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Abstract 

A new type of software test, called mutation analysis, 
is introduced. A method of applying mutation analysis is 
described, and the design of several existing automated 
systems for applying mutation analysis to Fortran and Cobol 
programs is sketched. These systems have been the means for 
preliminary studies of the efficiency of mutation analysis 
and of the relationship between mutation and other 
systematic testing techniques. The results of several ex-
periments to determine the effectiveness of mutation 
analysis are described, and examples are presented to il-
lustrate the way in which the technique can be used to 
detect a wide class of errors, including many previously 
defined and studied in the literature. Finally, a number of 
empirical studies are suggested, the results of which may 
add confidence to the outcome of the mutation analysis of a 
program. 
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Mutations are seldom spectacular. Those 
mutants that are startlingly different 
from their parents tend not to survive 
long, either because the mutation ren-
ders them unable to function normally, 
or because they are rejected by those 
who sired them. 

Robert Silverberg 

1. INTRODUCTION 

A major goal of software engineering is to discover an 
efficiently testable property of programs, say PROP, so that 
for all programs P the following holds: 

if PROP(P), then P is correct. 	 (1) 

By correct one usually means that for all possible input 
values x, 

P*(x)=f(x), 

where P*(x) is the function computed by program P and f is a 
function which specifies the intended behavior of the 
program. 

Prominent examples of such properties 	are 	program 
verification and testing for correctness: 

Program Verification [Man] 
Let A and B be predicates so that A(x) is true when x 

is in the domain of the function f and B(y) is true when 

y = f( x) . 

Then 

PROP(P) if and only if 1- A{P}B 

can be used to define the predicate PROP in proposition (1). 

Testing for correctness [LMW] 
Let D be a subset of all possible input to the program 

P, and say that D is a reliable test data set if 
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P(x)=f(x) for all x in D implies P*=r. 

Clearly, 

PROP(P) if and only if P*(D)=f(D) for some reliable D 

can also be used as a property for (1). 
A major stumbling block in such systematizations as these 

has been that the conclusion of proposition (1) is so strong 
that, except for trivial classes of programs P, PROP(P) is 
bound to be formally undecidable [Howl]. Given this state 
of affairs, program verification has turned to techniques 
which do not require universal applicability. It has not 
been clear what the corresponding course should be for 
program testing, however. There is an undeniable tendency 
among practitioners to relegate testing to completely ad-hoc 
techniques: one creates tests that seem to capture the es-
sence of the program, observes the execution of the program 
on those tests and makes a conclusion about the correctness 
of the program based on the results of the observations. 
This strategy seems to be too undisciplined EDLS1]. More 
systematic techniques attempt to augment a programmer's 
intuition by yielding quantitative information about the 
degree to which a program has been tested (see [Good] for a 
current survey) -- such coverage measures attempt to give 
the tester an inductive measure of confidence that PROP(P) 
has been determined. We will discuss several of these 
methods rather more fully in the sequel. 

The reader should note that these techniques generally 
rely in one way or another on proposition (1) -- they at-
tempt by inductive or deductive means to allow a tester to 
conclude correctness. But correctness is a very strong 
property, comprehending for instance mathematical equality 
of infinite functions. It is rather unlikely that efficient 
means can be found to make such powerful inferences. 

There is another path to take, however. It is not so 
well travelled because it is less scenic. We propose to 
weaken considerably the conclusion of (1), to replace it by: 

i. P is correct 
or 

ii. P is "pathological", 

where "pathological" will have a well-defined meaning, which 
roughly corresponds to P possessing an empirically 
determined characteristic which places it outside the range 
of programs which can be treated in this way. The testing 
technique determined in this way, we call mutation analysis. 

In carrying out this plan we will of course have to 
sacrifice some of the elegance of the techniques based on 
instances of (1), but we hope that this defect is balanced 
by the efficacy of mutation analysis. 

The sequel is organized as follows. We first present 
the basis of mutation analysis, relying as much as possible 
on observable assumptions about the programming process. We 
then describe the systems which have been constructed for 
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conducting mutation analysis of Fortran and Cobol programs. 
We present examples typical of our experience with these 
systems by means of several "experiments". Included among 
these experiments will be some evidence for believing that 
mutation analysis is useful in detecting a wide variety of 
errors (via the coupling effect introduced in [DLS1]). In 
Section 6, a case study is presented of the use of mutation 
analysis to detect errors in a production system program; it 
is shown in this study how test data can be strengthened to 
locate and remove subtle errors. Section 7 discusses the 
relationship of program mutation to error seeding and logic 
circuit fault detection. A step in the mutation analysis 
process involves the detection of certain kinds of program 
equivalence; 	Section 8 contains a complete discussion of 
this equivalence problem, 	suggesting some efficient al- 
gorithms for automatically detecting the appropriate 
equivalences. The paper closes with three nonobvious ap-
plications of the technique to issues of concern in software 
engineering. 

2. MUTANTS OF A PROGRAM 

In 	[DLS1], we introduced data produced by Youngs [You] 
that strongly hinted that the errors that are most likely to 
be made in the programming process are simple, classifiable 
errors. We have been lead to attempt the following 
generalization, which is used so frequently in our work that 
we have given it a name: 

The Competent Programmer Assumption  
A COMPETENT PROGRAMMER, AFTER COMPLETING 
THE ITERATIVE PROGRAMMING PROCESS AND 
DEEMING 	THAT HIS JOB OF DESIGNING, 
CODING AND TESTING IS COMPLETE, HAS 
WRITTEN A PROGRAM THAT IS EITHER CORRECT 
OR IS ALMOST CORRECT IN THAT IT DIFFERS 
FROM A CORRECT PROGRAM IN "SIMPLE" WAYS. 

Precisely what is meant by "simple" will occupy a 
considerable amount of space in this paper, but the 
intuitive content of the competent programmer assumption is 
simply that competent programmers do not write programs at 
random; if the program produced is not correct, it is a 
program with bugs and can be edited into correct form by 
finding and fixing the bugs. Suppose that the task at hand 
is to design a Fortran program to compute the (Euclidean) 
magnitude of an N-dimensional vector X in a Cartesian coor-
dinate system with fixed origin. Then the subroutine P1 
certainly could have been produced by a competent program-
mer. 
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SUBROUTINE P1(X,MAG) 
MAG = 1 
DO 1 I = 1,N 
MAG = MAG+X(I)**2 

1 MAG = SQRT(MAG) 
RETURN 
END. 

We would question the competence of a programmer who 
produced subroutine P2: 

SUBROUTINE P2(X,MAG) 
MAG = X(1) 
DO 1 I = 1,N 

1 MAG = MAX(X(I), MAG) 
RETURN 
END. 

There is no reasonable sense in which P2 is a "buggy" ver-
sion of the program asked for. P1 can easily be debugged, 
but P2 is not even a program of the same kind -- it is so 
radically incorrect that its incorrectness should be 
discovered by other means. 

Suppose that we now try to inject this assumption into 
proposition (1) and try to discover a property PROP so that: 

if P is written by a competent programmer 	 (2) 
and PROP(P) then P is correct. 

This is a considerable change. 	Proposition 	(1) in its 
original form treats a program as a random object. Proposi-
tion (2) on the other hand attempts to exploit something 
special about the programming process (e.g., that a data 
processing manager expects in response to the specifications 
for a personnel system, something like a personnel system; 
perhaps incorrect, inefficient or sloppy, but more like a 
personnel system than, say, a missile guidance system). 

To be more specific: we are after a testing method 
that addresses the following version of correctness testing. 

Given a program P written by a competent 
programmer, find a test data set for 
which P works correctly by which we can 
infer that P is, with high probability, 
correct. 

Test data which meets this criterion, we call adequate test 
data. Under the competent programmer assumption it is easy 
to derive some simple properties that adequate test data 
should have. We can observe a community of programmers and 
in principle classify the errors they tend to make into 
categories 

E ,E 	E . 
1 	2 
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We are free to observe the programmers for as long as we 
wish and make whatever specialized assumptions we wish about 
the programming task they will be called upon to perform. 
Therefore it is in principle possible to gain whatever 
degree of confidence we desire that among the k clas-
sifications we have countenanced the errors most likely to 
be made by this particular community. Given a program P to 
test in this setting, we must derive an adequate set of test 
data, D, for P. If P is incorrect, we will never be able to 
find an adequate set; indeed, the point of testing P is to 
find a set of test data that calls attention to the fact 
that P is incorrect. If P is correct, however, adequate D 
should at least convince us that P does not contain the 
errors most likely to be made. 

Let 
P ,P 

1 	2 
differ from P only in each containing a single error chosen 
from one of the error categories. Then an adequate set of 
test data D should at least provide least provide the fol-
lowing assurance. For each Pj which is not equivalent to P, 

P*(D) 	Pj*(D) 
In other words for each of the most likely errors, it should 
be possible to show that P does not contain that specific 
error. 

Each of the Pi's is said to be a mutant of the program 
P. The competent programmer assumption states that a 
program is assumed to be either correct or a mutant of a 
correct program. For example, in the problem of computing 
magnitudes of N-vectors, subroutine P1 is a mutant of the 
correct P below. 

SUBROUTINE P(X,MAG) 
MAG = 0.0 
DO 1 I = 1,N 

1 MAG = MAG+X(I)**2 
MAG = SQRT(MAG) 
RETURN 
END 

Subroutine P2, on the other hand, is not a mutant of P. 
Mutation analysis is a method of eliminating the alter-

natives -- developing a set of test data on which P works 
correctly but on which all mutants of P fail (or in our sug-
gestive terminology, "die"). Without the competent program-
mer assumption, there would be infinitely many mutants to 
consider, but even with the assumption, practice may dictate 
so many error types that this method is intractable. In 
fact, one's first reaction upon hearing of the notion is to 
dismiss it as an obviously intractable and 	therefore 
ridiculous idea. 	But by concentrating only on "simple" 
mutants of P the technique becomes manageable. For example, 
P1 is not a simple mutant of P, but M1 and M2 are: 
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SUBROUTINE M1(X,MAG) 
MAG = 1 
DO 1 I=1,N 

1 MAG = MAG+X(I)**2 
MAG = SQRT(MAG) 
RETURN 
END 

SUBROUTINE M2(X,MAG) 
MAG = 0.0 
SO 1 I=1,N 
MAG = MAG+X(I)**2 

1 MAG = SQRT(MAG) 
RETURN 
END. 

The mutants we will consider arise from the single applica-
tion of a mutant operator , a simple syntactic or semantic 
program transformation such as changing a particular 
instance of a relational operator to one of the remaining 
operators or changing the target of an unconditional trans-
fer to another labelled target. We will also refer to 
mutant operators as error operators .The obvious objection 
here is that such a restriction allows one to do little more 
than test for typographical errors in programs, perhaps 
useful, but hardly worth such a fuss. As we will discuss 
extensively below (Section 4,3) there is an observable 
"coupling" of simple and complex errors so that test data 
that causes all nonequivalent simple mutants to die is so 
sensitive that "likely" complex mutants also die. The 
coupling of simple and complex errors implies that if P is 
correct for an adequate test D while M1 and M2 die, then P1 
must also die on D. 

Observe that mutation analysis is a valid principle 
(i.e., implements correctness testing) if the competent 
programmer assumption is valid and if the coupling of simple 
and complex errors is a provable effect. In practice 
(theoretical studies not withstanding [BL1,BL2]) it is not 
necessary to show formally that these assumptions hold in 
order for mutation analysis to be a useful tool for testing 
real programs. It is sufficient to know within acceptable 
confidence limits when the assumptions hold and to work 
within those limits. 

We have found that in performing mutation analysis on 
an incorrect program, the tester is forced to develop test 
data on which his program fails [BDLS]. So we are 
interested in building interactive systems to aid program-
mers and testers in performing mutation analysis -- and in 
so doing, evaluating the effectiveness of this approach. We 
pick a programming language L (Fortran, Cobol, and Lisp have 
been our initial choices) and -- based on prior research and 
other experience -- we define an appropriate set of mutant 
operators for L. Then we build a interactive mutation 
system that serves as a test harness and aids in performing 
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mutation analysis. Using three such systems we have for the 
past two years been involved in the testing of programs us-
ing mutation analysis and in experiments to discover when 
and why the competent programmer assumption holds and how 
simple errors can be coupled to complex errors. 

Although the various systems we have constructed differ 
in certain respects, there are essential similarities. The 
basic design was discussed in an earlier paper [BDLS]. 
Briefly, the systems allow an interactive user to enter a 
program to be tested. The program is parsed to a convenient 
internal form and appropriate data files are created. The 
user then enters test data, executing the program on the 
test data in typical harness fashion to check for errors. 
At the point of mutation analysis, the user "turns on" a 
subset of the error operators and the system then creates a 
list of mutant description records, descriptions of how the 
internal form is to be modified to create the required 
mutant. The changes are induced sequentially and the 
modified internal form is interpreted, the results being 
compared to the original results to determine whether or not 
the mutant survives the execution on that data. At the com-
pletion of the pass, summary reports are presented to the 
user, and he is allowed several options in examining the 
remaining live mutants to attempt to strengthen his test 
data. The user may also declare mutants to be equivalent 
and therefore remove them from future consideration. In one 
of our systems this function has been partially automated 
with considerable improvement in performance. The issue of 
equivalent mutants will be discussed more fully in a later 
section. 

Part of our early experience with mutation systems was 
the testing, using the first Fortran system FMS.1, of the 
statement scanner of FMS.1 itself. In elapsed time, the 
nearly 9,000 mutants were completely analyzed in six man-
hours, using approximately 14 cpu minutes of a slow PDP-10 
KA-10 processor running the TOPS10 timesharing operating 
system. A more compete description of this anlysis is 
available in [BDLS]. We will return to the question of the 
efficiency of mutation analysis in the Section 4. 

3. THE MUTATION SYSTEMS 

3.1 Fortran. 	In the fall of 1977, a pilot mutation 
system for a subset of Fortran became operational on a PDP-
10 computer at Yale University. This is the PIMS system 
discussed in detail in [BDLS]; in anticipation of several 
versions of mutation systems for several different languages 
we have since adopted the following naming conventions for 
our systems. A system is denoted by a string 

<lang>MS.<version>, 

where <lang> is a unique identification for the language 
(e.g., 	F for Fortran) and <version> is a chronological ver- 
sion number. 	Thus, PIMS is the system FMS.1. 	Subsequently, 
FMS.1 was implemented on a DEC KL - 20 at Yale, and a PRIME 
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400 at Georgia Tech. Although the Fortran subset required 
by FMS.1 is restrictive, it has been large enough to permit 
a wide body of experience with mutation analysis to ac-
cumulate (see the experiment in [BSLSJ and Section 6, for 
example). 

The restricted language accepted by FMS.1 eventually 
became a bottleneck for the experimenters. Therefore, dur-
ing the year 1978-1979, an expanded Fortran system, FMS.2 
(the system sometimes referred to as EXPER) was constructed. 
FMS.2 accepts any ANSI Fortran program which does not use 
complex arithmetic or input/output statements (for programs 
which do not meet this restriction, recoding must replace 
input/output statements by array assignments). FMS.2 is 
fully operational on the DEC KL-20 at Yale and is being im-
plemented on the VAX-11 at Berkeley. While the overall 
goals of the Fortran systems are similar, FMS.2 differs from 
FMS.1 in several important respects. FMS.1 was designed 
with user-oriented features in mind; it was anticipated that 
testers unfamiliar and unsympathetic with the system would 
be the primary user community. FMS.2, on the other hand, 
was designed primarily as an experimental device for the 
mutation research groups, to facilitate experiments into how 
mutation analysis can be integrated into the design coding 
and testing of multi-module programs, experiments into the 
sufficiency of various sets of mutant operators and for 
various experiments surrounding the coupling effect and the 
overall effectiveness of the mutation approach. 

FMS.2 sessions are organized around the concept of an 
experiment .An experiment consists of a program, test data, 
and a subset of the error operators which may be applied to 
the program. The experimenter is more easily able to 
generate small variations in each of these elements and 
monitor the progress of subjects using FMS.2 to perform the 
mutation analysis. As with FMS.1, this system responds with 
summaries and reports on the number and type of mutants 
which remain alive, so that the user can augment his tests. 

The basic set of error operators supplied by FMS.2 are 

Data reference Mutations 

1. Constant Replacement (by +1, -1) 
2. Scalar for Constant Replacement 
3. Source Constant Replacement 
4. Array Reference for Constant Replacement 
5. Scalar Variable Replacement 
6. Constant for Scalar Replacement 
7. Array Reference for Scalar Replacement 
8. Comparable Array Name Replacement 
9. Constant for Array Reference Replacement 
10. Scalar for Array Reference Replacement 
11. Array Reference for Array Reference Replacement 

Operator Mutations 

12. Arithmetic Operator Replacement 
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13. Relational Operator Replacement 
14. Logical Connective Replacement 
15. Unary Operator Replacement 
16. Unary Operator Removal 
17. Unary Operator Insertion 

Statement Mutations 

18. Statement Analysis (C-1 Path analysis) 
19. Statement Deletion 
20. Return Statement Replacement 

Control Structure Mutations 

21. Jump Statement Replacement 
22. DO statement Replacement 

3.2 Cobol. 	The design of the Cobol mutation system 
CMS.1 is based on the original design of FMS.1. 	The reader 
will get an idea of the way in which CMS.1 interacts with 
users by consulting the corresponding descriptions for FMS.1 
in [BDLS]. CMS.1 accepts a simple subset of the Cobol 
language and supports up to ten rewindable input files and 
ten non-rewindable output files. This has been found to be 
adequate for a variety of data processing tasks and should 
allow the analysis of a large selection of Cobol programs. 
CMS.1 is currently implemented on a PRIME 400 computer at 
Georgia Tech. 

Mutants are said to exhibit equivalent behavior if they 
produce the same output records as the original program. 
Mutants may fail by producing different output, or by a run-
time error such as referencing undefined data, referencing 
nonnumeric data in a numeric instruction, trying to use a 
file unit that is not open, etc. 

As might be expected, the introduction of input/output 
and data structuring capabilities create special problems 
for CMS.1 not encountered in the Fortran systems. The fol-
lowing are the error operators which appear to be unique to 
the Cobol language. 

1. Move 	implied decimal point in 
numeric items one place to the left 
or to the right. 

2. Add or subtract one from an OCCURS 
clause count. 

3. Insert FILLER of length one between 
two 	adjacent record items; also 
change FILLER lengths by one. 

4. Reverse adjacent elementary items in 
records. 

5. Alter file references. 

6. Switch PERFORMs and GOTOs. 

PAGE 10 



7. Change ROUNDED to truncation and 
vice-versa. 

8. Change the sense of a MOVE. 

The 	remaining error operators include the operator 
replacements and control flow mutations that are described 
above. As primitive as this subset of Cobol appears, it is 
adequate for broad-based experimentation, including the 
analysis of many production Cobol programs supplied to the 
mutation research group by external sources. 

CMS.1 is unique in another respect. While some module 
testing of FMS.1 and FMS.2 was carried out by the design 
teams, access to reasonable subsets of the implementation 
languages was limited by the concerns detailed above. 
CMS.1, on the other hand is being tested extensively using 
the FMS.2 system at Yale. 

The Appendix contains essentailly a script of a CMS.1 
session on a production Cobol program drawn from the US Army 
personnel system SIDPERS. The program has been modified 
somewhat, mainly in the reduction of the record sizes to 
make a better CRT display. The program takes as input two 
files, representing and old backup tape and a new one. The 
output is a summary of the changes. The input files are as-
sumed to be sorted on a key field. The program is 130 lines 
long and has 1195 mutants, of which 37 are easily seen to be 
equivalent to the original program. Initially ten test 
cases were generated to eliminate all of the nonequivalent 
mutants. Subsequently a subset of five test cases was found 
to be adequate for the task. The entire run took about 7 
minutes of clock time, and 2 minutes and 45 seconds of CPU 
time on the PRIME 400. 
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4. THE COMPLEXITY OF MUTATION ANALYSIS 

At first blush, it would seem that there is a severely 
limitative trade-off at work in the technique described in 
the previous section. In order to be efficient, the number 
of distinct mutants must be kept rather small. But the list 
of potential errors (rather, the list of error operators) in 
order to be realistic must be quite extensive. Apparently, 
then, if we try to constrain the number of mutants of an N 
statement program to some reasonable size -- say, p(N), for 
a "small" polynomial p* -- mutation analysis loses its ef-
fect as a realistic model of the programming process. If on 
the other hand we try to build into the analysis all of the 
possible error types which we can expect to encounter, then 
the number of mutants associated with an N statement program 
need not be bounded by any reasonable function of N. 

In this section we will show how the choice of the first 
alternative in the tradeoff is justified. In fact, an N 
statement program -- on the average -- will generate only 
polynomially many mutants, most of which are unstable and 
die in the analysis stage very quickly. A "coupling effect" 
is invoked to save the method from only being capable of 
dealing with trivial errors, and we will report on some 
preliminary experimental evidence for our belief in the 
coupling effect. 

*This seems reasonable. 	Polynomial growth in complexity in 
the analysis of algorithms is generally identified with com-
putational tractability. In testing for correctness or in 
program verification, even subcases which are solvable tend 
to be of nonpolynomial complexity (usually exponential or 
worse). 
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4.1 The Number of Mutants. Youngs' data and several 
less widely reported but related studies [TRW,Gil] suggest 
very strongly that the errors that tend to occur in programs 
are relatively simple errors. To be precise, let us define 
a simple mutant as follows. Let P be a program written in a 
programming language defined by a grammar G, and let par-
se(P) be the syntax tree for P obtained by parsing P accord-
ing to G. Then a 1-order simple mutant operator ER is a 
function mapping a parse tree T to a tree ER(T) so that T 
and ER(T) differ by at most one terminal node (i.e., leaf). 
ER(T) is said to be a simple 1-order mutant of T. Proceed-
ing inductively, a k-order mutant is simply a k-fold itera-
tion of 1-order mutants. In particular, notice that simple 
mutants do not alter the "semantic structure" of a program 
-- that is they do not modify the internal nodes of the par-
se tree. The error operators designed for the automated 
systems are with few exceptions simple 1-order mutants. 

We will first give a heuristic analysis of the expected 
number of mutants of a program as a function of several size 
parameters. The list of mutant operators for FMS.1 and 
FMS.2 is relatively unsophisticated and has undergone little 
revision that would improve the number of generated mutants 
(CMS.1 by contrast has a rather more streamlined mutant 
generation system), so our analysis is not biased in favor 
of simple mutants. 

First, it is possible to derive an order-of-growth ex-
pression for the number of FMS.1 mutants. Data reference 
replacements are accomplished by interchanging reference 
names occurring within the program. In a program with N 
statements and K distinct data references this number is 

2 
F(N,K)=0(K ). 

The reader can convince himself (cf. [Kn]) that for each of 
the constant and operator replacement schemes there is a 
constant c so that the number of generated mutants is boun-
ded by cK. Therefore, F(N,K) is the dominant term, and the 
number of generated mutants is in the worst case quadratic 
in the number of distinct data references. 

Observations of typical programs lead to an even more 
favorable estimation of the expected number of mutants 
generated under FMS.2. In programs that are not maliciously 
dense (for an example of such a dense program see {LSD 
F(N,K) is more closely approximated by 

F (N,K)= 0(NK) 

while in typical programs, such as those discovered by Knuth 
[Mn] the data references tend to be so sparsely distributed 
that the rate of growth is usually closer to quadratic in N: 

2 
F(N,K) =0:0 • 
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In generating mutants of Cobol programs, it is possible 
to more nearly approach linear growth, since the number of 
data reference interchanges is limited by syntactical redun-
dancies. In fact, an analysis similar to the one carried 
out above gives the worst case estimate for the expected 
number of mutants for a Cobol program as the number of data 
division lines multiplied by the number of procedure 
division lines. For typical Cobol programs this estimate is 

2 
C(N,K) << N. 

Figures 1 and 2 show mutant growth rates for a sampling of 
Fortran and Cobol programs. Notice that in both cases (ex-
cept for the variation in small Fortran programs) the 
estimates given above are generous upper bounds on the ob-
served number of mutants. In experiments using CMS.1, we 
have found the average growth rate for "production" Cobol 
programs to be more nearly linear in the product of 
procedure division lines and K than quadratic in N. 
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N 
2 

N Average 	Number of 	Mutants 

12 144 2508 
13 169 307 
14 196 427 
16 256 360 
17 289 390 
24 576 2666 
26 676 649 
28 784 3213 
30 900 1209 
33 1089 12116* 
34 1156 3361 
36 1296 1085 
42 1764 1057 
45 2025 1658 
65 4225 1514 
66 4356 2425 
71 5041 2817 
98 9604 8424 
123 15129 8838 

Figure 	1. Fortran Mutants 

* Sample contains the outlier described in [LS1 

2 	No.Procedure * 	 Total Mutants 
N 

57 
64 
73 
74 
75 
78 
99 

102 
111 
143 
170 
453 
670 

1 

N 	 No 

3249 
4096 
5329 
5476 
5625 
6084 
9801 
10404 
12321 
20449 
28900 

205209 
448900 

Data 	Div 	Lines 

576 
789 
756 
800 
837 
918 

1674 
1806 
2115 
3330 
5184 

46803 
92964 

Generated 

370 
679 
78 

235 
225 
376 
377 
715 
740 
628 
1195 

14639 
50983 

Figure 2. Cobol Mutants 
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4.2 Mutant Instability. 	Even though the number of 
mutants generated by these methods is expected to grow 
rather slowly as a function of program size, a user may be 
somewhat wary of profferring so many executions of the same 
program -- it would seem that an execution of 10,000 mutant 
programs on a set of test data may require as much time as 
the running time of the longest instance multiplied by 
10,000! In fact, that is not the case. A mutant seldom 
runs to completion; rather, mutant programs tend to be 
rather unstable, dying by executing "illegal" statements 
which are trapped and which cause premature termination of 
the programs. So, it is our experience that mutation 
analysis of even moderately large programs is possible using 
only modest machine requirements. The following statistics 
are derived from Fortran program analysis using the FMS.1 
and FMS.2 systems. 

Average number of test 
cases mutants remain live 

Average total mutant executions 
per session (units = F(N,K)) 

Average fraction of nonequivalent 
mutants killed by first test case 

Average execution time of live 
mutant (percent of original test) 

1.75 

2.00 

68% 

75% 

Although the speed with which mutants can be eliminated is a 
function of the capabilities of the human tester, it is our 
experience that somewhat more than 30% of the remaining live 
mutants are killed by each testcase, yielding rapid conver-
gence. 

4.3 The Coupling Effect. Using only the mutant opeators 
defined above, it would seem likely that a program that had 
been successfully subjected to mutation analysis might still 
contain some complex errors, errors which are not explicit 
mutants of the program and are not distinguished by the test 
data. In [DLS1], we proposed a "coupling effect" which as-
serted the existence of significant classes of programs for 
which such omissions are rare; briefly stated, the coupling 
effect asserts: 

The Coupling Effect  
TEST DATA ON WHICH ALL SIMPLE MUTANTS 
FAIL IS SO SENSITIVE TO CHANGES IN THE 
PROGRAM THAT IT IS LIKELY THAT ALL COM-
PLEX MUTANTS MUST ALSO FAIL. 

Note that there is no claim that the coupling effect is 
a provable phenomenon in a mathematical sense; indeed, there 
are very simple counterexamples to it. It is however, a 
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useful principle that can be observed to hold for broad 
classes of programs. We come therefore to consider on what 
evidence we believe in the coupling effect. 

First, we know that there is a provable coupling effect 
for certain restricted models of computation. 	In [BL1], the 
following was proved: 	Let P be a complete decision table 
program (i.e., one missing no actions or conditions), 	and 
let P evaluate correctly on test data that is adequate under 
the following mutant operators 

Replace any condition by "don't care" 
Complement any condition 
Replace any "don't care" by "yes" and "no" 
Delete any action 
Add any action; 

then P is correct. 
It has also been conjectured that a provable coupling 

effect can be exhibited for several other formally interest-
ing classes of programs, such as pure Lisp functions and 
linear recursive schemes (cf [BL2]). 

Second, 	there is a great variety of observational 
evidence for the coupling effect. 	Investigators using the 
DAVE test data generation system at the University of 
Colorado, for example, have reported that even using a 
restricted set of error operators the ability to detect sim-
ple errors is oftentimes useful in insuring against more 
complex errors COF1,0F2]. 

Third, there is a growing experimental understanding of 
the coupling effect in functioning programs. We give here 
an example of the empirical evidence. The subject program 
is Hoare's FIND program [Hoa]. As described in [DLS1], FIND 
was used in the following experiment. 

1. A test data set of 49 cases was derived and 
shown to be adequate. 

2. The test data set from 1 was heuristically 
reduced to a set of 7 test cases which also 
turned out to be adequate. 

3. Random simple k-order mutants were selected 
(k > 1). 

4. The higher order mutants of step 3 were 
executed on the reduced test data set. 

It would be evidence against the coupling effect if it was 
possible to randomly generate very many higher order non-
equivalent mutants on which the reduced test data set 
behaved in a manner indistinguishable from FIND. Notice 
that Step 2 biases the experiment against the coupling ef-
fect since it removes the man-machine orientation of muta-
tion analysis. We concentrated first on the case k=2, 
reasoning that the larger the value of k, the more one 
violates the competent programmer assumption, with the fol-
lowing results: 

Number of 2-order mutants 
	 21,100 

Number indistinguishable from FIND 
	

19 
Number equivalent to FIND 
	

19. 
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However, a more limited analysis of still higher order 
mutants, still failed to reject the coupling effect: 

Number of k-order mutants (k>2) 	1,500 
Number indistinguishable from FIND 	0. 

A major defect in this experiment can be brought to 
light by considering the following conceptual basis for 
error coupling. Just as the competent programmer assumption 
states that programs are not written at random, the coupling 
effect is implied by the fact that program statements are 
not composed at random; indeed, there is considerable flow 
and sharing of information between statements of a program, 
so that a change to one portion of a program is likely to 
have observable, 	albeit subtle, effects on its global 
context. 	Now for the problem with this experiment: the 
k-order mutants are chosen randomly and by independent 
drawings of 1-order mutants. Therefore the resulting 
higher-order mutant is very unstable and subject to quick 
failure. The experiment should also be conducted when the 
higher-order mutants contain subtly related errors. To this 
end, the experiment was repeated using the following 
replacement for step 3: 

3': 	Randomly generate correlated k-order 
mutants of the program. 

In Step 3', correlated means that each of the k applications 
of 1-order mutant operators will be related in some way to 
all of the preceding applications, all affecting the same 
line, for example. As before, if a program is successfully 
subjected to mutation analysis on a test data set, then the 
coupling effect asserts that the correlated k-order mutants 
are also likely to fail on the test data. 

In addition to FIND, we use the program STKSIM which 
maintains a stack and performs the operations clear, push, 
pop, and top. 

Figure 3 contains a summary of the results of the ex-
periment. Although, much careful experimentation under more 
stringent statistical analyses must be carried out, there is 
probably enough information to conclude that there is a 
meaningful sense in which errors are coupled by an ap-
propriate choice of error operators. 
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PROGRAM NUMBER 	NUMBER NUMBER 	NUMBER NUMBER 	NUMBER 
NAME 	GENERATED ALIVE GENERATED ALIVE GENERATED ALIVE 

k = 2 
	

k = 3 	 k = 4 

FIND 	3000 	2 	3000 	0 	3000 	0 
STKSIM 	3000 	3 	3000 	0 	3000 	0 

Figure 3. Correlated k-order Mutants 

The results are for the most part self explanatory. All of 
the live correlated k-order mutants described in the table 
have been shown equivalent by rather simple arguments. 

Although we have attempted no thorough statistical 
analyses of these experiments, the size of the samples 
(nearly 50,000 combined correlated and uncorrelated mutants) 
is certainly large enough to sustain statistically sig-
nificant conclusions assuming a variety of underlying models 
and distributions. 

Less formal but nevertheless striking evidence is of the 
"testimonial" variety. Since 1976 we have conducted muta-
tion analysis sessions on perhaps several hundreds of 
Fortran, Cobol, and Lisp programs. So many instances of the 
coupling of simple and complex errors have been observed 
over such a wide range of programs that it is likely there 
is an observable effect at work. 

4.4 Reducing Complexity. Even with all of the forego-
ing reduction techniques, current technology places the 
bounds of practicality for monolithic programs somewhere in 
the 5,000 to 10,000 line range for Fortran and somewhat 
higher for Cobol programs. Even this must be treated as an 
optimistic upper limit -- certainly the technique is not 
easy to apply at the 5,000 statement level. A speculative 
but not unjustifiable technique is to use Monte Carlo tech-
niques to sample from large populations of mutants. A sim-
ple argument to support such an analysis can be had via the 
following Gedanken experiment. Let 

f(x) 

appear in a specific context of a program undergoing muta-
tion analysis; if a set of test data is too weak for the 
program but the program is nevertheless correct, then there 
is an adequate set of test data , D, on which 

f( x) ] *(D ) 	f( x')J*(D) , 

where x' is some specified data reference replacement muta-
tion of x. But x and x' in these expression are BOUND 
variables; it only matters that they refer to distinct 
positions of a state vector which has been specially 
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constructed to exhibit the inequality. In other words it is 
important that we are able to "explain" with test data why x 
is an argument of f, but perhaps less important that we be 
able to explain why the argument is not x' or any other 
specific alternative. But this can be accomplished by sam-
pling from enough alternative choices x' to insure that 
identities that we are observing are not mathematical. If 
the functions involved are at all well-behaved algebraically 
then algebraic identities can be discerned in this way (see 
[DL] for simple cases). In one experiment, mutation 
analysis on only 10 percent of the total mutant population 
resulted in test data strong enough to kill 95 percent of 
the entire mutant population. 

If reliable patterns can be found by such sampling 
techniques then the range of programs which can be analyzed 
is expanded by an order of magnitude. We anticipate report-
ing on this research elsewhere. 

There is an obvious method which will further reduce 
the amount of time needed to process mutants. Since 
mutants, once generated are entirely independent entities, 
copies of mutant description records may be distributed 
among several computers for parallel execution. It is 
feasible to decrease running times by amounts dependent only 
on the amount of computer resources one is willing to invest 
in the analysis. 

5. ERROR OPERATORS FOR CLASSES OF ERRORS 

Of course the whole point of program testing and 
therefore mutation analysis is to detect errors in programs 
that are not correct. So far we have given no evidence that 
mutation analysis is a useful tool in this regard. In this, 
and in the following section, we will indicate our current 
state of knowledge in this regard. First, we will describe 
a wide class of error types and show by example how the 
error operators which are currently implemented are useful 
in detecting errors of those types. Second -- in the fol-
lowing section -- we will describe a case study of the 
uncovering of a resistant, complex error in a production 
system using mutation analysis. 

5.1 Simple Errors. If the program contains a simple 
error, then one of the mutants generated by the system will 
be correct. The error will be discovered when an attempt is 
made to eliminate the correct program since its behavior 
will be correct but the progam being tested will give dif-
fering results. If the program contains simple k-order 
errors that are relatively independent and each error is ex-
posed by a single mutant, then the errors will also be 
detected (see Section 6 for an example). 

5.2 Dead Statements. As described by Huang [Hua], many 
programming errors manifest themselves in "dead code", that 
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is, 	source statements that are unexecutable or, more 
seriously, give incorrect results regardless of the the data 
presented. Such errors may persist for weeks or even years 
if the errors lie in rarely executed portions of the 
program. 

It is therefore a reasonable first goal in testing a 
program to insist that each statement be executed at least 
once. Typical methods for achieving this goal include for 
example the insertion of instruction counters into straight 
line segments of the program, so that a non-zero vector of 
counters indicates that the instrumented statements have all 
been executed at least once. 

During mutation analysis, the goal outlined above will 
be viewed from a slightly different perspective. If a 
statement cannot be executed, then clearly we can change the 
statement in any way we want, and the effects of the changes 
will not be noticable as the program runs -- in particular 
the altered program will not be distinguishable in its out-
put behavior from the original one. There is, however, a 
mutant operator which draws the tester's attention to this 
situation in a more economical way. Among the mutants are 
those which replace in turn the first statement of every 
basic block by a call to a routine which aborts the run when 
it is executed. Such mutations are extremely unstable since 
any data which causes the execution of the replaced 
statement will also cause the mutant to produce incorrect 
results and hence to be eliminated. The converse is also 
true. That is, if any of these mutants survives the 
analysis then the altered statement has never been executed. 
Therefore, accounting for the the survival of these mutants 
gives important information about which sections of the 
program have been executed. 

This analysis shows why apparently useful testing 
heuristics can lead one astray. For example, it has been 
suggested [Ham] that not executing a statement is equivalent 
to deleting it, but this discussion show how such a strategy 
can fail. 	A statement can be executed and still serve no 
useful purpose. 	Suppose that we replace every statement by 
a convenient NO-OP such as the Fortran CONTINUE. The sur-
vival or elimination of such mutants gives more information 
than merely whether or not the statement has been executed. 
It indicates whether or not the statement has any observable 
effect upon the output. If a statement can be replaced by a 
NO-OP with no observable effect, then it can indicate at 
best that machine time is wasted in its execution (possibly 
a design error) and at worst a much more serious error. 

Insuring that every statement is executable is no 
guarantee of correctness [GG,How1]. Predicate errors or 
coincidental correctness may pass undetected even if every 
statement is successfully executed. We will return to these 
errors types later in this section. 

5.3 Dead Branches. 	It has been noted (see [Hua]) that 
an improvement over simply analyzing the execution of 
statements can be had by analyzing the execution of 
branches, attempting to execute every branch at least once. 
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For example, the program segment 

A; 
IF(<expression>) THEN B; 
C; 

has the flowchart shown in Figure 4. 

A 

V 
* 

* * 
---*expression *--- 

TRUE : 	* 	* 	;FALSE 
1 	 * 	 1 

✓ , 

B 1 	 1 
i 

:  
1  
--->1 C i<--- 

Figure 4. 
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All statements A,B and C can be executed by a single 
test case. It is not true however that in this case all 
branches have been executed. In this example the empty else 
clause branch can be bypassed even though A,B and C are 
executed. 

However, the requirement that every branch be traversed 
can be restated: every predicate must evaluate to both TRUE 
and FALSE. The latter formulation is used in mutation 
analysis. There are error operators to replace each logical 
expression by boolean constants. Like the statement 
analysis mutations described above, these mutations tend to 
be unstable and are easily eliminated by almost any data. 
If these mutants survive, they point directly to a weakness 
in the test data which might shield a possible error. 

Mutating each relation or each logical expression in-
dependently actually achieves a stronger test than that 
achieved by the usual techniques of branch analysis. For 
consider the compound predicate 

IF(A.LE.B.AND.C.LE.D)THEN 

Simple branch coverage requires only two test cases to 
test the predicate. But suppose that the test points for 
the covering test are 

A < B and C< D 

and 

A <B and C> D. 

These points have the effect of only testing the second 
clause. This kind of analysis fails to take into account 
the hidden paths LDLS1] implicit in compound predicates (see 
Figure 5). 	In testing all the hidden paths, mutation 
analysis 	requires at least three points to test the 
predicate, 	corresponding 	to 	the 	branches 	(A>B,C>D), 
(A‹<B,C>D), and (A<<B C<<D). 
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* * 
____* A LE.B 	*---- 

* * ;TRUE 

V * 
* * 

----* C.LE.D 	*____ 
, 	* 	* 
1 1 	* 	;TRUE 
1 	 1 

1 	1 	 1 
V 	V 	 V 

FALSE 	FALSE 	 FALSE 

Figure 5. 
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As a more concrete example, consider the program shown 
in Figure 6. This program is adapted from [Gel] and was 
studied in [OW]; it is intended to calculate the number of 
days between two given dates. The predicate which 
determines whether a year is a leap year is incorrect. 
Notice that if year the year is divisible by 400 (i.e., if 
year REM 400 = 0) it is necessarily divisible by 100 (ie, 
year REM 100 = 0). Therefore the logical expression formed 
by the conjunction of these clauses is equivalent to the 
second clause alone. Alternatively the expression year REM 
100 = 0 can be replaced by the logical constant TRUE and the 
resulting mutant is equivalent to the original program. 
Since it is not obvious what the programmer had in mind, the 
error is discovered. Notice also that mutation analysis 
shows that the assignment daysin(12):=31 is redundant and 
can be removed from the program. 
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PROCEDURE calendar(INTEGER VALUE dayl,monthl,day2,month2,year); 
BEGIN 
INTEGER days 
IF month2=month1 THEN days=days2-days1 

COMMENT if the dates are in the same month, then 
we can compute the number of days directly; 

ELSE 
BEGIN 
INTEGER ARRAY daysin(1..12) 
daysin(1):=31;daysin(3):=31;daysin(4):=30; 
daysin(5):=31;daysin(6):=30;daysin(7):=31; 
daysin(8):=31;daysin(9):=30;daysin(10):=31; 
daysin(11):=30;daysin(12):=31; 
IF ((year REM 400)=0) OR 

((year REM 100)=0 and (year REM 400)=0) 
THEN daysin(2):=28 ELSE daysin(2):=29; 

COMMENT set daysin(2) according to whether or not 
year is leap year; 

days:=day2+(daysin(month1)-day1); 
COMMENT this yields the number of days in complete 

intervening months; 
FOR i:=month1 +1 UNTIL month2-1 DO days:=daysin(i)+days; 
COMMENT add in the days in complete months; 

END 
WRITE(days) 

END; 

Figure 6. 
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5.4 Data Flow Errors. A program may access a variable 
in one of three ways. A variable is said to be defined if 
the the result of a statement is to assign a value to the 
variable. 	A variable is said to be referenced if its value 
is required by the execution of a statement. 	Finally, a 
variable is said to be undefined if the semantics of the 
language does not explicitly give any other value to the 
variable. Examples of the latter are the values of local 
storage after procedure return or Fortran DO loop indices 
after normal loop termination. 

Following Fosdick and Osterweil [0F2] we define three 
types of data flow anomalies which are often indicative of 
program errors. These anomalies are consecutive accesses to 
a variable of the following forms: 

1. undefined then referenced, 
2. defined then undefined, 
3. defined then redefined. 

Anomaly 1 is almost always indicative of an error, even 
if it occurs only on a single path between the point at 
which the variable becomes undefined and its point of 
reference. Anomalies 2 and 3 tend to indicate errors when 
they are unavoidable, that is, when they occur along a cut 
set of the flow graph. 

The second and third types of anomalies are attacked 
directly by mutation operators. If a variable is defined 
and is not used then in most cases the defining statement 
can be eliminated without effect (by insertion of a CONTINUE 
statement for instance). This may not be the case if in the 
course of defining the variable a function with side effects 
is invoked. In this case, the definition can very likely be 
altered in many ways with no effect on the side effect, 
resulting in the variable being given different values. An 
attempt to to remove these mutations will usually result in 
the anomaly being discovered. 

It is more difficult to see which operators address 
anomalies of the first type; the underlying errors are at-
tacked by the discipline imposed by mutation analysis. 
Recall that a mutation system is a large interpretive system 
for automatically generating and testing mutants. Whenever 
the value of a variable becomes undefined it is set by the 
interpreter to the unique constant UNDEFINED. Before every 
variable reference a check is performed by the interpreter 
to see if the variable has undefined values. If the 
variable is UNDEFINED the error is reported to the user, who 
can then take action. 

5.5 Domain Errors. The notion of a domain error is due 
to Howden [Howl]. A domain error occurs when an input value 
causes an incorrect path to be executed due to an error in a 
control statement. Domain errors are to be contrasted with 
computation errors which occur when an input value causes 
the correct path to be followed but an incorrect function of 
the input value is computed along that path due to an error 
in a computation statement. These notions are not precise 
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and it is difficult with many errors to decide in which 
category they belong. 

A method of reliably uncovering domain errors is the 
domain strategy proposed by White, Cohen, and Chandrasekaran 
[WCC]. For a program containing N input variables (e.g., 
parameters, arrays, and I/O varibles), any predicate in the 
program can be treated as an algebraic relationship and can 
thus be described by a surface in the N dimensional input 
space. 	If, as often happens, the predicate is linear, then 
the surface is a hyperplane. 	Consider a two dimensional 
example with input variables I and J 

I+2J < 	-3. 

The domain stategy tests this predicate using three 
test points, two on the line 

I+2J=3, 

and one point which lies off the line, but within an en-
velope of width 2d centered on the line (see Figure 7). 
Call these points A,B and C. If A,B, and C yield correct 
output, we know that the defining curve of the predicate 
must cut the sections of the triangle ABC. Choosing d small 
enough makes the chance of the predicate actually being one 
of these alternatives small. Therefore, even if one doesn't 
have complete confidence that the predicate is correct, we 
have gained some inductive confidence that the predicate is 
correct. 
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Mutation analysis also deals with the issue of domain 
errors. 	Indeed the domain strategy can be implemented using 
mutation once a simple observation is made: 	it is not 
necessary that points A and B both lie on the line -- it is 
only necessary that the line separate them or that they do 
not both lie on the same side of the line. Hereafter we 
will work with the domain stategy using this simplifying as-
sumption. 

There are three error operators which generate mutants 
causing the tester to generate the required points. 
Intuitively, we can think of mutation analysis as posing 
certain alternatives to the predicate in question. These 
alternatives require the tester to supply "reasons" (in the 
form of test data) why the alternative predicate cannot be 
used in place of the original. 

Relational 	Operator 	Replacement. 	Changing 	an 
inequality operator to a strict inequality, weakening the 
operator, or changing its sense generates a mutant which can 
only be eliminated by a test point which exactly satisfies 
the predicate. For example changing 

I+2J‹ 3 

to 
I+2J<3 

requires the tester to generate a point on the line 

I+2J=3 

which satisfies the first predicate but which does not 
satisfy the second predicate. 

Twiddle. Twiddle is a unary operator denoted by ++ or 
--, depending on its sense. 	In the FMS.2 system ++a is 
defined to be a+1 if a is an integer and 	a+.01, 	if a is 
real. In the CMS.1 system, ++a is defined to be sensitive 
to the magnitude of a. The complementary operator --a is 
defined similarly. 

Graphically, the effect of twiddle is to move the 
proposed constraint a small distance from the original line 
(see Figure 8). In order to eliminate these mutants, a data 
point must be found which satisfies one constraint but not 
the other and is hence very close to the original line. 
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Other Replacements. 	These operators replace 	data 
references with other syntactically meaningful data 
references and similarly for operators. These effects are 
related to the phenomenon of "spoilers" which are described 
in 5.8. 

The practical effect of considering so many alter-
natives is to increase the total number of data points 
necessary for their elimination. This leads by the domain 
strategy to an increased confidence that the predicate has 
been correctly chosen. 

For comparison, let us work through the program in 
Figure 9, which was used by White, Cohen and Chandrasekaran 
[WCC] to illustrate domain strategies. No specifications 
are given for this program, but the program can be compared 
against a presumably correct version; in any case the 
program is useful since it involves only two input 
variables. 

READ I,J; 
IF I< J+1 

THEN K=I+J-1 
ELSE K=2*I+1; 

IF K> I+1 
THEN L=I+1 
ELSE L=J-1; 

IF 1=5 
THEN M=2*L+K; 
ELSE M=L+2*K-1 

WRITE M; 

Figure 9. 

The program has only three predicates: 

I< J+1, K > 1+1, and 1=5. 

The effect of changing the first of these is typical, so we 
will deal with it. 

Figure 10 is a listing of all the alternatives tried 
for the predicate I=<J+1. 	Some of these are redundant 
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(e.g., 	++I< J+1 	and 	I < --J+1), 	but this 	is merely 	an 
artifact of the generation device; the redundancies can be 
easily removed (see Section 8). 	The alternative predicates 
introduced in this way are illustrated in Figure 	11. 	The 
original predicate line is the heavy line. White et. al. 
hypothesize that the program of Figure 9 contains the 
errors: 

statement/expression 	 should be 

K> I+1 	 K>I+2 
1=5 	 I=5-J 
L=J-1 	 L=I-2 
K=I+J-1 	 THEN IF(2*J<-5*I-40) 

THEN K=3; 
ELSE K=I+J-1; 

We leave of to the reader to verify that attempting to 
eliminate the alternative K >I+2 necessarily ends with the 
discovery of the first error. 	Note that this is not trivial 
since errors 1 and 4 can interact in a subtle way. 	In the 
sequel we show how the remaining errors are dealt with. 
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1. IF(I <J) 
2. IF(I < J+2) 
3. IF(I <J+1) 
4. IF( I < J+J ) 
5. IF(1 < J+1) 
6. IF(2 < J+1 ) 
7. IF(5 < J+1) 
8. IF(I < 1+1) 
9. IF(I < 2+1) 

10. IF(I < 5+1) 
11. IF(I < J+5) 
12. IF(—I< J+1) 
13. IF(++f< J+1) 
14. J+1) 
15. IF(I < -7J+1) 
16. IF(I <++J+1) 
17. IF(I < --J+1) 
18. IF(I < —(J+1)) 
19. IF(I < J-1) 
20. IF(I < MOD(J , 1)) 
21. IF(I < J) 
22. IF(I < 1) 
23. IF(I<J+1) 
24. IF(I=J+1) 
25. IF( .NOT.I=J+1) 
26. IF(I>J+1) 
27. IF(I > J+1) 

Figure 10. 
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The introduction of the unary ++ and -- operators can 
be generalized in several useful ways. In addition to the 
twiddle operators, we consider the unary operator - and the 
extra-syntactic operators ABS (absolute value), -ABS 
(negative absolute value), and ZPUSH (zero push). 	Consider 
the statement 

A=B+C. 

In order to eliminate the mutants 

A= ABS(B)+C, 

A=B+ABS(C), 

and 

A=ABS(B+C), 

we must generate a set of test points in which B is negative 
(so that B+C differs from ABS(B+C), C is negative, and B+C 
is negative ).Notice that if it is impossible for B to be 
negative then this is an equivalent mutation. That is, the 
altered program is equivalent to the original one. In this 
case, the proliferation of these alternatives can either be 
a nuisance or an important documentation aid, depending upon 
the testers' point of view. The topic of equivalent mutants 
will be taken up again later. 

In similar fashion, negative absolute value insertion 
forces the test data to be positive. We use the term domain 
pushing for this process. By analogy to the domain 
strategy, these mutations push the tester into producing 
test cases where the domains satisfy the given requirements. 

Zero Push is an operator defined so that ZPUSH(x) is x 
if x is nonzero, and otherwise is undefined so that the 
mutant dies immediately. Hence the elimination of this 
mutant requires a test point in which the expression x has 
the value zero. 

Applying this process at every point where an absolute 
value sign can be inserted gives a scattering effect. The 
tester is forced to include test cases acting in various 
positions in several problem domains. Very often, in the 
presence of an error, this scattering effect causes a test 
case to be generated in which the error is explicit. 

Returning to the example in Figure 9, we can generate 
the additional alternatives shown in Figure 12. Figure 13 
shows the domains into which these mutants push. Even this 
simple example generates a large number of requirements! 
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1. IF(ABS(I)>J+1) 
2. IF(I>ABS(J)+1) 
3. IF(I>ABS(J+1)) 
4. K=(ABS(I)+J)-1 
5. K=(I+ABS(J))-1 
6. Kr.ABS(I+J)-1 
7. K=ABS((I+J)-1) 
8. K=2*ABS(I)+1 
9. K=ABS(2*I)+1 
10. K=ABS(2*I+1) 
11. IF(ABS(K)<I+1) 
12. IF(K<ABS(I)+1) 
13. IF(K<ABS(I+1)) 
14. L=ABS(I)+1 
15. L=ABS(I+1) 
16. L=ABS(J)-1 
17. L=ABS(J-1) 
18. IF(.NOT.ABS(I)=5) 
19. M=2*ABS(L)+K 
20. M=2*L+ABS(K) 
21. M=ABS(2*L+K) 
22. M=ABS(L)+2*K-1 
23. M=L+2*ABS(K)-1 
24. M=ABS(L+2*K)-1 
25. M=ABS(L+2*K-1) 

Figure 12. 
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One effect of the error L=J-1 is that any test point in 
the area bounded by I=J+1 and I=1 will return an incorrect 
result. 	But this is precisely the area that mutants 8,9, 
and 	10 push us into. So, the error could not have gone un- 
discovered in mutation analysis. 

This process of pushing the tester into producing data 
satisfying some criterion is also often accomplished by 
other mutations. Consider the program in Figure 14, which 
is based on a text reformatter program by Nauer [Nau] and 
which has been previously studied in the program testing 
literature [GG]. 
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alarm:=FALSE 
bufpos:=0; 
fill:=0; 
REPEAT 
incharacter(cw); 
IF cw=BL or cw=NL THEN 

IF fill+bufpos < maxpos THEN 
outcharacter(BL); 

ELSE 
BEGIN 
outcharacter(NL); 
fill:=0; 
FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter(buffer[k]) 
fill:=fill+bufpos; 
bufpos:=0 

END 
ELSE 
IF bufpos = maxpos THEN alarm:=TRUE; 
ELSE BEGIN 
bufpos:=bufpos+1; 
buffer[bufpos]:=cw 

END 
UNTIL alarm or cw=ET 

Figure 14, 
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Consider the mutant which replaces the first statement 
fill:=0 with the statement fill:=1. The effect of this 
mutation is to force a test case to be defined in which the 
first word is less than maxpos characters long. This test 
case then detects one of the five errors originally reported 
in the program [GG]. The surprising thing is that the ef-
fect of this mutation seems to be totally unrelated to the 
statement in which the mutation takes place! 

5.6 Special Values. 	Another form of test which has 
been introduced by Howden [How2] is special values testing. 
Testing of special values is defined in terms of a number of 
"rules". For example: 

1. Every subexpression should be 
tested on at least one test case which 
forces the expression to be zero. 

2. Every variable and every subex-
pression should take on a distinct set 
of values in the test case. 

The relationship between the first rule and domain push-
ing (via zero values mutations) has already been discussed. 
The second rule is undeniably important. If two variables 
are always given the same value then they are not acting as 
free variables and a reference to the first can be uniformly 
replaced with a reference to the second. But this is also 
an error operator and the existence of these mutations en-
forces the goals of Rule 2. 

A slightly more general method of enforcing Rule 2 
might use the following device. A special array exactly as 
large as the number of subexpressions to be computed in the 
program is kept. Each entry in this array has two ad-
ditional tag bits which are intialized to their low values 
indicating that the array is uninitialized. As each subex-
pression is encountered in turn, the value at that point is 
recorded in the array and the first tag bit is set. Sub-
sequently, when the subexpression is again encountered if 
the second tag is still off the current value of the expres-
sion is compared against the recorded value. If these 
values differ the second tag is set to high values; other-
wise no change is made. By counting those expressions in 
which the second tag bit is low and the first is high one 
can infer which expressions have not had their values al-
tered over the test case. Mutations could be constructed to 
reveal this. This technique is similar to one used in a 
compiler system by Hamlet [Ham] 

5.7 Coincidental Correctness. The result of evaluat-
ing a given test point is coincidentally correct if the 
result matches the intended value in spite of a computation 
error. For example, if all our test data results in the 
variable I taking on the values 2 and 0, then the computa-
tion 

J=I*2 
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may be coincidentally correct if the intended calculation 
was 

J=I**2. 

The problem of coincidental correctness is really 
central to program testing. Every programmer who tests an 
incorrect program and fails to find the errors has really 
encountered an instance of coincidental correctness. 	In 
spite of this, 	there has been no direct assault on the 
problem and some authors have gone so far as to say that the 
problems of coincidental correctness are intractable [WCC]. 

In mutation analysis, coincidental correctness is at-
tacked by by the use of spoilers. Spoilers implicitly 
remove from consideration data points for which the results 
could obviously be coincidentally correct -- this "spoils" 
those data points. For example by explicitly creating the 
mutation 

J=I*2 ==> J=I**2 

we spoil those test cases for which 1=0 or 1=2 are 
coincidentally correct and require that at lest one test 
case have an alternative value. 

Continuing with the example of Figure 9, Figures 15 and 
16 show the spoilers and their effects associated with the 
statement M=L+2*K-1. Notice that a single spoiler may be 
associated with up to four different lines depending on the 
outcome of the first two predicates in the program. In 
geometric terms, the effects of the spoilers are that within 
each data domain for each line there must be at least one 
test case which does not lie on the given line. In broad 
terms, the effects of this are to require that a large num-
ber of data points for which the possibilities of 
coincidental correctness are very slight. 
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1. M=(L+1*K)-1 
2. M=(L+3*K)-1 
3. M=(I+2*K)-1 
4. M=(J+2*K)-1 
5. M=(K+2*K)-1 
6. M=(L+2*J)-1 
7. M=(L+2*I)-1 
8. M=(L+2*L)-1 
9. M=(L+I*K)-1 

10. M=(L+J*K)-1 
11. M=(L+K*K)-1 
12. M=(L+L*K)-1 
13. M=(L+2*K)-I 
14. M=(L+2*K)-J 
15. M=(L+2*K)-K 
16. M=(L+2*K)-L 
17. M=(1+2*K)-1 
18. M=(2+2*K)-1 
19. M=(5+2*K)-1 
20. M=(L+2*1)-1 
21. M=(L+2*2)-1 
22. M=(L+2*5)-1 
23. M=(L+5*K)-1 
24. M=(-L+2*K)-1 
25. M=(L+-2*K)-1 
26. M=(L+2*-K)-1 
27. M=(L+2*--K)-1 
28. M=-(L+2*K)-1 
29. M=-((L+2*K)-1) 
30. M=(L+2+K)-1 
31. M=(L+2-K)-1 
32. M=(L+MOD(2,K))-1 
33. M= (L+2/K)-1 
34. M=(L+2**K)-1 
35. M=(L+2)-1 
36. M=(L+K)-1 
37. M=L-2*K-1 
38. M=(MOD(L,2*K))-1 
39. M=L/2*K-1 
40. M=L*2*K-1 
41. M=L**(2*K)-1 
42. M=L-1 
43. M=(2*K)-1 
44. M=L+2*K+1 
45. M=MOD(L+2*K,1) 
46. M=(L+2*K)/1 
47. M=(L+2*K)*1 
48. M=(L+2*K)**1 
49. M=(L+2*K) 
50. M=1 

Figure 15. 
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Often the fact that two expressions are coincidentally 
the same over the input data is a sign of a program error or 
of poor testing. The sorting program of Figure 17 is from 
[Wir], and it performs correctly for a large number of input 
values. If, however, the statements following the IF 
statement are never executed for some loop iteration it is 
possible for R3 to be incorrectly set and an incorrectly 
sorted array will result. 

By constructing the mutant which replaces the statement 

a(R1):=R0 ==> a(R1):=a(R3) 

it is clear that there are two ways of defining RO, only one 
of which is used in the test data. This exposes the error. 
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FOR R1=0 BY 1 TO N BEGIN 
RO:=a(R1); 
FOR R2=R1+1 BY 1 TO N BEGIN 

IF a(R2)>R0 THEN BEGIN 
RO:=a(R2); 
R3:=R2 

END 

END 
R2:=RO; 
a(R1):=RO; 
a(R3):=R2 

END; 

Figure 17 
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5.8 Missing Path Errors. A program contains a missing 
path error if a predicate is required which does not appear 
in the subject program, causing some data to be computed by 
the same function when an altogether different function of 
the input data is called for. The definition is due to How-
den CHow2]. Such missing predicates can really be the 
result of two different problems, however, so we might 
consider the following alternative definitions. 

A program contains a specificational missing path error 
if two cases which are treated differently in the 
specifications are incorrectly combined into a single func-
tion in the program. On the other hand, a program contains 
a computational missing path error if within the domain of a 
single specification a path is missing which is required 
only because of the nature of the algorithm or of the data 
involved. 

An example of a specificational error is the fourth 
error from the example in Section 5.5. Although this error 
might result from a specification there is nothing in the 
code itself which could give any hint that the data in the 
range 

2*J < 5*I -40 

is to be handled any differently than shown in the program. 
As an example of the second class of path error 

consider the subroutine shown in Figure 18, which is adapted 
from [KP]. The input consists of a sorted table of numbers 
and an element which may or may not be in the table. The 
only specification is that upon return 

X(LOW) I A 	X(HIGH) 

and 

HIGH < LOW+1. 

A problem arises if the program is presented with a table of 
only one entry, in which case the program diverges. 

In the specifications there is no clue that a one-entry 
table is to be treated any differently from a k>1 entry 
table. The algorithm makes it a special case. 
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SUBROUTINE BIN(X,N,A,LOW,HIGH) 
INTEGER X(N),N,A,LOW,HIGH 
INTEGER MID 
LOW=1 
HIGH=N 

6 	IF(HIGH-LOW-1)7,12,7 
12 	RETURN 
7 	MID=(LOW+HIGH)/2 

IF(A-X(MID))9,10,10 
9 	HIGH=MID 

GO TO 6 
10 LOW=MID 

GO TO 6 
END 

Figure 18. 
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Computational missing path problems are usually caused 
by requirements to treat certain values (e.g., negative num-
bers) differently from others. When this occurs, data push-
ing and spoiling often lead to the detection of the errors. 
In the example under consideration here an attempt to kill 
either of the mutants 

IF(HIGH-LOW-1)12,12,7 

or 

MID=(LOW+HIGH)-2 

will cause us to generate a test case with a single element. 
Since mutation analysis -- like all testing techniques 

-- deals mainly with the program under test, the problem of 
dealing with specificational missing path errors appears to 
be considerably more difficult. Under the Competent 
Programmer Assumption and the Coupling Effect, however, a 
tester who has access to an "oracle" for the program 
specifications can assume that the mutants cover all program 
behavior! So by consulting the specifications the tester 
can detect missing paths by noting incomplete behavior and 
thus uncover any missing paths. But since the assumptions 
of a competent programmer and coupling are statistical and 
since it may be infeasible to check for incomplete behavior, 
the chances of detecting such missing paths are not certain. 

To see this failure, consider the missing path error 
from section 5.5. It is possible to generate test data 
which is adequate but which fails to detect the missing path 
error because there is no oracle to consult for completeness 
of behavior. This appears to be a fundamental limitation of 
the testing process. Unlike, say, program verification, 
program testing does not require uniform a priori 
specifications; rather we only ask that the tester be able 
to judge correctness on a case-by-case basis. It is our 
view that the only way to attack these problems is to start 
with a core of test cases generated from specifications, in-
dependent of the subject program. This core of test cases 
can then be augmented to achieve stronger goals. We note 
that some preliminary work on generating test data from 
specifications has already been reported [GG,OW]. 

5.9 Missing Statement Errors. By analogy with missing 
path errors, a missing statement error is defined by a 
statement which should appear in the program but which does 
not. 	It is not clear that the techniques of statement 
analysis can be used to uncover these errors. In 	fact, it 
is rather surprising that mutation analysis -- a technique 
which is directly oriented toward examining the effect of a 
modification to a statement -- can be used to detect missing 
statements at all! 

To see how this can be accomplished, consider the 
program shown in Figure 19. This program accepts a vector V 
of length N and returns in MPSUM the value 
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V(i)+V(i+ 1 )+...+ V (N) 

where j=i-1 is the smallest index such that V(j) is strictly 
positive. 	In degenerate cases, MPSUM=0 is returned. 

There is a missing RETURN statement which should follow 
the IF statement. The effect of the error is to cause un-
defined behavior when the vector V is uniformly nonpositive 
(undefined, since DO loop variables are of indeterminate 
value after normal completion of the loop). 

A simple mutation of MPADD is the transformation 

DO 1 I=1,N ==> DO 1 I=1,N+1. 

This mutant fails only when the loop executes N+1 times. In 
this case all elements of V are nonpositive and the original 
program fails, so eliminating this mutant uncovers the 
error. But even after adding the return statement, MPADD 
will still be incorrect due to a missing path error. We 
leave it to the reader to discover the error by considering 
the mutant 

DO 1 I=1,N ==> DO 1 I=1,N-1. 
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SUBROUTINE MPADD(V,N,MPSUM) 
INTEGER V(N),N,MPSUM 
MPSUM = 0 
DO 1 I=1,N 

1 	IF(V(I).GT.0)G0 TO 2 
2 	M=I+1 

DO 3 I=M,N 
3 	MPSUM=MPSUM+V(I) 

RETURN 
END 

Figure 19. 
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6. A CASE STUDY 
To see the effect of mutation analysis on a tester who 

is attempting to locate and remove program errors, it is 
worthwhile to examine a debugging session for a program that 
is not known beforehand to be "testable". This case study 
differs from previous mutation dialogs which we have 
reported [DLS1,DLS2,LS7 in that our previous reports dealt 
with programs strongly believed to be correct, for which 
mutation analysis was used as a tool to increase our con-
fidence in the program's correctness. The subject program 
to be discussed here is known to contain at least one 
"resistant" error; the error had resisted all of the usual 
debugging techniques such as selective traces and statement 
instrumentation. Hence, mutation analysis is used here not 
as a test data evaluator but as a tool for systematic debug-
ging and, perhaps just as importantly, as a convenient run 
time environment for Fortran subroutines. 

The subject program is a routine called NXTLIV. 	It is 
a key routine in the CMS.1 system and can be considered a 
production program for purposes of testing. NXTLIV accepts 
as input the identifying number of a mutant of a given type 
and returns the number of the next live mutant, as indicated 
by bit maps of the live mutants. The bit maps are in 
general too large to fit in an internal array so they must 
be paged from a random access disk file as needed. Similar 
maps of the dead mutants and equivalent mutants are also 
stored. The subject program is shown in Figure 20. 
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SUBROUTINE NXTLIV(MTYPE,MUTNO) 
C FIND THE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MTYPE 
C RETURN THIS VALUE IN MUTNO. 
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS OF THAT TYPE 

REMAIN ALIVE. 
NOLIST 

$INSERT ICS057>CPMS.COMPAR>SYSTEM.PAR 
$INSERT ICS057>CPMS.COMPAR>MACHINE.SIZES.PAR 
$INSERT ICS057>CPMS.COMPAR>FILENM.COM 
$INSERT ICS057>CPMS.COMPAR>TSTDAT.COM 
$INSERT ICS057>CPMS.COMPAR>MSBUF.COM 

LIST 
INTEGER MTYPE,MUTNO 
INTEGER I,J,K,L,WORD,BIT 
LOGICAL ERR 

C 	CALL TIMER1(33) 
C ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS FOR 
C MUTNO IS ALREADY PRESENT, UNLESS MUTN0=0. 

K=BPW-1 
C CHECK TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD 

IF(MUTNO.EQ.0)TO TO 1 
IF(MOD(MUTNO,K*MSFRS).EQ.0)GO TO 24 
GO TO 10 

1 	CALL REARAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 

CALL REARAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 
CALL REARAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 
CHANGD=.FALSE. 
WORD=1 
BIT=2 
GO TO 20 

10 	WORD=MOD((MUTNO)/(K),MSFRS)+1. 
BIT=MOD(MUTNO,K)+2 

20 	DO 22 J=WORD,MSFRS 
L=LIVBUF(J) 
IF(L.NE.0)GO TO 23 
MUTNO=MUTNO+K 
IF(MUTNO.GT.MCT)GO TO 40 
GO TO 22 

23 	DO 21 I=BIT,BPW 
MUTNO=MUTN0+1 

IF(MUTNO.GT.MCT)GOT040 
IF(AND(L,2**(BPW-I)).NE.0)G0 TO 30 

21 	CONTINUE 
BIT=2 

22 	CONTINUE 
24 	OF(.NOT.CHANGD)GOTO 25 
C SAVE OLD RECORDS 

CALL WRTRAN(MSFILE,LIVBUF,MSFRS.LIVPTR,ERR) 
CALL WRTRAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR) 
CALL WRTRAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR) 

C NEED TO GET NEXT RECORDS 
25 	LIVPTR=LIVPTR+MSFRS 
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EQUPTR=EQUPTR+MSFRS 
DEDPTR=DEDPTR+MSFRS 
GO TO 1 

30 	GO TO 9999 
40 	MUTN0=0 

IF(.NOT.CHANGD)GO TO 9999 
C SAVE OLD RECORDS 

CALL WRTRAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR) 
CALL WRTRAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERB) 
CALL WRTRAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR) 

9999 	CONTINUE 
C 	CALL TIMER2 

RETURN 
END 

Figure 20. 
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Since FMS.1 provides a more user—oriented environment 
than FMS.2, NXTLIV was tested using FMS.1. To adapt to the 
smaller Fortran subset of FMS.1, some modifications had to 
be made. Since FMS.1 does not accept PARAMETER statements 
the parameters BPW and MSFRS (from the $INSERT blocks) were 
replaced with typical values. Allowances had to be made for 
the unsupported CALL and the random I/O routines. 	The two 
TIMER calls were ignored. 	Integer arithmetic was used to 
simulate the remaining features. 	To facilitate testing 
several 	parameters 	are 	entered 	as 	explicit formal 
parameters. 

FMS.1 first asks for the parameter values: 
MUTNO = 0 
MCT = 6 (MCT is the total number of mutants of current type) 
CHANGD = 0 
LIVBUF(1)=LIVBUF(2)=7 
LIVBUF(3)=LIVBUF(4)=0 
NLB(1)=...=NLB(4)=0 (NLB is the next live buffer. It should be 

transferred to LIVBUF for use immediately) 
LLB(1)=...=LLB(4)=0 (LLB is the last live buffer) 

Once the data is entered the system executes NXTLIV on 
the test points and responds: 

PARAMETERS ON OUTPUT 
MUTNO = 0 
LIVBUF(1)=0 
LIVBUF(2)=0 
LIVBUF(3)=0 
LIVBUF(4)=0 
LLB(1)=0 
LLB(2)=0 
LLB(3)=0 
LLB(4)=0 
CHANGD=O 

THE RAW PROGRAM TOOK 41 STEPS TO EXECUTE THIS TEST CASE 

The output MUTN0=0 signifies that the end of the live 
mutant map for this type has been reached. The tester then 
informs the system that NXTLIV has worked correctly for this 
test case. 	The first type of mutant to be investigated by 
the tester is SAN 	(Statement Analysis), which replaces 
statements by traps. The FMS.1 mutation report for this run 
is as shown below. 

POST RUN PHASE 
NUMBER OF TEST CASES = 1 
	

NUMBER OF MUTANTS = 44 
NUMBER OF LIVE MUTANTS= 23 
	

PCT. ELIMINATED MUTANTS = 47.73 

Examination shows the mutants shown in Figure 21(a) to 
be still live. 

In attempting to kill these mutants 	the 	tester 
generates the testcases 2 and 3 (see Figure 21(b)). 
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line : 	 statement 	 has been changed to 
1 	  

16 	IIF((MUTNO/12)*12.EQ.MUTNO)G0 TO 24 	 TRAP 
17 	IGO TO 10 	 i 	TRAP 
32 	IWORD=((MUTNU3)-4*((MUTN0/3)/4))+1 	 TRAP 
34 	IBIT=MUTNO-3*(MUTN0/3)+2 	 i 	TRAP 

1 	  
Figure 21(a) 

test 
case 

2 
3 

15 1 

MUTNOIMCTICHANGDILIVBUF 
1 	 :1 	2 	3 i 
1 	 1 

	

1 	1 	6 	0 	17 	7 	0 

	

10 	120 	1 	11 	3 	0 

	

5 	120 	0 	;0 	0 	1 

4 

0 
0 
0 

INLB 
11 2 
1 
10 	0 
17 	7 
11 	1 

3 

0 
0 
1 

ILLB 
4:1 

i 1 
0100 
0199 
1199 

2 

00 
99 
99 

3 

00 
99 
99 

1  
4 

1 1 
001 
99; 
991 

Figure 21(b). 
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Testcase 2 eliminates twelve of the remaining SAN 
mutants. Testcase 3, on the other hand produces the output 

PARAMETERS ON OUTPUT 
MUTN0=14 
LIVBUF(1)=7 
LIVBUF(2)=7 
LIVBUF(3)=7 
LIVBUF(4)=0 
LLB(1)=1 
LLB(2)=3 
LLB(4)=0 
LLB(5)=0 

THE RAW PROGRAM TOOK 56 STEPS TO EXECUTE THIS TEST CASE. 

An error has been detected; the correct output for MUT-
NO is 13 instead of 14. This error resulted from choosing a 
starting point in the middle of a word of zero bits. NXTLIV 
ordinarily searches the bits of each word looking for the 
next "1", but for efficiency a whole word is compared to 
zero before the search is begun. If all bits are set low, 
MUTNO is incremented by the word length and the next word is 
accessed. A correct algorithm would increment MUTNO only by 
the number of bits left to be examined in the word. The 
only way this can make a difference in the original program 
is for NXTLIV to be called in such away as to stop at a "1" 
bit in the middle of the word, which is otherwise all 0's, 
and then by a mutant failure or equivalence (outside the 
routine) to have that bit turned off before NXTLIV is called 
again for the next mutant to be considered. Obviously this 
situation is so rare that it is bound to defy haphazard 
debugging attempts but is none the less common enough to 
cause irritation in a production-sized Cobol run. 

The needed fix is to replace 

MUTNO=MUTNO+K 

by 

MUTNO=MUTNO+(K-(BIT-2)). 

After eliminating all SAN mutants and turning on the 
remaining error operators, a total of eleven test cases kil-
led all but 50 of 1,514 mutants, about 96.7 percent of the 
total. Eventually the tester's attention is directed to the 
mutant at line 45 

BIT=2 ==> 1=2. 

The testcase 	15 in Figure 21(b) is an attempt to eliminate 
this mutant. The program again fails and another error has 
been found. This error is also related to the test for the 
entire word of zeroes. By starting in the middle of a word 
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of zeroes, the BIT pointer is not correctly set to 2 to 
begin searching the next word. The correction is to replace 

BIT=2 
22 	CONTINUE 

by 

22 	BIT=2 

An interesting note is that this "correction" is ac-
tually a mutation that the tester would have had to 
eliminate in any event, so in effect the error was uncovered 
by the coupling effect before it was explicitly considered. 

In completing the analysis of NXTLIV the tester of 
course has to deal with the equivalent mutants. This sub-
ject will be discussed in more detail in a later section. 
The complete analysis of the corrected program required the 
elimination of 1,580 mutants. The corrected algorithm has 
since been running without known failure in CMS.1. 

7. SEEDING AND FAULTS 

There are two previously suggested error detection 
techniques which seem to bear strong resemblence to mutation 
analysis. They arise in different settings and the 
relationship of mutation analysis to both of them has been 
questioned in several private correspondences. One of these 
is the error seeding technique described with several ap-
plications by Gilb [Gil] and the other is fault detection 
[Cha] applied to circuit design. Mutation analysis has al-
most nothing in common with error seeding, but owes a great 
deal to fault detection work in switching theory. 

The idea behind error seeding is to insert "random" 
errors in a program. This approach has been used in several 
studies of the programming and debugging process. In one 
experiment the seeds were used to calibrate the effec-
tiveness of software documentation on its maintainability; 
in another experiment the number of errors in a program is 
estimated by inserting the seeds and then uncovering k 
errors, using the percentage of those k errors which were 
seeded to infer the total number of errors. 

On 	the surface this idea seems very similar to 
mutation. 	Let us look a little more closely at the notion 
of "randomness" which is so crucial to the technique. 
First, if we inspect the results of the experiments 
described in [Gil], we are struck by the lack of resolution. 
In the first experiment described above, for example, "ran-
domly" chosen groups of programmers were given various sets 
of clues about the programs to be debugged. As reported by 
Gilb: "Variations between individuals in homogeneously 
selected groups of programmers are at least 2 to 1 and up to 
10 to 1." 	Furthermore, the interpretations consistent with 
the experimental results tend to be highly suspect: 	"The 
use of test data seems to be less effective than simple 
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source program reading." 
The reason for such results is apparent in the follow-

ing description given by Gilb of the statistical basis for 
using seeding to estimate the total number of errors in a 
program. 

How many fish are there is a pond or a 
lake? Let's say that a reasonably large 
sample of 1000 fish are marked and then 
allowed to mix for a while with the 
total population in the pond. If we 
then take a new sample of 1000 fish and 
find that 50 of these have our markings 
on them, this gives us 20,000 fish as a 
reasonable estimate if we accept the 
original sample as random and the remix-
ing of the fish as homogeneous. 

This seems to be the source of the difficulty. We have 
strong evidence that, first, the fish tend to school in ways 
that are not predictable. So in order to get a truly random 
sample we have to know where to fish beforehand, and second, 
the marked fish show truly idiosyncratic tastes in picking 
their associations in the pond. In particular, there seems 
to be no way at all of insuring that the sample we obtain 
neither underestimates nor overestimates the original 
population by unpredictable amounts. In less prosaic terms 
the preponderance of evidence obtained through mutation 
analysis (see [DLS2,LS] for indicative studies) is that 
errors do not occur with statistical properties that make 
them useful for error seeding studies. Even though they may 
be considered the result of a stochastic process whose 
properties can be determined for small well -defined ag-
gregates ,they are in individual programs sporadic, highly 
non-independent, and not uniformly distributed through the 
code. It is precisely because the inserted errors are ran-
dom that they do not relate in a regular way to the natural 
errors. As we have seen, it takes much care in the choice 
of error operators to insure that specific categories of 
errors are reliably detectable by mutation analysis. 

A hallmark of mutation analysis is that it rests on the 
Competent Programmer Assumption; we explicitly assume that a 
program is not a random object. A program once it is 
created 	contains 	errors 	and 	these 	are 	fixed, 
deterministically located objects. In order for a 
statistical technique to be applicable to a given program a 
considerable number of a priori assumptions must be rather 
fully justified. It is, however, possible to design ex-
periments on fixed populations of programs, whose properties 
are quantifiable, which will reveal statistical properties 
of such hypotheses as the Coupling Effect. But this is an 
entirely different issue. 

To clearly draw the distinction it may be helpful not 
to think of the mutants as being errors, but simply as small 
perturbations of the program's structure. As we have seen, 
these perturbations have the effect of insuring that the 
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test data exercises the program in a thorough fashion. 	If 
the test data is sensitive to the perturbations, then one's 
confidence that what was written was what was intended is 
correspondingly increased. If on the other hand, the test 
data allows one to alter the program significantly without 
changing its apparent behavior, then one has little con-
fidence in the test. 

Finally, mutation analysis has a psycho-social aspect 
that error seeding cannot have. Even if error seeding 
worked perfectly, the assumptions which make it work would 
also insure that it give no information about where the 
remaining natural errors occur (statistical independence 
insures this). Mutation analysis forces a controlled 
reconsideration of the source code. It leads -- as we saw 
in the section preceeding this one -- to a situation in 
which the tester must consider statement x and ask himself 
"why does it not matter if statement x is changed to x'?" 
The possible answers are that statement x is in error, that 
it does matter but the test data does not reveal it, that x 
is equivalent in context to x', or that the programmer does 
not understand statement x and is unable to give a reason. 
In each situation information about the program, about the 
test, and about the programmer is revealed. 

Fault detection experimentation is a classical tech-
nique for detecting faults in switching circuits. The 
crucial idea is that one systematically "faults" circuit 
elements and examines the input-output function of the 
resulting circuit by comparing it to the original circuit 
[Cha]. This is the key idea of mutation analysis. There 
are, however, some essential differences which make mutation 
analysis applicable on a larger scale. First, the principle 
use of fault detection is to check circuit deterioration, 
not to validate design. Second, because circuits tend not 
to be functionally organized the technqiue is exhaustive 
when applied to design testing (for deterioration ex-
periments there is frequently fault data available to guide 
the experimenter). In essence, the approach adopted by 
mutation analysis is fault detection applied to systems of 
high functionality in the presence of the Competence 
Programmer Hypothesis and the Coupling Effect. This sug-
gests that perhaps mutation analysis in its automated form 
can be used for circuit validation. Perhaps, although the 
lack of functional description at the switching element 
level makes it hard to avoid the exhaustive and therefore 
combinatorially explosive growth of the test cases. But 
technology has grown in an unexpected direction in the last 
twenty years, and the digital design techniques of today 
seem to be not ill-suited to mutation analysis. In 
preliminary hand studies to be reported elsewhere, we have 
used the mutation analysis approach to test micro-coded cir-
cuit designs with surprising success. 

8. THE PROBLEM OF MUTANT EQUIVALENCE 
Experience indicates that in production programs, the 
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number of equivalent mutants can vary between 2% and 5% of 
the total mutant count. In more finely tuned program (see, 
eg, our analysis of FIND in [DLS1] and Burns' analysis of 
sorting routines [Bur]), however it is common for source 
statements to appear in a particular form solely for ef- 
ficiency reasons. 	In these program such statements can be 
altered without affecting the output behavior. 	A typical 
example of this behavior is beginning a loop at 2 instead of 
1 or 0, so that a mutation which changes 

2 ==> 1 

for example, 	causes an extra iteration but does not alter 
the outcome of the looping operation. 	In tuned programs, 
the equivalent mutants can comprise as much as 10% of the 
total. 

It is easy to show that equivalent mutant detection is 
a formally undecidable problem (note that equivalent mutant 
detection is not obviously the same problem as the general 
equivalence problem for program schemata [Mann. Assume a 
fixed programming language which is expressive enough to al-
low the programming of all recursive functions, and let P1 
and P2 be arbitrary procedures written in the language. 
Since "goto" mutations are meaningful and likely mutations, 
consider the following program to which goto replacement has 
been applied. 

goto L; 	 go to M; 
L:P1;halt; 	 = = > 	L:P1;halt; 
M:P2;halt; 
	

M:P2;halt; 

Clearly, these two programs are equivalent (that is, they 
either halt together and deliver the same output or they 
diverge together) if and only if P1 and P2 are equivalent, 
and that is undecidable for the language described above. 
In fact, our choice of language is needlessly complex; es-
sentially the same proof holds for the Fortran subset accep-
ted by FMS.1 and the Cobol subset accepted by CMS.1. 

In spite of this, most equivalent mutants are stylized 
and rather easy to judge equivalent. This is perhaps due to 
the Competent Programmer Assumption: the subject program 
and an allegedly equivalent mutant are not chosen randomly 
-- in fact, they are chosen by a very careful sieving of all 
possible programs and the structure of this relationship 
should be something that one can exploit in determining 
mutant equivalence. 

Before we proceed it may be instructive to examine a 
few instances of equivalent mutants which show this struc-
ture. In the analysis of SCAN (see Section 2), a relatively 
large number of mutants resulting from the transformation 

X ==> RETURN 

appear as live mutants on even very good test data. On 
closer examination, however, most of these reveal that 
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X = GO TO 90, 

where statement labelled 90 is itself a RETURN. 	The 
programmer's style is to always jump to a common RETURN 
statement, allowing an easy "proof" of equivalence. 

For a more pregnant example, let us return to the 
NXTLIV routine described above. A principal source of 
equivalent mutants in that example was the troublesome test 
for a word of zeroes. Its only purpose is to save the ef-
fort of looking through the words bit by bit. If the condi-
tion is the test is replaced by any identically true expres-
sion, the program runs a bit longer but is otherwise 
identical(see Figure 22(a)). Similarly the mutation shown 
in Figure 22(b), changes the performance of the program on-
ly, but this time it improves it! 
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IF(L.NE.0)GOTO 23 ==> IF(12.NE.0)G0 TO 23 
(applied at line 34) 

Figure 22(a) 

IF(MUTNO.GT.MCT)GOTO 40 ==> IF(MUTNO.GE.MCT)GOTO 40 
(applied at line 36) 

Figure 22(b). 

Figure 22. 
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These last two examples are not accidental. Mutations 
of a program are remarkably similar to simple trans-
formations that are made in code optimization; it is not 
surprising that some of them should turn out to be optimiz-
ing or de-optimizing transformations. Conversely, correct-
ness preserving optimizing transformations should be ap-
plicable to detecting equivalent mutants. If this is a 
useful heuristic then the task of identifying equivalent 
mutants can be reduced to detecting those which are 
equivalent for an interesting reason. 

Almost all of the techniques used in optimizing com-
piled code can be applied in some way to decide whether a 
mutant is equivalent to the subject program. Some optimiz-
ing transformations are widely applicable while others are 
severely limited in scope. We will give a sampling of the 
useful transformations. For terminology and detailed 
discussions see CAU,Sch]. 

8.1 Constant Propagation. Constant propagation invol-
ves replacing constants to eliminate run-time evaluation. A 
typical optimizing transformation would replace statement 3 
as shown below 

1 	A=1 
	

1 	A=1 
2 	B=2 	==> 	2 	B=2 
3 	C=A+B 
	

3 	C=3 

There are several elegant schemes for global transformations 
of this form. 

Constant propagation is most useful for detecting cases 
in which a mutant is not equivalent to the subject program; 
any change which can affect the known value of a variable 
can be detected in this fashion. The mechanism for testing 
equivalence of mutants using constant propagation is to com-
pare at all points after the mutation site the constants 
which are globally propagated through the program. If they 
differ it is likely that the programs are not equivalent. 
The test is certain if there is a RETURN, HALT or some other 
exit statement in which the set of associated constants 
contains an output variable and if there is a path from the 
entry point of the program to the exit point. This is 
resolvable by dead code detection (see 8.6). 

8.2 	Invariant 	Propagation. 	Invariant propagation 
generalizes constant propagation by associating with each 
statement a set of invariant relations between data elements 
(e.g., 	X<0 or B=1). 	Although invariant propagation has met 
with limited applicability in compiler design, 	it is a 
powerful technique for detecting equivalent mutants, 
particularly those involving relational mutant operators. 
These operators frequently only affect an expression if it 
has a certain relationship to 0. For example ;x; changes 
the value of x only if x<0. 	In the program-mutant pair 

IF(A.LT.0)GOTO1 	 IF(A.LT.0)GOTO1 
B=A 
	 ==> 	B=ABS(A) 
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the conditional allows us to determine the invariant (A>=0) 
and this allows us to determine that the program and its 
mutant are equivalent since the absolute value of a positive 
number is that number. 

Invariant propagation is enhanced if the propagation and 
testing algorithms exploit transitivity of the relations and 
allow the replacement of an invariant by a weaker one. 

8.3 Common Subexpressions. Perhaps the most common op-
timization is to recognize calculations which are repeated 
but which can be pre-computed. For example 

A=X+Y 
B=X+Y+Z 

calculates X+Y twice, but can be replaced by a program which 
uses a temporary variable to hold X+Y. 

A common iterative algorithm for eliminating common 
subexpressions uses global analysis to associate with each 
statement the propagated variables, but this time 
partitioned into equivalence classes under the equivalence 
of evaluating to the same value. Since this method 
generates equivalent expressions not used in the program, 
the widest possible range of equivalent subexpressions is 
recognized. This is a very useful technique for dealing 
with mutations to assignment statements. Changing an 
operator changes the equivalence class of the variable to 
which the assignment was made. Similarly mutations which 
change an operand or destination in an assignment will 
produce changes in the equivalence classes following the as-
signment. Therefore, comparing the equivalence partitions 
can demonstrate differences between the subject and the 
mutation. 

Consider the mutation 

A=B+C (partition = A;B+C) ==> A=B-C (partition = A;B-C) 

Comparing the partitions shows that A has a different value 
in the two programs. 

The same ideas are used to show equivalence. If a 
mutation has changed part of expression E to an expression 
E' but E and E' are in the same equivalence class, then the 
mutant is equivalent. 

8.4 Loop Invariants. 	Another common transformation 
removes code from inside loops if the execution of that code 
does not depend on the iteration of the loop. Since many 
mutations change the boundaries of loops techniques for 
recognizing this invariance is useful for detecting 
equivalent mutants. In those cases where the mutation 
either increases or decreases the code within a loop, loop 
invariant recognition can be used to decide whether or not 
the effect of the loop is changed. In the following 
mutation, excess code is brought within the scope of the DO 
statement. 
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DO 1 1=1,10 	= = > 
	

DO 2 1=1,10 
A(I)=0 
	

A(I)=0 
1 	CONTINUE 
	

1 	CONTINUE 
2 	B=0 
	

2 	B=0 

Since the assignment B=0 is loop invariant, it does not mat-
ter how many times it is executed. 

8.5 Hoisting and Sinking. 	Hoisting and sinking is a 
form of code removal from loops in which code which will be 
repeatedly executed is moved to a point where it will be 
executed only once; this is accomplished by a calculus which 
gives strict conditions on when a block of code can be moved 
up (hoisted) or down (sunk). 

The applications for equivalence testing are similar to 
the applications for loop invariants. The major difference 
is that hoisting and sinking applies to cases in which code 
is included or excluded along an execution path by branching 
changes. These are the sorts of changes obtained by GOTO 
replacement and statement deletion mutations. In these 
cases, we get equivalence if the added or deleted code can 
be hoisted or sunk out of the block involved in the addition 
or deletion. 

An example will illustrate. 

IF(A.EQ.0)GOTO1 	==> 	 IF(A.EQ.0)GOTO 2 
A=A+1 	 A=A+1 

2 	B=0 	 2 	B=0 
GO TO 3 	 GO TO 3 

1 	B=0 	 1 	B=0 
3 	 3 

In this example B is set to 0 regardless of whether it 
is assigned its value at line 1 or at line 2. The assig-
nment to B can be hoisted as follows: 

B=0 
IF(A.EQ.0)GO TO 3 
A=A+1 

3 

Since 	both 	programs 	are thus transformed, they are 
equivalent. 

8.6 Dead Code. Dead Code detection is geared toward 
identifying sections of code which cannot be executed or 
whose execution has no effect. Dead code algorithms exist 
for detecting several varieties of dead code situations. We 
have already used dead code analysis as a subproblem in the 
propagation problems above. Dead code analysis is also 
useful to directly test equivalence, particularly for those 
mutations arising from an alteration of control flow. 

A typical application is to analyze the program flow- 

PAGE 66 



graphs. 	If, for example, a mutation disconnects the graph 
and neither connected component consists entirely of dead 
statements, then the mutant cannot be equivalent. Such 
disconnection is possible by the mutant which inserts 
RETURNs in Fortran subroutines. 

Another common situation involves applying mutations to 
sites in a program which are themselves dead code; this is 
the classical compiler code optimization problem: we must 
detect dead code since any mutations applied to it are 
equivalent. 

Dead code analysis can also 	be 	used 	to 	show 
nonequivalence by using it to demonstrate that a mutation 
has "killed" a block of code. 

8.7 Postprocessing the Mutants. 	Optimizing trans- 
formations can be implemented as a postprocessor to a muta-
tion system. User experience is that it is relatively easy 
to kill as may as 90% of the live mutants. To the remaining 
10%, an equivalence heuristic such as the rules sketched 
above can be applied. A more complete description of such a 
postprocessor is available in [BaS]. 

The difficulty of judging equivalent mutants from those 
remaining after the postprocessing stage both helps and hin-
ders the testing process. On one hand, forcing testers and 
programmers to "sign off" on equivalent mutants enforces a 
unique sort of accountability in the testing phase of 
program development (see Section 9). On the other hand, 
particularly clever programming leads to many equivalent 
mutants whose equivalence is rather a nuisance to judge; 
carelessness for these programs may lead to error proneness. 
Our experience, however, is that production programs present 
no special difficulties in this regard. 

9. FURTHER APPLICATIONS OF MUTATION 

9.1 	Programming Tool. 	A tester specifies to 	an 
automatic mutation system: 

(1). a program, 
(2). test data, 
(3). a list of error operators to be applied. 

The system generates and executes the required mutants on 
the test data, "killing" those which are judged incorrect 
vis a vis the execution of the subject program. The system 
also produces reports which the user may examine and use in 
subsequent attempts to eliminate mutants. This cycle may be 
viewed as a series of interactive sessions in which the user 
plays the role of an advocate who defends the program and 
the system plays the role of an adversary which asks 
questions of the form: why does your test data not 
distinguish this simple error? 

If the mutation system also provides the user a 
pleasant runtime environment in which to write programs, the 
advocate-adversary relationship can be used to add an im-
portant dimension to the process of programming. Two of us 
have argued for the importance of "social" filters in the 
creative process [DLP]; mutation analysis applied during the 
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program design stage can be used to simulate an essential 
social process. We have observed in our own programming ef-
forts and in the reported efforts of others, a tendency to 
communicate programs to others -- obviously the act of ver-
balizing ideas that had previously existed ethereally has a 
way of setting our intuitions (teachers have noted this 
phenomenon also). The typical exchange involves the 
programmer and a friendly but skeptical observer. As the 
programmer explains his code, the observer (even, if as is 
usually the case, he does not really understand the code) 
asks the sort of questions that one expects from a minimally 
attentive audience: 	"Why is that inequality not strict?", 
"Is that the same variable used at line 30?" 	In response to 
each such question, the programmer is forced to re-examine a 
fixed line of code and meet the objection -- he either 
justifies his decision to the observer, uncovers an error, 
or must admit that he really does not understand why the 
choice was made. In all three cases, the programmer 
receives valuable feedback that he is unlikely to have 
deduced by introspective analysis of the program. 

The adversary role of a mutation system always forces 
the user into a careful and detailed review of his program 
and the design decisions made in constructing it. The 
mutations are like the minimally attentive observer who now 
and then chimes in with: "I don't believe that -- justify 
it!" Since it is a controlled form of "pointing" at the 
code which requires substantial cooperation from the user 
(his justification is a test case) such interactive use does 
in fact simulate an important aspect of the social process. 

9.2 Project Management. Of the emerging approaches to 
software design, implementation and debugging -- however 
helpful they may be to programmers and local managers --
there are few that can be utilized throughout the project 
management hierarchy. Structured methods, program verifica- 
tion and restricted modularization are essentially 
qualitative, not quantitative, and managers should not be 
expected to understand the qualitative basis for the low-
level decisions. 

In addition to their primary function as evaluators of 
test data, mutation systems record a great deal of informa-
tion which can be used to influence decision-making 
throughout the project hierarchy. Various management-
oriented repackagings of the information relating to mutant 
failure percentages for each module (indicating how close 
the software is to being acceptable), who has responsibility 
for classifying which mutants as equivalent, and which 
mutants have yet to fail project management can: 

(1) reassign personnel to work on modules with 
low mutant failure rates, 

(2) pinpoint responsibility for modules which fail 
after acceptance, 

(3) use audits to force justification of why 
equivalent mutants exist, 

(4) monitor adherence to project PERT charts, and 
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(5) offer rewards and incentives to programmers 
who achieve high mutant failure rates. 

Obviously, the information reported to managers varies 
with the level of the manager, but a safe rule of thumb is 
that the higher in the organization a request for informa-
tion originates, the less detailed is the expected response. 
Project Manager's Report 

The project manager periodically meets with the chief 
programmers to evaluate the project's status. Also, the as-
signment of personnel and evaluation of personnel per-
formance are carried out at this level. A useful report for 
a manager at this level will contain: 

(1) the name of each module 
(2) the chief programmer responsible for each module 
(3) plots of mutant eliminations vs. time for each 

major submodule 
(4) summary statistics such as number and percentage 

of equivalent mutants, 
(5) the number and type of personnel assigned to 

each major submodule 
Chief Programmer's Report 

A chief programmer should be familiar with the actual 
coding of each submodule, although he is not always directly 
involved in the coding effort. 	He meets daily with his 
team. 	The type of information needed by the chief program- 
mer would certainly encompass: 

(1)-(5) for the project manager 
(6) listings of equivalent mutants 
(7) logs assigning responsibility for classifying 

mutants as equivalent. 
In addition to the goals outlined above, this informa-

tion has the effect of suggesting possible additional mutant 
operators for a given submodule. Notice that the chief 
programmer assumes the responsibility for asking a program-
mer to justify mutant equivalence; assuming a postprocessor 
such as the one described in Section 8, these equivalent 
mutants should be largely non-trivial equivalences. A chief 
programmer may want to know for instance why it does not 
matter if a certain variable name can be changed without ef-
fect on the submodule, why the module is so insensitive to 
the mutation. 

In the last analysis, it will be the chief programmer 
who determines that a given submodule has been acceptably 
tested and who will prepare evidence supporting his decision 
for the project manager. 
Programmer's and Tester's Report 

With the exception of the personnel reports, the 
programmer has access to all of the information supplied to 
the levels above him. He also has access to all listings, 
so can use the reporting mechanism to augment test data, 
augment mutant operators, classify equivalent mutants, and 
determine the adequacy of the test, all as described above. 

9.3 Acceptance and Certification. The degree to which 
one has confidence in the competent programmer hypothesis 
and the coupling effect for the given set of mutant 
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operators determines the confidence that the mutant elimina-
tion percentage reflects the error-freeness of a program. 
However, in the absence of strong information in this 
regard, mutation analysis is an objective ranking device. 
Low elimination percentages are less desirable than high 
elimination percentages; furthermore, even though the boun-
dary may be rather fuzzy, it is rather easy to reject ob-
viously inadequate test data sets. This observation coupled 
with the fact that if all that is desired is an indication 
of the strength of a previously produced test data set then 
virtually no human interaction is required to produce the 
analysis leads one to consider the use of mutation analysis 
for software procurement testing. 

Since acceptance testing should be the final stage of 
the development process, a buyer can specify at what point 
the testing begins. Assuming that the developer is using 
testing technqiues with the sensitivity of mutation, the 
buyer can monitor progress. To evaluate the delivered 
software (or advertised software in the increasingly active 
mail market for small system software), one may specify 
contractually that the developer must present a convincing 
case that he is not delivering "rigged" tests -- one way of 
doing this is to specify a minimal mutant elimination per-
centage. Many options ensue. Software not passing this 
minimal certification may be rejected with significant 
financial penalty to the developer. In this case it is not 
essential that the developer use a mutation system to 
develop the tests. It is important to note that no more 
significance should be attatched to the level of performance 
required for acceptance than for, say the third-party test-
ing of refrigerators by a well-known certifying or- 
ganization; the certification merely establishes the 
likelihood that the developer has spent considerable effort 
in testing his software. Thereafter, the buyer's confidence 
will more likely be affected by nontechnical issues, such as 
the developers performance on similar projects. 

10. CONCLUDING REMARKS 
A program passes a mutation test with a set of test 

data D if it behave correctly on D and each mutant either 
fails to work as specified or is equivalent to the program. 
When a program passes such a test, we are sure that it is 
free from simple errors. In order to insure that such a 
program is also free from complex errors, one must appeal to 
an empirical principle called the coupling effect which 
states that such a set of test data is so sensitive that 
non-equivalent (complex) mutants are also likely to fail on 
D. The conceptual justification for the coupling effect 
parallels the probabilistic arguments used to justify the 
single fault methods used to test logic circuits [Chang]. 
We have presented a combination of empirical evidence and 
plausibility arguments in support of the coupling effect. 
This leads to the metatheorem of mutation analysis: 

If P passes mutation analysis then either 
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(1) P is correct, or 
(2) P is radically incorrect. 

The Competent Programmer Hypothesis states that ex-
perienced programmers tend to write programs that differ 
from correct ones by simple errors and hence possibility (2) 
of the metatheorem is rather unlikely. 

In order that the mutation analysis technique be 
feasible, it is necessary that: 

(1) the set of simple mutants be small, 
(2) errors be reliably detected by the analysis, and 
(3) the question of equivalence be reducible to 

a small subproblem. 
In the foregoing, we have presented our 	current 

knowledge with regard to these issues. Our experience has 
been encouraging. Even if the goals of mutation analysis 
are rather more optimistic than is warranted, the basis of a 
modelling strategy is emerging; it appears that it is pos-
sible to generate testable hypotheses concerning the 
programming process. We can only hope that future research 
by us and others will shed some light on this fascinating, 
important, but little understood, activity. 
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APPENDIX 

CMS.1 SESSION SCRIPT 

WELCOME TO THE COBOL PILOT MUTATION SYSTEM 
PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:>LOG-CHANGES 
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?>YES 
PARSING PROGRAM 
SAVING INTERNAL FORM 
WHAT PERCENTAGE OF MUTANTS DO YOU WANT TO CREATE?>100 
CREATING MUTANT DESCRIPTOR RECORDS 
PRE-RUN PHASE 
DO YOU WANT TO SUBMIT A TEST CASE ? >PROGRAM 

1 IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. POQAACA. 
3 	AUTHOR. CPT R W MOREHEAD. 
4 	INSTALLATION. HQS USACSC. 
5 	DATE-WRITTEN. OCT 1973. 
6 	REMARKS. 
7 	THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN THE ETF. 
8 	ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE 
9 	OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO 
10 	FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A 
11 	LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS 
12 	FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD. 
13 	***************** 
14 	MODIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE 
15 	JULY, 1979. 
16 	ENVIRONMENT DIVISION. 
17 	CONFIGURATION SECTION. 
18 	SOURCE-COMPUTER. PRIME. 
19 	OBJECT-COMPUTER. PRIME. 
20 	INPUT-OUTPUT SECTION. 
21 	FILE-CONTROL. 
22 	SELECT OLD-ETF ASSIGN INPUT4. 
23 	SELECT NEW-ETF ASSIGN INPUT8. 
24 	SELECT PRNTR ASSIGN TO OUTPUT9. 
25 	DATA DIVISION. 
26 	FILE SECTION. 
27 	FD OLD-ETF 
28 	RECORD CONTAINS 80 CHARACTERS 
29 	LABEL RECORDS ARE STANDARD 
30 	DATA RECORD IS OLD-REC. 
31 	01 OLD-REC. 
32 	03 FILLER 	 PIC X. 
33 	03 OLD-KEY 	 PIC X(12). 
34 	03 FILLER 	 PIC X(67). 
35 	FD NEW-ETF 
36 	RECORD CONTAINS 80 CHARACTERS 
37 	LABEL RECORDS ARE STANDARD 
38 	DATA RECORD IS NEW-REC. 
39 	01 NEW-REC. 
40 	03 FILLER 	 PIC X. 
41 	03 NEW-KEY 	 PIC X(12). 
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42 
43 
44 
45 
46 
47 
48 

03 	FILLER 
FD 	PRNTR 

RECORD CONTAINS 40 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS PRNT-LINE. 

01 	PRNT-LINE 
WORKING-STORAGE SECTION. 

PIC 	X(67). 

PIC X(40). 

49 01 	PRNT-WORK-AREA. 
50 03 	LINE1 PIC X(30). 
51 03 	LINE2 PIC X(30). 
52 03 	LINES PIC X(20). 
53 01 	PRNT-OUT-OLD. 
54 03 	WS-LN-1. 
55 05 	FILLER PIC X VALUE SPACE. 
56 05 	FILLER PIC XXXX VALUE '0 
57 05 	LN1 PIC X(30). 
58 05 	FILLER PIC XXX VALUE SPACES. 
59 03 	WS-LN-2. 
60 05 	FILLER PIC X VALUE SPACE. 
61 05 	FILLER PIC XXXX VALUE 'L 
62 05 	LN2 PIC X(30). 
63 05 	FILLER PIC XXX VALUE SPACES. 
64 03 	WS-LN-3. 
65 05 	FILLER PIC X VALUE SPACE. 
66 05 	FILLER PIC XXXX VALUE 	'D 
67 05 	LN3 PIC X(20). 
68 05 	FILLER PIC XXX 	VALUE SPACE. 
69 01 	PRNT-NEW-OUT. 
70 03 	NEW-LN-1. 
71 05 	FILLER PIC XXXXX VALUE 	' N 
72 05 	N-LN1 PIC X(30). 
73 05 	FILLER PIC XXX VALUE SPACE. 
74 03 	NEW-LN-2. 
75 05 	FILLER PIC XXXXX VALUE ' E 
76 05 	N-LN2 PIC X(30). 
77 05 	FILLER PIC XXX VALUE SPACES. 
78 03 	NEW-LN-3. 
79 05 	FILLER PIC XXXXX VALUE ' W 
80 05 	N-LN3 PIC X(20). 
81 05 	FILLER PIC XXX VALUE SPACES. 
82 PROCEDURE DIVISION. 
83 0100-OPENS. 
84 OPEN INPUT OLD-ETF NEW-ETF. 
85 OPEN OUTPUT PRNTR. 
86 0110-OLD-READ. 
87 READ OLD-ETF AT END GO TO 0160-OLD-EOF. 
88 0120-NEW-READ. 
89 READ NEW-ETF AT END GO TO 0170-NEW-EOF. 
90 0130-COMPARES. 

91 IF OLD-KEY = NEW-KEY 
92 NEXT SENTENCE 
93 ELSE GO TO 0140-CK-ADD-DEL. 
94 IF OLD-REC = NEW-REC 
95 GO TO 0110-OLD-READ. 
96 MOVE OLD-REC TO PRNT-WORK-AREA. 
97 PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
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98 	MOVE NEW-REC TO PRNT-WORK-AREA. 
99 	PERFORM 0200-NW-WRT THRU 0200-EXIT. 
100 	GO TO 0110-OLD-READ. 
101 	0140-CK-ADD-DEL. 
102 	IF OLD-KEY > NEW-KEY 
103 	 MOVE NEW-REC TO PRNT-WORK-AREA 
104 	 PERFORM 0200-NW-WRT THRU 0200-EXIT 
105 	 GO TO 0120-NEW-READ 
106 	ELSE GO TO 0150-CK-ADD-DEL. 
107 	0150-CK-ADD-DEL. 
108 	MOVE OLD-REC TO PRNT-WORK-AREA. 
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
110 	READ OLD-ETF AT END 
111 	 MOVE NEW-REC TO PRNT-WORK-AREA 
112 	 PERFORM 0200-NW-WRT THRU 0200-EXIT 
113 	 GO TO 0160-OLD-EOF. 
114 	GO TO 0130-COMPARES. 
115 	0160-OLD-EOF. 
116 	READ NEW-ETF AT END GO TO 0180-EOJ. 
117 	MOVE NEW-REC TO PRNT-WORK-AREA. 
118 	PERFORM 0200-NW-WRT THRU 0200-EXIT. 
119 	GO TO 0160-OLD-EOF. 
120 	0170-NEW-EOF. 
121 	MOVE OLD-REC TO PRNT-WORK-AREA. 
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
123 	READ OLD-ETF AT END GO TO 0180-EOJ. 
124 	GO TO 0170-NEW-EOF. 
125 	0180-EOJ. 
126 	CLOSE OLD-ETF NEW-ETF PRNTR. 
127 	STOP RUN. 
128 	0200-NW-WRT. 
129 	MOVE LINE1 TO N-LN1. 
130 	MOVE LINE2 TO N-LN2. 
131 	MOVE LINE3 TO N-LN3. 
132 	WRITE PRNT-LINE FROM NEW-LN-1 AFTER ADVANCING 2. 
133 	WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1. 
134 	WRITE PRNT-LINE FROM NEW-LN-3 AFTER ADVANCING 1. 
135 	0200-EXIT. 
136 	EXIT. 
137 	0210-OLD-WRT. 
38 	MOVE LINE1 TO LN1. 
139 	MOVE LINE2 TO LN2. 
140 	MOVE LINE3 TO LN3. 
141 	WRITE PRNT-LINE FROM WS-LN-1 AFTER ADVANCING 2. 
142 	WRITE PRNT-LINE FROM WS-LN-2 AFTER ADVANCING 1. 
143 	WRITE PRNT-LINE FROM WS-LN-3 AFTER ADVANCING 1. 
144 	0210-EXIT. 
145 	EXIT. 

>YES 

A test case for this program is a pair of input 
files. In CMS.1 these may be created outside the 
system and referenced by name, or may be entered "on 
'he fly". 

WHERE IS OLD-ETF? 
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>LC9 
WHERE IS NEW-ETF? 
>LC6 
OLD-ETF AS USED BY THE PROGRAM 

I123456789012IIIIIIIIII0JJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

NEW-ETF AS USED BY THE PROGRAM 

113345678901200000000000000000000000000000000000000000000000000000000000000000 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

PRNTR AS USED BY THE PROGRAM 

O I12345678901211111111110JJJJJJ 
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

N 	113345678901200000000000000000 
E 000000000000000000000000000000 
W 00000000000000000000 

O J234567890123YYYYYYYYYYGGGGGGG 
L GGGFFFFFFFFFFODDDDDDDDDSSSSSSS 
D SSSXXXXXXXXXXEEEEEEE 

N J234567890123YYYYYYYYYYGGGGGGG 
E GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS 
W SSSXXXXXXXXXXEEEEEEE 

N 345678901234UUUUUUUUUUHHHHHHH 
E HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS 
W SSSEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 84 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >YES 
DO YOU WANT TO SUBMIT A TEST CASE ? >NO 
MUTATION PHASE 
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? 	>SELECT 

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME. 

4 **** INSERT FILLER TYPE 	**** 
5 **** FILLER SIZE ALTERATION TYPE 	**** 
6 **** ELEMENTARY ITEM REVERSAL TYPE 	**** 

7 **** FILE REFERENCE ALTERATION TYPE 	**** 

8 **** STATEMENT DELETION TYPE 	**** 
10 **** PERFORM --> GO TO TYPE 	**** 
11 **** THEN - ELSE REVERSAL TYPE 	**** 
12 **** STOP STATEMENT SUBSTITUTION TYPE 	**** 

13 **** THRU CLAUSE EXTENSION TYPE 	**** 
14 **** TRAP STATEMENT REPLACEMENT TYPE 	**** 

20 **** LOGICAL OPERATOR REPLACEMENT TYPE 	**** 
21 **** SCALAR FOR SCALAR REPLACEMENT 	**** 
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22 **** CONSTANT FOR CONSTANT REPLACEMENT **** 
23 **** CONSTANT FOR SCALAR REPLACEMENT **** 
25 **** CONSTANT ADJUSTMENT 	**** 

TYPES ? > 4 TO 14 STOP 
MUTANT STATUS 

TYPE TOTAL 	LIVE PCT 
INSERT 41 7 82.93 
FILLSZ 38 14 63.16 
ITEMRV 21 0 100.00 
FILES 5 1 80.00 
DELETE 54 13 75.93 
PER GO 7 2 71.43 
IF REV 3 1 66.67 
STOP 53 10 81.13 
THRU 8 2 75.00 
TRAP 54 10 81.48 

TOTALS 

284 60 78.87 
DO YOU WANT TO SEE THE LIVE MUTANTS?>NO 
LOOP OR HALT ? >LOOP 
PRE-RUN PHASE 
DO YOU WANT TO SUBMIT A TEST CASE ? >YES 
WHERE IS OLD-ETF? 

>LC 15 
WHERE IS NEW-ETF? 
>LC5 
OLD-ETF AS USED BY THE PROGRAM 

0000 000000012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
I123456789012IIIIIIIIIIJJJjJJjJjjKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

NEW-ETF AS USED BY THE PROGRAM 

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLULLLULLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

PRNTR AS USED BY THE PROGRAM 

O 0000000000012IIIIIIIIIIJJJJJJJ 
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

THE PROGRAM TOOK 44 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >YES 
DO YOU WANT TO SUBMIT A TEST CASE ? >YES 
WHERE IS OLD-ETF? 
>LC14 
WHERE IS NEW-ETF? 
>LC5 
OLD-ETF AS USED BY THE PROGRAM 



I 12 3 4 56789012IIIIIIIIIIKJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

NEW-ETF AS USED BY THE PROGRAM 

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLULLLULLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

PRNTR AS USED BY THE PROGRAM 

O I123456789012IIIIIIIIIIKJJJJJJ 
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

N 	1123456789012IIIIIIIIIIJJJJJJJ 
E JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
W NNNBBBBBBBBBBGGGGGGG 

THE PROGRAM TOOK 48 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >YES 
DO YOU WANT TO SUBMIT A TEST CASE ? >YES 
WHERE IS OLD-ETF? 
>LC11 
WHERE IS NEW-ETF? 

>LC1 
OLD-ETF AS USED BY THE PROGRAM 

00000000000000000000000000000000000000000000 

NEW-ETF AS USED BY THE PROGRAM 

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

PRNTR AS USED BY THE PROGRAM 

O 000000000000000000000000000000 
L 00000000000000 
D 

N 	I123456789012IIIIIIIIIIJJJJJJJ 
E 	JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
W NNNBBBBBBBBBBGGGGGGG 

N 	J234567890123YYYYYYYYYYGGGGGGG 
E GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS 
W SSSXXXXXXXXXXEEEEEEE 

N 	345678901234UUUUUUUUUUHHHHHHH 
E HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS 
W SSSEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 64 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >YES 
DO YOU WANT TO SUBMIT A TEST CASE ? >YES 
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WHERE IS OLD-ETF? 
>LC1 
WHERE IS NEW-ETF? 
>LC11 
OLD-ETF AS USED BY THE PROGRAM 

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

NEW-ETF AS USED BY THE PROGRAM 

00000000000000000000000000000000000000000000 

PRNTR AS USED BY THE PROGRAM 

N 	000000000000000000000000000000 
E 	00000000000000 
W 

O I123456789012IIIIIIIIIIJJJJJJJ 
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

O J234567890123YYYYYYYYYYGGGGGGG 
L GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS 
D SSSXXXXXXXXXXEEEEEEE 

O 345678901234UUUUUUUUUUHHHHHHH 
L HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS 
D SSSEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 64 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >YES 
DO YOU WANT TO SUBMIT A TEST CASE ? >NO 
MUTATION PHASE 
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >ALL 
MUTANT STATUS 

1/PE TOTAL LIVE PCT 
INSERT 41 3 92.68 
FILLSZ 38 12 68.42 
ITEMRV 21 0 100.00 
FILES 5 0 100.00 
DELETE 54 1 98.15 
PER GO 7 0 100.00 
IF REV 3 0 100.00 
STOP 53 0 100.00 
THRU 8 0 100.00 
TRAP 54 0 100.00 
LOGIC 15 1 93.33 
SUBSFS 814 20 97.54 
SUBCFC 12 0 100.00 
SUBCFS 58 0 100.00 
C ADJ 12 0 100.00 
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TOTALS 

1195 	37 	96.90 
DO YOU WANT TO SEE THE LIVE MUTANTS?>YES 
FOR EACH MUTANT : 
HIT RETURN TO CONTINUE. TYPE 'STOP' TO STOP. 
TYPE 'EQUIV' TO JUDGE THE MUTANT EQUIVALENT. 

**** INSERT FILLER TYPE **** 

MUTANT NUMBER 12 
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 52 
ITS LEVEL NUMBER IS 3 

MUTANT NUMBER 13 
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 53 
ITS LEVEL NUMBER IS 3 

MUTANT NUMBER 29 
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 69 
ITS LEVEL NUMBER IS 3 

**** FILLER SIZE ALTERATION TYPE **** 

MUTANT NUMBER 54 
THE FILLER ON LINE 58 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 55 
THE FILLER ON LINE 58 HAS HAD ITS SIZE INCREMENTED BY ONE. 

MUTANT NUMBER 60 
THE FILLER ON LINE 63 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 61 
THE FILLER ON LINE 63 HAS HAD ITS SIZE INCREMENTED BY ONE. 

MUTANT NUMBER 66 
THE FILLER ON LINE 68 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 67 
THE FILLER ON LINE 68 HAS HAD ITS SIZE INCREMENTED BY ONE. 

MUTANT NUMBER 70 
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THE FILLER ON LINE 73 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 71 
THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED BY ONE. 

NUMBER 74 
THE FILLER ON LINE 77 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 75 
THE FILLER ON LINE 77 HAS HAD ITS SIZE INCREMENTED BY ONE. 

MUTANT NUMBER 78 
THE FILLER ON LINE 81 HAS HAD ITS SIZE DECREMENTED BY ONE. 

MUTANT NUMBER 79 
THE FILLER ON LINE 81 HAS HAD ITS SIZE INCREMENTED BY ONE. 

**** STATEMENT DELETION TYPE **** 

MUTANT NUMBER 126 
ON LINE 106 THE STATEMENT: 

GO TO 0150-CK-ADD-DEL 
HAS BEEN DELETED. 

**** LOGICAL OPERATOR REPLACEMENT TYPE **** 

MUTANT NUMBER 296 
ON LINE 102 THE STATEMENT: 

IF OLD-KEY > NEW-KEY 
HAS BEEN CHANGED TO: 

IF OLD-KEY NOT < NEW-KEY 

**** SCALAR FOR SCALAR REPLACEMENT **** 

MUTANT NUMBER 300 
ON LINE 87 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO NEW-REC AT END ... 

MUTANT NUMBER 301 
ON LINE 87 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 
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READ OLD-ETF INTO PRNT-WORK-AREA AT END ... 

MUTANT NUMBER 311 
ON LINE 89 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO PRNT-WORK-AREA AT END ... 

MUTANT NUMBER 629 
ON LINE 110 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO PRNT-WORK-AREA AT END ... 

MUTANT NUMBER 682 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO OLD-REC AT END ... 

MUTANT NUMBER 683 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO PRNT-WORK-AREA AT END ... 

MUTANT NUMBER 684 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO PRNT-OUT-OLD AT END ... 

MUTANT NUMBER 685 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO WS-LN-1 AT END ... 

MUTANT NUMBER 686 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ NEW-ETF INTO WS-LN-2 AT END ... 

MUTANT NUMBER 687 
ON LINE 116 THE STATEMENT: 

READ NEW-ETF AT END ... 
HAS BEEN CHANGED TO: 

PAGE 84 



READ NEW-ETF INTO WS-LN-3 AT END ... 

MUTANT NUMBER 780 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO NEW-REC AT END ... 

MUTANT NUMBER 781 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO PRNT-WORK-AREA AT END ... 

MUTANT NUMBER 786 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO PRNT-NEW-OUT AT END ... 

MUTANT NUMBER 787 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO NEW-LN-1 AT END ... 

MUTANT NUMBER 788 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
"q BEEN CHANGED TO: 

READ OLD-ETF INTO NEW-LN-2 AT END ... 

ATANT NUMBER 789 
ON LINE 123 THE STATEMENT: 

READ OLD-ETF AT END ... 
HAS BEEN CHANGED TO: 

READ OLD-ETF INTO NEW-LN-3 AT END ... 

MUTANT NUMBER 814 
ON LINE 129 THE STATEMENT: 

MOVE LINE1 TO N-LN1 
HAS BEEN CHANGED TO: 

MOVE NEW-REC TO N-LN1 

MUTANT NUMBER 817 
ON LINE 129 THE STATEMENT: 

MOVE LINE1 TO N-LN1 
HAS BEEN CHANGED TO: 
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MOVE PRNT-WORK-AREA TO N-LN1 

MUTANT NUMBER 974 
ON LINE 138 THE STATEMENT: 

MOVE LINE1 TO LN1 
HAS BEEN CHANGED TO: 

MOVE OLD-REC TO LN1 

MUTANT NUMBER 979 
ON LINE 138 THE STATEMENT: 

MOVE LINE1 TO LN1 
HAS BEEN CHANGED TO: 

MOVE PRNT-WORK-AREA TO LN1 

LOOP OR HALT ? >HALT 
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