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FOREWORD 

This report presents the results of a research project conductd 
by the Georgia Institute of Technology, Atlanta, Georgia, under the 
direction of Dr. B. B. Mazanti, Associate Professor of Civil Engineering. 
Mr. C. N. Holland served as Associate Director of the project. 

There are three separate volumes documenting this project. Vol-
ume I describes the development of equipment and test procedures, soil 
analysis and specimen preparation, and analysis of results. Volume II 
contains the basic results of all tests conducted for this program in the 
form of stress-strain plots. 

Only a limited 
number of copies of the Volumes II and III were published; however, in-
terested readers may borrow a copy on 30-day loan from the Research Center 
Library, Waterways Experiment Station. 

The Georgia Institute of Technology has been engaged in research 
concerned with the effects of high pressure on soil and rock for 
approximately ten years. During this time period, a considerable 
amount of equipment and instrumentation has been developed for high 
pressure testing, financed almost entirely by Georgia Tech. Much of 
the equipment and instrumentation utilized in the performance of this 
research was of such origin. 

This report was requested and authorized by Mr. J. G. Jackson, Jr., 
Impulse Loads Section, Soil Dynamics Branch, under the direction of 
Messrs. W. J. Turnbull and A. A. Maxwell, Chief and Assistant Chief, re-
spectively, Waterways Experiment Station Soils Division. The work was 
part of Contract No. DACA 39-67-C-0051, Project B-602, and was conducted 
for the U. S. Army Engineer Waterways Experiment Station, Vicksburg, 
Mississippi, under Defense Atomic Support Agency sponsorship, during the 
period November 1967 through November 1968. 

Directors of the Waterways Experiment Station during the performance 
of this work and preparation and publication of this report were 
COL John R. Oswalt, Jr., CE, and COL Levi A. Brown, CE. Technical Direc-
tors were Messrs. J. B. Tiffany and F. R. Brown. 



CONTENTS 

VOLUME I 	 Page 

FOREWORD 	iii 

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT.  	vii 

LIST OF SYMBOLS  	ix 

LIST OF ILLUSTRATIONS  	xi 

SUMMARY 	  xiii 

CHAPTER 

I. INTRODUCTION - SCOPE OF PROJECT 	1 

II. EXPERIMENTAL APPARATUS AND CALIBRATION  	3 
III. DEVELOPMENT OF THE LATERAL DEFORMETER 	12 

IV. SOILS AND SPECIMEN FORMING 	  

V. TRIAXIAL TESTS: TYPED AND PROCEDURES 	32 

VI. RESULTS AND DISCUSSION  	38 

VII. RECOMMENDATIONS FOR FURTHER STUDY 	71 

REFERENCES 	73 

VOLUME II 

FOREWORD 

LIST OF SYMBOLS 

SECTION I 

MCCORMICK RANCH SAND STRESS-STRAIN PLOTS 

SECTION II 

WATCHING HILL CLAY STRESS-STRAIN PLOTS 

-v- 



VOLUME III 

FOREWORD 

LIST OF SYMBOLS 

SECTION I 

MCCORMICK RANCH SAND DATA TABULATION 

SECTION II 

WATCHING HILL CLAY DATA TABULATION 

-vi- 



CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted 
to metric units as follows: 

Multiply 	 By 	 To Obtain  

inches 	 2.54 	centimeters 

feet 	 0.3048 	meters 

pounds per square inch 	0.070307 	kilograms per square 
centimeter 

pounds per cubic foot 	16.0185 	kilograms per cubic 
meter 

pounds 	 0.45359 	kilograms 
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SUMMARY 

This report, Volume I, is concerned with the load-deformation 
characteristics of two field soils under confining pressures up to 
10,000 psi. A wide variety of stress states were imposed upon 
partially saturated compacted specimens of soil which were obtained 
from two test sites, one in the United States and the other in Canada. 
The tests were performed with a high-pressure triaxial cell and the 
stress states included hydrostatic compression, triaxial shear, 
constant stress ratio tests, and no-lateral-strain tests. Cyclic 
loading was accomplished during many of the tests. Results of tests 
are presented in the form of various types of stress-strain curves 
in Volume II. Numerical tabulation of data is presented in Vol-
ume III.* 

A lateral deformeter was developed for determining lateral 
deformations of the cylindrical soil specimens during both the 
compression and the shear stages of loading. The instrument 
consists basically of strain-gaged, cantilevered springs which bear 
against the specimen midheight. The use of the instrument allowed 
the determination of the bulk modulus of the partially saturated 
soils as well as the control over.the lateral dimensions of the 
specimens during the loading. 

* Volumes II and III were published in a limited number and are 
available for loan purposes from the Research Center Library, U. S. 
Army Engineer Waterways Experiment Station, Vicksburg, Miss. 



CHAPTER I 

INTRODUCTION - SCOPE OF PROJECT 

In order to determine the free-field behavior of soils as well as 
soil-structure interaction behavior under blast loadings, it is neces-
sary to have knowledge of the dynamic, high-confining-stress level, 
stress-strain characteristics of the soil. At the present time there 
is a complete lack of test equipment for performing high-pressure, dy-
namic triaxial tests. There is available, however, dynamic triaxial 
equipment capable of operating at low-confining pressures and, also, 
dynamic one-dimensional compression devices operable at loading pressures 
in the 1000- to 2000-psi range. One solution, then, to the basic high-
pressure, dynamic loading problem is to correlate static-loading tri-
axial data with the dynamic data in the range of pressures where both 
types of data are available. The correlations could then be extrapo-
lated to the high-pressure dynamic problems on the basis of high-
pressure static tests. 

A survey of the literature reveals that very little data are avail-
able even for static loading of soils in the pressure range of interest. 
This is particularly true for controlled states of stress during both 
loading and unloading other than "standard" triaxial test conditions. 
As a consequence of the lack of data, this project was initiated in or-
der to study the behavior of two test-site soils when subjected to high 
confining pressures. Of primary interest were the stress-strain char-
acteristics at relatively low strain conditions in order to determine 
deformational and bulk moduli. 

Material properties of interest include the bulk modulus of com-
pressibility, the shear modulus, and the constrained modulus. The de-
termination of these quantities involves a measurement of lateral defor-
mations of cylindrical specimens. At the inception of this contract, 
there was no instrumentation available for such measurements under the 
pressure conditions required. The development of a reliable apparatus 
for this use would provide an invaluable tool which would, in addition, 
allow testing under stress states not then possible. 

The scope of work in the project included the following three 
studies: 

1 Triaxial testing of compacted soils at confining 
pressures up to 10,000 psi. 

2 The development and use of an instrument with 
which to measure lateral (radial) displacements 
of soil specimens subjected to high pressure. 

3 Triaxial testing of undisturbed soil specimens 
at confining pressures up to 10,000 psi. This 
study was to be reported in separate letter-type 
reports as the work was accomplished and, there-
fore, is not covered in this report. 
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Two soils were included in the test program for compacted soils. 
One was an alluvial clayey sand from the McCormick Ranch test site near 
Albuquerque, New Mexico, and the other was a silty clay from the lacus-
trine deposits of the Watching Hill test site at the Defence Research 
Establishment, Suffield, Canada. Both soils were furnished by WES in a 
loose state after having been dried and processed to remove large parti-
cles and foreign matter such as twigs, etc. 
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CHAPTER II 

EXPERIMENTAL APPARATUS AND CALIBRATION 

With the exception of the triaxial cell,' the pressure generating 
system and the lateral deformeter, the equipment comprised commercial 
items. The lateral deformeter design is included in Chapter III. De-
scription of the other equipment is included here. 

Equipment  

Triaxial Cell 

The triaxial cell (Figure 1) was designed to allow the testing of 
specimens up to 2 inches in diameter and with lengths up to 5 inches. 
The working pressure capacity of the cell is 10,000 psi. It consists 
of four basic parts. These are: (1) the base, (2) the cylinder, (3) 
the gland, and (4) the load piston. 

The base was machined from naval brass with a tensile yield 
strength of approximately 24,000 psi. The base diameter is 8 inches 
with a threaded pedestal 32 inches in diameter. A removable specimen 
pedestal (or platen) screws into the base pedestal. Two pressure ports 
are provided through the base. One port is for the confining pressure 
while the second allows either the application of a pore pressure, the 
measurement of pore pressures, or drainage of the specimens. 

The cylinder is of cold-drawn seamless steel tubing with a yield 
strength of about 55,000 psi. It screws to the base and is sealed by 
an 0-ring seal between the pedestal and the cylinder. The internal 
diameter is 31 inches, the wall thickness is 13/16 inch, and the length 
is 12-13/16 inches. Two ports were provided in the cylinder wall. One 
was used as either a pressure port or as an air escape port when filling 
the chamber with oil. The other port allowed the attachment of an 
electrical-lead manifold. The electrical terminals are manufactured by 
the Fusite Corporation, Cincinnati, Ohio, and consist of a fused glass 
insulation material surrounding the terminal and contained in a metal 
body. They are available in several types and sizes. The type used in 
this application was a 1/8-inch pipe-thread body. 

The gland screws into the top of the cylinder and serves as a guide 
for the piston. It is made of naval brass. Sealing is accomplished by 
means of an 0-ring between the gland and the cylinder as well as between 
the gland and the piston_ Although three 0-ring grooves were provided 
for sealing the piston, it has been found satisfactory to use only one. 
A different gland was used for each of the two piston sizes. 

The pistons are of alloy steel with a yield strength of approximate-
ly 150,000 psi. The diameters were 7/8 inch and 1.40 inches and polished. 

Pressure Generating System 

The pressure generating and regulating system is shown schematically 
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in Figure 2. An air-operated hydraulic pump is used as the prime pres-
sure source. The pump is essentially a pressure intensifier which is 
valved so that it is capable of recycling when the stroke limit is 
reached. The pump used is made by SC Hydraulic Corporation, Los Angeles, 
California. 

It is a Model 10-600-15 and has a fluid pressure capacity of 23,700 
psi when operating at air pressure of 100 psi. The output pressure de-
pends upon the applied air pressure and is continuously variable (in-
creasing pressure only) from approximately zero. The major disadvantage 
of the pump is that it can "unload" only a negligible amount. 

In order to accurately control the confining pressure, there is in-
cluded in the line a piston-cylinder arrangement (Figure 3). The pistons 
are positioned by a bolt reaction member. The adjustment of the bolt 
either forces the piston into the cylinder or allows it to move outward, 
thus causing the pressure in the line to increase or decrease, respec-
tively. 

In certain tests, particularly the No-Lateral-Strain or K° , it was 
necessary to rapidly adjust the confining pressure. In those cases, a 
manually operated, 10,000-psi hydraulic pump was utilized. 

Loading Machine  

The loading machine is of the "constant rate of strain" type. It is 
a 10-kip capacity, electrically operated machine with selectable strain 
rates ranging from 0.30 inch per minute to 0.000024 inch per minute. 
It is manufactured by Wykeham Farrance Engineering Ltd., Slough, England. 

Measurement System 

Lateral Deformeter 

The lateral deformeter was specially designed for the project and 
consisted basically of a cantilever-spring system which utilized bonded-
wire, resistance-type strain gages as the sensing elements. A complete 
description of this device is included in Chapter III. 

Pressure Gages  

Confining pressures were measured by means of commercial pressure 
gages. 	The following set of gages was used: 

Pressure Range 	 Accuracy, %, Full Scale (F.S.) 

0-200 psi + 0.5 

o-400 psi + 0.5 

0-1,000 psi + 0.5 

0-20,000 psi + 0.1 

The gages were periodically checked against a standard transfer gage 
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accurate to + 0.1% F.S. The standard gage was calibrated with a precision, 
20,000-psi dead-load tester. 

Load Cells 

Three different load cells were used to measure axial loads on the 
specimens. All were commercial load cells of the bonded-wire, electric 
resistance type. For loads up to 2.5 kips a Strainsert flat load cell 
was used. This cell has a nominal diameter of 2-1/4 inches and a thickness 
of 3/4 inch. Nonlinearity of the cell is within + 0.10% F.S. and re-
peatability is + 0.02% F.S. 

For loads up to 10 kips, a BLH load cell was used. The cell is ap-
proximately 4 inches in diameter by 6 inches in length. Linearity and 
repeatability are equivalent to that shown for the 2.5-kip load cell. 

For loads up to 25 kips, a Strainsert flat load cell was used. The 
cell is 4-1/8 inches in diameter by 1-3/8 inches thick. Linearity and re-
peatability are as indicated for the 2.5-kip cell. 

Linear Motion Transducers  

Linear motion transducers (LAT's) were used for the measurement of 
axial deformations of the specimens. The devices are linear variable 
differential transformers (LVDT's) which are completely self-contained 
with respect to the signal carrier and amplification system. The de-
vices are excited by an external 24 v. D.C. source and the output signal 
is sufficiently strong to go directly to a recorder. 

The LMT's used were made by G. L. Collins Corporation, Model SS207 
with a stroke length of + 1.00 inch. Linearity for these instruments 
is 0.27%. 

Recording and Instrumentation 

Strain Gage Indicator 

All strain gage circuits were fed into a BLH Model 120C strain gage 
indicator. Those signals being recorded were retransmitted through the 
scope output to the recorder. 

X-Y Recorder 

A Hewlett-Packard Model 135 Recorder was used for all automatic re-
cording. This is a multirange, general purpose X-Y plotter with ranges 
from 0.5 my/inch to 50 v/inch. Accuracy is 0.2% F.S. and linearity 
0.1% F.S. 

Circuitry for Linear Motion Transducers  

The LMT's were used in an averaging arrangement. This is accomplishe 
by mounting two LMT's to the testing machine at 180 degrees around the 
cell. The output from the two units was added by connecting all output 
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load wires in a series combination. The circuitry for the setup is shown 
in Figure 4. 

Calibration 

Load Cells 

All load cells were calibrated in place on the testing maching. 
Proving rings, which had been calibrated immediately prior to their 
use, were used to monitor the applied loads. The output from the load 
cells was retransmitted from the strain gage indicator to the recorder. 
Each recorder range was utilized during the calibration process so that 
changing of recorder ranges was possible during the testing process. 
For a given recorder range, the relation between load and recorder in-
dication was linear. 

Calibration of load cells was accomplished at the time of instal-
lation and every two weeks thereafter while a given cell was in use. 
For service periods less than two weeks, the cell was checked prior to 
its removal from the testing machine. 

Linear Motion Transducers 

The transducers were calibrated in position on the testing machine. 
They were set at the null position and then subjected to known deflec-
tions (individually and together). The output from transducers was 
transmitted directly to the recorder and all recorder ranges to be used 
were checked. The relation between deflection and recorder indication 
was linear in all cases. 

The transducers were calibrated prior to their use and every two 
weeks thereafter. 

Testing Machine Deflection 

Since the axial deformation measuring system was mounted so as to 
include in the measurements the deflection of the testing machine, load 
cell and the triaxial cell, the combined effect of the equipment defor-
mations was determined. 

A steel specimen was placed in the triaxial cell and the equipment 
completely assembled as for an actual test. Loads were applied to the 
dummy specimen under all confining pressure conditions which were an-
ticipated and the total deflection was recorded. The deformation of 
the metal specimen was calculated and this amount of deformation was 
subtracted from the actual measurements. The remaining deflection was 
recorded as the equipment deflection and was utilized as deformation cor-
rection factors in the reduction of data. 

Piston Friction 

Since the specimen loads in the axial direction were measured by 
means of a load cell mounted outside of the confining chamber, the piston 
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friction was determined at pressures from zero up to 10,000 psi. The ap-
propriate correction was then applied to the measured loads during calcu-
lations of axial stress on the specimens. 



CHAP) ER III 

DEVELOPMENT OF THE LATERAL DEFORNEIER 

Triaxial testing of both partially saturated and fully saturated 
soils under unconsolidated-undrained conditions to determine bulk, shear, 
and constrained moduli is difficult to accomplish. 

In the case of bulk modulus tests, the overall volume change of the 
specimen is of interest and this determination may be accomplished by 
either observing changes in volume of the confining medium or by meas-
uring both axial and radial deformations of the specimens. For the con-
strained modulus test, it is mandatory that radial deformations - be mon-
itored in order to maintain conditions of "no lateral strain." To de-
termine the shear modulus, it is also necessary to detect radial defor-
mations. 

The accurate measurement of very small volume changes of triaxial 
specimens by observing changes in confining fluid volume becomes diffi-
cult under high pressure conditions. This is due to volume changes of 
the equipment and the confining medium themselves as well as the intro-
duction of measurement errors due to small leaks in the system. Al-
through precise calibration may provide a basis for corrections due to 
equipment and confining-medium volume changes, the problem of system 
leakage is formidable in a production-oriented test system. This indi-
cates the desirability of obtaining deformation measurements in the ra-
dial and the axial directions during the progress of a test. Relatively 
precise measurements of axial deformations are possible using instruments 
such as linear variable differential transformers. This type of instru-
mentation was used in this project. The problem of determining lateral 
deformations of soil specimens at high confining pressures is much more 
difficult and, prior to this investigation, has received little atten-
tion. 

The scope of the project included a study of the feasibility of 
developing the necessary equipment to conduct meaningful unconsolidated-
undrained bulk, shear, and constrained modulus tests. Such equipment has 
been developed during the progress of the project and it has been used 
in the conduction of the type of tests anticipated. The development and 
usage of the "lateral deformeter" constitutes the remainder of this por-
tion of the report. 

Lateral Deformation Measurement Techniques  

In low-pressure triaxial testing, various techniques have been in-
vestigated and used. The more widely publicized of these may be con-
veniently listed as follows: 

1. Shadowgraph methods are those wherein diameter 
changes are indicated by changes in lateral di-
mensions of a shadow of the specimen. A varia-
tion of this method is cited by Marsal et al (1). 
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Marsal utilized (or suggested the use of) a 
photographic plate together with a parallel-
light source in order to record lateral di-
mension changes. 

2. Visual observations of diameter changes are 
possible with the use of a calibrated scale 
mounted on the triaxial cell wall (2). 

3. Manual, direct measurements of diameter changes 
can be made by using mechanical -micrometer 
gages which extend through the triaxial cell 
wall (3). 

4. Capacitance gage methods which utilize one 
plate of a capacitor mounted to the specimen 
side and the other plate attached to the cell. 
Changes in capacitance of the measuring system 
occur as the specimen deforms which decreases 
(or increases) the spacing between the two 
plates. 

5. Mechanical lever systems have employed plates 
bearing against the specimen sides. The plates 
cause movement of the levers as the specimen 
diameter either decreases or increases and the 
resulting deformation is indicated by some scale 
arrangement. Bishop and Henkel (5) utilize a 
calibrated, mercury-displacement measurement ar-
rangement together with a hinged, metal frame. 

Cantilever springs, instrumented with electric 
resistance strain gages have been used (personal 
communication). The springs are mounted on the 
cell and allowed to bear against the specimen. 
As the specimen deforms, the movement is sensed 
by the calibrated springs. (This method was 
adopted in this investigation and will be dis-
cussed in detail later.) 

6. Circumferential belts of various types can be 
used as either a K° (no lateral strain) sensor 
or as a lateral strain gage. In practice, the 
belt would be wrapped once around the specimen 
and secured. As the specimen deforms, the in-
strumented belt senses and indicates the move-
ment. By monitoring the indications of deforma-
tion, the operator can, if desired, regulate the 
cell pressure to maintain Ko conditions. General-
ly, the belts have been employed primarily as K° 
devices and instrumented with electric resistance 
strain gages. DiBiagio (6) used a calibrated 
metal band which was fastened by an elastic ma-
terial. As the specimen diameter changed, 
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the indications were monitored visually. Whitmore 
(7) reported that the instrument was somewhat less 
than successful. Whitmore (7) experimented with a 
"belt" type of strain gage which consisted of a 
small-bore rubber tube filled with mercury. The 
mercury was used as the active gage in a Wheatstone 
Bridge circuit. Whitmore concluded that the instru- 
ment has potential value, but that additional de-
velopment and testing were necessary. 

Each of the above systems has certain advantages and disadvantages 
for low pressure triaxial work. In working with high confining pres-
sures, most of the inherent disadvantages are much more prominent and 
may preclude the use of some systems. 

In many of the systems, it is either necessary or highly desirable 
to see the interior of the triaxial cell. For this project such is not 
practicable and all techniques requiring interior visibility were not 
considered. 

Manual, direct measurements of diameter changes were eliminated 
due to problems of sealing since the shafts of the micrometers would 
pass through the cell walls. In addition, making the measurements would 
be slow and would not be practical for dynamic work. Another difficulty 
is in the accurate determination of contact between the micrometer point 
and the specimen. 

The capacitance systems appear promising. Mishu (4) reports on the 
use of such a gage and concludes that strain measurements on the order 
of 0.01 percent are possible for a 1.4-inch-diameter soil specimen. 
Mishu utilized the soil specimen itself as one part of the capacitor and 
a ring which surrounded the specimen as the other part. He states that 
the capacitance of the system depends on the soil type, the cell fluid 
medium, the ring surface area, the confining pressure and temperature. 
Of special note was the fact that his cell fluid (pure white glycerin) 
had to be changed after each two tests due to dielectric constant changes. 

The capacitance measuring system was considered in this project as 
the second choice of systems and would have been explored for usage ex-
cept that the first choice provided acceptable results. Investigation 
of the feasibility of a capacitance system for high pressure work would 
be worthwhile. 

After considering the various techniques available, it was concluded 
that the most promising appeared to be one which employed cantilever 
springs instrumented with electric resistance strain gages. Development 
of this type of gage was begun and eventually a working system was de-
vised. The development and usage of the instrument is described in the 
following text. 

Use of Strain Gages Under Pressure  

One of the problems involved in the use of a strain gage type instru-
ment subjected to high pressures is the effect of pressure on the gages 
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themselves. This problem has been investigated by several persons, both 
theoretically and experimentally. Milligan (8) reports on the response 
of soil strain gages up to 140,000 psi and summarizes the results of 
recent investigations (up to 1965). Brace (9) discusses theoretical as-
pects of the effects and presents data regarding the effect for gages 
mounted on several different materials under pressures up to 10 kilobars. 

Conclusions regarding the use of strain gages under high hydro-
static pressures are that the gages will perform satisfactorily provided 
suitable mounting techniques are utilized. Generally, mounting on a 
relatively smooth surface should be accomplished using a minimum thick-
ness of cement and with a cement which will resist creep under the ap-
plied pressures. Cements utilized satisfactorily include epoxy cements 
and Eastman 910. 

It has been shown (9) that the compressibility of the substrate will 
have an insignificant effect on the "pressure effect" of the gages. (The 
"pressure effect" is defined as being the algebraic difference between 
the indicated strain and the true strain occurring in a gaged material.) 
In addition, the pressure effect will be of a small value, i.e., approxi-
mately 1.1 x 10 -4  strain units per 2 kilobar hydrostatic pressure and the 
effect will be linear. 

Design of the Lateral Deformeter 

The lateral deformeter design underwent several modifications on 
paper; however, the first working model has been used throughout the 
project without modification. Essentially, the instrument consists of 
a steel ring which attaches to the triaxial cell base. Attached to the 
ring are cantilevered metal strips which bear against the specimen. The 
strips are instrumented with electric resistant strain gages which sense 
the movement of the strips and therefore reflect the lateral deformation 
of the specimen. A photograph of the device is shown in Figure 5. 

The ring (Figure 6) is made of structural grade steel at present. 
(Since the present instrument has been used almost daily in oil, corro-
sion has been insignificant; however, it is recommended that stainless 
steel be used.) The dimensions shown on the drawing are those necessary 
for the particular triaxial cell used in this investigation and will have 
to be adjusted to fit other test equipment. 

The ring can accommodate twelve strips or springs. This will allow 
the instrument to measure at multiple points along the length of the 
specimen. At present, three springs are used. These are spaced at 120 
degrees and bear against the specimen at midheight. 

The taper of the upper part of the ring was selected to cause the 
springs to be initially preflexed when used with a 1.4-inch-diameter 
specimen. This allows measurement of both increases and decreases in 
the diameter. 

The springs (Figure 6) are made of spring steel. The shape was 
selected in order to cause a greater amount of spring deformation to 
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Figure 5. Lateral Deformeter and Calibration Blocks 
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occur near the fixed end and, thereby, to increase the sensitivity of 
the instrument. The reduced section was dimensioned to accommodate a 
strain gage which is approximately 0.1 inch by 0.5 inch. 

Strain Gages used on the deformeter are wire gages on a paper base. 
They are manufactured by University Precision Measurement Company of 
Ann. Arbor, Michigan. Specifications are: Type 40, gage length 0.4 inch, 
120 ohms resistance with gage factor of 2.06. 

The gages were bonded to the springs with Eastman 910 cement using 
only the normal precautions for this cement. No problems have arisen 
with regard to gage application during the approximate 9-month use of 
the instrument. 

Strain gage circuitry was in the form of a two-arm bridge. Gages 
were affixed to each side of all three springs and the three outer gages 
connected in series as were the three inner gages. The sensitivity of 
the instrument is indicated in the section under "Calibration." 

Calibration 

The calibration of the lateral deformeter was carried out under the 
following different conditions: 

1. Machined calibration cylinders shown in Figure 5. 

2. Mounted in the cell, using no specimen and under 
hydrostatic pressure. 

3. Mounted in the cell, using a steel specimen, no 
membrane, and under hydrostatic pressure. 

4. Mounted in the cell, using the steel specimen 
enclosed in a rubber membrane, and under hy-
drostatic pressure. 

By means of the methods outlined, the effect of pressure on the 
deformeter was measured as was the indicated effect of a change in thick-
ness of the membrane. 

The basic calibration was carried out with the instrument mounted 
on the cell base under atmospheric pressure only. The calibration 
blocks (Figure 5) were machined to produce successively larger diameters 
in steps upon which the deformeter springs could bear. The blocks were 
positioned so that the deformeter was calibrated over a range of diameters 
from 1.20 inches to 1.70 inches. The resulting correlation was found to 
be 13.27 microinches per inch per 0.001 inch of diameter change. 

The effect of pressure on the deformeter itself was determined with 
the instrument mounted on the cell base, using no specimen, and subjecting 
it to pressures up to 10,000 psi. Figure 7 presents the results of this 
determination. The effect is to indicate an apparent diameter decrease. 
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A steel cylinder, 1.4 inches in diameter, was then used to simulate 
a specimen and calibration made under pressure using, first, no membrane 
and, secondly, a rubber membrane over the cylinder. The results of these 
tests (Figure 8 and Figure 9) were used to determine a membrane correc-
tion by assigning the algebraic difference between corresponding-pressure 
indications to the change in membrane thickness. 

The pressure effect on the deformeter and the membrane effect were 
combined (indicating a diameter decrease) in the data reduction process 
to produce a single "correction" factor expressed as a function of pres-
sure. The correction factor is equal to (0.0254)P microinches per inch, 
with P expressed as psi (Figure 10). 

Calibration of the deformeter was rechecked approximately every two 
weeks. 

Use and Performance of the Lateral Deformeter 

The device has been used as both a diameter strain gage for sensing 
deformation of the soil specimens as well as for a "Ko" instrument. When 
used with Ko tests, the deformeter sensed small deformations of the soil 
specimens and acted as a null indicator when lateral pressure was in-
creased to maintain a "no-lateral-strain" condition. The sensitivity of 
the device is such that it can often indicate (due to Poisson effect) ap-
plications of axial loads before the commercial load cells give an indi-
cation of the load. 

One objection to the use of this type of instrument has been the fact 
that the point of measurement is continuously changing as the specimen 
changes in length. This objection is not considered critical when used 
for the intended purpose. The change in gage position at specimen mid-
length would be only 0.075 inch for 5 percent strain of a 3-inch-long 
specimen if the specimen deformed uniformly. Such movement is probably 
insignificant compared with errors introduced into calculations due to non-
uniform deformation of the specimen, etc. 

In view of the success achieved with the use of this instrument it 
is recommended that it continue to be used and to be improved upon. One 
possibility for improvement would perhaps be through the use of high out-
put strain gages, i.e., piezoelectric gages. Up to this date, the in-
strument has been used to measure only at one position along the specimen 
length. Multiposition measurements would help define the behavior of 
the soil and allow more precise calculations of soil properties. 
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Figure 7. Calibration of Lateral Deformeter 
Under Hydrostatic Pressure 

9 10 1 
	

2 
	

3 
	

4 	5 	6 

NOTE: INDICATED STRAIN 
TO AN INDICATED 
SPECIMEN DIAMETER 

CORRESPONDS 
DECREASE IN 

• 

280 

240 

40 

0 

200 

. 
z 

cK 

- 

120 

M 
W 
1-- 

U 

—

• 

80 



200 

80 

40 

280 

240 

0 

PI  

NOTE: INDICATED STRAIN TO AN INDICATED SPECIMEN DIAMETER 
CORRESPONDS DECREASE IN 

.A11111111 

V 

EN 
EN 
..4 . 

0 
	

1 
	

2 
	

4 	 5 	 6 
	

7 
	

8 
	

9 
	

1 0 

HYDROSTATIC PRESSURE, ksi 

Figure 8. Calibration of Lateral Deformeter 
With Metal Specimen 



200 

IN
DI
CA
T
E
D
 ST

RA
IN
,  
M
IC

RO
IN

CH
ES
/
IN

CH
 

160 

120 

80 

7 8 1 0 2 
	

3 
	

4 	5 	 6 

NOTE: 	INDICATED 
AN 
DIAMETER 

STRAIN 
INDICATED DECREASE 

CORRESPONDS 
IN SPECIMEN 

TO 

• 

• 

HYDROSTATIC PRESSURE, ksi 

Figure 9. Calibration of Lateral Deformeter With 
Metal Specimen and Membrane 

280 

240 

40 

0 



500 

CO
RR

E
C

T
IO

N
,  

M
I C

R
O

IN
C

R
E

S
/I

N
C

H
 

400 

300 

200 

7 9 10 8 2 
	

3 
	

4 	 5 	 6 

NOTE: 	CORRECTION 
STRAIN OF SOIL 

FACTORS REDUCE INDICATED 
SPECIMEN 

HYDROSTATIC PRESSURE, ksi 

Figure 10. Lateral Deformeter Correction 
Factor vs Pressure 

700 

600 

100 

0 



CHAPTER IV 

SOILS AND SPECIMEN FORMING 

Soils 

Two soils were tested. Both soils were furnished by WES in an air-
dried state. The soils had been sieved through a No. 4 sieve to remove 
large particles, organic and other foreign matter. 

One soil was a clayey sand obtained from the McCormick Ranch test 
site near Albuquerque, New Mexico. This soil will be referred to as 
the McCormick Ranch Sand. It is classified as SC according to the Uni-
fied Soil Classification System. The gradation curve and the Atterberg 
limits are shown in Figure 11. The desired dry unit of this soil was 
117 pcf at a moisture content of 11.4%. 

The second soil was a silty clay obtained from the Watching Hill 
test site at the Defence Research Establishment, Suffield, Canada. This 
soil will be referred to as the Watching Hill Clay. It is classified as 
CL. Gradation and Atterberg limits are shown in Figure 12. The desired 
dry unit weight of this soil was 93 pcf at a moisture content of 12.5%. 

Specimen Forming 

The soil was received in metal containers, each holding approximate-
ly 70 pounds. The soil in each can was thoroughly mixed in a dry state, 
after which, water was added to produce the desired water content. The 
water and soil were first mixed manually, then with a mechanical mixer and 
finally, manually. The moist soil was placed in plastic bags and stored 
in a humid room for a minimum of seven days prior to forming. The mois-
ture content was checked immediately prior to forming. 

The forming mold (Figure 13) is a stainless steel tube, 1.385-inch 
I.D. with a wall thickness of 1/8 inch. The compacting pistons are of 
aluminum and were machined to produce a close fit inside the tube. The 
technique used during molding allowed the tube to float freely and the 
soil to compact from both ends toward the middle. 

The specimens were nominally 1.4 inches in diameter by 3 inches in 
length. The amount of moist soil sufficient to produce the desired den-
sity was weighed and placed in the mold. During the charging of the mold,  
the bottom piston was held in position to extend approximately 1 inch in-
to the mold. A funnel was used to prevent loss of soil and the soil was 
lightly rodded until the soil surface was just below the mold top. The 
top piston was put in position and the entire assembly placed in a loading 
frame (Figure 14 and Figure 15). A hydraulic jack forced the pistons in-
to the mold, thereby compacting the soil. The length of compacted speciL 
men was determined by gaging with a dial indicator to within 0.001 inch. 
During the molding, both the top and bottom piston moved into the mold 
while the mold was rotated to minimize friction. When the proper length 
was reached, the load was held to maintain such length for a period of 
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Figure 15. Specimen Forming Frame 
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30 seconds. After this, the load was released and the forming pistons re-
moved. Extrusion of the specimens was accomplished by hydraulic power. 
A photograph of the equipment is shown in Figure 16. 

The extruded specimens were each weighed and checked for parallel 
ends. The height was measured and the diameter determined at the top, 
middle, and bottom. The density was calculated and only those specimens 
that were within + 0.2 pound per cubic foot of the desired density were 
accepted. Each specimen was wrapped in six layers of Saran Wrap, placed 
in three plastic bags (each bag individually sealed) and stored in a 
humid room until tested. 

The McCormick Ranch Sand specimens were formed in batches of 25 as 
needed for testing and stored for a minimum of 7 days prior to testing. 

The Watching Hill Clay specimens were all formed prior to the be-
ginning of testing operations. 
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Figure 16. Specimen Forming Equipment 
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CHAPTER V 

TRIAXIAL JISTS: TYPES AND PROCEDURES 

Types' of Tests  

The test program included the following basic types of tests: 

1. Hydrostatic Compression tests were performed on 
all specimens which were to be tested in shear 
under confining pressures greater than atmospheric. 

2. Triaxial Shear tests were conducted where the shear 
loads were applied (after the desired confining 
pressure had been effected) at constant rates of 
strain. Loading was continued to failure or to a 
desired strain value. 

3. Cyclic loading tests were accomplished for both 
Hydrostatic Compression and Triaxial Shear. In 
Hydrostatic Compression, the pressure was raised 
in regular increments up to the desired pressure 
level. Unloading was conducted using the same 
pressure increments and reloading followed. In 
Triaxial Shear, the loads were applied at a con-
stant strain rate up to a desired stress level and 
then the specimen was unloaded at the same strain 
rate. Reloading followed. The number of load-
unload cycles varied from one to four. 

4. "Constant Stress Ratio" tests were performed. 
After the application of the hydrostatic com-
pression phase, the shear stage was accomplished 
by increasing the confining pressure together 
with the axial load so that a constant ratio 
existed between G

r 
and aa. Axial loading was 

at a constant strain rate. The lateral pressure 
was manually controlled and loading was continued 
either to failure or to maximum available con-
fining pressure (10,000 psi). Cyclic loading was 
accomplished in some tests. 

5. K° , or "No-Lateral-Strain," tests were accomplished 
by maintaining a constant specimen diameter by ad-
justing the confining pressure while increasing the 
axial load at a constant rate of strain. Cycle 
loading (one cycle only) was accomplished in some 
tests. 

Test Procedures 

Test Preliminaries 

Specimens were selected at random from those previously formed. The 
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one to be tested was removed from its wrappings, measured for length and 
diameter, and weighed. The volume was determined by mercury-displacement 
techniques. 

The specimen was placed on the base cap and enclosed in a single 
rubber membrane (0.025 inch thick). A rubber band was used to seal the 
membrane to the cap. 

Next, the lateral deformeter was carefully lowered over the specimen 
and secured to the base by the screws. The assembly was checked to as-
sure that the specimen was firmly seated, then the top cap was placed in 
position. The membrane was pulled wrinkle-free over the top cap and se-
cured by a rubber bard. 

The cell cylinder was attached to the cell base and the internal 
electrical connections were made. 

Oil (SAE No. 20) was poured in the cylinder and the cell gland was 
screwed into position. Care was used to ensure that no air was entrapped. 
The cell was filled to a level such that oil would be displaced and forced 
out as the gland was screwed down. 

The load piston was inserted into the cell through the gland and 
into position in the piston guide portion of the specimen top cap. Con-
tact of the piston with the cap was detected by the completion of the 
electrical circuit and the lighting of the lamp. As the piston moved 
into the cell, drainage of the fluid displaced by the piston was accom-
plished through a valve near the top of the cylinder. 

That completed the cell assembly. The unit was then moved to the 
testing machine and all measuring components connected and checked. 
Photographs of the cell and other apparatus are shown in Figures 17, 18, 
and 19. 

The specimen was subjected to hydrostatic pressure of 5 psi and 
zero readings of height and diameter were recorded. 

Application of Hydrostatic Stress  

The shear stage of the tests began from an initial hydrostatic pres-
sure which was some value between zero (atmospheric) and 10,000 psi. The 
hydrostatic pressures used were 0, 100, 200, 400, 800, 1200, 1600, 3200, 
6400, and 10,000 psi. 

For a given test, the pressure was increased in increments corre-
sponding to those shown above up to the desired value. Under each pres-
sure increment, the changes in height and diameter were determined im-
mediately upon application of the stress. The air-hydraulic pump was 
used to apply a pressure to within approximately 200 psi less than that 
desired and the final adjustment made with the manual pressure control 
system. 
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Figuxe 17. Triaxial Cell and Associated Equipment 



Figure 18. General View of Test Setup 
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Figure 19. Closeup View of Test Setup 
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For the cyclic hydrostatic tests, the specimens were loaded incre-
mentally to the desired stress level, unloaded, and reloaded incrementally 
with height and diameter changes recorded after the application or removal 
of each pressure increment. 

Some tests, particularly the K°  and certain of the constant stress 
ratio, required rapid increases in confining pressure. For these tests 
it was necessary to resort to a manually operated hydraulic pump to ap-
ply the approximate pressure and to effect precise control by means of 
the piston-cylinder arrangement. 

Application of Axial Load 

The axial load applied to the specimens was effected by a Wykeham-
Farrance constant strain loading machine. The rate of load application 
for all tests was 0.015 inch per minute. 

The load was transmitted to the specimen by one of the two following 
sized pistons: 

Piston Diameter 	Test in Which Used 

7/8 inch 

1.4 inches 

 

Triaxial with constant lateral pressure 

K°; Constant Ratio a r/cra  

For the hydrostatic pressure application the piston was not in con-
tact with the specimen top cap except when desired to determine length 
changes. To add axial loads, the piston was brought into contact with 
the top cap by manually adjusting the testing machine and the load then 
applied mechanically. To unload axial load, the machine was stopped at 
the predetermined stress level and then the direction of travel was re-
versed. The load was removed at the same rate at which it was applied. 

For the K°  and the constant stress ratio tests, the piston (1.4-
inch diameter) was brought into contact with the specimen after the ap-
plication of the 5-psi seating pressure. Axial loads were then applied 
mechanically. 

Measurements of Specimen After Testing  

Upon completion of the loading phase (whether hydrostatic and/or 
shear), final readings of height and diameter changes were taken im-
mediately after the load removal, but with the 5-psi seating load re-
maining. After removal from the cell, the specimen was measured for 
length and diameter, the shape was noted and the volume was measured by 
mercury displacement. The water content was determined by drying the 
entire specimen. 
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CHAPTER VI 

RESULTS AND DISCUSSION 

Test Program 

The program included the testing of the two soils under a wide 
variety of test conditions. An initial test program was set up and 
followed for the McCormick Ranch Sand, the first soil tested. The 
lateral deformeter was developed prior to the beginning of testing and 
was used for all tests. After completion of the test program for the 
sand, a review of the test capabilities indicated the desirability of 
a modification in the test program for the Watching Hill Clay. The 
test program for the two soils follows. All tests were of the 
unconsolidated-undrained (U-U) type. 

McCormick Ranch Sand 

Two basic tests were made on the sand. These were the "normal" 
triaxial and the "constant stress ratio" triaxial. In the "normal" 
triaxial tests, cyclic loading was accomplished at approximately 35% 
and 75% of the maximum strength. Four confining pressures, repre-
sentative of the entire confining pressure range, were to have been 
utilized. Additional confining pressures were added during the test 
program in order to better define the soil properties and behavior. 
The following "normal" triaxial tests were accomplished: 

Confining 
Pressure, psi 

Triax., 
it 

Type Test 

@ 35% and 75% 
ft 	If 	1/ 	ft 

100 
200 

Cyclic 

400 ,t II It ft 

80o ft fl II 

1,200 !I 71 II ft It 

1,600 " , " " " 

3 , 200 IT tt II It 

6 , 40o It II ft 

10,000 fr it T7 It 

Constant stress ratio tests were made at the following ratios of 
confining pressure to axial pressure: 

(1) 0.4 
(2) 0.6 
(3) 0.8 
(4) 1.0 (Hydrostatic Compression Test) 

Cyclic loading was accomplished at approximately 75% of the noncycled 
"failure" load. 
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A minimum of 3 specimens was tested for each condition. 

Watching Hill Clay 

Prior to the initiation of testing of the clay, a conference was 
held with representatives of Georgia Tech and WES in attendance. A 
testing program was set up for the Watching Hill Clay which reflected 
the increased capabilities for radial deflection measurement. The 
following program was adopted: 

1. Normal triaxial tests at confining pressures of 0, 
100, 200, 400, 800, 1200, 1600, 3200, 6400, and 
10,000 psi. 

2. Cyclic triaxial tests wherein both the hydrostatic 
pressure was cycled once and the shear load was 
cycled at approximately 35% and at 75% of the fail-
ure load. 

3. Constant stress ratio tests wherein an initial hy-
drostatic pressure was applied, and, thereafter, the 
lateral and the axial stresses were increased at a 
constant ratio. 

The following program was accomplished: 

r/0" a 	 Initial Hydrostatic Pressure, psi 

0.4 
0.6 
0.8 
0.9 

0, 
0, 
0, 
0 

100, 
100, 
100, 

200, 
200, 
200, 

800, 
400, 
800, 

1600, 
800, 
1600, 

3200 
1600, 
3200 

3200 

4. "No-Lateral-Strain" (e) tests were performed by applying 
an initial hydrostatic pressure and, thereafter, loading 
axially at 0,015 in. per min. The lateral pressure was 
adjusted as necessary to maintain a "no-lateral-strain" 
condition. After saturation was reached, the specimen 
was unloaded. Only one specimen per test condition was 
utilized. The following hydrostatic pressures were 
used: 0, 100, 200, 400, 800, and 1600 psi. 

5. Cyclic "No-Lateral-Strain" tests were made in a manner 
similar to those in Item 4, above, except that the loads 
were cycled at an axial load of approximately 50'1 of the 
saturation load. Two specimens were used for each of 
initial hydrostatic pressures indicated above. 

Volume-Change Calculations  

Volume changes of the soils were based upon deformed shapes as de-
termined by measurements made on tested specimens. 
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The deformed shapes of many different tests specimens were measured 
by means of dial indicators. The results of these measurements were 
studied and a generalized, characteristic deformed shape was assigned to 
each soil. 

The McCormick Ranch Sand was found to conform closely to the shape 
shown in Figure 20b. The specimen ends were therefore assumed to under-
go no deformation and the deformation was assumed to be linear from both 
ends toward the center. 

The clay, which was relatively more compressible than the sand, was 
found to have a shape like that shown in Figure 20a. The curved portions 
of the shape were approximated by straight lines as indicated by the dashe 
lines. The positions of the straight line segments were correlated with 
confining pressure and the volume calculations were based on the correlate 
positions. 

The accuracy of the recorded measurements of both axial and lateral 
deformation of the soil specimens are considered to be within + 0.0005 
inch. 

An error of 0.0005 inch in both radial and axial measurements of 
a cylinder 1.4" x 3" would cause an error of approximately 0.1% in the 
calculated volumetric strain, AV/V o . The effect of a 0.1% error in vol- 
umetric strain on the determination of bulk modulus will depend upon the 
rigidity of the material itself and upon the stress increment over which 
the strain is measured. Under the test conditions used in this project, 
the bulk modulus of tested materials should be within the following lim-
its: 

True Bulk Modulus Probable Error 

10,000 psi + 	3% 
50,000 + 	7% 

100,00o + lo% 
300,000 T 15% 
600,000 T 25% 

Presentation of Data and Results 

The results of the test programs consist of the computer calculation 
printout of the data reduction for each test and of comparative displays 
of the stress-strain behavior of the soils. For the McCormick Ranch Sand, 
the individual stress-strain curves are presented in Volume II, Section I, 
and the computer printout sheets are in Volume III, Section I. Correspond• 
ing curves and sheets for the Watching Hill Clay are contained in Volume I 
Section II, and Volume III, Section II, respectively. 

The various types of curves developed from the data are shown in 
Figure 21. A list of all curves presented is shown in Tables 1 and 2. 
From this list, a variety of curves, representative of the entire range, 
have been grouped to illustrate the effects of pressure and state of 
stress. These "average" curves are included at the end of this chapter 
and are discussed individually in the following section. 
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Figure 21. Typical Data Plots 
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Table 1. Graphical Results of McCormick Ranch Sand Tests 

Hydrostatic 
Compression 

Stage 	Shear Stage  

p vs AV/Vo 	(aa-ar ) vs (ca-Er ), for all specimens 

(a a-a r ) vs Er , for typical specimens only 

p vs AV/V.cp 	(aa 	) vs (Ea
-E

r ) , for all specimens 

as  vs E
r
, for typical specimens only 

Type Test  

Triaxial 
(Incl. cyclic) 

Constant 
Stress Ratio 

Table 2. Graphical Results of Watching Hill Clay Tests 

Hydrostatic 
Compression 

Type Test 
	

Stage 	Shear Stage  

Triaxial 
	

p vs AV/Vo 	(aa-5r ) vs (E a  -E r ), for all specimens 

(aa-ar ) vs Er
, for typical specimens 
only 

Constant 
Stress Ratio 

No Lateral 
Strain 

p vs AV/Vo 	(aa 	) vs (ca-Er ), for all specimens 

ur  vs Er , for typical specimens only 

p vs AV/V
o 
	a

s 
VS E

a 

Discussion 

General 

When a soil specimen is subjected to undrained hydrostatic compres-
sion, there is a volume reduction. The amount of volume reduction will 
depend upon many factors, and for a given soil, these include initial void 
ratio and water content. Upon application of the hydrostatic pressure the 
soil skeleton compresses, and as a consequence, the gas in the pores must 
compress or go into (or partially into) solution in the pore fluid. There 
is undoubtedly some volume change of the fluid also; however, it is prob-
ably small under normal circumstances until the gas is almost completely 
driven into solution and the soil becomes saturated. 

If one assumes that the compressibility of the soil skeleton itself 
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is constant and that the change in volume of air (whether compressing or 
going into solution) is directly proportional to changes in pressure, then 
the compressibility of the soil mass should be a constant. This should 
hold true until saturation is complete and then a new compressibility 
will occur which would have a greater value than that of the initial 
compressibility. 

In practice, it has been demonstrated that a complete "hydro" curve 
consists of the two straight-line portions but, in addition, contains a 
"transition" portion between the two straight lines. The transition re-
sults from the fact that the soil is inhomogeneous and contains air voids 
which are either not connected to fluid-filled voids or which have small 
capillaries and therefore change the solubility of the system. 

In order to determine the volume change of partially saturated speci-
mens, as well as other desired constitutive relationships, it is necessary 
to measure directly the radial dimension changes of the specimens. Hav-
ing accomplished such measurements, one can treat the data in a manner 
so that more informative constitutive relationships of the soil are ob-
tained than in the case of the usual test where radial dimension changes 
are lacking. The capability of varying the radial (or confining) pressure 
in the triaxial chamber, together with the capability of monitoring ra-
dial dimension changes of the specimen, makes it possible to determine the 
specimen's stress-strain response under a wide variety of stress states. 
In this test program, four basic types of test were performed. These 
were: 

1. Hydrostatic Compression 

2. Triaxial Shear 

3. No Lateral Strain (One-Dimensional Compression) 

4. Constant Stress Ratio 

The Hydrostatic Compression test provides information on the compres-
sibility of the soil under a hydrostatic state of stress ranging upward 
from atmospheric pressure. The ratio of change in pressure to the change 
in volume (dp/de) is the bulk modulus, K, of the soil. 

As previously indicated, the bulk modulus should have a constant 
value while the soil is well below the point of saturation. As satura-
tion is approached, the bulk modulus assumes continuously increasing 
values with increasing hydrostatic pressure. After saturation is com-
plete, the modulus becomes apparently constant. 

The Triaxial Shear data, when plotted in the form of (a a-ar ) vs 
(ea-or) provide the shear modulus of the soil. For elastic soil behavior, 
the shear modulus, G, is numerically equal to one-half of the slope of the 
(a

a
-. a

r
) vs (e-e

r
) curve. Thus, the measurement of radial deformation 

during the triaxial test allows the determination of both the Young's mod-
ulus, E, as well as the shear modulus. 
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The No-Lateral-Strain  (K
o
) test provides information comparable to 

that of the One-Dimensional Compression test. The constrained modulus, 
is defined as the slope of the ua  vs e a  curve as determined for the 

condition of no lateral strain. 

The Constant Stress Ratio test provides deformational information 
for stress states between the two limits a r/ua  = 0 and ar/ua  = 1. The 
limit ar/aa  = 0 is the triaxial test which provides the usual shear 
modulus and the limit ur/aa  = 1 is the hydrostatic compression test 
which provides the bulk modulus. 

The shear strength of a soil is generally represented in the form 
of a Mohr diagram. Two parameters, C and 0, are sufficient to describe 
the strength if the confining pressures are low; however, in the case of 
confinement which varies from zero up to 10,000, the envelope is not a 
straight line. For such cases, it is necessary to have the entire 
strength envelope in order to determine the soil strength for a given 
condition. 

While the soil is only partially saturated, the strength envelope 
will be inclined at an angle to the horizontal greater than zero. After 
the soil becomes saturated, the envelope becomes horizontal, for practi-
cal purposes, since the stresses are assumed to be carried by neutral 
stress. 

McCormick Ranch Sand 

The "hydro" curve (Figure 22) closely approximates a straight line 
up to a pressure of about 400 psi and to a volumetric strain between 
2.5% to 3.0%. A transition curve then exists between 400 psi and ap-
proximately 800 psi with only a slight increase in strain. At hydro-
static pressures above about 800 psi, the slope apparently becomes con-
stant once again. 

Due to the limitations of the lateral defor,  eter, it is unlikely 
that a modulus greater than approximately 3 x 1077  psi can be established 
with any predictable degree of confidence. As a result, the p vs AV/V 0 

 curves past the saturation point should be used primarily in a qualita-
tive sense. In this case, it is apparent that the bulk modulus of the 
saturated soil is considerably higher than that of water alone. 

Typical plots for the Triaxial Test shear stage results for the 
sand are shown in Figure 23 through Figure 25. These plots show 
"averaged" curves which were constructed by utilizing all results 
from tests of a like nature and determining the numerical average strain 
for a given stress value. Some engineering judgment was exercised in 
this process and certain test results were not used when they contained 
apparent discrepancies. 

These curves exhibit no totally unexpected behavior even to the 
maximum confining pressure utilized. The individual curves show increas-
ing deviator stress to either a maximum value or to a very slowly 
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increasing value as deviator strain increases. The stiffness of 
the soil increases with increasing confining pressure and conse-
quently, the shear modulus will exhibit an increase with confining 
pressure. It appears that the shear modulus reaches either a max-
imum or a slowly increasing value after full saturation has 
occurred. 

Cyclic loading (Figure 24) interrupts the normal pattern of 
stress vs strain in that "hysteresis loops" are formed; however, 
the curve, after cyclic loading is complete, is apparently a 
continuation of the portion of the curve prior to cyclic loading. 
This is compatible with observed behavior of soils under cyclic 
loading at low confining pressures. (Figure 24 is for a single 
test since cycling of load was not accomplished at identical values 
in all tests and "averaging" is not possible.) 

The (a a 
-a

r
) vs e curves show that there is an increase in the 

.r 
diameter of the specimen with increasing axial load during the 
shear stage regardless of the initial confining pressure. Such 
behavior would be expected even at confining pressures less than 
those necessary to produce saturation. 

The "Constant Stress Ratio" test results are shown in Figure 26 
and Figure 27. The (oa  •) vs (c a-Er ) curves are similar to those 
for standard triaxial tests in that there is an approximately 
straight-line initial portion followed by a curving transition and 
then a failure, or peak value of deviator stress. 

The a vs e curves are an unusual type of presentation since 
lateral deformation is not normally measured. The diameter strain is 
seen to decrease, at first, with increasing confining pressure and 
then to increase. The significance of this behavior is not yet clear, 
but it is probably related to the compression and shear phases of a 
conventional triaxial test. 

The Mohr diagram is shown in Figure 28. The envelope appears 
to be slightly concave downward up to 800-psi confining pressure. 
This portion of the envelope can be approximated by a straight line 
with a friction angle 0 of about 11 deg. Between 800 psi and 1200 psi 
the curvature becomes more pronounced and the envelope becomes essentially 
horizontal at 1200 psi and remains so up to 10,000 psi. No "cohesion" 
intercept is shown, since the minimum confining pressure was relatively 
high and the slope of the envelope could change considerably for lower 
confining pressures. 

Watching Hill Clay  

The "hydro" curve (Figure 29) approximates a straight line up 
to a pressure of about 200 psi and to a volumetric strain of approximately 
10%. A transition curve then exists between 200 psi and approximately 
800 psi with only a slight increase in strain. At hydrostatic pressures 
above about 800 psi, the slope apparently becomes constant once again. 
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The same comments regarding the bulk modulus apply to this 
soil as were indicated for the McCormick Ranch Sand. The large 
amount of volumetric strain prior to saturation for this soil is 
due to the initial high void ratio. 

The general shapes of the specimens after testing are shown in 
Figure 30 and Figure U. The specimen in Figure 32 has been sub-
jected to hydrostatic compression only, and the typical decreased 
diameter can be seen to vary from the central portion to the ends 
of the specimen. The ends undergo a negligible amount of deformation. 
The specimen in Figure 31 was subjected to hydrostatic compression 
of 3200 psi and then sheared in a standard triaxial test. This 
particular specimen was strained to approximately 28% axial strain. 
The ends still remain undeformed while the specimen bulges fairly 
uniformly over the central portion. 

These photographs, as well as the other recorded data, show 
rather clearly that there is an appreciable end-cap effect on the 
radial deformation of the specimens. There may also be an effect 
on the axial deformation. As a consequence of the restraint, the 
volumetric changes are influenced, which introduces an error of 
unknown magnitude into predictions of bulk modulus and other de- 
formational moduli. It appears that a definite need exists for study 
of the end-cap effects at high confining pressure. 

Typical results of the Triaxial and Constant Stress Ratio tests 
are shown in Figure 32 through Figure 40. The general shapes of 
the curves are similar to those of the McCormick Ranch Sand. The 
lower density of the silt is exemplified by the (c a-ar ) vs (Ea-Er ) 
curves where the slopes are flatter (i.e., lower shear modulus) 
than for the sand. The Triaxial test results (Figure 32 and Figure 33) 
are shown to two different scales in order to better illustrate both 
the low strain and the high strain behavior. 

A set of curves (Figures 36 through 39) shows the deformational 
characteristics of the clay in the Constant Stress Ratio tests. 
Figures 36, 37, 38, and 39 show the behavior at stress ratios of 
0.4, 0.6, and 0.8 for various initial confining pressures. In general, 
the initial slopes of the curves decrease with increasing stress ratios 
for a given initial confining pressure; however, the difference is not 
too great, and there is no well-defined relation. The loading path, 
therefore, does not greatly influence the deformational behavior when 
presented in these terms. 

A combined, or "averaged," set of curves is shown in Figure 40 
to illustrate the effect of initial confinement for a given stress 
ratio loading path. The behavior is quite similar to that in con- 
ventional triaxial compression, with the slope of the curves increasing 
with increasing initial confinement and tending toward a constant value 
after complete saturation under initial confining pressure. 



The "No-Lateral-Strain" test results are typified by Figure 41 
and Figure 42. 

The Mohr diagram for the clay is shown in Figure 43. The envelope 
can be approximated by a straight line up to approximately 800 psi at 
an angle of about 4 deg. At confining pressures greater than 800 psi, 
the envelope is essentially horizontal up to 10,000 psi. 
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Figure 31. Clay Specimen Subjected to 3200-psi 
Hydrostatic Compression 
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CHAPTER VII 

RECOMMENDATIONS FOR FURTHER STUDY 

The work performed during this study was of a nature which had not 
previously been attempted. The results obtained are quite interesting 
in themselves and may be used in predictions of the behavior of earth 
masses. The accuracy of the predictions will depend to a considerable 
extent, however, upon the differences in physical properties (density, 
moisture content, etc.) between the laboratory soils and those in situ. 
Considerable differences in physical properties exist in a given deposit, 
both in vertical as well as in horizontal directions. This variation 
in the soil indicates the need for knowledge of the range of variation 
of the mechanical properties and deformational characteristics of the 
material. In order to determine this range of variation, it will be 
necessary to perform a systematic study which includes variations of the 
soil physical properties, e.g., densities and water contents from the 
minimum expected, various gradations, etc. 

Two soils were studied. These were relatively weak and particulate 
in nature. Other soils and rock should be utilized in order to obtain 
specific values for materials actually surrounding existing or proposed 
structures as well as information which would be necessary in the 
extrapolation of characteristics to future locations. 

Involved in this additional work would be the development of test 
equipment capable of exerting confining pressures up to possibly 40,000 
psi in order to obtain information on the deformational moduli at higher 
pressures. It has been shown in this report that there may be expected 
only slight changes in the "strength" of the two soils utilized; however, 
it is still to be determined whether the deformational characteristics 
will be unchanged. 

The techniques of testing, measuring, and calculating used in this 
program have been continuously upgraded as the program progressed. There 
are many areas, however, where there is definite need for improvement. 
One area of interest is with respect to the definition of the length of 
specimen which is effectively (or freely) deforming. It is apparent 
from the photographs of the deformed specimens that there is an 
appreciable end-cap effect on the radial deformation. This suggests 
the possibility of effects on axial deformations as well. An attempt 
should be made to determine quantatively the effect of the end cap or 
to reduce the effect by a redesign of the equipment. Alternatively, it 
may be feasible to measure axial deformation over a gage length where 
the end cap effect is negligible. More meaningful results could be 
obtained if the effective length could be more accurately known and 
utilized in the calculations of linear and volumetric strain. This would 
involve the refinement of the lateral deformeter as well as refinement of 
the calculation techniques. 

Automated programming of pressure control would be highly desirable 
in tests of the constant stress ratio and the no-lateral-strain types. 
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An additional refinement in test instrumentation could be made 
in the case of axial load measurement. At present, specimen loads 
are monitored by the use of a load cell mounted externally of the 
triaxial chamber. Such use makes it necessary to include a "piston 
friction correction factor" in calculations of stress on the specimen. 
Although a calibration is made to determine the piston friction, there 
is some uncertainty with respect to the value and direction of the 
friction during some portions of the cyclic loading tests. For these 
reasons, it is highly desirable to use a load cell which measures the 
load on the specimen directly. 

Another area of interest is in regard to effects of handling 
during specimen preparation and setup on the soil characteristics. 
Many soil materials are quite sensitive to small changes in water 
content or to structural changes. Either or both of such changes can 
occur during the preparation of the specimens for testing. It should 
be possible to determine, for a given material, the maximum changes in 
deformational response which could be expected under various preparation 
conditions. In the case of rock and very stiff soils, this might also 
include effects of specimen size. 
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