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SUMMARY

In the first part of this thesis, we study revenue management in resource

exchange alliances. An important way in which sellers collaborate is through the

formation of alliances since seller alliances enable the sale of products combined from

the resources of several sellers. For example, a vacation package may consist of air-

line tickets for 2 people, a hotel room for 4 nights, and car rental for 5 days. The

resources used to offer the combined product are provided by 3 sellers: the airline,

the hotel, and the car rental company. Another example of a widely used alliance is

between carriers such as airlines and ocean carriers. The examples above illustrate

that alliances are important in various industries and that alliances can be structured

in many different ways. The detail rules of an alliance are clearly important for both

the stability of the alliance, as well as the well-being of each member of the alliance.

In this study, we focus on resource exchange alliances. We propose an alliance

design model that takes into account how the alliance members compete after the re-

source exchange by selling substitutable (and also complementary) products. It will

be shown that a resource exchange alliance can increase both profits and consumer

surplus at the same time that it increases horizontal competition. Currently, airline

revenue management systems do not take into account the effect of alliances on the

competition they are facing. For example, airline revenue management systems treat

seats that they give to another airline in a resource exchange alliance as sales instead

of as an increase in the resources available to the other airline for use in selling com-

peting products.
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We present a stochastic optimization model with equilibrium constraints

(SMPEC) to determine the optimal amount of each resource to be exchanged. By

“optimal” we mean the resource exchange that maximizes the sum of the alliance

members’ profits after the exchange, taking into account the resulting competition.

The motivation for maximizing the sum of the profits is that, with the exchange of

resources such as seat capacity or container capacity, alliance members can also ex-

change money as partial compensation for the exchanged resources, and the objective

is to maximize the total amount of money available to the alliance. For each resource

exchange, the competition among alliance members is modeled as a noncooperative

game in which each alliance member chooses the prices for its own products, subject

to its own capacity constraints (which depend on the resource exchange), to maxi-

mize its own profit. Assuming a linear model of demands for products as a function

of both the prices chosen by the seller of the products as well as the prices chosen by

the other alliance members for their products, necessary conditions are derived for

an equilibrium, as well as sufficient conditions for uniqueness of an equilibrium. We

show that the sufficient conditions hold under reasonable conditions, and that the

equilibrium can be computed efficiently.

We develop a trust region algorithm to search for an optimal resource exchange.

To compare the effect of a resource-exchange alliance on profits under different con-

ditions, we also formulate a model of the no alliance case and a model of the perfect

coordination case (where alliance members perfectly coordinate pricing decisions).

We present a computational study in which we investigate the effects of: (i) the level

of product differentiation between alliance members, and (ii) the difference in conve-

nience level between an alliance and the setting with no alliance on the relative profits

of the cases with and without an alliance, and the case with perfect coordination.
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In the second part of this thesis, we study the estimation of risk measures in risk

management. In the financial industry, sell-side analysts periodically publish rec-

ommendations of underlying securities with target prices. These recommendations

reflect specific economic conditions and influence investors decisions and thus price

movements. However, this type of analysis does not provide risk measures associated

with underlying companies even though controlling risk is one of the most important

aspects of investment decision making. Analysis and control of risk are important in

many other industries in addition to financial services. For example, headlines of the

past year have highlighted volatile oil prices impacting industries around the world,

ranging from energy, to transportation, to technology. The impact of rising oil prices

on total supply chain cost is substantial and one cannot make the right strategic

decisions without understanding the risk associated with oil price movements in the

business.

Now let us consider a situation where there exists information composed of eco-

nomic and market variables which can be considered as a set of predictors for a

variable of interest. In that case, one would be interested in the estimation of a risk

measure conditional on observed values of predictors. In this study, we discuss linear

regression approaches to the estimation of law invariant conditional risk measures.

In particular, Value-at-Risk (VaR) and Average Value-at-Risk (AVaR) measures are

discussed in detail. Two estimation procedures are considered and compared; one is

based on residual analysis of the standard least squares method and the other is in

the spirit of the M-estimation approach used in robust statistics.

First approach is to apply the standard least squares estimation procedure and

then to make an adjustment of the estimate of the intercept parameter based on

random error values. Since true values of the error term are unknown, it is natural

xi



idea to replace true error values by residual values. We refer to this estimation ap-

proach as the Least Squares Residuals (LSR) method. In fact, LSR approach can

be easily applied to a considerably larger class of law invariant risk measures. An

alternative approach is in the spirit of robust statistics; it is based on minimization of

an appropriate error function. For the VaR risk measure, the error function is readily

available and the corresponding robust regression approach is known as the quantile

regression method. For general coherent risk measures, the situation is more delicate.

Possibility of constructing the corresponding M-estimators is rather challenging, and

such estimators certainly do not exist for the AVaR risk measure. Nevertheless, it is

possible to construct the approximations and formulate the optimization problem as

a linear programming. It could be remarked here that the approach based on mixing

M-estimators is somewhat restrictive and constructing an appropriate error function

for a particular risk measure could be quite involved.

Next, we derive large sample statistical inference of the estimators. We first show

that both estimators are consistent. Furthermore, we investigate the efficiency of

two estimation procedures by computing corresponding asymptotic variances. Finite

sample properties of the proposed estimators are also investigated and compared with

theoretical derivations in an extensive Monte Carlo study. Simulation results, under

different distribution assumptions of the error term, indicate that the LSR estimators

usually perform better than their (mixed) quantiles counterparts. Typically, the mean

absolute error, asymptotic variance, and empirical variance of the LSR estimators are

smaller than that of quantile based estimators.

Finally, empirical results on the real data (different financial asset classes including

Credit Default Swap and US equities) are also provided to illustrate the performance

of the estimators. Prediction performances on the real data example suggest similar

xii



conclusions: LSR estimators typically perform better.
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CHAPTER I

REVENUE MANAGEMENT IN RESOURCE EXCHANGE

ALLIANCES
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1.1 Introduction

1.1.1 Optimal Alliance Design When Friends Become Competitors

An important way in which carriers such as airlines and ocean carriers collaborate is

through the formation of alliances. For example, in an airline alliance each alliance

member (marketing member) can sell tickets for flights operated by another alliance

member (operating member) and the marketing member can put its own code on the

flight. That enables airlines to sell tickets for itineraries that include flights operated

by multiple airlines, thereby dramatically increasing the number of itinerary products

that each airline can sell.

Another example of a widely used carrier alliance is the type of alliance that ocean

container carriers enter into when they introduce new joint services. A “service” is

a cycle (also called a “loop” or a “rotation”) of voyages that repeat according to a

regular schedule, typically with weekly departures at each port included in the cycle.

Suppose the cycle is ports A,B,C,D,E,A. A set of ships is dedicated to the service,

with each ship visiting the ports in the sequence A,B,C,D,E,A,B,. . . . To offer weekly

departures at each port included in the cycle, the headway between successive ships

traversing the cycle must be one week. Thus, if it takes a ship n weeks to complete

one cycle, then n ships are needed to offer the service with weekly departures at each

port in the cycle. For many services that visit ports in Asia and North America, and

services that visit ports in Asia and Europe, it takes a ship approximately 6 weeks

to complete one cycle, and thus 6 ships are needed to offer the service. Taking into

account that a large container ship can cost several hundred million US dollars (and

the trend is towards even larger container ships, because larger container ships tend

to have significantly lower per unit operating costs), it becomes clear that for even

the large carriers it would require an enormous investment to introduce a new service.

A solution is for several carriers to enter into an alliance to offer a new service. Many

services that visit ports in Asia and North America, and services that visit ports
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in Asia and Europe, are offered by alliances between two carriers. Each carrier in

the alliance provides one or more ships to be used for the service. The capacity

on each ship is then allocated to all the alliance members, often in proportion to

the capacity that the alliance member contributed to the service. For example, if

carrier 1 contributes 2 ships and carrier 2 contributes 4 ships to the service, and all

the ships in the service have the same capacity, then carrier 1 can use 1/3 of each

ship’s capacity, and carrier 2 can use 2/3 of each ship’s capacity. That way, each

carrier in the alliance can offer weekly departures at each port in the service even

though it did not have enough ships by itself to do so.

Vacation packages provide another example of seller alliances enabling the sale

of products combined from the resources of several sellers. For example, a vacation

package may consist of airline tickets for 2 people, a hotel room for 4 nights, and car

rental for 5 days. The resources used to provide the combined product are provided

by 3 sellers: the airline, the hotel, and the car rental company. Computers and pe-

ripherals provide another example of products combined from the resources of several

sellers. There are many similar examples.

The examples above illustrate that alliances are or can be important in various

industries, and that alliances can be structured in many different ways. The detail

rules of an alliance are clearly important for both the stability of the alliance, as

well as the well-being of each member of the alliance (e.g. see Boyd (1998) and

Vinod (2005) for the discussion of the basic alliance types in the airline industry).

The major distinguishing factors between different alliance structures involve the

control of the inventory of the resources and the pricing of the products that alliance

members offer for sale. For example, in a so-called “free-sell” airline alliance, the

alliance members agree in advance of the selling season on the transfer prices at which

operating members will sell capacity on flights to marketing members. However, under

free-sell, during the selling season the operating members still control the availability

3



of all the capacity on the flights operated by them, even if the flights are included

in the code-share agreement. Both legal and operational reasons prevent airlines in

alliances from merging their revenue management systems (Barla and Constantatos

(2006)).

Another type of alliance structure is a so-called “resource exchange” or “hard

block” alliance, in which the sellers exchange resources (for example, seat space on

various flights or container capacity on various voyages, and possibly money). After

the exchange, each seller can control the received resources as though they are the

owner of the resources. Resource exchange alliances are more common among ocean

carriers than airlines. An example of a resource exchange alliance between ocean

carriers was given above. As an example of a resource exchange alliance between

airlines, airline 1 may receive 15 seats on flight A operated by airline 2, and airline 2

may receive 10 seats on flight B operated by airline 1 as well as $2000. After the

exchange, airline 1 controls the revenue management for the 15 seats on flight A that

it received from airline 2, as well as for the remaining seats on the flights that it

operates, and similarly, airline 2 controls the revenue management for the 10 seats

on flight B that it received from airline 1, as well as for the remaining seats on the

flights that it operates.

Since the control of transfer prices by free-sell alliances may cause suspicions of

price collusion, resource exchange alliances have a potential benefit over free-sell al-

liances regarding competition and anti-trust regulation. However, we should mention

that the structure of carrier alliances varies from alliance to alliance, and no carrier

alliance is structured as simply as the stylistic cases of free-sell alliances or resource

exchange alliances.

After formation of an alliance the alliance members compete to sell substitute

products. In that way, alliances increase competition (more specifically, alliances

increase horizontal competition). Currently, airline revenue management systems do

4



not take into account the effect of alliances on the competition they are facing. For

example, airline revenue management systems treat seats that they give to another

airline in a resource exchange alliance as sales (Vinod (2005)), instead of as an increase

in the resources available to the other airline for use in selling competing products.

In this study we focus on resource exchange alliances. We propose an alliance

design model that takes into account how the alliance members compete after the

resource exchange by selling substitutable (and also complementary) products. It will

be shown that a resource exchange alliance can increase both profits and consumer

surplus at the same time that it increases horizontal competition.

First we provide an economic motivation for interest in resource exchange al-

liances. Specifically, in Section 1.2 we consider a model with two sellers, each of

whom sells one type of resource. Customers are interested in a product that requires

both resource types. First we consider the case without an alliance, in which each

seller sets the price for its resource, and customers buy resources from both sellers

to obtain the desired product. Then we compare the equilibrium prices, quantities,

profits, and consumer surpluses without an alliance with the prices, quantities, prof-

its, and consumer surpluses that would result from perfect coordination. It is shown

that the equilibrium prices without an alliance are higher than the prices under per-

fect coordination, and the equilibrium quantities without an alliance are lower than

the quantities under perfect coordination. Intuitively this happens because without

an alliance each seller is implicitly attempting to gather a larger share of the total

revenue. This effect is especially pronounced if the capacity is large, and it results

in both the total profit and the consumer surplus being smaller without an alliance

than under perfect coordination.

Second we consider a resource exchange alliance. We show that both the total

profit and the consumer surplus of a resource exchange alliance with exchange quan-

tities chosen to maximize the total profit are always greater than the total profit and

5



the consumer surplus respectively without an alliance (except if the capacity is small,

in which case the equilibrium prices, quantities, profits, and consumer surpluses are

the same for the settings with an alliance, without an alliance, and with perfect co-

ordination). In addition, we show that the equilibrium prices, quantities, profits, and

consumer surpluses are equal for a resource exchange alliance with exchange quanti-

ties chosen to maximize the total profit and for perfect coordination, except when the

sellers’ products are complementary (which would be unusual in a resource exchange

alliance) and the capacity is large.

In Section 1.3, we consider models of no alliance, perfect coordination, and a

resource exchange alliance for the case in which each seller has multiple resources.

For resource exchange alliances we formulate an optimization model to determine the

amount of each resource to be exchanged, taking into account the consequences of the

exchange on the subsequent competition among the alliance members. If one assumes

that after the resources have been exchanged, each alliance member chooses the prices

of its products to maximize its own profit, and that this behavior of the alliance mem-

bers leads to an equilibrium, then the problem can be formulated as a mathematical

program with equilibrium constraints. An important question is whether, for each

resource exchange, there exists an equilibrium and, if so, whether it is unique. In Sec-

tion 1.3.6 we show how to determine whether a unique equilibrium exists, and how to

compute it. A trust region algorithm is used to solve the mathematical program with

equilibrium constraints. Illustrative numerical results are provided in Section 1.4,

and we compare the results for the cases with no alliance, perfect coordination, and

a resource exchange alliance.
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1.1.2 Related Literature

There are broadly two streams of literature related to this study — literature that

study the impact of alliances, such as the impact of airline alliances on pricing, com-

petition, and public welfare; and literature that address the design of alliance agree-

ments. The literature on alliance design is sparse relative to the literature on the

impact of alliances. Also, most papers on alliances have addressed either ocean ship-

ping alliances or airline alliances.

The literature on ocean shipping alliances have addressed questions such as net-

work design under alliances, choice of resource exchange amounts, revenue sharing, or

the stability of alliances. For example, Midoro and Pitto (2000) investigated factors

which affect the stability of liner shipping alliances, and Slack et al. (2002) empirically

examined the changes in services made by container shipping lines in response to the

formation of alliances. Song and Panayides (2002) analyzed two examples using coop-

erative game theory to investigate the rationale behind and decision-making behavior

in liner shipping alliances. Lu et al. (2010) studied a model of a resource exchange

alliance between two carriers to determine the resource exchange or purchase amount

to maximize the profit of an individual alliance member. Agarwal and Ergun (2010)

considered a service network design problem in which ocean carriers share capacity

on their ships. Their design problem does not take into account that carriers will

compete when they share capacity on the same ships.

The literature on airline alliances have addressed questions such as the choice of

flights to include in code-share agreements, the choice of transfer prices or proration

rates in free-sell alliances, the effect of alliances on booking limits and the number of

seats sold, and the effect of cargo alliances on the passenger market. For example,

Brueckner (2001) considers a model with two airlines, with and without an alliance,

and showed that for most parameter values, the alliance decreases the amount sold

of the common interhub product, and increases the amounts sold of all the other

7



products, especially the shared interline products. Sivakumar (2003) presented Code

Share Optimizer, a tool built by United Airlines that considers the interaction be-

tween proration agreements, demand, fares, and market shares. O’Neal et al. (2007)

built a code-share flight profitability tool to automate the code-share flight selection

process at Delta airlines. Abdelghany et al. (2009) also presented a model for airlines

to determine a set of flights for a code-share agreement. Zhang et al. (2004) exam-

ined the effect of an air cargo alliance between two passenger airlines on the passenger

market. Netessine and Shumsky (2005) consider a model with multiple airlines, in

which each airline has two fare classes for each flight, and each airline chooses a

booking limit for each flight. The horizontal competition setting involves two airlines

with one flight each, in which demand that is not accommodated on the first choice

airline overflows to the other airline. In the vertical competition setting connecting

passengers travel on flights of more than one airline. The equilibrium booking limits

are compared with the booking limits under perfect coordination. The question of

transfer prices that achieves perfect coordination is also investigated. These transfer

prices are functions of the booking limits of both airlines, and also depends on the

expectations of functions of random demand. Thus these coordinating transfer prices

are not numbers determined before the airlines make their booking limit decisions.

Wen and Hsu (2006) proposed a multi-objective optimization model to determine

flight frequencies on airline code-share alliance networks. Barla and Constantatos

(2006) consider a market with three competitors, two of which decide to cooperate

where demand is uncertain. Under a “strategic alliance (SA)”, the partners (a) jointly

choose capacity in order to maximize their total expected profit, (b) share this capac-

ity among themselves based on the Nash bargaining outcome, and (c) market their

capacity shares independently after demand is revealed. They show that the prof-

its of the cooperating firms is greater under SA than under a full merger (in their

model, a merger does not include maintaining different brands), and thus SA is not

8



necessarily a second best solution that is justified by regulations restricting airline

mergers. Houghtalen et al. (2010) used the model in Agarwal and Ergun (2010) to

choose capacity exchange prices for air cargo carriers. Their model also does not take

into account that air cargo carriers (and freight forwarders) will compete when they

exchange capacity.

Wright et al. (2010) formulate a Markov-game model of two airlines under a free-

sell alliance. They first describe centralized booking control which gives an upper-

bound on the total revenue for the alliance, and they find that no Markovian transfer-

pricing scheme with decentralized booking control can guarantee the same revenues

as centralized booking control. They examine static and dynamic transfer-pricing

schemes, and show that the performance of static transfer-pricing schemes depends

on the homogeneity and stability of the relative values that each airline places on the

inventory used in interline itineraries. They also conclude that there is no one best

dynamic proration scheme.

Hu et al. (2011) also study a model of a free-sell airline alliance. Similar to our

model, their model is a two-stage model with the alliance design decision in the first

stage and operational selling decisions of individual airlines in the second stage, for-

mulated as a Nash equilibrium problem. Their alliance design decisions are static

proration rates, whereas our alliance design decisions are static resource exchange

amounts. In their model the prices and proration rates are the same irrespective

of which airline sells the interline itinerary, whereas our model makes provision for

different prices and demands for the same interline itinerary sold by different mar-

keting airlines. Their second-stage decisions are static booking limits, whereas our

second-stage decisions are static product prices. The booking limits in their model

are capacity allocations to different itineraries, and not nested booking limits on the

flight legs. The demand in both models may be random. However, in their model

the demand for different itineraries (and fare classes) are assumed to be independent,
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and also independent of the second-stage decisions (booking limits), whereas in our

model the demand for different itineraries are allowed to be dependent, and to depend

on the second-stage decisions (prices). In both models existence and uniqueness of a

Nash equilibrium in the second stage is somewhat problematic — for their model, a

Nash equilibrium always exists, but is not unique, whereas for our model existence

and uniqueness of a Nash equilibrium can be guaranteed in special cases (for exam-

ple, when the demands for products are independent of the prices of other products),

but not in general. For our model, existence and uniqueness of a Nash equilibrium

can be verified numerically for a given demand model. In both papers, total profits

under alliances are compared with total profits under a centralized solution, and it

is investigated when the profits are equal. In our study we compare the consumer

surplus in addition to total seller profits.
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1.2 Two-Resource Model

Consider 2 sellers, indexed by −1 and 1. Each seller produces one resource. Seller i

produces resource i, and a maximum quantity bi of resource i can be consumed.

Seller i has a constant marginal cost of ci per unit of resource i consumed, and seller i

chooses the price ỹi + ci per unit of resource i, that is, ỹi denotes the price in excess

of the marginal cost ci per unit of resource i. Customers want to consume a product

that requires one unit of each resource. (In this section, there is no demand for a

product that consists of only one resource.) Thus customers buy units of a product

consisting of one unit of each resource and pay c−1+ ỹ−1+ c1+ ỹ1 per unit of product.

The demand d for products depends on the prices as follows:

d = max{0, α̃− β̃(ỹ−1 + ỹ1)}, (1.2.1)

where α̃ and β̃ are positive constants known to each seller. Assume that α̃ > 0,

that is, demand is positive if each seller charges only its marginal cost. The detailed

calculations for this section are given in Appendix A.

1.2.1 No Alliance

First consider the case with no alliance, which is modeled as a non-cooperative

game. Let bmin := min{b−1, b1}. Thus, the number of products sold is given by

min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}, and the profit of seller i is given by

g̃i(ỹi, ỹ−i) := ỹimin{bmin, max{0, α̃− β̃(ỹ−i + ỹi)}}.

If bmin ≥ α̃/3, then the equilibrium prices are given by

ỹ∗i =
α̃

3β̃
, (1.2.2)

the equilibrium demand is equal to

α̃− β̃(ỹ∗−1 + ỹ∗1) =
α̃

3
> 0, (1.2.3)
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the resulting profit of seller i is equal to

ỹ∗i min{bmin, max{0, α̃− β̃(ỹ∗−i + ỹ∗i )}} =
α̃2

9β̃
, (1.2.4)

and thus the total profit of both sellers together is equal to

ỹ∗−1

[

α̃− β̃(ỹ∗−1 + ỹ∗1)
]

+ ỹ∗1

[

α̃− β̃(ỹ∗−1 + ỹ∗1)
]

=
2α̃2

9β̃
, (1.2.5)

and the consumer surplus is equal to

1

2

(

α̃

β̃
− 2α̃

3β̃

)

α̃

3
=

α̃2

18β̃
. (1.2.6)

If bmin ≤ α̃/3, then all pairs of prices (ỹ−1, ỹ1) on the line segment between

(bmin/β̃, [α̃ − 2bmin]/β̃) and ([α̃ − 2bmin]/β̃, bmin/β̃) are equilibria. For all of these

equilibrium prices the total price is equal to (α̃ − bmin)/β̃, the demand is equal to

bmin, the resulting profit of seller i is equal to ỹibmin, and thus the total profit of both

sellers together is equal to

ỹ−1bmin + ỹ1bmin =
α̃− bmin

β̃
bmin, (1.2.7)

and the consumer surplus is equal to

1

2

(

α̃

β̃
− α̃− bmin

β̃

)

bmin =
b2min

2β̃
. (1.2.8)

1.2.2 Perfect Coordination

In this section we determine the maximum achievable total profit of the two sellers

together, that is, the total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

g̃(ỹ−1, ỹ1) := [ỹ−1 + ỹ1] min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}.

If bmin ≥ α̃/2, then the optimal total price is equal to

ȳ−1 + ȳ1 =
α̃

2β̃
. (1.2.9)
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Note that (1.2.2) and (1.2.9) show that ỹ∗−1 + ỹ∗1 > ȳ−1 + ȳ1, that is, the total of

the equilibrium prices is greater than the optimal total price. (These results are

reminiscent of the comparison of the cases with and without vertical integration by

Spengler (1950); however, the setting here is different because one seller does not buy a

product from another seller and add a mark-up before reselling it.) The corresponding

demand is equal to

α̃− β̃(ȳ−1 + ȳ1) =
α̃

2
>

α̃

3
= α̃− β̃(ỹ∗−1 + ỹ∗1), (1.2.10)

the total profit of both sellers together is equal to

[ȳ−1 + ȳ1]
[

α̃− β̃(ȳ−1 + ȳ1)
]

=
α̃2

4β̃
, (1.2.11)

and the consumer surplus is equal to

1

2

(

α̃

β̃
− α̃

2β̃

)

α̃

2
=

α̃2

8β̃
. (1.2.12)

If bmin ≤ α̃/2, then the optimal total price is given by ȳ−1 + ȳ1 = (α̃− bmin) /β̃,

with corresponding demand equal to bmin. The total profit of both sellers together

is equal to (ȳ−1 + ȳ1) bmin = (α̃− bmin) bmin/β̃, and the consumer surplus is equal to
[

α̃/β̃ − (α̃− bmin) /β̃
]

bmin/2 = b2min/(2β̃).

Note that when capacity is small, bmin ≤ α̃/3, the total profit of the setting with

no alliance cannot be increased by coordination, and the consumer surplus is also the

same for the two settings. When capacity is large, bmin ≥ α̃/2, the relative amount

by which the total profit can be increased is given by

α̃2

4β̃
− 2α̃2

9β̃

2α̃2

9β̃

=
1

8
,

and the relative amount by which the consumer surplus can be increased is given by

α̃2

8β̃
− α̃2

18β̃

α̃2

18β̃

=
5

4
.
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When capacity is intermediate, α̃/3 ≤ bmin ≤ α̃/2, then the relative amount by

which the total profit can be increased is bounded by

0 ≤
α̃−bmin

β̃
bmin − 2α̃2

9β̃

2α̃2

9β̃

≤ 1

8
,

and the relative amount by which the consumer surplus can be increased is bounded

by

0 ≤
b2
min

2β̃
− α̃2

18β̃

α̃2

18β̃

≤ 5

4
.

This potential increase in profit is the major economic motivation for sellers’

interest in alliances. The extent to which this increase can be attained by an alliance

depends on the capacity and the customer choice behavior, including the extent to

which the sellers can differentiate their products. In the next section we consider a

resource exchange alliance and investigate the effect of both capacity and product

differentiation on the total profit and the consumer surplus with and without an

alliance.

1.2.3 Resource Exchange Alliance

Consider a resource exchange alliance involving the two sellers. Let xi ∈ [0, bi] denote

the amount of resource i that seller i makes available to seller −i, and let x :=

(x−1, x1). Then the number of units of the two-resource product that seller i can sell

is qi(x) := min{bi − xi, x−i}. Assume that seller i pays seller −i an amount c−i for

each unit of resource −i that seller i consumes, so that each seller has marginal cost

equal to c−1 + c1 for the two-resource product.

Specifically, a resource exchange alliance with zero exchange of resources (x = 0)

may be chosen, in which case the sellers sell only the separate resources as in the

case without an alliance. Thus, in general, the total profit of an optimally designed

resource exchange alliance is no less than the total profit without an alliance. We

consider the setting in which each alliance member sells only the two-resource product,
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and products consisting of a single resource are not sold separately. Let yi denote

the difference between the price of seller i and the marginal cost c−1 + c1 for the

two-resource product.

The demand di(yi, y−i) for the product sold by seller i depends on the prices as

follows:

di(yi, y−i) = max{0, α− βyi + γy−i)}, (1.2.13)

where α and β are positive constants, and γ ∈ (−β, β). Here provision is made for

brand distinction between the products sold by the sellers. The constants are known

to each seller. To keep the number of parameters in this example small, the constants

α, β, and γ are the same for both sellers.

Thus, the number of units of product sold by seller i is given by

min {qi(x), max{0, α− βyi + γy−i)}} ,

and the profit of seller i is given by

gi(x, yi, y−i) := yimin {qi(x), max{0, α− βyi + γy−i}} .

Next we establish a relation between α̃ and β̃, and α, β and γ, to facilitate

comparison among the settings with no alliance, with perfect coordination, and with

an alliance. Consider prices (ỹ−1, ỹ1) in the no-alliance setting, such that ỹ−1 + ỹ1 <

α̃/β̃. Suppose that the two alliance members charge the same price y−1 = y1 = ỹ−1+ỹ1

for the two-resource products. Then the total demand in the no-alliance setting given

by (1.2.1) is equal to α̃− β̃(ỹ−1+ ỹ1) > 0, and the total demand in the alliance setting

given by (1.2.13) is equal to 2(α−βy1+γy1) = 2α−2(β−γ)(ỹ−1+ ỹ1). Thus the total

demand in the two settings is the same if α̃ = 2α and β̃ = 2(β−γ). It is also shown in

Appendix ??app:two-resource perfect coordination with product differentiation]A.4

that a model of perfect coordination with demand given by (1.2.13) leads to the same

optimal prices, demands, profits, and consumer surplus as the model in Section 1.2.2
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with demand given by (1.2.1) if α̃ = 2α and β̃ = 2(β − γ). Hence the results for

the settings with no alliance, with perfect coordination, and with an alliance will be

compared using α̃ = 2α and β̃ = 2(β − γ).

For the setting with an alliance, for any given resource exchange x, let (y∗−1(x), y
∗
1(x))

denote the equilibrium prices of the two sellers for the two-resource product (exis-

tence and uniqueness of the equilibrium are addressed in the detail calculations in

Appendix A.0.3. The resulting profit of seller i is given by gi(x, y
∗
i (x), y

∗
−i(x)). The

alliance design problem is to choose x ∈ [0, b−1]× [0, b1] to maximize

f(x) := g−1(x, y
∗
−1(x), y

∗
1(x)) + g1(x, y

∗
1(x), y

∗
−1(x)).

Let x∗ denote an optimal resource exchange.

A natural question is how the total profit f(x∗) should be partitioned among the

alliance members. First, note that if money can be exchanged together with the

other resources, then any partition of the total profit can be achieved. In that case

the Nash bargaining solution is easy: each alliance member receives its profit in the

setting without an alliance plus half the difference between the maximum total profit

f(x∗) of the alliance and the total profit without an alliance.

Table 1 and Figure 1 summarize the results for the settings with no alliance, with

perfect coordination, and with an alliance. The calculations are given in Appendix A.

Here we just mention that there are three cases regarding capacity: (1) Capacity

bmin is large enough so that both sellers can be provided with sufficient product

capacity qi(x) to make capacity not constraining in equilibrium (bmin ≥ 2αβ/(2β−γ)),

(2) Capacity bmin is so small that the product capacity qi(x) of both sellers must

be constraining in equilibrium (bmin ≤ αβ(β + γ)/(2β2 − γ2)), and (3) Capacity

bmin is small enough that the product capacity qi(x) of at least one seller must be

constraining in equilibrium, but large enough so that one seller can be provided with

sufficient product capacity qi(x) to make capacity not constraining in equilibrium

(αβ(β + γ)/(2β2 − γ2) ≤ bmin ≤ 2αβ/(2β − γ)). In addition, there are two cases
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2α

3

α

bmin

β−β 0

γ

2αβ

2β − γ

5
4

3 2

1

Figure 1: The regions distinguished in Table 1

regarding the degree of product differentiation: (1) γ ≥ 0, and (2) γ ≤ 0. Figure 2

shows a plot of the relative increase in total profit with an alliance over no alliance,

that is, (f(x∗)− [g̃−1(ỹ
∗
−1, ỹ

∗
1) + g̃1(ỹ

∗
1, ỹ

∗
−1)])/[g̃−1(ỹ

∗
−1, ỹ

∗
1) + g̃1(ỹ

∗
1, ỹ

∗
−1)], as a function

of bmin/α and γ/β. The figure shows that the relative increase is largest when the

capacity is large (bmin ≥ α) and the products of the sellers are substitutes (γ ≥ 0).

Figure 3 shows a plot of the relative gap in total profit between perfect coordination

and an alliance, that is, (g̃(ȳ−1, ȳ1) − f(x∗))/g̃(ȳ−1, ȳ1), as a function of bmin/α and

γ/β. The figure shows that the total profit under an alliance equals the total profit

under perfect coordination, except when the capacity is large (bmin ≥ 2α/3) and the

products of the sellers are complements (γ ≤ 0). Figure 4 shows a plot of the relative

increase in consumer surplus with an alliance over no alliance, as a function of bmin/α

and γ/β. The figure shows that, similar to total profit, the relative increase is largest
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when the capacity is large (bmin ≥ α) and the products of the sellers are substitutes

(γ ≥ 0).
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Figure 2: Plot of the relative increase in total profit with an alliance over no alliance,
that is, (f(x∗)− [g̃−1(ỹ

∗
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1, ỹ

∗
−1)])/[g̃−1(ỹ
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−1, ỹ
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−1)], as a function

of bmin/α and γ/β.
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Table 1: Comparison of no alliance, perfect coordination, and a resource exchange alliance, in terms of price, demand, total
profit, and consumer surplus, for a single product with two resources.

Region Capacity Cross-Price Quantity No-Alliance Perfect Coordination Alliance
Coefficient

1 0 ≤ bmin ≤ 2α
3

γ ∈ (−β, β) Total Price 2α−bmin

2(β−γ)
2α−bmin

2(β−γ)
2α−bmin

2(β−γ)

Total Demand bmin bmin bmin

Total Profit (2α−bmin)bmin

2(β−γ)
(2α−bmin)bmin

2(β−γ)
(2α−bmin)bmin

2(β−γ)

Consumer Surplus bmin
2

4(β−γ)
bmin

2

4(β−γ)
bmin

2

4(β−γ)

2 2α
3
≤ bmin ≤ min

{

α, 2αβ
2β−γ

}

γ ∈ (−β, β) Total Price 2α
3(β−γ)

2α−bmin

2(β−γ)
2α−bmin

2(β−γ)

Total Demand 2α
3

bmin bmin

Total Profit 4α2

9(β−γ)
(2α−bmin)bmin

2(β−γ)
(2α−bmin)bmin

2(β−γ)

Consumer Surplus α2

9(β−γ)
bmin

2

4(β−γ)
bmin

2

4(β−γ)

3 2αβ
2β−γ

≤ bmin ≤ α γ ∈ (−β, 0] Total Price 2α
3(β−γ)

2α−bmin

2(β−γ)
α

2β−γ

Total Demand 2α
3

bmin
2αβ
2β−γ

Total Profit 4α2

9(β−γ)
(2α−bmin)bmin

2(β−γ)
2α2β

(2β−γ)2

Consumer Surplus α2

9(β−γ)
bmin

2

4(β−γ)
α2β2

(β−γ)(2β−γ)2

4 α ≤ bmin γ ∈ (−β, 0] Total Price 2α
3(β−γ)

α
2(β−γ)

α
2β−γ

Total Demand 2α
3

α 2αβ
2β−γ

Total Profit 4α2

9(β−γ)
α2

2(β−γ)
2α2β

(2β−γ)2

Consumer Surplus α2

9(β−γ)
α2

4(β−γ)
α2β2

(β−γ)(2β−γ)2

5 α ≤ bmin γ ∈ [0, β) Total Price 2α
3(β−γ)

α
2(β−γ)

α
2(β−γ)

Total Demand 2α
3

α α

Total Profit 4α2

9(β−γ)
α2

2(β−γ)
α2

2(β−γ)

Consumer Surplus α2

9(β−γ)
α2

4(β−γ)
α2

4(β−γ)
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Figure 3: Plot of the relative gap in total profit between perfect coordination and an
alliance, that is, (g̃(ȳ−1, ȳ1)− f(x∗))/g̃(ȳ−1, ȳ1), as a function of bmin/α and γ/β.
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Figure 4: Plot of the relative increase in consumer surplus with an alliance over no
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1.3 Multiple-Resource Model

In this Section we present a model for a resource exchange alliance with multiple

resources. In addition to the alliance model, we also present models for the settings

with no alliance and with perfect coordination to facilitate comparisons.

Consider 2 sellers, indexed by i = ±1. (It can be seen from the results in Sec-

tion 1.3.3 that this analysis can be extended to a setting with more than 2 sellers, at

the cost of more complicated notation.) Seller i produces ki resource types indexed by

j = 1, . . . , ki. For example, resource j may denote the flight of airline i scheduled to

depart from Atlanta to New York every Monday at 8am. Initially, before any resource

exchange, seller i has quantity bi,j of resource j, and a constant marginal cost of ci,j

per unit of resource j consumed.

1.3.1 Multiple-Resource Network Example

In this section we provide an example with multiple resources to illustrate the models

that will be formulated in later sections. An airline flight network is shown in Figure 5,

and some flight data are given in Table 2.

Airport 1

Airport 3

Airport 5Airport 4

Airport 2
Flight 4

Flight 1

Flight 5

Flight 6 Flight 8

Flight 7

Flight 3

Flight 2

Figure 5: Multiple-resource network example

In this network, airport 1 is a connection hub for both airlines. Each airline

operates 4 flights. For example, flight 5, taking place from airport 1 to airport 4, is

operated by airline 1, and has a capacity of 300 seats. The set of products that can
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Table 2: Flight information for the network example

Flight number Airline Departure Arrival Capacity

1 -1 1 2 300

2 -1 2 1 300

3 -1 1 3 300

4 -1 3 1 300

5 1 1 4 300

6 1 4 1 300

7 1 1 5 300

8 1 5 1 300

be sold by each airline is different in the case with no alliance and the case with an

alliance.

Table 3 shows the products and the corresponding itineraries (here simply specified

by the origin-destination pair) which could be offered by the two airlines. The column

labeled “Airline” specifies which airlines can sell each product in the case with no

alliance and the case with an alliance. For example, in the case with no alliance,

product 7 can be sold by airline 1 only, and in the case with an alliance, product 7

can be sold by both airlines (A denotes both airlines under alliance). Product 17,

involving travel from airport 3 to airport 4 via airport 1, can only be sold in the

case with an alliance, and in that case it can be sold by both airlines. However,

note that there is demand for travel from airport 3 to airport 4 both in the case

with no alliance and in the case with an alliance. In the case with no alliance, all

demand for travel from airport 3 to airport 4 is satisfied by buying two separate

tickets; a ticket from airline -1 for travel from airport 3 to airport 1 and a ticket

from airline 1 for travel from airport 1 to airport 4. In the case with an alliance,

demand for travel from airport 3 to airport 4 can be satisfied in four different ways:

(1) by buying a ticket from airline -1 for travel from airport 3 to airport 1 and a

ticket from airline 1 for travel from airport 1 to airport 4, or (2) by buying a ticket
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from airline 1 for travel from airport 3 to airport 1 and a ticket from airline -1 for

travel from airport 1 to airport 4, or (3) by buying a ticket for travel from airport 3

to airport 4 via airport 1 from airline -1, or (4) by buying a ticket for travel from

airport 3 to airport 4 via airport 1 from airline 1. In the case with an alliance, the

choices exercised by the buyers, and thus the resulting aggregate demand, depend on

the prices of the airlines for the different products. In this paper we consider linear

models of aggregate demand, as specified in more detail later.

Table 3: Product information for network example.

Product Airline Origin Destination Product Airline Origin Destination

1 -1 or A 1 2 11 1 or A 4 5

2 -1 or A 2 1 12 1 or A 5 4

3 -1 or A 1 3 13 A only 2 4

4 -1 or A 3 1 14 A only 4 2

5 -1 or A 2 3 15 A only 2 5

6 -1 or A 3 2 16 A only 5 2

7 1 or A 1 4 17 A only 3 4

8 1 or A 4 1 18 A only 4 3

9 1 or A 1 5 19 A only 3 5

10 1 or A 5 1 20 A only 5 3

1.3.2 Resource Exchange Alliance Model

In this section we introduce a model of a resource exchange alliance involving multiple

resources. After resource exchange, seller i may have some of each resource supplied

by seller −i, as well as some of each resource supplied by itself. Index the union of

the resources by j = 1, . . . , k, where k = k−1 + k1. Let bi = (bi,1, . . . , bi,k) denote

the initial endowment of seller i of each resource (bi,j = 0 if resource j is supplied

by seller −i). Let xj denote the amount of resource j that seller 1 makes available

to seller −1. For example, x = (−110,−120,−100,−150, 140, 170, 130, 160) for the
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network in Section 1.3.1 means that airline −1 gives 110 seats on flight 1 to airline 1,

airline 1 gives 140 seats on flight 5 to airline −1, etc.

After resource exchange, seller i can sell mi products, indexed by ℓ = 1, . . . , mi.

In the example in Table 3, mi = 20 for i = ±1. Let yi,ℓ denote the price of seller i for

product ℓ in excess of the marginal cost of the product, and di,ℓ denote the demand

for product ℓ of seller i. Consider the following linear demand model:

di,ℓ = −
mi
∑

ℓ′=1

Ei,ℓ,ℓ′yi,ℓ′ +

m−i
∑

ℓ′=1

B−i,ℓ,ℓ′y−i,ℓ′ + Ci,ℓ, (1.3.14)

where Ei,ℓ,ℓ′ denotes the rate of change of the demand for product ℓ of seller i with

respect to the price of product ℓ′ of the same seller i, and B−i,ℓ,ℓ′ denotes the rate of

change of the demand for product ℓ of seller i with respect to the price of product ℓ′

of the other seller −i. Using matrix notation, di = −Eiyi + B−iy−i + Ci, where

di, yi, Ci ∈ Rmi , Ei ∈ Rmi×mi, Bi ∈ Rm−i×mi , and attention is restricted to values of

(y−1, y1) such that di ≥ 0 for i = ±1. Let Ai ∈ Rk×mi be the “network matrix”, i.e.,

Ai,j,ℓ denotes the amount of resource j consumed by each unit of product ℓ sold by

seller i.

Next we introduce the two-stage alliance design problem. Given a first stage

resource exchange decision x ∈ Rk, at the second stage each seller i wants to solve

the following optimization problem:

max
yi,di∈R

mi
+

yTi di

s.t. Aidi ≤ bi − ix

di = −Eiyi +B−iy−i + Ci ≥ 0.

(1.3.15)

We are interested in the Nash equilibrium defined by the two optimization prob-

lems (1.3.15) for i = ±1.

A stochastic version of the alliance design problem is as follows. At the first stage,

when x is chosen, elements of matrices Ei and Bi, and vectors Ci, are random. How-

ever, the network matrices Ai are deterministic. Let ξ := (E−1, E1, B−1, B1, C−1, C1)
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denote the random data vector. In the first stage the expected value with respect to

the distribution of ξ of an objective (specified below) is optimized. Also, note that

the Nash equilibrium associated with the second stage depends on the realization of

ξ.

Let Qi := Ei+E
T

i ∈ Rmi×mi denote the symmetric version of Ei. We assume that

matrices Ei, and hence Qi, are positive definite. Let Im denote the m × m identity

matrix, 0m denotes the zero vector in Rm, and 0m,n denotes the zero matrix in Rm×n.

Then the optimization problem (1.3.15) can be written as follows:

min
yi∈R

mi
+

1
2y

T

i Qiyi − yTi B−iy−i − CT

i yi

s.t. Wi (Eiyi − B−iy−i) ≥ ηi + iMix,

(1.3.16)

where

Wi :=







Ai

−Imi






, ηi := WiCi +







−bi
0mi






, Mi :=







Ik

0mi,k






.

A point (y∗−1(x), y
∗
1(x)) is a solution of the equilibrium problem if y∗1(x) is an

optimal solution of problem (1.3.16) for i = 1 when y−1 = y∗−1(x), and also y∗−1(x)

is an optimal solution of problem (1.3.16) for i = −1 when y1 = y∗1(x). Note that

(y∗−1(x), y
∗
1(x)) also depends on ξ, but the dependence is not shown in the notation.

(The above problem is called a generalized Nash equilibrium problem since the feasible

set of problem (1.3.16) depends on y−i.) Let Vi(x, ξ), i = ±1, denote the optimal

objective values of problem (1.3.16) at the equilibrium point given data ξ, i.e.,

Vi(x, ξ) := 1
2y

∗
i (x)

TQiy
∗
i (x)− y∗i (x)

TB−iy
∗
−i(x)− CT

i y
∗
i (x). (1.3.17)

Note that these functions are well defined only if the equilibrium point (y∗−1(x), y
∗
1(x))

exists and is unique. We will discuss existence and uniqueness of the equilibrium point

in Section 1.3.3.

At the first stage, we consider designs of the resource exchange alliance that aim

to maximize the total profit of the sellers. Let b = b1 − b−1 ∈ Rk. Note that bj > 0 if
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resource j is supplied by seller 1 and bj < 0 if resource j is supplied by seller −1. Let

lj and uj be lower and upper bounds, respectively, such that bjlj ≥ 0 and bjuj ≥ 0,

that is, lj , uj, and bj have the same sign, and |lj| ≤ |uj| ≤ |bj |. Then the first stage

problem is as follows:

max
x∈Rk

{

f(x) := E
[

V−1(x, ξ) + V1(x, ξ)
]}

s.t. bjxj ≥ 0 ∀ j = 1, . . . , k

|lj| ≤ |xj| ≤ |uj| ∀ j = 1, . . . , k.

(1.3.18)

As mentioned, the expectation in (1.3.18) is with respect to a specified probability

distribution of the data vector ξ. In particular, if a single value for ξ is considered in

the first stage, then problem (1.3.18) is deterministic and the expectation operator

can be removed.

1.3.3 Existence and Uniqueness of Nash Equilibrium

Recall that the matrices Qi are positive definite, and hence problem (1.3.16) is a con-

vex quadratic programming problem. The first order (KKT) necessary and sufficient

optimality conditions for problem (1.3.16) are

Qiyi −B−iy−i − Ci − ET

i W
T

i λi = 0

Wi (Eiyi −B−iy−i)− ηi − iMix ≥ 0

λi ≥ 0

λTi [Wi (Eiyi −B−iy−i)− ηi − iMix] = 0,

(1.3.19)

where λi denotes the vector of Lagrange multipliers associated with the inequality

constraints in (1.3.16). The optimality conditions (1.3.19) can be written as a varia-

tional inequality. For a closed convex set C ⊂ Rm and a point z ∈ C, we denote by

NC(z) the normal cone to C at z ∈ C,

NC(z) := {v ∈ Rm : vT(z′ − z) ≤ 0, ∀z′ ∈ C}.

By definition, NC(z) := ∅ if z 6∈ C. Note that if C is a convex cone and z ∈ C,

then NC(z) = {v ∈ C∗ : vTz = 0}, where C∗ := {v ∈ Rm : vTz ≤ 0, ∀z ∈
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C} is the polar cone of C. In particular, if C = Rm
+ and z ∈ C, then NC(z) =

{v ≤ 0 : vi = 0, i ∈ I(z)}, where I(z) := {i ∈ {1, . . . , m} : zi > 0} Let us denote

z := (y−1, λ−1, y1, λ1) ∈ Rm−1 × Rk−1+m−1 × Rm1 × Rk1+m1 .

Since the first equation of (1.3.19) can be written as

Qiyi −B−iy−i − Ci − ET

i W
T

i λi ∈ NRmi (yi),

and the remaining two inequality conditions and the last equation of (1.3.19) as

−Wi (Eiyi − B−iy−i) + ηi + iMx ∈ N
R
ki+mi
+

(λi),

we can write the optimality conditions (1.3.19) as the following variational inequality

Az + h ∈ NK(z), (1.3.20)

where K := Rm−1 × R
k−1+m−1

+ × Rm1 × R
k1+m1

+ and

A :=



















Q−1 ET

−1W
T

−1 −B1 0

−W−1E−1 0 B1 0

−B−1 0 Q1 −ET

1W
T

1

B−1 0 −W1E1 0



















, h :=



















−C−1

η−1 −Mx

−C1

η1 +Mx



















.

A widely used approach to establish existence and uniqueness of a solution to the

optimality conditions, and thus existence and uniqueness of a Nash equilibrium, is

to exploit monotonicity of the variational inequality. Note that matrix A is singular

since the m1 × (k1 +m1) matrix ET

1W
T

1 has more columns than rows (and similarly

for the matrix ET

−1W
T

−1). Moreover, A has zero diagonal elements and hence cannot

be positive semidefinite. Therefore, the operator z 7→ Az + h cannot be monotone.

This poses a certain problem for verification of existence and uniqueness of solutions

of the variational inequality (1.3.20), and thus a different approach is required.
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Consider the optimization problem

min
y−1,y1,λ−1,λ1

∑

i=±1

λTi [Wi (Eiyi −B−iy−i)− ηi − iMix]

s.t. Qiyi − B−iy−i − Ci −ET

i W
T

i λi = 0, i = ±1

Wi (Eiyi − B−iy−i)− ηi − iMix ≥ 0, i = ±1

λi ≥ 0, i = ±1.

(1.3.21)

Note that the objective value of problem (1.3.21) is nonnegative at all feasible points,

and (y∗−1, y
∗
1, λ

∗
−1, λ

∗
1) is a solution of the optimality conditions (1.3.19) if and only if

the optimal value of problem (1.3.21) is zero, in which case it is an optimal solution

of problem (1.3.21). It follows from the first equation of (1.3.19) that

λTi Wi = yTi QiE
−1
i − yT−iB

T

−iE
−1
i − CT

i E
−1
i .

After substitution of this into the objective, problem (1.3.21) becomes

min
y−1,y1,λ−1,λ1

∑

i=±1

[
(

yTi QiE
−1
i − yT−iB

T

−iE
−1
i − CT

i E
−1
i

)

(Eiyi −B−iy−i)− λTi (ηi + iMix)]

s.t. Qiyi − B−iy−i − Ci − ET

i W
T

i λi = 0, i = ±1

Wi (Eiyi −B−iy−i)− ηi − iMix ≥ 0, i = ±1

λi ≥ 0, i = ±1.

(1.3.22)

Note that the objective function of problem (1.3.22) is quadratic with its quadratic

term (yT−1, y
T

1 ) Ψ (yT−1, y
T

1 )
T, where

Ψ :=







Q−1 +BT

−1E
−1
1 B−1 −B−1 −Q−1E

−1
−1B1

−B1 −Q1E
−1
1 B−1 Q1 +BT

1 E
−1
−1B1






. (1.3.23)

Note that problem (1.3.22) is a convex quadratic program if and only if the matrix

Ψ, or equivalently the symmetric matrix Ψ + ΨT, is positive semidefinite.

Theorem 1 Suppose that the problem (1.3.22) is feasible and that the matrix Ψ,

defined in (1.3.23), is positive definite. Then problem (1.3.22) has an optimal solution

(y∗−1, y
∗
1, λ

∗
−1, λ

∗
1) with (y∗−1, y

∗
1) being unique. Moreover, if the optimal objective value

of problem (1.3.22) is zero, then (y∗−1, y
∗
1) is the unique Nash equilibrium.
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Proof The objective value of problem (1.3.22) is bounded from below by zero. It is

known that a quadratic program with a bounded from below objective value has an

optimal solution. To establish uniqueness, consider the problem

min
(x,y)∈X

{

f(x, y) := xTQx+ aTx+ bTy
}

, (1.3.24)

where X ⊂ Rn1 × Rn2 is a convex set and Q is an n1 × n1 positive definite matrix.

Let (x∗1, y
∗
1) and (x∗2, y

∗
2) be two optimal solutions of (1.3.24). Consider the function

φ(t) := f(tx∗1 + (1 − t)x∗2, ty
∗
1 + (1 − t)y∗2). Note that φ is a quadratic function,

φ(t) = αt2+βt+γ, where α = (x∗1−x∗2)TQ(x∗1−x∗2). Note that α ≥ 0 since Q is positive

definite, and thus φ is convex. Convexity of X and optimality of (x∗1, y
∗
1) and (x∗2, y

∗
2)

implies that φ(t) ≥ φ(0) = φ(1) for all t ∈ [0, 1]. Moreover, convexity of φ implies that

φ(t) ≤ φ(0) = φ(1) for all t ∈ [0, 1]. Hence φ(t) = φ(0) = φ(1) for all t ∈ [0, 1], and

thus α = 0. Since Q is positive definite it follows that x∗1 = x∗2. Finally, if the optimal

objective value of problem (1.3.22), and hence of problem (1.3.21), is zero, then

(y∗−1, y
∗
1, λ

∗
−1, λ

∗
1) satisfies the necessary and sufficient optimality conditions (1.3.19),

and thus (y∗−1, y
∗
1) is the Nash equilibrium.

Note that a similar approach can be used if there are more than two sellers. In

such a case more than two sets of optimality conditions of the form (1.3.19) will be

involved, and in the quadratic program (1.3.22) the index i will take on more than

two values.

Hence, the question of existence and uniqueness of the Nash equilibrium can be

answered with the following steps: (1) verification that the matrix Ψ (or the sym-

metric matrix Ψ+ΨT) is positive definite, (2) solving the quadratic program (1.3.22)

if Ψ is positive definite, and (3) verification that the optimal objective value is zero.

Note that if Ψ is positive definite, then the quadratic program (1.3.22) can be solved

efficiently and hence existence and uniqueness of the equilibrium point can be verified

numerically. Some simple necessary conditions and sufficient conditions for Ψ to be
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positive definite can be identified, but it seems difficult to give simple conditions that

are both necessary and sufficient for Ψ to be positive definite. A necessary condition

for Ψ to be positive definite is that its block diagonal matrices Q−1 + BT

−1E
−1
1 B−1

and Q1+B
T

1 E
−1
−1B1 are positive definite. Note that these matrices are indeed positive

definite because E−1 and E1 are positive definite. Also, note that if B−1 and B1 are

null matrices, then matrix Ψ is the block diagonal matrix diag(Q−1, Q1), and hence Ψ

is positive definite because Q−1 and Q1 are positive definite. More general, if matrices

Ei are “significantly bigger” than Bi, then one may expect matrix Ψ to be positive

definite. Intuitively, if the demand for a seller’s product depends more strongly on

the prices of that seller (and especially the price of that product) than the prices

of the other seller, then one may expect matrix Ψ to be positive definite. Another

instructive example is the following.

Example Suppose that the products of the two sellers are direct substitutes for each

other, that is, for each product of seller i there is a product of seller −i that is a

close substitute. This allows the possibility that seller −i may not be able to sell the

substitute product because it does not have the resources to do so. It seems that

in the applications of interest, the set of products can always be chosen so that this

property holds. Hence, the matrices Bi are squared, i.e., m−1 = m1. Suppose that

the matrices Ei and Bi, i = ±1, are diagonal. Then Qi = Ei and

Ψ =







E−1 +B2
−1E

−1
1 −B−1 − B1

−B−1 −B1 E1 +B2
1E

−1
−1






.

Since matrices Ei are positive definite it follows that E1 +B2
1E

−1
−1 is positive definite,

and thus it follows by the Schur complement condition for positive definiteness that Ψ

is positive definite if and only if the matrix E−1+B
2
−1E

−1
1 −(B−1+B1)

2(E1+B
2
1E

−1
−1)

−1

is positive definite. Since matrices Ei and Bi are diagonal, this matrix is positive
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definite if and only if the matrix

(E−1+B2
−1E

−1
1 )(E1+B2

1E
−1
−1)− (B−1+B1)

2 = E−1E1+B2
−1B

2
1E

−1
−1E

−1
1 − 2B−1B1

is positive definite. In turn this matrix is positive definite if and only if the matrix

E2
−1E

2
1 +B2

−1B
2
1 − 2E−1E1B−1B1 = (E−1E1 − B−1B1)

2

is positive definite. Note that the last matrix is always positive semidefinite and is

positive definite if and only if matrix E−1E1−B−1B1 does not have any zero diagonal

elements.

1.3.4 No Alliance Model

In this section, we present a model for the setting with no alliance. This model will

be used to compare the profit under no alliance with the profit under an alliance and

the profit under perfect coordination. First we describe the demand model for the

setting with no alliance.

Under an alliance, there are a total of m distinct products. Some of the products

may be offered by only one seller, and some of the products may be offered by both

sellers. In the example in Table 3, m = 20 and each of the 20 products is offered by

both sellers in an alliance. These m products can be partitioned into three subsets:

sets Li, for i = ±1, of products which can be offered by seller i with and without an

alliance, and set L0 of products which could be offered only under an alliance. For

the example in Table 3, L−1 contains products 1 to 6, L1 contains products 7 to 12,

and L0 contains products 13 to 20.

As before, let ỹi,ℓ denote the price of seller i for product ℓ ∈ Li. Suppose that the

resulting demand for product ℓ ∈ Li is given by

d̃i,ℓ = −
∑

ℓ′∈Li

Ẽi,ℓ,ℓ′ ỹi,ℓ′ +
∑

ℓ′∈L−i

B̃−i,ℓ,ℓ′ỹ−i,ℓ′ + C̃i,ℓ. (1.3.25)

Using matrix notation, d̃i = −Ẽiỹi + B̃−iỹ−i + C̃i, where d̃i, ỹi, C̃i ∈ R|Li|, Ẽi ∈

R|Li|×|Li|, B̃i ∈ R|L−i|×|Li|, and attention is restricted to values of (ỹ−1, ỹ1) such that
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d̃i ≥ 0 for i = ±1. Let Ãi,j,ℓ denote the amount of resource j consumed by each unit

of product ℓ ∈ Li, and let Ãi ∈ Rki×|Li| denote the network matrix.

Similar to the example with two resources in Section 1.2, the parameters E,B,C in

demand model (1.3.14) and the parameters Ẽ, B̃, C̃ in demand model (1.3.25) should

be related in a particular way to facilitate a fair comparison of the prices, demands,

total profit, and consumer surplus between the settings with and without an alliance.

The derivation of the relation is given in Appendix B.

The setting with no alliance is formulated as a non-cooperative game in which

each seller i wants to solve the optimization problem

max
ỹi,d̃i∈R

|Li|
+

ỹTi d̃i

s.t. Ãid̃i ≤ bi

d̃i = −Ẽiỹi + B̃−iỹ−i + C̃i ≥ 0.

(1.3.26)

The no alliance outcome is the Nash equilibrium defined by the two optimization

problems (1.3.26) for i = ±1, as long as it exists and is unique. The Nash equilibrium

is computed using the same approach described in Section 1.3.3.

1.3.5 Perfect Coordination Model

The models with and without an alliance presented above are compared with a perfect

coordination model, given in this section. The perfect coordination model considers

a setting in which the sellers coordinate pricing to maximize the sum of the sellers’

profits, as given by the following optimization problem:

max
(y−1,y1)∈R

m−1×Rm1

∑

i=±1

yTi (−Eiyi +B−iy−i + Ci)

s.t.
∑

i=±1

Ai (−Eiyi +B−iy−i + Ci) ≤ b−1 + b1

−Eiyi +B−iy−i + Ci ≥ 0 , i = ±1.

(1.3.27)
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1.3.6 Solution Approach

In this section, we present a solution method for the multiple-resource model described

in Section 1.3. Recall that in order to solve the problem (1.3.22), we have to solve

the second-stage Nash equilibrium problem, and that problem (1.3.22) can be solved

efficiently if the matrix Ψ defined in (1.3.23) is positive definite. Next consider the

first stage problem (1.3.18). Recall that the expectation in (1.3.18) is taken with

respect to the probability distribution of the random data vector ξ. We assume that

we can sample from that distribution by using Monte Carlo sampling techniques and

hence generate an independent and identically distributed sample ξ1, . . . , ξN . Next

we approximate the expectation with the sample average and construct the following

Sample Average Approximation (SAA) problem:

max
x∈Rk

{

f̂N (x) :=
∑N

n=1

[

V−1(x, ξ
n) + V1(x, ξ

n)
]

}

s.t. bjxj ≥ 0 ∀ j = 1, . . . , k

|lj| ≤ |xj| ≤ |uj| ∀ j = 1, . . . , k.

(1.3.28)

Theoretical properties of the SAA approach have been studied extensively (e.g.,

Shapiro et al. (2009)). Under mild conditions, the optimal objective value and opti-

mal solution of the SAA problem (1.3.28) converge to the optimal objective value and

optimal solution of the problem (1.3.18) (cf., Shapiro and Xu (2008)). The first-stage

problem may not be convex, and thus it may be hard to solve problem (1.3.28) to

optimality. For that reason, we may only ensure convergence to a stationary point of

the problem (1.3.18). Nevertheless, in our numerical experiments, typically solutions

seem to be stable and insensitive to the choice of starting point.

In order to solve the SAA problem (1.3.28) numerically, we need to compute

derivatives ∇xVi(x, ξ
n) of the first-stage objective functions Vi at a feasible point x

and sample point ξn. Consider a feasible point x, and assume that Ψ is positive

definite and that the second-stage problem has an equilibrium point (y∗−1(x), y
∗
1(x))

(the equilibrium depends on ξn as well, but the dependence is not shown in the
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notation). Let (y∗−1(x), y
∗
1(x), λ

∗
−1(x), λ

∗
1(x)) be a solution of the system (1.3.19) of first

order optimality conditions (and thus (y∗−1(x), y
∗
1(x), λ

∗
−1(x), λ

∗
1(x)) is also a solution of

the quadratic programming problem (1.3.21)). Note that, since Ψ is positive definite,

it holds that (y∗−1(x), y
∗
1(x)) is unique and is a continuous function of x (e.g., Bonnans

and Shapiro (2000)).

Recall that Lagrange multipliers corresponding to inactive constraints are zeros.

Let

Ii(yi, y−i, x) :=
{

j ∈ {1, . . . , k +mi} : [Wi (Eiyi − B−iy−i)− ηi − iMix]j = 0
}

denote the index set of active constraints of the problem (1.3.16). Assume that

the Lagrange multiplier vector is unique. It is said that the strict complementarity

condition holds at an equilibrium point (y∗−1(x), y
∗
1(x)) if among the corresponding

Lagrange multiplier vectors λi, there exists at least one such that [λi]j > 0 for all

j ∈ Ii(y
∗
i (x), y

∗
−i(x), x), for i = ±1, i.e., there are Lagrange multipliers corresponding

to the active constraints that are positive.

Now, suppose that the strict complementarity condition holds at (y∗−1(x), y
∗
1(x)),

with [λ∗i (x)]j > 0 for all j ∈ Ii(y
∗
i (x), y

∗
−i(x), x), for i = ±1. Then for small

perturbations dx of x, the active constraints remain active and the inactive con-

straints remain inactive. Therefore, by linearizing the optimality conditions (1.3.19)

at (y∗−1(x), y
∗
1(x), λ

∗
−1(x), λ

∗
1(x)), the following system of m−1 +m1 + 2k linear equa-

tions in m−1 +m1 + 2k unknowns (dy−1, dy1, dλ−1, dλ1) is obtained:

Qidyi − B−idy−i −ET

i W
T

i dλi = 0, i = ±1

[Wi (Eidyi − B−idy−i)− iMidx]j = 0, j ∈ Ii(y
∗
i (x), y

∗
−i(x), x), i = ±1

[dλi]j = 0, j 6∈ Ii(y
∗
i (x), y

∗
−i(x), x), i = ±1.

(1.3.29)

Suppose that the linear system (1.3.29) is nonsingular. Then for any dx sufficiently

small, the system (1.3.29) has a unique solution, and by the Implicit Function The-

orem, the solution of (1.3.29) gives the differential of (y∗−1(x), y
∗
1(x), λ

∗
−1(x), λ

∗
1(x)) at
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x. More specifically, the system (1.3.29) can be written in the form

S(dy−1, dy1, dλ−1, dλ1) = T dx,

where S ∈ R(m−1+m1+2k)×(m−1+m1+2k) and T ∈ R(m−1+m1+2k)×k. If the matrix S is

nonsingular, then (dy−1, dy1, dλ−1, dλ1) = S−1T dx, and thus

∇(y∗−1(x), y
∗
1(x), λ

∗
−1(x), λ

∗
1(x)) = S−1T.

It follows from (1.3.17) that

∇xVi(x, ξ) = ∇y∗i (x)TQiy
∗
i (x)−∇y∗i (x)TB−iy

∗
−i(x) (1.3.30)

−∇y∗−i(x)
TBT

−iy
∗
i (x)−∇y∗i (x)TCi (1.3.31)

∇2
xxVi(x, ξ) = ∇y∗i (x)TQi∇y∗i (x)−∇y∗i (x)TB−i∇y∗−i(x) (1.3.32)

−∇y∗−i(x)
TBT

−i∇y∗i (x) (1.3.33)

can be calculated easily.

The analysis above shows that sufficient conditions for differentiability of Vi with

respect to x at (x, ξ) are the strict complementarity condition and nondegeneracy of

the system (1.3.29). These conditions are not necessary — for example, if Mi = 0

for i = ±1, then Vi(x, ξ) is constant and hence differentiable with respect to x. Also,

the expectation operator often smooths nondifferentiable functions. For example, if

∇xVi(x, ξ) exists for almost every ξ and a mild boundedness condition holds, then

E[Vi(x, ξ)] is differentiable at x and ∇xE[Vi(x, ξ)] = E[∇xVi(x, ξ)] (e.g., Shapiro et al.

(2009) Theorem 7.44).

The derivatives in (1.3.30) and (1.3.33) are used to solve SAA problems (1.3.28)

with a trust-region method. Numerical results are given in Section 1.4.
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1.4 Numerical Examples

In this Section, we present numerical results to compare profits in settings with an

alliance, no alliance, and perfect coordination, for the multiple-resource models de-

scribed in Chapter 1.3. We present results for the network example given in Sec-

tion 1.3.1. We first present the results for the deterministic case with known demand

functions in Section 1.4.1, and then present results for the stochastic case with random

demand functions in Section 1.4.2.

1.4.1 Deterministic Examples

We first describe how the input data Ei, Bi, and Ci for the numerical examples were

chosen. For the example network, m−1 = m1 = 20, and thus Ei, Bi ∈ R20×20 and

Ci ∈ R20 for i = ±1. For each instance, a specific ratio r1 ∈ [0, 1) is chosen such that

|B−i,ℓ,ℓ′| = r1|Ei,ℓ,ℓ′|. Thus, r1 is similar to the ratio γ/β of the two-resource example in

Section 1.2.3, and represents the level of differentiation between the sellers’ products.

For all instances, it was verified that the resulting matrix Ψ defined in (1.3.23) was

positive definite.

For the no alliance setting, we used the transformations in Appendix B to obtain

Ẽi, B̃i, and C̃i. In addition, we investigated the effect of a difference in product

attractiveness between the settings with and without an alliance. As mentioned, in a

setting without an alliance, a buyer may have to buy products from multiple sellers

and combine them to obtain the product desired by the buyer. Under an alliance a

seller may offer the combined product to the buyer, making it more convenient for

the buyer to obtain the product (“one-stop shopping”). There may be additional

ways in which an alliance increases demand. For example, with an airline alliance,

the coordination of connecting flight schedules to reduce lay-over time or missed

connections, rebooking in case of missed connections, and coordination of baggage

handling, may further enhance the combined product under an alliance. This might
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increase the potential demand level under an alliance compared to that under no

alliance. Motivated by these observations, we solved some instances in which the

demands under no alliance is obtained using the transformations in Appendix B, but

with a reduction in the demand for products assembled from more than one seller

by a factor of r2 ∈ (0, 1] (in the notation of that section, the part of the demand for

products in Li derived from the demand for products in L0,−1 ∪ L0,1 was reduced by

a factor of r2).

The two-stage alliance design problem (1.3.18) was solved using a trust region

algorithm. At each iteration, given the current value of the resource exchange vector x,

the convex quadratic program (1.3.21) was solved. It was verified that the optimal

objective value of (1.3.21) was zero, that is, the solution of (1.3.21) gave a solution of

the second stage equilibrium problem (1.3.15) for i = ±1. It was also verified that the

strict complimentary condition held and that the system (1.3.29) was nonsingular.

Next the derivatives of the objective function of (1.3.18) with respect to x could be

computed, and the trust region algorithm could execute the next iteration.

As mentioned, the objective function of (1.3.18) may not be convex. To address

the concern of potential multiple local optima, for each instance we used 50 different

starting points x0 for the first iteration. For each instance, all 50 starting points lead

to similar final solutions and final objective values.

For the no alliance model, the second-stage equilibrium problem had to be solved

only once for each instance. For the perfect coordination model, the convex quadratic

optimization problem (1.3.27) also had to be solved only once for each instance.

Table 4 presents the total profits under different levels of product differentiation

represented by different values of r1 for r2 = 1 and with diagonal matrices Ei and

Bi. The largest increase in profits relative to the no alliance setting was obtained

under high levels of product differentiation. For example, when r1 = 0.2, an alliance

increases the profit of the no alliance setting by 7.92%, and perfect coordination
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increases the profit by 7.98%. Even under a low level of product differentiation (r1 =

0.8), an alliance still increases the profit by 2.88%, and perfect coordination increases

the profit by 4.99%. Similar results were obtained with non-diagonal matrices.

We also compared profits for different values of r2. Table 5 compares the total

profits under different levels of convenience represented by different values of r2 for

r1 = 0.5 and with diagonal matrices Ei and Bi. As expected, the relative increase in

profit is larger for smaller values of r2.

1.4.2 Stochastic Examples

In this section, we present results for the stochastic model (that is, the first stage

problem (1.3.18) with expectation in the objective) presented in Section 1.3. The

random data Ei, Bi, and Ci followed a multivariate normal distribution with means

as described in Section 1.4.1, standard deviations proportional to the means, and

correlation coefficients of 0.6.

We generated and solved SAA problems with different sample sizes N = 20, 40, . . . , 500.

At each iteration of the first-stage problem, the second-stage problem was solved for

each of the N sample points ξn. Then, for each of the N sample points ξn, the deriva-

tives of Vi(x, ξ
n) were computed as given in (1.3.30) and (1.3.33). The averages of

these derivatives over the N sample points then gave the derivatives of the first-stage

objective of the SAA problem (1.3.28).

Finally, after a resource exchange x was chosen by solving a SAA problem, we

compared the total profits in the alliance, no alliance, and perfect coordination set-

tings with an independent and identically distributed sample of 1000 sample points,

independent of the samples used in the SAA problem. Table 6 reports the number of

iterations of the trust region algorithm until termination, the resource exchange solu-

tion xopt at termination, the objective value (objopt) of the SAA problem at xopt, and

the gradient norm (‖g‖) of the SAA objective function at xopt, for different sample
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Table 4: Comparison of total profit for a resource exchange alliance, no alliance, and perfect coordination, for different levels of
product differentiation.

Deterministic Model
r1 = 0.2 r1 = 0.5 r1 = 0.8

Total Relative Total Relative Total Relative

(r2 = 1) Revenue increase (%) Revenue increase (%) Revenue increase (%)

No alliance 318060.00 322790.00 326980.00

Perfect Coordination 343430.00 7.98 343340.00 6.37 343300.00 4.99

Alliance 343235.54 7.92 341615.26 5.83 336386.89 2.88

Table 5: Comparison of maximum achievable total revenue under different convenience level

Deterministic Model
r2 = 0.2 (High) r2 = 0.6 r2 = 1 (No Difference)

Total Relative Total Relative Total Relative

(r1 = 0.5) Revenue increase (%) Revenue increase (%) Revenue increase (%)

No alliance 311590.00 318450.00 322790.00

Perfect Coordination 343340.00 10.19 343340.00 7.82 343340.00 6.37

Alliance 341615.26 9.64 318450.00 7.27 341615.26 5.83
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sizes N , for the network example in Section 1.3.1. As far as we know, these are the

first stochastic mathematical programs with equilibrium constraints motivated by an

application that have been solved.

Figure 6 presents a histogram of the pairwise difference in total profit between an

alliance and no alliance, again using a sample of 1000 sample points, independent of

the samples used in the SAA problem. The total profit under an alliance was larger

for all 1000 sample points, with the percentage increase varying from 5.24% to 6.31%.

Figure 6: Histogram of the pairwise difference in total profit between an alliance and
no alliance, using a sample of 1000 sample points.
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1.4.3 Robustness With Respect to Resource Exchange

So far, we have compared the total profit under an alliance with the total profit

under no alliance after computing the optimal exchange. An important question

is how robust the improvement in total profit is with respect to choice of resource

exchange. In this section we present a simple example to cast some light on the

question.
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Table 6: Optimal solution under different sample sizes for the stochastic case

n iter objopt ‖g‖ xopt

20 41 -340950.08 1.08E-04 144.41 154.96 139.45 148.01 -150.07 -158.56 -139.32 -152.32

60 36 -340983.90 1.83E-04 144.78 155.30 139.70 148.30 -149.84 -158.17 -138.93 -152.09

100 39 -340886.90 3.53E-05 144.35 154.93 139.36 147.87 -150.27 -158.53 -139.27 -152.48

140 37 -340889.10 1.51E-04 144.53 155.11 139.51 148.06 -150.16 -158.36 -139.05 -152.33

180 38 -340843.67 9.08E-06 144.60 155.22 139.63 148.16 -150.06 -158.25 -138.92 -152.25

220 39 -340856.47 1.46E-05 144.65 155.31 139.74 148.22 -149.98 -158.17 -138.85 -152.16

260 38 -340937.31 4.20E-05 144.61 155.28 139.70 148.19 -150.00 -158.22 -138.90 -152.19

300 43 -340933.57 3.25E-05 144.67 155.34 139.76 148.27 -149.94 -158.16 -138.82 -152.14

340 40 -341218.94 1.00E-05 144.61 155.27 139.69 148.21 -149.99 -158.22 -138.87 -152.19

380 42 -341170.71 2.46E-05 144.61 155.29 139.71 148.21 -149.99 -158.21 -138.86 -152.19

420 41 -341118.56 1.04E-04 144.57 155.25 139.65 148.17 -150.02 -158.26 -138.91 -152.25

460 40 -341222.77 4.41E-05 144.58 155.28 139.69 148.19 -149.99 -158.25 -138.91 -152.22

500 41 -341329.49 8.62E-05 144.61 155.32 139.73 148.23 -149.95 -158.20 -138.86 -152.18

a n: sample size
b iter: number of iterations when algorithm stopped
c objopt: objective function value at the optimal solution
d ‖g‖: gradient norm at the optimal solution
e xopt: optimal solution
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Suppose that airline −1 operates a flight with capacity 300 from A to B, and

airline 1 operates a flight with capacity 300 from B to C. After resource exchange,

each airline can offer three products: itineraries from A to B, from B to C, and from

A via B to C. Figure 7(a) shows the percentage increase in total profit of the alliance

relative to no alliance, as a function of the number of seats that airline 1 (airline −1)

makes available to airline −1 (airline 1) shown on the x-axis (y-axis). Figure 7(b)

shows a histogram of the percentage increase in total profit of the alliance relative to

no alliance for 770 different resource exchanges. As shown, the percentage increase

ranges from -4.78% to 3.77%, the alliance profit is larger than the no alliance profit

for 68% of the exchanges, and the average percentage increase is 0.75%. Thus, an

alliance with an exchange that is not carefully chosen could be worse than no alliance,

but the improvement of an alliance over no alliance seems quite robust with respect

to deviations from the optimal exchange.
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(a) Percentage increase in total profit of the al-
liance relative to no alliance, as a function of the
resource exchange.
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(b) Histogram of percentage increase in total
profit of the alliance relative to no alliance for
770 different resource exchanges.

Figure 7: Robustness of increase in total profit of the alliance relative to no alliance
with respect to resource exchange.
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1.5 Conclusion

In this study we presented an economic motivation for interest in alliances, by showing

that without an alliance sellers will tend to price their products too high and sell too

little, thereby foregoing potential profit, especially if the capacity is large. We showed

that under a resource exchange alliance, some of the foregone profit can be captured.

In fact, in the two-resource example, the alliance attained the same total profit as

perfect coordination, except when capacity is large and the products of the sellers are

complements.

We formulated the problem of determining the optimal amounts of resources to

exchange as a mathematical program with equilibrium constraints, taking the com-

petition into account that results from alliance members selling similar products. In

general, mathematical programs with equilibrium constraints are hard to solve, espe-

cially in the stochastic case with random problem parameters. We used a trust region

algorithm to search for an optimal exchange, and used it to solve example problems.

Many research questions regarding alliances remain. In this study we consider

one type of alliance, namely resource exchange alliances. Such alliances are attractive

because they do not require complicated coordination after the resource exchange

has taken place, and because such alliances should not have anti-trust problems,

since they enhance competition instead of reducing competition. However, there are

many other potential alliance structures of interest that remain to be analyzed and

compared in greater detail.

The problem of optimal revenue management under an alliance is very challenging,

and has not received much attention in the literature. This study does not address

operational level revenue management under an alliance — the purpose of this paper

is to obtain insight into conditions under which a resource exchange alliance can

provide greater profit than the setting without an alliance, and to propose a model

and a method to compute good resource exchange amounts. Thus the problem of
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optimal revenue management under an alliance remains to be addressed.
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CHAPTER II

CONDITIONAL VALUE-AT-RISK AND AVERAGE

VALUE-AT-RISK: ESTIMATION AND ASYMPTOTICS

45



2.1 Introduction

In the financial industry, sell-side analysts periodically publish recommendations of

underlying securities with target prices (e.g., the Goldman Sachs Conviction Buy

List). These recommendations reflect specific economic conditions and influence in-

vestors’ decisions and thus price movements. However, this type of analysis does not

provide risk measures associated with underlying companies. We see similar phenom-

ena in buy-side analysis as well. Each analyst or team covers different sectors (e.g.,

the airline industry vs. semi-conductor industry) and typically makes separate rec-

ommendations for the portfolio managers without associated risk measures. However,

the risk measure of the companies that are covered are one of the most important

factors for investment decision making. In this study, we consider ways to estimate

risk measures for a single asset at given market conditions. This information could

be useful for investors and portfolio managers to compare prospective securities and

to pick the best ones. For example, when portfolio managers expect crude oil price

to spike (due to inflation or geo-political conflicts), they could select securities less

sensitive to oil price movements in the airline industry.

In order to formalize our discussion, let us introduce the following setting. Let

(Ω,F) be a measurable space equipped with probability measure P . A measurable

function Y : Ω → R is called a random variable. With random variable Y , we asso-

ciate a number ρ(Y ) which we refer to as a risk measure. We assume that “smaller

is better,” i.e., between two possible realizations of random data, we prefer the one

with a smaller value of ρ(·). The term “risk measure” is somewhat unfortunate since

it can be confused with the term probability measure. Moreover, in applications, one

often tries to reach a compromise between minimizing the expectation (i.e., minimiz-

ing on average) and controlling the associated risk. Thus, some authors use the term

“mean-risk measure,” or “acceptability functional” (e.g., Pflug and Römisch (2007)).
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For historical reasons, we use here the “risk measure” terminology. Formally, risk mea-

sure is a function ρ : Y → R defined on an appropriate space Y of random variables.

For example, in some applications, it is natural to use the space Y = Lp(Ω,F , P ),

with p ∈ [1,∞), of random variables having finite p-th-order moments.

It was suggested in Artzner et al. (1999) that a “good” risk measure should have

the following properties (axioms), and such risk measures were called coherent.

(A1) Monotonicity: If Y, Y ′ ∈ Y and Y � Y ′, then ρ(Y ) ≥ ρ(Y ′).

(A2) Convexity:

ρ(tY + (1− t)Y ′) ≤ tρ(Y ) + (1− t)ρ(Y ′)

for all Y, Y ′ ∈ Y and all t ∈ [0, 1].

(A3) Translation Equivariance: If a ∈ R and Y ∈ Y , then ρ(Y + a) = ρ(Y ) + a.

(A4) Positive Homogeneity: If t ≥ 0 and Y ∈ Y , then ρ(tY ) = tρ(Y ).

The notation Y � Y ′ means that Y (ω) ≥ Y ′(ω) for a.e. ω ∈ Ω. We may refer, e.g.,

to Detlefsen and Scandolo (2005), Weber (2006), Föllmer and Schied (2011) for a

further discussion of mathematical properties of risk measures.

An important example of risk measures is the Value-at-Risk measure

V@Rα(Y ) = inf{t : FY (t) ≥ α}, (2.1.34)

where α ∈ (0, 1) and FY (t) = Pr(Y ≤ t) is the cumulative distribution function

(cdf) of Y , i.e., V@Rα(Y ) = F−1
Y (α) is the left side α-quantile of the distribution of

Y . This risk measure satisfies axioms (A1),(A3) and (A4), but not (A2), and hence

is not coherent. Another important example is the so-called Average Value-at-Risk

measure, which can be defined as

AV@Rα(Y ) = inf
t∈R

{

t + (1− α)−1E[Y − t]+
}

(2.1.35)
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(cf., Rockafellar and Uryasev (2002)), or equivalently

AV@Rα(Y ) =
1

1− α

∫ 1

α

V@Rτ (Y )dτ. (2.1.36)

Note that AV@Rα(Y ) is finite iff E[Y ]+ <∞. Therefore, it is natural to use the space

Y = L1(Ω,F , P ) of random variables having finite first order moment for the AV@Rα

risk measure. The Average Value-at-Risk measure is also called the Conditional

Value-at-Risk or Expected Shortfall measure. (Since we discuss here “conditional”

variants of risk measures, we use the Average Value-at-Risk rather than Conditional

Value-at-Risk terminology.)

The Value-at-Risk and Average Value-at-Risk measures are widely used to mea-

sure and manage risk in the financial industry (see, e.g., Jorion (2003), Duffie and

Singleton (2003), Gaglianone et al. (2011) for the financial background and various

applications). Note that in the above two examples, risk measures are functions of

the distribution of Y . Such risk measures are called law invariant. Law invariant

risk measures have been studied extensively in the financial risk management liter-

ature (e.g., Acerbi (2002), Frey and McNeil (2002), Scaillet (2004), Fermanian and

Scaillet (2005), Chen and Tang (2005), Zhu and Fukushima (2009), Jackson and Per-

raudin (2000), Berkowitz et al. (2002), Bluhm et al. (2002), and reference therein).

Sometimes, we write a law invariant risk measure as a function ρ(F ) of cdf F .

Now let us consider a situation where there exists information composed of eco-

nomic and market variables X1, ..., Xk which can be considered as a set of predictors

for a variable of interest Y . In that case, one can be interested in estimation of a risk

measure of Y conditional on observed values of predictors X1, ..., Xk. For example,

suppose we want to measure (predict) the risk of a single asset given specific economic

conditions represented by market index and interest rates. Then, for a random vector

X = (X1, ..., Xk)
T of relevant predictors, the conditional version of a law invariant

risk measure ρ, denoted ρ(Y |X) or ρ|X(Y ), is obtained by applying ρ to the condi-

tional distribution of Y given X. In particular, V@Rα(Y |X) is the α-quantile of the
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conditional distribution of Y given X, and

AV@Rα(Y |X) =
1

1− α

∫ 1

α

V@Rτ (Y |X)dτ. (2.1.37)

Recently, several researchers have paid attention to estimation of the conditional

risk measures. For the conditional Value-at-Risk, Chernozhukov and Umantsev (2001)

used a polynomial type regression quantile model and Engle and Manganelli (2004)

proposed the model which specifies the evolution of the quantile over time using a

special type of autoregressive processes. In both models, unknown parameters were

estimated by minimizing the regression quantile loss function. For conditional Aver-

age Value-at-Risk, Scaillet (2005) and Cai andWang (2008) utilized Nadaraya-Watson

(NW) type nonparametric double kernel estimation while Peracchi and Tanase (2008)

and Leorato et al. (2010) used the semiparametric method.

In this study, we discuss procedures for estimation of conditional risk measures.

Especially, we will pay attention to estimation of conditional Value-at-Risk and Aver-

age Value-at-Risk measures. We assume the following linear model (linear regression)

Y = β0 + βTX + ε, (2.1.38)

where β0 and β = (β1, ..., βk)
T are (unknown) parameters of the model and the error

(noise) random variable ε is assumed to be independent of random vectorX. Meaning

of the model (2.1.38) is that there is a true (population) value β∗
0 ,β

∗ of the respective

parameters for which (2.1.38) holds. Sometimes, we will write this explicitly and

sometimes suppress this in the notation.

Let ρ(·) be a law invariant risk measure satisfying axiom (A3) (Translation Equiv-

ariance), and ρ|X(·) be its conditional analogue. Note that because of the indepen-

dence of ε and X , it follows that ρ|X(ε) = ρ(ε). Together with axiom (A3), this

implies

ρ|X(Y ) = ρ|X(β0 + βTX + ε) = β0 + βTX + ρ|X(ε) = β0 + βTX + ρ(ε). (2.1.39)
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Since β0+ρ(ε) = ρ(ε+β0), we can set ρ(ε) = 0 by adding a constant to the error term.

In that case, for the true values of the parameters, we have ρ|X(Y ) = β∗
0 + β∗TX.

Hence, the question is how to estimate these (true) values β∗
0 ,β

∗ of the respective

parameters.

This study is organized as follows. In Section 2.2, we describe two different estima-

tion procedures for the conditional risk measures; one is based on residuals of the least

squares estimation procedure and the other is based on the M-estimation approach.

Asymptotic properties of both estimators are provided in Section 2.3. In Section

2.4, we investigate the finite sample and asymptotic properties of the considered es-

timators. We present Monte Carlo simulation results under different distribution

assumptions of the error term. Later, we illustrate the performance of different meth-

ods on the real data (different financial asset classes) in Section 2.5. Finally, Section

2.6 gives some conclusion remarks and suggestions for future research directions.
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2.2 Basic Estimation Procedures

Suppose that we have N observations (data points) (Yi,X i), i = 1, ..., N , which

satisfy the linear regression model (2.1.38), i.e.,

Yi = β0 + βTX i + εi, i = 1, ..., N. (2.2.40)

We assume that: (i) X i, i = 1, ..., N , are iid (independent identically distributed)

random vectors, and write X for random vector having the same distribution as X i,

(ii) the errors ε1, .., εN are iid with finite second order moments and independent of

X i. We denote by σ2 = Var[εi] the common variance of the error terms.

There are two basic approaches to estimation of the true values of β0 and β. One

approach is to apply the standard Least Squares (LS) estimation procedure and then

to make an adjustment of the estimate of the intercept parameter β0. That is, let

β̃0 and β̃ be the least squares estimators of the respective parameters of the linear

model (2.2.40) and

ei := Yi − β̃0 − β̃
T

X i, i = 1, ..., N, (2.2.41)

be the corresponding residuals. By the standard theory of the LS method, we have

that β̃0 and β̃ are unbiased estimators of the respective parameters of the linear model

(2.1.38) provided E[ε] = 0. Therefore, we need to make the correction β̃0+ρ(ε) of the

intercept estimator. If we knew the true values ε1, ..., εN of the error term, we could

estimate ρ(ε) by replacing the cdf Fε of ε by its empirical estimate F̂ε,N associated

with ε1, ..., εN , i.e., to estimate ρ(Fε) by ρ(F̂ε,N). Since true values of the error term

are unknown, it is a natural idea to replace ε1, ..., εN by the residual values e1, ..., eN .

Hence, we use the estimator β̃0 + ρ(F̂e,N), where F̂e,N is the empirical cdf of the

residual values, i.e., F̂e,N is the cdf of the probability distribution assigning mass 1/N

to each point ei, i = 1, ..., N (see section 2.3.1 for further discussion). We refer to

this estimation approach as the Least Squares Residuals (LSR) method.

An alternative approach is based on the following idea. Suppose that we can
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construct a function h(y, θ) of y ∈ R and θ ∈ R, convex in θ, such that the minimizer

of EF [h(Y, θ)] will be equal to ρ(F ), i.e., ρ(F ) = argminθ EF [h(Y, θ)]. Since ρ(Y +a) =

ρ(Y ) + a for any a ∈ R, it follows that the function h(y, θ) should be of the form

h(y, θ) = ψ(y− θ) for some convex function ψ : R → R. We refer to ψ(·) as the error

function. Therefore, we need to construct an error function such that

ρ(F ) = argmin
θ

EF [ψ(Y − θ)]. (2.2.42)

This is equivalent to solving the equation

EF [φ(Y − θ)] = 0, (2.2.43)

where φ(t) := ψ′(t). Note that the error function ψ(·) could be nondifferentiable, in

which case the corresponding derivative function φ(·) is discontinuous. That is, the

function φ(·) is monotonically nondecreasing.

The corresponding estimators β̂0 and β̂ are taken as solutions of the optimization

problem

Min
β0,β

N
∑

i=1

ψ
(

Yi − β0 − βTX i

)

. (2.2.44)

In the statistics literature, such estimators are called M-estimators (the terminology

which we will follow) and for an appropriate choice of the error function, this is the

approach of robust regression (Huber (1981)). For the V@Rα risk measure, the error

function is readily available (recall that [t]+ = max{0, t}):

ψ(t) := α[t]+ + (1− α)[−t]+. (2.2.45)

The corresponding robust regression approach is known as the quantile regression

method (cf. Koenker (2005)).

For coherent risk measures, the situation is more delicate. Let us make the fol-

lowing observations. Suppose that the representation (2.2.42) holds. Let F1 and F2

be two cdf such that ρ(F1) = ρ(F2) = θ. Then it follows by (2.2.42) (by (2.2.43)) that
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ρ(tF1 + (1 − t)F2) = θ for any t ∈ [0, 1]. This is quite a strong necessary condition

for existence of a representation of the form (2.2.42). It certainly doesn’t hold for the

AV@Rα, α ∈ (0, 1), risk measure (See proof of theorem 11, p.760, in Gneiting (2011)).

This shows that for general coherent risk measures, possibility of constructing the

corresponding M-estimators is rather exceptional, and such estimators certainly do

not exist for the AV@Rα risk measure. Nevertheless, it is possible to construct the

following approximations (this construction is essentially due to Rockafellar et al.

(2008)).

Proposition 1 Let ψj : R → R, j = 1, ..., r, be convex functions, λj ∈ R be such

that
∑r

j=1 λj = 1 and

E(Y ) := inf
τ∈Rr

{

E

[

r
∑

j=1

ψj(Y − τj)

]

:
r
∑

j=1

λjτj = 0

}

. (2.2.46)

Moreover, let Sj(Y ) be a minimizer of E[ψj(Y − θ)] over θ ∈ R. Then S(Y ) :=

∑r
j=1 λjSj(Y ) is a minimizer of E(Y − θ) over θ ∈ R.

Proof Proof Consider the problem

Min
θ,τ

E

[

r
∑

j=1

ψj(Y − θ − τj)

]

s.t.
r
∑

j=1

λjτj = 0. (2.2.47)

By making change of variables ηj = θ + τj , j = 1, ..., r, we can write this problem in

the form

Min
θ,η

E

[

r
∑

j=1

ψj(Y − ηj)

]

s.t.
r
∑

j=1

λjηj = θ. (2.2.48)

Since Sj(Y ) is a minimizer of E [ψj(Y − ηj)], it follows that ηj = Sj(Y ), i = 1, .., r,

θ = S(Y ), is an optimal solution of problem (2.2.48). This completes the prof.

In particular, we can consider functions ψj(·) of the form (2.2.45), i.e.,

ψj(t) := αj [t]+ + (1− αj)[−t]+, (2.2.49)
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for some αj ∈ (0, 1), j = 1, ..., r. Then Sj(Y ) = V@Rαj
(Y ) and hence the risk measure

∑r
j=1 λjV@Rαj

(Y ) is a minimizer of E(Y − θ). We can view
∑r

j=1 λjV@Rαj
(Y ) as a

discretization of the integral 1
1−α

∫ 1

α
V@Rτ (Y )dτ if we set ∆ := (1− α)/r and take

λj := (1− α)−1∆, αj := α + (j − 0.5)∆, j = 1, ..., r. (2.2.50)

For this choice of λj, αj , and by formula (2.1.36), we have that

AV@Rα(Y ) =
1

1− α

∫ 1

α

V@Rτ (Y )dτ ≈
r
∑

j=1

λjV@Rαj
(Y ) = S(Y ). (2.2.51)

Consider now the problem

Min
β0,β

E(Y − β0 − βTX). (2.2.52)

By the definition (2.2.46) of E(·), we can write this problem in the following equivalent

form

Min
τ ,β0,β

E

[

∑r
j=1 ψj(Y − β0 − βTX − τj)

]

s.t.
∑r

j=1 λjτj = 0. (2.2.53)

The so-called Sample Average Approximation (SAA) of this problem is

Min
τ ,β0,β

1

N

N
∑

i=1

r
∑

j=1

ψj(Yi − β0 − βTX i − τj) s.t.
r
∑

j=1

λjτj = 0. (2.2.54)

The above problem (2.2.54) can be formulated as a linear programming problem.

Following Rockafellar et al. (2008), we consider the following estimators.

Mixed quantile estimator for AV@Rα(Y|x)

We refer to β̌0 + β̌
T
x as the mixed quantile estimator of AV@Rα(Y |x), where

(τ̌ , β̌0, β̌) is an optimal solution of problem (2.2.54).

This idea can be extended to a larger class of law invariant risk measures. For

example, consider a risk measure

ρ(Y ) := cE[Y ] + (1− c)AV@Rα(Y ) (2.2.55)
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for some constants c ∈ [0, 1] and α ∈ (0, 1). Recall that the minimizer of E[(Y −

t)2] is t∗ = E[Y ]. Therefore, by taking function ψ0(t) := t2, functions ψj(t) of the

form (2.2.49), λj , and αj given in (2.2.50), we can construct the corresponding error

function

E(Y ) := inf
τ∈Rr+1

{

E

[

ψ0(Y − τ0) +

r
∑

j=1

ψj(Y − τj)

]

: cτ0 +

r
∑

j=1

(1− c)λjτj = 0

}

.

(2.2.56)

As another example, consider risk measures of the form

ρ(Y ) :=

∫ 1

0

AV@Rα(Y )dµ(α), (2.2.57)

where µ is a probability measure on the interval [0, 1). By a result due to Kusuoka

(2001), this measures form a class of the comonote law invariant coherent risk mea-

sures. By (2.1.36), we can write such risk measure as

ρ(Y ) =

∫ 1

0

∫ 1

α

(1− α)−1
V@Rτ (Y )dτdµ(α) =

∫ 1

0

w(τ)V@Rτ (Y )dτ, (2.2.58)

where w(τ) :=
∫ τ

0
(1 − α)−1dµ(α). Such risk measures are also called spectral risk

measures (Acerbi (2002)). By making a discretization of the above integral (2.2.58),

we can proceed as above.

It could be remarked here that while the LSR approach is quite general, the

approach based on mixing M-estimators is somewhat restrictive. Constructing an

appropriate error function for a particular risk measure could be quite involved.

2.3 Large Sample Statistical Inference

In the previous section, we formulated two approaches, the LSR estimators and mixed

M-estimators, to estimation of the true (population) values of parameters β∗
0 ,β

∗ of

the linear model (2.1.38) such that ρ(ε) = 0. For the V@Rα risk measure, the corre-

sponding M-estimators β̂0 and β̂ are taken as solutions of the optimization problem
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(2.2.44), with the error function (2.2.45), and referred to as the quantile regression es-

timators. For the AV@Rα risk measure and more generally comonotone risk measures

of the form (2.2.58), we constructed the corresponding mixed quantile estimators

τ̌ , β̌0, β̌. In this section, we discuss statistical properties of these estimators. In par-

ticular, we address the question of which of these two estimation procedures is more

efficient by computing corresponding asymptotic variances.

2.3.1 Statistical Inference of Least Squares Residual Estimators

The linear model (2.2.40) can be written as

Y = X[β0;β] + ǫ, (2.3.59)

where Y = (Y1, ..., YN)
T is N × 1 vector of responses, X is N × (k+1) data matrix of

predictor variables with rows (1,XT

i ), i = 1, ..., N , (i.e., first column of X is column

of ones), β = (β1, ..., βk)
T vector of parameters and ǫ = (ε1, .., εN)

T is N × 1 vector

of errors. By [β0;β], we denote (k + 1) × 1 vector (β0,β
T)T. We assume that the

conditions (i) and (ii), specified at the beginning of section 2.2, hold. It is also

possible to view data points X i as deterministic. In that case, we assume that X has

full column rank k + 1.

Let β̃0 and β̃ be the least squares estimators of the respective parameters of the lin-

ear model (2.2.40). Recall that these estimators are given by [β̃0; β̃] = (XTX)−1XTY ,

vector of residuals e := Y − X[β̃0, β̃] is given by

e = (IN −H)Y = (IN −H)ǫ,

where IN is the N × N identity matrix, and H = X(XTX)−1XT is the so-called hat

matrix. Note that trace(H) = k + 1 and we have that

εi − ei = [1;XT

i ](X
TX)−1XTǫ, i = 1, ..., N. (2.3.60)

If we knew errors ε1, .., εN , we could estimate ρ(ε) by the corresponding sample
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estimate based on the empirical cdf

F̂ε,N(·) = N−1

N
∑

i=1

I[εi,∞)(·), (2.3.61)

where IA(·) denotes the indicator function of set A. However, the true values of the

errors are unknown. Therefore, in the LSR approach we replace them by the residuals

computed by the least squares method and hence estimate ρ(ε) by employing the

respective empirical cdf F̂e,N(·) instead of F̂ε,N(·).

The first natural question is whether the LSR estimators are consistent, i.e., con-

verge w.p.1 to their true values as the sample size N tends to infinity. It is well known

that, under the specified assumptions, the LS estimators β̃0 and β̃ are consistent, with

β̃0 being consistent under the condition E[ε] = 0. The question of consistency of em-

pirical estimates of law invariant coherent risk measures was studied in Wozabal and

Wozabal (2009). It was shown that, under mild regularity conditions, such estimators

are consistent. In particular, the consistency holds for the comonotone risk measures

of the form (2.2.58), i.e., ρ(F̂ε,N) converges w.p.1 to ρ(Fε) as N → ∞. It is also

possible to show that the difference ρ(F̂ε,N)− ρ(F̂e,N) tends w.p.1 to zero and hence

ρ(F̂e,N) converges w.p.1 to ρ(Fε) as well. A rigorous proof of this could be quite

technical and will be beyond the scope of this study.

We have that the LS estimator
[

β̃0; β̃
]

asymptotically has normal distribution with

the asymptotic covariance matrix N−1σ2Ω−1, where µ := E[X ], Σ := E
[

XXT
]

and

Ω :=







1 µT

µ Σ






. Consequently, for a given x, the estimate β̃0+xTβ̃ asymptotically

has normal distribution with the asymptotic variance N−1σ2[1;xT]Ω−1[1;xT]T.

We also have that random vectors (β̃0, β̃) and e are uncorrelated. Therefore, if

errors εi have normal distribution, then vectors (β̃0, β̃) and e jointly have a multivari-

ate normal distribution and these vectors are independent. Consequently, β̃0 + xTβ̃

and ρ(F̂e,N) are independent. For nonnormal distribution, this independence holds

asymptotically and thus asymptotically β̃0 + xTβ̃ and ρ(F̂e,N) are uncorrelated.
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Asymptotics of empirical estimators of law invariant coherent risk measures were

studied in Pflug and Wozabal (2010) and Shapiro et al. (2009). Derivation of the

asymptotic variance of ρ(F̂ε,N), for a general law invariant risk measure, could be

quite involved. Let us consider two important cases of the V@Rα and AV@Rα risk

measures. We give below a summary of basic results, for a more technical discussion

we refer to the Appendix.

In case of ρ := V@Rα, the LSR estimate of V@Rα(ε) becomes

V̂@Rα(e) := F̂−1
e,N(α) = e(⌈Nα⌉), (2.3.62)

where e(1) ≤ ... ≤ e(N) are order statistics (i.e., numbers e1, ..., eN arranged in the

increasing order), and ⌈a⌉ denotes the smallest integer ≥ a. Suppose that the cdf

Fε(·) has nonzero density fε(·) = F ′
ε(·) at F−1

ε (α) and let

ω2 :=
α(1− α)

[fε (F−1
ε (α))]2

. (2.3.63)

LSR estimator of V@Rα(Y|x)

Consider the LSR estimator β̃0+xTβ̃+V̂@Rα(e) of V@Rα(Y |x). Suppose that the

set of population α-quantiles is a singleton. Then the LSR estimator is a consistent

estimator of V@Rα(Y |x), and the asymptotic variance of this estimator can be

approximated by

N−1
(

ω2 + σ2[1;xT]Ω−1[1;xT]T
)

. (2.3.64)

Detailed derivation of above asymptotics is discussed in Appendix C.

For the ρ := AV@Rα risk measure, the LSR estimate of AV@Rα(ε) is given by

ÂV@Rα(e) = inft∈R

{

t + 1
(1−α)N

∑N
i=1[ei − t]+

}

= V̂@Rα(e) +
1

(1−α)N

∑N
i=1

[

ei − V̂@Rα(e)
]

+

= e(⌈Nα⌉) +
1

(1−α)N

∑N
i=⌈Nα⌉+1

(

e(i) − e(⌈Nα⌉)

)

.

(2.3.65)
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LSR estimator of AV@Rα(Y |x)

Consider the LSR estimator β̃0+xTβ̃+ÂV@Rα(e) of AV@Rα(Y |x). This estimator

is consistent and its asymptotic variance is given by

N−1
(

γ2 + σ2[1;xT]Ω−1[1;xT]T
)

, (2.3.66)

where γ2 := (1 − α)−2Var
(

[ε − V@Rα(ε)]+
)

, Ω :=







1 µT

µ Σ






, µ := E[X ] and

Σ := E
[

XXT
]

.

The above asymptotics are discussed in Appendix D.

Remark It should be remembered that the above approximate variances are asymp-

totic results. Suppose for the moment thatN < (1−α)−1. Then ⌈Nα⌉ = N and hence

V̂@Rα(ε) = max{ε1, ..., εN}. Consequently
[

εi − V̂@Rα(ε)
]

+
= 0 for all i = 1, ..., N ,

and hence

ÂV@Rα(ε) = V̂@Rα(ε) = max{ε1, ..., εN}.

In that case the above asymptotics are inappropriate. In order for these asymptotics

to be reasonable, N should be significantly bigger than (1− α)−1.

LSR approach can be easily applied to a considerably larger class of law invari-

ant risk measures. For example, let us consider the entropic risk measure ρ(Y ) :=

α−1 logE[eαY ], where α > 0 is a positive constant. This risk measure satisfies axioms

(A1)–(A3), but it is not positively homogeneous (see Giesecke and Weber (2008) for

the general discussion of utility-based shortfall risk including entropic risk measure).

The empirical estimate of ρ(ε) is

ρ(F̂ε,N) = α−1 log
(

N−1
∑N

i=1 e
αεi

)

. (2.3.67)

Of course, as it was discussed above, the errors εi should be replaced by the re-

spective residuals ei in the construction of the corresponding LSR estimators. By
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using linearizations eαε = 1 + αε + o(αε) and log(1 + x) = x + o(x), we obtain that

N1/2[ρ(F̂ε,N)−ρ(ε)] converges in distribution to normal with zero mean and variance

σ2 (by the Delta Theorem).

2.3.2 Statistical Inference of Quantile and Mixed Quantile Estimators

As it was discussed in section 2.2, the quantile regression is a particular case of the

M-estimation method with the error function ψ(·) of the form (2.2.45). By the Law

of Large Numbers (LLN), we have that N−1 times the objective function in (2.2.44)

converges (pointwise) w.p.1 to the function Ψ(β0,β) := E
[

ψ(Y − β0 − βTX)
]

. We

also have

Ψ(β0,β) = E
[

ψ
(

β∗
0 + β∗TX + ε− β0 − βTX

)]

= E
[

ψ
(

ε− (β0 − β∗
0)− (β − β∗)TX

)]

.
(2.3.68)

Under mild regularity conditions, derivatives of Ψ(β0,β) can be taken inside the

integral (expectation) and hence

∇β0
Ψ(β0,β) = E

[

∇β0
ψ
(

ε− (β0 − β∗
0)− (β − β∗)TX

)]

= −E
[

ψ′
(

ε− (β0 − β∗
0)− (β − β∗)TX

)]

,
(2.3.69)

∇βΨ(β0,β) = E
[

∇βψ
(

ε− (β0 − β∗
0)− (β − β∗)TX

)]

= −E
[

ψ′
(

ε− (β0 − β∗
0)− (β − β∗)TX

)

X
]

.
(2.3.70)

Since ε and X are independent, we obtain that derivatives of Ψ(β0,β) are zeros at

(β∗
0 ,β

∗) if the following condition holds

E[ψ′(ε)] = 0. (2.3.71)

Since function Ψ(·, ·) is convex, it follows that if condition (2.3.71) holds, then Ψ(·, ·)

attains its minimum at (β∗
0 ,β

∗). If the minimizer (β∗
0 ,β

∗) is unique, then the estimator

(β̂0, β̂) converges w.p.1 to the population value (β∗
0 ,β

∗) as N → ∞, i.e., (β̂0, β̂) is

a consistent estimator of (β∗
0 ,β

∗) (cf. Huber (1981)). That is, (2.3.71) is the basic

condition for consistency of (β̂0, β̂).
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For the error function (2.2.45) of the quantile regression, we have

ψ′(t) =











α− 1 if t < 0,

α if t > 0.
(2.3.72)

(Note that here the error function ψ(t) is not differentiable at t = 0 and its derivative

ψ′(t) is discontinuous at t = 0. Nevertheless, all arguments can go through provided

that the error term has a continuous distribution.) Consequently,

E[ψ′(ε)] = (α− 1)Fε(0) + α(1− Fε(0)) = α− Fε(0), (2.3.73)

and hence condition (2.3.71) holds iff Fε(0) = α, or equivalently F−1
ε (α) = 0 provided

this quantile is unique. In that case, the estimator (β̂0, β̂) is consistent if the popula-

tion value β∗
0 is normalized such that V@Rα(ε) = 0. That is, for this error function,

β̂0 + β̂
T

x is a consistent estimator of the conditional Value-at-Risk V@Rα(Y |x) of Y

given X = x.

It is also possible to derive asymptotics of the estimator (β̂0, β̂). That is, suppose

that the cdf Fε(·) has nonzero density fε(·) = F ′
ε(·) at F−1

ε (α) and consider ω2 defined

in (2.3.63). Then N1/2
[

β̂0 − β∗
0 ; β̂ − β∗

]

converges in distribution to normal with zero

mean vector and covariance matrix (cf., Koenker (2005))

ω2[1;xT]Ω−1[1;xT]T, (2.3.74)

i.e., N−1 times the matrix given in (2.3.74) is the asymptotic covariance matrix of
[

β̂0; β̂
]

.

Remark Note that by LLN, we have that N−1
∑N

i=1X i and N
−1
∑N

i=1X iX
T

i con-

verge w.p.1 as N → ∞ to the vector µ and matrix Σ respectively and that Σ−µµT

is the covariance matrix of X. In case of deterministic X i, we simply define vec-

tor µ and matrix Σ as the respective limits of N−1
∑N

i=1X i and N
−1
∑N

i=1X iX
T

i ,

assuming that such limits exist. It follows then that N−1X
T
X → Ω as N → ∞.
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The mixed quantile estimator β̌0+β̌
T
x can be justified by the following arguments.

We have that an optimal solution (τ̌ , β̌0, β̌) of problem (2.2.54) converges w.p.1 as

N → ∞ to the optimal solution (τ ⋆, β⋆
0 ,β

⋆) of problem (2.2.53), provided (2.2.53) has

unique optimal solution. Because of the linear model (2.1.38), we can write problem

(2.2.53) as

Min
τ ,β0,β

E

[

∑r
j=1 ψαj

(ε+ β∗
0 − β0 + (β∗ − β)TX − τj)

]

s.t.
∑r

j=1 λjτj = 0, (2.3.75)

where β∗
0 and β∗ are population values of the parameters. Similar to the proof of

Proposition 1, by making change of variables ηj = β0 + τj , j = 1, ..., r, we can write

problem (2.3.75) in the following equivalent form

Min
η,β0,β

E

[

∑r
j=1 ψαj

(ε+ β∗
0 − ηj + (β∗ − β)TX)

]

s.t.
∑r

j=1 λjηj = β0. (2.3.76)

It follows that if
r
∑

j=1

λjV@Rαj
(ε) = 0, (2.3.77)

then (β⋆
0 ,β

⋆) = (β∗
0 ,β

∗). That is, β̌0+β̌
T
x is a consistent estimator of

∑r
j=1 λjV@Rαj

(Y |x).

Consequently for λj and αj given in (2.2.50), we can use β̌0+β̌
T
x as an approximation

of AV@Rα(Y |x).

Asymptotics of the mixed quantile estimators are more involved. These asymp-

totics are discussed in Appendix E.

2.4 Simulation Study

To illustrate the performance of the considered estimators, we perform the Monte

Carlo simulations where errors (innovations) in linear model (2.2.40) are generated

from following different distributions; (1) Standard Normal (denoted as N(0, 1)), (2)

Student’s t distribution with 3 degrees of freedom (denoted as t(3)), (3) Skewed Con-

taminated Normal where standard normal is contaminated with 20% N(1, 9) errors

(denoted as CN(1, 9)), (4) Log-Normal with parameter 0 and 1 (denoted as LN(0, 1)).
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Figure 8: Normal Q-Q plot for different error distributions

Note that error distributions (2)-(4) are heavy-tailed in contrast to the normal er-

rors as shown in Figure 8. In fact, financial innovations often follow heavy-tailed

distributions. We consider α = 0.9, 0.95, 0.99, sample size N = 500, 1000, 2000 and

R = 500 replications for each sample size. Conditional Value-at-Risk (VaR) and

Average Value-at-Risk (AVaR) are estimated and compared with true (theoretical)

values at given 500 test points xk (k = 1, 2, . . . , 500), which are equally spaced be-

tween -2 and 2 for each replication. Estimators obtained from different methods are

computed; quantile based estimator (referred to as “QVaR”) and LSR estimator (re-

ferred to as “RVaR”) for the conditional VaR, mixed quantile estimator (referred to

as “QAVaR”) and LSR estimator (referred to as “RAVaR”) for the conditional AVaR

(as described in Section 2.2).

Figure 9 displays an example of estimation results where solid line is true (theo-

retical) VaR (AVaR), dash-circle line is QVaR (QAVaR), and dash-cross line is RVaR

(RAVaR) given test points xk. In this example, errors follow CN(1, 9), α = 0.95 and
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Figure 9: Conditional VaR and AVaR: True vs. Estimated (Errors∼ CN(1, 9), α =
0.95, N = 1000)

N = 1000. In Figure 9 RVaR estimates are closer to true VaR values as Mean Abso-

lute Error (MAE) confirms (MAE(QVaR)=0.4771 vs. MAE(RVaR)=0.2145). Perfor-

mance of both estimators are worse for AVaR, yet RAVaR estimates are still closer to

true AVaR values than QAVaR (MAE(QAVaR)=0.6336 vs. MAE(RAVaR)=0.2466)

as shown in Figure 9.

To compare estimators under different error distributions, MAE (averaged over

all test points) and variance of MAE (in parenthesis) across 500 replications are

obtained as shown in Table 7. Regardless of the error distributions, RVaR (RAVaR)

works better than QVaR (QAVaR); MAE and the variance of MAE are smaller. As

we can expect, both estimators perform better for the conditional VaR than AVaR.

Figure 10 presents box-plots for both estimators (QAVaR and RAVaR) given x =

1.006 across 500 replications. Findings are similar to the one from Table 7; there are

some evidence to suggest that RAVaR has smaller MAE than QAVaR. Also, RAVaR is

more stable than QAVaR (MAE of QAVaR is more spread). Note that both estimators

work better for normal distributions than other heavy-tailed distributions. We could
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Table 7: MAE for different error distributions α = 0.95, N = 1000 (averaged over all
test points)

Error QVaR RVaR QAVaR RAVaR
N(0, 1) 0.0762 0.0575 0.0990 0.0674

(0.0037) (0.0020) (0.0058) (0.0026)

t(3) 0.1758 0.1290 0.4255 0.3232
(0.0188) (0.0095) (0.0808) (0.0623)

CN(1, 9) 0.3006 0.1955 0.3844 0.2311
(0.0563) (0.0225) (0.0882) (0.0316)

LN(0, 1) 0.3905 0.2670 0.8957 0.6432
(0.0959) (0.0430) (0.3896) (0.2481)

observe the similar pattern for conditional VaR.

Table 8 illustrates sample size effect on MAE of estimators. As expected, both

estimators perform better as sample size increases. MAE of RVaR (RAVaR) is still

smaller than that of QVaR (QAVaR) across all sample sizes.

Next, we obtain asymptotic variances (derived in Section 2.3) and compare that

with empirical (finite sample) variances of both estimators. Figure 11 reports asymp-

totic and finite sample efficiencies of both estimators for the conditional VaR where

R = 500, and error follows N(0, 1) (results are similar for other error distributions).

In Figure 11-(a), we see that asymptotic variance of RVaR (dash-dot line) is smaller

than that of QVaR (solid line) except at xk near 0. In fact, asymptotic variance

is affected by how far xk is away from 0 (which is the mean of explanatory vari-

able in the simulation); when xk is further from the mean, the difference between

asymptotic variances of both estimators is bigger. Figure 11-(b) provides empirical

variance of both estimators across 500 replications. Empirical variance of RVaR is

(equal or) smaller than that of QVaR at all xk. Figure 11-(c) and Figure 11-(d) com-

pare asymptotic variances to empirical variances of both estimators. It is clear that
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Table 8: MAE for different sample size N with α = 0.95 (averaged over all test points)

Error Estimator N = 500 N = 1000 N = 2000
N(0, 1) QVaR 0.1129 0.0762 0.0569

RVaR 0.0849 0.0575 0.0418
QAVaR 0.1390 0.0990 0.0737
RAVaR 0.0992 0.0674 0.0498

t(3) QVaR 0.2420 0.1758 0.1277
RVaR 0.1785 0.1290 0.0942
QAVaR 0.5385 0.4255 0.3207
RAVaR 0.4517 0.3232 0.2085

CN(1, 9) QVaR 0.4322 0.3006 0.2180
RVaR 0.2928 0.1955 0.1447
QAVaR 0.5471 0.3844 0.2658
RAVaR 0.3373 0.2311 0.1636

LN(0, 1) QVaR 0.5814 0.3905 0.2959
RVaR 0.4095 0.2670 0.1975
QAVaR 1.1986 0.8957 0.7275
RAVaR 0.9503 0.6432 0.4754
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Figure 10: MAE for conditional AVaR given x = 1.006 under different error distribu-
tions (α = 0.95, N = 1000)

asymptotic variances are to provide a good approximation to the empirical ones for

both estimators.

Figure 12 illustrates asymptotic and empirical variances of both estimators for

AVaR. Insights obtained from the results are similar to the VaR case. However, Fig-

ure 12-(c) indicates that empirical variances of QAVaR are larger than asymptotic

variances, especially when xk is far from the mean. For this case, asymptotic effi-

ciency of QAVaR may not very informative on its behavior in finite sample. Results

are similar for other error distributions except t(3). When the error follows t(3),

asymptotic (empirical) variances of QAVaR are smaller than that of RAVaR except

when xk is close to the boundary (as shown in Figure 13).

To further investigate the finite sample efficiencies and robustness of both esti-

mators compared to the asymptotic ones, we provide empirical coverage probabilities

(CP) of a two-sided 95% (nominal) confidence interval (CI) in Table 9 (difference
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(c) QVaR: Asymptotic vs. Empirical
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(d) RVaR: Asymptotic vs. Empirical

Figure 11: Conditional VaR: asymptotic and empirical variance (Error∼ N(0, 1),
α = 0.95, N = 1000, R = 500)
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(c) QAVaR: Asymptotic vs. Empirical
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(d) RAVaR: Asymptotic vs. Empirical

Figure 12: Conditional AVaR: asymptotic and empirical variance (Error∼ N(0, 1),
α = 0.95, N = 1000, R = 500)
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(c) QAVaR: Asymptotic vs. Empirical

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
k

V
a

ri
a

n
c
e

 

 
Asymptotic
Empirical

(d) RAVaR: Asymptotic vs. Empirical

Figure 13: Conditional AVaR: asymptotic and empirical variance (Error∼ t(3), α =
0.95, N = 1000, R = 500)
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Table 9: Coverage probability with α = 0.95, N = 1000 (averaged over all test points)

Error QVaR RVaR QAVaR RAVaR
N(0, 1) 0.9167 0.9551 0.8442 0.9552

(0.0333) (-0.0051) (0.1058) (-0.0052)

t(3) 0.9044 0.9269 0.7088 0.9080
(0.0456) (0.0231) (0.2412) (0.0420)

CN(1, 9) 0.9262 0.9428 0.8824 0.9548
(0.0238) (0.0072) (0.0676) (-0.0048)

LN(0, 1) 0.9185 0.9276 0.6930 0.9185
(0.0315) (0.0224) (0.2570) (0.0315)

between CP and 0.95 is given in parentheses). For each replication, the empiri-

cal confidence interval is calculated from the sample version of asymptotic variance

(when applied to the values of an observed sample of a given size). Then, for given

xk, the proportion of the 500 replications where the obtained confidence interval con-

tains the true (theoretical) value is calculated, and these proportions are averaged

across all test points. For N(0, 1) and CN(1, 9) error distributions, the resulting CP

of RVaR (RAVaR) is very close to 0.95 while empirical CI for QVaR (QAVaR) under-

covers (resulting CP is smaller than 0.95). For t(3) and LN(0, 1) error distributions,

CP of RVaR (RAVaR) drops, yet maintains somewhat adequate CP which is a lot

better than CP of QVaR (QAVaR). CI of QAVaR under-covers seriously (resulting

CP is about 0.7) and this indicates QAVaR procedure may be very unstable and

needs rather wider CI than other estimators to overcome its sensitivity. Note that

RVaR (RAVaR) is more conservative than QVaR (QAVaR) regardless of the error

distributions.

We could draw similar conclusions for other sample sizes and α values. That is,

RVaR (RAVaR) performs better and provides stable results than QVaR (QAVaR)

under different error distributions.
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In addition, we estimate another law invariant risk measure given in (2.2.55) with

c = 0.7 using different procedures (mixed quantile based and residual based methods).

Quantile based estimator is referred to as “QRM” and LSR estimator is referred to

as “RRM” for this risk measure. As before, we compare these estimators under

different error distributions. Table 10 presents MAE (averaged over all test points)

and variance of MAE (in parenthesis) across 500 replications of estimates. Similar

to the cases of value-at-risk and average value-at-risk measures, RRM works better

than QRM. That is, MAE and the variance of MAE computed for RRM are smaller.

These results indicate that LSR estimators perform better than their mixed quantile

counterparts for different risk measures.

Table 10: MAE for different error distributions α = 0.95, N = 1000 of the risk
measure (2.2.55)

Error QRM RRM
N(0, 1) 0.0661 0.0404

(0.0029) (0.0009)

t(3) 0.2045 0.1240
(0.0246) (0.0106)

CN(1, 9) 0.2158 0.1439
(0.0298) (0.0096)

LN(0, 1) 0.9971 1.1442
(0.1832) (0.0944)

2.5 Illustrative Empirical Examples

In this section, we demonstrate considered methods to estimate conditional VaR and

AVaR with real data; different financial asset classes. Let us first present an example

of Credit Default Swap (CDS). CDS is the most popular credit derivative in the

rapidly growing credit markets (see FitchRatings (2006) for a detailed survey of the
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credit derivatives market). CDS contract provides insurance against a default by a

particular company, a pool of companies, or sovereign entity. The rate of payments

made per year by the buyer is known as the CDS spread (in basis points). We focus

on the risk of CDS trading (long or short position) rather than on the use of a CDS

to hedge credit risk. The CDS dataset obtained from Bloomberg consists of 1006

daily observations from January 2007 to January 2011. Let the dependent variable

Y be daily percent change, (Y (t + 1) − Y (t))/Y (t) ∗ 100, of Bank of America Corp

(NYSE:BAC) 5-year CDS spread, explanatory variables X1 be daily return of BAC

stock price, and X2 be daily percent change of generic 5-year investment grade CDX

spread (CDX.IG). We use the term “percent change” rather than return because the

return of CDS contract is not same as the return of CDS spread (e.g., see O’Kane

and Turnbull (2003) for an overview of CDS valuation models). Residuals obtained

from this dataset are heavy-tailed distributed (similar to Figure 8-(b)).

Figure 14 shows estimated conditional VaR (RVaR) of BAC CDS spread percent

change (result of QVaR is similar). Since one can take either short or long position,

we present both tail risk with all values of α which ranges from 0.01 to 0.99; α < 0.5

corresponds to the left tail (short position) and right tail (long position), otherwise.

It is clear that RVaR of certain dates are much higher (lower) than normal level due to

the different daily economic conditions reflected by BAC stock price and CDX spread.

This indicates the specific (daily) economic conditions should be taken account for the

accurate estimation of risk, and therefore emphasize the importance of conditional

risk measures. Note that given a specific date, estimated RVaR curve along the

different α values is asymmetric since the distribution of CDS spread percent change

is not symmetric.

To compare the prediction performance of both estimators, we forecast 603 one-

day-ahead (tomorrow’s) VaR (AVaR) given the current (today’s) value of explanatory
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Figure 14: Estimated conditional VaR (RVaR) for BAC CDS spread percent change
for α = 0.01, . . . , 0.99

variables using a rolling window of the previous 403 days. Figure 15 presents forecast-

ing results of QVaR and RVaR with α = 0.05 on 603 out-of-sample. Both estimators

show similar behaviors, but RVaR seems little more stable. Following ideas in McNeil

and Frey (2000) and Leorato et al. (2010), “violation event” is said to occur whenever

observed CDS spread percent change falls below the predicted VaR (we can find a few

violation events from Figure 15). Also, the forecast error of AVaR is defined as the

difference between the observed CDS spread percent change and the predicted AVaR

under the violation event. By definition, the violation event probability should be

close to α and the forecast error should be close to zero. Table 11 presents the pre-

diction performance (violation event probability for VaR, mean of forecast error for

AVaR in parenthesis) of both estimators for α = 0.01 and 0.05. In-sample statistics

show that both estimators fit the data well; the violation event probabilities are very
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Figure 15: Risk prediction of BAC CDS: QVaR and RVaR (α=0.05)

close to α and forecast errors are very small. Out-of-sample performances of both

estimators are very similar for α = 0.01, even though the forecast errors increase a

little compared to in-sample cases. For α = 0.05, RVaR (RAVaR) seems perform

better; event probabilities are closer to 0.05 and forecast errors are smaller.

Next, we apply considered methods to one of the US equities; International Busi-

ness Machines Corp (NYSE). The dataset contains 1722 daily observation from De-

cember 2005 to December 2010. Let the dependent variable Y be the daily log return,

100*log(Y(t+1)/Y(t)), of IBM stock price, explanatory variables X1 be the log re-

turn of S&P 500 index, and X2 be the lagged log return. Similar to CDS example,

we forecast 638 one-day-ahead (tomorrow’s) VaR (AVaR) given the current (today’s)

value of explanatory variables using a rolling window of the previous 639 days. Resid-

uals obtained from this dataset are heavy-tailed distributed. Table 12 compares the
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Table 11: Risk prediction performance of BAC CDS

In-sample α Event(%) Mean
QVaR(QAVaR) 0.01 0.9950 (0.1965)
RVaR(RAVaR) 0.01 0.9950 (-0.8630)

QVaR(QAVaR) 0.05 4.9751 (0.2287)
RVaR(RAVaR) 0.05 4.9751 (-0.0269)
Out-of-sample α Event(%) Mean
QVaR(QAVaR) 0.01 0.8292 (1.4546)
RVaR(RAVaR) 0.01 0.8292 (1.1052)

QVaR(QAVaR) 0.05 3.6484 (1.3740)
RVaR(RAVaR) 0.05 4.4776 (-0.3722)

risk prediction performance of IBM stock return. Both estimators perform well for

in-sample prediction. For out-of-sample prediction, both estimators behave similarly

for α = 0.05, but violation event probability is larger than 0.05. For α = 0.01, RVaR

(RAVaR) seems a bit better, but event probability exceeds 0.01. We provide the

additional information of estimated regression coefficients and confidence intervals

(upper and lower) for the empirical examples in Appendix F.

Finally, we illustrate how crude oil price had impacted the US airlines’ risk as

we mentioned in Section 2.1. Crude oil prices had continued to rise since May 2007

and peaked all time high in July 2008, right before the brink of the US financial

system collapse. We compare the movement of estimated VaR for three airline stocks

given crude oil price change; Delta Airlines, Inc (NYSE:DAL), American Airlines,

Inc (NYSE:AMR), and Southwest Airlines Co (NYSE:LUV). Figure 16 depicts RVaR

movement with α = 0.05 from May 2007 to July 2008 (QVaR shows similar patterns).

For easy comparison, we standardize all units relative to the starting date. As we

can see, crude oil price had jumped 150% during this time span. On the other hand,

RVaR of LUV increased about 15% while that of AMR increased 120% and that of

DAL increased 90% (in magnitude). In fact, different airlines have different strategies
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Table 12: Risk prediction performance of IBM stock

In-sample α Event(%) Mean
QVaR(QAVaR) 0.01 1.0180 (-0.1305)
RVaR(RAVaR) 0.01 0.9397 (-0.3481)

QVaR(QAVaR) 0.05 5.0117 (0.0468)
RVaR(RAVaR) 0.05 4.9334 (-0.0225)
Out-of-sample α Event(%) Mean
QVaR(QAVaR) 0.01 2.3511 (0.6171)
RVaR(RAVaR) 0.01 1.8809 (0.5023)

QVaR(QAVaR) 0.05 6.7398 (0.4787)
RVaR(RAVaR) 0.05 6.1129 (0.4778)

to hedge the risk on oil price fluctuations and this in turn affects the risk of airlines’

stock movement. For example, Southwest Airlines is well known for hedging crude oil

prices aggressively. On the other hand, Delta Airlines does little hedge against crude

oil price, but operates a lot of international flights. American Airlines does not have

strong hedging against crude oil price either, and operates less international flights

than Delta Airlines. Our estimation results confirm the firm specific risk regarding

crude oil price fluctuations.

2.6 Conclusions

Value-at-Risk and Average Value-at-Risk are widely used measures of financial risk.

In order to accurately estimate risk measures, taking into account the specific eco-

nomic conditions, we considered two estimation procedures for conditional risk mea-

sures; one is based on residual analysis of the standard least squares method (LSR

estimator) and the other is based on mixedM-estimators (mixed quantile estimator).

Large sample statistical inferences of both estimators are derived and compared. In

addition, finite sample properties of both estimators are investigated and compared

as well. Monte Carlo simulation results, under different error distributions, indicate
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Figure 16: Airline equities: RVaR conditional on crude oil price (α=0.05)

that the LSR estimators perform better than their (mixed) quantiles counterparts. In

general, MAE and asymptotic/empirical variance of the LSR estimators are smaller

than that of quantile based estimators. We also observe that asymptotic variance of

estimators approximates the finite sample efficiencies well for reasonable sample sizes

used in practice. However, we may need more samples to guarantee an acceptable

efficiency of the quantile based estimator for Average Value-at-risk compared to other

estimators. Prediction performances on the real data example suggest similar con-

clusions. In fact, residual based estimators can be calculated easily and therefore the

LSR method could be implemented efficiently in practice. Moreover, LSR method can

be easily applied to the general class of law invariant risk measures. In this study, we

assume a static model with independent error distributions. Extension of considered

estimation procedures incorporating different aspects of (dynamic) time series models
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could be an interesting topic for the further study.
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APPENDIX A

DERIVATION OF RESULTS FOR TWO-RESOURCE

MODEL

A.0.1 No Alliance

First consider the case in which bmin ≥ α̃ − β̃(ỹ−1 + ỹ1) > 0 (it is shown later for

which input parameter values this condition holds). In this case the profit function

of seller i is given by

g̃i(ỹi, ỹ−i) = ỹi

[

α̃− β̃(ỹ−i + ỹi)
]

Then the best response function of seller i is given by

Bi(ỹ−i) =
α̃− β̃ỹ−i

2β̃

Solving the system

ỹi =
α̃− β̃ỹ−i

2β̃

for i = ±1, the equilibrium (ỹ∗−1, ỹ
∗
1) is obtained, where

ỹ∗i =
α̃

3β̃
> 0

The demand at the equilibrium prices (ỹ∗−1, ỹ
∗
1) is equal to

α̃− β̃(ỹ∗−1 + ỹ∗1) =
α̃

3
> 0 (A.0.78)

Therefore, if bmin ≥ α̃/3, then the equilibrium prices are given by (1.2.2), the equi-

librium demand is given by (1.2.3), the resulting profit of seller i is given by (1.2.4),

and thus the total profit of both sellers together is given by (1.2.5) and the consumer

surplus is given by (1.2.6).
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Next, consider the case in which bmin ≤ α̃/3. Note that in this case α̃ ≥ 3bmin >

bmin.

Case (1): First, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1+ ỹ1 < (α̃−bmin)/β̃.

In Figure 17, this corresponds to (a). Then α̃− β̃(ỹ−1 + ỹ1) > bmin > 0, and thus the

profit of seller i is given by

g̃i(ỹi, ỹ−i) = ỹibmin

Thus, if ỹ−1 + ỹ1 < (α̃ − bmin)/β̃, then the profit of seller i is increasing in ỹi, and

hence such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (2): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1 + ỹ1 ≥ α̃/β̃. In

Figure 17, this corresponds to (b). Then the demand and profit of each seller is zero.

Case (3.1): Next, consider any pair of prices (ỹ−1, ỹ1) such that α̃/β̃ > ỹ−1 + ỹ1 >

(α̃ − bmin)/β̃ and ỹ−1 + 2ỹ1 > α̃/β̃. In Figure 17, this corresponds to (c). Then

0 < α̃− β̃(ỹ−1 + ỹ1) < bmin, and thus the profit of seller i is given by

g̃i(ỹi, ỹ−i) = ỹi

[

α̃− β̃(ỹ−i + ỹi)
]

Note that

∂g̃1(ỹ1, ỹ−1)/∂ỹ1 = α̃− β̃ỹ−1 − 2β̃ỹ1 < 0

Thus, if α̃/β̃ > ỹ−1+ ỹ1 > (α̃−bmin)/β̃ and ỹ−1+2ỹ1 > α̃/β̃, then the profit of seller 1

is decreasing in ỹ1, and hence such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (3.2): Next, consider any pair of prices (ỹ−1, ỹ1) such that α̃/β̃ > ỹ−1 + ỹ1 >

(α̃ − bmin)/β̃ and 2ỹ−1 + ỹ1 > α̃/β̃. In Figure 17, this corresponds to (d). It follows

similarly to Case 3.1 that the profit of seller −1 is decreasing in ỹ−1, and hence such

a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (4.1): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1+ỹ1 = (α̃−bmin)/β̃

and 0 ≤ ỹ−1 < bmin/β̃. Note that α̃− β̃(ỹ−1 + ỹ1) = bmin, and thus the corresponding

profit of seller −1 is given by

g̃−1(ỹ−1, ỹ1) = ỹ−1bmin
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(a) Case 1: ỹ
−1 + ỹ1 < (α̃− bmin)/β̃. (b) Case 2: ỹ

−1 + ỹ1 ≥ α̃/β̃.

(c) Case 3.1: α̃/β̃ > ỹ
−1 + ỹ1 > (α̃− bmin)/β̃ and

ỹ
−1 + 2ỹ1 > α̃/β̃.

(d) Case 3.2: α̃/β̃ > ỹ
−1+ ỹ1 > (α̃− bmin)/β̃ and

2ỹ
−1 + ỹ1 > α̃/β̃.

(e) Case 4: ỹ
−1 + ỹ1 = (α̃ − bmin)/β̃ and (ỹ

−1 <
bmin/β̃ or ỹ1 < bmin/β̃).

(f) Case 5: The line segment be-
tween (bmin/β̃, α̃/β̃ − 2bmin/β̃) and
(α̃/β̃ − 2bmin/β̃, bmin/β̃).

Figure 17: Different regions of the pair of prices (ỹ−1, ỹ1) corresponding to different
cases.
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Next, consider ŷ−1 :=
(

α̃/β̃ − ỹ1

)

/2. First, note that

ỹ1 ≤ ỹ−1 + ỹ1 =
α̃− bmin

β̃
<

α̃

β̃

⇒ α̃− β̃ỹ1
2

> 0

⇔ α̃− β̃

(

α̃/β̃ − ỹ1
2

+ ỹ1

)

> 0

⇔ α̃− β̃ (ŷ−1 + ỹ1) > 0

Also, note that

ỹ−1 < bmin/β̃

⇔ ỹ−1 + (α̃− bmin) /β̃ < α̃/β̃

⇔ 2ỹ−1 + ỹ1 < α̃/β̃

⇔ ỹ−1 <
α̃/β̃ − ỹ1

2
= ŷ−1

and thus α̃ − β̃ (ŷ−1 + ỹ1) < α̃ − β̃ (ỹ−1 + ỹ1) = bmin. Thus the corresponding profit

of seller −1 is given by

g̃−1(ŷ−1, ỹ1) = ŷ−1

[

α̃− β̃ (ŷ−1 + ỹ1)
]
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Next, note that

ỹ−1 < bmin/β̃

⇒
(

bmin − β̃ỹ−1

)2

> 0

⇔ b2min + 2bminβ̃ỹ−1 + β̃2ỹ2−1 > 4bminβ̃ỹ−1

⇔
(

bmin + β̃ỹ−1

)2

> 4β̃ỹ−1bmin

⇔
(

bmin/β̃ + ỹ−1

2

)(

bmin + β̃ỹ−1

2

)

> ỹ−1bmin

⇔





α̃/β̃ −
(

α̃/β̃ − bmin/β̃ − ỹ−1

)

2









α̃− β̃
(

α̃/β̃ − bmin/β̃ − ỹ−1

)

2





> ỹ−1bmin

⇔
(

α̃/β̃ − ỹ1
2

)(

α̃− β̃ỹ1
2

)

> ỹ−1bmin

⇔
(

α̃/β̃ − ỹ1
2

)



α̃−
β̃
(

α̃/β̃ − ỹ1

)

2
− β̃ỹ1



 > ỹ−1bmin

⇔ ŷ−1

(

α̃− β̃ŷ−1 − β̃ỹ1

)

> ỹ−1bmin

⇔ g̃−1(ŷ−1, ỹ1) > g̃−1(ỹ−1, ỹ1)

Thus such a pair of prices (ỹ−1, ỹ1) cannot be an equilibrium.

Case (4.2): Next, consider any pair of prices (ỹ−1, ỹ1) such that ỹ−1+ỹ1 = (α̃−bmin)/β̃

and 0 ≤ ỹ1 < bmin/β̃. Consider ŷ1 :=
(

α̃/β̃ − ỹ−1

)

/2. It follows similarly to Case 4.1

that g̃1(ŷ1, ỹ−1) > g̃1(ỹ1, ỹ−1) and thus such a pair of prices (ỹ−1, ỹ1) cannot be an

equilibrium. In Figure 17, Case (4.1) and Case (4.2) correspond to (e).

Case (5): The only remaining pairs of prices to check are pairs (ỹ−1, ỹ1) on the line

segment between (bmin/β̃, α̃/β̃−2bmin/β̃) and (α̃/β̃−2bmin/β̃, bmin/β̃). In Figure 17,

this corresponds to the line segment on (f). Consider any pair of prices (ỹ−1, ỹ1) =

(1 − γ)(bmin/β̃, α̃/β̃ − 2bmin/β̃) + γ(α̃/β̃ − 2bmin/β̃, bmin/β̃) for γ ∈ [0, 1]. It follows

from bmin ≤ α̃/3 that 0 < bmin/β̃ ≤ α̃/β̃ − 2bmin/β̃, and thus ỹi > 0. Note that

ỹ−1+ ỹ1 = (1− γ)(α̃/β̃− bmin/β̃) + γ(α̃/β̃− bmin/β̃) = (α̃− bmin)/β̃, that ỹ−1+2ỹ1 =
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(1−γ)(2α̃/β̃−3bmin/β̃)+γα̃/β̃ ≥ α̃/β̃, where the inequality follows from bmin ≤ α̃/3,

and similarly 2ỹ−1 + ỹ1 ≥ α̃/β̃. Then, for any ŷ1 < ỹ1, it holds that ỹ−1 + ŷ1 <

(α̃ − bmin)/β̃, and thus it follows from Case (a) that g̃1(ŷ1, ỹ−1) < g̃1(ỹ1, ỹ−1). Also,

for any ŷ1 > ỹ1, it holds that ỹ−1 + ŷ1 > (α̃− bmin)/β̃ and ỹ−1 + 2ŷ1 > α̃/β̃, and thus

it follows from Case (c) that g̃1(ŷ1, ỹ−1) < g̃1(ỹ1, ỹ−1). Hence, given ỹ−1, ỹ1 is the best

response for seller 1. Similarly, given ỹ1, ỹ−1 is the best response for seller −1.

Therefore, if bmin ≤ α̃/3, then all pairs of prices (ỹ−1, ỹ1) on the line segment

between (bmin/β̃, α̃/β̃ − 2bmin/β̃) and (α̃/β̃ − 2bmin/β̃, bmin/β̃) are equilibria. For all

of these equilibrium prices total price is equal to (α̃ − bmin)/β̃, the demand is equal

to bmin, the resulting profit of seller i is equal to ỹibmin, and thus the total profit of

both sellers together is given by (1.2.7) and the consumer surplus is given by (1.2.8).

A.0.2 Perfect Coordination

In this section we determine the maximum achievable total profit of the two sellers

together, that is, the total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

g̃(ỹ−1, ỹ1) := (ỹ−1 + ỹ1)min{bmin, max{0, α̃− β̃(ỹ−1 + ỹ1)}}

First consider the case in which bmin ≥ α̃ − β̃(ỹ−1 + ỹ1) > 0. In this case the total

profit of the two sellers is given by

g̃(ỹ−1, ỹ1) := (ỹ−1 + ỹ1)
[

α̃− β̃(ỹ−1 + ỹ1)
]

The optimal total price ȳ−1 + ȳ1 that maximizes the total profit is given by

ȳ−1 + ȳ1 =
α̃

2β̃
> 0

The demand at the optimal total price ȳ−1 + ȳ1 is equal to

α̃− β̃(ȳ−1 + ȳ1) =
α̃

2
>

α̃

3
= α̃− β̃(ỹ∗−1 + ỹ∗1) (A.0.79)
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Therefore, if bmin ≥ α̃/2, then the optimal total price is given by (1.2.9), the corre-

sponding demand is given by (1.2.10), the total profit of both sellers together is given

by (1.2.11), and the consumer surplus is given by (1.2.12).

Next, consider the case in which bmin ≤ α̃/2. In this case the optimal total price

is given by

ỹ−1 + ỹ1 =
α̃− bmin

β̃
> 0

with corresponding demand equal to bmin. The total profit of both sellers together is

equal to

(ỹ−1 + ỹ1) bmin =
α̃− bmin

β̃
bmin

and the consumer surplus is equal to

1

2

[

α̃

β̃
− α̃− bmin

β̃

]

bmin =
b2min

2β̃

A.0.3 Resource Exchange Alliance

For given values of b−1 and b1, the feasible set S1 of two-resource products that can be

sold by the two sellers is given by S1 := {(q−1(x), q1(x)) : xi ∈ [0, bi], i = ±1}. Next

we show that this set S1 is equal to S2 := {(q−1, q1) ∈ [0, bmin]
2 : q−1 + q1 ≤ bmin}.

First, consider any (q−1(x), q1(x)) ∈ S1 with corresponding (x−1, x1) ∈ [0, b−1]×[0, b1].

Without loss of generality, suppose that b−1 = bmin. Then q−1(x)+q1(x) = min{b−1−

x−1, x1}+min{b1−x1, x−1} ≤ b−1−x−1+x−1 = b−1 = bmin, and thus (q−1(x), q1(x)) ∈

S2. Next, consider any (q−1, q1) ∈ S2. Choose xi = q−i for i = ±1. Note that

xi ∈ [0, bi] since q−i ∈ [0, bmin]. Also, xi = q−i ≤ bmin − qi = bmin − x−i ≤ b−i − x−i,

and thus q−i(x) = min{b−i − x−i, xi} = xi = q−i. Thus (q−1, q1) ∈ S1, and hence

S1 = S2. Hence, the first-stage decision variables may be considered to be the resource

exchange quantities x = (x−1, x1) ∈ [0, b−1] × [0, b1], or equivalently the capacities

q = (q−1, q1) ∈ S2 of two-resource products after exchange.
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Case 1. First consider the case in which qi > α − βyi + γy−i > 0 for i = ±1 (it is

considered later for which input parameter values and values of q and y this condition

holds). In this case the profit function of each seller i is given by

gi(yi, y−i) = yi [α− βyi + γy−i]

Then the best response function of each seller i is given by

Bi(y−i) =
α + γy−i

2β

Solving the system

yi =
α + γy−i

2β

for i = ±1, the equilibrium (y∗−1, y
∗
1) is obtained, where

y∗i =
α

2β − γ
> 0 (A.0.80)

Note that the equilibrium prices are greater than the marginal cost c−1 + c1 of the

two-resource product. The demand at the equilibrium prices (y∗−1, y
∗
1) is equal to

α− βy∗i + γy∗−i =
αβ

2β − γ
> 0 (A.0.81)

The resulting profit of each seller is equal to

y∗i min{qi, max{0, α− βy∗i + γy∗−i}} =
α2β

(2β − γ)2
(A.0.82)

and thus the total profit of both sellers together is equal to

2
α2β

(2β − γ)2
(A.0.83)

Therefore, if qi ≥ αβ/(2β − γ) for i = ±1, then the equilibrium prices are given

by (A.0.80), the equilibrium demand is given by (A.0.81), the resulting profit of each

seller is given by (A.0.82), and thus the total profit of both sellers together is given

by (A.0.83). Note that qi ≥ αβ/(2β−γ) for i = ±1 requires that bmin ≥ 2αβ/(2β−γ).
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Figure 18: Different cases of capacity bmin for a resource exchange alliance.

Thus the results above hold if bmin ≥ 2αβ/(2β − γ) and the resource exchange x is

chosen such that qi ≥ αβ/(2β − γ) for i = ±1. In Figure 18, the line ABCD shows

pairs (q−1, q1) such that q−1 + q1 = bmin > 2αβ/(2β − γ), obtained with resource

exchange x = (x−1, x1) such that xi = q−i = bmin − qi = bmin − x−i ≤ b−i − x−i.

Thus, for the given value of bmin > 2αβ/(2β − γ), the set of points (q−1, q1) such

that qi ≥ αβ/(2β − γ) for i = ±1 and q−1 + q1 ≤ bmin corresponds to triangle

BCI. All corresponding resource exchanges x lead to sales of two-resource products

of αβ/(2β − γ) by each seller, corresponding to point I, and provide total profit of

2α2β/(2β − γ)2.
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Case 2. Next, consider the case in which 0 ≤ q−i ≤ α − βy−i + γyi and qi >

α− βyi + γy−i > 0 (as before, it is considered later for which input parameter values

and values of q and y this condition holds). In this case the profit function of seller −i

is given by

g−i(y−i, yi) = y−iq−i

and the profit function of seller i is given by

gi(yi, y−i) = yi [α− βyi + γy−i]

Then the best response function of seller −i is given by

B−i(yi) = max{y−i : q−i ≤ α− βy−i + γyi} =
α+ γyi − q−i

β

and the best response function of seller i is given by

Bi(y−i) =
α + γy−i

2β

Solving the system

y−i =
α + γyi − q−i

β

yi =
α + γy−i

2β

the solution (y∗−1, y
∗
1) is obtained, where

y∗−i =
2αβ + αγ − 2βq−i

2β2 − γ2

y∗i =
αβ + αγ − γq−i

2β2 − γ2
(A.0.84)

(It is checked later under what conditions y∗−i, y
∗
i > 0 and (y∗−i, y

∗
i ) is the unique

equilibrium.) The demands at the prices (y∗−i, y
∗
i ) are equal to

d−i(y
∗
−i, y

∗
i ) = α− βy∗−i + γy∗i = q−i (A.0.85)

di(y
∗
i , y

∗
−i) = α− βy∗i + γy∗−i =

αβ(β + γ)− βγq−i

2β2 − γ2
(A.0.86)
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Recall that we are considering the case in which q−i ≤ α − βy−i + γyi and qi >

α− βyi + γy−i. Note that q−i = α− βy∗−i + γy∗i . Also note that qi > α− βy∗i + γy∗−i

if and only if qi > αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2). Examples of the line

qi = αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2) are given in Figure 18 by line LFI

for i = 1 and by line MGI for i = −1. It can be verified that the intercept satisfies

αβ(β + γ)/(2β2 − γ2) ∈ (0, 2αβ/(2β − γ)). The slope of the lines are negative if

γ > 0 and positive if γ < 0. Note that if q−i = αβ/(2β − γ), then αβ(β + γ)/(2β2 −

γ2) − βγq−i/(2β
2 − γ2) = αβ/(2β − γ), and thus in all cases the lines go through

I = (αβ/(2β− γ), αβ/(2β− γ)). In Figure 18, if bmin > 2αβ/(2β− γ), such as in the

case in which the line ABCD shows pairs (q−1, q1) such that q−1+ q1 = bmin, then the

set of points (q−1, q1) such that 0 ≤ q−1 ≤ α− βy∗−1 + γy∗1, q1 > α− βy∗1 + γy∗−1, and

q−1 + q1 ≤ bmin, corresponds to quadrilateral ABIL. (Note that q−1 ≤ αβ/(2β − γ),

since it has already been shown that q−1 > α−βy∗−1+γy
∗
1 in triangle BCI.) Similarly,

the set of points (q−1, q1) such that 0 ≤ q1 ≤ α−βy∗1+γy∗−1, q−1 > α−βy∗−1+γy
∗
1, and

q−1 + q1 ≤ bmin, corresponds to quadrilateral DCIM (note that q1 ≤ αβ/(2β − γ)).

If αβ(β + γ)/(2β2 − γ2) < bmin ≤ 2αβ/(2β− γ), such as in the case in which the line

EFGH shows pairs (q−1, q1) such that q−1+ q1 = bmin, then the set of points (q−1, q1)

such that 0 ≤ q−1 ≤ α − βy∗−1 + γy∗1, q1 > α − βy∗1 + γy∗−1, and q−1 + q1 ≤ bmin,

corresponds to triangle EFL, and the set of points (q−1, q1) such that 0 ≤ q1 ≤

α−βy∗1+γy∗−1, q−1 > α−βy∗−1+γy
∗
1, and q−1+q1 ≤ bmin, corresponds to triangleHGM .

It is verified in Case 3 that, if bmin ≤ αβ(β + γ)/(2β2− γ2), then qi ≤ α− βy∗i + γy∗−i

for i = ±1.

Next we verify that, if q−i ≤ αβ/(2β−γ), then the prices y∗−i, y
∗
i given in (A.0.84)

satisfy y∗−i, y
∗
i > 0, that is, the prices are greater than the marginal cost c−1 + c1 of

the two-resource product. First note that the denominator in the expressions for y∗−i
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and y∗i is positive. Next consider the numerator in the expression for y∗−i. Note that

2β2 < 4β2 − γ2 = (2β + γ)(2β − γ)

⇔ αβ

2β − γ
<

2αβ + αγ

2β

Thus, if q−i ≤ αβ/(2β − γ), then

q−i <
2αβ + αγ

2β

⇔ 0 < 2αβ + αγ − 2βq−i

⇔ 0 <
2αβ + αγ − 2βq−i

2β2 − γ2
= y∗−i

Next consider the numerator in the expression for y∗i . If γ ≤ 0, then α(β+γ)−γq−i > 0

(recall that γ ∈ (−β, β)), and thus

y∗i =
αβ + αγ − γq−i

2β2 − γ2
> 0

Next, consider the case with γ > 0. Note that

αβ

2β − γ
<

αβ

γ
<

αβ + αγ

γ

Thus, if q−i ≤ αβ/(2β − γ), then

q−i <
αβ + αγ

γ

⇔ 0 < αβ + αγ − γq−i

⇔ 0 <
αβ + αγ − γq−i

2β2 − γ2
= y∗i

Next we verify that, if q−i ≤ αβ/(2β − γ) and qi > αβ(β + γ)/(2β2 − γ2) −

βγq−i/(2β
2 − γ2), then (y∗−i, y

∗
i ) given in (A.0.84) is the unique equilibrium. First,

recall that Bi(y−i) = (α + γy−i)/(2β) is the unique best response for seller i if the

capacity qi of seller i is not constraining. Note that if seller −i chooses price y∗−i and

qi > αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2), then the capacity qi of seller i is not

constraining, and thus y∗i given in (A.0.84) is the unique best response for seller i to
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y∗−i. Next we verify that y∗−i given in (A.0.84) is the unique best response for seller −i

to y∗i . Given y∗i , the profit of seller −i is given by

g−i(y−i, y
∗
i ) = y−imin {q−i, max{0, α− βy−i + γy∗i }}

=























y−iq−i if y−i ≤ α+γy∗i −q−i

β

y−i (α− βy−i + γy∗i ) if
α+γy∗i −q−i

β
≤ y−i ≤ α+γy∗i

β

0 if y−i ≥ α+γy∗i
β

Thus g−i(y−i, y
∗
i ) is a nondecreasing linear function of y−i if y−i ≤ (α+ γy∗i − q−i)/β.

If (α + γy∗i − q−i)/β < y−i < (α + γy∗i )/β, then g−i(y−i, y
∗
i ) is a concave quadratic

function of y−i, with

g′−i(y−i, y
∗
i ) = −2βy−i + α + γy∗i

< −2 (α + γy∗i − q−i) + α + γy∗i

= −α− γy∗i + 2q−i

= −α− γ
αβ + αγ − γq−i

2β2 − γ2
+ 2q−i

=
−2αβ2 − αβγ + (4β2 − γ2)q−i

2β2 − γ2

Note that

−2αβ2 − αβγ + (4β2 − γ2)q−i

2β2 − γ2
≤ 0

⇔ −2αβ2 − αβγ + (4β2 − γ2)q−i ≤ 0

⇔ −αβ(2β + γ) + (2β − γ)(2β + γ)q−i ≤ 0

⇔ −αβ + (2β − γ)q−i ≤ 0

⇔ q−i ≤ αβ

2β − γ

Hence, if q−i ≤ αβ/(2β−γ), then g′−i(y−i, y
∗
i ) < 0 for all y−i ∈ ((α+γy∗i −q−i)/β, (α+

γy∗i )/β). Hence, the unique best response for seller −i to y∗i is B−i(y
∗
i ) = (α+ γy∗i −

q−i)/β. Therefore, if q−i ≤ αβ/(2β−γ) and qi > αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−

γ2), then (y∗−i, y
∗
i ) given in (A.0.84) is the unique equilibrium.
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The resulting profit of each seller is equal to

g−i(y
∗
−i, y

∗
i ) = y∗−iq−i

=
α (2β + γ) q−i − 2βq2−i

2β2 − γ2

gi(y
∗
i , y

∗
−i) = y∗i

(

α− βy∗i + γy∗−i

)

=

(

αβ + αγ − γq−i

2β2 − γ2

)(

αβ (β + γ)− βγq−i

2β2 − γ2

)

=
α2β (β + γ)2 − 2αβγ (β + γ) q−i + βγ2q2−i

(2β2 − γ2)2
(A.0.87)

and thus the total profit of both sellers together is equal to

G(q−i) =
α (2β + γ) q−i − 2βq2−i

2β2 − γ2
+
α2β (β + γ)2 − 2αβγ (β + γ) q−i + βγ2q2−i

(2β2 − γ2)2

=
α (2β + γ) (2β2 − γ2) q−i − 2β (2β2 − γ2) q2−i + α2β (β + γ)2

(2β2 − γ2)2

+
βγ2q2−i − 2αβγ (β + γ) q−i

(2β2 − γ2)2

=
α2β (β + γ)2 + α (4β3 − 4βγ2 − γ3) q−i − β (4β2 − 3γ2) q2−i

(2β2 − γ2)2
(A.0.88)

Therefore, if q−i ≤ αβ/(2β−γ) and qi > αβ(β+γ)/(2β2−γ2)−βγq−i/(2β
2−γ2),

then the equilibrium prices are given by (A.0.84), the equilibrium demand is given

by (A.0.86), the resulting profit of each seller is given by (A.0.87), and thus the total

profit of both sellers together is given by (A.0.88).

Case 3. Next consider the case in which 0 ≤ qi ≤ α − βyi + γy−i for i = ±1. (It

will be shown that this case holds if and only if 0 ≤ qi ≤ αβ(β + γ)/(2β2 − γ2) −

βγq−i/(2β
2 − γ2) for i = ±1. In Figure 18 this case corresponds to two-resource

product capacities (q−1, q1) in region 0LIM . Thus the entire region {(q−1, q1) : qi ≥

0, i = ±1} is covered by Cases 1–3.) In this case the profit function of each seller i is

given by

gi(yi, y−i) = yiqi
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Then the best response function of each seller i is given by

Bi(y−i) = max{yi : qi ≤ α− βyi + γy−i} =
α+ γy−i − qi

β

Solving the system

yi =
α + γy−i − qi

β

for i = ±1, the equilibrium (y∗−1, y
∗
1) is obtained, where

y∗i =
α(β + γ)− βqi − γq−i

β2 − γ2
(A.0.89)

(It is checked later under what conditions y∗i > 0 and (y∗−1, y
∗
1) is the unique equilib-

rium.) The demand of seller i at the prices (y∗−1, y
∗
1) is equal to

α− βy∗i + γy∗−i = qi > 0 (A.0.90)

Next we verify that, if qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i = ±1,

then the prices y∗i given in (A.0.89) satisfy y∗i > 0 for i = ±1, that is, the prices

are greater than the marginal cost c−1 + c1 of the two-resource product. Note that

qi ≤ αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2) for i = ±1 implies that q−1 + q1 ≤

2αβ/(2β − γ). For a given pair (q−1, q1) such that qi ≤ αβ(β + γ)/(2β2 − γ2) −

βγq−i/(2β
2 − γ2) for i = ±1, consider the line with slope −1 through the point

(q−1, q1). For example, in Figure 18, EFGH is such a line, with points (q−1, q1) on

line segment FG satisfying qi ≤ αβ(β+ γ)/(2β2− γ2)−βγq−i/(2β
2− γ2) for i = ±1;

and JK is also such a line, with all points (q−1, q1) on line segment JK satisfying

qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i = ±1. We show that the prices

y∗i given by (A.0.89) corresponding to all points (q−1, q1) on line segment FG satisfy

y∗i > 0. It follows that the prices y∗i given by (A.0.89) corresponding to all points

(q−1, q1) on line segment JK also satisfy y∗i > 0. The coordinates of point F are

([(2β2−γ2)(q−1+ q1)−αβ(β+γ)]/(2β2−βγ−γ2), [αβ(β+γ)−βγ(q−1+ q1)]/(2β
2−

βγ−γ2)) and the coordinates of point G are ([αβ(β+ γ)−βγ(q−1+ q1)]/(2β
2−βγ−
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γ2), [(2β2−γ2)(q−1+ q1)−αβ(β+ γ)]/(2β2−βγ−γ2)). Consider the prices y∗i given

in (A.0.89). Note that

y∗i =
α(β + γ)− βqi − γq−i

β2 − γ2
> 0

⇔ α(β + γ)− βqi − γq−i > 0

⇔ βqi + γ(q−i + qi − qi) < α(β + γ)

⇔ (β − γ)qi + γ(q−i + qi) < α(β + γ) (A.0.91)

If (q−1, q1) is on line segment FG, then

qi ≤ αβ(β + γ)− βγ(q−1 + q1)

2β2 − βγ − γ2

⇔ (β − γ)qi + γ(q−i + qi) ≤ (β − γ)
αβ(β + γ)− βγ(q−1 + q1)

2β2 − βγ − γ2
+ γ(q−i + qi)

=
αβ3 − αβγ2 + β2γ(q−1 + q1)− γ3(q−i + qi)

2β2 − βγ − γ2

=
αβ(β2 − γ2) + (β2 − γ2)γ(q−1 + q1)

2β2 − βγ − γ2

=
(β − γ)(β + γ)[αβ + γ(q−1 + q1)]

(β − γ)(2β + γ)

=
(β + γ)[αβ + γ(q−1 + q1)]

2β + γ
(A.0.92)

Next, by separately considering the cases γ ≤ 0 and γ ≥ 0, we show that [αβ+γ(q−1+

q1)]/(2β+γ) < α, then it follows from (A.0.92) that (β−γ)qi+γ(q−i+qi) < α(β+γ),

and hence it follows from (A.0.91) that y∗i > 0.

First, suppose that γ ≤ 0. Note that

−γ < β

⇔ β < 2β + γ

⇔ αβ

2β + γ
< α

⇒ αβ + γ(q−1 + q1)

2β + γ
< α (A.0.93)

The last step follows since γ ≤ 0 and q−1 + q1 ≥ 0. It follows from (A.0.91), (A.0.92)

and (A.0.93) that, if γ ≤ 0, then y∗i > 0.
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Next, suppose that γ ≥ 0. Note that

γ < β

⇔ β < 2β − γ

⇔ αβ(2β − γ + 2γ)

(2β − γ)(2β + γ)
< α

⇔
αβ + 2αβγ

2β−γ

2β + γ
< α

⇒ αβ + γ(q−1 + q1)

2β + γ
< α (A.0.94)

The last step follows since γ ≥ 0 and q−1+q1 ≤ 2αβ/(2β−γ). It follows from (A.0.91),

(A.0.92) and (A.0.94) that, if γ ≥ 0, then y∗i > 0.

Next we verify that, if qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i = ±1,

then (y∗−1, y
∗
1) given in (A.0.89) is the unique equilibrium. We verify that y∗i given

in (A.0.89) is the unique best response for seller i to y∗−i. Given y∗−i, the profit of

seller i is given by

gi(yi, y
∗
−i) = yimin

{

qi, max{0, α− βyi + γy∗−i}
}

=























yiqi if yi ≤ α+γy∗−i−qi

β

yi
(

α− βyi + γy∗−i

)

if
α+γy∗−i−qi

β
≤ yi ≤ α+γy∗−i

β

0 if yi ≥ α+γy∗−i

β

Thus gi(yi, y
∗
−i) is a nondecreasing linear function of yi if yi ≤ (α + γy∗−i − qi)/β. If

(α+γy∗−i−qi)/β < yi < (α+γy∗−i)/β, then gi(yi, y
∗
−i) is a concave quadratic function

of yi, with

g′i(yi, y
∗
−i) = −2βyi + α + γy∗−i

< −2
(

α + γy∗−i − qi
)

+ α+ γy∗−i

= −α− γy∗−i + 2qi

= −α− γ
α(β + γ)− βq−i − γqi

β2 − γ2
+ 2qi

=
−αβ2 − αβγ + βγq−i + (2β2 − γ2)qi

β2 − γ2
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If (q−1, q1) is on line segment FG, then

qi ≤ αβ(β + γ)− βγ(q−i + qi)

2β2 − βγ − γ2

⇔ 0 ≥ −αβ2 − αβγ + βγ(q−i + qi) + (2β2 − βγ − γ2)qi

= −αβ2 − αβγ + βγq−i + (2β2 − γ2)qi

⇔ 0 ≥ −αβ2 − αβγ + βγq−i + (2β2 − γ2)qi
β2 − γ2

⇔ g′i(yi, y
∗
−i) < 0

Hence, if (q−1, q1) is on line segment FG, then g′i(yi, y
∗
−i) < 0 for all yi ∈ ((α+ γy∗−i −

qi)/β, (α+ γy∗−i)/β). Hence, the unique best response for seller i to y∗−i is Bi(y
∗
−i) =

(α + γy∗−i − qi)/β. It follows in the same way that if (q−1, q1) is on line segment

JK, then the unique best response for seller i to y∗−i is Bi(y
∗
−i) = (α + γy∗−i − qi)/β.

Therefore, if qi ≤ αβ(β + γ)/(2β2− γ2)− βγq−i/(2β
2− γ2) for i = ±1, then (y∗−1, y

∗
1)

given in (A.0.89) is the unique equilibrium.

The resulting profit of each seller i is equal to

y∗i min{qi, max{0, α− βy∗i + γy∗−i}} =
α(β + γ)qi − βq2i − γq−iqi

β2 − γ2
(A.0.95)

and thus the total profit of both sellers together is equal to

α(β + γ)(q−1 + q1)− β(q2−1 + q21)− 2γq−1q1
β2 − γ2

(A.0.96)

Therefore, if qi ≤ αβ(β + γ)/(2β2 − γ2) − βγq−i/(2β
2 − γ2) for i = ±1, then the

equilibrium prices are given by (A.0.89), the equilibrium demand is given by (A.0.90),

the resulting profit of each seller is given by (A.0.95), and thus the total profit of both

sellers together is given by (A.0.96).

Next we determine the value of (q−1, q1) that maximizes the total profit of both

sellers together under Case 3. First we fix the value of q−1+q1 at some value q ≤ bmin,

and choose q1 to maximize the total profit subject to q−1 + q1 = q. Thereafter we

choose q to maximize the total profit subject to q ≤ bmin. It follows from (A.0.96)
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that the total profit is equal to

α(β + γ)(q−1 + q1)− β(q2−1 + q21)− 2γq−1q1
β2 − γ2

=
α(β + γ)(q−1 + q1)− β(q2−1 + 2q−1q1 + q21) + 2βq−1q1 − 2γq−1q1

β2 − γ2

=
α(β + γ)q − βq2 + 2(β − γ)(q − q1)q1

β2 − γ2

=
α(β + γ)q − βq2 + 2(β − γ)qq1 − 2(β − γ)q21

β2 − γ2

Let

H1(q1) :=
α(β + γ)q − βq2 + 2(β − γ)qq1 − 2(β − γ)q21

β2 − γ2

Note that H1 is a concave quadratic function that is maximized at q∗1 = q/2, and

the corresponding value of q−1 is also q∗−1 = q/2. Recall that (A.0.96) applies if

qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i = ±1. Note that

q∗i ≤ αβ(β + γ)

2β2 − γ2
− βγ

2β2 − γ2
q∗−i for i = ±1

⇔ q

2
≤ αβ(β + γ)

2β2 − γ2
− βγ

2β2 − γ2
q

2

⇔ q ≤ 2αβ

2β − γ

Next we choose q to maximize the total profit subject to q ≤ bmin and q ≤ 2αβ/(2β−

γ). Let

H2(q) := H1(q/2)

=
α(β + γ)q − βq2 + 2(β − γ)q2/2− 2(β − γ)q2/4

β2 − γ2

=
2α(β + γ)q − (β + γ)q2

2(β − γ)(β + γ)

=
2αq − q2

2(β − γ)

Note that H2 is a concave quadratic function and H ′
2(q

∗) = 0 ⇔ q∗ = α. Also note

that q∗ = α ≤ 2αβ/(2β− γ) if and only if γ ≥ 0. Let amin := min{α, bmin, 2αβ/(2β−

γ)}. Then the value of (q−1, q1) that maximizes the total profit and that satisfies
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α
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0
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2

B1

B2
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C1

C2

β(β + γ)

2β2
− γ2

2αβ

2β − γ

≈ 0.618

Figure 19: Different cases of the capacity ratio bmin/α and the price coefficient ratio
γ/β.

qi ≤ αβ(β + γ)/(2β2 − γ2)− βγq−i/(2β
2 − γ2) for i = ±1, is q∗−1 = q∗1 = amin/2. The

corresponding total profit is H2(amin) = (2α − amin)amin/[2(β − γ)]. This concludes

Case 3.

Optimal exchange. Next, we compare the profits under Cases 1, 2, and 3, and

determine the value of (q−1, q1), that is, the value of the exchange x = (x−1, x1), that

maximizes the total profit of both sellers together. Different cases hold, depending

on the capacity ratio bmin/α and the price coefficient ratio γ/β (recall that γ/β ∈

(−1, 1)). The different cases are depicted in Figure 19.

Case A (small capacity). bmin/α ≤ [1+γ/β]/[2− (γ/β)2], that is, bmin ≤ αβ(β+

γ)/(2β2 − γ2):

In Figure 18, line JK shows an example of pairs (q−1, q1) such that q−1+q1 = bmin

for a given value of bmin < αβ(β + γ)/(2β2 − γ2), and triangle 0JK shows pairs

(q−1, q1) ≥ 0 such that q−1 + q1 ≤ bmin. In this case, the capacity bmin is so small that
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all feasible values of (q−1, q1) correspond to Case 3. Recall that αβ(β+γ)/(2β2−γ2) ∈

(0, 2αβ/(2β − γ)).

Case A1. γ/β ≤ 0 and bmin/α ≤ [1 + γ/β]/[2 − (γ/β)2], that is, γ ≤ 0 and

bmin ≤ αβ(β + γ)/(2β2 − γ2):

Recall that 2αβ/(2β−γ) ≤ α if and only if γ ≤ 0. Since bmin ≤ αβ(β+γ)/(2β2−

γ2) < 2αβ/(2β− γ) ≤ α, it follows that bmin = min{α, bmin, 2αβ/(2β− γ)}, and thus

the value of (q−1, q1) that maximizes the total profit is q∗−1 = q∗1 = bmin/2, and the

maximum total profit is (2α − bmin)bmin/[2(β − γ)]. The resulting equilibrium price

of each seller, given by (A.0.89), is y∗i = (2α − bmin)/[2(β − γ)], and the resulting

equilibrium demand of each seller, given by (A.0.90), is equal to q∗i = bmin/2.

Case A2. γ/β ≥ 0 and bmin/α ≤ [1 + γ/β]/[2 − (γ/β)2], that is, γ ≥ 0 and

bmin ≤ αβ(β + γ)/(2β2 − γ2):

In this case, bmin ≤ αβ(β+γ)/(2β2−γ2) < 2αβ/(2β−γ) and α ≤ 2αβ/(2β−γ). If

αβ(β+γ)/(2β2−γ2) ≤ α, then bmin ≤ α and thus bmin = min{α, bmin, 2αβ/(2β−γ)},

the value of (q−1, q1) that maximizes the total profit is q∗−1 = q∗1 = bmin/2, and the

maximum total profit is (2α − bmin)bmin/[2(β − γ)]. The resulting equilibrium price

of each seller, given by (A.0.89), is y∗i = (2α − bmin)/[2(β − γ)], and the resulting

equilibrium demand of each seller, given by (A.0.90), is equal to q∗i = bmin/2. Note

that αβ(β+γ)/(2β2−γ2) ≤ α if and only if γ/β ≤ (
√
5−1)/2 = 1/ϕ = ϕ−1 ≈ 0.618,

where ϕ denotes the golden ratio. If γ/β > (
√
5−1)/2 (and thus α < αβ(β+γ)/(2β2−

γ2)), then there are two possibilities. If bmin ≤ α, then as before, q∗−1 = q∗1 = bmin/2,

the equilibrium price of each seller is y∗i = (2α − bmin)/[2(β − γ)], the equilibrium

demand of each seller is equal to q∗i = bmin/2, and the maximum total profit is

(2α− bmin)bmin/[2(β− γ)]. Otherwise, if α < bmin, then q
∗
−1 = q∗1 = α/2, the resulting

equilibrium price of each seller, given by (A.0.89), is y∗i = α/[2(β − γ)], the resulting

equilibrium demand of each seller, given by (A.0.90), is equal to q∗i = α/2, and the
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maximum total profit is (2α − α)α/[2(β − γ)] = α2/[2(β − γ)]. Note that in this

case the optimal resource exchange x∗ is such that q∗−1 + q∗1 = α < bmin, that is, some

capacity is not used.

Case B (intermediate capacity). [1+γ/β]/[2− (γ/β)2] ≤ bmin/α ≤ 2/(2−γ/β),

that is, αβ(β + γ)/(2β2 − γ2) ≤ bmin ≤ 2αβ/(2β − γ):

In Figure 18, line EFGH shows an example of pairs (q−1, q1) such that q−1 +

q1 = bmin for a given value of bmin ∈ (αβ(β + γ)/(2β2 − γ2), 2αβ/(2β − γ)), and

triangle 0EH shows pairs (q−1, q1) ≥ 0 such that q−1 + q1 ≤ bmin. In this case

with intermediate capacity bmin, there are feasible values of (q−1, q1) corresponding to

Case 3, for example in pentagon 0LFGM in Figure 18, and there are feasible values

of (q−1, q1) corresponding to Case 2, for example in triangles EFL and GHM in

Figure 18.

Consider any two pairs (q−1, q1) and (q′−1, q
′
1) in triangle EFL such that q−1 = q′−1.

It follows from (A.0.84), (A.0.86), (A.0.87), and (A.0.88) that the equilibrium prices,

the equilibrium demand, the profit of each seller, and thus the total profit of both

sellers together are the same for (q−1, q1) and (q′−1, q
′
1). Therefore, for any point

(q−1, q1) in triangle EFL, there is a point (q−1, αβ(β+ γ)/(2β
2−γ2)−βγq−1/(2β

2−

γ2)) on the boundary LF between triangle EFL and pentagon 0LFGM with the same

total profit as at point (q−1, q1). Next, we show that the total profit as a function of

(q−1, q1) is continuous on the boundary between triangle EFL and pentagon 0LFGM .

Recall from (A.0.96) that the total profit at a point (q−1, q1) in pentagon 0LFGM is

equal to

α(β + γ) (q−1 + q1)− β
(

q2−1 + q21
)

− 2γq−1q1

β2 − γ2

Specifically, at the boundary point (q−1, αβ(β + γ)/(2β2 − γ2) − βγq−1/(2β
2 − γ2))
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the total profit is equal to











α(β + γ)
(

q−1 +
αβ(β+γ)−βγq−1

2β2−γ2

)

−β
(

q2−1 +
[

αβ(β+γ)−βγq−1

2β2−γ2

]2
)

− 2γq−1
αβ(β+γ)−βγq−1

2β2−γ2











β2 − γ2

=



































[α2β(β + γ)2 (2β2 − γ2)− α2β3(β + γ)2]

+
[

α(β + γ) (2β2 − γ2)
2 − αβγ(β + γ) (2β2 − γ2) + 2αβ3γ(β + γ)

]

q−1

− [2αβγ(β + γ) (2β2 − γ2)] q−1

+
[

−β (2β2 − γ2)
2 − β3γ2 + 2βγ2 (2β2 − γ2)

]

q2−1



































(2β2 − γ2)2 (β2 − γ2)

=























α2β (2β2 − γ2 − β2) (β + γ)2

+α (4β4 − 4β2γ2 + γ4 − 2β3γ + βγ3 + 2β3γ − 4β3γ + 2βγ3) (β + γ)q−1

−β (4β4 − 4β2γ2 + γ4 + β2γ2 − 4β2γ2 + 2γ4) q2−1























(2β2 − γ2)2 (β2 − γ2)

=























α2β (β2 − γ2) (β + γ)2

+α (4β4 − 4β3γ − 4β2γ2 + 3βγ3 + γ4) (β + γ)q−1

−β (4β4 − 7β2γ2 + 3γ4) q2−1























(2β2 − γ2)2 (β2 − γ2)

=























α2β (β − γ) (β + γ)3

+α (4β3 − 4βγ2 − γ3) (β − γ) (β + γ)q−1

−β (4β2 − 3γ2) (β − γ) (β + γ)q2−1























(2β2 − γ2)2 (β − γ) (β + γ)

=
α2β(β + γ)2 + α (4β3 − 4βγ2 − γ3) q−1 − β (4β2 − 3γ2) q2−1

(2β2 − γ2)2

which is the same as the total profit given by (A.0.88) for point (q−1, αβ(β +

γ)/(2β2 − γ2)− βγq−1/(2β
2 − γ2)) in triangle EFL. Thus the total profit as a func-

tion of (q−1, q1) is continuous on the boundary between triangle EFL and pentagon

0LFGM . The same observation applies to the total profit as a function of (q−1, q1) in
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triangle GHM . Hence, in Case B with intermediate capacity, it is sufficient to opti-

mize (q−1, q1) over pentagon 0LFGM only, that is, it is sufficient to restrict attention

to feasible values of (q−1, q1) corresponding to Case 3. The rest of Case B follows in

the same way as for Case A with small capacity.

Case B1. γ/β ≤ 0 and [1 + γ/β]/[2 − (γ/β)2] ≤ bmin/α ≤ 2/(2 − γ/β), that is,

γ ≤ 0 and αβ(β + γ)/(2β2 − γ2) ≤ bmin ≤ 2αβ/(2β − γ):

Consider the optimal value of (q−1, q1) in pentagon 0LFGM . Since bmin ≤ 2αβ/(2β−

γ) ≤ α, it follows that bmin = min{α, bmin, 2αβ/(2β − γ)}, and thus the value of

(q−1, q1) in pentagon 0LFGM that maximizes the total profit is q∗−1 = q∗1 = bmin/2,

and the maximum total profit is (2α − bmin)bmin/[2(β − γ)]. The resulting equilib-

rium price of each seller is y∗i = (2α− bmin)/[2(β − γ)], and the resulting equilibrium

demand of each seller is equal to q∗i = bmin/2.

Case B2. γ/β ≥ 0 and [1 + γ/β]/[2 − (γ/β)2] ≤ bmin/α ≤ 2/(2 − γ/β), that is,

γ ≥ 0 and αβ(β + γ)/(2β2 − γ2) ≤ bmin ≤ 2αβ/(2β − γ):

If γ/β ≥ (
√
5− 1)/2 (and thus α ≤ αβ(β + γ)/(2β2 − γ2)), then

α = min{α, bmin, 2αβ/(2β−γ)}, the value of (q−1, q1) that maximizes the total profit is

q∗−1 = q∗1 = α/2, and the maximum total profit is (2α−α)α/[2(β−γ)] = α2/[2(β−γ)].

The resulting equilibrium price of each seller, given by (A.0.89), is y∗i = α/[2(β− γ)],

and the resulting equilibrium demand of each seller, given by (A.0.90), is equal to q∗i =

α/2. In this case the optimal resource exchange x∗ is such that q∗−1 + q∗1 = α ≤ bmin,

that is, some capacity is not used. If γ/β < (
√
5−1)/2 (and thus α > αβ(β+γ)/(2β2−

γ2)), then there are two possibilities. If α ≤ bmin, then as before, q∗−1 = q∗1 = α/2,

the equilibrium price of each seller is y∗i = α/[2(β − γ)], the equilibrium demand

of each seller is equal to q∗i = α/2, and the maximum total profit is α2/[2(β − γ)].

Otherwise, if bmin ≤ α, then q∗−1 = q∗1 = bmin/2, the equilibrium price of each seller

is y∗i = (2α − bmin)/[2(β − γ)], the equilibrium demand of each seller is equal to
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q∗i = bmin/2, and the maximum total profit is (2α− bmin)bmin/[2(β − γ)].

Case C (large capacity). bmin/α ≥ 2/(2− γ/β), that is, bmin ≥ 2αβ/(2β − γ):

In Figure 18, line ABCD shows an example of pairs (q−1, q1) such that q−1 +

q1 = bmin for a given value of bmin ≥ 2αβ/(2β − γ), and triangle 0AD shows pairs

(q−1, q1) ≥ 0 such that q−1 + q1 ≤ bmin. In this case with large capacity bmin, there

are feasible values of (q−1, q1) in quadrilateral 0LIM in Figure 18 corresponding to

Case 3, there are feasible values of (q−1, q1) corresponding to Case 2, for example

in quadrilaterals ABIL and DCIM in Figure 18, and there are feasible values of

(q−1, q1) corresponding to Case 1, for example in triangle BCI in Figure 18.

For any point (q−1, q1) in ABIL, there is a point (q−1, αβ(β + γ)/(2β2 − γ2) −

βγq−1/(2β
2 − γ2)) on the boundary IL between ABIL and 0LIM with the same

total profit as at point (q−1, q1). It was shown under Case B that the total profit as

a function of (q−1, q1) is continuous on the boundary. The same observation applies

to the total profit as a function of (q−1, q1) in DCIM . Hence, in Case C with large

capacity, it is sufficient to optimize (q−1, q1) over quadrilateral 0LIM and triangle

BCI only, that is, it is sufficient to restrict attention to feasible values of (q−1, q1)

corresponding to Case 3 and Case 1.

Case C1. γ/β ≤ 0 and bmin/α ≥ 2/(2− γ/β), that is, γ ≤ 0 and bmin ≥ 2αβ/(2β−

γ):

Since 2αβ/(2β− γ) ≤ α and bmin ≥ 2αβ/(2β− γ), it follows that 2αβ/(2β− γ) =

min{α, bmin, 2αβ/(2β − γ)}, and thus the value of (q−1, q1) that maximizes the total

profit over 0LIM is given by q∗−1 = q∗1 = αβ/(2β−γ) represented by point I, and the

corresponding total profit is (2α−2αβ/(2β−γ))2αβ/(2β−γ)/[2(β−γ)] = 2α2β/(2β−

γ)2. Also, as shown in Case 1, all values of (q−1, q1) in triangle BCI have the same

total profit of 2α2β/(2β − γ)2. Thus, any point (q−1, q1) in triangle BCI represents

an optimal resource exchange for Case C1. For all such optimal resource exchanges,
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the resulting equilibrium price of each seller, given by both (A.0.80) and (A.0.89),

is y∗i = α/(2β − γ), and the resulting equilibrium demand of each seller, given by

both (A.0.81) and (A.0.90), is equal to αβ/(2β − γ).

Case C2. γ/β ≥ 0 and bmin/α ≥ 2/(2− γ/β), that is, γ ≥ 0 and bmin ≥ 2αβ/(2β−

γ):

Since bmin ≥ 2αβ/(2β − γ) ≥ α, it follows that α = min{α, bmin, 2αβ/(2β − γ)},

and thus the value of (q−1, q1) that maximizes the total profit over 0LIM is q∗−1 = q∗1 =

α/2, and the corresponding total profit is (2α−α)α/[2(β−γ)] = α2/[2(β−γ)]. Also,

all values of (q−1, q1) in triangle BCI have the same total profit of 2α2β/(2β − γ)2.

Note that

4β2 − 4βγ + γ2 ≥ 4β2 − 4βγ

⇒ (2β − γ)2 ≥ 4β(β − γ)

⇒ α2

2(β − γ)
≥ 2α2β

(2β − γ)2

Thus the optimal point for Case C2 is q∗−1 = q∗1 = α/2, and the maximum total profit

is α2/[2(β − γ)]. The resulting equilibrium price of each seller, given by (A.0.89),

is y∗i = α/[2(β − γ)], and the resulting equilibrium demand of each seller, given

by (A.0.90), is equal to q∗i = α/2.

Inspection of the results above for the settings with no alliance, perfect coordina-

tion, and a resource exchange alliance reveal that the results can be summarized by

5 cases, as in Table 1.

Consumer surplus. To calculate the consumer surplus associated with demand

model (1.2.13), it is instructive to start with a utility model that leads to demand

model (1.2.13). Consider a representative consumer who consumes z−1 units of the

product sold by seller −1 and z1 units of the product sold by seller 1. Suppose that

the resulting utility is given by U(z−1, z1) := a−1z−1 + a1z1 − b−1z
2
−1/2 − b1z

2
1/2 −
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cz−1z1 with b−1, b1, b−1b1 − c2 > 0. Given a price pi for the product sold by each

seller i, the consumer chooses quantities (z−1, z1) to maximize the consumer surplus

U(z−1, z1)− p−1z−1 − p1z1. It follows that the chosen quantities satisfy

zi =
aib−i − a−ic

b−1b1 − c2
− b−i

b−1b1 − c2
pi +

c

b−1b1 − c2
p−i

This utility model leads to the demand model (1.2.13) if α = (aib−i−a−ic)/(b−1b1−c2),

β = bi/(b−1b1 − c2), and γ = c/(b−1b1 − c2) for i = ±1, that is, if ai = α/(β − γ),

bi = β/(β2 − γ2), and c = γ/(β2 − γ2) for i = ±1.

In regions 1 and 2 in Table 1, the resulting consumer surplus is given by

U(bmin/2, bmin/2)−
2α− bmin

2(β − γ)

bmin

2
− 2α− bmin

2(β − γ)

bmin

2
=

b2min

4(β − γ)

In regions 3 and 4, the resulting consumer surplus is given by

U(αβ/(2β − γ), αβ/(2β − γ))− α

2β − γ

αβ

2β − γ
− α

2β − γ

αβ

2β − γ

=
α2β2

(β − γ)(2β − γ)2

In region 5, the resulting consumer surplus is given by

U(α/2, α/2)− α

2(β − γ)

α

2
− α

2(β − γ)

α

2
=

α2

4(β − γ)

Thus, in region 1 all three settings have the same consumer surplus. In region 2,

the consumer surplus under perfect coordination and under the alliance are the same,

and as shown in Section 1.2.2, both are larger than the consumer surplus under no

alliance. To compare the consumer surplus under the alliance and under no alliance

in regions 3 and 4, note that

α2

9(β − γ)
≤ α2β2

(β − γ)(2β − γ)2

⇔ −4βγ + γ2 ≤ 5β2

which holds since γ ∈ (−β, β), and thus in regions 3 and 4 the consumer surplus under

the alliance is greater than the consumer surplus under no alliance. To compare the
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consumer surplus under the alliance and under perfect coordination in region 3, note

that

b2min

4(β − γ)
≥ α2β2

(β − γ)(2β − γ)2

⇔ bmin ≥ 2αβ

2β − γ

and thus in region 3 the consumer surplus under perfect coordination is greater than

the consumer surplus under the alliance. To compare the consumer surplus under the

alliance and under perfect coordination in region 4, note that

α2

4(β − γ)
≥ α2β2

(β − γ)(2β − γ)2

⇔ (2β − γ)2 ≥ 4β2

which holds since γ ≤ 0 in region 4, and thus in region 4 the consumer surplus

under perfect coordination is greater than the consumer surplus under the alliance.

Finally, in region 5 the consumer surplus under perfect coordination and under the

alliance are the same, and both are larger than the consumer surplus under no alliance

by a factor of 9/4. Note that, similar to total profit, the consumer surplus under

perfect coordination and under the alliance are the same except when capacity is

large (bmin ≥ 2αβ/(2β − γ)) and the sellers’ products are complements (γ ≤ 0).

A.0.4 Perfect Coordination with Product Differentiation

The model of perfect coordination introduced in Section 1.2.2 (with details given

in Section A.0.2) was based on a model of demand d for the two-resource prod-

uct given by d = max{0, α̃ − β̃(ỹ−1 + ỹ1)}, and the model of an alliance intro-

duced in Section 1.2.3 (with details given in Section A.0.3) was based on a model

of demand di(yi, y−i) for the two-resource product of seller i given by di(yi, y−i) =

max{0, α− βyi + γy−i}, where α̃ = 2α+2(β− γ)(c−1 + c1) and β̃ = 2(β− γ). Thus,

the model of perfect coordination in Section 1.2.2 does not make provision for differ-

ent brands of the two-resource product, but the model of an alliance in Section 1.2.3
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makes provision for different brands of the two-resource product. In this section we

consider a model of perfect coordination that makes provision for different brands of

the two-resource product.

The demand di(yi, y−i) for the brand i product sold is given as follows:

di(yi, y−i) = α− βyi + γy−i

where as before yi denotes the excess of the price of the brand i product over the

marginal cost c−1 + c1, and we consider only values of (y−1, y1) such that α − βyi +

γy−i ≥ 0 for i = ±1.

First consider the case in which the capacity is not constraining (it is determined

later what amount of capacity is sufficient for this condition to hold). In this case,

the total profit is given by

g(y−1, y1) := y−1d−1(y−1, y1)+y1d1(y1, y−1) = α(y−1+y1)−β(y2−1+y
2
1)+2γy−1y1

Note that

∇g(y−1, y1) =







α− 2βy−1 + 2γy1

α− 2βy1 + 2γy−1







∇2g(y−1, y1) =







−2β 2γ

2γ −2β







and thus ∇2g(y−1, y1) is negative definite (β > 0, β2 − γ2 > 0), and hence g is a

concave quadratic function. Therefore, the prices that maximize the total profit are

given by

y∗−1 = y∗1 =
α

2(β − γ)
, (A.0.97)

and the corresponding total demand at the optimal prices is equal to α. Thus, if

bmin ≥ α, then the total profit of the two sellers under perfect coordination is given

by α2

2(β−γ)
. Note that the optimal prices, demand, profit, and consumer surplus are

the same as for perfect coordination in Section 1.2.2 when bmin ≥ α.
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Next consider the case in which bmin < α. First we consider price points (y−1, y1)

such that d−1(y−1, y1)+d1(y1, y−1) ≤ bmin, and then we consider price points (y−1, y1)

such that d−1(y−1, y1) + d1(y1, y−1) ≥ bmin. It follows from the results above for g

that the point (y̌−1, y̌1) that maximizes g subject to the constraint d−1(y−1, y1) +

d1(y1, y−1) ≤ bmin satisfies d−1(y̌−1, y̌1)+d1(y̌1, y̌−1) = bmin, that is, 2α− (β−γ)(y̌−1+

y̌1) = bmin. Let

g1(y1) := g ([2α− bmin]/[β − γ]− y1, y1)

= α
2α− bmin

β − γ
− β

(2α− bmin)
2

(β − γ)2
+ 2(β + γ)

(

2α− bmin

β − γ
− y1

)

y1

Note that g1 is a concave quadratic function with maximum at y̌1 = (2α−bmin)/[2(β−

γ)] (and thus y̌−1 = y̌1 = (2α− bmin)/[2(β − γ)]).

Next consider price points (y−1, y1) such that d−1(y−1, y1) + d1(y1, y−1) ≥ bmin,

that is, 2α − (β − γ)(y−1 + y1) ≥ bmin. The model should specify how capacity bmin

is to be allocated between the two brands if d−1(y−1, y1) + d1(y1, y−1) > bmin. There

are various ways to allocate constrained capacity. Here we present one such way, the

equal rationing rule, in detail, and then we point out other ways that lead to the same

results. Under the equal rationing rule, if d−1(y−1, y1) + d1(y1, y−1) > bmin, then the

same fraction λ of the demands di(yi, y−i) for the different brands is satisfied, where

λ =
bmin

d−1(y−1, y1) + d1(y1, y−1)
=

bmin

2α− (β − γ)(y−1 + y1)

Then, the total profit is given by

g2(y−1, y1) = λy−1(α− βy−1 + γy1) + λy1(α− βy1 + γy−1)

= bmin
α(y−1 + y1)− β(y−1 + y1)

2 + 2(β + γ)y−1y1
2α− (β − γ)(y−1 + y1)

Let y := y−1 + y1, and let

g3(y, y1) := g2(y − y1, y1)

= bmin
αy − βy2 + 2(β + γ)yy1 − 2(β + γ)y21

2α− (β − γ)y
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Recall that, in this case, 2α−(β−γ)(y−1+y1) ≥ bmin, and thus y ≤ (2α−bmin)/(β−γ).

First, consider any fixed value of y ∈ [0, (2α − bmin)/(β − γ)], and maximize g3(y, ·)

with respect to y1. Note that g3(y, ·) is a concave quadratic function with maximum

at ŷ1 = y/2 (and thus ŷ−1 = ŷ1 = y/2). Next, let

g4(y) := g2(y/2, y/2)

=
bmin

2

2αy + γy2 − βy2

2α− (β − γ)y

=
bmin

2
y

Note that the maximum of g4 over y ∈ [0, (2α − bmin)/(β − γ)] is attained at y =

(2α−bmin)/(β−γ), and thus ŷ−1 = ŷ1 = (2α−bmin)/[2(β−γ)]. Therefore, if bmin < α,

then the optimal prices are

y∗−1 = y∗1 = y̌−1 = y̌1 = ŷ−1 = ŷ1 =
2α− bmin

2(β − γ)
(A.0.98)

with corresponding total demand equal to bmin. Thus, the total profit under perfect

coordination is equal to (2α − bmin)bmin/[2(β − γ)]. Note that the optimal prices,

demand, profit and consumer surplus are also the same as for perfect coordination in

Section 1.2.2 when bmin ≤ α.

Other rationing rules also lead to the same results. For example, suppose that the

demand for brand −1 is satisfied first and then the remaining capacity, if any, is used

for brand 1. In this case, the total profit is given by

g5(y−1, y1) = y−1min{bmin, α− βy−1 + γy1}

+y1min{max{0, bmin − (α− βy−1 + γy1)}, α− βy1 + γy−1}

For this rationing rule the optimal prices are same as in (A.0.98).
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APPENDIX B

DETAILS OF DEMAND TRANSFORMATION FOR NO

ALLIANCE MODEL

The parameters E,B,C in demand model (1.3.14) and the parameters Ẽ, B̃, C̃ in

demand model (1.3.25) should be related in a particular way to facilitate a fair com-

parison of the prices, demands, total profit, and consumer surplus between the settings

with and without an alliance. In this section we derive the relation.

The relation between the demand models with and without an alliance is based

on the assumption that the overall demand level for each product is the same with

and without an alliance. Recall that Li denotes the set of products which can be

offered by seller i with and without an alliance, for i = ±1, and L0 denotes the set

of products which could be offered only under an alliance. In addition, let L0,i ⊂ L0

denote the set of products in L0 that can be offered by seller i under an alliance, and

let Li,−i ⊂ Li denote the set of products in Li that can be offered by seller −i under

an alliance, but not without an alliance. Thus, for the setting with an alliance the

number of demand equations (and prices) for each seller i is mi = |Li|+ |L0,i|+ |L−i,i|,

and for the setting without an alliance the number of demand equations (and prices)

for each seller i is only |Li|.

The following example is used to explain the derivation of the relation between

the demand models. Seller −1 produces resource A, and seller 1 produces resources B

and C. With an alliance, the following products are offered by each seller: Product A

using 1 unit of resource A each, product B using 1 unit of resource B each, product C

using 1 unit of resource C each, product BC using 1 unit of resource B and 1 unit of

resource C each, and product A2BC using 2 units of resource A, 1 unit of resource B,
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and 1 unit of resource C each. Without an alliance, product A is offered by seller −1

only and seller −1 captures all the demand for product A, and products B, C, and BC

are offered by seller 1 only and seller 1 captures all the demand for products B, C,

and BC. Product A2BC is not offered by either seller, but there still is the same

demand for product A2BC; buyers buy each unit of product A2BC by buying 2 units

of product A from seller −1, and 1 unit of product BC from seller 1. As shown later,

the demands for products A and BC derived from the demand for product A2BC is

added to the respective demands for products A and BC by themselves. Note that

this derivation assumes that buyers buy each unit of product A2BC by buying 1 unit

of product BC from seller 1 instead of buying 1 unit of product B and 1 unit of

product C separately from the same seller. This assumption may be questionable if

the price of buying products B and C separately is less than the price of product BC.

In the numerical work, we verified that the prices of multiple resource products offered

by a seller were less than the sum of the prices of any products that could be bought

separately to make up the multiple resource product. Thus, in this example, L−1 =

{A}, L1 = {B,C,BC}, L0,−1 = {A2BC}, L0,1 = {A2BC}, L−1,1 = {A}, and L1,−1 =

{B,C,BC}. With an alliance, the demand for each product is given by (1.3.14):

di,A = −Ei,A,Ayi,A − Ei,A,Byi,B − Ei,A,Cyi,C − Ei,A,BCyi,BC −Ei,A,A2BCyi,A2BC

+B−i,A,Ay−i,A +B−i,A,By−i,B +B−i,A,Cy−i,C +B−i,A,BCy−i,BC

+B−i,A,A2BCy−i,A2BC + Ci,A

di,B = −Ei,B,Ayi,A −Ei,B,Byi,B −Ei,B,Cyi,C − Ei,B,BCyi,BC − Ei,B,A2BCyi,A2BC

+B−i,B,Ay−i,A +B−i,B,By−i,B +B−i,B,Cy−i,C +B−i,B,BCy−i,BC

+B−i,B,A2BCy−i,A2BC + Ci,B
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di,C = −Ei,C,Ayi,A −Ei,C,Byi,B − Ei,C,Cyi,C − Ei,C,BCyi,BC

−Ei,C,A2BCyi,A2BC +B−i,C,Ay−i,A +B−i,C,By−i,B +B−i,C,Cy−i,C

+B−i,C,BCy−i,BC +B−i,C,A2BCy−i,A2BC + Ci,C

di,BC = −Ei,BC,Ayi,A − Ei,BC,Byi,B − Ei,BC,Cyi,C −Ei,BC,BCyi,BC

−Ei,BC,A2BCyi,A2BC +B−i,BC,Ay−i,A +B−i,BC,By−i,B +B−i,BC,Cy−i,C

+B−i,BC,BCy−i,BC + B−i,BC,A2BCy−i,A2BC + Ci,BC

di,A2BC = −Ei,A2BC,Ayi,A −Ei,A2BC,Byi,B − Ei,A2BC,Cyi,C − Ei,A2BC,BCyi,BC

−Ei,A2BC,A2BCyi,A2BC +B−i,A2BC,Ay−i,A +B−i,A2BC,By−i,B

+B−i,A2BC,Cy−i,C +B−i,A2BC,BCy−i,BC +B−i,A2BC,A2BCy−i,A2BC + Ci,A2BC

To use these observations and the demand functions given by (1.3.14) for the

alliance setting to derive the demand functions for the products with no alliance, first

note that the demands in (1.3.14) depend on |L0,−1|+ |L0,1|+ |L−1|+ |L1|+ |L−1,1|+

|L1,−1| prices yi,ℓ, but the demands in (1.3.25) depend on only |L−1| + |L1| prices.

Thus, to derive the demands of the products with no alliance (as a function of the

|L−1|+ |L1| prices ỹ with no alliance), it remains to determine appropriate values to

substitute into (1.3.14) for the |L0,−1|+ |L0,1|+ |L−1|+ |L1|+ |L−1,1|+ |L1,−1| prices y

given the prices ỹ. First, consider the easy case: if a product ℓ is offered by the same

seller i in both the setting with an alliance and the setting without an alliance, that is,

ℓ ∈ Li, then simply substitute price ỹi,ℓ for yi,ℓ in the demand model (1.3.14). Thus,

in the example above, ỹ−1,A, ỹ1,B, ỹ1,C , and ỹ1,BC are substituted for y−1,A, y1,B, y1,C ,

and y1,BC respectively. Next, if a product ℓ offered by a seller i in the alliance setting

is not offered by any seller in the no alliance setting, that is, ℓ ∈ L0,i, but it can be

assembled in the no alliance setting by buying a−1 units of product ℓ−1 from seller −1

and a1 units of product ℓ1 from seller 1, then substitute price a−1ỹ−1,ℓ−1
+ a1ỹ1,ℓ1 for

yi,ℓ in the demand model (1.3.14). Thus, in the example above, 2ỹ−1,A + ỹ1,BC is

substituted for y−1,A2BC and y1,A2BC . Next, if a product ℓ offered by a seller i in the
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alliance setting is not offered by seller i in the no alliance setting, but it is offered by

seller −i in the no alliance setting, that is, ℓ ∈ L−i,i), then we choose the price yi,ℓ

in the demand model (1.3.14) so that together with the other prices yi′,ℓ′, i
′ = ±1,

ℓ′ ∈ Li′ ∪ L0,i′ , already determined as described above, will equate di,ℓ to zero. Note

that if there are n such products, then n linear equations are obtained by equating the

n linear expressions for di,ℓ to zero, and under reasonable conditions these equations

can be solved for the n desired values of yi,ℓ. Thus, for the example above, the system

of equations

−E1,A,Ay1,A − E1,A,Bỹ1,B − E1,A,C ỹ1,C − E1,A,BC ỹ1,BC

−E1,A,A2BC(2ỹ−1,A + ỹ1,BC) +B−1,A,Aỹ−1,A +B−1,A,By−1,B

+B−1,A,Cy−1,C +B−1,A,BCy−1,BC +B−1,A,A2BC(2ỹ−1,A + ỹ1,BC) + C1,A

= 0

−E−1,B,Aỹ−1,A − E−1,B,By−1,B −E−1,B,Cy−1,C − E−1,B,BCy−1,BC

−E−1,B,A2BC(2ỹ−1,A + ỹ1,BC) +B1,B,Ay1,A +B1,B,Bỹ1,B

+B1,B,C ỹ1,C +B1,B,BC ỹ1,BC +B1,B,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,B

= 0

−E−1,C,Aỹ−1,A − E−1,C,By−1,B − E−1,C,Cy−1,C − E−1,C,BCy−1,BC

−E−1,C,A2BC(2ỹ−1,A + ỹ1,BC) +B1,C,Ay1,A +B1,C,Bỹ1,B

+B1,C,C ỹ1,C +B1,C,BC ỹ1,BC +B1,C,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,C

= 0

−E−1,BC,Aỹ−1,A − E−1,BC,By−1,B − E−1,BC,Cy−1,C − E−1,BC,BCy−1,BC

−E−1,BC,A2BC(2ỹ−1,A + ỹ1,BC) +B1,BC,Ay1,A +B1,BC,B ỹ1,B

+B1,BC,C ỹ1,C +B1,BC,BC ỹ1,BC +B1,BC,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,BC

= 0

is solved for y1,A, y−1,B, y−1,C, and y−1,BC as linear functions of ỹ−1,A, ỹ1,B, ỹ1,C ,
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and ỹ1,BC . Suppose the solution is

y1,A = b1,A,−1,Aỹ−1,A + b1,A,1,B ỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0

y−1,B = b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C + b−1,B,1,BC ỹ1,BC + b−1,B,0

y−1,C = b−1,C,−1,Aỹ−1,A + b−1,C,1,B ỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC + b−1,C,0

y−1,BC = b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C + b−1,BC,1,BC ỹ1,BC

+b−1,BC,0

Now we are ready to use the observations above and the demand functions given

by (1.3.14) for the alliance setting to derive the demand functions for the products

with no alliance. For the example above, we obtain the following demand functions:

d̃−1,A = −E−1,A,Aỹ−1,A −E−1,A,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C

+b−1,B,1,BC ỹ1,BC + b−1,B,0)− E−1,A,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B

+b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC + b−1,C,0)− E−1,A,BC(b−1,BC,−1,Aỹ−1,A

+b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C + b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

−E−1,A,A2BC(2ỹ−1,A + ỹ1,BC) +B1,A,A(b1,A,−1,Aỹ−1,A + b1,A,1,B ỹ1,B

+b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

+B1,A,Bỹ1,B +B1,A,C ỹ1,C +B1,A,BC ỹ1,BC

+B1,A,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,A + 2 [−E−1,A2BC,Aỹ−1,A

−E−1,A2BC,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C

+b−1,B,1,BC ỹ1,BC + b−1,B,0)

−E−1,A2BC,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC

+b−1,C,0)−E−1,A2BC,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)− E−1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC)
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+B1,A2BC,A(b1,A,−1,Aỹ−1,A + b1,A,1,Bỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC

+b1,A,0) +B1,A2BC,B ỹ1,B +B1,A2BC,C ỹ1,C +B1,A2BC,BC ỹ1,BC

+B1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,A2BC

−E1,A2BC,A(b1,A,−1,Aỹ−1,A + b1,A,1,B ỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

−E1,A2BC,B ỹ1,B − E1,A2BC,C ỹ1,C − E1,A2BC,BC ỹ1,BC

−E1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC)

+B−1,A2BC,Aỹ−1,A

+B−1,A2BC,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C

+b−1,B,1,BC ỹ1,BC + b−1,B,0)

+B−1,A2BC,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B + b−1,C,1,C ỹ1,C

+b−1,C,1,BC ỹ1,BC + b−1,C,0)

+B−1,A2BC,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

+B−1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC) + C1,A2BC ]

d̃1,B = −E1,B,A(b1,A,−1,Aỹ−1,A + b1,A,1,Bỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

−E1,B,B ỹ1,B −E1,B,C ỹ1,C − E1,B,BC ỹ1,BC − E1,B,A2BC(2ỹ−1,A + ỹ1,BC)

+B−1,B,Aỹ−1,A +B−1,B,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C

+b−1,B,1,BC ỹ1,BC + b−1,B,0)

+B−1,B,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,B ỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC

+b−1,C,0)

+B−1,B,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

+B−1,B,A2BC(2ỹ−1,A + ỹ1,BC) + C1,B
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d̃1,C = −E1,C,A(b1,A,−1,Aỹ−1,A + b1,A,1,B ỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

−E1,C,B ỹ1,B − E1,C,C ỹ1,C −E1,C,BC ỹ1,BC

−E1,C,A2BC(2ỹ−1,A + ỹ1,BC) +B−1,C,Aỹ−1,A

+B−1,C,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C + b−1,B,1,BC ỹ1,BC

+b−1,B,0)

+B−1,C,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC

+b−1,C,0)

+B−1,C,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

+B−1,C,A2BC(2ỹ−1,A + ỹ1,BC) + C1,C

d̃1,BC = −E1,BC,A(b1,A,−1,Aỹ−1,A + b1,A,1,Bỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

−E1,BC,B ỹ1,B −E1,BC,C ỹ1,C +B1,BC,BC ỹ1,BC

−E1,BC,A2BC(2ỹ−1,A + ỹ1,BC) +B−1,BC,Aỹ−1,A

+B−1,BC,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C + b−1,B,1,BC ỹ1,BC

+b−1,B,0)

+B−1,BC,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,B ỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC

+b−1,C,0)

+B−1,BC,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

+B−1,BC,A2BC(2ỹ−1,A + ỹ1,BC) + C1,BC − E−1,A2BC,Aỹ−1,A

−E−1,A2BC,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,B ỹ1,B + b−1,B,1,C ỹ1,C + b−1,B,1,BC ỹ1,BC

+b−1,B,0)

−E−1,A2BC,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC
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+b−1,C,0)

−E−1,A2BC,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C

+b−1,BC,1,BC ỹ1,BC + b−1,BC,0)

−E−1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC)

+B1,A2BC,A(b1,A,−1,Aỹ−1,A + b1,A,1,Bỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

+B1,A2BC,B ỹ1,B +B1,A2BC,C ỹ1,C +B1,A2BC,BC ỹ1,BC

+B1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC) + C−1,A2BC

−E1,A2BC,A(b1,A,−1,Aỹ−1,A + b1,A,1,B ỹ1,B + b1,A,1,C ỹ1,C + b1,A,1,BC ỹ1,BC + b1,A,0)

−E1,A2BC,B ỹ1,B − E1,A2BC,C ỹ1,C − E1,A2BC,BC ỹ1,BC

−E1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC) +B−1,A2BC,Aỹ−1,A

+B−1,A2BC,B(b−1,B,−1,Aỹ−1,A + b−1,B,1,Bỹ1,B + b−1,B,1,C ỹ1,C + b−1,B,1,BC ỹ1,BC

+b−1,B,0)

+B−1,A2BC,C(b−1,C,−1,Aỹ−1,A + b−1,C,1,Bỹ1,B + b−1,C,1,C ỹ1,C + b−1,C,1,BC ỹ1,BC

+b−1,C,0)

+B−1,A2BC,BC(b−1,BC,−1,Aỹ−1,A + b−1,BC,1,B ỹ1,B + b−1,BC,1,C ỹ1,C + b−1,BC,1,BC ỹ1,BC

+b−1,BC,0)

+B−1,A2BC,A2BC(2ỹ−1,A + ỹ1,BC) + C1,A2BC

Thus, the demand model given by (1.3.25) is obtained for the setting with no alliance.
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For the example above, the parameters Ẽ, B̃, C̃ are given by E,B,C as follows:

Ẽ−1,A,A = E−1,A,A + E−1,A,Bb−1,B,−1,A + E−1,A,Cb−1,C,−1,A + E−1,A,BCb−1,BC,−1,A

+2E−1,A,A2BC − B1,A,Ab1,A,−1,A − 2B1,A,A2BC

+2(E−1,A2BC,A + E−1,A2BC,Bb−1,B,−1,A + E−1,A2BC,Cb−1,C,−1,A

+E−1,A2BC,BCb−1,BC,−1,A + 2E−1,A2BC,A2BC − B1,A2BC,Ab1,A,−1,A

−2B1,A2BC,A2BC + E1,A2BC,Ab1,A,−1,A + 2E1,A2BC,A2BC

−B−1,A2BC,A − B−1,A2BC,Bb−1,B,−1,A − B−1,A2BC,Cb−1,C,−1,A

−B−1,A2BC,BCb−1,BC,−1,A − 2B−1,A2BC,A2BC)

Ẽ1,B,B = E1,B,Ab1,A,1,B + E1,B,B −B−1,B,Bb−1,B,1,B − B−1,B,Cb−1,C,1,B

−B−1,B,BCb−1,BC,1,B

Ẽ1,B,C = E1,B,Ab1,A,1,C + E1,B,C −B−1,B,Bb−1,B,1,C − B−1,B,Cb−1,C,1,C

−B−1,B,BCb−1,BC,1,C

Ẽ1,B,BC = E1,B,Ab1,A,1,BC + E1,B,BC −B−1,B,Bb−1,B,1,BC − B−1,B,Cb−1,C,1,BC

−B−1,B,BCb−1,BC,1,BC

Ẽ1,C,B = E1,C,Ab1,A,1,B + E1,C,B −B−1,C,Bb−1,B,1,B −B−1,C,Cb−1,C,1,B

−B−1,C,BCb−1,BC,1,B

Ẽ1,C,C = E1,C,Ab1,A,1,C + E1,C,C −B−1,C,Bb−1,C,1,C −B−1,C,Cb−1,C,1,C

−B−1,C,BCb−1,BC,1,C

Ẽ1,C,BC = E1,C,Ab1,A,1,BC + E1,C,BC −B−1,C,Bb−1,B,1,BC −B−1,C,Cb−1,C,1,BC

−B−1,C,BCb−1,BC,1,BC

Ẽ1,BC,B = E1,BC,Ab1,A,1,B + E1,BC,B −B−1,BC,Bb−1,B,1,B − B−1,BC,Cb−1,BC,1,B

−B−1,BC,BCb−1,BC,1,B + E−1,A2BC,Bb−1,B,1,B + E−1,A2BC,Cb−1,C,1,B

+E−1,A2BC,BCb−1,BC,1,B − B1,A2BC,Ab1,A,1,B − B1,A2BC,B

+E1,A2BC,Ab1,A,1,B + E1,A2BC,B −B−1,A2BC,Bb−1,B,1,B

−B−1,A2BC,Cb−1,C,1,B −B−1,A2BC,BCb−1,BC,1,B
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Ẽ1,BC,C = E1,BC,Ab1,A,1,C + E1,BC,C − B−1,BC,Bb−1,B,1,C − B−1,BC,Cb−1,BC,1,C

−B−1,BC,BCb−1,BC,1,C + E−1,A2BC,Bb−1,B,1,C + E−1,A2BC,Cb−1,C,1,C

+E−1,A2BC,BCb−1,BC,1,C − B1,A2BC,Ab1,A,1,C − B1,A2BC,C

+E1,A2BC,Ab1,A,1,C + E1,A2BC,C − B−1,A2BC,Bb−1,B,1,C

−B−1,A2BC,Cb−1,C,1,C −B−1,A2BC,BCb−1,BC,1,C

Ẽ1,BC,BC = E1,BC,Ab1,A,1,BC − B1,BC,BC + E1,BC,A2BC

−B−1,BC,Bb−1,B,1,BC −B−1,BC,Cb−1,BC,1,BC − B−1,BC,BCb−1,BC,1,BC

−B−1,BC,A2BC + E−1,A2BC,Bb−1,B,1,BC + E−1,A2BC,Cb−1,C,1,BC

+E−1,A2BC,BCb−1,BC,1,BC + E−1,A2BC,A2BC − B1,A2BC,Ab1,A,1,BC

−B1,A2BC,BC − B1,A2BC,A2BC + E1,A2BC,Ab1,A,1,BC

+E1,A2BC,BC + E1,A2BC,A2BC −B−1,A2BC,Bb−1,B,1,BC

−B−1,A2BC,Cb−1,C,1,BC − B−1,A2BC,BCb−1,BC,1,BC − B−1,A2BC,A2BC

B̃−1,B,A = −E1,B,Ab1,A,−1,A − 2E1,B,A2BC +B−1,B,A

+B−1,B,Bb−1,B,−1,A +B−1,B,Cb−1,C,−1,A +B−1,B,BCb−1,BC,−1,A

+2B−1,B,A2BC

B̃−1,C,A = −E1,C,Ab1,A,−1,A − 2E1,C,A2BC +B−1,C,A − B−1,C,Bb−1,B,−1,A

+B−1,C,Cb−1,C,−1,A +B−1,C,BCb−1,BC,−1,A + 2B−1,C,A2BC

B̃−1,BC,A = −E1,BC,Ab1,A,−1,A − 2E1,BC,A2BC +B−1,BC,Bb−1,B,−1,A

+B−1,BC,Cb−1,C,−1,A +B−1,BC,BCb−1,BC,−1,A + 2B−1,BC,A2BC

−E−1,A2BC,A −E−1,A2BC,Bb−1,B,−1,A −E−1,A2BC,Cb−1,C,−1,A

−E−1,A2BC,BCb−1,BC,−1,A − 2E−1,A2BC,A2BC +B1,A2BC,Ab1,A,−1,A

+2B1,A2BC,A2BC −E1,A2BC,Ab1,A,−1,A − 2E1,A2BC,A2BC

+B−1,A2BC,Bb−1,B,−1,A +B−1,A2BC,Cb−1,C,−1,A +B−1,A2BC,BCb−1,BC,−1,A

+2B−1,A2BC,A2BC
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B̃1,A,B = −E1,A,Bb−1,B,1,B −E−1,A,Cb−1,C,1,B −E−1,A,BCb−1,BC,1,B

+B1,A,Ab1,A,1,B +B1,A,B − 2(E−1,A2BC,Bb−1,B,1,B

−E−1,A2BC,Cb−1,C,1,B −E−1,A2BC,BCb−1,BC,1,B

+B1,A2BC,Ab1,A,1,B +B1,A2BC,B − E1,A2BC,Ab1,A,1,B − E1,A2BC,B

+B−1,A2BC,Bb−1,B,1,B +B−1,A2BC,Cb−1,C,1,B +B−1,A2BC,BCb−1,BC,1,B)

B̃1,A,C = −E1,A,Bb−1,B,1,C − E−1,A,Cb−1,C,1,C −E−1,A,BCb−1,BC,1,C

+B1,A,Ab1,A,1,C +B1,A,C − 2(E−1,A2BC,Bb−1,B,1,C

−E−1,A2BC,Cb−1,C,1,C − E−1,A2BC,BCb−1,BC,1,C

+B1,A2BC,Ab1,A,1,C +B1,A2BC,C − E1,A2BC,Ab1,A,1,C −E1,A2BC,C

+B−1,A2BC,Bb−1,B,1,C +B−1,A2BC,Cb−1,C,1,C +B−1,A2BC,BCb−1,BC,1,C)

B̃1,A,BC = −E1,A,Bb−1,B,1,BC −E−1,A,Cb−1,C,1,BC −E−1,A,BCb−1,BC,1,BC

−E−1,A,A2BC +B1,A,Ab1,A,1,BC +B1,A,BC +B1,A,A2BC

−2(E−1,A2BC,Bb−1,B,1,BC − E−1,A2BC,Cb−1,C,1,BC − E−1,A2BC,BCb−1,BC,1,BC

−E−1,A2BC,A2BC +B1,A2BC,Ab1,A,1,BC +B1,A2BC,BC

+B1,A2BC,A2BC −E1,A2BC,Ab1,A,1,BC −E1,A2BC,BC −E1,A2BC,A2BC

+B−1,A2BC,Bb−1,B,1,BC +B−1,A2BC,Cb−1,C,1,BC +B−1,A2BC,BCb−1,BC,1,BC

+B−1,A2BC,A2BC)

C̃−1,A = C−1,A + 2(C−1,A2BC + C1,A2BC)

C̃1,B = C1,B

C̃1,C = C1,C

C̃1,BC = C1,BC + C−1,A2BC + C1,A2BC

To state the relation between parameters E,B,C in demand model (1.3.14) and

the parameters Ẽ, B̃, C̃ in demand model (1.3.25) in general, we first develop the
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notation needed for a concise representation. Let the rows and columns of matrix Ei

be grouped so that the first group of rows and columns correspond to products in

Li, the second group of rows and columns correspond to products in L0,i, and the

third group of rows and columns correspond to products in L−i,i. Hence Ei can be

partitioned into submatrices as follows:

Li L0,i L−i,i

Ei =













Ei,i Ei,0,i Ei,−i,i

E0,i,i E0,i,0,i E0,i,−i,i

E−i,i,i E−i,i,0,i E−i,i,−i,i













Li

L0,i

L−i,i

This grouping of the rows and columns of Ei implies that the rows and columns of di,

yi, Bi, and Ci are similarly grouped:

L−i L0,−i Li,−i

B−i =













Bi,−i Bi,0,−i Bi,i,−i

B0,i,−i B0,i,0,−i B0,i,i,−i

B−i,i,−i B−i,i,0,−i B−i,i,i,−i













Li

L0,i

L−i,i

, yi =













yi,i

yi,0,i

yi,−i,i













Ci =













Ci,i

Ci,0,i

Ci,−i,i













, di =













di,i

di,0,i

di,−i,i













Note that given the prices ỹ in the no alliance setting, the prices for the same products

in the alliance setting are yi,i = ỹi ∈ R|Li|. Let Ri,i′,ℓ,ℓ′ denote the number of units of

product ℓ′ ∈ Li′ used to assemble one unit of product ℓ ∈ L0,i. Then, given the prices

ỹ in the no alliance setting, the price paid to assemble one unit of product ℓ ∈ L0,i in

the no alliance setting is
∑

i′=±1

∑

ℓ′∈Li′

Ri,i′,ℓ,ℓ′ỹi′,ℓ′
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Let Ri,i′ ∈ R|L0,i|×|Li′ | denote the matrix with entry Ri,i′,ℓ,ℓ′ in the row corresponding

to ℓ ∈ L0,i and the column corresponding to ℓ′ ∈ Li′ . Then, given the prices ỹ in the

no alliance setting, the prices paid to assemble each unit of product in L0,i is given

by

yi,0,i =
∑

i′=±1

Ri,i′ ỹi′

Next, consider the demand for products in L−i,i.

di,−i,i = −E−i,i,iyi,i −E−i,i,0,iyi,0,i − E−i,i,−i,iyi,−i,i +B−i,i,−iy−i,−i +B−i,i,0,−iy−i,0,−i

+B−i,i,i,−iy−i,i,−i + Ci,−i,i

= −E−i,i,iỹi − E−i,i,0,i

∑

i′=±1

Ri,i′ ỹi′ − E−i,i,−i,iyi,−i,i

+B−i,i,−iỹ−i +B−i,i,0,−i

∑

i′=±1

R−i,i′ ỹi′ +B−i,i,i,−iy−i,i,−i + Ci,−i,i

Then, given the prices ỹ in the no alliance setting, the value of (y−1,1,−1, y1,−1,1) is

chosen to set (d−1,1,−1, d1,−1,1) = 0. The system of equations (d−1,1,−1, d1,−1,1) = 0 can

be written as −Dy− + F ỹ + C− = 0, where

y− :=







y−1,1,−1

y1,−1,1






, ỹ :=







ỹ−1

ỹ1






, C− :=







C−1,1,−1

C1,−1,1







D :=







E1,−1,1,−1 −B1,−1,−1,1

−B−1,1,1,−1 E−1,1,−1,1







F :=






−E1,−1,−1 − E1,−1,0,−1R−1,−1 +B1,−1,0,1R1,−1 −E1,−1,0,−1R−1,1 +B1,−1,1 +B1,−1,0,1R1,1

−E−1,1,0,1R1,−1 +B−1,1,−1 +B−1,1,0,−1R−1,−1 −E−1,1,1 − E−1,1,0,1R1,1 +B−1,1,0,−1R−1,1







Under reasonable conditions D is nonsingular (more specifically, positive definite),
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and then the unique solution is y− = D−1F ỹ +D−1C−. Let

L1,−1 L−1,1 L−1 L1

D−1 =







D−1
−1,−1 D−1

−1,1

D−1
1,−1 D−1

1,1







L1,−1

L−1,1

, F =







F−1,−1 F−1,1

F1,−1 F1,1







L1,−1

L−1,1

Then

yi,−i,i = (D−1
i,−iF−i,i +D−1

i,i Fi,i)ỹi + (D−1
i,−iF−i,−i +D−1

i,i Fi,−i)ỹ−i

+(D−1
i,−iC−i,i,−i +D−1

i,i Ci,−i,i)

=
∑

i′=±1

(

∑

i′′=±1

D−1
i,i′′Fi′′,i′ ỹi′ +D−1

i,i′Ci′,−i′,i′

)

Next, the demand model (1.3.14) is used to derive the demand for each product ℓ ∈ Li

that is offered in the no alliance setting:

di,ℓ =



−
∑

ℓ′∈Li

Ei,ℓ,ℓ′yi,i,ℓ′ −
∑

ℓ′∈L0,i

Ei,ℓ,ℓ′yi,0,i,ℓ′ −
∑

ℓ′∈L−i,i

Ei,ℓ,ℓ′yi,−i,i,ℓ′

+
∑

ℓ′∈L−i

B−i,ℓ,ℓ′y−i,−i,ℓ′ +
∑

ℓ′∈L0,−i

B−i,ℓ,ℓ′y−i,0,−i,ℓ′ +
∑

ℓ′∈Li,−i

B−i,ℓ,ℓ′y−i,i,−i,ℓ′ + Ci,ℓ





+
∑

i′=±1





∑

ℓ′∈L0,i′

Ri′,i,ℓ′,ℓ



−
∑

ℓ′′∈Li′

Ei′,ℓ′,ℓ′′yi′,i′,ℓ′′ −
∑

ℓ′′∈L0,i′

Ei′,ℓ′,ℓ′′yi′,0,i′,ℓ′′

−
∑

ℓ′′∈L−i′,i′

Ei′,ℓ′,ℓ′′yi′,−i′,i′,ℓ′′ +
∑

ℓ′′∈L−i′

B−i′,ℓ′,ℓ′′y−i′,−i′,ℓ′′

+
∑

ℓ′′∈L0,−i′

B−i′,ℓ′,ℓ′′y−i′,0,−i′,ℓ′′ +
∑

ℓ′′∈Li′,−i′

B−i′,ℓ′,ℓ′′y−i′,i′,−i′,ℓ′′ + Ci′,ℓ′









The first term in brackets above corresponds to the demand for product ℓ ∈ Li by

itself, and the second term in brackets corresponds to the demand for product ℓ to

assemble products ℓ′ ∈ L0,i′ , i
′ = ±1. In terms of matrix notation, the demands for
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the products in Li that are offered in the no alliance setting is given by

di,i = [−Ei,iyi,i −Ei,0,iyi,0,i − Ei,−i,iyi,−i,i +Bi,−iy−i,−i +Bi,0,−iy−i,0,−i

+Bi,i,−iy−i,i,−i + Ci,i]

+
∑

i′=±1

[

RT

i′,i (−E0,i′,i′yi′,i′ −E0,i′,0,i′yi′,0,i′ − E0,i′,−i′,i′yi′,−i′,i′

+B0,i′,−i′y−i′,−i′ +B0,i′,0,−i′y−i′,0,−i′ +B0,i′,i′,−i′y−i′,i′,−i′ + Ci′,0,i′)]

Next, replace yi,i, yi,0,i, and yi,−i,i with the expressions in terms of ỹ derived above.

Then the demands d̃i for the products in Li in the no alliance setting as a function

of the prices ỹ in the no alliance setting are obtained, as follows:

d̃i =

[

−Ei,iỹi − Ei,0,i

∑

i′=±1

Ri,i′ ỹi′ − Ei,−i,i

∑

i′=±1

(

∑

i′′=±1

D−1
i,i′′Fi′′,i′ ỹi′ +D−1

i,i′Ci′,−i′,i′

)

+Bi,−iỹ−i +Bi,0,−i

∑

i′=±1

R−i,i′ ỹi′

+Bi,i,−i

∑

i′=±1

(

∑

i′′=±1

D−1
−i,i′′Fi′′,i′ ỹi′ +D−1

−i,i′Ci′,−i′,i′

)

+ Ci,i

]

+
∑

i′=±1

[

RT

i′,i (−E0,i′,i′ ỹi′

−E0,i′,0,i′

∑

i′′=±1

Ri′,i′′ ỹi′′ − E0,i′,−i′,i′

∑

i′′=±1

(

∑

i′′′=±1

D−1
i′,i′′′Fi′′′,i′′ ỹi′′ +D−1

i′,i′′Ci′′,−i′′,i′′

)

+B0,i′,−i′ ỹ−i′ +B0,i′,0,−i′

∑

i′′=±1

R−i′,i′′ ỹi′′

+B0,i′,i′,−i′

∑

i′′=±1

(

∑

i′′′=±1

D−1
−i′,i′′′Fi′′′,i′′ ỹi′′ +D−1

−i′,i′′Ci′′,−i′′,i′′

)

+Ci′,0,i′)]

Note that the demands d̃i above are consistent with the demand model (1.3.25), for
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the following parameter values:

Ẽi = Ei,i + Ei,0,iRi,i + Ei,−i,i

∑

i′=±1

D−1
i,i′Fi′,i

−Bi,0,−iR−i,i − Bi,i,−i

∑

i′=±1

D−1
−i,i′Fi′,i +RT

i,iE0,i,i −RT

−i,iB0,−i,i

+
∑

i′=±1

RT

i′,i

(

E0,i′,0,i′Ri′,i + E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Fi′′,i

−B0,i′,0,−i′R−i′,i − B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Fi′′,i

)

B̃−i = −Ei,0,iRi,−i −Ei,−i,i

∑

i′=±1

D−1
i,i′Fi′,−i +Bi,−i +Bi,0,−iR−i,−i

+Bi,i,−i

∑

i′=±1

D−1
−i,i′Fi′,−i − RT

−i,iE0,−i,−i +RT

i,iB0,i,−i

+
∑

i′=±1

RT

i′,i

(

−E0,i′,0,i′Ri′,−i − E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Fi′′,−i

+B0,i′,0,−i′R−i′,−i +B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Fi′′,−i

)

C̃i = −Ei,−i,i

∑

i′=±1

D−1
i,i′Ci′,−i′,i′ +Bi,i,−i

∑

i′=±1

D−1
−i,i′Ci′,−i′,i′ + Ci,i

+
∑

i′=±1

RT

i′,i

(

−E0,i′,−i′,i′

∑

i′′=±1

D−1
i′,i′′Ci′′,−i′′,i′′ +B0,i′,i′,−i′

∑

i′′=±1

D−1
−i′,i′′Ci′′,−i′′,i′′

+Ci′,0,i′)
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APPENDIX C

ASYMPTOTICS FOR LSR ESTIMATOR OF

VALUE-AT-RISK

Suppose, for the sake of simplicity, that support of the distribution of X i is bounded,

i.e., X i is bounded w.p.1. Since N−1XTX converges w.p.1 to Ω and by (2.3.60), we

have that

|εi − ei| ≤ Op(N
−1)

N
∑

j=1

εj.

We can assume here that E[εi] = 0, and hence
∑N

j=1 εj = Op(N
1/2). It follows that

∣

∣ε(⌈Nα⌉) − e(⌈Nα⌉)

∣

∣ = Op(N
−1/2). (C.0.99)

Suppose now that the set of population α-quantiles is a singleton. Then F̂−1
ε (α)

converges w.p.1 to the population quantile F−1
ε (α) = V@Rα(ε), and hence by (C.0.99),

we have that e(⌈Nα⌉) converges in probability to F−1
ε (α). That is, V̂@Rα(e) is a

consistent estimator of V@Rα(ε), and hence the estimator β̃0 + xTβ̃ + V̂@Rα(e) is a

consistent estimator of V@Rα(Y |x).

Let us consider the asymptotic efficiency of the residual based V@Rα estimator. It

is known that β̃0+xTβ̃ is an unbiased estimator of the true expected value β0+xTβ

and N1/2
[

β̃0 − β∗
0 + xT(β̃ − β∗)

]

converges in distribution to normal with zero mean

and variance

σ2[1;xT]Ω−1[1;xT]T. (C.0.100)

Also, N1/2
(

ε(⌈Nα⌉) − V@Rα(ε)
)

converges in distribution to normal with zero mean

and variance

ω2 :=
α(1− α)

[fε (F−1
ε (α))]2

, (C.0.101)
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provided that distribution of ε has nonzero density fε(·) at the quantile F−1
ε (α).

Let us also estimate the asymptotic variance of the right hand side of (2.3.60).

We have that N times variance of the second term in the right hand side of (2.3.60)

can be approximated by

σ2E
{

[1;XT

i ]Ω
−1[1;XT

i ]
T
}

= σ2(k + 1).

We also have that random vectors (β̃0, β̃) and e are uncorrelated. Therefore, if errors

εi have normal distribution, then vectors (β̃0, β̃) and e have jointly a multivariate

normal distribution and these vectors are independent. Consequently, β̃0 + xTβ̃ and

V̂@Rα(e) are independent. For not necessarily normal distribution, this independence

holds asymptotically and thus asymptotically β̃0+xTβ̃ and V̂@Rα(e) are uncorrelated.

Now, we can calculate the asymptotic covariance of the corresponding terms
(

ε(⌈Nα⌉) − V@Rα(ε)
)

and
(

ε(⌈Nα⌉) − e(⌈Nα⌉)

)

as
−σ2

(

k+1
)

2
. Thus, asymptotic variance

of the residual based V@Rα estimator can be approximated as

N−1
(

ω2 + σ2[1;xT]Ω−1[1;xT]T
)

. (C.0.102)

128



APPENDIX D

ASYMPTOTICS FOR LSR ESTIMATOR OF AVERAGE

VALUE-AT-RISK

The estimator ÂV@Rα(e) can be compared with the corresponding random variable

which is based on the errors instead of residuals

ÂV@Rα(ε) := inft∈R

{

t + 1
(1−α)N

∑N
i=1[εi − t]+

}

= V̂@Rα(ε) +
1

(1−α)N

∑N
i=1

[

εi − V̂@Rα(ε)
]

+

= ε(⌈Nα⌉) +
1

(1−α)N

∑N
i=⌈Nα⌉+1

[

ε(i) − ε(⌈Nα⌉)

]

.

(D.0.103)

Note that ÂV@Rα(ε) is not an estimator since errors εi are unobservable.

By (C.0.99), we have that

∣

∣

∣
V̂@Rα(ε)− V̂@Rα(e)

∣

∣

∣
= Op(N

−1/2) (D.0.104)

and it is known that ÂV@Rα(ε) converges w.p.1 to AV@Rα(ε) as N → ∞, provided

that ε has a finite first order moment. It follows that ÂV@Rα(e) converges in prob-

ability to AV@Rα(ε), and hence β̃0 + xTβ̃ + ÂV@Rα(e) is a consistent estimator of

AV@Rα(Y |x).

Lets discuss asymptotic properties of the residual based AV@Rα estimator. As it

was pointed out in Appendix C, random vectors (β̃0, β̃) and e are uncorrelated, and

hence asymptotically β̃0+xTβ̃ and ÂV@Rα(e) are independent and hence uncorrelated.

Assuming that α-quantile of Fε(·) is unique, we have by Delta theorem

ÂV@Rα(e) = V@Rα(ε) + (1− α)−1N−1
N
∑

i=1

[ei − V@Rα(ε)]+ + op(N
−1/2) (D.0.105)

and

ÂV@Rα(ε) = V@Rα(ε) + (1− α)−1N−1
N
∑

i=1

[εi − V@Rα(ε)]+ + op(N
−1/2). (D.0.106)
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Equation (D.0.106) leads to the following asymptotic result (cf. Trindade et al. (2007),

Shapiro et al. (2009), section 6.5.1)

N1/2
[

ÂV@Rα(ε)− AV@Rα(ε)
] D→ N (0, γ2), (D.0.107)

where γ2 = (1−α)−2Var
(

[ε−V@Rα(ε)]+
)

. Moreover, if distribution of ε has nonzero

density fε(·) at V@Rα(ε), then

E
[

ÂV@Rα(ε)
]

− AV@Rα(ε) = − 1− α

2Nfε(V@Rα(ε))
+ o(N−1). (D.0.108)

From the equation (D.0.105) and (D.0.106), the asymptotic variance of
(

ÂV@Rα(ε)−

ÂV@Rα(e)
)

can be bounded by (1 − α)−1N−2σ2
(

k + 1
)

and we can approximate

the asymptotic covariance of the corresponding terms,
(

ÂV@Rα(ε)− AV@Rα(ε)
)

and
(

ÂV@Rα(ε)− ÂV@Rα(e)
)

as
−(1−α)−1N−2σ2

(

k+1
)

2
. Thus, asymptotic variance of the

residual based AV@Rα estimator can be approximated as

N−1
(

γ2 + σ2[1;xT]Ω−1[1;xT]T
)

. (D.0.109)
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APPENDIX E

ASYMPTOTICS FOR THE MIXED QUANTILE

ESTIMATOR

It is possible to derive asymptotics of the mixed quantile estimator. For the sake of

simplicity, let us start with a sample estimate of S(X), with λj and αj , j = 1, ..., r,

given in (2.2.50). That is, let X1, ..., XN be an iid sample (data) of the random

variable X , and X(1) ≤ ... ≤ X(N) be the corresponding order statistics. Then the

corresponding sample estimate is obtained by replacing the true distribution F of X

by its empirical estimate F̂ . Consequently, (1− α)−1S(X) is estimated by

(1− α)−1

r
∑

j=1

λjF̂
−1(αj) =

1

r

r
∑

j=1

X(⌈Nαj⌉). (E.0.110)

This can be compared with the following estimator of AV@Rα(X) based on sample

version of (2.1.35):

X(⌈Nα⌉) +
1

(1−α)N

∑N
i=⌈Nα⌉+1

[

X(i) −X(⌈Nα⌉)

]

=
(

1− N−⌈Nα⌉
(1−α)N

)

X(⌈Nα⌉) +
1

(1−α)N

∑N
i=⌈Nα⌉+1X(i).

(E.0.111)

Assuming that Nα is an integer and taking r := (1 − α)N , we obtain that the right

hand sides of (E.0.110) and (E.0.111) are the same.

Asymptotic variance of the mixed quantile estimator can be calculated as follows.

Consider problem (2.3.76). The optimal solution of that problem is β⋆ = β∗,

η⋆j = β∗
0 + V@Rαj

(ε) = β∗
0 + F−1

ε (αj), j = 1, ..., r,

and β⋆
0 =

∑r
j=1 λjη

⋆
j = β∗

0 . Assume that ε has continuous distribution with cdf Fε(·)

and density function fε(·). Then conditional on X, the asymptotic covariance matrix

of the corresponding sample estimator (β̌, η̌) of (β⋆, η⋆) is N−1H−1ΣH−1, where H is
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the Hessian matrix of second order partial derivatives of E
[

∑r
j=1 ψαj

(ε+ β∗
0 − ηj + (β∗ − β)TX)

]

at the point (β⋆, η⋆), and Σ is the covariance matrix of the random vector

Z :=

r
∑

j=1

∇ψαj

(

ε+ β∗
0 − ηj + (β∗ − β)TX

)

,

where the gradients are taken with respect to (β, η) at (β, η) = (β⋆, η⋆) (e.g., Shapiro

(1989)). We have

r
∑

j=1

∇βψαj

(

ε+ β∗
0 − ηj + (β∗ − β)TX

)

= −
(

r
∑

j=1

ψ′
αj

(

ε+ β∗
0 − ηj + (β∗ − β)TX

)

)

X,

∇ηjψαj

(

ε+ β∗
0 − ηj + (β∗ − β)TX

)

= −ψ′
αj

(

ε+ β∗
0 − ηj + (β∗ − β)TX

)

,

with ψ′
αj
(·) is given in (2.3.72).

Note that E[ψ′
αj
(ε−F−1

ε (αj)] = 0, j = 1, ..., r, (see (2.3.73)), and hence E[Z] = 0.

Then Σ = E
[

ZZT
]

and we can compute Σ =







κE
[

XXT
]

Ψ

ΨT ∆






, where κ =

E

{

[

∑r
j=1 ψ

′
αj
(ε− F−1

ε (αj))
]2
}

, Ψ = [Ψ1, ...,Ψr] with

Ψj = E

[(

r
∑

i=1

ψ′
αi

(

ε− F−1
ε (αi)

)

)

ψ′
αj

(

ε− F−1
ε (αj)

)

X

]

, j = 1, ..., r,

and ∆ij = E

[

ψ′
αi
(ε− F−1

ε (αi))ψ
′
αj
(ε− F−1

ε (αj))
]

, i, j = 1, ..., r.

The Hessian matrix H can be computed as H =







γE
[

XXT
]

F

F T D






, where

γ =
∑r

j=1 γj with

γj =
∂E
[

ψ′
αj
(ε+ β∗

0 − η⋆j + t)
]

∂t

∣

∣

∣

t=0

=
∂ [αj(1− Fε(F

−1
ε (αj)− t)) + (αj − 1)Fε(F

−1
ε (αj)− t)]

∂t

∣

∣

∣

t=0

= αjfε(F
−1
ε (αj))− (1− αj)fε(F

−1
ε (αj)) = fε(F

−1
ε (αj)), j = 1, ..., r,

F = [F 1, ...,F r] with F j = γjE [X], j = 1, ..., r, and D = diag(γ1, ..., γr).

Since β̌0 = λT
η̌, we have that β̌0+β̌

T
x = [xT;λT][β̌; η̌], and hence the asymptotic

variance of β̌0 + β̌0
T
x is given by N−1[xT;λT]H−1ΣH−1[x;λ].
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APPENDIX F

ESTIMATED REGRESSION COEFFICIENTS FOR THE

EMPIRICAL EXAMPLES

Table 13: Estimated coefficients, lower(LCI) and upper(UCI) confidence intervals for
the empirical examples

BAC CDS spread example
Variables Coefficients LCI UCI
Y (percent change of BAC CDS)
Intercept 0.3956 0.0587 0.7325
X1 (return of BAC stock price) -0.2164 -0.2849 -0.1479
X2 (percent change of generic 5-year CDX.IG) 0.4555 0.3574 0.5536

IBM stock example
Variables Coefficients LCI UCI
Y (log retern of IBM stock)
Intercept 0.036 -0.0479 0.12
X1 (daily log return of S&P 500 index) -0.1733 -0.2539 -0.0927
X2 (lagged log return) 0.0009 0.0001 0.0017
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