive types, while AppComp is a more
complex object. The 4th row of the table shows that, for AppComp, original size caculation cost(159us)
is close to that of serialization(189us). But with compiler-generated, self-defined size calculation methods,

this cost is dramatically reduced(1.16mus).

4.2 Cost Model for Reducing Program Execution Time

To simplify the problem, we assume that the network resources available to a message sender and receiver
pair are guaranteed and do not change over time, while the computational resources available to them do

change, possibly as the result of competition from other applications. We model the time to send an message



Table 1: Object serialization and size calculation costs.

Class of Objects Serialized size | Serialization cost | Size calculation cost Size calculation with
(in byte) (in ps) (in ps) self-desc methods(in us)
Int100(w/ wrapper) 406 64 25 0.92
Int100(w/o wrapper) 402 57 2.1 n/a
AppBase 52 44 38 0.90
AppComp 216 189 159 1.16
m as:
Ts(m) = a+ BS(m) 1)

where S(m) is the size for message m, in number of units, a is a constant for per message set-up time,
and g is the amount of time for each unit in the message. We also assume that the communication of a
message can be overlapped with computation on the sender and the receiver, and that the application is
not communication bound:

a+nB < nxmaz(T,(1), To(1)) 2)

where n is the total number of units of data to be sent from sender to the receiver in the application, T),(1)

is the sender side processing time for each unit, and T.(1) is that for the receiver side.

Further assume that the handling of a message is computationally much more expensive than its generation,
so that it is desirable to shift part of the handling code from the receiver to the sender to speed up program

execution. Using the results described in [40], the total program execution time is:
T = n* max(Tmod(1), Tiemod(1)) + a + o8 + omin(Timoda(1), Taemod(1)) (3)

where o is the message size in units sent from the sender to the producer, with

o > a/(maz(Tmoeda(1), Taemod(1)) — B) (4)

When computation cost is much higher than communication cost, and when n is much larger than 1,
the dominant factor in equation (3) is n * max(Tmod(1), Tiemod(1)). To simplify the implementation, we
approximate the cost of each edge as n * maz(Tmoda(1), Taemoda(1)). The adaptation target under such a
scenario, therefore, is to balance the load between the sender and the receiver, and to choose the smallest

o that satisfies 4. 14



The costs in this model heavily depend on runtime profiling. Static analysis assigns an edge cost that simply
depends on the differences in the edge’s distances (in terms of number of instructions) from the start of a
path and to the end of the path. Runtime profiling for each PSE measures the values of T},,,4(1) (measured
at the modulator side) and Tyemoq(1) (at demodulator side), as well as the actual data sizes passed across

the network (as with the previous cost model)?.

5 Implementation Evaluation

Our prototypical implementation of Method Partitioning uses Soot [27] for static analysis and for modula-
tor/demodulator class generation. The JECho Distributed Event (Message) System serves as the message

communication testbed [4].

The two applications mentioned in Section 1 are implemented using Method Partitioning, and compared with
various versions of manual implementations. Some parts of the Method Partitioning based implementations
are manually coded but can be easily replaced with compiler generated code. The first experiment uses the
wireless image server/client application, where the communication resource is the performance bottleneck.

The second experiment uses the sensor /processor application, which is computation bound.

5.1 Minimizing Communication Costs

In this experiment, the image stream server runs on a PII Linux laptop, while the client operates on an
iPAQ 3650 handheld device. The server and the client are connected via a 802.11b wireless network. The
images sent out from the server can have sizes either larger than the size of the display window on the iPAQ,

or smaller than that, without the client’s a priori knowledge.

Table 2 compares the performance of the Method Partitioning based implementation against two manually
written versions, each optimized for one of the following two scenarios: one with display window size larger
than the original image size (1st column in the table) , the other with one that is smaller than the original
image size (2nd column). The first two experiments apply the two scenarios to all three versions of the
application. There is no dynamic change of scenarios during these two experiments (first 2 rows). The third
experiment (3rd row) introduces dynamic application behavior, by alternating the above two scenarios.

Each scenario lasts for n frames, where n is a uniformly distributed integer ranging from 1 to 20.

2For simplicity, we assume that the amount of data passed is always greater than the minimal requirement of o.
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Experimental results show that, for a given scenario, Method Partitioning has performance close to that of
the manually optimized version, but is much better than that of the non-optimized manually coded version.
The important insight is that for dynamic system behavior, Method Partitioning can show substantial
benefits. Note that in the third experiment, the Method Partitioning version significantly outperforms the

two manually written versions.

Table 2: Effects of Runtime Adaptation with Method Partitioning (Display size = 160 * 160, values are

average number of frames per second).

Implementation Small Image | Large Image | Mixed
Versions (80 * 80) (200 * 200)
Image<Display 29.79 7.53 12.98
Image>Display 12.06 12.11 12.19
Method Partitioning 29.72 12.07 17.65

Table 3: Running on heterogeneous platforms (numbers are for average message processing time in ms).

Implementation Versions || PC->Sun | Sun->PC
Consumer Version 352.10 108.92
Producer Version 143.93 139.00

Divided Version 250.19 83.59
Method Partitioning 109.34 74.67

5.2 Method Partitioning for Reducing Program Execution Time

In this experiment, we measure the performance of the Method Partitioning based implementation for
reducing program execution time in the sensor data processing application. We compare it with three other
implementations: a Consumer Version that performs all image processing inside the consumer, the Producer
Version with all processing inside the producer, and the Divided Version which splits processing into two

roughly equal parts that run in parallel on producer and consumer.

We experiment with these four versions on hosts with and without loads, where loads are created by
running a number of perturbation threads. Perturbation threads have active and idle periods, where each

period consists of multiple atomic cycles. To simulf,ée the load changes occurring in various application



Table 4: Performance of Method Partitioning for Reducing Program Execution Time (numbers are in ms

and are averages of 5 measurements).

(Producer LIndex)/ || Consumer Version | Producer Version | Divided Version | Method Partitioning
(Consumer LIndex)
0/0 88.44 80.455 58.52 48.445
0/0.6 146.94 80.26 103.675 54.605
0/1.0 215.195 80.405 148.99 65.26
0.6/0.6 142.51 149.9 101.13 59.225
0.6/0 87.315 154.545 60.13 49.19
1.0/0 88.805 243.58 116.465 60.17

environments, the number of atomic cycles in a period (PLen), and the probability of perturbation threads
being active (AProb) are uniformly distributed, with adjustable ranges. Active periods have a fixed load
index (LIndex), which represents the ratio of busy cycles (when perturbation threads spin on numeric
calculations) over the total number of cycles in a period. We pre-generate arrays of random numbers (for
the random distribution of PLen and A Prob) for each experiment setup, and use these same random numbers

for all four implementations being evaluated.

Tests are performed using a SUN cluster and an Intel/Linux cluster. The SUN cluster has uni-processor
Ultra-30 workstations connected via 100MB Fast Ethernet. The Intel/Linux cluster consists of dual-
processor (300MHz Pentium IT) Intel servers each running Redhat Linux 7.1 and also connected with Fast

Ethernet. The SUN cluster and the Intel/Linux cluster are connected via a gigabit link.

Table 3 shows the performance of the four versions on heterogeneous platforms with no perturbation. The
first column lists the values attained when running the producer on a SUN workstation and the consumer
on an Intel server. The second column lists the values attained with the opposite configuration. The results
clearly demonstrate that the Method Partitioning version outperforms (sometimes remarkably outperforms)
the three other versions. For instance, when messages are sent from the PC to the Sun workstation, average
processing time for the Consumer Version is 222% longer than Method Partitioning version, while when
messages are sent from the workstation to the PC, the Producer Version is 86% slower than the Method

partitioning version.

The other tests are carried out within the Intel/ Liril'IYX cluster. We first compare the performance of the



Impacts of Changing the Probability of Active Periods (PLen = 1000ms)

Impacts of Changing the Expected Length of Active Periods
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four versions by varying the load indices on the producers and the consumers. The expected value of
PLen is set at 1000ms, and LIndex at 0.5. Table 4 depicts results for the four versions under different
load distributions. Again, the Method Partitioning version clearly outperforms the other three. In fact, it
outperforms the Divided Version even when there is no load(58.52 vs. 48.445). This is because it better

balances the load by doing loop distribution.

Figure 7 depicts the performance of the four versions under varying AProb at the consumer side, while
the producer side remains load-free. As expected, the consumer side load change almost has no effect on
the Producer Version, and it has very little effect on the Method Partitioning version. On the other hand,
performance the other two versions severely degrades when consumer side load increases. Figure 8 shows the
impact of consumer side PLen on the Method Partitioning version. It shows that the Method Partitioning

version is relatively stable against changes in perturbation patterns.

5.3 Discussion of Results

Our experiemnts demonstrates Method Partitioning’s remarkable agility in adapting to environmental and
application dynamics. Low adaptation overheads are experienced in dynamic environments, while in static
environments, performance of Method Partitioning versions is close to that of manually optimized versions.
This is partly because in both applications, the generated PSE graphs are relatively simple (one has 5 PSEs,
the other has 21 but is almost all along the same path), resulting in negligible overheads for running the

reconfiguration algorithm.
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Experimental evaluations do not include the costs for modulator installation. Such costs include the costs
of transporting the modulator to the sender and of loading the classes used by the modulator (including
classes for Continuation messages). They depend on the sizes of the classes and the size of the modulator
object, both of which tend to be small compared to the amount of application data passed around in both of
our sample applications. The other cost is in the increment of total size of classes used for the application.
For example, each additional PSE will require a new redirect argument class (around 500 to 800 bytes
in our experiments), and there are increases the sizes of the modulator and demodulator classes due to

instrumentation codes (about 150 bytes per PSE in experiments).

6 Related Work

Distributed application customization and adaptation has been studied extensively in the literature. Exist-
ing research can be loosely divided into two major categories: dynamic unit placement based systems and

systems that make compromises concerning costs vs. qualities attained.

e Dynamic Unit Placement Based Systems. Coign and J-Orchestra are off-line profiling-based system
that partition centralized applications into distributed components based on profiles about component
resource consumption and inter-component communication [31, 32]. They operate in heterogeneous
but relative stable environments and use communication as their only cost model. Method Partition-
ing targets different types of applications than Coign and J-Orchestra. Compared with these systems,
Method Partitioning provides higher adaptability, supports multiple cost models and has inherently
finer-grained customizability, but lacks application scale, rather than sender/receiver pair, optimiza-
tion support. Hybrid Shipping dynamically distributes query processing loads between clients and
servers of a database management system [33]. It requires a priori knowledge of the implementa-
tions of query operators, and its application is limited to the query processing domain. Partitionable
Services achieves seamless client component customization through replicating and migrating ser-
vices [34]. Partitionable Services, however, assumes that the resources available to a deployed service

remain fixed over the lifetime of its deployment.

Research on mobile agents has been abundant [9, 13, 14, 16, 15, 11]. As we discussed in the beginning,
supporting the adaptation of complex applications with mobile agents requires knowledge of the
application at design-time. This is also the case for Smart Messages in Cooperative Computing

[35], where Smart Messages enhances mobile zi%ents with self-routing ability, and where the system



provides infrastructure to support this ability. ABACUS uses mobile objects for dynamic function
placement for data-intensive cluster computing [36]. It builds on mobile agent work by providing

runtime mechanisms that automate migration decisions.

o (Cost-to-Quality Compromise Based Systems. Research in this category uses application- or data-
dependent adaptation approaches. In particular, Odyssey supports application specific code compo-
nents to be used for different levels of fidelity of data representation [37]. TACC of the Daedalus project
uses a proxy based approach to adapt with certain cost-to-quality compromises [38]. Transformer
Tunnel is a network-level approach which supports per-link adaptation by allowing functions to be
attached to adaptive tunnels, with all data flowing through these tunnels being adapted similarly[39].

Research in this category is completely orthogonal to Method Partitioning.

Our own earlier work[7, 4, 8] focused on runtime systems that support data stream customization in pub-
lish/subscribe systems. Method Partitioning automates the generation of stream customization code, and
provides built-in profiling and adaptation. Our work is part of the ongoing InfoSphere project, which
adopts a information flow-based, rather than computation-centric approach for the ”clean, reliable and

timely delivery” of data from potentially large numbers of heterogeneous sources[26].

7 Conclusion, Limitations and Future Work

Method Partitioning is a novel approach for the runtime customization and adaptation of distributed ap-
plications. It requires no design-time knowledge about applications, and it uses minimal deployment-time
knowledge. It supports high customizability of units for dynamic placement, and also offers low cost adapta-
tion actuation. Customization and adaptation in Method Partitioning are implemented using static analysis
of message handling methods, thereby producing a set of candidate method partitions. Cost models are used
to evaluate the costs of different candidate partitions. A Remote Continuation mechanism “connects” the
dynamically distributed parts of a partitioned method at runtime. Runtime Profiling and Reconfiguration

Units assist in the dynamic selection of actual partition from candidates.

A prototypical implementation of Method Partitioning hosted in the JECho distributed event system is
applied to two sample applications: one is communication bandwidth critical and the other is computation
bound. Experiments demonstrate significant performance improvements attained by Method Partitioning,

in part due to its high levels of customizability and its lightweight ways of adapting to application and
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environment dynamics.

One limitation of Method Partitioning is that it is sender/receiver pair-based, and that the modulator of
the receiver can only reside in the message sender. Future work conducted in our group is integrating Third
Party Derivation [28] with Method Partitioning, which allows a modulator to operate inside a “third party”.
In addition, we are developing methods for propagating modulators upward along a data stream, whenever

this is useful for further optimization.

Our current implementation treats each method invocation inside the message handling method as an
opaque instruction, rather than expanding the UG of the message handling method with a link to another
UG for PSEs inside the latter CFG. In addition, partitioning currently allows only convex cuts of the UG,
thus potentially excluding better partitioning plans. Our future research will address more complex, whole

program based partitioning plans.

The deployment-time knowledge used for Method Partitioning is the information contained in cost models,
which are used to select appropriate modulator/demodulator pairs. Our future work will try to elimi-
nate this requirement, for specific applications and equipment infrastructures, one example being future
PDA /cellphone systems. We would also like to work on extending cost models to include considerations of

power consumption and security, and experiment with composite cost models.
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Appendix A: Java source file for the example used in section 3.

public class Test {

static native void displayImage (ImageData data);

public void push (Object event) {
if (event instanceof ImageData) {
ImageData rd = (ImageData)event;
rd = new ImageData (rd, 100, 100);

displayImage (rd);

public class ImageData {
public int width;

public byte buff[];

public ImageData (ImageData template, int w, int h) {
buff = new bytel[w * h];
width = w;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)

buff[i * w + j] = template.buff[template.width * i + jl;
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Appendix B: Classes with added methods that self-describe object sizes.

package jecho.bench.base;

public class AppBase implements SelfSizedObject {
int a = 0, b =2;
long c = 1202;

String d = "rrr";

public int size0f () {

return 16 + ObjectSize.STRING_HEADER_SIZE + d.length ();

package jecho.bench.base;

public class AppComp implements SelfSizedObject {
public String si1, s2;
public AppBase abl, ab2;
public int[] ia;

public float[] fa;

public AppComp () {
sl = "aa";
abl = new AppBase ();
ia = new int[20];
fa = new float[10];

s2 = "This is a string!";

public int sizeOf () {
return si.length() + s2.length() + 2 * ObjectSize.STRING_HEADER_SIZE
+ JECho.getSize(abl) + JECho.getSize (ab2) + 2 * ObjectSize.0BJECT_HEADER_SIZE

+ ia.length * 4 + fa.length * 4;
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