
Project No: 	G- 36-627

Project Director: DA. Richatd A. DeMitto

„f„

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT INITIATION

Date: June 13, 1978

Project Title:
	

Metainduction and PtogAam Mutation: RemeiAtic So6twaite Vatidation

Sponsor:
	U.S. Atmy Rezeakch Olficice; Rmeakch Tkiangte Pakk, NC 27709

Agreement Period: From 	6/1/78 Until
	5/31/79

Type Agreement: G)tant Ho. DAAG29-18-G-0121

Amotint: $106,952 ARO Funding (G-36-627)
5,629 GIT ContAi. (G-36-328)

$112,581 Totat

Reports Required: Semi-Annum Pkogneas Repo/it; Finme Repokt

Sponsor Contact Person (s):

Technical Matters
U.S. AAmy ReseaAch OWce
Attention: Etectkonica Division
P.O. Box 12211
Re6eakch TAiangte Park, NC 27709

Contractual Matters
(thru OCA)

0i6 ice of Navat Re4eakch
Resident Repkesentative
GeoAgia Inztitute o Technotogy.
Atlanta, GeoAgia 30332

Defense Priority Rating: None

Assigned to:
	 InioAmation S Compmtek Science 	(School/Laboratory)

COPIES TO:

Project Director

Division Chief (EES)

School/Laboratory Director

Dean/Director—EES

Accounting Office

Procurement Office

Security Coordinator (OCA)

/Reports Coordinator (OCA)

Library. Technical Reports Section

EES Information Office

EES Reports & Procedures

Project File (OCA)

Project Code (GTRI)

Other 	

' CA-3 (3/76)

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Date: Decembet 21, 1979

Project Title:
	

Metainduction and PAtam Mutation: Reaiistic So iitwake Validation

Project No:
	

G-36-627

Project Director:
	

Dt. R. A. Denato

Sponsor:
	

U. S. Atmy Reseatch 064ice, Res eaAch aiangEe Pakk, NC

Effective Termination Date:
	

9/1/79

Clearance of Accounting Charges:

9/1/79

Grant/Contract Closeout Actions Remaining:

X Final Invoice and Closing Documents

_x Final Fiscal Report

X Final Report of Inventions

X Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other

Assigned to: In4oAmation S Computn Science

(School/INMAN:43)

COPIES TO:

Project Director

Division Chief (EES)

School/Laboratory Director

Dean/Director—EES

Accounting Office

Procurement Office

Security Coordinator (OCA)

Reports Coordinator (OCA)k,/

Library, Technical Reports Section

EES Information Office

Project File (OCA)

Project Code (GTRI)

other OCA Re'scatch Ptopetty Cookdlnatot

GIT -ICS -79/08

MUTATION ANALYSIS

A.T. ACREE* R, A. DEMILLo*

T.J. BUDD** R.J. LIPTON***

 F.G, SAYWARD**

SEPTEMBER 1979

* GEORGIA INSTITUTE OF TECHNOLOGY

** YALE UNIVERSITY

*** UNIVERSITY OF CALIFORNIA, BERKELEY

MUTATION ANALYSIS
1 	 2 	 1

Allen T. Acree, Timothy A. Budd, Richard A. DeMillo,
3 	 2

Richard J. Lipton, and Frederick G. Sayward

Abstract

A new type of software test, called mutation analysis,
is introduced. A method of applying mutation analysis is
described, and the design of several existing automated
systems for applying mutation analysis to Fortran and Cobol
programs is sketched. These systems have been the means for
preliminary studies of the efficiency of mutation analysis
and of the relationship between mutation and other
systematic testing techniques. The results of several ex-
periments to determine the effectiveness of mutation
analysis are described, and examples are presented to il-
lustrate the way in which the technique can be used to
detect a wide class of errors, including many previously
defined and studied in the literature. Finally, a number of
empirical studies are suggested, the results of which may
add confidence to the outcome of the mutation analysis of a
program.

This research was supported in part by The US Army Institute for
Research in Management Information and Computer Science, ARO Grant
No. DAAG29-78-G-0121 and The Office of Naval Research, Grant No.
N00014-79-C-0231.

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Department of Computer Science
Yale University
New Haven, Connecticut 06520

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California, 94720

1

2

3

PAGE 1

Mutations are seldom spectacular. Those
mutants that are startlingly different
from their parents tend not to survive
long, either because the mutation ren-
ders them unable to function normally,
or because they are rejected by those
who sired them.

Robert Silverberg

1. INTRODUCTION

A major goal of software engineering is to discover an
efficiently testable property of programs, say PROP, so that
for all programs P the following holds:

if PROP(P), then P is correct. 	 (1)

By correct one usually means that for all possible input
values x,

P*(x)=f(x),

where P*(x) is the function computed by program P and f is a
function which specifies the intended behavior of the
program.

Prominent examples of such properties 	are 	program
verification and testing for correctness:

Program Verification [Man]
Let A and B be predicates so that A(x) is true when x

is in the domain of the function f and B(y) is true when

y = f(x) .

Then

PROP(P) if and only if 1- A{P}B

can be used to define the predicate PROP in proposition (1).

Testing for correctness [LMW]
Let D be a subset of all possible input to the program

P, and say that D is a reliable test data set if

PAGE 2

P(x)=f(x) for all x in D implies P*=r.

Clearly,

PROP(P) if and only if P*(D)=f(D) for some reliable D

can also be used as a property for (1).
A major stumbling block in such systematizations as these

has been that the conclusion of proposition (1) is so strong
that, except for trivial classes of programs P, PROP(P) is
bound to be formally undecidable [Howl]. Given this state
of affairs, program verification has turned to techniques
which do not require universal applicability. It has not
been clear what the corresponding course should be for
program testing, however. There is an undeniable tendency
among practitioners to relegate testing to completely ad-hoc
techniques: one creates tests that seem to capture the es-
sence of the program, observes the execution of the program
on those tests and makes a conclusion about the correctness
of the program based on the results of the observations.
This strategy seems to be too undisciplined EDLS1]. More
systematic techniques attempt to augment a programmer's
intuition by yielding quantitative information about the
degree to which a program has been tested (see [Good] for a
current survey) -- such coverage measures attempt to give
the tester an inductive measure of confidence that PROP(P)
has been determined. We will discuss several of these
methods rather more fully in the sequel.

The reader should note that these techniques generally
rely in one way or another on proposition (1) -- they at-
tempt by inductive or deductive means to allow a tester to
conclude correctness. But correctness is a very strong
property, comprehending for instance mathematical equality
of infinite functions. It is rather unlikely that efficient
means can be found to make such powerful inferences.

There is another path to take, however. It is not so
well travelled because it is less scenic. We propose to
weaken considerably the conclusion of (1), to replace it by:

i. P is correct
or

ii. P is "pathological",

where "pathological" will have a well-defined meaning, which
roughly corresponds to P possessing an empirically
determined characteristic which places it outside the range
of programs which can be treated in this way. The testing
technique determined in this way, we call mutation analysis.

In carrying out this plan we will of course have to
sacrifice some of the elegance of the techniques based on
instances of (1), but we hope that this defect is balanced
by the efficacy of mutation analysis.

The sequel is organized as follows. We first present
the basis of mutation analysis, relying as much as possible
on observable assumptions about the programming process. We
then describe the systems which have been constructed for

PAGE 3

conducting mutation analysis of Fortran and Cobol programs.
We present examples typical of our experience with these
systems by means of several "experiments". Included among
these experiments will be some evidence for believing that
mutation analysis is useful in detecting a wide variety of
errors (via the coupling effect introduced in [DLS1]). In
Section 6, a case study is presented of the use of mutation
analysis to detect errors in a production system program; it
is shown in this study how test data can be strengthened to
locate and remove subtle errors. Section 7 discusses the
relationship of program mutation to error seeding and logic
circuit fault detection. A step in the mutation analysis
process involves the detection of certain kinds of program
equivalence; 	Section 8 contains a complete discussion of
this equivalence problem, 	suggesting some efficient al-
gorithms for automatically detecting the appropriate
equivalences. The paper closes with three nonobvious ap-
plications of the technique to issues of concern in software
engineering.

2. MUTANTS OF A PROGRAM

In 	[DLS1], we introduced data produced by Youngs [You]
that strongly hinted that the errors that are most likely to
be made in the programming process are simple, classifiable
errors. We have been lead to attempt the following
generalization, which is used so frequently in our work that
we have given it a name:

The Competent Programmer Assumption
A COMPETENT PROGRAMMER, AFTER COMPLETING
THE ITERATIVE PROGRAMMING PROCESS AND
DEEMING 	THAT HIS JOB OF DESIGNING,
CODING AND TESTING IS COMPLETE, HAS
WRITTEN A PROGRAM THAT IS EITHER CORRECT
OR IS ALMOST CORRECT IN THAT IT DIFFERS
FROM A CORRECT PROGRAM IN "SIMPLE" WAYS.

Precisely what is meant by "simple" will occupy a
considerable amount of space in this paper, but the
intuitive content of the competent programmer assumption is
simply that competent programmers do not write programs at
random; if the program produced is not correct, it is a
program with bugs and can be edited into correct form by
finding and fixing the bugs. Suppose that the task at hand
is to design a Fortran program to compute the (Euclidean)
magnitude of an N-dimensional vector X in a Cartesian coor-
dinate system with fixed origin. Then the subroutine P1
certainly could have been produced by a competent program-
mer.

PAGE 14

SUBROUTINE P1(X,MAG)
MAG = 1
DO 1 I = 1,N
MAG = MAG+X(I)**2

1 MAG = SQRT(MAG)
RETURN
END.

We would question the competence of a programmer who
produced subroutine P2:

SUBROUTINE P2(X,MAG)
MAG = X(1)
DO 1 I = 1,N

1 MAG = MAX(X(I), MAG)
RETURN
END.

There is no reasonable sense in which P2 is a "buggy" ver-
sion of the program asked for. P1 can easily be debugged,
but P2 is not even a program of the same kind -- it is so
radically incorrect that its incorrectness should be
discovered by other means.

Suppose that we now try to inject this assumption into
proposition (1) and try to discover a property PROP so that:

if P is written by a competent programmer 	 (2)
and PROP(P) then P is correct.

This is a considerable change. 	Proposition 	(1) in its
original form treats a program as a random object. Proposi-
tion (2) on the other hand attempts to exploit something
special about the programming process (e.g., that a data
processing manager expects in response to the specifications
for a personnel system, something like a personnel system;
perhaps incorrect, inefficient or sloppy, but more like a
personnel system than, say, a missile guidance system).

To be more specific: we are after a testing method
that addresses the following version of correctness testing.

Given a program P written by a competent
programmer, find a test data set for
which P works correctly by which we can
infer that P is, with high probability,
correct.

Test data which meets this criterion, we call adequate test
data. Under the competent programmer assumption it is easy
to derive some simple properties that adequate test data
should have. We can observe a community of programmers and
in principle classify the errors they tend to make into
categories

E ,E 	E .
1 	2

PAGE 5

We are free to observe the programmers for as long as we
wish and make whatever specialized assumptions we wish about
the programming task they will be called upon to perform.
Therefore it is in principle possible to gain whatever
degree of confidence we desire that among the k clas-
sifications we have countenanced the errors most likely to
be made by this particular community. Given a program P to
test in this setting, we must derive an adequate set of test
data, D, for P. If P is incorrect, we will never be able to
find an adequate set; indeed, the point of testing P is to
find a set of test data that calls attention to the fact
that P is incorrect. If P is correct, however, adequate D
should at least convince us that P does not contain the
errors most likely to be made.

Let
P ,P

1 	2
differ from P only in each containing a single error chosen
from one of the error categories. Then an adequate set of
test data D should at least provide least provide the fol-
lowing assurance. For each Pj which is not equivalent to P,

P*(D) 	Pj*(D)
In other words for each of the most likely errors, it should
be possible to show that P does not contain that specific
error.

Each of the Pi's is said to be a mutant of the program
P. The competent programmer assumption states that a
program is assumed to be either correct or a mutant of a
correct program. For example, in the problem of computing
magnitudes of N-vectors, subroutine P1 is a mutant of the
correct P below.

SUBROUTINE P(X,MAG)
MAG = 0.0
DO 1 I = 1,N

1 MAG = MAG+X(I)**2
MAG = SQRT(MAG)
RETURN
END

Subroutine P2, on the other hand, is not a mutant of P.
Mutation analysis is a method of eliminating the alter-

natives -- developing a set of test data on which P works
correctly but on which all mutants of P fail (or in our sug-
gestive terminology, "die"). Without the competent program-
mer assumption, there would be infinitely many mutants to
consider, but even with the assumption, practice may dictate
so many error types that this method is intractable. In
fact, one's first reaction upon hearing of the notion is to
dismiss it as an obviously intractable and 	therefore
ridiculous idea. 	But by concentrating only on "simple"
mutants of P the technique becomes manageable. For example,
P1 is not a simple mutant of P, but M1 and M2 are:

PAGE 6

SUBROUTINE M1(X,MAG)
MAG = 1
DO 1 I=1,N

1 MAG = MAG+X(I)**2
MAG = SQRT(MAG)
RETURN
END

SUBROUTINE M2(X,MAG)
MAG = 0.0
SO 1 I=1,N
MAG = MAG+X(I)**2

1 MAG = SQRT(MAG)
RETURN
END.

The mutants we will consider arise from the single applica-
tion of a mutant operator , a simple syntactic or semantic
program transformation such as changing a particular
instance of a relational operator to one of the remaining
operators or changing the target of an unconditional trans-
fer to another labelled target. We will also refer to
mutant operators as error operators .The obvious objection
here is that such a restriction allows one to do little more
than test for typographical errors in programs, perhaps
useful, but hardly worth such a fuss. As we will discuss
extensively below (Section 4,3) there is an observable
"coupling" of simple and complex errors so that test data
that causes all nonequivalent simple mutants to die is so
sensitive that "likely" complex mutants also die. The
coupling of simple and complex errors implies that if P is
correct for an adequate test D while M1 and M2 die, then P1
must also die on D.

Observe that mutation analysis is a valid principle
(i.e., implements correctness testing) if the competent
programmer assumption is valid and if the coupling of simple
and complex errors is a provable effect. In practice
(theoretical studies not withstanding [BL1,BL2]) it is not
necessary to show formally that these assumptions hold in
order for mutation analysis to be a useful tool for testing
real programs. It is sufficient to know within acceptable
confidence limits when the assumptions hold and to work
within those limits.

We have found that in performing mutation analysis on
an incorrect program, the tester is forced to develop test
data on which his program fails [BDLS]. So we are
interested in building interactive systems to aid program-
mers and testers in performing mutation analysis -- and in
so doing, evaluating the effectiveness of this approach. We
pick a programming language L (Fortran, Cobol, and Lisp have
been our initial choices) and -- based on prior research and
other experience -- we define an appropriate set of mutant
operators for L. Then we build a interactive mutation
system that serves as a test harness and aids in performing

PAGE 7

mutation analysis. Using three such systems we have for the
past two years been involved in the testing of programs us-
ing mutation analysis and in experiments to discover when
and why the competent programmer assumption holds and how
simple errors can be coupled to complex errors.

Although the various systems we have constructed differ
in certain respects, there are essential similarities. The
basic design was discussed in an earlier paper [BDLS].
Briefly, the systems allow an interactive user to enter a
program to be tested. The program is parsed to a convenient
internal form and appropriate data files are created. The
user then enters test data, executing the program on the
test data in typical harness fashion to check for errors.
At the point of mutation analysis, the user "turns on" a
subset of the error operators and the system then creates a
list of mutant description records, descriptions of how the
internal form is to be modified to create the required
mutant. The changes are induced sequentially and the
modified internal form is interpreted, the results being
compared to the original results to determine whether or not
the mutant survives the execution on that data. At the com-
pletion of the pass, summary reports are presented to the
user, and he is allowed several options in examining the
remaining live mutants to attempt to strengthen his test
data. The user may also declare mutants to be equivalent
and therefore remove them from future consideration. In one
of our systems this function has been partially automated
with considerable improvement in performance. The issue of
equivalent mutants will be discussed more fully in a later
section.

Part of our early experience with mutation systems was
the testing, using the first Fortran system FMS.1, of the
statement scanner of FMS.1 itself. In elapsed time, the
nearly 9,000 mutants were completely analyzed in six man-
hours, using approximately 14 cpu minutes of a slow PDP-10
KA-10 processor running the TOPS10 timesharing operating
system. A more compete description of this anlysis is
available in [BDLS]. We will return to the question of the
efficiency of mutation analysis in the Section 4.

3. THE MUTATION SYSTEMS

3.1 Fortran. 	In the fall of 1977, a pilot mutation
system for a subset of Fortran became operational on a PDP-
10 computer at Yale University. This is the PIMS system
discussed in detail in [BDLS]; in anticipation of several
versions of mutation systems for several different languages
we have since adopted the following naming conventions for
our systems. A system is denoted by a string

<lang>MS.<version>,

where <lang> is a unique identification for the language
(e.g., 	F for Fortran) and <version> is a chronological ver-
sion number. 	Thus, PIMS is the system FMS.1. 	Subsequently,
FMS.1 was implemented on a DEC KL - 20 at Yale, and a PRIME

PAGE 8

400 at Georgia Tech. Although the Fortran subset required
by FMS.1 is restrictive, it has been large enough to permit
a wide body of experience with mutation analysis to ac-
cumulate (see the experiment in [BSLSJ and Section 6, for
example).

The restricted language accepted by FMS.1 eventually
became a bottleneck for the experimenters. Therefore, dur-
ing the year 1978-1979, an expanded Fortran system, FMS.2
(the system sometimes referred to as EXPER) was constructed.
FMS.2 accepts any ANSI Fortran program which does not use
complex arithmetic or input/output statements (for programs
which do not meet this restriction, recoding must replace
input/output statements by array assignments). FMS.2 is
fully operational on the DEC KL-20 at Yale and is being im-
plemented on the VAX-11 at Berkeley. While the overall
goals of the Fortran systems are similar, FMS.2 differs from
FMS.1 in several important respects. FMS.1 was designed
with user-oriented features in mind; it was anticipated that
testers unfamiliar and unsympathetic with the system would
be the primary user community. FMS.2, on the other hand,
was designed primarily as an experimental device for the
mutation research groups, to facilitate experiments into how
mutation analysis can be integrated into the design coding
and testing of multi-module programs, experiments into the
sufficiency of various sets of mutant operators and for
various experiments surrounding the coupling effect and the
overall effectiveness of the mutation approach.

FMS.2 sessions are organized around the concept of an
experiment .An experiment consists of a program, test data,
and a subset of the error operators which may be applied to
the program. The experimenter is more easily able to
generate small variations in each of these elements and
monitor the progress of subjects using FMS.2 to perform the
mutation analysis. As with FMS.1, this system responds with
summaries and reports on the number and type of mutants
which remain alive, so that the user can augment his tests.

The basic set of error operators supplied by FMS.2 are

Data reference Mutations

1. Constant Replacement (by +1, -1)
2. Scalar for Constant Replacement
3. Source Constant Replacement
4. Array Reference for Constant Replacement
5. Scalar Variable Replacement
6. Constant for Scalar Replacement
7. Array Reference for Scalar Replacement
8. Comparable Array Name Replacement
9. Constant for Array Reference Replacement
10. Scalar for Array Reference Replacement
11. Array Reference for Array Reference Replacement

Operator Mutations

12. Arithmetic Operator Replacement

PAGE 9

13. Relational Operator Replacement
14. Logical Connective Replacement
15. Unary Operator Replacement
16. Unary Operator Removal
17. Unary Operator Insertion

Statement Mutations

18. Statement Analysis (C-1 Path analysis)
19. Statement Deletion
20. Return Statement Replacement

Control Structure Mutations

21. Jump Statement Replacement
22. DO statement Replacement

3.2 Cobol. 	The design of the Cobol mutation system
CMS.1 is based on the original design of FMS.1. 	The reader
will get an idea of the way in which CMS.1 interacts with
users by consulting the corresponding descriptions for FMS.1
in [BDLS]. CMS.1 accepts a simple subset of the Cobol
language and supports up to ten rewindable input files and
ten non-rewindable output files. This has been found to be
adequate for a variety of data processing tasks and should
allow the analysis of a large selection of Cobol programs.
CMS.1 is currently implemented on a PRIME 400 computer at
Georgia Tech.

Mutants are said to exhibit equivalent behavior if they
produce the same output records as the original program.
Mutants may fail by producing different output, or by a run-
time error such as referencing undefined data, referencing
nonnumeric data in a numeric instruction, trying to use a
file unit that is not open, etc.

As might be expected, the introduction of input/output
and data structuring capabilities create special problems
for CMS.1 not encountered in the Fortran systems. The fol-
lowing are the error operators which appear to be unique to
the Cobol language.

1. Move 	implied decimal point in
numeric items one place to the left
or to the right.

2. Add or subtract one from an OCCURS
clause count.

3. Insert FILLER of length one between
two 	adjacent record items; also
change FILLER lengths by one.

4. Reverse adjacent elementary items in
records.

5. Alter file references.

6. Switch PERFORMs and GOTOs.

PAGE 10

7. Change ROUNDED to truncation and
vice-versa.

8. Change the sense of a MOVE.

The 	remaining error operators include the operator
replacements and control flow mutations that are described
above. As primitive as this subset of Cobol appears, it is
adequate for broad-based experimentation, including the
analysis of many production Cobol programs supplied to the
mutation research group by external sources.

CMS.1 is unique in another respect. While some module
testing of FMS.1 and FMS.2 was carried out by the design
teams, access to reasonable subsets of the implementation
languages was limited by the concerns detailed above.
CMS.1, on the other hand is being tested extensively using
the FMS.2 system at Yale.

The Appendix contains essentailly a script of a CMS.1
session on a production Cobol program drawn from the US Army
personnel system SIDPERS. The program has been modified
somewhat, mainly in the reduction of the record sizes to
make a better CRT display. The program takes as input two
files, representing and old backup tape and a new one. The
output is a summary of the changes. The input files are as-
sumed to be sorted on a key field. The program is 130 lines
long and has 1195 mutants, of which 37 are easily seen to be
equivalent to the original program. Initially ten test
cases were generated to eliminate all of the nonequivalent
mutants. Subsequently a subset of five test cases was found
to be adequate for the task. The entire run took about 7
minutes of clock time, and 2 minutes and 45 seconds of CPU
time on the PRIME 400.

PAGE 11

4. THE COMPLEXITY OF MUTATION ANALYSIS

At first blush, it would seem that there is a severely
limitative trade-off at work in the technique described in
the previous section. In order to be efficient, the number
of distinct mutants must be kept rather small. But the list
of potential errors (rather, the list of error operators) in
order to be realistic must be quite extensive. Apparently,
then, if we try to constrain the number of mutants of an N
statement program to some reasonable size -- say, p(N), for
a "small" polynomial p* -- mutation analysis loses its ef-
fect as a realistic model of the programming process. If on
the other hand we try to build into the analysis all of the
possible error types which we can expect to encounter, then
the number of mutants associated with an N statement program
need not be bounded by any reasonable function of N.

In this section we will show how the choice of the first
alternative in the tradeoff is justified. In fact, an N
statement program -- on the average -- will generate only
polynomially many mutants, most of which are unstable and
die in the analysis stage very quickly. A "coupling effect"
is invoked to save the method from only being capable of
dealing with trivial errors, and we will report on some
preliminary experimental evidence for our belief in the
coupling effect.

*This seems reasonable. 	Polynomial growth in complexity in
the analysis of algorithms is generally identified with com-
putational tractability. In testing for correctness or in
program verification, even subcases which are solvable tend
to be of nonpolynomial complexity (usually exponential or
worse).

PAGE 12

4.1 The Number of Mutants. Youngs' data and several
less widely reported but related studies [TRW,Gil] suggest
very strongly that the errors that tend to occur in programs
are relatively simple errors. To be precise, let us define
a simple mutant as follows. Let P be a program written in a
programming language defined by a grammar G, and let par-
se(P) be the syntax tree for P obtained by parsing P accord-
ing to G. Then a 1-order simple mutant operator ER is a
function mapping a parse tree T to a tree ER(T) so that T
and ER(T) differ by at most one terminal node (i.e., leaf).
ER(T) is said to be a simple 1-order mutant of T. Proceed-
ing inductively, a k-order mutant is simply a k-fold itera-
tion of 1-order mutants. In particular, notice that simple
mutants do not alter the "semantic structure" of a program
-- that is they do not modify the internal nodes of the par-
se tree. The error operators designed for the automated
systems are with few exceptions simple 1-order mutants.

We will first give a heuristic analysis of the expected
number of mutants of a program as a function of several size
parameters. The list of mutant operators for FMS.1 and
FMS.2 is relatively unsophisticated and has undergone little
revision that would improve the number of generated mutants
(CMS.1 by contrast has a rather more streamlined mutant
generation system), so our analysis is not biased in favor
of simple mutants.

First, it is possible to derive an order-of-growth ex-
pression for the number of FMS.1 mutants. Data reference
replacements are accomplished by interchanging reference
names occurring within the program. In a program with N
statements and K distinct data references this number is

2
F(N,K)=0(K).

The reader can convince himself (cf. [Kn]) that for each of
the constant and operator replacement schemes there is a
constant c so that the number of generated mutants is boun-
ded by cK. Therefore, F(N,K) is the dominant term, and the
number of generated mutants is in the worst case quadratic
in the number of distinct data references.

Observations of typical programs lead to an even more
favorable estimation of the expected number of mutants
generated under FMS.2. In programs that are not maliciously
dense (for an example of such a dense program see {LSD
F(N,K) is more closely approximated by

F (N,K)= 0(NK)

while in typical programs, such as those discovered by Knuth
[Mn] the data references tend to be so sparsely distributed
that the rate of growth is usually closer to quadratic in N:

2
F(N,K) =0:0 •

PAGE 13

In generating mutants of Cobol programs, it is possible
to more nearly approach linear growth, since the number of
data reference interchanges is limited by syntactical redun-
dancies. In fact, an analysis similar to the one carried
out above gives the worst case estimate for the expected
number of mutants for a Cobol program as the number of data
division lines multiplied by the number of procedure
division lines. For typical Cobol programs this estimate is

2
C(N,K) << N.

Figures 1 and 2 show mutant growth rates for a sampling of
Fortran and Cobol programs. Notice that in both cases (ex-
cept for the variation in small Fortran programs) the
estimates given above are generous upper bounds on the ob-
served number of mutants. In experiments using CMS.1, we
have found the average growth rate for "production" Cobol
programs to be more nearly linear in the product of
procedure division lines and K than quadratic in N.

PAGE 14

N
2

N Average 	Number of 	Mutants

12 144 2508
13 169 307
14 196 427
16 256 360
17 289 390
24 576 2666
26 676 649
28 784 3213
30 900 1209
33 1089 12116*
34 1156 3361
36 1296 1085
42 1764 1057
45 2025 1658
65 4225 1514
66 4356 2425
71 5041 2817
98 9604 8424
123 15129 8838

Figure 	1. Fortran Mutants

* Sample contains the outlier described in [LS1

2 	No.Procedure * 	 Total Mutants
N

57
64
73
74
75
78
99

102
111
143
170
453
670

1

N 	 No

3249
4096
5329
5476
5625
6084
9801
10404
12321
20449
28900

205209
448900

Data 	Div 	Lines

576
789
756
800
837
918

1674
1806
2115
3330
5184

46803
92964

Generated

370
679
78

235
225
376
377
715
740
628
1195

14639
50983

Figure 2. Cobol Mutants

PAGE 15

4.2 Mutant Instability. 	Even though the number of
mutants generated by these methods is expected to grow
rather slowly as a function of program size, a user may be
somewhat wary of profferring so many executions of the same
program -- it would seem that an execution of 10,000 mutant
programs on a set of test data may require as much time as
the running time of the longest instance multiplied by
10,000! In fact, that is not the case. A mutant seldom
runs to completion; rather, mutant programs tend to be
rather unstable, dying by executing "illegal" statements
which are trapped and which cause premature termination of
the programs. So, it is our experience that mutation
analysis of even moderately large programs is possible using
only modest machine requirements. The following statistics
are derived from Fortran program analysis using the FMS.1
and FMS.2 systems.

Average number of test
cases mutants remain live

Average total mutant executions
per session (units = F(N,K))

Average fraction of nonequivalent
mutants killed by first test case

Average execution time of live
mutant (percent of original test)

1.75

2.00

68%

75%

Although the speed with which mutants can be eliminated is a
function of the capabilities of the human tester, it is our
experience that somewhat more than 30% of the remaining live
mutants are killed by each testcase, yielding rapid conver-
gence.

4.3 The Coupling Effect. Using only the mutant opeators
defined above, it would seem likely that a program that had
been successfully subjected to mutation analysis might still
contain some complex errors, errors which are not explicit
mutants of the program and are not distinguished by the test
data. In [DLS1], we proposed a "coupling effect" which as-
serted the existence of significant classes of programs for
which such omissions are rare; briefly stated, the coupling
effect asserts:

The Coupling Effect
TEST DATA ON WHICH ALL SIMPLE MUTANTS
FAIL IS SO SENSITIVE TO CHANGES IN THE
PROGRAM THAT IT IS LIKELY THAT ALL COM-
PLEX MUTANTS MUST ALSO FAIL.

Note that there is no claim that the coupling effect is
a provable phenomenon in a mathematical sense; indeed, there
are very simple counterexamples to it. It is however, a

PAGE 16

useful principle that can be observed to hold for broad
classes of programs. We come therefore to consider on what
evidence we believe in the coupling effect.

First, we know that there is a provable coupling effect
for certain restricted models of computation. 	In [BL1], the
following was proved: 	Let P be a complete decision table
program (i.e., one missing no actions or conditions), 	and
let P evaluate correctly on test data that is adequate under
the following mutant operators

Replace any condition by "don't care"
Complement any condition
Replace any "don't care" by "yes" and "no"
Delete any action
Add any action;

then P is correct.
It has also been conjectured that a provable coupling

effect can be exhibited for several other formally interest-
ing classes of programs, such as pure Lisp functions and
linear recursive schemes (cf [BL2]).

Second, 	there is a great variety of observational
evidence for the coupling effect. 	Investigators using the
DAVE test data generation system at the University of
Colorado, for example, have reported that even using a
restricted set of error operators the ability to detect sim-
ple errors is oftentimes useful in insuring against more
complex errors COF1,0F2].

Third, there is a growing experimental understanding of
the coupling effect in functioning programs. We give here
an example of the empirical evidence. The subject program
is Hoare's FIND program [Hoa]. As described in [DLS1], FIND
was used in the following experiment.

1. A test data set of 49 cases was derived and
shown to be adequate.

2. The test data set from 1 was heuristically
reduced to a set of 7 test cases which also
turned out to be adequate.

3. Random simple k-order mutants were selected
(k > 1).

4. The higher order mutants of step 3 were
executed on the reduced test data set.

It would be evidence against the coupling effect if it was
possible to randomly generate very many higher order non-
equivalent mutants on which the reduced test data set
behaved in a manner indistinguishable from FIND. Notice
that Step 2 biases the experiment against the coupling ef-
fect since it removes the man-machine orientation of muta-
tion analysis. We concentrated first on the case k=2,
reasoning that the larger the value of k, the more one
violates the competent programmer assumption, with the fol-
lowing results:

Number of 2-order mutants
	 21,100

Number indistinguishable from FIND
	

19
Number equivalent to FIND
	

19.

PAGE 17

However, a more limited analysis of still higher order
mutants, still failed to reject the coupling effect:

Number of k-order mutants (k>2) 	1,500
Number indistinguishable from FIND 	0.

A major defect in this experiment can be brought to
light by considering the following conceptual basis for
error coupling. Just as the competent programmer assumption
states that programs are not written at random, the coupling
effect is implied by the fact that program statements are
not composed at random; indeed, there is considerable flow
and sharing of information between statements of a program,
so that a change to one portion of a program is likely to
have observable, 	albeit subtle, effects on its global
context. 	Now for the problem with this experiment: the
k-order mutants are chosen randomly and by independent
drawings of 1-order mutants. Therefore the resulting
higher-order mutant is very unstable and subject to quick
failure. The experiment should also be conducted when the
higher-order mutants contain subtly related errors. To this
end, the experiment was repeated using the following
replacement for step 3:

3': 	Randomly generate correlated k-order
mutants of the program.

In Step 3', correlated means that each of the k applications
of 1-order mutant operators will be related in some way to
all of the preceding applications, all affecting the same
line, for example. As before, if a program is successfully
subjected to mutation analysis on a test data set, then the
coupling effect asserts that the correlated k-order mutants
are also likely to fail on the test data.

In addition to FIND, we use the program STKSIM which
maintains a stack and performs the operations clear, push,
pop, and top.

Figure 3 contains a summary of the results of the ex-
periment. Although, much careful experimentation under more
stringent statistical analyses must be carried out, there is
probably enough information to conclude that there is a
meaningful sense in which errors are coupled by an ap-
propriate choice of error operators.

PAGE 18

PROGRAM NUMBER 	NUMBER NUMBER 	NUMBER NUMBER 	NUMBER
NAME 	GENERATED ALIVE GENERATED ALIVE GENERATED ALIVE

k = 2
	

k = 3 	 k = 4

FIND 	3000 	2 	3000 	0 	3000 	0
STKSIM 	3000 	3 	3000 	0 	3000 	0

Figure 3. Correlated k-order Mutants

The results are for the most part self explanatory. All of
the live correlated k-order mutants described in the table
have been shown equivalent by rather simple arguments.

Although we have attempted no thorough statistical
analyses of these experiments, the size of the samples
(nearly 50,000 combined correlated and uncorrelated mutants)
is certainly large enough to sustain statistically sig-
nificant conclusions assuming a variety of underlying models
and distributions.

Less formal but nevertheless striking evidence is of the
"testimonial" variety. Since 1976 we have conducted muta-
tion analysis sessions on perhaps several hundreds of
Fortran, Cobol, and Lisp programs. So many instances of the
coupling of simple and complex errors have been observed
over such a wide range of programs that it is likely there
is an observable effect at work.

4.4 Reducing Complexity. Even with all of the forego-
ing reduction techniques, current technology places the
bounds of practicality for monolithic programs somewhere in
the 5,000 to 10,000 line range for Fortran and somewhat
higher for Cobol programs. Even this must be treated as an
optimistic upper limit -- certainly the technique is not
easy to apply at the 5,000 statement level. A speculative
but not unjustifiable technique is to use Monte Carlo tech-
niques to sample from large populations of mutants. A sim-
ple argument to support such an analysis can be had via the
following Gedanken experiment. Let

f(x)

appear in a specific context of a program undergoing muta-
tion analysis; if a set of test data is too weak for the
program but the program is nevertheless correct, then there
is an adequate set of test data , D, on which

f(x)] *(D) 	f(x')J*(D) ,

where x' is some specified data reference replacement muta-
tion of x. But x and x' in these expression are BOUND
variables; it only matters that they refer to distinct
positions of a state vector which has been specially

PAGE 19

constructed to exhibit the inequality. In other words it is
important that we are able to "explain" with test data why x
is an argument of f, but perhaps less important that we be
able to explain why the argument is not x' or any other
specific alternative. But this can be accomplished by sam-
pling from enough alternative choices x' to insure that
identities that we are observing are not mathematical. If
the functions involved are at all well-behaved algebraically
then algebraic identities can be discerned in this way (see
[DL] for simple cases). In one experiment, mutation
analysis on only 10 percent of the total mutant population
resulted in test data strong enough to kill 95 percent of
the entire mutant population.

If reliable patterns can be found by such sampling
techniques then the range of programs which can be analyzed
is expanded by an order of magnitude. We anticipate report-
ing on this research elsewhere.

There is an obvious method which will further reduce
the amount of time needed to process mutants. Since
mutants, once generated are entirely independent entities,
copies of mutant description records may be distributed
among several computers for parallel execution. It is
feasible to decrease running times by amounts dependent only
on the amount of computer resources one is willing to invest
in the analysis.

5. ERROR OPERATORS FOR CLASSES OF ERRORS

Of course the whole point of program testing and
therefore mutation analysis is to detect errors in programs
that are not correct. So far we have given no evidence that
mutation analysis is a useful tool in this regard. In this,
and in the following section, we will indicate our current
state of knowledge in this regard. First, we will describe
a wide class of error types and show by example how the
error operators which are currently implemented are useful
in detecting errors of those types. Second -- in the fol-
lowing section -- we will describe a case study of the
uncovering of a resistant, complex error in a production
system using mutation analysis.

5.1 Simple Errors. If the program contains a simple
error, then one of the mutants generated by the system will
be correct. The error will be discovered when an attempt is
made to eliminate the correct program since its behavior
will be correct but the progam being tested will give dif-
fering results. If the program contains simple k-order
errors that are relatively independent and each error is ex-
posed by a single mutant, then the errors will also be
detected (see Section 6 for an example).

5.2 Dead Statements. As described by Huang [Hua], many
programming errors manifest themselves in "dead code", that

PAGE 20

is, 	source statements that are unexecutable or, more
seriously, give incorrect results regardless of the the data
presented. Such errors may persist for weeks or even years
if the errors lie in rarely executed portions of the
program.

It is therefore a reasonable first goal in testing a
program to insist that each statement be executed at least
once. Typical methods for achieving this goal include for
example the insertion of instruction counters into straight
line segments of the program, so that a non-zero vector of
counters indicates that the instrumented statements have all
been executed at least once.

During mutation analysis, the goal outlined above will
be viewed from a slightly different perspective. If a
statement cannot be executed, then clearly we can change the
statement in any way we want, and the effects of the changes
will not be noticable as the program runs -- in particular
the altered program will not be distinguishable in its out-
put behavior from the original one. There is, however, a
mutant operator which draws the tester's attention to this
situation in a more economical way. Among the mutants are
those which replace in turn the first statement of every
basic block by a call to a routine which aborts the run when
it is executed. Such mutations are extremely unstable since
any data which causes the execution of the replaced
statement will also cause the mutant to produce incorrect
results and hence to be eliminated. The converse is also
true. That is, if any of these mutants survives the
analysis then the altered statement has never been executed.
Therefore, accounting for the the survival of these mutants
gives important information about which sections of the
program have been executed.

This analysis shows why apparently useful testing
heuristics can lead one astray. For example, it has been
suggested [Ham] that not executing a statement is equivalent
to deleting it, but this discussion show how such a strategy
can fail. 	A statement can be executed and still serve no
useful purpose. 	Suppose that we replace every statement by
a convenient NO-OP such as the Fortran CONTINUE. The sur-
vival or elimination of such mutants gives more information
than merely whether or not the statement has been executed.
It indicates whether or not the statement has any observable
effect upon the output. If a statement can be replaced by a
NO-OP with no observable effect, then it can indicate at
best that machine time is wasted in its execution (possibly
a design error) and at worst a much more serious error.

Insuring that every statement is executable is no
guarantee of correctness [GG,How1]. Predicate errors or
coincidental correctness may pass undetected even if every
statement is successfully executed. We will return to these
errors types later in this section.

5.3 Dead Branches. 	It has been noted (see [Hua]) that
an improvement over simply analyzing the execution of
statements can be had by analyzing the execution of
branches, attempting to execute every branch at least once.

PAGE 21

For example, the program segment

A;
IF(<expression>) THEN B;
C;

has the flowchart shown in Figure 4.

A

V
*

* *
---*expression *---

TRUE : 	* 	* 	;FALSE
1 	 * 	 1

✓ ,

B 1 	 1
i

:
1
--->1 C i<---

Figure 4.

PAGE 22

All statements A,B and C can be executed by a single
test case. It is not true however that in this case all
branches have been executed. In this example the empty else
clause branch can be bypassed even though A,B and C are
executed.

However, the requirement that every branch be traversed
can be restated: every predicate must evaluate to both TRUE
and FALSE. The latter formulation is used in mutation
analysis. There are error operators to replace each logical
expression by boolean constants. Like the statement
analysis mutations described above, these mutations tend to
be unstable and are easily eliminated by almost any data.
If these mutants survive, they point directly to a weakness
in the test data which might shield a possible error.

Mutating each relation or each logical expression in-
dependently actually achieves a stronger test than that
achieved by the usual techniques of branch analysis. For
consider the compound predicate

IF(A.LE.B.AND.C.LE.D)THEN

Simple branch coverage requires only two test cases to
test the predicate. But suppose that the test points for
the covering test are

A < B and C< D

and

A <B and C> D.

These points have the effect of only testing the second
clause. This kind of analysis fails to take into account
the hidden paths LDLS1] implicit in compound predicates (see
Figure 5). 	In testing all the hidden paths, mutation
analysis 	requires at least three points to test the
predicate, 	corresponding 	to 	the 	branches 	(A>B,C>D),
(A‹<B,C>D), and (A<<B C<<D).

PAGE 23

* *
____* A LE.B 	*----

* * ;TRUE

V *
* *

----* C.LE.D 	*____
, 	* 	*
1 1 	* 	;TRUE
1 	 1

1 	1 	 1
V 	V 	 V

FALSE 	FALSE 	 FALSE

Figure 5.

PAGE 24

As a more concrete example, consider the program shown
in Figure 6. This program is adapted from [Gel] and was
studied in [OW]; it is intended to calculate the number of
days between two given dates. The predicate which
determines whether a year is a leap year is incorrect.
Notice that if year the year is divisible by 400 (i.e., if
year REM 400 = 0) it is necessarily divisible by 100 (ie,
year REM 100 = 0). Therefore the logical expression formed
by the conjunction of these clauses is equivalent to the
second clause alone. Alternatively the expression year REM
100 = 0 can be replaced by the logical constant TRUE and the
resulting mutant is equivalent to the original program.
Since it is not obvious what the programmer had in mind, the
error is discovered. Notice also that mutation analysis
shows that the assignment daysin(12):=31 is redundant and
can be removed from the program.

PAGE 25

PROCEDURE calendar(INTEGER VALUE dayl,monthl,day2,month2,year);
BEGIN
INTEGER days
IF month2=month1 THEN days=days2-days1

COMMENT if the dates are in the same month, then
we can compute the number of days directly;

ELSE
BEGIN
INTEGER ARRAY daysin(1..12)
daysin(1):=31;daysin(3):=31;daysin(4):=30;
daysin(5):=31;daysin(6):=30;daysin(7):=31;
daysin(8):=31;daysin(9):=30;daysin(10):=31;
daysin(11):=30;daysin(12):=31;
IF ((year REM 400)=0) OR

((year REM 100)=0 and (year REM 400)=0)
THEN daysin(2):=28 ELSE daysin(2):=29;

COMMENT set daysin(2) according to whether or not
year is leap year;

days:=day2+(daysin(month1)-day1);
COMMENT this yields the number of days in complete

intervening months;
FOR i:=month1 +1 UNTIL month2-1 DO days:=daysin(i)+days;
COMMENT add in the days in complete months;

END
WRITE(days)

END;

Figure 6.

PAGE 26

5.4 Data Flow Errors. A program may access a variable
in one of three ways. A variable is said to be defined if
the the result of a statement is to assign a value to the
variable. 	A variable is said to be referenced if its value
is required by the execution of a statement. 	Finally, a
variable is said to be undefined if the semantics of the
language does not explicitly give any other value to the
variable. Examples of the latter are the values of local
storage after procedure return or Fortran DO loop indices
after normal loop termination.

Following Fosdick and Osterweil [0F2] we define three
types of data flow anomalies which are often indicative of
program errors. These anomalies are consecutive accesses to
a variable of the following forms:

1. undefined then referenced,
2. defined then undefined,
3. defined then redefined.

Anomaly 1 is almost always indicative of an error, even
if it occurs only on a single path between the point at
which the variable becomes undefined and its point of
reference. Anomalies 2 and 3 tend to indicate errors when
they are unavoidable, that is, when they occur along a cut
set of the flow graph.

The second and third types of anomalies are attacked
directly by mutation operators. If a variable is defined
and is not used then in most cases the defining statement
can be eliminated without effect (by insertion of a CONTINUE
statement for instance). This may not be the case if in the
course of defining the variable a function with side effects
is invoked. In this case, the definition can very likely be
altered in many ways with no effect on the side effect,
resulting in the variable being given different values. An
attempt to to remove these mutations will usually result in
the anomaly being discovered.

It is more difficult to see which operators address
anomalies of the first type; the underlying errors are at-
tacked by the discipline imposed by mutation analysis.
Recall that a mutation system is a large interpretive system
for automatically generating and testing mutants. Whenever
the value of a variable becomes undefined it is set by the
interpreter to the unique constant UNDEFINED. Before every
variable reference a check is performed by the interpreter
to see if the variable has undefined values. If the
variable is UNDEFINED the error is reported to the user, who
can then take action.

5.5 Domain Errors. The notion of a domain error is due
to Howden [Howl]. A domain error occurs when an input value
causes an incorrect path to be executed due to an error in a
control statement. Domain errors are to be contrasted with
computation errors which occur when an input value causes
the correct path to be followed but an incorrect function of
the input value is computed along that path due to an error
in a computation statement. These notions are not precise

PAGE 27

and it is difficult with many errors to decide in which
category they belong.

A method of reliably uncovering domain errors is the
domain strategy proposed by White, Cohen, and Chandrasekaran
[WCC]. For a program containing N input variables (e.g.,
parameters, arrays, and I/O varibles), any predicate in the
program can be treated as an algebraic relationship and can
thus be described by a surface in the N dimensional input
space. 	If, as often happens, the predicate is linear, then
the surface is a hyperplane. 	Consider a two dimensional
example with input variables I and J

I+2J < 	-3.

The domain stategy tests this predicate using three
test points, two on the line

I+2J=3,

and one point which lies off the line, but within an en-
velope of width 2d centered on the line (see Figure 7).
Call these points A,B and C. If A,B, and C yield correct
output, we know that the defining curve of the predicate
must cut the sections of the triangle ABC. Choosing d small
enough makes the chance of the predicate actually being one
of these alternatives small. Therefore, even if one doesn't
have complete confidence that the predicate is correct, we
have gained some inductive confidence that the predicate is
correct.

PAGE 28

PAGE 29

Mutation analysis also deals with the issue of domain
errors. 	Indeed the domain strategy can be implemented using
mutation once a simple observation is made: 	it is not
necessary that points A and B both lie on the line -- it is
only necessary that the line separate them or that they do
not both lie on the same side of the line. Hereafter we
will work with the domain stategy using this simplifying as-
sumption.

There are three error operators which generate mutants
causing the tester to generate the required points.
Intuitively, we can think of mutation analysis as posing
certain alternatives to the predicate in question. These
alternatives require the tester to supply "reasons" (in the
form of test data) why the alternative predicate cannot be
used in place of the original.

Relational 	Operator 	Replacement. 	Changing 	an
inequality operator to a strict inequality, weakening the
operator, or changing its sense generates a mutant which can
only be eliminated by a test point which exactly satisfies
the predicate. For example changing

I+2J‹ 3

to
I+2J<3

requires the tester to generate a point on the line

I+2J=3

which satisfies the first predicate but which does not
satisfy the second predicate.

Twiddle. Twiddle is a unary operator denoted by ++ or
--, depending on its sense. 	In the FMS.2 system ++a is
defined to be a+1 if a is an integer and 	a+.01, 	if a is
real. In the CMS.1 system, ++a is defined to be sensitive
to the magnitude of a. The complementary operator --a is
defined similarly.

Graphically, the effect of twiddle is to move the
proposed constraint a small distance from the original line
(see Figure 8). In order to eliminate these mutants, a data
point must be found which satisfies one constraint but not
the other and is hence very close to the original line.

PAGE 30

PAGE 31

	

Other Replacements. 	These operators replace 	data
references with other syntactically meaningful data
references and similarly for operators. These effects are
related to the phenomenon of "spoilers" which are described
in 5.8.

The practical effect of considering so many alter-
natives is to increase the total number of data points
necessary for their elimination. This leads by the domain
strategy to an increased confidence that the predicate has
been correctly chosen.

For comparison, let us work through the program in
Figure 9, which was used by White, Cohen and Chandrasekaran
[WCC] to illustrate domain strategies. No specifications
are given for this program, but the program can be compared
against a presumably correct version; in any case the
program is useful since it involves only two input
variables.

READ I,J;
IF I< J+1

THEN K=I+J-1
ELSE K=2*I+1;

IF K> I+1
THEN L=I+1
ELSE L=J-1;

IF 1=5
THEN M=2*L+K;
ELSE M=L+2*K-1

WRITE M;

Figure 9.

The program has only three predicates:

I< J+1, K > 1+1, and 1=5.

The effect of changing the first of these is typical, so we
will deal with it.

Figure 10 is a listing of all the alternatives tried
for the predicate I=<J+1. 	Some of these are redundant

PAGE 32

(e.g., 	++I< J+1 	and 	I < --J+1), 	but this 	is merely 	an
artifact of the generation device; the redundancies can be
easily removed (see Section 8). 	The alternative predicates
introduced in this way are illustrated in Figure 	11. 	The
original predicate line is the heavy line. White et. al.
hypothesize that the program of Figure 9 contains the
errors:

statement/expression 	 should be

K> I+1 	 K>I+2
1=5 	 I=5-J
L=J-1 	 L=I-2
K=I+J-1 	 THEN IF(2*J<-5*I-40)

THEN K=3;
ELSE K=I+J-1;

We leave of to the reader to verify that attempting to
eliminate the alternative K >I+2 necessarily ends with the
discovery of the first error. 	Note that this is not trivial
since errors 1 and 4 can interact in a subtle way. 	In the
sequel we show how the remaining errors are dealt with.

PAGE 33

1. IF(I <J)
2. IF(I < J+2)
3. IF(I <J+1)
4. IF(I < J+J)
5. IF(1 < J+1)
6. IF(2 < J+1)
7. IF(5 < J+1)
8. IF(I < 1+1)
9. IF(I < 2+1)

10. IF(I < 5+1)
11. IF(I < J+5)
12. IF(—I< J+1)
13. IF(++f< J+1)
14. J+1)
15. IF(I < -7J+1)
16. IF(I <++J+1)
17. IF(I < --J+1)
18. IF(I < —(J+1))
19. IF(I < J-1)
20. IF(I < MOD(J , 1))
21. IF(I < J)
22. IF(I < 1)
23. IF(I<J+1)
24. IF(I=J+1)
25. IF(.NOT.I=J+1)
26. IF(I>J+1)
27. IF(I > J+1)

Figure 10.

PAGE 34

N r.)

so

N

M
J.

4'

sO

PAGE 35

The introduction of the unary ++ and -- operators can
be generalized in several useful ways. In addition to the
twiddle operators, we consider the unary operator - and the
extra-syntactic operators ABS (absolute value), -ABS
(negative absolute value), and ZPUSH (zero push). 	Consider
the statement

A=B+C.

In order to eliminate the mutants

A= ABS(B)+C,

A=B+ABS(C),

and

A=ABS(B+C),

we must generate a set of test points in which B is negative
(so that B+C differs from ABS(B+C), C is negative, and B+C
is negative).Notice that if it is impossible for B to be
negative then this is an equivalent mutation. That is, the
altered program is equivalent to the original one. In this
case, the proliferation of these alternatives can either be
a nuisance or an important documentation aid, depending upon
the testers' point of view. The topic of equivalent mutants
will be taken up again later.

In similar fashion, negative absolute value insertion
forces the test data to be positive. We use the term domain
pushing for this process. By analogy to the domain
strategy, these mutations push the tester into producing
test cases where the domains satisfy the given requirements.

Zero Push is an operator defined so that ZPUSH(x) is x
if x is nonzero, and otherwise is undefined so that the
mutant dies immediately. Hence the elimination of this
mutant requires a test point in which the expression x has
the value zero.

Applying this process at every point where an absolute
value sign can be inserted gives a scattering effect. The
tester is forced to include test cases acting in various
positions in several problem domains. Very often, in the
presence of an error, this scattering effect causes a test
case to be generated in which the error is explicit.

Returning to the example in Figure 9, we can generate
the additional alternatives shown in Figure 12. Figure 13
shows the domains into which these mutants push. Even this
simple example generates a large number of requirements!

PAGE 36

1. IF(ABS(I)>J+1)
2. IF(I>ABS(J)+1)
3. IF(I>ABS(J+1))
4. K=(ABS(I)+J)-1
5. K=(I+ABS(J))-1
6. Kr.ABS(I+J)-1
7. K=ABS((I+J)-1)
8. K=2*ABS(I)+1
9. K=ABS(2*I)+1
10. K=ABS(2*I+1)
11. IF(ABS(K)<I+1)
12. IF(K<ABS(I)+1)
13. IF(K<ABS(I+1))
14. L=ABS(I)+1
15. L=ABS(I+1)
16. L=ABS(J)-1
17. L=ABS(J-1)
18. IF(.NOT.ABS(I)=5)
19. M=2*ABS(L)+K
20. M=2*L+ABS(K)
21. M=ABS(2*L+K)
22. M=ABS(L)+2*K-1
23. M=L+2*ABS(K)-1
24. M=ABS(L+2*K)-1
25. M=ABS(L+2*K-1)

Figure 12.

PAGE 37

IA

PAGE 38

One effect of the error L=J-1 is that any test point in
the area bounded by I=J+1 and I=1 will return an incorrect
result. 	But this is precisely the area that mutants 8,9,
and 	10 push us into. So, the error could not have gone un-
discovered in mutation analysis.

This process of pushing the tester into producing data
satisfying some criterion is also often accomplished by
other mutations. Consider the program in Figure 14, which
is based on a text reformatter program by Nauer [Nau] and
which has been previously studied in the program testing
literature [GG].

PAGE 39

alarm:=FALSE
bufpos:=0;
fill:=0;
REPEAT
incharacter(cw);
IF cw=BL or cw=NL THEN

IF fill+bufpos < maxpos THEN
outcharacter(BL);

ELSE
BEGIN
outcharacter(NL);
fill:=0;
FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter(buffer[k])
fill:=fill+bufpos;
bufpos:=0

END
ELSE
IF bufpos = maxpos THEN alarm:=TRUE;
ELSE BEGIN
bufpos:=bufpos+1;
buffer[bufpos]:=cw

END
UNTIL alarm or cw=ET

Figure 14,

PAGE 40

Consider the mutant which replaces the first statement
fill:=0 with the statement fill:=1. The effect of this
mutation is to force a test case to be defined in which the
first word is less than maxpos characters long. This test
case then detects one of the five errors originally reported
in the program [GG]. The surprising thing is that the ef-
fect of this mutation seems to be totally unrelated to the
statement in which the mutation takes place!

5.6 Special Values. 	Another form of test which has
been introduced by Howden [How2] is special values testing.
Testing of special values is defined in terms of a number of
"rules". For example:

1. Every subexpression should be
tested on at least one test case which
forces the expression to be zero.

2. Every variable and every subex-
pression should take on a distinct set
of values in the test case.

The relationship between the first rule and domain push-
ing (via zero values mutations) has already been discussed.
The second rule is undeniably important. If two variables
are always given the same value then they are not acting as
free variables and a reference to the first can be uniformly
replaced with a reference to the second. But this is also
an error operator and the existence of these mutations en-
forces the goals of Rule 2.

A slightly more general method of enforcing Rule 2
might use the following device. A special array exactly as
large as the number of subexpressions to be computed in the
program is kept. Each entry in this array has two ad-
ditional tag bits which are intialized to their low values
indicating that the array is uninitialized. As each subex-
pression is encountered in turn, the value at that point is
recorded in the array and the first tag bit is set. Sub-
sequently, when the subexpression is again encountered if
the second tag is still off the current value of the expres-
sion is compared against the recorded value. If these
values differ the second tag is set to high values; other-
wise no change is made. By counting those expressions in
which the second tag bit is low and the first is high one
can infer which expressions have not had their values al-
tered over the test case. Mutations could be constructed to
reveal this. This technique is similar to one used in a
compiler system by Hamlet [Ham]

5.7 Coincidental Correctness. The result of evaluat-
ing a given test point is coincidentally correct if the
result matches the intended value in spite of a computation
error. For example, if all our test data results in the
variable I taking on the values 2 and 0, then the computa-
tion

J=I*2

PAGE 41

may be coincidentally correct if the intended calculation
was

J=I**2.

The problem of coincidental correctness is really
central to program testing. Every programmer who tests an
incorrect program and fails to find the errors has really
encountered an instance of coincidental correctness. 	In
spite of this, 	there has been no direct assault on the
problem and some authors have gone so far as to say that the
problems of coincidental correctness are intractable [WCC].

In mutation analysis, coincidental correctness is at-
tacked by by the use of spoilers. Spoilers implicitly
remove from consideration data points for which the results
could obviously be coincidentally correct -- this "spoils"
those data points. For example by explicitly creating the
mutation

J=I*2 ==> J=I**2

we spoil those test cases for which 1=0 or 1=2 are
coincidentally correct and require that at lest one test
case have an alternative value.

Continuing with the example of Figure 9, Figures 15 and
16 show the spoilers and their effects associated with the
statement M=L+2*K-1. Notice that a single spoiler may be
associated with up to four different lines depending on the
outcome of the first two predicates in the program. In
geometric terms, the effects of the spoilers are that within
each data domain for each line there must be at least one
test case which does not lie on the given line. In broad
terms, the effects of this are to require that a large num-
ber of data points for which the possibilities of
coincidental correctness are very slight.

PAGE 42

1. M=(L+1*K)-1
2. M=(L+3*K)-1
3. M=(I+2*K)-1
4. M=(J+2*K)-1
5. M=(K+2*K)-1
6. M=(L+2*J)-1
7. M=(L+2*I)-1
8. M=(L+2*L)-1
9. M=(L+I*K)-1

10. M=(L+J*K)-1
11. M=(L+K*K)-1
12. M=(L+L*K)-1
13. M=(L+2*K)-I
14. M=(L+2*K)-J
15. M=(L+2*K)-K
16. M=(L+2*K)-L
17. M=(1+2*K)-1
18. M=(2+2*K)-1
19. M=(5+2*K)-1
20. M=(L+2*1)-1
21. M=(L+2*2)-1
22. M=(L+2*5)-1
23. M=(L+5*K)-1
24. M=(-L+2*K)-1
25. M=(L+-2*K)-1
26. M=(L+2*-K)-1
27. M=(L+2*--K)-1
28. M=-(L+2*K)-1
29. M=-((L+2*K)-1)
30. M=(L+2+K)-1
31. M=(L+2-K)-1
32. M=(L+MOD(2,K))-1
33. M= (L+2/K)-1
34. M=(L+2**K)-1
35. M=(L+2)-1
36. M=(L+K)-1
37. M=L-2*K-1
38. M=(MOD(L,2*K))-1
39. M=L/2*K-1
40. M=L*2*K-1
41. M=L**(2*K)-1
42. M=L-1
43. M=(2*K)-1
44. M=L+2*K+1
45. M=MOD(L+2*K,1)
46. M=(L+2*K)/1
47. M=(L+2*K)*1
48. M=(L+2*K)**1
49. M=(L+2*K)
50. M=1

Figure 15.

PAGE 43

d 4- 	

PAGE 44

-n
J.
La
C

CD

--,

01

Often the fact that two expressions are coincidentally
the same over the input data is a sign of a program error or
of poor testing. The sorting program of Figure 17 is from
[Wir], and it performs correctly for a large number of input
values. If, however, the statements following the IF
statement are never executed for some loop iteration it is
possible for R3 to be incorrectly set and an incorrectly
sorted array will result.

By constructing the mutant which replaces the statement

a(R1):=R0 ==> a(R1):=a(R3)

it is clear that there are two ways of defining RO, only one
of which is used in the test data. This exposes the error.

PAGE 45

FOR R1=0 BY 1 TO N BEGIN
RO:=a(R1);
FOR R2=R1+1 BY 1 TO N BEGIN

IF a(R2)>R0 THEN BEGIN
RO:=a(R2);
R3:=R2

END

END
R2:=RO;
a(R1):=RO;
a(R3):=R2

END;

Figure 17

PAGE 146

5.8 Missing Path Errors. A program contains a missing
path error if a predicate is required which does not appear
in the subject program, causing some data to be computed by
the same function when an altogether different function of
the input data is called for. The definition is due to How-
den CHow2]. Such missing predicates can really be the
result of two different problems, however, so we might
consider the following alternative definitions.

A program contains a specificational missing path error
if two cases which are treated differently in the
specifications are incorrectly combined into a single func-
tion in the program. On the other hand, a program contains
a computational missing path error if within the domain of a
single specification a path is missing which is required
only because of the nature of the algorithm or of the data
involved.

An example of a specificational error is the fourth
error from the example in Section 5.5. Although this error
might result from a specification there is nothing in the
code itself which could give any hint that the data in the
range

2*J < 5*I -40

is to be handled any differently than shown in the program.
As an example of the second class of path error

consider the subroutine shown in Figure 18, which is adapted
from [KP]. The input consists of a sorted table of numbers
and an element which may or may not be in the table. The
only specification is that upon return

X(LOW) I A 	X(HIGH)

and

HIGH < LOW+1.

A problem arises if the program is presented with a table of
only one entry, in which case the program diverges.

In the specifications there is no clue that a one-entry
table is to be treated any differently from a k>1 entry
table. The algorithm makes it a special case.

PAGE Z47

SUBROUTINE BIN(X,N,A,LOW,HIGH)
INTEGER X(N),N,A,LOW,HIGH
INTEGER MID
LOW=1
HIGH=N

6 	IF(HIGH-LOW-1)7,12,7
12 	RETURN
7 	MID=(LOW+HIGH)/2

IF(A-X(MID))9,10,10
9 	HIGH=MID

GO TO 6
10 LOW=MID

GO TO 6
END

Figure 18.

PAGE 48

Computational missing path problems are usually caused
by requirements to treat certain values (e.g., negative num-
bers) differently from others. When this occurs, data push-
ing and spoiling often lead to the detection of the errors.
In the example under consideration here an attempt to kill
either of the mutants

IF(HIGH-LOW-1)12,12,7

or

MID=(LOW+HIGH)-2

will cause us to generate a test case with a single element.
Since mutation analysis -- like all testing techniques

-- deals mainly with the program under test, the problem of
dealing with specificational missing path errors appears to
be considerably more difficult. Under the Competent
Programmer Assumption and the Coupling Effect, however, a
tester who has access to an "oracle" for the program
specifications can assume that the mutants cover all program
behavior! So by consulting the specifications the tester
can detect missing paths by noting incomplete behavior and
thus uncover any missing paths. But since the assumptions
of a competent programmer and coupling are statistical and
since it may be infeasible to check for incomplete behavior,
the chances of detecting such missing paths are not certain.

To see this failure, consider the missing path error
from section 5.5. It is possible to generate test data
which is adequate but which fails to detect the missing path
error because there is no oracle to consult for completeness
of behavior. This appears to be a fundamental limitation of
the testing process. Unlike, say, program verification,
program testing does not require uniform a priori
specifications; rather we only ask that the tester be able
to judge correctness on a case-by-case basis. It is our
view that the only way to attack these problems is to start
with a core of test cases generated from specifications, in-
dependent of the subject program. This core of test cases
can then be augmented to achieve stronger goals. We note
that some preliminary work on generating test data from
specifications has already been reported [GG,OW].

5.9 Missing Statement Errors. By analogy with missing
path errors, a missing statement error is defined by a
statement which should appear in the program but which does
not. 	It is not clear that the techniques of statement
analysis can be used to uncover these errors. In 	fact, it
is rather surprising that mutation analysis -- a technique
which is directly oriented toward examining the effect of a
modification to a statement -- can be used to detect missing
statements at all!

To see how this can be accomplished, consider the
program shown in Figure 19. This program accepts a vector V
of length N and returns in MPSUM the value

PAGE 49

V(i)+V(i+ 1)+...+ V (N)

where j=i-1 is the smallest index such that V(j) is strictly
positive. 	In degenerate cases, MPSUM=0 is returned.

There is a missing RETURN statement which should follow
the IF statement. The effect of the error is to cause un-
defined behavior when the vector V is uniformly nonpositive
(undefined, since DO loop variables are of indeterminate
value after normal completion of the loop).

A simple mutation of MPADD is the transformation

DO 1 I=1,N ==> DO 1 I=1,N+1.

This mutant fails only when the loop executes N+1 times. In
this case all elements of V are nonpositive and the original
program fails, so eliminating this mutant uncovers the
error. But even after adding the return statement, MPADD
will still be incorrect due to a missing path error. We
leave it to the reader to discover the error by considering
the mutant

DO 1 I=1,N ==> DO 1 I=1,N-1.

PAGE 50

SUBROUTINE MPADD(V,N,MPSUM)
INTEGER V(N),N,MPSUM
MPSUM = 0
DO 1 I=1,N

1 	IF(V(I).GT.0)G0 TO 2
2 	M=I+1

DO 3 I=M,N
3 	MPSUM=MPSUM+V(I)

RETURN
END

Figure 19.

PAGE 51

6. A CASE STUDY
To see the effect of mutation analysis on a tester who

is attempting to locate and remove program errors, it is
worthwhile to examine a debugging session for a program that
is not known beforehand to be "testable". This case study
differs from previous mutation dialogs which we have
reported [DLS1,DLS2,LS7 in that our previous reports dealt
with programs strongly believed to be correct, for which
mutation analysis was used as a tool to increase our con-
fidence in the program's correctness. The subject program
to be discussed here is known to contain at least one
"resistant" error; the error had resisted all of the usual
debugging techniques such as selective traces and statement
instrumentation. Hence, mutation analysis is used here not
as a test data evaluator but as a tool for systematic debug-
ging and, perhaps just as importantly, as a convenient run
time environment for Fortran subroutines.

The subject program is a routine called NXTLIV. 	It is
a key routine in the CMS.1 system and can be considered a
production program for purposes of testing. NXTLIV accepts
as input the identifying number of a mutant of a given type
and returns the number of the next live mutant, as indicated
by bit maps of the live mutants. The bit maps are in
general too large to fit in an internal array so they must
be paged from a random access disk file as needed. Similar
maps of the dead mutants and equivalent mutants are also
stored. The subject program is shown in Figure 20.

PAGE 52

SUBROUTINE NXTLIV(MTYPE,MUTNO)
C FIND THE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MTYPE
C RETURN THIS VALUE IN MUTNO.
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS OF THAT TYPE

REMAIN ALIVE.
NOLIST

$INSERT ICS057>CPMS.COMPAR>SYSTEM.PAR
$INSERT ICS057>CPMS.COMPAR>MACHINE.SIZES.PAR
$INSERT ICS057>CPMS.COMPAR>FILENM.COM
$INSERT ICS057>CPMS.COMPAR>TSTDAT.COM
$INSERT ICS057>CPMS.COMPAR>MSBUF.COM

LIST
INTEGER MTYPE,MUTNO
INTEGER I,J,K,L,WORD,BIT
LOGICAL ERR

C 	CALL TIMER1(33)
C ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS FOR
C MUTNO IS ALREADY PRESENT, UNLESS MUTN0=0.

K=BPW-1
C CHECK TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD

IF(MUTNO.EQ.0)TO TO 1
IF(MOD(MUTNO,K*MSFRS).EQ.0)GO TO 24
GO TO 10

1 	CALL REARAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)

CALL REARAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CALL REARAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CHANGD=.FALSE.
WORD=1
BIT=2
GO TO 20

10 	WORD=MOD((MUTNO)/(K),MSFRS)+1.
BIT=MOD(MUTNO,K)+2

20 	DO 22 J=WORD,MSFRS
L=LIVBUF(J)
IF(L.NE.0)GO TO 23
MUTNO=MUTNO+K
IF(MUTNO.GT.MCT)GO TO 40
GO TO 22

23 	DO 21 I=BIT,BPW
MUTNO=MUTN0+1

IF(MUTNO.GT.MCT)GOT040
IF(AND(L,2**(BPW-I)).NE.0)G0 TO 30

21 	CONTINUE
BIT=2

22 	CONTINUE
24 	OF(.NOT.CHANGD)GOTO 25
C SAVE OLD RECORDS

CALL WRTRAN(MSFILE,LIVBUF,MSFRS.LIVPTR,ERR)
CALL WRTRAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR)
CALL WRTRAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR)

C NEED TO GET NEXT RECORDS
25 	LIVPTR=LIVPTR+MSFRS

PAGE 53

EQUPTR=EQUPTR+MSFRS
DEDPTR=DEDPTR+MSFRS
GO TO 1

30 	GO TO 9999
40 	MUTN0=0

IF(.NOT.CHANGD)GO TO 9999
C SAVE OLD RECORDS

CALL WRTRAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR)
CALL WRTRAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERB)
CALL WRTRAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR)

9999 	CONTINUE
C 	CALL TIMER2

RETURN
END

Figure 20.

PAGE 514

Since FMS.1 provides a more user—oriented environment
than FMS.2, NXTLIV was tested using FMS.1. To adapt to the
smaller Fortran subset of FMS.1, some modifications had to
be made. Since FMS.1 does not accept PARAMETER statements
the parameters BPW and MSFRS (from the $INSERT blocks) were
replaced with typical values. Allowances had to be made for
the unsupported CALL and the random I/O routines. 	The two
TIMER calls were ignored. 	Integer arithmetic was used to
simulate the remaining features. 	To facilitate testing
several 	parameters 	are 	entered 	as 	explicit formal
parameters.

FMS.1 first asks for the parameter values:
MUTNO = 0
MCT = 6 (MCT is the total number of mutants of current type)
CHANGD = 0
LIVBUF(1)=LIVBUF(2)=7
LIVBUF(3)=LIVBUF(4)=0
NLB(1)=...=NLB(4)=0 (NLB is the next live buffer. It should be

transferred to LIVBUF for use immediately)
LLB(1)=...=LLB(4)=0 (LLB is the last live buffer)

Once the data is entered the system executes NXTLIV on
the test points and responds:

PARAMETERS ON OUTPUT
MUTNO = 0
LIVBUF(1)=0
LIVBUF(2)=0
LIVBUF(3)=0
LIVBUF(4)=0
LLB(1)=0
LLB(2)=0
LLB(3)=0
LLB(4)=0
CHANGD=O

THE RAW PROGRAM TOOK 41 STEPS TO EXECUTE THIS TEST CASE

The output MUTN0=0 signifies that the end of the live
mutant map for this type has been reached. The tester then
informs the system that NXTLIV has worked correctly for this
test case. 	The first type of mutant to be investigated by
the tester is SAN 	(Statement Analysis), which replaces
statements by traps. The FMS.1 mutation report for this run
is as shown below.

POST RUN PHASE
NUMBER OF TEST CASES = 1
	

NUMBER OF MUTANTS = 44
NUMBER OF LIVE MUTANTS= 23
	

PCT. ELIMINATED MUTANTS = 47.73

Examination shows the mutants shown in Figure 21(a) to
be still live.

In attempting to kill these mutants 	the 	tester
generates the testcases 2 and 3 (see Figure 21(b)).

PAGE 55

line : 	 statement 	 has been changed to
1 	

16 	IIF((MUTNO/12)*12.EQ.MUTNO)G0 TO 24 	 TRAP
17 	IGO TO 10 	 i 	TRAP
32 	IWORD=((MUTNU3)-4*((MUTN0/3)/4))+1 	 TRAP
34 	IBIT=MUTNO-3*(MUTN0/3)+2 	 i 	TRAP

1 	
Figure 21(a)

test
case

2
3

15 1

MUTNOIMCTICHANGDILIVBUF
1 	 :1 	2 	3 i
1 	 1

	

1 	1 	6 	0 	17 	7 	0

	

10 	120 	1 	11 	3 	0

	

5 	120 	0 	;0 	0 	1

4

0
0
0

INLB
11 2
1
10 	0
17 	7
11 	1

3

0
0
1

ILLB
4:1

i 1
0100
0199
1199

2

00
99
99

3

00
99
99

1
4

1 1
001
99;
991

Figure 21(b).

PAGE 56

Testcase 2 eliminates twelve of the remaining SAN
mutants. Testcase 3, on the other hand produces the output

PARAMETERS ON OUTPUT
MUTN0=14
LIVBUF(1)=7
LIVBUF(2)=7
LIVBUF(3)=7
LIVBUF(4)=0
LLB(1)=1
LLB(2)=3
LLB(4)=0
LLB(5)=0

THE RAW PROGRAM TOOK 56 STEPS TO EXECUTE THIS TEST CASE.

An error has been detected; the correct output for MUT-
NO is 13 instead of 14. This error resulted from choosing a
starting point in the middle of a word of zero bits. NXTLIV
ordinarily searches the bits of each word looking for the
next "1", but for efficiency a whole word is compared to
zero before the search is begun. If all bits are set low,
MUTNO is incremented by the word length and the next word is
accessed. A correct algorithm would increment MUTNO only by
the number of bits left to be examined in the word. The
only way this can make a difference in the original program
is for NXTLIV to be called in such away as to stop at a "1"
bit in the middle of the word, which is otherwise all 0's,
and then by a mutant failure or equivalence (outside the
routine) to have that bit turned off before NXTLIV is called
again for the next mutant to be considered. Obviously this
situation is so rare that it is bound to defy haphazard
debugging attempts but is none the less common enough to
cause irritation in a production-sized Cobol run.

The needed fix is to replace

MUTNO=MUTNO+K

by

MUTNO=MUTNO+(K-(BIT-2)).

After eliminating all SAN mutants and turning on the
remaining error operators, a total of eleven test cases kil-
led all but 50 of 1,514 mutants, about 96.7 percent of the
total. Eventually the tester's attention is directed to the
mutant at line 45

BIT=2 ==> 1=2.

The testcase 	15 in Figure 21(b) is an attempt to eliminate
this mutant. The program again fails and another error has
been found. This error is also related to the test for the
entire word of zeroes. By starting in the middle of a word

PAGE 57

of zeroes, the BIT pointer is not correctly set to 2 to
begin searching the next word. The correction is to replace

BIT=2
22 	CONTINUE

by

22 	BIT=2

An interesting note is that this "correction" is ac-
tually a mutation that the tester would have had to
eliminate in any event, so in effect the error was uncovered
by the coupling effect before it was explicitly considered.

In completing the analysis of NXTLIV the tester of
course has to deal with the equivalent mutants. This sub-
ject will be discussed in more detail in a later section.
The complete analysis of the corrected program required the
elimination of 1,580 mutants. The corrected algorithm has
since been running without known failure in CMS.1.

7. SEEDING AND FAULTS

There are two previously suggested error detection
techniques which seem to bear strong resemblence to mutation
analysis. They arise in different settings and the
relationship of mutation analysis to both of them has been
questioned in several private correspondences. One of these
is the error seeding technique described with several ap-
plications by Gilb [Gil] and the other is fault detection
[Cha] applied to circuit design. Mutation analysis has al-
most nothing in common with error seeding, but owes a great
deal to fault detection work in switching theory.

The idea behind error seeding is to insert "random"
errors in a program. This approach has been used in several
studies of the programming and debugging process. In one
experiment the seeds were used to calibrate the effec-
tiveness of software documentation on its maintainability;
in another experiment the number of errors in a program is
estimated by inserting the seeds and then uncovering k
errors, using the percentage of those k errors which were
seeded to infer the total number of errors.

On 	the surface this idea seems very similar to
mutation. 	Let us look a little more closely at the notion
of "randomness" which is so crucial to the technique.
First, if we inspect the results of the experiments
described in [Gil], we are struck by the lack of resolution.
In the first experiment described above, for example, "ran-
domly" chosen groups of programmers were given various sets
of clues about the programs to be debugged. As reported by
Gilb: "Variations between individuals in homogeneously
selected groups of programmers are at least 2 to 1 and up to
10 to 1." 	Furthermore, the interpretations consistent with
the experimental results tend to be highly suspect: 	"The
use of test data seems to be less effective than simple

PAGE 58

source program reading."
The reason for such results is apparent in the follow-

ing description given by Gilb of the statistical basis for
using seeding to estimate the total number of errors in a
program.

How many fish are there is a pond or a
lake? Let's say that a reasonably large
sample of 1000 fish are marked and then
allowed to mix for a while with the
total population in the pond. If we
then take a new sample of 1000 fish and
find that 50 of these have our markings
on them, this gives us 20,000 fish as a
reasonable estimate if we accept the
original sample as random and the remix-
ing of the fish as homogeneous.

This seems to be the source of the difficulty. We have
strong evidence that, first, the fish tend to school in ways
that are not predictable. So in order to get a truly random
sample we have to know where to fish beforehand, and second,
the marked fish show truly idiosyncratic tastes in picking
their associations in the pond. In particular, there seems
to be no way at all of insuring that the sample we obtain
neither underestimates nor overestimates the original
population by unpredictable amounts. In less prosaic terms
the preponderance of evidence obtained through mutation
analysis (see [DLS2,LS] for indicative studies) is that
errors do not occur with statistical properties that make
them useful for error seeding studies. Even though they may
be considered the result of a stochastic process whose
properties can be determined for small well -defined ag-
gregates ,they are in individual programs sporadic, highly
non-independent, and not uniformly distributed through the
code. It is precisely because the inserted errors are ran-
dom that they do not relate in a regular way to the natural
errors. As we have seen, it takes much care in the choice
of error operators to insure that specific categories of
errors are reliably detectable by mutation analysis.

A hallmark of mutation analysis is that it rests on the
Competent Programmer Assumption; we explicitly assume that a
program is not a random object. A program once it is
created 	contains 	errors 	and 	these 	are 	fixed,
deterministically located objects. In order for a
statistical technique to be applicable to a given program a
considerable number of a priori assumptions must be rather
fully justified. It is, however, possible to design ex-
periments on fixed populations of programs, whose properties
are quantifiable, which will reveal statistical properties
of such hypotheses as the Coupling Effect. But this is an
entirely different issue.

To clearly draw the distinction it may be helpful not
to think of the mutants as being errors, but simply as small
perturbations of the program's structure. As we have seen,
these perturbations have the effect of insuring that the

PAGE 59

test data exercises the program in a thorough fashion. 	If
the test data is sensitive to the perturbations, then one's
confidence that what was written was what was intended is
correspondingly increased. If on the other hand, the test
data allows one to alter the program significantly without
changing its apparent behavior, then one has little con-
fidence in the test.

Finally, mutation analysis has a psycho-social aspect
that error seeding cannot have. Even if error seeding
worked perfectly, the assumptions which make it work would
also insure that it give no information about where the
remaining natural errors occur (statistical independence
insures this). Mutation analysis forces a controlled
reconsideration of the source code. It leads -- as we saw
in the section preceeding this one -- to a situation in
which the tester must consider statement x and ask himself
"why does it not matter if statement x is changed to x'?"
The possible answers are that statement x is in error, that
it does matter but the test data does not reveal it, that x
is equivalent in context to x', or that the programmer does
not understand statement x and is unable to give a reason.
In each situation information about the program, about the
test, and about the programmer is revealed.

Fault detection experimentation is a classical tech-
nique for detecting faults in switching circuits. The
crucial idea is that one systematically "faults" circuit
elements and examines the input-output function of the
resulting circuit by comparing it to the original circuit
[Cha]. This is the key idea of mutation analysis. There
are, however, some essential differences which make mutation
analysis applicable on a larger scale. First, the principle
use of fault detection is to check circuit deterioration,
not to validate design. Second, because circuits tend not
to be functionally organized the technqiue is exhaustive
when applied to design testing (for deterioration ex-
periments there is frequently fault data available to guide
the experimenter). In essence, the approach adopted by
mutation analysis is fault detection applied to systems of
high functionality in the presence of the Competence
Programmer Hypothesis and the Coupling Effect. This sug-
gests that perhaps mutation analysis in its automated form
can be used for circuit validation. Perhaps, although the
lack of functional description at the switching element
level makes it hard to avoid the exhaustive and therefore
combinatorially explosive growth of the test cases. But
technology has grown in an unexpected direction in the last
twenty years, and the digital design techniques of today
seem to be not ill-suited to mutation analysis. In
preliminary hand studies to be reported elsewhere, we have
used the mutation analysis approach to test micro-coded cir-
cuit designs with surprising success.

8. THE PROBLEM OF MUTANT EQUIVALENCE
Experience indicates that in production programs, the

PAGE 60

number of equivalent mutants can vary between 2% and 5% of
the total mutant count. In more finely tuned program (see,
eg, our analysis of FIND in [DLS1] and Burns' analysis of
sorting routines [Bur]), however it is common for source
statements to appear in a particular form solely for ef-
ficiency reasons. 	In these program such statements can be
altered without affecting the output behavior. 	A typical
example of this behavior is beginning a loop at 2 instead of
1 or 0, so that a mutation which changes

2 ==> 1

for example, 	causes an extra iteration but does not alter
the outcome of the looping operation. 	In tuned programs,
the equivalent mutants can comprise as much as 10% of the
total.

It is easy to show that equivalent mutant detection is
a formally undecidable problem (note that equivalent mutant
detection is not obviously the same problem as the general
equivalence problem for program schemata [Mann. Assume a
fixed programming language which is expressive enough to al-
low the programming of all recursive functions, and let P1
and P2 be arbitrary procedures written in the language.
Since "goto" mutations are meaningful and likely mutations,
consider the following program to which goto replacement has
been applied.

goto L; 	 go to M;
L:P1;halt; 	 = = > 	L:P1;halt;
M:P2;halt;
	

M:P2;halt;

Clearly, these two programs are equivalent (that is, they
either halt together and deliver the same output or they
diverge together) if and only if P1 and P2 are equivalent,
and that is undecidable for the language described above.
In fact, our choice of language is needlessly complex; es-
sentially the same proof holds for the Fortran subset accep-
ted by FMS.1 and the Cobol subset accepted by CMS.1.

In spite of this, most equivalent mutants are stylized
and rather easy to judge equivalent. This is perhaps due to
the Competent Programmer Assumption: the subject program
and an allegedly equivalent mutant are not chosen randomly
-- in fact, they are chosen by a very careful sieving of all
possible programs and the structure of this relationship
should be something that one can exploit in determining
mutant equivalence.

Before we proceed it may be instructive to examine a
few instances of equivalent mutants which show this struc-
ture. In the analysis of SCAN (see Section 2), a relatively
large number of mutants resulting from the transformation

X ==> RETURN

appear as live mutants on even very good test data. On
closer examination, however, most of these reveal that

PAGE 61

X = GO TO 90,

where statement labelled 90 is itself a RETURN. 	The
programmer's style is to always jump to a common RETURN
statement, allowing an easy "proof" of equivalence.

For a more pregnant example, let us return to the
NXTLIV routine described above. A principal source of
equivalent mutants in that example was the troublesome test
for a word of zeroes. Its only purpose is to save the ef-
fort of looking through the words bit by bit. If the condi-
tion is the test is replaced by any identically true expres-
sion, the program runs a bit longer but is otherwise
identical(see Figure 22(a)). Similarly the mutation shown
in Figure 22(b), changes the performance of the program on-
ly, but this time it improves it!

PAGE 62

IF(L.NE.0)GOTO 23 ==> IF(12.NE.0)G0 TO 23
(applied at line 34)

Figure 22(a)

IF(MUTNO.GT.MCT)GOTO 40 ==> IF(MUTNO.GE.MCT)GOTO 40
(applied at line 36)

Figure 22(b).

Figure 22.

PAGE 63

These last two examples are not accidental. Mutations
of a program are remarkably similar to simple trans-
formations that are made in code optimization; it is not
surprising that some of them should turn out to be optimiz-
ing or de-optimizing transformations. Conversely, correct-
ness preserving optimizing transformations should be ap-
plicable to detecting equivalent mutants. If this is a
useful heuristic then the task of identifying equivalent
mutants can be reduced to detecting those which are
equivalent for an interesting reason.

Almost all of the techniques used in optimizing com-
piled code can be applied in some way to decide whether a
mutant is equivalent to the subject program. Some optimiz-
ing transformations are widely applicable while others are
severely limited in scope. We will give a sampling of the
useful transformations. For terminology and detailed
discussions see CAU,Sch].

8.1 Constant Propagation. Constant propagation invol-
ves replacing constants to eliminate run-time evaluation. A
typical optimizing transformation would replace statement 3
as shown below

1 	A=1
	

1 	A=1
2 	B=2 	==> 	2 	B=2
3 	C=A+B
	

3 	C=3

There are several elegant schemes for global transformations
of this form.

Constant propagation is most useful for detecting cases
in which a mutant is not equivalent to the subject program;
any change which can affect the known value of a variable
can be detected in this fashion. The mechanism for testing
equivalence of mutants using constant propagation is to com-
pare at all points after the mutation site the constants
which are globally propagated through the program. If they
differ it is likely that the programs are not equivalent.
The test is certain if there is a RETURN, HALT or some other
exit statement in which the set of associated constants
contains an output variable and if there is a path from the
entry point of the program to the exit point. This is
resolvable by dead code detection (see 8.6).

8.2 	Invariant 	Propagation. 	Invariant propagation
generalizes constant propagation by associating with each
statement a set of invariant relations between data elements
(e.g., 	X<0 or B=1). 	Although invariant propagation has met
with limited applicability in compiler design, 	it is a
powerful technique for detecting equivalent mutants,
particularly those involving relational mutant operators.
These operators frequently only affect an expression if it
has a certain relationship to 0. For example ;x; changes
the value of x only if x<0. 	In the program-mutant pair

IF(A.LT.0)GOTO1 	 IF(A.LT.0)GOTO1
B=A
	 ==> 	B=ABS(A)

PAGE 64

the conditional allows us to determine the invariant (A>=0)
and this allows us to determine that the program and its
mutant are equivalent since the absolute value of a positive
number is that number.

Invariant propagation is enhanced if the propagation and
testing algorithms exploit transitivity of the relations and
allow the replacement of an invariant by a weaker one.

8.3 Common Subexpressions. Perhaps the most common op-
timization is to recognize calculations which are repeated
but which can be pre-computed. For example

A=X+Y
B=X+Y+Z

calculates X+Y twice, but can be replaced by a program which
uses a temporary variable to hold X+Y.

A common iterative algorithm for eliminating common
subexpressions uses global analysis to associate with each
statement the propagated variables, but this time
partitioned into equivalence classes under the equivalence
of evaluating to the same value. Since this method
generates equivalent expressions not used in the program,
the widest possible range of equivalent subexpressions is
recognized. This is a very useful technique for dealing
with mutations to assignment statements. Changing an
operator changes the equivalence class of the variable to
which the assignment was made. Similarly mutations which
change an operand or destination in an assignment will
produce changes in the equivalence classes following the as-
signment. Therefore, comparing the equivalence partitions
can demonstrate differences between the subject and the
mutation.

Consider the mutation

A=B+C (partition = A;B+C) ==> A=B-C (partition = A;B-C)

Comparing the partitions shows that A has a different value
in the two programs.

The same ideas are used to show equivalence. If a
mutation has changed part of expression E to an expression
E' but E and E' are in the same equivalence class, then the
mutant is equivalent.

8.4 Loop Invariants. 	Another common transformation
removes code from inside loops if the execution of that code
does not depend on the iteration of the loop. Since many
mutations change the boundaries of loops techniques for
recognizing this invariance is useful for detecting
equivalent mutants. In those cases where the mutation
either increases or decreases the code within a loop, loop
invariant recognition can be used to decide whether or not
the effect of the loop is changed. In the following
mutation, excess code is brought within the scope of the DO
statement.

PAGE 65

DO 1 1=1,10 	= = >
	

DO 2 1=1,10
A(I)=0
	

A(I)=0
1 	CONTINUE
	

1 	CONTINUE
2 	B=0
	

2 	B=0

Since the assignment B=0 is loop invariant, it does not mat-
ter how many times it is executed.

8.5 Hoisting and Sinking. 	Hoisting and sinking is a
form of code removal from loops in which code which will be
repeatedly executed is moved to a point where it will be
executed only once; this is accomplished by a calculus which
gives strict conditions on when a block of code can be moved
up (hoisted) or down (sunk).

The applications for equivalence testing are similar to
the applications for loop invariants. The major difference
is that hoisting and sinking applies to cases in which code
is included or excluded along an execution path by branching
changes. These are the sorts of changes obtained by GOTO
replacement and statement deletion mutations. In these
cases, we get equivalence if the added or deleted code can
be hoisted or sunk out of the block involved in the addition
or deletion.

An example will illustrate.

IF(A.EQ.0)GOTO1 	==> 	 IF(A.EQ.0)GOTO 2
A=A+1 	 A=A+1

2 	B=0 	 2 	B=0
GO TO 3 	 GO TO 3

1 	B=0 	 1 	B=0
3 	 3

In this example B is set to 0 regardless of whether it
is assigned its value at line 1 or at line 2. The assig-
nment to B can be hoisted as follows:

B=0
IF(A.EQ.0)GO TO 3
A=A+1

3

Since 	both 	programs 	are thus transformed, they are
equivalent.

8.6 Dead Code. Dead Code detection is geared toward
identifying sections of code which cannot be executed or
whose execution has no effect. Dead code algorithms exist
for detecting several varieties of dead code situations. We
have already used dead code analysis as a subproblem in the
propagation problems above. Dead code analysis is also
useful to directly test equivalence, particularly for those
mutations arising from an alteration of control flow.

A typical application is to analyze the program flow-

PAGE 66

graphs. 	If, for example, a mutation disconnects the graph
and neither connected component consists entirely of dead
statements, then the mutant cannot be equivalent. Such
disconnection is possible by the mutant which inserts
RETURNs in Fortran subroutines.

Another common situation involves applying mutations to
sites in a program which are themselves dead code; this is
the classical compiler code optimization problem: we must
detect dead code since any mutations applied to it are
equivalent.

Dead code analysis can also 	be 	used 	to 	show
nonequivalence by using it to demonstrate that a mutation
has "killed" a block of code.

8.7 Postprocessing the Mutants. 	Optimizing trans-
formations can be implemented as a postprocessor to a muta-
tion system. User experience is that it is relatively easy
to kill as may as 90% of the live mutants. To the remaining
10%, an equivalence heuristic such as the rules sketched
above can be applied. A more complete description of such a
postprocessor is available in [BaS].

The difficulty of judging equivalent mutants from those
remaining after the postprocessing stage both helps and hin-
ders the testing process. On one hand, forcing testers and
programmers to "sign off" on equivalent mutants enforces a
unique sort of accountability in the testing phase of
program development (see Section 9). On the other hand,
particularly clever programming leads to many equivalent
mutants whose equivalence is rather a nuisance to judge;
carelessness for these programs may lead to error proneness.
Our experience, however, is that production programs present
no special difficulties in this regard.

9. FURTHER APPLICATIONS OF MUTATION

9.1 	Programming Tool. 	A tester specifies to 	an
automatic mutation system:

(1). a program,
(2). test data,
(3). a list of error operators to be applied.

The system generates and executes the required mutants on
the test data, "killing" those which are judged incorrect
vis a vis the execution of the subject program. The system
also produces reports which the user may examine and use in
subsequent attempts to eliminate mutants. This cycle may be
viewed as a series of interactive sessions in which the user
plays the role of an advocate who defends the program and
the system plays the role of an adversary which asks
questions of the form: why does your test data not
distinguish this simple error?

If the mutation system also provides the user a
pleasant runtime environment in which to write programs, the
advocate-adversary relationship can be used to add an im-
portant dimension to the process of programming. Two of us
have argued for the importance of "social" filters in the
creative process [DLP]; mutation analysis applied during the

PAGE 67

program design stage can be used to simulate an essential
social process. We have observed in our own programming ef-
forts and in the reported efforts of others, a tendency to
communicate programs to others -- obviously the act of ver-
balizing ideas that had previously existed ethereally has a
way of setting our intuitions (teachers have noted this
phenomenon also). The typical exchange involves the
programmer and a friendly but skeptical observer. As the
programmer explains his code, the observer (even, if as is
usually the case, he does not really understand the code)
asks the sort of questions that one expects from a minimally
attentive audience: 	"Why is that inequality not strict?",
"Is that the same variable used at line 30?" 	In response to
each such question, the programmer is forced to re-examine a
fixed line of code and meet the objection -- he either
justifies his decision to the observer, uncovers an error,
or must admit that he really does not understand why the
choice was made. In all three cases, the programmer
receives valuable feedback that he is unlikely to have
deduced by introspective analysis of the program.

The adversary role of a mutation system always forces
the user into a careful and detailed review of his program
and the design decisions made in constructing it. The
mutations are like the minimally attentive observer who now
and then chimes in with: "I don't believe that -- justify
it!" Since it is a controlled form of "pointing" at the
code which requires substantial cooperation from the user
(his justification is a test case) such interactive use does
in fact simulate an important aspect of the social process.

9.2 Project Management. Of the emerging approaches to
software design, implementation and debugging -- however
helpful they may be to programmers and local managers --
there are few that can be utilized throughout the project
management hierarchy. Structured methods, program verifica-
tion and restricted modularization are essentially
qualitative, not quantitative, and managers should not be
expected to understand the qualitative basis for the low-
level decisions.

In addition to their primary function as evaluators of
test data, mutation systems record a great deal of informa-
tion which can be used to influence decision-making
throughout the project hierarchy. Various management-
oriented repackagings of the information relating to mutant
failure percentages for each module (indicating how close
the software is to being acceptable), who has responsibility
for classifying which mutants as equivalent, and which
mutants have yet to fail project management can:

(1) reassign personnel to work on modules with
low mutant failure rates,

(2) pinpoint responsibility for modules which fail
after acceptance,

(3) use audits to force justification of why
equivalent mutants exist,

(4) monitor adherence to project PERT charts, and

PAGE 68

(5) offer rewards and incentives to programmers
who achieve high mutant failure rates.

Obviously, the information reported to managers varies
with the level of the manager, but a safe rule of thumb is
that the higher in the organization a request for informa-
tion originates, the less detailed is the expected response.
Project Manager's Report

The project manager periodically meets with the chief
programmers to evaluate the project's status. Also, the as-
signment of personnel and evaluation of personnel per-
formance are carried out at this level. A useful report for
a manager at this level will contain:

(1) the name of each module
(2) the chief programmer responsible for each module
(3) plots of mutant eliminations vs. time for each

major submodule
(4) summary statistics such as number and percentage

of equivalent mutants,
(5) the number and type of personnel assigned to

each major submodule
Chief Programmer's Report

A chief programmer should be familiar with the actual
coding of each submodule, although he is not always directly
involved in the coding effort. 	He meets daily with his
team. 	The type of information needed by the chief program-
mer would certainly encompass:

(1)-(5) for the project manager
(6) listings of equivalent mutants
(7) logs assigning responsibility for classifying

mutants as equivalent.
In addition to the goals outlined above, this informa-

tion has the effect of suggesting possible additional mutant
operators for a given submodule. Notice that the chief
programmer assumes the responsibility for asking a program-
mer to justify mutant equivalence; assuming a postprocessor
such as the one described in Section 8, these equivalent
mutants should be largely non-trivial equivalences. A chief
programmer may want to know for instance why it does not
matter if a certain variable name can be changed without ef-
fect on the submodule, why the module is so insensitive to
the mutation.

In the last analysis, it will be the chief programmer
who determines that a given submodule has been acceptably
tested and who will prepare evidence supporting his decision
for the project manager.
Programmer's and Tester's Report

With the exception of the personnel reports, the
programmer has access to all of the information supplied to
the levels above him. He also has access to all listings,
so can use the reporting mechanism to augment test data,
augment mutant operators, classify equivalent mutants, and
determine the adequacy of the test, all as described above.

9.3 Acceptance and Certification. The degree to which
one has confidence in the competent programmer hypothesis
and the coupling effect for the given set of mutant

PAGE 69

operators determines the confidence that the mutant elimina-
tion percentage reflects the error-freeness of a program.
However, in the absence of strong information in this
regard, mutation analysis is an objective ranking device.
Low elimination percentages are less desirable than high
elimination percentages; furthermore, even though the boun-
dary may be rather fuzzy, it is rather easy to reject ob-
viously inadequate test data sets. This observation coupled
with the fact that if all that is desired is an indication
of the strength of a previously produced test data set then
virtually no human interaction is required to produce the
analysis leads one to consider the use of mutation analysis
for software procurement testing.

Since acceptance testing should be the final stage of
the development process, a buyer can specify at what point
the testing begins. Assuming that the developer is using
testing technqiues with the sensitivity of mutation, the
buyer can monitor progress. To evaluate the delivered
software (or advertised software in the increasingly active
mail market for small system software), one may specify
contractually that the developer must present a convincing
case that he is not delivering "rigged" tests -- one way of
doing this is to specify a minimal mutant elimination per-
centage. Many options ensue. Software not passing this
minimal certification may be rejected with significant
financial penalty to the developer. In this case it is not
essential that the developer use a mutation system to
develop the tests. It is important to note that no more
significance should be attatched to the level of performance
required for acceptance than for, say the third-party test-
ing of refrigerators by a well-known certifying or-
ganization; the certification merely establishes the
likelihood that the developer has spent considerable effort
in testing his software. Thereafter, the buyer's confidence
will more likely be affected by nontechnical issues, such as
the developers performance on similar projects.

10. CONCLUDING REMARKS
A program passes a mutation test with a set of test

data D if it behave correctly on D and each mutant either
fails to work as specified or is equivalent to the program.
When a program passes such a test, we are sure that it is
free from simple errors. In order to insure that such a
program is also free from complex errors, one must appeal to
an empirical principle called the coupling effect which
states that such a set of test data is so sensitive that
non-equivalent (complex) mutants are also likely to fail on
D. The conceptual justification for the coupling effect
parallels the probabilistic arguments used to justify the
single fault methods used to test logic circuits [Chang].
We have presented a combination of empirical evidence and
plausibility arguments in support of the coupling effect.
This leads to the metatheorem of mutation analysis:

If P passes mutation analysis then either

PAGE 70

(1) P is correct, or
(2) P is radically incorrect.

The Competent Programmer Hypothesis states that ex-
perienced programmers tend to write programs that differ
from correct ones by simple errors and hence possibility (2)
of the metatheorem is rather unlikely.

In order that the mutation analysis technique be
feasible, it is necessary that:

(1) the set of simple mutants be small,
(2) errors be reliably detected by the analysis, and
(3) the question of equivalence be reducible to

a small subproblem.
In the foregoing, we have presented our 	current

knowledge with regard to these issues. Our experience has
been encouraging. Even if the goals of mutation analysis
are rather more optimistic than is warranted, the basis of a
modelling strategy is emerging; it appears that it is pos-
sible to generate testable hypotheses concerning the
programming process. We can only hope that future research
by us and others will shed some light on this fascinating,
important, but little understood, activity.

ACKNOWLEDGEMENTS

We are indebted to the members of the mutationm
research groups at Georgia Tech, Yale, and Berkeley. In
particular, we would like to thank Jeannie Hanks, Douglas
Baldwin, Jim Burns, Dan St. Andre, and Dan Hocking. We
also thank Larry Yellowitz and an anonymous referee for
their helpful comments.

REFERENCES

[AU] A. 	Aho and J. 	Ullman, The Theory of 	Parsing
Translation 	and 	Compiling, 	Vol 	2: 	Compiling,
Prentice-Hall, 1975.

[BaS] D. 	Baldwin and F. 	Sayward, "Heuristics for Determin-
ing Equivalence of Program Mutations," Yale Univer-
sity, Department of Computer Science Research Report,
No. 276, 1979.

[BDLS] 	T. 	Budd, 	R.A.DeMillo, 	R.J. 	Lipton, 	and 	F.G.
Sayward, "The Design of a Prototype Mutation System
for Program Testing," Proc. 	1978 NCC, AFIPS Con-
ference Record, pp. 	623-627.

[BL1] T. 	Budd 	and 	R.J. 	Lipton, 	"Mutation Analysis of
Decision Table Programs," Proc. 1978 Conf. In-
formation Sciences and Systems, Johns Hopkins Univ.,
pp. 346-349.

[BL2] T. 	Budd and R.J. 	Lipton, "Proving LISP Programs Us-
ing Test Data," Digest for the Workshop on Software
Testing and Test Documentation , Fort Lauderdale, Fla,

PAGE 71

1978, pp. 	374-403.

[Bur] J. 	Burns, "The stability of Test Data from Program
Mutation," Digest for the Workshop on Software Testing
and 	Test Documentation , Fort Lauderdale, Fla, 1978,
pp. 	324-334.

[Cha] H.Y. 	Chang, Fault Diagnosis of Digital Systems,
Wiley-Interscience, 1970.

[DL] R.A. 	DeMillo and R.J. 	Lipton, "A Probabilistic Remark
on Algebraic Program Testing," Information Processing
Letters, Vol. 	7(4), (June, 1978), pp.193 - 195.

[DLP] R.A. 	DeMillo, R.J. 	Lipton and A.J. 	Perlis, 	"Social
Processes and Proofs of Theorems and Programs," CACM,
Vol 22(5), (May, 1979), pp. 	271 - 280.

[DLS1] R.A. 	DeMillo, R.J. 	Lipton and F.G. 	Sayward, "Hints
on Test Data Selection:Help for 	the 	Practicing
Programmer," Computer,
April, 1978, pp. 	3 4- 4 1.

[DLS2] 	R.A. 	DeMillo, 	R.J. 	Lipton 	and 	F.G. 	Sayward,
"Program Mutation: A New Approach to Program
Testing," INFOTECH State of the Art Report on Software
Testing, Vol. 2, INFOTECH/SRA, 1979, pp. 107-127
[Note: 	also see commentaries in Volume 1].

[Gel] M. 	Geller, "Test Data as an Aid in Proving Program
Correctness," 	CACM, Vol 21(5), (May, 1978), pp. 	368-
375

[Gil] T. Gilb, Software Metrics, Winthrop, 1977.

[Good] J. Goodenough, "A Survey of Program Testing Issues,"
in P. Wegner (editor), Research Directions in
Software Technology, MIT Press, 1979, pp. 316-340.

[GG] J. 	Goodenough and S. Gerhart, "Toward a Theory of
Test Data Selection," IEEE Trans. 	Software Engin.,
Vol SE - 1 , (June, 1975), pp. 	156-173.

[Ham] R.G. 	Hamlet, "Testing Programs with the Aid of a Com-
piler," IEEE Trans. Software Engin., Vol. SE-3 (4),
(July 1977), pp.

[Hoa] C.A.R. 	Hoare, "Algorithm 65:FIND," CACM, Vol. 	4(1),
(January, 1961), p. 	321.

[Howl] W.E. 	Howden, "Reliability of the Path Analysis Test-
ing Strategy," IEEE Trans. Software Engineering, Vol.
SE-2(3) (September, 1976), pp. 	208-214.

[How2] W.E. Howden, "An Evaluation of the Effectiveness of
Symbolic Testing," Software Practice and Experience,

PAGE 72

Volume 8, (1978), PP. 	381-397.

[Hua] 	J.C. 	Huang, 	"An Approach to Program Testing," ACM
Computing Surveys, (September 1975), pp

[KP] B.W. 	Kernhigan and P. 	Plauger, The Elements of
Programming Style, McGraw-Hill, 1978 (Second Ed).

[Kn] 	D.E.Knuth, 	"An 	Empirical Study of Fortran Programs,"
Software Practice and Experience, Vol. 	1(2), 	(1971),
pp. 	105-134.

[LMW] 	R.C. 	Linger, H.D. 	Mills and B.I. 	Witt, Structured
Programming Theory and Practice, 	Addison-Weseley,
1979.

[LS] R.J. 	Lipton and F.G. 	Sayward, "The Status of Research
on Program Mutation," Digest of the Workshop on
Software Testing and Test Documentation," Fort Lauder-
dale, Fla, 1978, pp. 355-373.

[Man] Z. Manna, The Mathematical Theory of Computation,
McGraw-Hill, 1974.

[Nau] P. 	Nauer, "Programming by Action Clusters," BIT, Vol.
9, (1969), pp. 	250-258.

[OF1] L.J. 	Osterweil 	and L.D. 	Fosdick, "Experience with
DAVE-- A Fortran Program Analyzer, Proc. 	1976 NCC,
AFIPS Conference Record, pp 909-915.

[OF2] L.J. 	Osterweil and L.D. 	Fosdick, "Data Flow Analysis
as an Aid 	in Documentation, Assertion Generation,
Validation and Error Detection, University of
Colorado, Department of Computer Science, Technical
Report No. CU-CS-055-74, 1974.

[OW] T.J. 	Ostrand and E.J. 	Weyuker, "Remarks on the Theory
of Test Data Selection," Digest for Workshop on
Software Testing and Test Documentation, Fort Lauder-
dale Fla, 1978, pp. 1-18.

[Sch] M. Schaefer, A Mathematical Theory of Global Program
Optimization, Prentice-Hall, 1973.

[TRW] 	T.A. 	Thayer, 	M. 	Lipow, 	E.C. 	Nelson, 	Software
Reliability, North-Holland, 1978.

[WCC] L.J White, 	E. 	Cohen, 	and 	B. 	Chandrasekaran, 	"A
Domain Strategy for Computer Program Testing," Ohio
State University, Department of Computer and Informa-
tion Science, Report No. OSU-CISRC-TR-78-4, 1978.

CWir] N. Wirth, "PL360, A programming Language for the 360
Computer," JACM, Vol. 	15(1), (January 1968), pp. 	37-
74.

PAGE 73

[You] E.A. Youngs, "Human Errors in Programming," Inter-
national Journal of Man-Machine Studies, Volume 6
(1974), PP. 	361-376.

PAGE 74

APPENDIX

CMS.1 SESSION SCRIPT

WELCOME TO THE COBOL PILOT MUTATION SYSTEM
PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:>LOG-CHANGES
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?>YES
PARSING PROGRAM
SAVING INTERNAL FORM
WHAT PERCENTAGE OF MUTANTS DO YOU WANT TO CREATE?>100
CREATING MUTANT DESCRIPTOR RECORDS
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >PROGRAM

1 IDENTIFICATION DIVISION.
2 	PROGRAM-ID. POQAACA.
3 	AUTHOR. CPT R W MOREHEAD.
4 	INSTALLATION. HQS USACSC.
5 	DATE-WRITTEN. OCT 1973.
6 	REMARKS.
7 	THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN THE ETF.
8 	ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 	OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
10 	FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A
11 	LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS
12 	FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD.
13 	*****************
14 	MODIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE
15 	JULY, 1979.
16 	ENVIRONMENT DIVISION.
17 	CONFIGURATION SECTION.
18 	SOURCE-COMPUTER. PRIME.
19 	OBJECT-COMPUTER. PRIME.
20 	INPUT-OUTPUT SECTION.
21 	FILE-CONTROL.
22 	SELECT OLD-ETF ASSIGN INPUT4.
23 	SELECT NEW-ETF ASSIGN INPUT8.
24 	SELECT PRNTR ASSIGN TO OUTPUT9.
25 	DATA DIVISION.
26 	FILE SECTION.
27 	FD OLD-ETF
28 	RECORD CONTAINS 80 CHARACTERS
29 	LABEL RECORDS ARE STANDARD
30 	DATA RECORD IS OLD-REC.
31 	01 OLD-REC.
32 	03 FILLER 	 PIC X.
33 	03 OLD-KEY 	 PIC X(12).
34 	03 FILLER 	 PIC X(67).
35 	FD NEW-ETF
36 	RECORD CONTAINS 80 CHARACTERS
37 	LABEL RECORDS ARE STANDARD
38 	DATA RECORD IS NEW-REC.
39 	01 NEW-REC.
40 	03 FILLER 	 PIC X.
41 	03 NEW-KEY 	 PIC X(12).

PAGE 75

42
43
44
45
46
47
48

03 	FILLER
FD 	PRNTR

RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRNT-LINE.

01 	PRNT-LINE
WORKING-STORAGE SECTION.

PIC 	X(67).

PIC X(40).

49 01 	PRNT-WORK-AREA.
50 03 	LINE1 PIC X(30).
51 03 	LINE2 PIC X(30).
52 03 	LINES PIC X(20).
53 01 	PRNT-OUT-OLD.
54 03 	WS-LN-1.
55 05 	FILLER PIC X VALUE SPACE.
56 05 	FILLER PIC XXXX VALUE '0
57 05 	LN1 PIC X(30).
58 05 	FILLER PIC XXX VALUE SPACES.
59 03 	WS-LN-2.
60 05 	FILLER PIC X VALUE SPACE.
61 05 	FILLER PIC XXXX VALUE 'L
62 05 	LN2 PIC X(30).
63 05 	FILLER PIC XXX VALUE SPACES.
64 03 	WS-LN-3.
65 05 	FILLER PIC X VALUE SPACE.
66 05 	FILLER PIC XXXX VALUE 	'D
67 05 	LN3 PIC X(20).
68 05 	FILLER PIC XXX 	VALUE SPACE.
69 01 	PRNT-NEW-OUT.
70 03 	NEW-LN-1.
71 05 	FILLER PIC XXXXX VALUE 	' N
72 05 	N-LN1 PIC X(30).
73 05 	FILLER PIC XXX VALUE SPACE.
74 03 	NEW-LN-2.
75 05 	FILLER PIC XXXXX VALUE ' E
76 05 	N-LN2 PIC X(30).
77 05 	FILLER PIC XXX VALUE SPACES.
78 03 	NEW-LN-3.
79 05 	FILLER PIC XXXXX VALUE ' W
80 05 	N-LN3 PIC X(20).
81 05 	FILLER PIC XXX VALUE SPACES.
82 PROCEDURE DIVISION.
83 0100-OPENS.
84 OPEN INPUT OLD-ETF NEW-ETF.
85 OPEN OUTPUT PRNTR.
86 0110-OLD-READ.
87 READ OLD-ETF AT END GO TO 0160-OLD-EOF.
88 0120-NEW-READ.
89 READ NEW-ETF AT END GO TO 0170-NEW-EOF.
90 0130-COMPARES.

91 IF OLD-KEY = NEW-KEY
92 NEXT SENTENCE
93 ELSE GO TO 0140-CK-ADD-DEL.
94 IF OLD-REC = NEW-REC
95 GO TO 0110-OLD-READ.
96 MOVE OLD-REC TO PRNT-WORK-AREA.
97 PERFORM 0210-OLD-WRT THRU 0210-EXIT.

PAGE 76

98 	MOVE NEW-REC TO PRNT-WORK-AREA.
99 	PERFORM 0200-NW-WRT THRU 0200-EXIT.
100 	GO TO 0110-OLD-READ.
101 	0140-CK-ADD-DEL.
102 	IF OLD-KEY > NEW-KEY
103 	 MOVE NEW-REC TO PRNT-WORK-AREA
104 	 PERFORM 0200-NW-WRT THRU 0200-EXIT
105 	 GO TO 0120-NEW-READ
106 	ELSE GO TO 0150-CK-ADD-DEL.
107 	0150-CK-ADD-DEL.
108 	MOVE OLD-REC TO PRNT-WORK-AREA.
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
110 	READ OLD-ETF AT END
111 	 MOVE NEW-REC TO PRNT-WORK-AREA
112 	 PERFORM 0200-NW-WRT THRU 0200-EXIT
113 	 GO TO 0160-OLD-EOF.
114 	GO TO 0130-COMPARES.
115 	0160-OLD-EOF.
116 	READ NEW-ETF AT END GO TO 0180-EOJ.
117 	MOVE NEW-REC TO PRNT-WORK-AREA.
118 	PERFORM 0200-NW-WRT THRU 0200-EXIT.
119 	GO TO 0160-OLD-EOF.
120 	0170-NEW-EOF.
121 	MOVE OLD-REC TO PRNT-WORK-AREA.
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
123 	READ OLD-ETF AT END GO TO 0180-EOJ.
124 	GO TO 0170-NEW-EOF.
125 	0180-EOJ.
126 	CLOSE OLD-ETF NEW-ETF PRNTR.
127 	STOP RUN.
128 	0200-NW-WRT.
129 	MOVE LINE1 TO N-LN1.
130 	MOVE LINE2 TO N-LN2.
131 	MOVE LINE3 TO N-LN3.
132 	WRITE PRNT-LINE FROM NEW-LN-1 AFTER ADVANCING 2.
133 	WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
134 	WRITE PRNT-LINE FROM NEW-LN-3 AFTER ADVANCING 1.
135 	0200-EXIT.
136 	EXIT.
137 	0210-OLD-WRT.
38 	MOVE LINE1 TO LN1.
139 	MOVE LINE2 TO LN2.
140 	MOVE LINE3 TO LN3.
141 	WRITE PRNT-LINE FROM WS-LN-1 AFTER ADVANCING 2.
142 	WRITE PRNT-LINE FROM WS-LN-2 AFTER ADVANCING 1.
143 	WRITE PRNT-LINE FROM WS-LN-3 AFTER ADVANCING 1.
144 	0210-EXIT.
145 	EXIT.

>YES

A test case for this program is a pair of input
files. In CMS.1 these may be created outside the
system and referenced by name, or may be entered "on
'he fly".

WHERE IS OLD-ETF?

PAGE 77

>LC9
WHERE IS NEW-ETF?
>LC6
OLD-ETF AS USED BY THE PROGRAM

I123456789012IIIIIIIIII0JJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF AS USED BY THE PROGRAM

1133456789012000
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS USED BY THE PROGRAM

O I12345678901211111111110JJJJJJ
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

N 	113345678901200000000000000000
E 000000000000000000000000000000
W 00000000000000000000

O J234567890123YYYYYYYYYYGGGGGGG
L GGGFFFFFFFFFFODDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXEEEEEEE

N J234567890123YYYYYYYYYYGGGGGGG
E GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEEEE

N 345678901234UUUUUUUUUUHHHHHHH
E HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 84 STEPS
IS THIS TEST CASE ACCEPTABLE ? >YES
DO YOU WANT TO SUBMIT A TEST CASE ? >NO
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? 	>SELECT

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME.

4 **** INSERT FILLER TYPE 	****
5 **** FILLER SIZE ALTERATION TYPE 	****
6 **** ELEMENTARY ITEM REVERSAL TYPE 	****

7 **** FILE REFERENCE ALTERATION TYPE 	****

8 **** STATEMENT DELETION TYPE 	****
10 **** PERFORM --> GO TO TYPE 	****
11 **** THEN - ELSE REVERSAL TYPE 	****
12 **** STOP STATEMENT SUBSTITUTION TYPE 	****

13 **** THRU CLAUSE EXTENSION TYPE 	****
14 **** TRAP STATEMENT REPLACEMENT TYPE 	****

20 **** LOGICAL OPERATOR REPLACEMENT TYPE 	****
21 **** SCALAR FOR SCALAR REPLACEMENT 	****

PAGE 78

22 **** CONSTANT FOR CONSTANT REPLACEMENT ****
23 **** CONSTANT FOR SCALAR REPLACEMENT ****
25 **** CONSTANT ADJUSTMENT 	****

TYPES ? > 4 TO 14 STOP
MUTANT STATUS

TYPE TOTAL 	LIVE PCT
INSERT 41 7 82.93
FILLSZ 38 14 63.16
ITEMRV 21 0 100.00
FILES 5 1 80.00
DELETE 54 13 75.93
PER GO 7 2 71.43
IF REV 3 1 66.67
STOP 53 10 81.13
THRU 8 2 75.00
TRAP 54 10 81.48

TOTALS

284 60 78.87
DO YOU WANT TO SEE THE LIVE MUTANTS?>NO
LOOP OR HALT ? >LOOP
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >YES
WHERE IS OLD-ETF?

>LC 15
WHERE IS NEW-ETF?
>LC5
OLD-ETF AS USED BY THE PROGRAM

0000 000000012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
I123456789012IIIIIIIIIIJJJjJJjJjjKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF AS USED BY THE PROGRAM

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLULLLULLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS USED BY THE PROGRAM

O 0000000000012IIIIIIIIIIJJJJJJJ
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

THE PROGRAM TOOK 44 STEPS
IS THIS TEST CASE ACCEPTABLE ? >YES
DO YOU WANT TO SUBMIT A TEST CASE ? >YES
WHERE IS OLD-ETF?
>LC14
WHERE IS NEW-ETF?
>LC5
OLD-ETF AS USED BY THE PROGRAM

I 12 3 4 56789012IIIIIIIIIIKJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF AS USED BY THE PROGRAM

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLULLLULLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS USED BY THE PROGRAM

O I123456789012IIIIIIIIIIKJJJJJJ
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

N 	1123456789012IIIIIIIIIIJJJJJJJ
E JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
W NNNBBBBBBBBBBGGGGGGG

THE PROGRAM TOOK 48 STEPS
IS THIS TEST CASE ACCEPTABLE ? >YES
DO YOU WANT TO SUBMIT A TEST CASE ? >YES
WHERE IS OLD-ETF?
>LC11
WHERE IS NEW-ETF?

>LC1
OLD-ETF AS USED BY THE PROGRAM

00

NEW-ETF AS USED BY THE PROGRAM

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS USED BY THE PROGRAM

O 000000000000000000000000000000
L 00000000000000
D

N 	I123456789012IIIIIIIIIIJJJJJJJ
E 	JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
W NNNBBBBBBBBBBGGGGGGG

N 	J234567890123YYYYYYYYYYGGGGGGG
E GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEEEE

N 	345678901234UUUUUUUUUUHHHHHHH
E HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? >YES
DO YOU WANT TO SUBMIT A TEST CASE ? >YES

PAGE 80

WHERE IS OLD-ETF?
>LC1
WHERE IS NEW-ETF?
>LC11
OLD-ETF AS USED BY THE PROGRAM

I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
345678901234UUUUUUUUUUHHHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

NEW-ETF AS USED BY THE PROGRAM

00

PRNTR AS USED BY THE PROGRAM

N 	000000000000000000000000000000
E 	00000000000000
W

O I123456789012IIIIIIIIIIJJJJJJJ
L JJJKKKKKKKKKKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

O J234567890123YYYYYYYYYYGGGGGGG
L GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXEEEEEEE

O 345678901234UUUUUUUUUUHHHHHHH
L HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS
D SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? >YES
DO YOU WANT TO SUBMIT A TEST CASE ? >NO
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >ALL
MUTANT STATUS

1/PE TOTAL LIVE PCT
INSERT 41 3 92.68
FILLSZ 38 12 68.42
ITEMRV 21 0 100.00
FILES 5 0 100.00
DELETE 54 1 98.15
PER GO 7 0 100.00
IF REV 3 0 100.00
STOP 53 0 100.00
THRU 8 0 100.00
TRAP 54 0 100.00
LOGIC 15 1 93.33
SUBSFS 814 20 97.54
SUBCFC 12 0 100.00
SUBCFS 58 0 100.00
C ADJ 12 0 100.00

PAGE 81

TOTALS

1195 	37 	96.90
DO YOU WANT TO SEE THE LIVE MUTANTS?>YES
FOR EACH MUTANT :
HIT RETURN TO CONTINUE. TYPE 'STOP' TO STOP.
TYPE 'EQUIV' TO JUDGE THE MUTANT EQUIVALENT.

**** INSERT FILLER TYPE ****

MUTANT NUMBER 12
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 52
ITS LEVEL NUMBER IS 3

MUTANT NUMBER 13
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 53
ITS LEVEL NUMBER IS 3

MUTANT NUMBER 29
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 69
ITS LEVEL NUMBER IS 3

**** FILLER SIZE ALTERATION TYPE ****

MUTANT NUMBER 54
THE FILLER ON LINE 58 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 55
THE FILLER ON LINE 58 HAS HAD ITS SIZE INCREMENTED BY ONE.

MUTANT NUMBER 60
THE FILLER ON LINE 63 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 61
THE FILLER ON LINE 63 HAS HAD ITS SIZE INCREMENTED BY ONE.

MUTANT NUMBER 66
THE FILLER ON LINE 68 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 67
THE FILLER ON LINE 68 HAS HAD ITS SIZE INCREMENTED BY ONE.

MUTANT NUMBER 70

PAGE 82

THE FILLER ON LINE 73 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 71
THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED BY ONE.

NUMBER 74
THE FILLER ON LINE 77 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 75
THE FILLER ON LINE 77 HAS HAD ITS SIZE INCREMENTED BY ONE.

MUTANT NUMBER 78
THE FILLER ON LINE 81 HAS HAD ITS SIZE DECREMENTED BY ONE.

MUTANT NUMBER 79
THE FILLER ON LINE 81 HAS HAD ITS SIZE INCREMENTED BY ONE.

**** STATEMENT DELETION TYPE ****

MUTANT NUMBER 126
ON LINE 106 THE STATEMENT:

GO TO 0150-CK-ADD-DEL
HAS BEEN DELETED.

**** LOGICAL OPERATOR REPLACEMENT TYPE ****

MUTANT NUMBER 296
ON LINE 102 THE STATEMENT:

IF OLD-KEY > NEW-KEY
HAS BEEN CHANGED TO:

IF OLD-KEY NOT < NEW-KEY

**** SCALAR FOR SCALAR REPLACEMENT ****

MUTANT NUMBER 300
ON LINE 87 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO NEW-REC AT END ...

MUTANT NUMBER 301
ON LINE 87 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

PAGE 83

READ OLD-ETF INTO PRNT-WORK-AREA AT END ...

MUTANT NUMBER 311
ON LINE 89 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO PRNT-WORK-AREA AT END ...

MUTANT NUMBER 629
ON LINE 110 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO PRNT-WORK-AREA AT END ...

MUTANT NUMBER 682
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO OLD-REC AT END ...

MUTANT NUMBER 683
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO PRNT-WORK-AREA AT END ...

MUTANT NUMBER 684
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO PRNT-OUT-OLD AT END ...

MUTANT NUMBER 685
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO WS-LN-1 AT END ...

MUTANT NUMBER 686
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

READ NEW-ETF INTO WS-LN-2 AT END ...

MUTANT NUMBER 687
ON LINE 116 THE STATEMENT:

READ NEW-ETF AT END ...
HAS BEEN CHANGED TO:

PAGE 84

READ NEW-ETF INTO WS-LN-3 AT END ...

MUTANT NUMBER 780
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO NEW-REC AT END ...

MUTANT NUMBER 781
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO PRNT-WORK-AREA AT END ...

MUTANT NUMBER 786
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO PRNT-NEW-OUT AT END ...

MUTANT NUMBER 787
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO NEW-LN-1 AT END ...

MUTANT NUMBER 788
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
"q BEEN CHANGED TO:

READ OLD-ETF INTO NEW-LN-2 AT END ...

ATANT NUMBER 789
ON LINE 123 THE STATEMENT:

READ OLD-ETF AT END ...
HAS BEEN CHANGED TO:

READ OLD-ETF INTO NEW-LN-3 AT END ...

MUTANT NUMBER 814
ON LINE 129 THE STATEMENT:

MOVE LINE1 TO N-LN1
HAS BEEN CHANGED TO:

MOVE NEW-REC TO N-LN1

MUTANT NUMBER 817
ON LINE 129 THE STATEMENT:

MOVE LINE1 TO N-LN1
HAS BEEN CHANGED TO:

PAGE 85

MOVE PRNT-WORK-AREA TO N-LN1

MUTANT NUMBER 974
ON LINE 138 THE STATEMENT:

MOVE LINE1 TO LN1
HAS BEEN CHANGED TO:

MOVE OLD-REC TO LN1

MUTANT NUMBER 979
ON LINE 138 THE STATEMENT:

MOVE LINE1 TO LN1
HAS BEEN CHANGED TO:

MOVE PRNT-WORK-AREA TO LN1

LOOP OR HALT ? >HALT

PAGE 86

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. 	REPORT NUMBER

GIT-ICS-79/08

2. GOVT ACCESSION NO. 3. 	RECIPIENT'S CATALOG NUMBER

4. 	TITLE (and Subtitle)

Mutation Analysis

5. TYPE OF REPORT et PERIOD COVERED

Final 	Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

A. 	T. 	Acree, 	T. 	J. 	Budd, 	R. 	A. 	DeMillo,
R. 	J. 	Lipton, 	F. 	G. 	Sayward

13. 	CONTRACT OR GRANT NUMBER(.)

DAAG29-78-0121

9. 	PERFORMING ORGANIZATION NAME AND ADDRESS

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

10. 	PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11, 	CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September, 1979
13. NUMBER OF PAGES

R6
14. MONITORING 	1GFNCY NAME & ADDRESS(if different from Controlling Office)

US Army Research Office
PO Box 12211
Research Triangle Park, N.C. 	27709

IS. 	SECURITY CLASS. (of this report)

DECL ASSI 	 DOWNGRADING

15e, 	
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Published Releases; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEME1,TARY NOTES

The findings of this report are not to be construed as an official Department -1

 of the Army position, unless so designated by other authorized document.

19. KEY WORDS (Continue on reverse side if necessary- and identify by block number)

20. ABSTRACT (Continue on reverse aide if necessary acrd Identify by block number)

A new type of software test, called mutation analysis, is introduced. 	A me-
thod of applying mutation analysis is described, and the design of several exist
ing automated systems for applying mutation analysis to Fortran and Cobol pro-
grams is sketched. 	These systems have been the means for preliminary studies

I of the efficiency of mutation analysis and of the relationship between mutation
and other systematic testing techniques. The results of several experiments to
determine the effectiveness of mutation analysis are described, and examples are

.itinued - over)

DD 1 JAN ^73 1473 	EDITION OF 1 NOV 65 IS OBSOLETE

20. Abstract (continued)

presented to illustrate the way in which the technique can be used to
detect a wide class of errors, including many previously defined and studied
in the literature. Finally, a number of empirical studies are suggested,
the results of which may add confidence to the outcome of the mutation
analysis of a program.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91

