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SUMMARY  

The objective of the proposed research is to develop an analytical tech-

nique for the determination of the resonant frequencies and acoustic mode 

shapes of two-and three-dimensional cavities of arbitrary geometry with mixed 

boundary conditions. 

To accomplish this objective, an integral formulation of the Helmholtz 

equation, which governs the sinusoidal wave motion of a perfect gas, is used 

to avoid the limitations of the finite difference and series expansion formu-

lations currently in wide use. Using the appropriate Green's functions for 

the two-and three-dimensional cases the integral equations are written as 

finite sums which results in a system of linear albegraic equations to be 

solved for the acoustic potential. With the time and funding available, only 

two-dimensional problems are studied although application of the theory to 

three-dimensional problems is discussed. This system of equations is then 

solved using Gaussian elimination, and the eigenfrequencies and corresponding 

mode shapes are obtained. Since the integral formulation results in a diago-

nally dominant coefficient matrix, pivotal condensation is not required which 

results in a 25 to 50 per cent reduction in computer time. 

The theory is first applied to a circle and a rectangle, for which exact 

solutions exist. For the circle the numerical solutions are in agreement with 

exact results to five significant figures for a rigid surface with thirty 

points taken on the boundary. For a nonrigid boundary agreement is to within 

two to three significant figures. The decrease in accuracy for the nonrigid 

boundary is caused by the appearance of a logarithmic singularity in the 

integral formulation and has not been studied prior to this investigation. 

Techniques employing Gaussian guadrature have been developed to minimize the 
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error associated with the logarithmic singularity. For the rectangle, tech-

niques are developed for handling corner points where a 1/r-type singularity is 

encountered in the integral formulation. These techniques are an improvement 

over ones developed previously in other studies and result in an agreement to 

three significant figures between numerical and exact results. 

Using the numerical methods developed in the investigations with the sim-

ple geometries, results are given for a star - shaped boundary and duct with 

a right angle bend. For the star the appearance of nodal points instead of 

nodal lines in the shapes of some of the natural modes is predicted which is 

in agreement with experimental observations. For a duct with right-angle bend, 

the effect of mixed boundary conditions and a sound source is investigated. 

The results for the wave shapes obtained in this investigation compare favor-

ably to the wave pattern computed using finite differences. 



I. INTRODUCTION 

A. Objectives  

The objective of the proposed research is the development of a general 

analytical technique for the prediction of the resonant frequencies and nat-

ural modes of acoustic waves inside arbitrarily shaped ducts with mixed bound-

ary conditions. Such a technique is needed to improve the acoustic properties 

of systems used in domestic applications and industry. To achieve this objec-

tive, an integral formulation of the wave equation is used because of compu-

tational advantages. The resulting expressions are solved numerically. To 

evaluate the accuracy of the theoretical model, it is applied to ducts with 

simple geometries and boundary conditions and the numerical results are com-

pared with available exact solutions. For more complicated shapes and bound-

ary conditions, the predicted results are compared with experimental data or 

published numerical values obtained by other analytical techniques. 

B. Practical Applications  

The analytical model developed in this investigation is applicable to 

the following engineering and architectural problems for which no exact 

solution exists. 

(1) Room Acoustics. To establish desirable acoustic properties 

in rooms and auditoriums, nonuniform surface admittances 

(for example carpeting and draperies) and irregular shapes 

are employed. The theoretical model developed under this 

grant can be applied to this problem for determination of 

the acoustic characteristics of the room. Such undesirable 

properites as nodal points, echoes, and focal regions can 
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then be predicted and avoided. Also, parametric studies 

can be carried out to determine the most efficient use 

of sound absorbing material, which will reduce the cost 

of acoustic treatment. 

(2) Combustion Instability. This phenomenon is characterized 

by high amplitude waves driven by the combustion process 

and generally occurs at one or more of the resonant fre-

quencies of the combustor. This problem occurs in numer-

ous applications which involve combustion processes, such 

as blast furnaces, industrial heaters, afterburners, and 

liquid and solid propellant rocket motors. The research 

conducted under this grant provides a means of determining 

the resonant frequencies of the combustor at which insta-

bility is likely to occur. Acoustic liners designed for 

maximum damping at these frequencies can then be employed 

to minimize the possibility of unstable combustion. The 

shape of the combustor can also be changed. For instance, 

in solid propellant rocket motors, the shape of the pro-

pellant grain can be modified to stabilize the combustion 

process. 

(3) Electromagnetic Waves. Since the Helmholtz equation des-

cribes the spatial variation of electromagnetic waves, the 

techniques developed in this research are applicable to 

the problem of electromagnetic wave propagation in wave 

guides. The theory can be used to determine the resonance 

characteristics of these waves in irregular wave guides 

with mixed boundary conditions. 
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The numerical techniques developed can also be used to solve related 

integral equations which occur in the fields of heat conduction, aerodynamics 

and aeroelasticity. 

C. 	Background  

A brief description of the existing analytical approaches for predict-

ing the natural frequencies and modes of arbitrarily shaped ducts will now be 

presented. These studies are concerned with obtaining solutions to the Helm-

holtz equation which is derived from the wave equation when a sinusoidal time 

dependence is assumed and which describes the spatial dependence of the oscil-

lations. This equation is included in most standard texts on differential 

equations of mathematical physics and has been extensively studied in both 

differential and integral form. To determine the resonant frequencies and 

natural modes of wave guides, the differential formulation is currently the 

most widely used. 

In differential form, exact solutions of the Helmholtz equation can be 

obtained by separation of variables i ' 2 . This method involves series expansions 

of the solutions in terms of eigenfunctions of the system. The eigenvalues 

are determined by the boundary conditions. Although this technique has been 

successfully applied to several practical problems in duct wave propagat-

ion
3-9

, it has the following limitations. (1) The series expansions often 

involve special functions which are difficult to compute. (2) At high fre-

quencies and at the boundaries the series are slowly convergent. Therefore, 

a large number of terms in the series must be retained to ensure accurate 

results, which often requires excessive computation time. (3) The most ser-

ious limitation as far as the proposed research is concerned is that this 

method can only be used with special coordinate systems and boundary condit- 

3 



4 

ions for which the separation of variables can be applied. To date only 

eleven suitable coordinate systems are known ' . Because of these limitations, 

the separation of variables is not used in the research conducted under this 

grant. 

For arbitrarily shaped bodies, the differential form of the Helmholtz 

equation can be solved by writing the equation in terms of finitie differences
1 . 

Unlike separation of variables, this technique is not limited to ducts with 

simple geometries. A typical application of finite differences is given by 

Wynne and Plumbee10 who solved for the transverse eigenvalues and eigenfunctions 

of an annular duct with lined walls. This technique involves the simultaneous 

solution of the acoustic potential value at every point within the duct. Once 

the potential values are known, the acoustic pressure and velocity can then be 

determined. To obtain sufficient accuracy, fine grid sizes must be used which 

necessitates large computer storage requirements. This drawback was noted by 

Baumeister11 , Baumeister and Rice 12 , and Alfredson 13  who used this technique 

in studies of duct wave propagation. Because of the storage requirements this 

technique has only been applied to two-dimensional problems. For three-

dimensional problems numerical methods capable of handling large matrices must 

be used which require comsiderable computer time and computational effort 14
. 

For wave propagation inside arbitrarily shaped surfaces, a numerical 

technique must usually be employed to solve the governing equations. The 

integral form of the Helmholtz equation is more suitable for numerical solut-

ion. This formulation relates the value of the acoustic potential function at 

any point inside the surface to the values of the function at the surface. 

Unlike the differential Helmholtz equation which involves the simultaneous 

determination of the acoustic field at every point in the interior domain, 
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the integral formulation reduces the problem to the much simpler one of 

determining the wave form at the surface. Essentially, the number of dimen-

sions of the problem is reduced by one. Thus, the computer storage required 

for numerically solving the integral form of the Helmholtz equation is much 

less than the storage requirements and associated computation times necessary 

for solving the differential form by finite differences. 

To avoid the limitations of the differential formulation, the integral 

approach is employed in this research. The integral approach has been success-

fully applied to related acoustic problems. In determining the sound radia-

tion field from vibrating surfaces, integral techniques have been widely 

used
15-18

. For example, Chen and Schweikert 
15,16

employed this method to 

determine the radiation sound patterns for three-dimensional shapes with mixed 

boundary conditions. To check the accuracy of the results, they computed the 

radiated field produced by a piston vibrating on a sphere. For this problem 

an exact solution exists 3  and compared favorably with the numerical results. 

The integral formulation is also used to solve the problem of scattering by 

arbitrary shapes
19-22

. Banaugh and Goldsmith, for example, used this technique 

to investigate the effect of surface shape
19,20 

on scattered sound fields. By 

applying this method to a circular cylinder, for which exact solutions are 

available
3,4 , and comparing the exact and numerical solutions, Banaugh and 

Goldsmith demonstrated the accuracy of the integral solution scheme. Although 

this method is capable of handling mixed boundary conditions, only surfaces 

with rigid boundaries were considered in References 19 and 20. The effect of 

mixed boundary conditions was included in a study by Liu and Martenson
23 

of the 

internal acoustic pattern of a lined axisymmetric duct of arbitrary shape. 

Comparison of the theoretical predictions with experimental data showed gen- 
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erally good agreement although both the theoretical development and experimen-

tal technique are open to question. Unpublished work by Zinn and Gaylord 24 

 demonstrated the applicability of the proposed integral formulation for the 

determination of the natural frequencies and modes for two-dimensional shapes. 

In this study the accuracy of the technique was determined by comparing the 

natural frequencies and mode shapes with available exact solutions for a two-

dimensional cylinder with rigid walls. As shown in Table 1, the agreement is 

to within four decimal places which is two orders of magnitude greater in 

accuracy than previous results obtained by solving the differential Helmholtz 

equations using finite differences 10
. In another study of Tai and Shaw25 , the 

integral method was applied to a right triangle. The resulting eigenfrequenc-

ies compared with exact solutions to within 5 per cent and the maximum devia-

tion between the numerically computed and exact potential fields was less than 

one per cent. 

D. Research Accomplished  

Because of its demonstrated success in related acoustic fields and its 

advantages over the differential formulation, the integral form of the wave 

equation is used in this study. The research accomplished under this grant 

is given in Figure 1. The general formulation of this problem for determining 

the resonant frequencies and natural modes of arbitrarily shaped bodies with 

mixed boundary conditions is presented in Section II. The properties of the 

eigenvalues are discussed, and the boundary conditions of importance in 

acoustic problems are presented. In Section III, numerical techniques for 

obtaining the solutions of the integral equations are presented and discussed. 

The cases investigated are presented in Section IV and include the study of a 

right circular cylinder, a rectangle, and a star-shaped cavity typical of solid 



TABLE I. 

Comparison of the Exact Values of the Resonant Frequencies 

and Natural Modes with the Computed Values Obtained by 

Solving the Integral Equations Numerically (Taken from Ref-

erence 24). 

Exact 
Eigenvalues 40 Boundary Points 

Maximum Deviation between 
the Exact and Numerical 
Values of the Surface 
Potential 

1.84118 1.84120* .00164 

3.05424 3.05427* .00325 

3.8317 3.8329** Not Computed 

4.2012 4.2023** Not Computed 

Hankel function was used. 

** The Bessel function of the second kind was used. 
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Develop Computer Program for 
Determining Resonant 

Frequencies and Natural Modes 

Determine the Eigenvalues and Natural Modes 
of a Circle and Compare with Exact Solutions 
to Demonstrate Accuracy of Solution Technique 

I 
Determine the Eigenvalues and 
Eigenfunctions of a Rectangle 
and Compare with Exact Solutions 
to Study the Effects of Corners 
on the Accuracy of the Results 

Compute the Eigenvalues and 
Eigenvuctions of a Star-Shaped 
Boundary to Demonstrate the 
Applicability of the Analysis 
to Complicated Geometries 

Calculate the Mode Shapes of a Duct 
with a Right Angle Bend and Compare 
the Results with Finite Difference 
Solutions to Compare the Integral 

and Differential Approaches 
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Figure 1. Research Accomplished. 
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propellant rocket motors. Both rigid and lined walls are considered and the 

results are discussed and compared with previous studies. Conclusions and 

recommendations are given in Section V and possible future research in this 

area is suggested. 
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II. GOVERNING EQUATIONS 

The integral formulation of the wave equation for internal wave propa-

gation problems is developed in this section for two and three dimensions. 

The boundary conditions and their influence on the eigenvalues of a given sur-

face are then discussed. For clarity, only a brief account of the derivation 

of the basic equations will be given in this section. For a more detailed and 

rigorous development, References 26 through 29 can be consulted. 

Assume a frictionless, homogeneous gas, and let p o  and p0  be the density 

and pressure of the fluid at rest. Representing the acoustic pressure and 

particle velocity at a time t by p and li, Euler's equation for the conservation 

of momentum gives 

p0 3 
 + Vp = 0 	 (1 ) 

The continuity equation yields the relationship 

p0 0 
C2  V • -)U-  = Dt  

0 	 (2) 

where c
o 

is the speed of sound. By defining an acoustic potential function T 

such that 

U = VT 

Equation (1) provides the relation 

aT 
p 
	

- Po at 
	

(4) 

and Equation (2) results in the classical wave equation 



V2  V T 
2 

T 

ate 

1 1 

(5 ) 

The wave equation can also be written in terms of p and u, but it is more con-

venient to work with an acoustic potential function, from which both the 

acoustic pressure and particle velocity can readily be obtained. 

Equation (5) is the wave equation fora general time dependence and can 

be written in integral form and solved by using retarded potentials 21  ,28 . 

 However, for most practical problems a sinusoidal time dependence can be 

assumed which simplifies the problem considerably. Assume 

TCP, 	= (1)(ter) e-iwt 
	

(6 ) 

Substituting Equation (6) into (5) gives the Helmholtz equation 

v
2 

(I) + k
2 
(1) = 0 	(k = aco ) 
	

(7 ) 

which can be solved by simpler methods not involving the use of retarded poten-

tials. 

A. Integral Formulation  

To obtain an integral formulation of the Helmholtz equation, consider 

the problem shown in Figure 2. Applying Green's theorem to the Helmholtz 

equation
1,28,29 

gives the following integral relation 

[P(Q) 
3G(P' 

 an Q) 	G(P, Q) V91] dSQ  = 	 (8) 
0) 

Q 	 Q 

where cp is the acoustic potential function and G is the Green's function, which 

also satisfies the Helmholtz equation. The Green's function is regular inside 

the surface r except when P = Q. At this point G is singular. To remove this 

singularity from the integral given by Equation (8), point P is surrounded by 

a small sphere or circle a of radius E. The integral will now include a term 



1 integration Boundary 
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Figure 2. Integration Surface for an Interior Point 



over a which, on taking the limit as £ ÷ 0, gives 

0(P) = Ci 	[G(P, Q) kL- 	0(Q) 9G(P ' Q ) ]  dS 
r 	

nQ 	anQ 	Q 
Qg 

where C is i/4 for two dimensions and 1/47 for three dimensions. 

From Equation (9) the value of the acoustic potential function at any 

point P within the surface can be determined from the boundary values of the 

potential and its normal derivative. Thus, the entire wave pattern within the 

surface can be constructed. For arbitrarily shaped surfaces for which numeri-

cal techniques must be used to obtain a solution, Equation (9) requires much 

less computer storage than the differential formulation given by Equation (7). 

Using Equation (9) the value of the potential at each interior point can be 

obtained independently, whereas the method of finite differences used to solve 

Equation (7) requires the simultaneous solution of 0 for every interior point. 

To avoid the large matrices involved with finite differences, the integral 

formulation given by Equation (9) is used in this study. 

If the values of both and Wan are known at every point on the boun-

dary, then the wave pattern can readily be determined from Equation (9). How-

ever, for most practical acoustic problems either a0/an or an admittance con-

dition relating 0 and Wan are given. Therefore, the values of acoustic 

potential ¢ at the boundary must first be determined. The necessary relation 

is obtained by letting the point P approach the boundary at some point T as 

shown in Figure 3 to obtain the following relation
26  

(“T) = 2C 	[G(T, Q) 	4)(Q) 3G(T ' Q ) ]  dS
Q 	

(10) r 	 anQ  

TQ 

Equation (10) is applicable to a smooth boundary, but has been extended to 
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Semicircle or 

Hemisphere of 

Radius E 
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Figure 3. Surface of Integration for a Point on the Boundary 
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include cusps and corners
19,24

To obtain the interior wave pattern, Equation 

(10) is first solved for the boundary values of yt, . These values are then 

substituted into Equation (9) to determine the acoustic potential at the 

interior points. 

Equations (9) and (10) are applicable to both two- and three-dimensional 

acoustic problems. In the two-dimensional case, these equations involve line 

integrals; and in the three-dimensional case, the integrals are taken over a 

surface. Note that the dimensionality of the problem is reduced by one - a 

valuable simplification. 

The Green's functions satisfy the following inhomogeneous forms of the 

Helmholtz equation with homogeneous boundary conditions 1 

v 2 G + k
2 
G = 6(P - Q) 

where 6 is the Dirac delta function. The Green's functions are 1 

G(P, Q) = H c() 1)  (kr) 	for two dimensions 	 (12) 

and 

G(P, 
Q) 	e-irkr 	

for three dimensions 	 (13) 

where r is the distance between points P and Q, and H o
(1)  (kr) is the zeroeth 

order Hankel function of the first kind. 

To demonstrate the applicability of the integral solution technique, 

two-dimensional problems are considered in this research. In future studies 

it is proposed that three-dimensional and axisymmetric shapes be investigated. 

B.' Boundary ' COnditions and Their - EffeCt'On'the'EigenValues  

The two most common boundary conditions in practical acoustic problems 
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are the Neumann and Robin conditions. The homogeneous Neumann condition of 

interest in the present eigenvalue study is 

an 
	0 	 (14) 

Physically, this condition means that the particle velocity is zero at the 

boundary which implies a perfectly reflecting, or rigid, surface. For surfaces 

which absorb sound, such as lined duct walls or carpeted floors, an admittance 

condition is usually specified, which leads to the Robin condition. Defined 

as the ratio of the normal component of the particle velocity to the pressure 

perturbation, the admittance y can be written as 

y = p co  
0 	p 

un 	 (15) 

Substituting for u n  and p from Equations (3) and (4) gives 

= 4 Wan 
 ' 	kg) 

or 

21_ + ik y 	= 0 	 (16) 

Equation (16) is the homogeneous Robin condition
29 . For sound absorbing 

materials or devices, the admittance can be either analytically determined 30-32 

or empirically measured using the impedance tube technique
33,34 

 . The effects 

of a given-material on the internal acoustic properties of a particular geo-

metry can be determined by substituting the admittance of the material into 

Equation (16) and solving Equations (10) and (9) for the acoustic potential. 

Thus, the analytical technique used in this investigation is applicable to a 

vast number of duct and architectural acoustic problems of commercial and 
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domestic importance. Since the admittance of a combustion process can also 

be measured
35

, this analysis is applicable to linear combustion instability 

studies provided that the equations are applied to the region where the Helm-

holtz equation holds. By replacing the combustion process by an admittance 

condition, studies of combustion instability have been conducted in liquid and 

solid propellant combustors
36,37

. This research allows the extension of these 

analyses to more general shapes. 

The general effects of the boundary conditions on the values of the 

resonant frequency can be determined by applying a different form of Green's 

theorem
29

. Letting k = k
r 

+ iki , the following relations are obtained: 

- J (k i yr  + k ry i ) Icp1 2  dS = (Or  - 4) f 141 2  dV - 
J 
 1'41 2  dV 	(17) 

J (kryr  - k iyi ) 1(0 2  dS = 2krk i  f 141 2  dV 	 (18) 

For two-dimensional problems, the integrals on the left-hand side of Equations 

(17) and (18) are line integrals and the ones on the right are surface inte-

grals. For three dimensions the integrals are taken over the surface and 

volume, respectively. 

From these equations, the eigenvalues must be real for a rigid surface, 

which satisfies the Neumann boundary condition Wan = 0. Since the admit-

tance is zero for a rigid boundary Equation (18) indicates that either k r  or 

k i  must be zero. However, Equation (17) can only be satisfied for real values 

of k, so the eigenvalues are real. This problem has been considered by Zinn 

and Gaylord
24  for a circle and a rectangle and by Tai and Shaw

25 
for a tri-

angle. 

For the Robin condition the following observations are made using 
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Equation (18). 

(1) For nonzero values of the real part of the admittance the 

eigenvalues are complex, and there is an exponential growth 

or decay in the magnitude of the wave since T(r, t) = 

cp(r) exp (-iwt) = (p(r) exp [-i(k r  + ik i ) ct]. 

(2) For negative values of the real part of the admittance and 

y i  = 0, which occur for a combustion process, k i  is posi-

tive since negative values of k r  are physicall meaningless. 

This implies that the sound amplitude increases exponen-

tially with time. 

(3) For positive values of y r  and y i  = 0 which implies a sound 

absorbing boundary, k i  is negative and the wave amplitude 

decays with time. 

To determine the eigenvalues for the Robin condition, Equation (1&) is 

substituted into Equation (10) to obtain 

cp(T) + 2C f s(Q) OG(T ' Q )  + ik y (Q) G(T, Q)] dS 	= 0 	(19) anQ  

TQ 

For surfaces with spatially varying admittance conditions, the admittance is 

a function of Q. For most cases considered in this research, y will be assumed 

constant. Nontrivial solutions of this equation exist only at the resonant 

frequencies or eigenvalues of the surface under investigation. For the two-

dimensional problem investigated under this grant the determination of the 

eigenvalues involves the evaluation of Hankel functions with complex arguments. 

The numerical techniques necessary to obtain the resonant frequencies and mode 

shapes are the subject of the next section. 
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C. 	Summary  

In this section integral relations are developed for computing the 

values of the acoustic potential function at the boundary and within the sur-

face. The effects of the boundary conditions on the resonant frequencies are 

investigated, and it is shown that (1) for a rigid surface the resonant fre-

quencies are real and (2) for nonzero values of the real part of the admit-

tance the resonant frequencies are complex. 



III. SOLUTION TECHNIQUE 

In the last section, the integral equations were developed which , des-

cribe the interior acoustic field of a surface with arbitrary shape and mixed 

homogeneous boundary conditions. Nontrivial solutions exist only at the reso-

nant frequencies of the system. The numerical solution technique for solving 

the two-dimensional equations to obtain the resonant frequencies and natural 

mode patterns is presented in this section and can be divided into four parts. 

The first is the discretization of the integral equation into a corresponding 

system of linear, algebraic equations in cp suitable for solution on a computer. 

The second part is the specification of the geometry and boundary conditions. 

The third is the computation of the coefficients of the system of equations. 

The final part is the determination of the eigenfrequencies and eigenmodes of 

the geometry under consideration. 

A. 	Discretization of the Integral Equations  

In two dimensions, Equation (19) involves a one-dimensional integral 

about the boundary line. For this type of problem several numerical inte-

gration techniques
38,39 are available for discretizing this equation. The 

simplest is the trapezoidal rule which has been shown to yield excellent re-

sults in previous studies with this type of integral
19,24,25

. Using this 

numerical integration scheme, Equation (19) becomes 

	

aH. ) 	
(1) 	° 

(1)(kr 
Jm 	ik y. H(kr.

m 
 )1 AS. = 0 	 (20) 

¢m + =2 	[ 	an. 
j=1 	 J 	J 	J 

j#111 

where one equation for ¢ is obtained for each value of m and m is varied from 

1 to N. Equation (2) was initially used in this investigation to generate N 

20 
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equations for 0 and accurate results were obtained when the admittance y was 

zero everywhere on the boundary 40 
 . In previous studies of this problem19,24,25  

the admittance was taken to be zero. However, when a nonzero admittance is 

assumed, this technique gives inaccurate results because of a logarithmic 

singularity in 4) 1) (kr m) when the point j approaches m. This singularity is 

discussed further in Section III (C). To overcome the inaccuracies involved, 

a modification of Equation (20) is used and is given by Equation (21). 

,u( 1 )(1,- 
01 P)) 	i 

	

kr‘1 	 1  m 	+ i/2  f 	[
an1/2 	

+ i k y
m 

H
O

1 )
(kro1/2 )] dS} S

m-1/2 

aH
(1)

(kr. ) ii 

11 
- 01 

iSj+1/2 
[  o

an. 

jm 

 + ik y H
o 	j
(1)

(kr
m 
 )] dS = 0 

Si _ 1/2  
j#11 

(21) 

In both Equations (20) and (21) the values of qt. are assumed to be con-

stant over each of the N subintervals. The difference is the method by which 

the terms involving the Hankel functions are evaluated. In Equation (20) an 

average value is computed over each of the subintervals based on r im . With 

Equation (21) these terms are integrated numerically from r j _1/2m  to ri+1 ,2,m 

 using Gaussian quadrature
39,40 

to obtain more accurate values. This type of 

formulation has been used before using trapezoidal instead of Gaussian quad-

rature formulas
18 . In the present study a reduction in error of two orders 

of magnitude in the numerical results was achieved using Equation (21) instead 

of Equation (20) for a nonzero admittance
40  . 

B. 	Surface Geometry and Boundary Conditions 

The first step in solving Equation (21) is the determination of the 

coefficients if o i  and (i) re  These coefficients depend upon the surface geome- 
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try through the terms a/an j , rjm,  and ASj . By specifying the admittance y 

over every subinterval j, the effect of the boundary conditions are included 

in the evaluation of the coefficients. 

To solve for the terms involving the surface geometry, the first 

expression inside the integrals of Equation (21) is written as 

aH (1)
(kr) 	aH(1) (kr) ar 

	

an 	 ar 	an 

= .-kH (1) (kr) an 

( tri 

 

Thus, Equation (21) becomes 

(1) 	
a 

i
s
m+1/2 rw 	

(kr 	) r  {l - ik/2 	 1y 41 	01/2  

m-l/2 

1) (kr)] dS} j s 	LH1 	o1/2 anm 	
m 

„ N 	S
j +1

, 2 	(, ) 	ar 	. 	-(1) 
2 - 	r - E

1 
 (P.

J JS  	
I/ 	[Hi' 	

J 
(kr.

M 
 ) an-  .7---- - ly i  Ho  (krjm)] ds = 0 El 

	j-1/2 
 

,Vm 

The expressions for ar/an j , rjm , and ds can be written in parametric form. 

This type of representation has been used in previous studies using simple 

geometries
17-20,24,41,42 

By taking advantage of symmetry, considerable sav- 

ings in computer storage and computation times were achieved. In fact, Green-

span and Werner42 showed that for a circle Equation (22) can be reduced to a 

single equation instead of a system of equations which could readily be solved 

to obtain the acoustic field. In the study by Tai and Shaw
25

, the method of 

images 1 was used to greatly reduce the number of points necessary to compute 

eigenfrequencies and eigenmodes of a family of triangles. Although these 

studies point out valuable simplifications which can be made in applying the 

integral formulation to a particular problem, the techniques used are not 

(22) 
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applicable to more general problems involving complicated geometries and non-

uniform boundary conditions. 

In the present study, the expressions for the geometric variables are 

written in parametric form only for the circle. In the rest of the configu-

rations considered, a general formulation is used. The fact that a parametric 

representation cannot be used in general cases is not a serious drawback - in 

fact, it somewhat simplifies the formulation. Consider the general problem 

depicted in Figure 4. By specifying the x and y coordinates at the midpoint 

of each of the subintervals, the distance rjm  is readily computed from the 

expression from analytical geometry 

rjm  =1/(x —. - xm ) 2 + (y. - y 
m

) 2  
J  

The expression for ar/anj  can then be obtained since it represents the dot 

product of the gradient of r and the normal at j. Thus, 

(x. - x ) n 	+ (y. - y ) n 
J 	M 	X • 	1 	M 	y. 

ar 	_ 
an. 	 rjm 

 

where n
x  is the component of the normal vector j in the x direction (or the 

cosine of the angle between the normal vector and the x-axis) and n 	is the 
Yj 

corresponding y component (the sine of the angle between the normal vector 

and the y-axis). The line segment length ASj  is simply 

ASj  = 1/(xj+1/2  - xj _1/2 ) 2  + (Yj+1/2 	Yj-1/2)2 	 (25) 

or, for N equally spaced subintervals, 

	

AS. = L/N 
	

(26) 

(23) 

(24)  
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Figure 4. Geometric Considerations for General Problem. 
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where L is the length of the perimeter of the surface. 

To determine the geometric parameters appearing in the coefficients in 

Equation (22), the only requirement is to specify the x and y coordinates and 

the normal at each of the N subintervals. Thus, it is unnecessary to use 

parametric equations or to store the distances r and normal derivatives Dr/an 

in N x N arrays which saves considerable computer storage. However, using 

symmetry it is possible to reduce the size of the arrays for r and ar/an by as 

much as a factor of N in the case of the circle. This saves computation time 

for the eigenvalue problem considered in this study. By storing r and ar/an 

in arrays, these parameters must only be computed once for a particular 

geometry for all values of wave number k which saves computation time. The 

programmer can choose the method he wants to employ. If storage is a problem 

only x, y, AS, and the normal vector components need be stored and the geo-

metric parameters can be computed from Equation (23) through (26). 

Another advantage of the formulation given by Equation (22) is the 

relative ease of taking uneven subintervals which is done in this study for 

the star. If finite differences are employed, considerable difficulties can 

be encountered
38

. 

C. 	Computation of the Coefficients of the Discretized Integral Equation  

Once the geometry has been specified, the coefficient of 4 in Equation 

(22) can be determined by evaluating the Hankel functions H
(1) 

 (kr. ) and jm 

H (1) (kr
jm

). There are two problems in determining these functions: the first 
1 

is a rapid, accurate method for computing them over a wide range of the argu-

ment k .m  ; and the second is the singularity associated with each function as rj  

r. approaches zero. 
J111 

To compute the Hankel functions two routines have been used in this 

study. The first consists of series expansion using standard formulas for 
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the Hankel function with complex arguments
39,43

. A sufficient number of terms 

is taken to satisfy a specified degree of accuracy. For large values of the 

argument - 'kr.
Jm 
 I greater than 10 - asymptotic expansions are used 39 

 . The 

series tend to be slowly convergent for values of Jkrjm l close to 10 which 

leads to excessive computation times. There is no problem with the accuracy 

achieved, however, since the Hankel functions of orders zero and one which are 

of interest in this study are well behaved. 

To minimize time, a different series expansion which is developed by 

Hitchcock 44  is used for determining these functions in the studies of the 

rectangle, star, and duct with a right-angle bend. With this formulation 

accuracies of 10
-10 
 or greater are achieved with only nine terms or less in 

the series expansion. Reductions of up to 50 per cent in computer times can 

be achieved with this formulation. 

The major problem in evaluating the terms within the integrals in Equa-

tion (22) is the singularities associated with the Hankel functions as. rjm  

approaches zero; that is, as the point j approaches m in Figure 4. The first 

( 
order Hankel function H

1
1) 
 has a l/r - type singularity whereas the zeroeth 

order function has an In r - type of singularity
39 

Methods for handling these 

singularities will now be presented. 

The terms involving the first order Hankel function which has a l/r - 

type singularity can be written as 

lim H (1)  (kr) ar 	1 4- 1 ar  
r÷o 	 an 	" 

r an 

Banaugh and Goldsmith19 '
2 

.
0  show that for a smooth surface this limit is iden-

tically zero. Also, for a corner point where two straight lines intersect, 

ar 5-is identically zero on either side of the corner point. So, although the 



27 

first order Hankel function behaves like 1/r as r approaches zero, this poses 

no problem in the numerical integration because of the ar/an term. 

The logarithmic singularity which occurs in the zeroeth order Hankel 

function has not been studied prior to this investigation since previous ana-

lyses have only dealt with rigid surfaces for which the admittance is iden-

tically zero. Because H (1)  is multiplied by y, as seen from Equation (22), 

this singularity does not arise when y = O. However, in the present investi-

gation which involves nonzero admittance values numerical integration tech-

niques must be employed which can give accurate values of integrals of the 

form ca 
In r dr 

Such a technique can be found in Reference 39. It involves a Gaussian guad-

rature formula specifically derived for integrals of this form. Using this 

formula gives an error reduction of two orders of magnitude over the trape- 

zoidal integration schemes previously used19,20,24,25,41,42. It is only 

necessary to use the logarithmic Gaussian formula over the interval about the 

point m. Around the other points the standard Gauss-Legendre quadratures pro-

vide sufficient accuracy in evaluating the integrals over each of the sub-

intervals. 

Using these techniques the coefficients in Equation (22) can now be 

determined, and the eigenfrequencies and surface potential distribution can 

then be obtained. Once the surface values are known, the internal values can 

then be found from the discretized form of Equation (9) which is 

. 	E 	. 	[H, )  (kr j ) 	ikyj  Hal) (krjp )] ds 	(27)an.rj+1/2( 	ar 
P 	j=1 J s.  

J-1/2 
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where p is an internal point, the (p j 's are the surface potential values, and 

rPi is the distance from the interior point to the jth surface point. 

It was noted by Greenspan and Werner
42 
 that if the interior point p is 

close to the boundary, inaccuracies arise. In computing interior points the 

l/r singularity in H1 1) (kr) causes problems here because Wan now is of 

order unity. They overcame this difficulty by using finite elements to obtain 

points for distances within one surface subinterval length of the boundary. 

In the present investigation using the interior analog of Equation (21) errors 

of 5 per cent occur for a rectangle when an interior point is one-half of a 

surface subinterval length away from the boundary. However, using Equation 

(27) with a three-point Gauss-Legendre quadrature to evaluate the integrals 

over each of the subintervals, the accuracy achieved is of the same order as 

the computed surface potential. Thus, Equation (27) provides accurate poten-

tial values for interior points near the boundary and eliminates the need to 

employ finite differences there. 

D. 	Determination of the Resonant Frequencies and Natural Mode Shapes  

Once the coefficients of the surface potential at each discrete point 

on the surface have been determined, the values of the nondimensional frequency 

k for which the determinant of the coefficient matrix is zero can be found. 

These values of k correspond to the resonant frequencies or eigenvalues of the 

duct under consideration. 

Because k appears both as a multiplicative factor and as part of the 

argument of the Hankel function as shown in Equation (22), the problem is a 

nonlinear matrix eigenvalue problem. The numerical techniques available to 

solve for a linear matrix eigenvalue
45,46 

 cannot guarantee convergence. 

This problem is resolved in the present study by employing a guadratic 



interpolation algorithm
38,47 

 which. is rapidly convergent and is capable of 

computing complex zeroes for complicated functions which cannot be written 

explicitly. To find an eigenvalue three starting values must be assumed. For 

the case of a rigid wall, the eigenvalues are real numbers, so successive real 

values of k are assumed until the magnitude of the coefficient matrix determi-

nant reaches a minimum. The determinant is computed using a complex Gauss-

Jordan elimination technique and since the resulting coefficient matrix is 

diagonally dominant, pivotal condensation is not required which saves comp-

utation time. The minimum value of k along with the preceding and succeeding 

values are then used as the three starting points in the quadratic interpo-

lation scheme. A typical plot of the magnitude of the determinant of the 

coefficient matrix versus k is given in Figure 5 for the star-shaped geometry. 

The values at which the determinant is minimized correspond to the natural 

frequencies. 

For a general complex admittance at the boundary, k is complex which 

necessitates a search for the initial values of k in the complex plane. The 

algorithm first proposed for this investigation
48 

did not work. The proposed 

method consists of taking successive values of the real part of k until a 

minimum value of the determinant is reached. At that point successive values 

of the imaginary part of k are taken until a minimum value of the determinant 

is found. The quadratic interpolation method is then employed to find the 

eigenfrequency. However, the determinant increases uniformly with increasing 

values of the real part of k for some of the shapes with a complex admittance 

at the boundary. 

The algorithm successfully employed in this investigation is based on 

the following observations. For a pure imaginary value of the admittance, ki, 

29 
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Figure 5. Plot of the Magnitude of the Determinant of the Coefficient 
Matrix versus Nondimensional Frequency for the Star with 
48 Boundary Points. 
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the imaginary part of k is zero; and only k r  the real part of k, is affected. 

On the other hand, when the admittance is a real number, a slight shift in k r 

 isdetectedbutk.is mainly affected. Based on these observations, the 

following algorithm is used for a complex admittance condition. 

(1) First, take the admittance value as y = 0 + iy i . Compute 

the determinant at successive values of k r until a mini-

mum is found. If the value of k is known for the zero 

admittance, it is helpful to know that negative values of 

y i  tend to increase the rigid wall eigenfrequency whereas 

positive values of y i  decrease the value. 

(2) Once k
r is found for y = 0 + iy. at which the determinant 

is a minimum, let y = y r  + iy i . Keeping k r  constant take 

decreasing negative values of k i  if yr  is negative or 

increasing positive values of k i  if yr  is positive until 

a minimum value of the determinant is reached. 

(3) Use the preceding and succeeding values of k i  to start 

the guadratic interpolation. 

Using this algorithm, the eigenfrequencies for a complex admittance 

can be computed and is used with success for the geometries investigated under 

this grant. Computation times for determining an eigenfrequency and the 

potential distribution of the natural mode the boundary on the grantee-owned 

UNIVAC 1108 computer range from ten seconds for the circle to sixty seconds 

for the star. Since this investigation is the first attempt to determine the 

eigenfrequencies of complicated geometries with complex admittances using the 

integral approach, comparisons of computation times using other algorithms 

cannot be made. 
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To determine the resonant mode shape at a given eigenfrequency, the 

equations are normalized with respect to one of the surface potentials and 

reduced using a Gauss-Jordan matrix reduction scheme for complex coefficients. 

The interior points can then be found by employing Equation (27). To compute 

the mode shapes, from five to sixty seconds of computation time are required 

for nine to fifty-two interior points, respectively. In these calculations, 

techniques for taking advantage of symmetry have been developed to reduce time 

and storage requirements. 

E. 	Summary  

In this section the solution technique is presented and consists of 

(1) discretization of the integral equations given in Section II, (2) speci-

fication of the surface geometry and boundary conditions, (3) computation of 

the Hankel functions with their inherent singularities as the argument 

approaches zero, and (4) determination of the resonant frequencies and 

natural modes. The major achievements are (1) the development of a discreti-

zation procedure for the integral equations which gives accurate results for 

general boundary conditions, (2) the derivation of necessary geometric para-

meters which are not based on parametric formulations but can be used for 

general shapes, (3) improved methods for computing the integrals of the 

Hankel functions numerically which minimize errors associated with their 

singularities, and (4) development of an algorithm for computing complex 

eigenfrequencies. 



IV. RESULTS 

Using the numerical techniques described in the last section, solu-

tions have been obtained for the resonant frequencies and natural modes of a 

circle, rectangle, and star and have resulted in two publications
49,50 

 . A 

third publication has been accepted 51
. To demonstrate the accuracy of the 

numerical technique, the approximate results obtained in this study for the 

circle and rectangle are compared with exact computation. In addition, the 

wave structure of a duct with a right angle bend is computed and compared 

with results obtained using finite differences. 

The computer programs used to obtain these results are described in 

Appendix A. These programs are based on the formulations developed in Sec-

tion II. 

A. 	Circle  

For a circle, comparisons between exact and numerical solutions are 

presented in Table I. In this table the numerical and exact eigenfrequencies 

are tabulated for three admittance values - y = o, y = .3i, and y = .3 with 

thirty points taken on the boundary. A computer program for determining the 

exact values was develdped. The best agreement between the computed and 

exact results occurs at the zero admittance condition. The real part of the 

eigenfrequencies compare to five significant figures and the imaginary parts 

are accurate to .001 for the first five modes. When a nonzero admittance 

condition is introduced, the accuracy is reduced to three significant fig- 

ures in the real part and to .01 in the imaginary part of the eigenfrequencies. 

As mentioned in Section II-D, the real part of the admittance has a 

pronounced effect on k i  while kr  is relatively unaffected. However, the 
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TABLE I. 

Eigenfrequencies and Natural Modes of a Circle for Various Admittance Values 

MODE 
SHAPE 

ADMITTANCE 	VALUE 

y 	= 	0 + Oi*  y 	= 	0.3 + Oi y 	= 	0 + 0.31* 

ID COMPUTED 

EXACT 

1.84122 	- 0.0001i 

1.84118 

1.8324 + 0.4423i 

1.8322 + 0.4432i 

1.4441 	- 0.007i  

1.4384 

411111111 11 
COMPUTED 3.05423 - 0.0003i 3.0791 	+ 0.5397i 2.5369 	- 0.015i 

a 3.-5424 3.0786 + 0.5442i 2.5247 

111111 	

COMPUTED 

EXACT 

3.83175 	- 0.00031 

3.83171 

Not Computed 

3.8188 + 0.30951 

Not Computed 

3.  

Aft COMPUTED 4.20135 - 0.00071 4.25380 + 0.6199i 3.5816 - 0.023i 

11111111, EXACT 4.20119 4.2532 + 	0,6315i 3.5615 

Alai COMPUTED 5.31783 	- 0.0012i Not Computed Not Computed 

Tifity EXACT 5.31755 5.3953 + 0.7101i 4.5767 

* Numerical Results Obtained Using Equation (21) instead of (22) 



imaginary part of the admittance affects only the value of k r' In the 

interim report prepared under this grant
40 
 , results are given using Equation 

(21) which is obtained by applying the trapezoidal rule. The results in 

Table 1 show a two order of magnitude increase in accuracy for y = 0.3 using 

Equation (22). The values for y = 0.3i are the same as those presented in 

Reference 40 using Equation (21). These cases are not computed employing 

Equation (22) in order to save on computation time and since no new infor-

mation can be obtained by doing so. 

The accuracy of the computed natural mode shapes is shown in Figure 

6. The agreement between the exact and computed eigenmodes for a rigid boun-

dary is to within .01 per cent for interior points sufficiently far removed 

from the boundary. For a nonzero admittance at the surface, the accuracy is 

to within two per cent as presented in Figure 7. These results are obtained 

using the interior analogue of Equation (21) which explains the deterioration 

in accuracy of the interior points as the boundary is approached. Equation 

(27) is used in the studies of the rectangle, star, and duct problems and 

more accurate results are attained. 

B. 	Rectangle  

The main reason for studying the rectangle is to investigate methods 

for handling corner points. At these points the normal derivatives are unde-

fined. Since exact solutions can be obtained for the rectangle, the accur-

acies of these techniques can be assessed. 

In this study boundary points were not placed at the corners but were 

displaced a distance of one-half the integration stepsize from the corner. 

This method is not the one suggested by Banaugh and Goldsmithi9  in studying 

the two-dimensional scattering problem. They place the point at the corner 
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and reformulate to account for the fact that a radius vector of arbitrarily 

small length is turned through an angle 0 at a corner instead of 7 for a 

smooth boundary, where 0 is the turning angle at the corner point. For the 

rectangle, 0 is 90 degrees. Applying their method, the eigenfrequency can 

be computed to 0.1 or 3 per cent for the first rectangular mode. However, 

by displacing the point from the corner and using Equation (22), the accuracy 

is increased by an order of magnitude. The techniques for handling the 

normal derivatives at the corners is based on the method developed by 

Banaugh and Goldsmith. 

The results are summarized in Table II for 42 points taken on the 

boundary. As with the circle, the agreement between the exact and numerical 

values is good for a rigid boundary but deteriorates when a nonzero admit-

tance is introduced. From Table II the agreement is to almost four signifi-

cant figures in the real part of the eigenfrequency and to within .01 in 

the imaginary part for a rigid wall. The Gaussian integration techniques 

developed in Section III and applied to the circle are used for the rec- 

tangle to improve the accuracy of the computed eigenfrequencies for a nonzero 

admittance condition. 

The boundary values of the acoustic potential are shown in Figure 8 

along lines of constant x and y. The effect of an admittance condition on 

the values along the x axis is also shown. The agreement between the exact 

and numerical results is within one-half of a per cent. 

In addition to studying the effect of corner points, another phenome-

non which occurs for the rectangle is the appearance of two modes existing 

at one resonant frequency. No reliable analytical formulation can be found 

for handling this case although Morse and Ingard suggest ways of evaluating 



TABLE II. 

Resonant Frequencies and Natural Modes of a Rectangle for Dif-
ferent Admittance Values at the ends. 

MODE 
SHAPE 

ADMITTANCE VALUE 

y 	= 	0 + Oi y 	= 	0.3 + Oi y 	= 	0 + 0.3i 

COMPUTED 

EXACT 

3.1432 	- 	0.00151 

3.1416 

3.150 + 0.6199i 

3.142 + 0.61901 

2.558 + 0.0019i 

2.559 
— 

4 — -I- COMPUTED 

EXACT 

6.2877 	- 0.0041i 

6.2832 

6.302 + 0.6156i 

6.283 + 0.6190i 

5.886 - 0.0024i 

5.884 + 

COMPUTED 

EXACT 

7.0312 - 0.0098i 

7.0248 

7.146 + 0.5880i 

Not Computed 

6.333 - 0.0066i 

6.283 

d- — 

__ _F 

COMPUTED 

EXACT 

8.8929 - 0.01841 

8.8858 

8.934 + 0.6099i 

Not Computed 

8.303 	- 	0.0111i 

8.299 

+ — + 

— -4-  — 

COMPUTED 

EXACT 

9.4329 - 0.0074i 

9.4248 

9.456 + 0.6106i 

9.425 + 0.61901 

8.847 + 0.0069i 

8.842 
— + — + 
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these modes
3
. In practice, it is possible to find both of these modes by 

taking sufficiently fine step sizes in k. The frequencies of the two modes 

is not identically the same when numerical integration is used. Also, when 

an admittance condition is applied, the eigenfrequencies of the modes occur 

at different values. 

The comparison between the computed and exact interior fields taken 

along the centerline of the rectangle for the first mode is presented in 

Figure 9. The results compare to with one per cent even for points a dis-

tance of only half of an integration step size from the boundary. This re-

sult demonstrates the accuracy which is achieved by using Equation (27) in-

stead of the interior analogue of Equation (21). 

C. 	Star 

In studying the star-shaped boundary, the applicability of the inte-

gral relations to a complicated geometry for which separation of variables 

does not apply can be assessed. The first nine eigenfrequencies and natural 

modes for the star are presented in Figure 10 for a rigid wall with forty-

eight points taken on the surface. These results are also reported in the 

interim report
40

. The most unique feature of the acoustic field for the 

star is the appearance of nodal points at some of the resonant modes. In 

the circle and rectangle nodal lines only were present and followed one of 

the separable coordinates of the boundary. With the star both nodal lines 

and points can occur which is in qualitative agreement with experimental 

observations. Isometric views of the pressure fields for the third and fifth 

modes are shown in Figures 11 and 12. 

Another unique feature of the modes of the star is the phase between 
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Figure 11. Altitude Chart of the Pressure Distribution for the Third 
Mode of the Star. Arrows Point to the Nodal Lines. 
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Figure 12. Altitude Chart of the Pressure Distribution for the 
Fifth Mode of the Star. 
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the pressure oscillations at two interior pointss. For the modes containing 

nodal lines, the pressure oscillations are either in phase or 180 degrees 

out of phase at every point. This result was also obtained for the circle 

and rectangle. However, for the modes containing nodal points the phase 

varies continuously along lines parallel to the boundary. 

The numerical technique is also applied to three and four quadrant 

star configurations typical of the cross section of a solid propellant com-

bustor at various times during a burn. Forty-eight points are taken on the 

boundary and computation times range from 60 to 75 seconds per mode. The 

resulting modes of a four quadrant star are presented in Figure 13. This 

figure shows the first three modes for four geometries which occur at dif-

ferent times during burning. The dimensions in these figures have been nor-

malized, so the shapes do not appear to increase in size as the burn pro-

gresses. 

In Figure 14, the corresponding results are presented for a star with 

three quadrants. Here, only the first and third modes are shown. The 

second mode, which is not shown, appears to have more than one nodal point 

and a contour plot is needed to investigate its shape. 

In Figures 15 and 16, the variation in the real and the imaginary 

parts of k are plotted against burn time. A constant admittance of -0.05 is 

assumed throughout the burn. This negative admittance value indicates driv-

ing and is typical of a solid propellant combustion process. 

Two effects are evident. First, the frequency k r  changes significantly 

with time because of the increasing size and changing geometry of the com-

bustor. Second, the negative values of k i  indicate that the oscillations 

grow with time. The figures show that the propellant is most likely to be 



Figure 13. First Three Eidenmodes of a Four-Quadrant. Star During Burning 



Figure14• Eigenmodes of a Three-Quadrant Star during Burning 
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unstable initially than during later times in the burn. These results indi-

cate the applicability of this research to practical problems. 

D. Duct with a Right Angle Bend  

The last two-dimensional problem investigated in this research is 

that of a duct with a right-angle bend shown in Figure 17. The reasons for 

studying this configuration are: (1) to investigate a nonuniform surface 

admittance, (2) to include a sound source in the integral formulation, and 

(3) compare the results obtained by the integral technique with the finite 

difference solutions of Reference 13. 

The results obtained using this configuration are presented in Fig-

ures 18 and 19 and are compared with the solutions obtained using the finite 

difference method. Although the results using the integral approach are in 

qualitative agreement with the finite difference solution, quantitative agree-

ment is lacking. The same number of boundary points are taken in both cases. 

Doubling the number of subintervals using Equation (22) modified for a sound 

source does not improve the agreement between the two sets of data. However, 

it does show that the results of the integral formulation are self-consistent. 

An experiment is currently being fabricated to check these results and 

should clarify the discrepancy between these two methods. 

E. Other Studies  

The two-dimensional studies have been carried out by the principal 

investigator. In addition, a graduate research assistant, William L. Meyer, 

has been conducting studies on three-dimensional problems. Preliminary re-

sults for the radiation sound field from a sphere with a radiating piston 

compare with exact results to within 4% for 120 surface points. The assoc- 



52 

/Sound Source 
	fCase I: y=0 c  

ase2
. 
 •y- 

1  

t  	►  
I 

,-...1 ►  ►  

Grid 	for 
Finite Differences 

Boundary Points 
for Integral 	Formulation 

y = 

Figure 17. Location of the Discrete Points, Nonzero Admittance 
Boundaries, and the Sound Source for the Duct with 
a Right Angle Bend. 



0 	Taken from Ref. 13 
0 0 

ilk • • • • •••• 	• Alk 

I 

• • 
— Integral Results 

o • •41, •-is 'Pr. 
• 0 	o• 

• 
• 
0 

o 

o 

H 0 

SPL, db 

100 

90 

Sound 
SOurce 

Distance Along Perimeter, meters 

Figure 18. Comparison of Numerical Results for a Duct with a Right 
Angle Bend Using the Integral and Finite Difference 
Approaches, Case 1. 

0 2 



11 

SPL, db 

100 

90 

O 	Taken from Ref. 13 

Results 

• oloweilliPip 

Mo In 

o Imo, 

Integral 

0 0 
000   

y=1 I 1 	r 
Sound 2  
Source 

Distance Along Perimeter, meters 

Figure 19. Comparison of Numerical Results for a Duct with a 
Right Angle Bend Using the Integral and Finite 
Difference Approaches, Case 2, 



iated computation time on a UNIVAC 1108 is about two minutes to solve for 

the sound pattern. In a previous study by Chen and Schweikert
6
, for 80 

points the error between the numerical and exact results was 18% and compu-

tation times on a comparable computer were about 105 minutes. 

Because of the similarity of the integral equations for solving intern-

nal and external sound fields, large errors in the numerical solution of 

external problems (radiation and scattering) occur at frequencies close to 

the internal eigenvalues of the radiating body. After applying several 

numerical techniques for avoiding this problem, Meyer has developed an effic-

ient method for obtaining reliable results even at the eigenfrequencies. A 

survey paper is planned for publication concerning this work. 

F. 	Summary of Results  

Using the integral formulation, results are presented for a circle, 

rectangle, star and a duct with a right angle bend. The resonant frequen-

cies and natural modes for the circle and rectangle agree well with exact 

solutions using Equations (22) and (27). Equation (21) gives good results 

for a rigid boundary, but leads to inaccuracies when an admittance condition 

is introduced. For a star configuration, the appearance of nodal points in 

the natural mode shapes is predicted which is in qualitative agreement with 

experimental observations. For a duct with a right angle bend, the appli-

cability of the integral formulation to problems involving general boundary 

conditions is demonstrated. The results are in qualitative agreement with 

finite difference solutions but quantitative agreement is lacking. Experi-

ments will be performed to resolve this discrepancy. 
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V. CONCLUSIONS, RECOMMENDATIONS, AND POSSIBLE FUTURE STUDIES 

Based on the analytical studies presented in Section III and the 

numerical results of Section IV, the following conclusions and recommendations 

are made. 

(1) For problems involving rigid boundaries, the trapezoidal 

rule used in previous studies can be used to discretize 

the integral equations and obtain good results. However, 

for a nonzero admittance condition at the surface, Equa-

tion (22) should be used employing Gaussian quadrature to 

evaluate the integrals involving the Hankel functions over 

each subinterval. Equation (27) should be used for both 

zero and nonzero admittances to determine interior points. 

(2) For general boundary shapes, the following procedure should 

be used to determine the geometric parameters appearing in 

Equation (22). First, divide the boundary line into N sub-

intervals. Then, specify the x and y coordinates and the 

normal vector at the midpoint of each subinterval. Fin-

ally, specify the length of each line segment of the sub-

intervals. Once these parameters are known, r and ar/an 

can be obtained from Equations (23) and (24). For simple 

geometries, parametric equations can be used but are not 

necessary for accurate results. For corners, the best re-

sults are achieved by placing two points on both sides of 

the corner. Placing the point at the corner and reformu-

lating the integral equations as suggested by Banaugh and 

Goldsmith, does not yield results as accurate as those ob- 
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tained using the procedure developed in this study. 

(3) To determine the resonant frequencies of a particular 

geometry, the procedure developed in Section III is 

suggested. Since this study is the first undertaken 

to determine the resonant frequencies for general 

admittances using the integral approach, more effi-

cient techniques can probably be developed. However, 

the one presented in Section III yields accurate re-

sults for the geometries considered in this investigation. 

(4) The results for the circle and rectangle show that the 

integral technique is very accurate in determining reso-

nant frequencies and natural mode shapes. Its application 

to the star configuration demonstrates its usefulness in 

studying the acoustics of complicated shapes. For the 

duct with a right-angle bend, the integral approach is 

shown to be applicable to nonuniform boundary conditions 

involving sound sources. 

The results obtained for the two-dimensional problem demonstrate that 

the integral technique is an accurate and rapid means for determing the 

acoustic properties of two-dimensional ducts with complicated shapes. Exten-

sions of this formulation can be made to cover a wide range of acoustic prob-

lems. These include the following: 

(1) Since the numerical techniques are directly applicable to 

two-dimensional radiation and scattering problems, studies 

in this area can be made to improve the accuracy of the 
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predictions obtained to date. The major problem would be 

to investigate techniques for minimizing the errors which 

occur in the sound field when the frequency is close to 

an eigenfrequency of the particular geometry considered. 

Techniques currently in use require a severe penalty in 

computer time and complexity. A technique has been 

developed by W. L. Meyer which minimizes this problem in 

three dimensions and has been shown to be easy to apply 

and efficient with respect to computer time. A two-

dimensional analogue could be formulated and applied. 

(2) The numerical techniques developed for the two-dimensional 

problem can also be used in axisymmetric radiation, scat-

tering, and duct problems. The major change would be the 

use of a different Green's function 18 . The integral equa-

tions involved, however, would retain their essential two-

dimensional character. The axisymmetric formulation is 

applicable to antenna scattering, radiation from ducts 

(such as the aircraft inlet noise problem), and waveguide 

theory. Considerable work is needed in these areas. 

(3) Three-dimensional problems have also been investigated at 

no cost to this grant. These include the radiation from 

a sphere, computation of the internal eigenfrequencies of 

a cylinder, and investigations of the breakdown of the 

integral formulation for external problems at the corre-

sponding eigenfrequencies of the geometry under conside-

ration. Major results include development of more effi- 
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cient numerical methods which reduce computation times 

by two orders of magnitude over the methods currently 

in use and an efficient, rapid technique for computing 

external fields at eigenfrequencies. These techniques 

could be applied to a broad range of acoustic and 

electromagnetic problems. 
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BRIEF DESCRIPTION OF COMPUTER PROGRAMS 



APPENDIX A 

To conduct these investigations, the computing facilities of the 

Georgia Institute of Technology are employed. The available hardware and 

software applicable to this research will be briefly described. 

A. Hardware  

To perform the necessary computations, a UNIVAC 1108 computer was 

used. This computer has a core storage capacity of 65 K which is sufficient 

for the two-dimensional acoustic wave propagation studies. During the course 

of this investigation, a new computer was acquired from CDC called the CYBER 

70. This resulted in a loss of about four months to this project for pro-

gram modification. In addition to converting to a new operating system, the 

programs had to be changed from FORTRAN V used on the 1108 to extended 

FORTRAN IV used on the CYBER 70. However, the programs could run two to 

five times faster on the CYBER 70 than on the UNIVAC 1108. Also the CYBER 

has a 90 K storage capacity which is 35 K more than the UNIVAC. 

B. Software  

To compute the acoustic field and resonant frequencies, the coeffi-

cients of the discretized integral equations are determined first. This 

involves the calculation of r and the normal derivative Van at every point. 

These parameters can be found from the parametric equations which describe 

the surface contour or by specifying the coordinates and normal vector at 

each point. The Hankel functions with complex arguments which also appear 

in the expressions for the coefficients were first calculated using a com-

puter program developed by the principal investigator and later by using a 

more efficient routine. The accuracy of the resulting values has been veri- 
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fied over a wide range of order and arguments. 

Once the coefficients have been determined, the set of complex linear 

algebraic equations and the complex determinants are solved using Gauss-

Jordan reduction. The necessary computer program is available in the library 

routines of the computers. However, since the coefficient matrix is diago-

nally dominant, a routine is used without pivotal condensation to minimize 

time. 

A general flow chart for the computer programs used in research is 

given in Figure A-1. To minimize the time required for program modification 

in changing the surface geometry or boundary conditions, the computer pro-

gram is divided into several subroutines. Rather than modifying parts of 

the entire program, only the affected subroutine need be changed. 

The subroutine SHAPE gives the x and y coordinates of the surface 

contour, the normal vector components, the line segment lengths, and the 

admittance of the surface at each point. This information is returned to 

subroutine BDRY where the basic geometric properties, integration distances 

and boundary conditions are determined. These data are sent to BEGIN which 

computes the value of the resonant frequency. This value is used by sub-

routine FREQ, to determine the eigenvalues using the quadratic interpolation 

method. Th 	boundary values of the potential functions are then computed 

in the subroutine BVALUE by the Gauss-Jordan reduction scheme and used to 

compute the interior values of the potential in subroutine MODE 	In the 

subroutines HANKEL and COEFF, the Hankel functions and coefficients are com-

puted. 
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