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ABSTRACT

Perturbation techniques are described for the computation of the
imaginary part of the horizontal wave number (kl) for modes of propagation.
Numerical studies were carried out for a model atmosphere terminated by
a constant sound speed (478 m/sec) half space above an altitude of 125 km.
Tre GE_ and GRl modes have lower frequency cutoffs,. It was found #haﬁ for
freguencies less than 0.0125 radian/sec, the GRl mode has complex phase

velocity; kI varying from near zero up to a maximum of 3 x 10~% with

anzlogous results for the GR, mode. There is an extremély'SMallvfrequency

0
gzap for each mode for which no poles in the complex k plane corresponding
to that mode exist. These mark the transition from undamped propagation

tc danped propagation. In the complete Fourier synthesis, branch line

oatributions compensate for the absence of poles in these gaps. Compﬁta—

0

tional procedures are described which facilitate the inclusion of the low

frecquency portions of these modes in the waveform synthesis.



INTRODUCTION

One of the standard mathematical problems in acoustic wave propagation
is that of predicting the acoustic field at large horizontal distances
from a localized source in a medium whose properties vary only with height.
This problem, as well as its counterpart in electromagnetic theory, has

. ; . 1. )
received considerable attention in the literature,” is reviewed extensively
. 2~7 .
in various texts , and, for the most part, may be considered to be well
understood.,

. . . 8~

A typical formulation of, say, the transient propagation problem
leads (at sufficiently large horizontal distance r) to an intermediate result
which may be expressed as a double Fourier integration over angular frequency

w and horizontal wave numbar k; i.e. for, say, the acoustic pressure, one

has
(- 3 . o
p = 5(r) Re | £ ¥\ [0/D(w,k) 1eT*T dkdo W
o “oo

Here S(r) is a geometrical spreading factor, 1/¥r for horizontally stratified

/2

redia, l/[aesin(r/ae)]; if the earth curvature (ae=radius of earth) is to

be appfoximately taken into account, The quantity E(@) is a Fourier transform
of some function characterizing the time dependence of the sourceﬁ Q(m,k,z,zo)
is a funcfion of receiver and source heights z and z  as weli as of w and k,
bossibly also of horizontal direction of propagation if, say, winds are inciuded
in the formulation, but, in any event, should have no poles in the complex

k plane for given real positive w, and given z and z, The denominator D(w,k)

is independent of z and z , may be zero for certain values kn(m) of k, and is

termed the eigenmode dispersion function.

Typically, in order to uniquely specify both Q and D{(w,k) for all complex



values of k (given w real and positive), branch.points must be identified

and branch cuts must be placed in the complex k plane.‘ The general rule

ﬁay be taken to be that no branch cut should cross the real axis, gnd, if

a branch point should lie on the real axis (when w is ﬁositive real), the
branch cut either extends into the upper or iower half piane depending on
whether the branch point moves up or down when w ié-given a small positive
imaginary part. The integr;tion contour for the k integration goes nominally
along the real axis but skirts below or above (see Fig. lé) those poles
lying on the real axis which move ﬁp or down, respectively, when w is given

a small positive imaginary part. The placing of the branch cuts and the
selection of the contour in this manner is one method of guaranteeing’
causality ig the solution, or, equivalently, of guaranteeing that the solution
dies oﬁt at large distances if a slight amount of damping (Rayleigh's virtual
viscosity) is added in the mathematical formulation., The necessity of branch
cuts only occurs if the medium is unboundea either from above or below and

a choiée of phases can always be made suchvthat {given, say, that the medium
is unbounded from above) Q dies out exponentially as z + = when w has a small
positive imagiﬁary part and when k is real,

The so-called guided mode description of the far field waveform arises
when the contour for the k integration is deformed (permissible because of
Cauchy}s theorem and of Jordan's lemmalO) to one such as is sketched in Fig.
1b. The poles above the initial contour are encircled in the counterclockwise
manner. There are alsé contour segments which encircle each branch cut lying
‘above the real axis in the counterclockwise sense. The integrals around each
pole are evaluated by Cauchy's residue theérem androne is left with a sum of
residue terms plus branch line integrals. FEach residue term maywbe considered
as corresponding to a particular guided mode of propagation, The branch line
contributions in some contexts are considered as corresponding to what may

11

be termed lateral waves. (The term may be unappropriate unless there is a
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1. Contours in the complex k (wavenumber) plane for evaluation of individual
frequency contribuctions to waveform synthesis. (a) Original contour. {b)

Deformed contour.



~sharply defined intérface separating two typeé of media, such as a water-
muddy bottom interface in shallow water propagation.)

In regards to the guided mode description, one type of approximation
frequently made 1s to neglect all poles (i.e. roots kn(w) of D(w;k)) which are
above the real axis, the argument being that the corresponding eikr factors
in the residues will die‘out rapidly with increasing r, the bulk of fhe con;
tribution at large r expected to come from the poles which lie on the feal
axis, In a similar manner, it is argued that the branch line contour con—

tribution also dies out relatively rapidly (a factor of 1/r3/2 in #ddition to

the geometrical spreading) so it too may be neglected at large r compared

to the terms coming from the real roots, The net result for Eq. (1) would then

be
' “un
p= )S(x) Ah(w) cos[wtfkn(w)r+¢n (w)}fdw (25
rt G%Lfb

where A, (w) and ¢n(w) are defined in terms of the magnitude and phase of the
residues of the integrand in Eq. (1); the kn(w) being the real roots of
D(w,k)QO, numberéd in some ordervwith'the index n=1, 2, 3, etc., and it being
understood that, for fixed n, kn(w) should be a continuous function of w

« The

over some range of w from a lower limit w Un

Lo up to an upper limit w
remaining integral over w can then be approximately evaluated by the method
of stationary phase or integrafed by suitable numericél methods.

In the present paper, a somewhat subtle set of circumstances intrinsic
to low frequency infrasound propagation in the atmosphere is discussed for
‘whiqh the arguments leading to the approximation.of Eq.{1) by (2) are not
wholly valid, even at distances of the order of more than a quarter of the

earth's circumference. We suspect that comparable circumstances may arise in

other contexts, but the present discussion is, for simplicity, illustrated only



by éxamples from atmospheric infrasound propagation.
I. TINFRASOUND MODES

An atmosphere model frequently adopted for infrasound studies is oné in
which the sound speed ¢ varies continuously with height z in a more or less
realistic manner (Fig.2a) but is constant (=¢T) for all heights'above some

specified height z,. [If winds are included in the formulation, their velocities

T

are also assumed constant in the upper half space, z>z_.] Conceivably, one has

To

some latitude in the choice of z,_ and of the upper halfspace sound speed Crs

T

although computations of factors such as Q(m,k,z,zo) and D(w,k) in Ed. [@D)

become more lengthy with increasing z Also, it would seem that the most logical

T.
choice of Cr would be that which would realistically correspond to height Z5s

so the profile c(z) would be continuous with height across Zps as in Fig. 2a.

Another conceivable choice would be one (Fig. 2b) in which ¢, + =, such that

T

the surface of air nominally at z_, would be a free surface or pressure release

T
surface {(corresponding to the model generally édopted for the water—air.interface
in undefwater sound studies). A somewhat intuitive premise which may be adopted
isAthat, if the source and receiver are both near the ground and if the energy
aqtually reaching the receiver travels via propagation modes channeled primarily
in the lower atmosphere, then the actual value of the integral in Eq. (1) would
be somewhat insensitive to the choices of Zq, and Cope This, however, remaing to

-be justified in any rigorous sense, so we would be somewhat hesitant to take
cp = = at the qutset. In typical calculations performed in the past; 2o is taken

as 225 km, cT is taken as the sound speed (* 800 m/sec) at that altitude.

Since one is often interested in frequencies (typically corresponding to
periods greater thanm, say, 1 to 5 minutes) at which gravitational effects are
important, the formulation leading to the infrasound version of Eq. (1) is based

on the fluid dynamic equations with gravitational body forces and the associated -

nearly exponential decrease of ambient demsity and pressure with height included.
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The incorporation of gravity leads, among other effects, to a somewhat com-

plicated dispersion relation for plane type waves in the upper half space

when Cp is finite, i.e. one can have solutions of the linearized fluid dynamics
equations for z > zT of the form8’9
p/{JE; = (Constant) e —iwt o Tlex e ikpz . (3)

where the vertical wave number kz (alternately written as iG for inhomogeneous
plane waves) and the horizontal wave number k are related by the dispersion

relation (neglecting winds)

S Il ('l y NV A ey S )

where w, = (y/2gle, wy = (y-1)2 g/c are two characteristic frequencies

[mA > mB] for wave propagation in an isothermal atmosphere (g = 9.8 m/s 2
is acceleration due to gravity, y®1l.4 is specific heat ratio). Here, for
brevity, the subscript T on Cr has been omitted. For given real positive w,

., , 2 . -
real k, one can have k_ positive or negative (G” negative or positive). The

N NMNNN

yalues of k at which k= or G2 go to zero turn out, as might well be expgcted,
to be the branchpoints in the k integration in Eq. (l), i.e., synonymous with
the branch points of G. Along the real axis, G ié either real and positive
(eikiz or e—Gz dying out with increasing z) or else G is a positive or negative
imaginary quantity. 1In the latter case, the phase of G may be either /2

or -v/2, in accordance with the well known fact that, fqr acoustic~-gravity
waves, wavefronts may be moving obliquely downwards (negative kz) when energy
.is flowing obliquely upwards, 1In particular, for 0 < w < wgs one has G real

and positive for k in between the two branch points on the real axis, the

phase of G is n/2 (kZ < 0) on the remainder of the real axis; the two branch



points are, from Eq. (4}, at

i

2 2.4

g w[wA -w ]°
kgp (W) =% 2 2% G
c[wB - w ] v :

The branch lines extend upwards and downwards from the positive and negative
branch points, respectively. [See Fig. 1.] |

The dispersion ﬁunction D(w,k) in the atmospheric infrasound case can
be written in the general form

R..G . o - (6)

) & = - -
D&,k) = Aj,Ry = ARy, = Ry

where Rll and R12 are elements of a transmission matrix [Rj, these depend on

the atmosphere's properties only in the altitude range 0 to zT, they are
independent of what is assumed for the upper half space. In general, their

determination requires numerical integration over height of two simultaneous

8,9,12

ordinary differential equations (termed the residual equations in previous

literature). They do depénd on w and k (or, alternately, on w and phase
velocity v) but are free from branch cuté, they are real when w and k are real
and are finite for all finite values of w and k. The other parameters A12
and All depend only on the properties of the upper half sﬁace (in addition to
w and k). Speéifically, these are given (for the no wind case and with the
subscript T omitted on qT)

A = gk /u® - ye/[2¢] | | (72)

g
|

2,2, 2
17 = 1 - ¢k /w : (7b)‘



Oﬁe may note that, since every quantity in Eq. (6) is necessarily real
when w and k are real (with the possible exception of G), the poles lying
on the real k axis (real roots of D) must be in the regions of the (w,k) plane
[or (w,v) plane] where G2 >0, Since the integrand of Egq. (1) divided by JE;

. ‘ ~G .
should vary with z above z_, as e “T one may call the corresponding modes

T

fully ducted modes. There is no net leakage of energy for such natural mcdes

into the upper halfspace. If one considers D as a function of w and phase
velocity vp (or simply v), where v = w/k, the locus of real roots v versus w
(dispersion curves) has (as has been found by numerical calculation) the general
form sketched in Fig. 3. The nomenclature for labeling the modes (GR for
gravity, S for sound) is due to Press and Harkrider. One may note from Eq. (4)

that there are two "forbidden regions" in the v vs. w plamne, i.e.

v<elud - 717/ [l - W (8a)

for w < wB and

v > c[w2 - w ]1/2 / [w2 - Loi]]/2 {8b)

o

for w > W, Within either of these regions G would have to be imaginary and

there would accordingly be no real roots for v of D(w,v) = 0. In the high
frequency limit, this simply implies that the phase velocities of propagating
modes are always less than the sound speed of the upper halfspace, the branch
points in the k plane are simply at * w/cT. The low frequency lower phase
velocity '""forbidden region" appears to be due to the incorporation of gravity

effects into the formulation. However, if ¢, is allowed to approach =,

T

this lower left hand corner region disappears. We have done numerical studies

on the effects of varying c,, on the dispersion curves. Briefly, the result

T
is that the form of the predicted curves for GRo and GRl change very little
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with increasing c the lower forbidden regions shrink insofar as frequency

'-[1;
range is concerned and the curves extend to successively lower frequencies.

Thus we see that the fully ducted modes GRO and GR, both have a lower frequency

1

cutoff [wL in Eq. (2)] which depends on c,.. The larger one makes c¢ the

T T’
smaller is this cutoff frequency.

We thus have the following apparent paradoxes. Given that frequencies
below wp may be important for the synthesis of the total waveform, an apparently
plausible computation scheme based on the reasoning leading to our Eq. (2)
will omit much of the information conveyed by such frequencies. Also, in spite
of the plausible premise that energy ducted primarily in the lower atrmosphere

should be insensitive to the choice for c one sees that this choice governs the

T?
cutoff frequencies for certain modes and that certain important frequency
ranges could conceivably be omitted entirely by a seemingly logical and proper
choice for Cope The resolution of these paradoxes would seem to lie in the
nature of the approximations made in going from Eq. (1) to Eq. (2)., The latter
may not be as nearly correct as earlier presumed and it may be necessary to in-
clude contributions from poles off the real axis and from the branch line
integrals. Even if r is undisputably large, it may be that the imaginary

parts of the complex wavenumbers are sufficiently small that feikrl is still
not small compared to unity. Also, a branch line integral may be appreciable

in magnitude at large r if there should be a pole relatively close to the

branch cut.



- II. ROOTS OF DISPERSION FUNCTION

In order to understand the.manner in which the solution represented by
Eq. (2) should be modified in order to remove the apparent artificial low
. frequency cutoffs of the GRO and GR1 modes, we first examine the nature of the
dispersion function D at points in the vicinity of a particular mode's dispersion
curve. The curve vn(w) of phase velocity v versus w for a given (n-th) mode is

known at points to the right of the lower cutoff frequency w Given this,

L
one can find analogous curves va(w) and vb(m) for values of the phase velocity
m/k‘at which the functions Rll(m,v) and Rlz(w,v) in BEq. (6), respectively,
vanish. Since there may be more than onme such curve in each case, we pick va(w)
and vb(w) such that these curves are the closest of all such curves to the curve
Vn(w) for v > QL. One may note, however, that one may apparently define and
identify va(w) and vb(w) for frequencies much less than W simply from analytical
continuation.

A premise which we have checked numerically (see Fig. 4) for a speéific
case is that the curves vn(w), va(w), vb(w) defined above with reference to
a particular given mode all lie substantially.closer to each other than to
the corresponding curves for a different mode. 1In retrospect, this is obvious,
although it took some time for us to realize that it was so. Briefly, the argument
goes that, if the mode is predominantly guided in the lower atmosphere, then
there should be a decay of modal height profiles beyond some point substantially
lower than zpe Thus, both the p/ J;; and povz profiles for a guided mode
would have values at Zr substantially less than their peak values at lower
altitudes; The same would be true for the profiles of the éuxiliary functions
& and 2 which satisfy the residual equations. Consequently, if guided waves
are excited, the inverse transmission matrix connecting ¢

1 and Qz at.the ground

to those at height z would have to have very small [1,2]} and [2,2] components.
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(Recall that ® = 0 at the ground.) Since the transmission matrix has unit
determinant, it follows that elements R12 and Rll of the transmission matrix

proper [from height Z, down to the ground and whose elements appear in Eq. (6)]

T

have to be small.

Given the definitiohs va(w) and vb(w), the dispersion relation D=0 for

a single mode may be written
D ai(A))(@) (V-v) = [A); + CI(B)(v-vy) =0 e

where a = delldv, B = dezldv, evaluated at v = v, and Vis respectively. (For
simplicity, we here consider D as a function of w and v = w/k rather than of

w and k.) The above equation may also equivalently be written in the form '
v=v, + (va—vb)X/[l—X] - (103)

= (8/0) (A, + ©V/A, | | | (105)

i
|

which may be considered é; a starting point for an iterafive solution which in
essence develops v in a power series in v, Vs G may be considered as a defined
function of w,v. One starts with v = v, as the zeroth iteration, evaluates the
right. hand side for the.value of v to find the starting_point for the next
iteration, etc., The considered procedure should coﬁverge provided v, Or v
is not near a point at which G vanishes and providing G in the vicinity of v,

of vy is not such that the variable X is close to unity. Among other limitations,
the iteration scheme would be inappropriate for values of w in the immediate
vicinity of Wy

In regards to establishing the general trends represented by the iterative.

type solutions, two relatively general theorems may be of use. These (whose
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proof follows along lines previously used by one of the authors13 in deriving

an integral expression for group velocity) are that for real positive w and v,

Rl2 BRll/Bv - Rll BRlz/Bv >0 (11a)

R12 aRll/Bw - Rll 8R12/8w >0 (11b)

or, alternately, if one inserts Rll = (a)(V—va), R12 = (B)(v~vb), he finds

aB(va - vb) >0 (12a)

(v - vb)(v - v,) (Ra"=B"a) + Ba[vb’ (v - va) - va‘ (v - vb)] >0 (12b)

where the primes represent derivatives with respect to w. The second of these

should hold for arbitary v in the vicinity of vy and vy and lead, upon setting

V=9V, V=V, orvs= (vavb’ —va‘vb)(vb’ —va‘), along with the use of Eq. (1l2a),
to
vb’ <0 ' (13a)
v,© < 0 (13b)

(a/B)” > 0O (13¢)

Equation (12a) implies that as long as o or B do not vanish (which would seem
unlikely) the two curves va(w) and vb(w) do not intersect. If a and B have the

same sign the v, curve lies above the v, curve; the converse is true if o and B

increases with w.

To demonstrate the general utility of the perturbation approach, a brief
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ey

table of values w, Vé, Vb’ a, B, v , and vn are given in Table I for the GRb

and GR1 modes for the case of a U.S. Standard Atmosphere without winds terminated
at a height of 125 km by a halfspace with a sound speed of 478 m/sec. Here v(l)
is the fesult of the first iteration for the phase velocity and v, is ﬁhe actual
numerical result abtained {only if the phase velocity is real) bf explicit
Anumerical search for roots of the eigenmode dispersion function. One may note
that, for those frequencies where v, is computed, the agreement between v(l)
and v is excellent. A more detailed listing of the pertﬁrbétion_calculation
resqlts is given in Figs. 5a and b. The plots.there give w/kR or the reciprocal

of the real part of 1/v(1)

(i.e., w divided by the real part of the horizontal
wave number k) and the izaginary part kI of k = w/v versus angular frequency.

" Note that kI is zero above the corresponding cutoff frequencies. The relatively

snall values of the kI are cormented upon in Sec. IV.

ITI. TRANSITION FROM NONLEAKING TOVLEAKING
The iteration process dzscribed by Eqs. (10) in the preceeding section may
fail to converge when G is near zero and in any event gives relatively little
inéight into.what happens to a modal dispersion curve in the immediate vi-

cinity of w To explore this transition region, it would appear sufficient

L
to approximate G in Eq. (9) by

/2

G = [(p) (wwp) + (@) (v=v)1t (14)

where p and g are readily identifiable [from Eq. (4)] positive numbers taken

is the phase velocity on the dispersion curve in

independent of w and v; Vi

the limit as w > wp froz above. The bracketed quantity in Eq. (14) may be re-
garded'as a double Taylor series expansion (truncated at first order) of G2 about

v, at which G2 vanishes (hence no zeroth order term). The fact that

the point Wy Vi

both p and q are positive follows since G2 is positive to the upper right of the
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Note that v

1)

(defined only when phase
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line in the w,v plane where G2 = 0 and also since the G2 = (§ line slopes obliquely

downwards. (See Fig. 3).

v., the denominator

Let us next note that, in the vicinity of the point wys VP

D given by Eq. (9)'may be further approximated as
- L '
D= (Alza-Allﬁ) (Av + pAw) + e(Av + vaw ) (15)

where we have abbreviated Av = v-v_, Aw = 0w -w_, vV = p/q; the quantity p is

L’ L
either —dva/dm or —dvb/du, the two being assumed to be approximately equal.
(The use of the minus sign here assumes that p beﬂpositive;j " The remaining
éuantity € is

@H (8 (v=v,)

. . (18)
BAll - aA12 :

One should note that ¢ depends on v, although, for purposes of initial analytical

investigation, one may set v = Vi here. All of the above quantities may be

considered to be evaluated at w = Wy and v = vy Note that p and v are both

positive quantities. Furthermore, it should also be noted that v > u since
the G2 = 0 curve slopes downwards more rapidly than the lines along which
Rll or R12 = 0 in the v vs u plane. (See Fig. 4.)

The roots of Eq. (15) without regard to the sign of the radical are readily

found to be

Av = -piu + (%982 + e(\)-—11)1/2 [Aw +U]% (1n
where
g = 52/[%(v-yﬂ ' ' (18)

Alternately, if lAul << ¢, thne above may be approximated by the binomial

theorem to give
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= —vhw + [(v=1)2/e?] (bw)? (192)

>
<
|

or

av = +e - (2u - bw - [ 27e?] (w)? (19b)
for the upper and lower signs, respectively. The first of these (since Av = 0
when Aw-= 0) is clearly the description of the disperscen curve in the vicinity
of w = Ws V = Ve

Equation (1%9a) shows that, as Aw > 0 from above, the dispersion curve
becomes tangential to the line G2 = 0. The two curves do not intersect. The
general trend is as indicated in Fig. 6. The solution represented by Eq. (19b)
is not a proper root of Eq. (15); it corresponds to the wrong sign of the radical
and accordingly lies on the second branch. Furthermore, one can readily show
that, for values of Aw slightly less than zero, both roots lie on the second
branch. Hence, there must be a gap of finite frequency range in which, for
the choice of branch cuts represented by Fig. 1, there are no poles in the k
(or v) plane corresponding to the n-th mode.

To determine the order of magnitude of this frequency gap, it 1s appropriate
to consider the trajectory of the second branch‘roots in some detail and to
determine just where one of them should cross the branch cut, reappearing on
the first branch. As long as Av is real and Av + vAw >0 the criterion for a
root to be identified with the first branch is Av + ulw > 0. According to
Eq. (17), this would asutomatically place the second root on the second branch
for all Aw > -0 and would place the first root on the second branch for
-0 < Aw < 0. Consequently, 1f either root is to reappear on the first branch,
1t must be at a value of Aw < -0,

One should note from Eq. (17) that at Aw = -¢ the two real roots on the

second branch coalesce. For values of Aw < -0 the two roots separate agaln, but



Sketch illustrating nature of a single mcde's dispersion curve in the vicinity
of the Gz=0 line. At point A (angular velocity W phase velocity VL)

the dispersion curve is tangent to the G2=0 line; for frequencies below W,

down to that corresponding to point B in the sketch there are two real roots for
v of the eigenmode dispersion function on the second branch. For frequencies
lower than that corresponding to point B, there is a complex root for v on

the first branch (which is the ccmplex conjugate of a second rooﬁ on the

second branch).



are now complex conjugates. The root in the upper half of the v plane (lower
half of k plane) can never cross the branch cut so it remains on the second
branch indefinitely. The one in the lower half of the v plane will cross the

branch cut at a point which may be approximately estimated as that where

Re(Av) = —viw or where
2
- (1
AU)= .._(_2.)_..§... =_26-
(v-u)

with a corresponding value of Av of

av = (£272) %[v/cv—m - 173

For subsequent frequencies successively lower than mL—ZU there 1s a complex
root on the first branch with a negative imaginary part which increases with
decreasing frequency.

The discussion up to now has assumed that |Av| << ]vL— bl and hence
that ¢ may be taken as constant. This would seem appropriate for describing
the transition region since all values of Av of interest in this region are of
second order of e2. However, if an improved numerical estimate is required,
we recommend that one regard Eqs. (16) and (17) as a iierative pair. Success-
fully computed values of Av may be used to recalculate € and the new value of

¢ may then be used in obtaining the next higher estimate for Av.

In Table II the values of mL, Vi P, 9, ¥, v, £, and ¢ are given for
the GR0 and GRl modes for the model atmosphere corresponding to Fig. 2a.
The extremely small values of o should be noted. The corresponding plot
of Av versus Aw (i.e., both branches of Eq.(17)) corresponding to their
values for the GR0 mode is given in Fig. 7., For simplicity, this is plotted

in a nondimensional form, i.e.

V= ~{p/[2(v-)]130 + [1 + 9]1/2 (20)

16
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TABLE 1¥
GR_ GR,
w, (rad/s) 0.0118 ! 0.0125
v, (km/s) 0.31188 0.2323
p(s/kmz) 0.14 0.35
3 -3 -3
q(s/km3) 1.84 x 10 1.86 x 10
1 (k) 2.94 x 1072, | 4.15
v (kz) 76 | 190
e (ka/ 275112 9.6 x 1070 1.02 x 1073
. -13 -9
o(rads/s) 3.04 x 10 1.41 x 10

Paraceters characterizing the eigenmode dispersion function near points

in the phase velocity versus

GR. rmodes undergo tracsition

1

engular frequency plane at which the GRo and

frcem leaking to non-leaking.
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Graph of normalized phsse velocity versus normalized frequency in the
vicinity of the point (vL, mL) for the GRO mnode. The imaginary and
real parts are both plotted. The dashed line corresponds to real roots

on the second Riemann sheet.




18

where v = Av/[2(v-1t)o] and 9=Aw/c. Both real and imaginary parts are shown

on the same graph. The corresponding plots for the GR, mode differ only

1
slightly from those in the Fig. 7 because of a different value of the para-
meter u/[2(v-u)] in Eq. (20); in both cases this parameter is small compared

to wmity, i.e. i<<v as may be seen from Table II.

IV. THE BRANCH LINE INTEGRAL

Since there is a gap in the range of frequencies for which a pole
corresponding to a mode may exist, it is evident that evaluation.of the k
integration in Eq. (1) by merely including residues may be insufficient for
certain frequencies. Thus it would seem approbriate in such cases to inciﬁdev
a contribution from the branch line integral, It may be anticipated ;hat such
branch line integrals are significant at larger values of r only when miis.
¢close to some mbde's W (say the n-th mode); in which case the branch point
of greatest interest (i.e., that which may have a pole in its immediate Vicinity)
is at k=w/vL. Consequently, it would appear that an adequate approximation to

the branch line integral would be

o]
Branch line ikrA
contribution of [Q/D(u,k) Je dk
- o
- ______Q____ eikrdk (21)
A12%7A1 ok (ji=v) Aurbext’ 2 .

C
8
where the denominator D(w,k) has been approximated by Eq. (15) with the abbreviation

x for AvtvAw. The quantity outside the integral is assumed to be evaluated at

w=w. and k=w/v

L The contour CB runs down the left side of the branch cut,

L.
around the branch point (where x=0), and then up the right side. If one next

changes the variable of integration from k to x, nothing that for small x/vL, noting

ksz-(QL/vi)x . 7 . (22)
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he finds approximately that

\ 2
e—l(wL/vL)A

Branch 1ine§ .
. = (Residue) - dx (23)
gcontributlon s+ (u=v) Atex 3

Cr .
r

B -
where (Residue)O 1s that residue which the integrand (Q/D)elk would be expected

to have at the n~th mode's pole in the k plane were the parameter € identically

equal to zero. The mapped contour S

in the x plane may be considered to go
up on the right and then down on the left of a branch cut extending vertically

downwards from the origin in the x plane. If we set x=-if, then, on the right

side of the cut, xl/z should be e—iw/4£l/‘

-e—i"/4§1/2

while, on the left side, it is

. Consequently, the total integral combines to
7

2
+in/4 ~(w. /vIYET
2¢e e WLV S A
{?ranch 1ine{}_= ~(Residue)_ (24)

contribution 2 2
[-ig+(p~v) Aw] +ie"g

o
This in turn, with an obvious change of integration variable, may be expressed

as -’ 00
in/4 -n_1/2
Branch line Y _ . . le e n  dn
E{Fontributioé} N (Re51§ue)o 2K (n—nl)(n-nz) (25)
o

where

K=€VL/(er)1/2 (262)

nys M, = 1EK2/2) (1+[w/20])

* i(K2/2)(l+[Aw/0])l/2 (26b)

with o as defined by Eq. (18).

In regards to the n integration, the integral can be expressed in general
in terms of Fresnel integrals of complex argument after some considerable
mathematical manipulation. One may note, moreover, that ]nll and !nzl are, for
most cases of interest, considerably less than unity. In this case, the

appropriate approximate result (derivation omitted for brevity) is
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e—n/ﬁ dn ' - im
(n-n,) (n-n,) ni/2+n

172 | | (27)

2
o

where the choice of square root should be such that the iﬁaginary part is
positive. The net result in thié limit then is that_the branch line contribution .
is independent of the parameter K. (The dependence on range'r.comés only in

the residue.) Thus one may write

ZBranch line

contributiogg= 2n1(R231due)0 Brh(Am/c) - (28)

where the function Brh(Am/G) is given by

B (Q) = /2
rh 1/2 1/2 1
[LH(L/2aH1+0) 7 ] +[1+(1/2) 0~ (140)

77 | ' (29)

Here any consistent choice may be made for the sign of the inner square roots
but the outer square roots should be taken such that the resulting phases are

between -7/4 and 37/4. The quantities in square brackets turn out to be the

squares of (l/JE)[(1+Q)1/2il], respectively., The phase restriction then gives
B, = (1+Q)1/2, if 90 ' ' ' ~ (30a)
=1 if 0>Q>-2 (30b)
= 1072 45 gcr (300

where here all square roots are understood to be positive/

To completely describe the transition it is appropriate t§ add to Eq. (28)
that contributioq (which is zero for 0>Am>—20)'from the pole on the first branch
in Eq. (21) which lies in the general wvicinity of k=wL/vL.qu_the pole is ~
present, its contribution to the integration over k is 2wi times the residue
(which is not whét we have been referring to as (Residue)0 unless € is identically

zZero). The evaluation of the residue is moderately straightforward and omitted

here for brevity. The net result is that
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Branch line + Pole }S
contribution contribution
= 2w1(Residue);iérh(Aw/o)+Poz(Aw/o)} (31)

where the "pole function" Poz(Aw/o) turns out to be glven by

P (bw/o)=1-B , (dw/0) , (32)

We accordingly have the remarkable (although, in retrospect, not unexpected) result

that

Branch line Pole . ,
+ = 2
Econtributiotg §contributior3 ?nl(RESldue)o (33)

The above gives one a relatively simple prescription for evaluating a given
mode's contribution to the k integration in Eq. (1). First, all branch line
integrals are formally neglected. If a pole exists on the first branch, the

residue which would normally be utilized is replaced by

Qeikr Qeikr g

Res 35~ § ~¢d'p/ax (34)
k=pole
where
a'n _ d
a3k AroRi7AiRyp)
¢ -2 ® ) (35)
aE ‘f12

i,e. it differs from the actual derivative of D in that G is formally considered
as constant. Doing this when w is somewhat removed from the transition region
near wp should make very little difference since R12 is small at values of k which

are poles, Near the transition, this neglect should almost exactly compensate

for the neglect of the branch line integral.
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The 88th Meeting of the Acoustical Society of America

Chase-Park Plaza Hotel ° St. Louis, Missouri ° 4-8 November 1974

TUESDAY, 5 NOVEMBER 1974 CHASE CLUB, 9:30 A.M.

Session A. Physical Acoustics I: Atmospheric Acoustics

10:45
A3, Asvmptotic hich-frecuency behavior of cuided infrasonie
modes in the almosphere. Wayne A, Kinazy {(School of
Mcechanical Engineering, Georgia Institute of Teciknology,
Atlanta, Georgia 30332)

Refinernent of previcus theoretical formulations and pumer-
ical eomputations of pressurc waveforms as applied tn at-
mespnervice traveling infrasonic waves could include a descerip-
tion of their asympiotic behavior at high frequencics, In the
present paper, calenlations Lased on the W, K. B. J. anproxi-
mation and simifar to these introduced by Haskell {1, Appl.
Phys. 22, 157--167 (1951)] are performed to deseribe the
asymptotic behavior of infrazonic guided mndes as gonerated
by a nuclear explosion in the atmospnere. The results of
these calculations ave then matched onto numerical solutiens
whieh have becn given by Harkrider, Pierce and Posey, and
others. It is demoustrated that the use of these asympiotic
formulas in conjunction with & computer prosram which
synthesizes infrasonic pressure waveforims has enabled the
elimination of problems assoeiated with high-frequoney trunca-
tion of numerical integration over fraguency. In this way,
small spurious high-frequency oscillations in the computer
solutions have been avoided. [Work sponsored by Air Force
Cambridge Research Laboratory. ] -




Recently, Allan D. Pierce, Christopher Y, Kapper and Wayne A. Kinney
at the Georgia Institute of Technology have been working to refine a computer
program which synthesizes infrasonic pressure waveforms at the ground as
generated by large explosions in a wind~ and temperature- stratified atmos-—
phere.1 Shown in Fig. 1 are three such pressure waveforms along with the
modal waveforms from which each of the three individual total waveforms has
been superposed. Corresponding to each modal waveform is a particular disper~
sion curve (i.e., a plot of phase velocity versus angular frequency). Any
given dispersion curve defines what is referred to as a mode. Fig. 2 shows
dispersion curves as they are generated by a portion of the computer program.
The labels given to these correspond to the labels given to the modal wave-
forms in Fig. 1.

Due to temperature stratification, the earth's atmosphere possesses
sound speed channels with associated relative sound speed minima. Fig. 3
shows a standard reference atmosphere wherein two such sound speed channels
are indicated; one with a minimum occurring at approximately 16 km altitude
and the second with a minimum occurring at approximated 86 km altitude.

Given the presence of such a channel, an acoustic ducting phenomenon can
occur, as is demonstrated in, Fig. 4, wherein the energy associated with an
acoustic disturbance can become trapped in the region of a relative sound
speed minimum.l It is this mechanism of propagation only that is of interest
here,

In the computer program, the computation of modal waveforms involves
‘the numerical integration over angular frequency of a Fourier transform of
acoustic pressure where this integration is truncated at the high-frequency

end.l It has been speculated that this abrupt truncation leads to the
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plosion.
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generation of what might be called “numerical noise'" in the computer output.

It was felt useful, therefore, to extend this integration beyond the heretofore
upper angular frequency limit by means of some appropriate high-frequency
approximation.

The approximations associated with the W.K.B.J. method of solution2
apbly to the analytical model on which the computer program is based at fre-
quencies above approximately 0.1 radian/sec. Below that limit, effects due
to density stratification in the atmosphere and gravitational forces cannot be
neglected. Such effects therefore are not germaine to the discussion here.

To the best of the authors' present knowledge, the application of the
W.K.B.J. method of solution to the problem of describing propagation of
acoﬁstic disturbances in an atmosphere that contains two adjacent sound speed
channels has not been approached in the literature to date in the manner to
be presented. To be specific, the approach taken here is to seek a W.K.B.J,
model for each of the sound speed channels separately, then to combine the
results rather than to treat the problem with a single model,

The W.K.B.J. model for propagation of acoustic disturbances in a single
sound speed channel consists of solving for the acoustic pressure divided by
the square root of the ambient density expressed as

P

-iwt ik
- = ¥(z)e iwt ikx

o

where w i1s angular frequency, k is the wave number associated with the hori-
zontal dimension x, z 1s altitude, and where Y(z) satisfies the reduced wave

equation,



2
dv e 20y = o

2
dz? 2 (2)

where c(z) is sound speed as a function of altitude., The W.K.B.J. approxima-

tion as applied to this model would appear to be valid provided

where A is some representative wavelength of interest. This approximation

states that substantial changes in sound speed should not occur within distan—

ces corresponding to a typical wavelength of interest if the model is to apply.
Particular insight into the high-frequency behavior of guided infra-

sonic modes was gained when the following integral was solved numerically by

computer
Ztop .
1.
1 _ 1 2dz - (n+)w
cz(z) vp2 w
zbottom

and z

where vp is phase velocity, n =0, 1, 2, 3, ..., and where 2y ot tom top

identify the lower and upper bounds of the sound speed channel, respectively.
This integral is a direct result of the W.K.B.J. method of solutionz, and its
numerical solution enabled the plotting of high~frequency dispersion curves.
In the lower portion of Fig. 5 are shown two sets of dispersion
curves generated by integrals of the above form; one set (the dashed curves)
is appropriate tco the W,K.B.J, model for the lower channel and the other set

(the solid curves) is appropriate to the W.K.B.J. model for the upper channel.
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In the upper portion of the same figure are shown again dispersion curves as
generated by the computer model, It should be mentioned that the computer
model solves a more complex problem in the sense that the simplifications inher-
ent in the W,K.B.J. model are not present,

As is illustrated in the lower portion of Fig. 5, the two sets of
dispersion curves generated by the W.,K.B.J. models intersect with one another
at various points. A comparison of the dispersion curves shown in both the
upper and lower porticns of Fig, 5 reveals that these points of intersection
mark regions of resomant interaction in the phase velocity-angular frequency
plane between adjacent modes of the computer model. To better illustrate this
observation, in the right hand portion of Fig. 6 is shown one such region of
interaction with its corresponding point of intersection between two dispersion
curves of the W.K.B.J. models shown to the left. It should be mentiomed that
the dispersion curves of the computer model never intersect with one another.
An analytical explanation of this fact is given in reference 1.

The above observation may be stated differently by saying that, for
relatively high angular frequencies, the dispersion curve corresponding to a
given mode of the computer model is comprised of portions of dispersion curves
from both sets of the curves generated by the W.K.B.J. models. Two important
inferences about the asymptotic high-frequency behavior of guided infrasonic
modes can be drawn from this statement. First, for some frequency ranges, and
depending on how dispersion curve portions match between curves of the computer
model and the W.K.B.J. models, it can be inferred that the acoustic energy
associated with a given mode is comprised of energy associated more with propa-
gation of acoustic disturbances in one sound speed channel than in the other.

Also, with increasing frequency, this association alternates back and forth
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between channels.r To illustrate, if for a small range of frequencies a portion
of a disﬁersion curve of the computer model matches (in the phase velocity-
angular frequency plane) a portion of one of the W.K,B.J. model curves for the
upper channel, then that implies that, for that mode and for that small fre-
quency range, the acoustic energy density associated with that mode is greater
in the upper channel than in the lower channel. Secondly, in standard reference
atmospheres the sound speed minimum for the upper channel is shown to be less
in magnitude than the sound speed minimum for the lower channel. It can be
inferred therefore that those acoustic disturbances for which phase velocities
are less in magnitude than the sound speed minimum for the lower channel are
associated more with acoustic energy trapped in the upper channel than in the
lower channel, and thus for thils reason do not contribute significantly to the -
acoustic energy at the ground. This inference implies that care must be taken
as to which modes are chosen to superpose in the attainment of the final pres-—
sure waveform at the ground, as some may not contribute.

In addition to providing a new analytical tool, the manner in which
the W.K.B.J. method of solution has been applied to the two-channel problem has
clarified the physical interepretation of a mode'as defined in the computer
model, It is hoped thatvthe computer program can now be modified accordingly

to gailn better high-frequency resolution in the pressure waveform output.
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PROGRAM MAIN (INPUT,OUTrUT, TAPEGSZITNRUTL.TAPTG=DUTPUT)
TOIMENSION ZTS(10)
COMMON VYPSI1aNCSLZI(100),CI{100),4500L1100),2L04,2U"
READ(S52 ¥ INCSy{ZITY o I=14NCS) 5 (TT(T) sI=1,MNCS) VP, 7BL 7B, NSCAN
HRITE(Os®INCSy (ZTUI) 9 I=L o NCSY S (CT{TI) gI1=L4NCS) 4 VP4 ZBL4ZRULNSCAN
QEAD¥*y {7ZTS(T)I=1,10)
ARITE®UZ2TS{TY»I=1410)
CALL DASOL
PRINT*,"ASOL="", ASOL
no 5 I=1,190

5 PRINT*,"CSP=",C3RPIZTS{(TI)}
CALL THNENT(YP,Z0OL ,ZBUe NSCANGNRTS, ZLOW,ZUP)
PRINT*,"NRTS=",NRTS
CALL SHIFT(ZLQN,ZUD)
PRINT*y"ZLOW="y 7_CH,,"ZUP=", 71N
CALL RANG (RTIMESRULNTH.ZLOW, ZUP)
PR INT*, RYTIME=" y RTIME 4 "RUNTH="" RLKNTH
I = 1
Z = ZI(5)
CALL DRYTKP{I 47, VP, OXDVFULDTDVPUSZLON,ZUR}
DRINT*,“OXDYPU=" s OXDVFU,L,"CTOVEY=",0TDYPY
I =-1
Z = ZI(H
CARLL DRYTNP{IZ VP, DXDVFLLDTOVPRL,7L0W,71IP)
DRINT® s "DXDVPLE"  OXDVPL,"OTOVOL=",0T0VPL
Z1 = Z11{3)
Z2 = 2I(5)
CALL MDLINT(Z1,Z24AMXIN,AMTTIN}
PRINT*,UAMXINE" Sy AYXIN,"AMTIN="JAMTIN
CALL DSOVF{TI4Z VP OXOVPOTOYPZLOWN ¢ ZUPAMXINGZAMTIN,
LOXDYPTLDTOVPT)
PRINT*,MNXDVOT =", OXAVFT ,“"DTOVRPT=",DFDYPT
CALL EXIT
END
SUBROQUTINE SHIFT(ZLOW,ZU®)
N =0

S CHKL = CMVP(ZLOW)
IF{CHKL .LE. D.0) GO TO 19
ZLOW = ZLOW + 1.E~-3
N T N+i
IF(N .GE. 1000) RETURN
G0 TO 5

10 CHKU = cMVPIZUP)
IF(CHKY JLE. GeD) PETURN
ZUP = ZUP = 1.E-8
N = N+1
IF(N «GE. 1000) RETURN
GO TO 10
END
FUNCTION CMYP(Z}
COMMON VP
CMVP = CSP(Z) - vP
RETHRN
END
SURBROUTINE TNPNT{VP4ZBL4Z8U,NSCANSNRTS+ZA.7Z8)
EXTERNAL CMyP
ODIMENSION GUESS(3+1)+ANS({1) 4FANS(1)
COMMON VPO
VPC = yP
DELTA = (/68U - ZBL)Y/{NSCAN + 1)
F1 = CMVYP(ZBL)
Z1 = zZ8L
NRTS =
10 722 = Z1 4+ OFLTA



20

F2 = CHMVYP(Z2)

TEST = FL*F2

IFITEST +GT. J40) GO TO 15
GZ = Z1 = Fi*DELTA/(F2 - F1}
GUESS(1,1) GZ

GUESS(2,1) Z1 ~ 1.6£-06
GUESS(3. 1% 22 + 1.E-0

CALL ZAFUR(L1,GUESS410 vl eE =741 a7 =7 4CMYP4=14ANS,FANS])

NRTS = NRTS + 1
IF(NRTS .FQe 1) ZA = AMS (1)

IF(NRTS LE0e. 2) Z7 = ANS(1)

IF(NRTS «FQ. 2y GO TO 290

Z1 = 72

F1 = F2

IF(73U «GEe Z1) GO TO 10

RETURN

END

SUBROUTINE RANG (RTIME,RUNTH,ZLON,ZUD)
EXTTRNAL RDTDZ.ROXDZ

RTIMEZ = RAINTI(RDTOZWZLOW,,ZUP)
RUNTH = RATINT(ROXDZ,ZLOW, ZUR)
RETYURN

END

SUBROUTINE DASOL

10

30

.00

10

COMMON VP, I1,NC5,71(100%,CI1100,450L(100)
N = 1

DELY = 1.0

DELC = 0.0

AKMZ = 0.0

ALMZ = 0,0

AKMI = 0.0

ALM1 = 1.0

NSTP = NCS - 1

DELZP = ZI{N#1) - ZI(M)
DELCP = CI(N+1) = CI{N)
ALPHA = DELZ

GAMMA = DELZP

BETA = 2.0 (ALPHA + GAMMA)

NEE = (DELCP/BELZP) = (DELC/DELZ)

IF(N +E7e 1) GO TO 30

AK = {DTE « ALPHA¥AKMZ - BETA#*AKM1) /GAMMA
AL = ( - ALPHA¥®ALMZ - BETA¥ALM1)/7GAMMA
IF(N +EQ. NSTP) GC TO 100G

AKM2 = AKM1

ALM2 = ALML

AKM1 = AKX

ALM1 = AL

N =N+1

DELZ = DELZP

DELC = DELCP

G0 10 110

ASOL(1)Y = (0.0

ASOL (2} = =-AK/AL

OELZ = 1.0

DELC = 0.0

N = 1

DELZE = ZI(N+1) - ZI(N)
DELCP = CI{N+1) - CI(N)
ALPHA = DELZ ’
GAMMA = DELZP

BETA = 2.0%¥(ALPHA + GAMMA)

DEE = (DELCP/DELZP) - (DELC/DELZ)
IF(N +EQ. 1) GO TO 130

M=N=+1



1339

200

T

10

40

50

50

ASOL(M) = (DEE = ALPHA*ASCLIN=-1) =~ PETA¥ASOLIN)} . GAMMA

TFEIN «ENe NSYH) GC TO 249

H= N+ 1
JeELzZ = DELZ®
DELC = NELCP
GC TO 1419
RETURN

END

FUNCTION CSP(2)

COMMON VO ,T1,NCS421(100),CI(100),A50L (100}
ZL = 211}

P = ZTINCS)

IF (Z «LT. ZL} GO TO 50

IF (7 GTe ZP} GO TO 60

I
ST = ZI1(3)
L «GTe ZTESTY GO TO 490

IS BETWEEN ZI(I-1) AND Z2I(1)
DELZ = 7I(1IY - ZI(J)

= {7 = ZItJ4¥»)s0DELZ
NBAR = 1.0 - W
TERML = WRARFCI(YS) + W¥CI(I)
GUTYL = UWBAR¥¥3 - WBAR

GuT?2 W¥¥3 - W

TERMZ = (DELZ**2)*{(ASOL(JY*GUTL1 + ASOL{IN*GUTZ)
CSP = TIRM1 + TERM2

RETURN

CSP = CI(1)

RETURN

CSP = CI(NCS)

RETURN

END

FUNCTION 0OCDZ(2Z)

10

40

50

COMMON VPsI1sNCS,ZI(1C0Y4CI(100Y,AS0L(10D)
ZL = ZI(1)

ZP ZI(NCS)

IF(Z «LT. ZL) GG 7O S0

IF(Z .GTe ZP) GO TO 50

I = NCS

J = I-1

ZTEST = ZI (N

IF(7 «GTe ZTEST) GO TO 40

I =4

GO TO0 10

CONTINUE

Z IS BETWEEN ZI(I-1) AND ZI{I)

geLzZ = ZI(IY - Z2I(N)

DELCI = (CI(I) - CI{J))/0FLZ

W = (Z - ZI(JY)/DELZ

WBAR = 1.0 - W

TRM3A = ASOL(IN®*({(3.0%{U**2)) - 1,0)

TRM33 ASOL (J) * ((3.0%(WBAR*%2}) = 1,.0)
TRM3 = DELZ*{TRM3A - TRM33)

NDCOZ = DELCI + TRM3

RETURN

ocbZ = 0.0

RETURN

END :

SUBROUTINE DORVTNP(I4Z4VP,DCXTUYP,0TOVP,7Z1L0W,2ZUP)

COMMARM VDA T4 WIS 7TE100Y _NT2400Y ACSAI £1N0D0Y%



.00

00

yop = \}{'J

IF(I .LT. 0) GO TOQ 100
A = zZUP

3 = 7

PRINT*,"A=",4

VYpPsSN = ypx¥2

CSPSN = CSP(BI**?

DNTR = (CSPUIBY*QCNZ (D)) *(SQRT(YP3L ~ CSPSA))
TRMOUT = VP/DNTR

D = i1.68~5

CALL QUAB(ABD+RELW1,AINTXFOXNYF,NERR, )
IF {I .LT. 0) GO Yo 200

AXDYR = -TRMOUT + AINTX

OXDVP = TEMAUT - AINTX

CALL QUAD{ABsOsRFL1,AINTT,,FOTOVP,NERR,D)
IF (I «LT. 0) GO TO 303

DTYDOVP = -TRMOUT - AINTY

JTDVP = TRMOUT + AINTT

RETURN

ZND

SUBPOUTINE MDLINT(Z1,Z2AMXINLAMTIND

CEXTERNAL FAMXING,FAMTIN

A= 71
3 = Z2
D = 10E‘6

CALL QUAD(A334D4RELsDsAMKINSFAMXINGSZNERR D)
CALL QUADIA DB DsRELSDsAMTINGFAMTINGZNERR, 0)
RETURN

END

SUBROUTINE DJSOVP(IyZ9VP,0X0VPDTOVYP,ZLOW, ZUP,AMXINGAMTIN,

10

20

30

1NXDVPT,DTOVPT)
COMMON VPA+I1,NCS,Z2I(109),CI0100%,AS0LCLE0)
EXTERNAL FOTOVPGFUXOVPsFAMXINGZFAMTIN

I =1

Z = ZI(5)

CALL DRVTNP(I,Z,VP,DXOVFU,DTOVPU,ZLON,ZUP)
I = -1

Z = ITI(3%)

CALL DRVINP(I4Z,VP,DXOVPL,DTOVPL,7L0WH,ZUP)
Z1 = ZI(3)

72 = ZI(5)

CALL MDLINT(Z14Z24AMXIN,JAMTIN)

NXDVPT = OXDVPL + AMXIN + NXDyry
NTDVYPY = DOTDVPL + AMTIN # DYOVPU
RETURN

NG

FUNCTION FAMXIN{Z)

COMMON VP,K

VPSN = ypxx2

C3PSN = CSP(Z)¥*2

IF (V2S) «GE. CSPSQ) GO TD 20

K =1

TRM1 = 1.E-50
G TO 30

K =1

TRM1 = (SORT(VPSN - CSPSQ))**3
IF (TRM1 LY. 1.E~50) GO 7O 10
TRM2 = CSP(Z)¥yP

FAMXIN = =-TRM2/TRM1

RETURN

END



10

20

30

FUNCTTON FAMTIN(Z)
. COMMON VB,4K

VRSN = ypPx»2
CSPSQ = CSP({Zy*=2
IF (VPST GE. CSPSQ) GO 70O 20

K = 1

TRMA = {.E-50
s5C TO 30

K = 0

TRMA = SOARTIVPSO - CSPST)

IF (TRMA «LTe. 1.8-50) GO TO 10
TRM3 = 1.0/(CSP(ZI*TRNMA)

TRM4 = VPSD/{CSP{7)®{TRMAXx23))
FAMTIN = TRM3 - TRHML

RETURN

‘TMD

FUNCTION 0GCRZS(2)

10

40

50

40

50

60

60

COMMON VP 4I1,NCS+ZI(1003},CI¢100),AS0L(100?

ZL = Z1(1)

IF = ZI(NCS)

IFLZ «LT. ZL} GO TO 50
IF(Z .GT. ZP) GO 70 50

I = NCS

J = I1-1

ZTEST = ZI(J)

IF(Z +GTe ZTEST) GO TO 40

I = J

GO 1O 10

CONTINUE

Z IS BETWEEN ZI€(I-1) ANC ZI(J)
gLz = 21 - Z1I ()

W= (Z - ZI(J})/DELZ
WBAR = 1.0 = W

OCO7ZS = 6.0¥{{WRAR*ASCL(J)) + (W*ASOLA(I}))

RETURN
DCDZS = 0.0
RETURN

END

FUNCTION FDXDVPIZ)

COMMON VP,4K

CSP3Q = CSP(Z)**2

YPSQ = ypxe2

DCDZSQ = DCDZ{Z)y+¥*»2

IF(YPS] «GE. CSPSTY GO T0 50
K =1

ON = 1.E-50

G0 TO 610

K =0

ON = 0OCDZSQ*¥(SQRT(VPSE - CSPSQAN)

IF{ON .LT. 1.E-50) GO TO 40
FOXDVP = (VP*DCDZS(Z) ) /0N
RETURN

END

FUNCTION FOTDVP{(Z)

COMMON VP,4K

REAL NMAgNM3 4, NMCyNM

CSPSQ = CSP(Z)*+*2

VPSQ = vPp¥*2

Dcozsn DCOZ(Z)**2

CSPCUB CSP(Zy#**2

IF(VYPSOD «GE. CSPSO) GO TO 70
K =1

DN = 1.E-50

GO TO 810



7v K = 0
NN = SORTYL3N - CSPSM
IF(ON «LT. 1.E-50) GO TQ &0

NMA = 1.0/CSP(7)
NMB = (2.0%YyPS0) /CSPCUE
MMC = (YPSQ¥OCOZS(Z)) /(CSPSO¥CZ0ZSM)

Nk = NMA - MR - NMC
80 FDTDVP = NM/ON
RETURN
kD
FUNCTIGN ROXDZ(Z)
COMMON V24K
CSPSQ = CSP(Z)*¥*2
VPSS = \yDx¥p
IF-{CSPSU «LC. VPSN) GO YO 1D

AN

[y

50 = 1.8-50

0 Y0 28

= 8

OSIC = 1./CSPSN

DSAV = 1./VPSO

DsSQ = DSAC -~ 0OsNY

IF (0SSO «LTe 1.E-50) GO TO 5
20 RUOXDZ = (1/7VPI/SOARTILSH)
RETURMN )

END

FUNCTION RDTOZ{Z)

COMMON VP,K

0SSPSO = CSP(Zy**?

VPS) = yp¥%2

IF (CSPSQ eLE. VPSQ)Y GO TO 30

5D

A G

10

K =1
20 2s5Q = 1.E-50
GO TO 4J
30 K =10
nsSQe 1./7CSPSQ

DSQY = 1./VPS0

DsQ = DsSQC - DS/Y

IF {0SQ «LTe 1.5=-50) GO TO 20

L0 RDTDZ = (1./CSP3M)/SART{OSO)

RETURN

END

FUNCTION RAINT(DSCZR,ZLOW,ZUF)

EXTERNAL CSDZR

ZAVE = (7UP + ZLOW) /2.0

D = 1.E-6

CALL QUAD(ZLOW, ZAVE+DsREL+14+ANS1,0SDZR4NERR, Q)
CALL QUAD(ZUPLZAVEyD+RELy14ANSZ24,0S0ZRyNERRSD)
RAINT = (ANS1 - ANS2)

RETURN

END
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ABSTRACT

Perturbation technigues are described for the computation of the
imaginary pért of the horizontal wave number (kI) for modes of propagation.
Numerical studies were carried out for a model atmosphefe terminated by
a constént sound speed (478 ﬁ/sec) half space above an altitude of 125 km.
The GRO and GRl modes have lower frequency cutoffs. It.was found thaf for

frequencies less than 0.0125 radian/sec, the GR., mode has compléx phase

1
velocity; kI varying from near zero up to a maximum of 3 x 104 with

analogous results for the GR

0 mode. There is an extremely.small frequency

.gap.for each mode for which no poles in the complex.k plane corresponding
to that mode exist.  These mark the transition from undamped propagation
to damped propagation.' In the complete Fourier synthesis, branch line
contriﬁutions compensate for the absence of poles in these gaps. Computa-
tional procedures are described which facilitate the inclusion of the low

frequency portions of these modes in the waveform synthesis.



INTRODUCTION

One of the standard oathematical problems in acoustic wave propagation
is that of predicting the zcoustic field at large horizontal distances
from a localized source ir a medium whose properties vary only with height.
This problem, as well as its counterpart in electromagnetic theory, has

. . . R . 1. - ' .
received considerable attention in the literature,” is reviewed extensively
. . 2-7 - L X
in various texts , ead, for the most part, may be considered to be well
understood.

. . - . ' 8-9

A typical formulation ¢f, say, the transient propagation problem

leads (at sufficiently large horizontal distance r) to an intermediate result

which may be expressed as a double Fourier integration over angular frequency

w and horizontal wave numbar k; i.e. for, say, the acoustic pressure, one

has
o0
p = S(r) Re f(u)e.iﬁt [O_/D(w,k)]elkr dkdw ' _ (L)
o Yo

Here S(r) is a geometrical spreading factor, 1/vr for horizontally stratified

/2

media, l/[aesin(r/ae)]l if the earth curvature (ae=radius of earth) is to

Ee approximately taken into account. The quantity E(w) is a Fourier transform
of some function characte;izing the time dependence of the source; Q(w,k,z,zo)
is a function of receiver znd source heights z and z as well as of w and k,
possibly also of horizontel direction of propagation if, say, winds are included
in.the formulation, but, in any event, should have no poles in the complex

k plane for given real positive w, and given z and z e The denominaﬁor D(w,k).

is independent of z and z , may be zero for certain values kn(w) of k, and is

termed the eigenmode Zispersion function.

Typically, in oréer to uniquely specify both Q and D(m,k) for all complex



values of k (given w real and positive), branch points must be identified

and branch cuts must be placed in the complex k plane. The general rule

may be taken to be that mo branch cut should.cross the>réal éxis, and, if

a branch point shéuld lie on the real axis {when w is positive real), the
branch cut either extends into the upper or lower half plane depending on
whether the branch point moves up or down when w is givep a small positive
imaginary part., The integration contour for the k integration goes nominally.
along the real axis but skirts below or abover(see Fig., la) those poles

lying on the real axis which move up or down, respectively, when w is giﬁen

a small positive imaginary part. The placing_of the branch cuts ana the
selection of the contour in this manner is one method of guaranteeing‘v
causality in the solution, or, equivalantly; of guaranteeing that the solutidn
diés out at large distances if a slight amount of damping (Rayleigh's virfual»
viscosity) is added in the mathematical formulatiom. The necessity of branch
cuts only occurs if the medium is unbounded either from above or below and

a choice of phases can always ﬁe made such that {given, say, that the medium
is unbounded from above) Q dies out exponentially as z - = when w has a small
positive imaginary part and when k is real.

The so-called guided mo&e description of the far fieid waveform arises
when the contour for the k integration is deformed (permissible because of
Cauchy's theorem and of Jordan's 1emma10) to one such as is sketched in Fig.
1b. The poles above the initialvcontour are encircled in the counterclockwiée
manner., There are also contour segments which encircle each branch cut lying
above the real axis in the counterclockwise sense., The integrals around each
pole are evaluated by Cauchy's residue theorem and.one is ieft with a sum of
residue terms plus branch line integrals. Each residue term mayﬁbe considered
as corresponding to a particular guided mode of propagation. The branch line
contributions in some conte#ts are considered as corresponding to what may

11

be termed lateral waves. (The term may be unappropriate unless there is a
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1. Contours in the complex k (wavenumber) plame for evaluation of individual
frequency contributions to waveform synthesis. (a) Original contour. (b)

Deformed contour.



' sharply definedvinterface separating two types of media, such as a water-
muddy bottom interface in shallow water propagation.)

In réga;ds to the guided mode description, one type of approximation
frequently made is to neglécﬁ all poles (i.e. roots kn(m) of D(m;k)) which are
above the real axis, the argument being that the corresponding eikr factors
in the residues will die out rapidly with increasing r, the bulk of the con-
tribution at large r expected to come from the poles which lie on the feal

axis. In a similar manner, it is argued that the branch line contour con-
3/2

tribution also dies out relatively rapidly (a factor of 1/r in addition to
the geometrical spreading) so it too may be neglected at large r compared

to the terms coming from the real roots. The net result for Eq. (1) would then

be
@un
p = }YS(xr) Ah(w) gos[&t—kn(w)r+¢n (m)}‘dw ' A 2)
rn G%Lﬂ-

where A (w) and ¢n(w) are defined in terms of the magnitude and phase of the
residues of the integrand in Eq.(1); the kn(w) being the real roots of
D(w,k)=0, numbered in some order with the index n=1, 2, 3, etc., and it being
understood‘that, for fixed n, kn(w) should be a continuous function of w

The

over some range of w from a lower limit w n P te an upper limit w

L Un'

remaining integral over w can then be approximately evaluated by the method
of stationary phase or integrated by suitable numerical methods.

In the ﬁresent paper, a somewhat subtle set of circumstances intrinsic
to low freqﬁency infrasound propagation in the atmosphere is discussed for
which the arguments leading to the approximatien of Eq. (1) by (2) ére not
wholly valid,'éven at distances of the order of more than a quarter of the
earth's circumference. We suspect that comparable circumstances may arise in

other contexts, but the present discussion is, for simplicity, illustrated only



~ by examples from atmospheric infrasound propagation.
I. INFRASOUND MODES

An atmosphere model frequently adopted for infrasound studies is one in
which the sound speed ¢ varies continuously with height z in a more or less-
realistic manner (Fig.2a) but is constant (=cT) for all heights above some

specified height =z [If winds are included in the formulation, their velocities

T

are also assumed constant in the upper half space, z>z

T.] Conceivably, one has

some latitude in the choice of z_, and of the upper halfspace sound speed c

T T

although computations of factors such as Q(w,k,z,zo) and D(w,k) in Eq. (1)

become more lengthy with increasing z Also, it would seem that the most logical

T

choice of ¢, would be that which would realistically correspond to height z

T T?

so the profile c(z) would be continuous with height across Zpy 3S in Fig. 2a.

Another conceivable choice would be one (Fig. 2b) in which ¢, + =, such that

T

the surface of air nominally at z_, would be a free surface or pressure release

T

surface (correéponding to the model generally édopted for the water-air interface
in underwater sound studies). A somewhat intuitive premise which may be adopted
is that, if the source and receiver are both near the ground and if the eﬁergy
actually reaching the receiver travéls via propagatién modes channeled primarily
in the lower atmosphere, then the actual value of the integral in Eq. (1) would

be somewhat insensitive to the choices of Zp and Coe This, however, remains to

be justified in any rigorous sense, so we would be somewhat hesitant to take
Cp = « at the outset. In typical calculations performed in the past, Zo is taken

as 225 km, c¢_ is taken as the sound speed (3 800 m/sec) at that altitude.

T .
Since one is often interested in frequencies (typically corresponding to
periods'greater than, say, 1 to 5 minutes) at which gravitational effects are
important, the formulation leading to the infrasound version of Eq. (1) is based

on the fluid dynamic equations with gravitational body forces and the associated

nearly exponential decrease of ambient density and preséure with height included.
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The incorporation of gravity leads, among other effects, to a somewhat com-
plicated dispersion relation for plane type waves in the upper half space

when c,, is finite, i.e. one can have solutions of the linearized fluid dynamics

T
. - 8,9
equations for z > zp of the form
R/KJE; = (Constant) e ~iut e Llex e %k?z ‘ : {(3)

"where the vertical wave number kz (alternately written as iG for inhomogeneous
plane waves) and the horizoantal wave number k are related by the dispersion

relation (neglecting winds)

k§=—G2=[w2—i]/cz-[wz—wglkz/wz SO

L . L o o 3
where w, = (y/2)g/c, wp = (y-1)? g/c are two characteristic frequencies

[wA >_wB] for wave propagation in an isothermal atmosphere (g = 9.8'm/s2
is acceleration due to gravity, yzl.4 is specific heat ratio). Here, for
brevity, the subscript T om Cr has been omitted, For given real positive w,

. . 2 . -
real k, one can have k_ positive or negative (G” negative or positive). The

N NN DN

values of k at which k_ or G2 go to zero turn out, asrmight well be expected,
to be the branchpoints in the k intégration in Eq. (1), i.e.,, synonymous with
the branch points of G. Along the real axis, G is either real and positive
(eikéz or e-Gz dying out with increasing z) or else G is a positive or negative
imaginary quantity. In the latter case, the phase of G may be either m/2

or -w/2, in accordance with the well known fact that, for acoustic-gravity
waves, wavefronts may be moving ébliquely downwards (negative kz) when energy
is flowing obliquely upwards. In particular, for 0 < w < wps one has G real

and positive for k in between the two branch poimts on the real axis, the

phase of G is 7/2 (kz < 0) cn the remainder of the real axisj; the two branch



points are, from Eq. (4), at

i

o w[wi - wzj%
kpp (W) =% 5 9% . (5)
_ c[wB - w] _ . o

The branch lines extend upwards and downwards from the positive and negative
branch points, respectively. [See Fig. 1.]
The dispersion function D(w,k) in the atmospheric infrasound case can

be written in the general form

(%} = - —
D&, k) A12R11_ Aj1Ryg 7 Ryy6 o (6)

where R.. and R., are elements of a transmission matrix [R], these depend on

11 12

‘the atmosphere's properties only in the altitude range 0 to ZT, they are

independent of what is assumed for the upper half space. In'general, their

determination requires numerical integration over height of two simultaneous

8,9,12

ordinary differential equations (termed the residual equations in previous

literature). They do depend on w and k (or, alternately, on w and phase
velocity v) but are free from branch cuts, they are real when @ and k are reél
and are finite for all finite wvalues of w and k. The other ﬁarameters A12

and All depend only on the properties of the upper half space (in addition to
w and k).‘ Specifically, these are given (for the no wind casé and with the
subscript T omitted on QT)

Ay = g /e” = vg/12e] - o

=] - c2k2/w2 . , (7b)

M
1

12



One may note that, since every quantity in Eq. (6) is necessarily real
when w and k are real (with the possible exception of G), the poles lying
on the real k axis (real roots of D) must be in the regions of the (w,k) plane

for (w,v) planel where G2 >0, Since the integrand of Eq. (1) divided by Jpo

should vary with z above zp as e T one may call the corresponding modes

fully ducted modes. There is no net leakage of energy for such natural modes

into the upper halfspace. If one considers D as a function of w and phase
velocity vP (or simply v), where v = w/k, the locus of real roots v versus w
(dispersion curves) has (as has been found by numerical calculation) the general
form sketched in Fig. 3. The nomenclature for labeling the modes (GR for
gravity, S for sound) is due to Press and Harkrider. One may note from Ea. (4)

that there are two "forbidden regions" in the v vs. w plane, i.e.

v < cfw, - w ]lé / [, - w ]1/2 (8a)

for w < wB and

1

L 1
v > c[m2 - m2]2 / [m2 - wz 2 (8b)

B A]

for w > Wy Within either of these regions G would have to be imaginary and

there would accordingly be no real roots for v of D(w,v) = 0. In the high
frequency limit, this simply implies that the phase velocities of propagating
modes are always less than the sound speed of the upper halfspace, the branch
points in the k plane are simply at * w/cT. The low frequency lower phase
velocity "forbidden region'" appears to be due to the incorporation of gravity

effects into the formulation., However, if c_, is allowed to approach =,

T

this lower left hand corner region disappears. We have done numerical studies

on the effects of varying c,, on the dispersion curves. Briefly, the result

T

is that the form of the predicted curves for GRo and GR, change very little

1



3.

ANGULAR FREQUENCY, (rad/sec)

Numerically derived plots of phase velocity v versus angular frequency w
for infrasonic modes in a model atmospherc corresponding te Tig. 2. The
labeling of modes is with the convention introduced by Press and Harkrider
(J. Geophy. Res. 67, 3889-3908 (1962). The lines G2=0 delimit regions of

the v versus w plane where a real root of the eigenmode dispersion function
cannot be found.



with increasing ¢ the lower forbidden regions shrink inscofar as frequency

T;
range 1s concerned and the curves extend to successively lower frequencies,
Thus we see that the fully ducted modes GR0 and GR1 both have a lower frequency

cutoff [wL in Eq. (2)] which depends on ¢ The larger one makes Crs the

T
smaller is this cutoff frequency.

We thus have the following apparent paradoxes. Given that frequencies
below Wy may be important for the synthesis of the total waveform, an apparently
plausible computation scheme based on the reasoning leading to our Eq. (2)
will omit much of the information conveyed by such frequencies. Also, in spite
of the plausible premise that energy ducted primarily in the lower atmosphere
should be insensitive to the choice for cps One sees that this choice governs the
cutoff frequencies for certain modes and that certain important frequency
ranges could conceivably be omitted entirely by a seemingly logical and proper
choice for Coe The resolution of these paradoxes would seem to lie in the
nature of the approximations made in going from Eq. (1) to Eq. (2). The latter
may not be as nearly correct as earlietr presumed and it may be necessary to in-
clude contributions from poles off the real axis and from the branch line
integrals. Even if r is undisputably large, it may be that the imaginary
parts of the complex wavenumbers are sufficientl& small that leikr! is still
not small compared to unity. Also, a branch line integral may be appreciable

in magnitude at large r if there should be a pole relatively close to the

branch cut.



II. ROOTS OF DISPERSION FUNCTION

In order to understand the manner in which the solution represented by
Eq. (2) should be modified in order to remove thé apparent artificial low
frequency cutoffs of the GR, and GR1 modes, we first examine the nature of the
dispersion function D at points in the vicinity of a particular mode's dispersion
cu?ve. The curve vn(w) of phase velocity v versus w for a given (n-th) mode is

known at points to the right of the lower cutoff frequency w Given this,

L
one can find analogous curves va(w) and vb(w) for values of fhe phase velocity
w/k at which the functions Rll(m,v) and Rlz(w,v) in Eq. (6), resPe;tively,
vanish. Since there may be more than one such curve in each case, we pick va(Q)
and Vb(@) such that these curves are the closest of all such curves to the curve -
vn(m) for w > w . "One may note, however, that one may apparently define and
identify Va(m)‘and vb(m) for frequencies much less than w5 simply from analytical
continuation. |

A premise which we have checked numeriéally (see Fig. 4) for a specific
case is that the curves vn(w),‘va(w), vb(m) defined above with reference to
a particular given mode all lie substantially closer to each other than to
the corresponding curves for a different mode. In retroépect, this is obvious,
although it took some time for us to realize that it was so. Briefly, the argument
gdes that, if the mode is predominantly guided in the lower atmosphere, then
there should be a decay of modal height profiles beyond some point substantially
lower than Zge Thus, both the p/ JE; and povz profiles for a guided mode
would have values‘a; Zy substantially less than their peak values at lower
altitudes. .The same would be true for the profiles of the auxiliary.functions
¢ and @2 which satisfy the residual equations. Consequently, if guided waves

are excited, the inverse transmission matrix connecting ¢. and @2 at the ground

1
to those at height Zp would have to have very small {1,2] and [2,2] components.
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(Recall that ¢, =0 at the ground.) Since the transmission métrix has unit
determinant, it follows that elements R12 and Rll oflfhe transmission matrix
proper [from height ZT down to the ground and whose eléments appear in Eq. (6)]
have to be small. |
Given the definitions va(m) and vb(w), the_dispérsion relation D=O.fof

a single mode may be written
D~ (A1) (@) (V=) - [A; + CI(B)(v-v,) = O | ©)

where o = del/dv, B = dez/dv, evaluated at v = v, and Vi respectively. (For
simplicity, we here consider D as a function of w and v = w/k rather than of

w and k.) The above equation may also equivalently be written in the form

<
il

v, + (va—vb)X/[l—X] | | (lOa).

e
il

(8/6) (A, + ©)/A, | (10b)

which may be considered as a starting point for an iterative solgtion which in
essence develops v in a power series in va—'b; G may be considered as a defined
function of w,v. One starts with v = v, as the zeroth iteration, evaluafes the
right  hand side for the value of v to find the starting point for the next
iteration, etc. The considered procedure should converge provided v, 0T vy
is not near a point at which G vanishes and providing G iﬁ the vicinity of v,
or v

the iteration scheme would be inappropriate for values of w in the immediate

is not such that the variable X is close to unity. Among other limitatioms,

vicinity of Wy

In regards to establishing the general trends represented by the iterative

type solutions, two relatively general theorems may be of use. These (whose



11

proof follows along lines previously used by one of the authors13 in deriving

an integral expression for group velocity) are that for real positive w and v,

R12 BRll/BV - R11 8R12/8v >0 (11a)

R12 8R11/8w - Rll 8R12/8w >0 (11b)
or, alternately, if one inserts Rll = (a)(v—va), R12 = (B)(v—vb), he finds .
ocB(va - vb) >0 (123a)

(v - Vb)(v - va) (Ba"=R a) + Balv, (v - va) - v, (v - vb)] >0 (12b)

where the primes represent derivatives with respect to w. The second of these

should hold for arbitary v in the vicinity of v, and vy, and lead, upon setting

V=V, V=V, orvs=s (vavb’ —va’vb)(vb’ —va’), along with the use of Eq. (12a),
to
Vb’ <0 (133)
v, < 0 (13b)
(a/B)” >0 (13c)

Equation (12a) implies that as long as a or B do not vanish (which would seem
unlikely) the two curves va(w) and Vb(w) do not intersect. If o and B have the

same sign the v, curve lies above the v, curve; the converse is true if a and B

increases with w.

To demonstrate the general utility of the perturbation approach, a brief
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€y

table of values w, va, vb, a, B, v , and vn are given in Table I for the GRo

and GR, modes for the case of a U.S. Standard Atmosphere without winds terminated

(1)

1
at a height of 125 km by a halfspace with a sound speed of 478 m/sec. Here v

is the result of the first iteration for the phase velocity and v is the actual
numerical result obtained (only if the phase velocity is real) by explicit
numerical search for roots of the eigenmode dispersion function. One may note
that, for those frequencies where v is computed, the agreement between v(l)
and v is excellent. A more detailed listing of the perturbation calculation
resqlts is given in Figs. 5a and b. The plots there give m/kg or the reciprocal .
of the real part of 1/v(l) (i.e., v divided by the real bart-of the horizontal
wave number k) and the imaginary part kI of k = w/v versus angula? frequency.

Note that kI is zero above the corresponding cutoff frequencies. The relatively

small values of the kI are commented upon in Sec. IV.

III. TRANSITION FROM NONLEAKING TO LEAKING
The iteration process described by Egqs. (10) in the preceeding sectién may
fail to converge when G is near zero and 1n any event gives relatively little
insight into what héppens tb a modal dispersion curve in the immediate wvi-

cinity of w To explore this transition region, it would appear sufficient

L
to approximate G in Eq. (9) by

/2

G = [(p)(wu) + (@) (v-v)] (14)

where p and q are readily identifiable [from Eq. (4)] positive numbers taken

independent of w and v; v, is the phase velocity on the dispersion curve in

L

the limit as w > wy from above. The bracketed quantity in Eq. (14) may be re-

garded as a double Taylor series expansion (truncated at first order) of G2 about

the point mL’ v. at which G2 vanishes (hence no zeroth order term)}. The fact that

L

both p and q are positive follows since G2 is positive to the upper right of the
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0.0175 | 0.19058 | 0.19111 | 418.9 | -10,858.0 | 0.19226 0.19212

Frequency dependent parameters corresponding to GR  and GR, modes; w is
. o

1
angular frequency in rad/sec, v, is phase velocity root of R;1=0, in

kn/sec, vy is analogous root of Rlzro, a is de1/dv at v=v_ in sec/km
s , 1 . - . .
B is aRlz/dv at v=vb in sec, v( ) is first order perturbation solution for

phase velocity from cquations given in the text (units are km/sec), v

is the real rooct determined by direct numsrical solution for zeros of

eigenmode dispersion function. Note that v (defined only when phace

1)

velocity is real) agrees exceptionally well with v

eT
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line in the w,v plane where 62 = (0 and also since the G2 = 0 line slopes obliquely
downwards. (See Fig. 3).
Let us next note that, in the vicinity of the point Wrs Vs the denominator

D given by Eq. (9) may be further approximated as
. D |
D= (Alza-Allﬁ) %(Av + uAw) + e(Av + vAw )/Z% (15)

where we have abbreviated Av = V=Vys Aw = w -mL, v = p/q; the quantity u is
either -dva/dm or —dvb/du, the two being assumed to be approximately equal.
(The use of the minus sign here assumes that py be positive.) The remaining

quantity g is

(€ (B (v-vp) O ae

e =
BAj) ~ @A

One should note that e depends on v, although, for purposes of initial analytical

investigation, one may set v = v here. All of the above quantities may be

considered to be evaluated 2t w =w, and v=v Note that py and v are both

L L!
positive quantities. Furthermore, it should also be noted that v > u since
the G2 = 0 curve slopes dowowards more rapidly than the lines along which
R11 or R12 =0 in the v vs w plane. (See Fig. 4.)
The roots of Eq. (15) without regard to the sign of the radical are readily

found to be

_ _ 1 i
AV = —pio + (et F oe(u-n)? [Aw 4ol @

where

Q
L]

€2/[§(v-pﬂ o (18)

Alternately, if [Aml << ¢, the above may be approximated by the binomial

theorem to give
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Av = —vhw + [(v-1)2/e%] (aw)? (1%a)

or

M o= e = (2u V) fw - [(v=) 2/e2] (bw)? (19b)
for the upper and lower signs, respectively. The first of these (since Av = 0
when Aw = 0) is clearly the description of the disperson curve in the vicinity

of w=uw v = V.
LS

L
Equation (1%a) shows that, as Aw - 0 from above, the dispersion curve
becomes tangential to the line G2 = 0. The two curves do not intersect. The

general trend is as indicated in Fig. 6. The solution represented by Eq. (19b)
is not a proper root of Eq., (15); it corresponds to the wrong sign of the radical
and accordingly lies on the second branch. TFurthermore, one can readily show
that, for values of Aw slightly less than zero, both roots lie on the second
branch. Hence, there must be a gap of finite frequency range in which, for

the choice of branch cuts represented by Fig. 1, there are no poles in the k

(or v) plane corresponding to the n-th mode.

To determine the order of magnitude of this frequency gap, it is appropriate
to consider the trajectory of the second branch roots in some detail and to
determine just where one of them should cross the branch cut, reappearing on
the first branch. As long as Av is real and Av + vAw >0 the criterion for a
root to be identified with the first branch is Av + uAw > 0. According to
Eq. (17), this would automatically place the second root on the second branch
for all Aw > -0 and would place the first root on the second branch for
-0 < Aw < 0., Consequently, 1f either root is to reappear on the first branch,
it must be at a value of Aw < -0,

One should note from Eq. (17) that at Aw = -0 the two real roots on the

second branch coalesce. For values of Aw < -0 the two roots separate again,. but



" DISPERSION
CURVE

Y

69

Sketch illustrating nature of a single mcde's dispersion curve in the vicinity
of the G2=0 line. At point A {angular velocity Wy phase velocity VL)

the dispersion curve is tangent to the G2=0 line; for frequencies below W,

down to that corresponding to point B in the sketch there are two real roots for
v of the eigenmode dispersion function on the second branch., TFor frequencies
lower than that corresponding to point B, there is a complex root for v on .

the first branch (which is the complex conjugate of a second root on the

second branch).



are now complex conjugates. The root in the upper half of the v plane (lower
half of k plane) can never cross the branch cut so it remains on the second
branch indefinitely. The one in the lower half of the v plane will cross the
branch cut at a point which may be approximately estimated as that where

Re(Av) = —vAw or where

2
“l/
Ay = =B e . -267

(v-w)

with a corresponding value of Av of

av = (e2/2) E[V/(v—u)] - {S

For subsequent frequencies successively lower than wL—ZU there is a complex
root on the first branch with a negative imaginary part which increases with
decreasing frequency.

The discussion up to now has assumed that |Av[ << [vL— b| and hence
that & may be taken as constant. This would seem appropriate for describing
the transition region since all values of Av of interest in this region are of
éecond order of 32. However, if an improved numerical estimate is required,
we recommend that one regard Eqs. (16) and (17)las a iterative pair. Success-
fully computed values of Av may be used to recalculate ¢ and the new value of

e may then be used in obtaining the next higher estimate for Av.

In Table II the values of Ws Vis Py 45 Wy Vs €, and o are given for
the GR0 and GR1 modes for the model atmosphere corresponding to Fig. 2a.
The extremely small values of o should be noted. The corresponding plot
of Av versus Aw (i.e., both branches of Eq.(17)) corresponding to their

values for the GR0 mode is given in Fig. 7. For simplicity, this is plotted

in a nondimensional form, i.e.

V= ~u/l20v-0130 F [1 + )12 (20)

16
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oR_ oR,
u, (rad/s) 0.0118 0.0125

v, (ku/s) 0.31188 0.2323
p(s/kn’) 0.14 0.35

- q(s/kmd) 1.84 x 1072 1.86 x 1073
u (km) 2.94 x 1072 4,15
v (km) 76 190
e xmt/2/s1? 9.6 x 107° 1.02 x 1073

o (rads/s) 3,06 x 100 | 1,41 x 1077

Parameters characterizing the eigenmode dispersion function near points

in the phase velocity versus

GR, modes undergo transition

1

zngular frequency plane at which the GRo and

from leaking to non-leaking.



ol

Graph of normalized phase velocity versus normaelized frequency in the
vicinity of the point (VL, wL) for the GRO mode. The imaginary and
real parts are both plotted. The dashed line correspoends to real roots

on the second Riemann sheet.
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where v = Av/{2(v-u)o] and 2=Aw/0. Both real and imaginary parts are shown
on the same graph. The cérresponding plots for the GRl mode differ only .
slightly from those in the Fig. 7 because of a different value of the para-
meter p/[2(v-1)] in Eq. (20); in both cases this parameter is small compared

to unity, i.e. p<<v as may be seen from Table II.

IV, THE BRANCH LINE INTEGRAL

Since there is a gap in the range of frequencies.for which a pole
corresponding to a mode may exist, it is evident that evaluation of the k
integration ia Eq. (1) by merely including residués may be insufficient for
certain frequencies. Thus it would seem appropriate in such cases to inciude
a contribution from the branch line integral. It may be anticipated that such
branch line integrals are significant at larger values of r only when w. is
close to some rmode's wp (say the n-th mode), in which case the.branch point
of greatest interest (i.e., that which may have a pole in its immediate vicinity)
ié at k=w/vL. Consequently, it would appear that an adequate approximation to

the branch line integral would be

xR
Branch line ) ikr
contribution of [Q/D(u,k)]e™ Tdk
- 0
- Q eikrd’z: | - | "
.Alza—Alls x+(B—v)Aw+exl/2 _ . ‘ |

C
where the denomirator D(w,k) has been approximated by Eq. (15) with the abbreviation

x for Av+vAw. The quantity outside the integral is assumed to be evaluated at

W=y and k=w/vL. The contour CB runs down the left side of the branch cut;

around the branch point (where %x=0), and then up the right éide. If one next
changeé fhe variable of integration from k to x, nothing that for small x/vt, noting

keip= (e, /Vo)x o - (22)
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he finds approximately that

e-i(wL/vi)x
§ sranen Line - Grestaue) | = "
x+(u=-v) Awtex -
L4

C

where (Residue)0 is that residue which the integrand (Q/D)elkr would be expected

to have at the n~th mode's pole in the k plane were the parameter € identically

equal to zero. The mapped contour cé in the x plane may be considered to go

up on the right and then down on the left of a branch cut extending vertically

downwards from the origin in the x plane. If we set x=-if, then, on the right

side of the cut, xl/z should be e-iﬂ/égl/L

_e~in/41/2

while, on the left side, it is

+ Consequently, the total integral combines to
A

2
Hin /b =(u [vo)ET
h 2ece e 1L P VEdE
‘{?ranch line{},= -(Residue)o .

contribution 2 9
[~i&+(u-v) Aw] +ie"E

(-]

This in turn, with an obwvious change of integration variable, may be expressed

as o
in/4 -n 1/2
Branch line % _ , , te e 1 dn
%Eontributioé} h (Re51due)0 X (n-nl)(n-nz) (25)
o

where

K=evr/(er)l/2 (26a)

nps n, = 1E2/2) (1+[8u/20])

¢ 1(K2/2) (1+[bu/o]) L2 (26b)

with o as defined by Eq. (18).

In regards to the n integration, the integral can be expressed in general
in terms of Fresnel integrals of complex argument after some considerable
mathematical manipulation. One may note, moreover, that [nlI and lnz[ are, for
most cases of interest, considerably less than ﬁnity. In this case, the

appropriate approximate result (derivation omitted for brevity) is
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a
e 'Yq dn _ im

- 27
(n—nl)(n—nz)_ “i/2+”%/2 _ |

<

where the choice of square root should be such that the imaginary part is

positive. The net result im this limit then is that the branch line contribution
‘is independent of the parameter X. (The dependencé on range r comes only in
the residue.) Thus one may write
Branch line §_ o : (pesidue) B . (Aw/0) (28)
contribution : o rh . :

where the function Brh(Am/c) is given by

2 A . '
B () = /2 172 /2 177 - (29)
L+ (/2o 1+ | A

] +[1H+(1/2)0-(1+R0)

Here any consistent choice may be made for the sign of the inner square roots
but the outer square roots should be taken such that the resulting phases are
between -1/4 and 3n/4. The quantities in square brackets turn out to be the

squares of (1/J§)[(1+Q)1/2il], respectively. The phase restriction then gives

BrA(Q) = +0? if @0 (30a)
=1 1if 0>0>-2 ' (30b)
= i Y2 5 acm2 - (30¢)

where here all square roots are understood to be positireﬁ

To completely describe the transition it is appropriate to add to Eq. (28)
that contribution.(which is zero for 0>4Aw>-20) from the pole on the first branch
in Eqg. (21) which lies in the general vicinity of k=mL/VL.J1f the pole is
present, its contribution to the integration over k is 2ni times the residue
(which is not what we have been referring to as (Residue)o unless e is identically
zero). The evaluation of the residue is moderately straightforward and omitted

here for brevity. The net result is that
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Branch line + Pole
contribution contribution

= 2ﬂ1(ReSldue);iBrh(Am/d)+Poz(Am/d)} _ (31)
where the "pole function" P R(Am/d) turns out to be given by

Poz(Aw/U)=l_Brh(Am/d) ¢ (32)

We accordingly have the remarkable (although, in retrospect, not unexpected) result

that

Branch line Pole _ . .
E contrib utiol-._gcont rib utiors— 2mi(Residue) o (33)

The above gives one a relatively simple prescription for evaluating a given
mode's contribution to the k integration in Eq. (1). First, all branch line
integrals are formally neglected. If a pole exists on the first branch, the

residue which would normally be utilized is replaced by

1kr 1kr g :
d D/dk (34)

k=pole

where

d'p _ d
ak - odr ProRi17A1Rp)

d
G ax (Ryp) (35)

i.e, it differs from the actual derivative of D in that G is formally considered
as constant. Doing this when w is somewhat removed from the transition region
near w should make very little difference since R12 is small at values of k which

are poles. Near the transition, this neglect should almost exactly compensate

for the neglilect of the branch line integral.



10.

11.

12'

13.

22

REFERENCES

J. E. Thomas, A. D. Pierce, E. A, Flinn, and L. B. Craine, "Bibliography
on Infrasonic Waves'", Geophys. J. R. astr. Soc. 26, 399-426 (1971).

C. B. Officer, Introduction to the Theory of Sound Transmission with

‘Application to the Ocean (McGraw-Hill, New York, 1958).

J. R. Wait, Electromagnetic Waves in Stratified Media (Pergamon Press,
Inc., New York, 1962).

L. M. Brekhovskikh, Waves in Layered Media (Academic Press, New York, 1960).

K. G. Budden, The Wave—Guide Mode Theoxry of Wave Propagation (Prentice Hall,
Inc., Englewood Cliffs, N.J., 1961),.

I. Tolstoy and C. S. Clay, Ocean Acoustics (McGraw-Hill, New Yerk, 1966).

M. Ewing, W. Jardetzky, and F. Press, Elastic Waves in Layered Media
(McGraw-Hill, New York, 1957).

A. D. Pierce and J. W. Posey, Theoretical Prediction of Acoustic-Gravity
Pressure Waveforms generated by Large Explosions in the Atmosphere, Report
AFCRL-70~0134, Air Force Cambridge Research Laboratories, 1970.

A. D, Pierce, J. W. Posey, and E. F. I11iff, "Variation of Nuclear Explosion
generated Acoustic~Gravity Waveforms with Burst Height and with Energy
Yield" J. Geophys. Res. 76, 5025-5042 (1971).

E. T. Copson, An Introduction to the Theory of Functions of a Complex :
Variable (Clarendon Press, Oxford, 1935) p. 137.

L. M. Brekhovskikh, loc. cit., pp. 270-280.

A. D. Pierce, "The Multilayer Approximation for Infrasonic Wave Propagation
in a Temperature and Wind-Stratified Atmosphere', J. Comp. Phys. 1, 343~ 366
(1967).

A. D. Pierce, "Propagation of Acoustic—-Gravity Waves in a Temperature and
Wind-Stratified Atmosphere", J. Acoust. Soc. Amer. 37, 218-227 (1965),



AFGL-TR-76-C055

GEOXETRICAL #COUSTICS TECHNIQUES
IN FAR FIELD INFRASQNIC
- WAVEFORM SYNTHESES
by |

Allzrn D. Pierce and Wayne A. Kinney

School of Mechanical Engineering
Georgiz Institute of Technology
Atlanta, Georgia 30332

SCIEINTIFIC REPORT NO. 2

Approved for public release; distribution unlimited.

March 7, 1976

Prepared for

AIR FORCE GEOPHYSICS LABORATORY
ATR TORCE SYSTEMS COMMAND
THITED STATES AIR FORCE

EANSCOY ATB, MASSACHUSETTS 01731

VP A2 4



f1. REPORT WUMBER

Unclassified -1~
SECURITY CLASS'FIZATION OF THIS 2AGE /Whan Nara Entered)

3

REPORT DOCUMENTATION PAGE

" READ INSTRUCTIONS
BEFCRE COMPLETING FORM

lz. GOVT ACCESSICN NO.

AFPGL-TR-76-0055 {

4. TITLE (and Subtitls)

GEOMETRICAL ACOUSTICS TECHNIQUES IN
FAR FIELD INFRASONIC WAVEFORM
SYNTHESES

3. PECI®'ENT'S CATALOG NUMBER

5. TYFE OF REPCRT & PERIOD COVERED

Scientific Report No, 2 !

6. PERFORMING ORG. REPORT NUMBER.

7. AUTHOR(s) .

Allan D. Pierce
Wayne A.Kinney

8. CONTRACT OR GRANT NUMBER(S)

F19628-74-C~-0065

9. PERFORMING ORGANIZATION NAMZ AND ADDRESS
School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

62101F

10. FRCGRAN FLEMENT, PROJECT, TASK
274 & WORK UMIT NUMBERS

76390102 S Q

1. CONTROLLING OFFICE NAH? AND ADDRZESS
Air Force Geophysics Laboratory
‘Hanscom AFB, Massachusetts 01731
Monitor: Elisabeth ¥. Iliff, LWW

12. REPORT DATE

7 March 1976 - 5

13. NUMBER OF PAGES

68 ’_w- c g

14. MONITORING AGE

NCY NAMZE & ADDRESS/if ditferent from Controlling Office)

1S. SECURITY CLASS, (of this report)

Unclassified

158, DECL ASSIFICATION/DOWNGRADING -
SCHEDULE

16. DISTRIBUTION STATEMENT (of thiz Report)

-

Approved for public release; distribution unlimited.

17. DISTRIBUTION STAT

EMENT (of the abstract entered in Block 20, if different from Report)

18. SURPPLEMENTARY NOTES

13. KEY WORDS (Continue on reverse sice if necessary and identify by block number)

Acoustics

Geometrical Acoustics

Infrasound

Wave Propagation
ustics

Ray Acoustics

Guided waves

Atmospheric Acoustics

. Waves in inhomogeneous media

20, ABSTRACT rContinue on reverse sid= {1 necessary and identify by bilock number)
A ray acoustic corputationzl model for the prediction of long
A cubic

spline technique is used to approximate the sound speed versus height

range'infrasound propagation in the atmosphere is described.

profile when values of sound speed are input for discrete height in-

tervals. nghg%gyes for firding ray paths, travel times, ray turning

R

-

EDITION OF T NOV 55 1S OBSOLETE

DD 558" 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)




-2-

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

points, and rays connecting source and receiver are dgscrihéa; A
pararweter characterizing the spreading of adjacent rays (of }éy tube
area) is defined and methods for its computaticn are given. A method
of determiniﬁ;the number of times a given ray touches a caustic is also
described. Formulas are given for the computation of acoustic ampli-
tudes and waveforms which inveolve a superposition of centributions
from individual rays connecting source and receiver and which incor-
‘porate phaée shifts at caustics. The possibility of a receiver being
in the proximity of a caustic is considered in some detail and dis-
tinction is made between cases where the receiver is on the illumina-
ted or shadow sides of a caustic. It is shown that a knowledge of
parameters chéracterizihg two rays at a point in the vecinity of a
caustic provides sufficient information concerning the caustic to allow
one to give a relatively accurate déscription of the ééouStic field

in its vicinity. The resulting theory involves Airy functiomns and
uses concepts extrapolated from a theory published in 1951 by Haskell.
‘The net result is a detailed computational scheme which should accu-
rately cover the contingency of the receiver being near a caustic in
the calculation of amplitudes and waveforms. A number of FORTRAN
subroutines illustrating the method are given in an aﬁprendix. Limi~
‘tations of the theory and suggestions for future developments are also

given.

"SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




-3-
- I. INTRODUCTION

The present report is concerned with the development of a
computational model for the prediction of long range infrasound
propagation in the at-—osphere. The computational model discussed
here is one which is partly based on ray acoustic concepts; it should
be applicable to wavs periods less than three minutes and is intended
to complement the guidsd mode model of acoustic gravity wave prOpaéa—
tion which has been extensively discussed in previous reports and
pa_aers.l_5 |

' The ray acoustic method has a sizable literature pertainihg to
it; most of the published work is concerned with applications to
underwater sound. (A brief bibliography of relevant papers is given
in Appendix A.) Discussions of ray acoustics which are particularly
germane to infrasound propagation in the atmosphere are an article/
.published in 1951 by K. Haskell®, a 1966 AFCRL report by Pierce7,
and a 1973 AFCRL report by Pierce, Moo, and Posey.4 In the present
report, the details of the pertinent theory are assumed to be already
known; the emphasis is on the computational implementation of the
. theory. Particular innovations discussed here, not generally included
in ray acoustic models, are (1) the presence of many rays which connect
source and receiver, (2) a method of computing ray amplitudes based
on analytical diffsrentiation of ray formulas appropriate to a _
stratified medium, (3) the inclusion of caustics into the formulation,
and (4) the inclusion of Lamb's atmospheric edge mode.

"The general model used as a starting point may be taken (Fig. 1)
as a'height stratified atmosphere above a flat rigid ground. The
‘sound speed c(z) and azbient density p,(z) are assumed to be continuous
functions of height z above the ground. For simplicity, winds are
not.included in the present formulation, although we belisve that
this linitation can ezsily be overcome with only a modest degree of
effort. The pertinent governing equations are taken as the linearized
equations of atmospheric compressible fluid dynamics (gravity included).3
Nonlinear effects are maglected other than in the selection of a source
term. Eow such a source term appropriate to nuclear explosions may be

selected has previously been discussed in some detail by Pierce, Posey,

. A
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Figure 1.

Sketches illustrating general model used in the analysis. (a) Typical

sound speed versus height profile. (b) Sketch of point source above

a flat rigid ground, with a height stratified atmosphere.



and Iliff.8 It suffices here to only stéte that the source is assumed

localized at a point whose coordinates may be taken as x = 0, y = 0,
z = ZSC
A modest analysis of the governing equations suggests that the wave
poftion with periods less than approximately three minutes may be des-
.cribed at moderate distances from the source (greater than, séy, 50

kilometers) by an acoustic pressure which is separable as follows

p(;,t) = {Lamb mode portion} -+ {ordinary acoustic portion}

(1.1)

where the Lamb mode portion may be computed by techniques such‘as

discussed by Pierce and Posey9 and by Posey.10 The ordinary acoustic

portion (which is the only portion considered here) may be taken as

the ray acoustic (excluding the edge mode) solution of the wave equa-—
tion ' |

Vz(p//g;) - (1/c2)32(p/#5;)/at2 = _4"f(t)6(? - ?SC) (1.2)
where the function f£(t) is characteristic of the source. In addi-
tion, p//;osatisfies approximately the boundary condition -

3p/32‘+ (g/cz)p = 0 at the ground (z=0). The justification for sep-
arating out the Lambmode portion at the outset follows from a 1963
paper by Piercel1 which mey be construed as showing, for the special
case of an isothermal atmosphere, that such a separation is possible

at the frequencies of interest here.

The rays proceeding from the source are lines, each of which
lies in a vertical plane including the source (Fig. 2). Since.the
geometry is circularly symmetrie, we may limit our consideration to
rays which lie in the ¥ z plane. A typical ray path passes through
the source, bends downwards when the ray is proceeding up and the
vsound speed is.increasing with height, bends upwards when the sound
speed is decreasing, etc. This phenomenon of ray bending is known
as refraction and makes it possible for more than one ray to pass

NPT
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Sketch of acoustic ray paths emanating from a source in an atmosphere

in which the sound speed varies with height.



through a given far field point. For distances and receilver locations
of interest, one may regard this possibility of multi-ray arrivals as
typical rather than the exception. The equations for computing such
ray paths are well known and are discussed in particular in the 1966
report by Pierce.7 Coaputer programs which compute such paths are also
in widespread use, especially in underwater sound stqdieé. However,
most such prograns do not compute ray amplitudes. .

A somewhat lowar order (or, strictly speaking, nonuniform) tay

acoustic approximatioa to the solution of Eq. (1.2) is that

Z Pray | @

rays

d
]

where the sum extends over all fays which connect the source and re-
celver. Here individual terms have signatures and amplitudes which

2,13

may be computed from the eikonal approximationl and from the con-

dition that p reduces to

f

p//bo - f(t- R/c)/R . o (1.4)

in the dimmediate vicinity of the source. However, the Straightfof-
ward application of this procedure leads into difficulties if ray tube
area, along any ray coanecting source and listener, should vanish at

any intermediate point a2long the ray. This difficulty, however, may be

largely overconel4’13(although this seems to be rarely done) by simply
adding a phase shift of 7/2; ie. .
£(t) = Re \ f(¢) & ™t dw _ ' (1.5)
o ’

_is replaced by

INTRON dw _ . (1.6)



this shift being applied each time the ray tube area goes to zero

along the ray. This is in addition to the normal shift due to travel
time along the ray from source to listener. The successive shifting

of phase by intervals of m/2 is a relatively simple matter; the princi-
pal challenge in the application is that of determining the number of
such phase shifts to be applied.

There are two further modifications to Eq. (i.?) which, if in-
cérporated into a computational model, should guarantee that results
_be good approximations down to relatively low frequencies and for large
propagation distances of the order of 1000-18,000 km., These modifi-
cations include the explicit taking into account of caustics and
lacunae (voids, skip zones, shadow zones, etc.) in the vicinity of the
receiver. A caustic is a surface formed by a locus of points at which .
ray tube areas vanish or, alternately, at which adjacent rays intersect.
The eikonal approximation breaks down at any point on a caustic and
should be suspect near a caustic. The manner in which the computational
method may be revised to incorporaté an accurate theoretical model
‘ valid near caustics is one of the central topies in the present report.

Examples of lacunae (see Fig. 3) occur whenever two adjacent rays
split. The splitting leaves a shadow zone or a region in which there
is one less ray than in adjacent regions. Lacunae occur in particular
if there is a maximum in the profile of sound speed versus height.

They also occur near the ground when the éound speed near the ground
decreases with height. (The consideration of an image source and

an image medium indicates the latter may also be regarded as a case
where adjacent rays split.) The present report does not consider

the lacuna problem. This is a limitation we hope to overcome in
subsequent studies. The inclusion of caustics is regarded as a higher
priority and it seems appropriate to thoroughly check out the tech-
niques for including caustics béfore proceeding to the development of
a method for including lacunae. In this regard, it is possible to
conceive of a hypothetical model atmosphere in which caustics occur
but lacunae do not. This would be a model in which there is no ground,

the sound speed has a single minimum but nd maxima. This is admittedly

e b
e



. LACUNA B
- :
SOUND SPEED

Figure 3.

Examples of the occurrence of lacunae in the propagation of rafs from
a source in a stratifisd atmosphere. The lacuna A occurs because of
the splitting of ray gaths at the height of a sound speed maximum,
lacuna B occurs because of the presence of the ground and the fact

that the sound speed initially decreases with height.
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not a realistic model, but if nevertheless should serve as a vehicle
for checking out the computational method.
The present report does not give a complete computer program
for the prediction of zcoustic waveforms via the ray acoustic model.
~Such a prograzm is still under development. However, we do include
' in Appendix B a number of Fortran subroutines which have been developed
to date, which may be incorporated into such a program, and which
exemplify the computational techniques. The emphasis in our discussion

is on these technigues.

"II. SOUND SPEED PROFILE

Sound speed data typically supplied in any computation scheme
takes the form of individual values ¢, (i=1,2,....,NC8) at heights
z, (i=1,2, _ , NCS). Eowsver, in the types of calculations pertinent

- to geometrical acoustical predictions, one needs to know values of
c(z), de/dz, and dzc/éz2 at heights not necessarily coinciding with

one of the zg. To this purpose, we use an interpolation scheme known

as cubic splines and which was recently introduced into the under-
. s s 16
water sound propagation literature by Moler and Solomon . In these

authors' notation, one lets

Aziv = z; - éi—l ) . - . : (é.lé)
Lcl = (ci - ey l)/Azi | i=l,i..,NCS (2.1b)
w = Fz - zi_l)/Azi | v | (2.1c)
% o= 1-% | - (2.1(1)_.

and takes the sound syzed cfz) for z between z. 1 and z; to be of the
. -

form of a.cubic polymoziel

e = Ty ey + wz)%fa, |G - Dra v - 1] @.2)
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where the coefficients a, are constants chosen as described below.

When z = z,_ 1 and z = z5s this automatically reduces to Ci 1 and Cys

respectively, so continuity of sound speed is automatically provided.
The first, second, third, derivatives of sound speed according

to the Moler-Solomon equation above are

de/dz = Aci + Azi{}ai—l(BW - 1) + ai(3w - 12 (2.3a)
dzc/dz2 = VG(Ea + wa,) » ' ' (2.3b
i-1 i : ' -3b)
3 3 ' -
d e/dz” = 6(ai —_ai—l)/Azi _ : (2.3c)
so
de/dz = Aci - Azi(ai + Zai_l) at zi 1 - (2.4a)
= Aci + Azi(2ai + ai—l) at z, - (2.4b)
2,2 - '
dc/dz” = Gai_l at z; 1 {2.5a)
= Gai - ~at z; _ (2.5b)

-

' A 2 ,.2 . . '
Thus continuity of d"c/dz” is automatically insured while continuity

of dc/dz requires

Ac, + ; = - A
cy Azi(zai ¢ai—1) Acy g Azi+1(ai+l +2ai) (2.6)

for all values of i. Continuity of the third derivative is not im-
posed on the function.

To determine appropriate values of the ay which insure'continuity
of the first derivative wa note that Eg,. (2.6) above implies
-

aq = (Aci+l— Lci)/Azi+l - Zai[;+ Azi/Az

T Ay 82y/hzyy 2.7)
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and that, given ay and a,, one could in'principle'generate all of the

succeeding ai's. The linear 'nature of these difference equations

implies furthermore that

- ‘ 2.8)
a, Ki + Lia2 +Mial (

for i »>2, where

Riep = A3 7 By €Ky | N (2.92)
i = BiMy Clig o ; (?.Qb)
T T = (2.3¢)
A, = (ici+l— Aci)/Azi+l : - (Z.iOa)
B, = 2 El + Azi/Azi+i] e - (2.10b)
c, = izi/izi+l X (2.10¢)
K, = 0 K, = 4, K, = A;~B,A, (2.11a)
L, = 1; Ly =3y; L, = B;B,-C, (2.11b)
_ M, = 0; M, Q-cz; M, = BB, (2.11¢)

Thus, 1f one starts with the values Kz.and K3 given above, he may

generate all of the successive Ki’ ete.
Boundary conditions on the a, may be taken as ag= =0, fh se .
¥ C I i y 1 aNCS ese
are somewhat arbitrarr but imply that the sound speed profile should
be linear above Zuos and selow zq- With this choice, one has
-t

= - T . . 2.12
2y Kees’™xes ( )



and the a; for i=3,....., NCS are then computed according to Eq. (2.7).
In this manner all of the a; may be computed.

The computation just described is realized by a computer sub-

- routine DASOL whose deck listing is given in Appendix B. The cy and

z, are presumed stored in COMMON when this subroutine is called and the
computed 2y (denoted ASOL) are stored in COMMON after this subroutine
returns. The number c¢f pointd is denoted by NCS (number of c's).

The sound spead &t an érbitrary value of z is computed by a
fﬁnction subroutina CS2(Z). Given the value of z, éhis uses the

-

values of the ay, the ¢y and the zg (stored in COMMON) in Eq. (2.2)

he
i

to compute the sound speed. (The deck listing is also given in
Appendix B.) Analogous function subroutines are DCDZ(Z) and DCDZS(Z)
which compute the dc/éz and dzc/dz2 at a given value of z according to

Eqs. (2.32) and (2.3b).
'III. RAY PARAMETERS

For a height stratified atmosphere without winds, the ray

\ ] - : ]
equations of geometrical azcoustics predict that

dx/dz = = c/(vi‘- é2 1/2 3.0

where x is horizontal distance of the ray, z is vertical distance.
Eere, vp, the horizontzl phase velocity of the ray, is a constant

for any given ray. S=21l's law (a corollary of the ray equations)

predicts that

. v, = c/{sin3) = constant (3.2)
: . : .
wnere ¢ is the local sound speed, 8 is the angle between the momentary

rev direction and ths wvertical., The choice of sign in Eq. (3.1) above

‘depends on whether ths ray is presently moving obiiquely upwards or

obliguely downwardis.
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In a similar m2nner, the ray tracing equations predict that the
rate of change of net travel time t along a ray with respect to height

1s
dt/dz = * (vp/c)/(vil— c2 1/2 ' (3.3)

The zagnitudes |¢x/dz| and |dt/dz| are computed by function sub-
routines RZKDZ(iihéndVRDIDZ(Z). Both of these use the subroutine
CSP(Z) to find tha sound speed at height z. The phase velocity vp is
assumed to be stored iz COMMON. . :
A turning.point for a ray is a value of z at which c(z) = Vp» In
general if the sound sp2ad profile has a minimum then there is an upper Zy
and a lower turning peint zj. These are found by calling a subroutine
TNPNI, This subroutine takes as inputs the phase velocity VB and the
lower and upper bounds ZBL and ZBU for the search. The search procéeds

by dividing the intervzl (ZBU,ZBL) into NCS+4 intervals, each of width
A = (Z3T - ZBL)/(NSCAN + 1) - G4

It successively examinas the sign of the function CMVP(Z) = CSP(Z)-VP
at points ZBU, ZBU + 2, ZBU +.2A, etc., until an interval is found at
which the signs at the two intervals are opposite, suggesting that a
root is bracketed in that interval. The actual value of the root is
found by a library subroutine ZREAL2. The search then goes on to
succeeding intervals until a maximum of two roots is found. Output
is NRTS the mumber of reoots (0,1, or 2) and the values ZA and ZB of
the roots; ZA is the first root (smallest z) and ZB is the second
root (larger z). TIvpiczlly, we would expect ZA to correspond to the
lower turning point, Z3 to the upper turaning point.

In successive applications of iﬁtegration between limits, one or
both of which ere turzing points, it is important that one not over-
shoot a turning point since then the square root in the denominator
in Eas. (3.1)zné (3.3) would be imaginary. ¥For this reason we have

devised arother subroutine called SHIFT which>adjusts the values
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7LOW and ZUP corresponding to a numerical approximation for the actual
turning points to values which are in the immediate neighborhood of
the input values but which are such that _CSP(ZLOW) < VP and CSP(ZUP) < VP
The adjustments are carried out in units of 10_8 until these criteria .
are‘satisfied.

Integrals of |dx/dz{ and |dt/dz| (or of any other z dependent
quantity) between arbitrary yalues ZLOW and ZUP (not necessarily
turning points) are acconplished by an integration function subroutine -

RAINT. This performs such that

Z

RAINT(RIXDZ,ZLOW,Z P) = |dx/dz| dz (3.5)“
ZLOW
AL

RAINT (RDTDZ,ZLOW,Z ) = |de/dz]| dz (3.6)

| ' ZLowW

In the execution of this integfation, the range of integréfidn is
broken into integrals from ZLOW to ZAVE and from ZAVE to ZUP -where
ZAVE = (1/2) (ZLOW + ZUP), i.e.

ZAE ZA\E
INTERAL = (INTE3RAND) dz - (INTEGRAND) dz.
ZLOW e 7 P

_ 3.7)
The reason for this-is that the library subroutine QUAD used to perform
the integration is most efficient when it integrates away frbm a
“singularity and we anticipate the possibility that the integrand.may'
be singular at either ZLOW or ZUP§ these could be ray turning points.

The integrals of |dx/dz| and ldt/dzl between lower and upper
turning points are performed by a subroutine named RANG. The values

of z corresponding to the tufning point values-are supplied as inputs,
the other information needed is presumed stored in COMMON. Outputs
are RTIME and RLNTH for the integrals over [dt/dz| and Idx/dz| respect-
ively. The significance'of these parameteré is that the rays are

periodic in path. The time required.to go N half ray cycles is just

BN
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(X) (RTIME) while the horizontal distance traveled is (N) (RLNTH).

Ray paths going from a given source location to a far field
point may be characterized by (1) the horizontal phase velocity VP,
(2) an index parameter IT which is 1 if the ray is proceding initially

obliquely upwards, -1 if proceding initially obliquely downwards,

(3) another index parameter "JT whose_vélu83 +i'of -1 give the sign '
of dx/dz at the final point on the ray, (4} the number NUP of upper
turning points which the ray passes through, (5) the number NDOWN
of lower turning points, (6) the initial height ZSC of the ray, and
(7) the final height ZLIS of the ray. - These pafameters are further
explained in Fig, 4.4 One should note that’if IT=JT, then NUP=NDOWN,
if IT=1, JT=-1,then NDOWN=NUP-1; if IT=-1,JT=1 then NUP=NDOWN~1. The
total horizontal distance R which the ray travels is -
R = (¥)(RLNTH) + RST + REBD

: . :
where N is the number of complete half cycles the ray makes, given by

N = NP + XDOWN - 1 . (3.9)
while
' ZP , _
RST = lax/dz| dz IT =1 (3.10a)
- ZSC '
. ZSC
= |dx/dz| dz IT =-1 (3.10b)
ZLOW ' '
(ZlP
REND = j lax/dz| dz : JT ==1 (3.11a)
ZLIS |
\ZLIS
. = S ldx/dz| dz JT = 1 (3.11b)

o ' ZLOW
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RST ~ "REND

Figure 4.

Parameters describing a guided ray's path through the atmosphere;
RLNTH is the half cycle ray repetition length, IT=1 or -1'if the ray
is initially proceeding obliquely upwards or obliqpely downwards,
respectively, JT=1 or -1 describes slope at end point, ZUP and ZLOW
are heights of upper and lower turning points, NUP is the numbe¥ of

upper turning points, NLOW is the number of lower turning points,

RST is horizontal distance to first turning point, REND is correspond-

ing distance from last turning point to receiver, ZSC is height of

source, ZLIS is height of receiver.
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Zhe above formulas hold even should both NUP and NDOWN be>zero, the

computation giving for, sav, IT=JT=1

_ Zp ZL1IS Zw
R = + - |ax/dz| dz ;
ZsC ZLOW ZLoW
ZLIS
= lax/dz] dz | - | L @a2)
75C ) L
The computation of total range with the above listed inputs is

accomplished by a subroutine named TOTRAN. It calls TNPNT first

" to find the turnirg points, then SHIFT to adjust the turning points

so that tﬁe integrands exist throﬁghout tﬁé‘iﬁtegratibﬁ'range,'theﬁ*""

RAKG to determine the ray half cycle length RLNTH and uses the librar§

subroutine QUAD to find the initial and final integrals RST and REND.
The above computation algorithms implicitly assume the lower

point on any given ray is 2 lower turning point rather than the ground.

The method may be easily extended té include ground raflections although

we have mnot yet done so.
IV. RAYS CONNECTING SOURCE AND LISTENER

-0f pertinent interest in any ray acoustic calculation is the
tabdlaﬁion of rays which connect given source and listener (receiver)
locations. Let us denote source and listener heights by ZSC and
ZLIS, the horizontal distznce of listener from source by RANGE. Then,
given a ray type denotad by parameters IT, JT, NUP, NDOWN as defined
previously, and given z phase velocity VP we may define a function
RHRAYD(V?) 2s the difference between actual range R and the range which
would correspond to the given values VP, ZSC, ZLIS, IT, JT, NUP, and
NDOWN. 1If this function is zero, then the ray being considered does
pass through the listercer location. Otherwise, it does not. The
function subroutine XRRAYD computes this difference, YP is an input,

the remaining necessary parameters are stored in COMMON.
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To find the values of VP at which _
RIRAYD(W) = 0 C(4.1)

given fixed ZSC, ZLIS, IT, JT, NUP, and NDOWﬁ, a subroutine FNDVP
is used. This scans values of VP between VPHST and VPHEND at intervals
of SDELT until an interval is bracketed within which RMRAYD changes
sign. Once such an interval is found,‘a library subroutine ZREAﬂé
is used to find the precise value of the root. Up to NMAX such roots
are found, the number actually found is denoted NFND, the roots being
denoted WED(1), WED(2). . .. . ., PED(NED). |

By use of FNDVP, one can, in principle, find all rays 6f a given
type which connect source and listener. A systematic variation of
ray types (IT, JT, NUP, and NDOWN) will in this manner give all the

rays connecting source and listener.

V. RAY SPREADIKNG

Two coplanar rays, both proceeding initially either obliquely
upwards or obliquely downwards, may be characterized by phase velocities
vpl and vpz.
cally equal to) vpl we may characterize the separation of the rays

Assuming that vp2 is arbitrarily close (but not identi-

. by'a paraneter As which (see Fig. 5) is the perpendicular distance
from a point on the first ray to the second ray. We consider As as
positive if the second ray lies above the first, negative if below
the first. The garameter As-may)be considered a function of horizontal

distance x and also of thé'phase velocity, The limit

]

>V

ds/dvp _vl;m o g. As/(vpz—vplig (?.1)

may be considered a uniquely defined function of range x, phase velocity

v_, Tay type (IT=1 or -1) and ray initial height ZSC. We term this

derivative the ray §p;eading function. One mav note that within anv
. T . o . '

Py
[N
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RAY 2

SOURCE

Figure 5.

Defiﬁition of parameter As characterizing two adjacent rays with
horizontal phase velocities Vol and Vp2* Note that As changes sign

when the rays cross.
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ray segment (i.e. between turning points)

1/2

ds/dvp i(dx/dvp)/{l + (dx/dz)z}

* (@x/av )1 - (c/vp)2}1/2 (5.2)

where the plus sign applies if the ray is proceeding obliquely down=
wards (JT=-1), the minus sign if it is proceeding opliquely upwards
(jT=l),r dx/dvp is the rate of change of horizontal distance traveled
with respect to phase velocity at fixed z and fixed ray initial position.
The derivative dx/dvp may ih turn be calculated if one knows the

- general ray type. For a ray proceeding initially upwards (IT=1) and
going through NUP upper turning points and NDOWN=NUP lower turning
points énd ending with direction obliquely upwards, one has, for

example,
Z1 zP z

|dx/dz| dz + N |dx/dz| dz + de/dzl dz
ZsC | ZLOW ZLOW

L]
]

(5.3)
where N = NUP + NDOWN -1 = 2(NUP) -1. Here-:the integrand»ldx/dzl .
is given by Eq. (3.1). To differentiate this expression with respect

to v one must take into account the fact that ZLOW and ZUP as well

" Ps
as Idx/dzl depend on vp, A formal application of the rules for diff-~
erentiating an integral with respect to a parameter leads to singu-
larities and some tricks are required to avoid this. In particular,

it is convenient to rewrite the above as
x = I(ZsC,zZl1) + (N+1) I(Zu,Z®) + (N+1) I(ZLOW,ZLI)

+ (N+1) 1(ZLOW,ZLI) + (N) 1(2LI,Z2U) + 1I(ZL1,Z)

4 (5.4)
where I(Z1,Z2) represents the integral of Idx/dzl between the indicated
limits, ZUI is a fixed (yp independent) value of z slightly less than
ZUP, ZLI is slightly larger than ZLOW. (See Fig.&.) One may also note
that

e g
DR N
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ZupP —
ZUi ‘ BN

ozL
. ZLOW

‘Figure 6.
Definition of parameters ZUIL (slightly below upper turning point ZUP)
and ZLI (slightly above lower turning point ZLOW) used in the calcula-
tion of ray spreading paraczeter ds/dvp. '

/
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WZ1P-z) |dx/dz]| dz (5.5)
zu

I(zu,zwp)

lax/dz| = -(ac/dz)'lcd/d;)cvz B2 (5.6)
so an ‘integration by parts gives
I(ZU,ZP) = {(dc/dz)_l(v2 -~ c2)1/2}
P Zu
+ (vi - c2)1/2 IIZIP—z)(d/dz)(dc/dz)_l dz
Z11
(5.7)
and, consequently, one has
(d/dv )1(zu,z®) ={(v_/c) (dc/dz)_lldx/dzl}
P P Zu
YA
+ (vp/c;)|dx/dz[(d/dz)(dc/c!z)_1 dz
zZu

(5.8)

Providing dc/dz does rot vanish in the interval between ZU and Z TP,
both o these terms should be finite., 1In a similar manner, one can show

that

(d/dv_)T(ZLOW,ZLI) = - { (v_/ec) (dc/dz) ~L|dx/dz]}
P P _ ZLI

Z P ‘ 1
fs (v_/c) |dx/dz|(d/dz) (de/dz) ™~ dz
zrow P
\

(5.9)
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The dsrivatives of the remaining terms in the expression (5.4) are

relatively sinple since the integration limits are independent of ,vp.

In particular one has

zZUu
(&/av ) T(z5C,21D)= - S (v C)(vi-cz)_3/2 dz

(5.10)
zsc P

!

Thus one obtains the expression (IT=1, JT=1)

dx/dvp = I1(z5C,z1) + (N+1)Jl(ZII) + (N+1)12(Z11,Z W)
- (M1)J1(ZLI) + (N41)I2(ZLOW,ZLI) + (N)T1(ZLI,Z U)

+ I1(ZLI,Z) ' (5.11)

where we have abbveviated

- pZB
I1(ZA,ZB) = - S cv (vz—c2 ~3/2 dz (5.12a)
za PP -
J1(zA) = {(v /c)(dc/dz)-l]dx/dz]} - (5.12a)
: ZB | -
12(28,28) = | (v [e)|ax/dz|(@/dz) We/dz) " d (5.12¢)
za P . :

_In general, for a ray of specified type (IT, JT, NUP,NDOWN), the

corresponding expression for dx/dv is
P

I1(zsc,z 1) :
dx/dv_ = t+ QY(NW®P)J1(Z1I) + (2)(NP)I2(Zz1,ZP)
‘I1(ZLI,ZSC) A

= (2) (NDOWN) J1(ZLI) + (2) (NDOWN)I2(ZLOW,ZLI)

11(ZL1,2) )
+ (NTP+NDOWN-1)I1(ZLI,Z1I) + , (5.13)
/ - 11(Z,211)
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The two possibilities for the first term correspond to IT=1 and -1,
‘respectively, while two possibilities for the second term correspond

to JT=1 and -1, respectively.

The integrand for the integralsof type Il is computed by a func-
tion subroutine FIRM(Z), while twice the values of those of type I2 are
computed by a function subroutine FIRMUL(Z), i.e.

I1(ZA,ZB) = RAYINT (FIRM;ZA,ZB) (5.14a)

11(ZA,ZB)

RAYINT (FIRMUL, ZA,ZB)/2 (5.14b)

Also the quantity 2[J1(Z)] is denoted in the program by TRNPT(Z), i.e.

: o _
TRNPT‘Z) = 2vp(dc/dz) (vi—cz) 1/2 (5.15)

s0 the expression for dx/dvp becomes

IKD ¥ = TER{ST + (NP)TRNPT(Z IT) + (NTP)RAYINT(HR{ L,ZU,Z )
- (NDOWN)TRNPT(ZLI) + (NDOWN)RAYINT( HRY U,ZLOW,ZLI)
+ (N 1P+NDOWN-1)RAYINT( FIR{ ,ZLI,Z1I) + TERMLT (5.16)

where the first and last terms are

TERMST = RAYINT(FIRM,ZSC,Z1T) Ir=1 (5.17a)
— RAYINT( HRM ZLI,ZSC) IT =-1 (5.17b)
TERMLT = RAYINT( HR{,Z,Z 1) JT =-1 ' (5.18b)
= RAYINT( FIRY ,ZLI,Z) JT =1 " (5.18b)

One may then calculate dé/dvp from Eq. (5.2), i.e.

DSDWP = -SEX(JT) (IXD ) (1-{c/vp}2)1/2 (5.19)
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/

The sequence of computations just described is carried out by
a subroutipe CDSDVP. The parameters VP, ZSC, Z, IT, JT, NUP, AND KDOWN

are inputs, the output is DSDVP. The parameters ZLI and ZUI are computed
internally and set to

ZLI = ZLOW + .01(Z 1P-ZLOW) ‘ © T (5.202)

ZU =21 - ,01(ZP-ZLOW) - ' (5.200b)

The choice of .01 is of course arbitrary. The chief constraint is.'
that de/dz should not vanish between ZLOW and ZLI and between ZUI
and ZUP. ' -

. If one conside;'s the variation of ds-/dvl;'with x along a single
ray (say with IT=1) it is apparent that up to the first upper turning
point ds/dvp -should be positive since FIRM(Z) is negative; JT is

positive. At the turning point one has

limit | z _
ds/dv_ = lf;u, (A el/v }2)1/2 S cv (vz—c2 3lzdz}
Pz P zscP P

{1/(de/d2)}, (5.21)

which, interestingly, is independént'df ZSC. >This follows if one

breaks the integral above into integrals from ZSC to ZUI and from

ZUI to Z, given ZUI < Z< ZUP, and expands c in a power series about

its value an at z=Z 1P,

. Between the first upper turning point and the first lower turning

point the function ds/c'lvp is given by

2}1/2

ds/dvp = {1—(c/vp) { RAYINT ( IRM ,ZSC,Z 1)

+ TRNPT(Z ) + RAYINT(FIRM W,ZUI,Z1P)

+ RAYINT( HIRY,Z,Z u)} | (5.22)

A brief analvsis indicates that this can be put in a form independent

of ZUI, i.e.
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ds Y (v /2)1/2/a3/2 (Vp/2)1/27“3/2
— = 2 § P +
av, ti-telv) % e - zs0t/? e - z)l/2

yAR:
S RN ¢ ) - (1)
stc-- (zO,ZII]E’)dz0 S: Arg (z ,ZIP)dz0

Al

) (5.23)
where

2
P

(ZIP-z)3/2(2avp)3/2

cv B 4

), = —0FP _ -
Arg 7 (2,2 ( 2 2.3/2
vp -c’)

(5.24)
-and we have abbreviated o for de/dz at ZUP. The subtracted term in the

arguments insures that the integrals exist. Also, as Z» ZU% the second

term in the brackets doz=inates and one has

(- erpht? s (2a/v§)l/ 2(zw-2)"? (5.25)

Znd ds/dv, > 1/ 4 in accerdance with Eg. (5.21). On this.basie, we

may concl&de that the guantity in braces in Eq. (5.22) starts out large
and positive for Z closz to ZUP,decreases monotonically (since FIRM(Z)
is always negative) azZ eventually goes to - « when Z + ZDOWN. Thus
there is one and only on2 point on the ray between the flrst turnlng
point and the second tu*nlnc point at which ds/d%,o This p01nt is

identified as a p01nt oa a2 caustic_ (where adjacent rays intercept)

At the second turzing point (flrst lower turnlng point) the same

sort of liniting proczass described above gives

ds/dvp - fl/(dc/dz)}ZLow (5.26)

which as mentioned abtove is a negative number.
Between the firs: lewer (second overall) and second upper (third
overall) turning points, one may similarly argue that ds/dv

P
to zero at one and ozly cne point, etec., before that point ds/va is

goes

kR Y
[RYa
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negative, after that point it is positive, it approaches [ll(dc/dz)]ZUP

at the next upper turning point, etc. The general situation is as
sketched in Fig. 7. .
The number of times ds/dvp goes to zero along a ray path (i.e.,

the number of caustics encountered) is just

’

Nuﬁber of caustics = (Number of complete half ray cycles)

+ (zero or one) (5.27)

The-eeeeﬁé-term~£e 2efe if JT;im(uﬁgbing ray) and the current value
of ds/va is ﬁegative or if JT=-1 (downgoing ray) and the current value
of ds/dvﬁ is positive. Otherwise, it is one. | |

The number of complete half ray cycles, one may note, is just
NUP + NDOWN -1 if either NUP or NDOWN are greater than one. Thus,
it is a simple matter to determine, at a given point on a ray, just
how many caustics the ray has encountered in passing from source to

that point.
VI. RAY AMPLITUDES

Given that the acoustic pressure in the immediate vicinity of the
source 1s of the form implied by Eq. (1.4), the Fourier transform
p(w r),deflned such that

p(Z,t) = ReS'f)(w,?)e_iwt dm, (6.1)
o _

of the acoustic pressure may be inferred from the geometrical acoustics

model7 to be (in first approximation) given by a sum over rays. . The

contribution from any particular ray connecting source and receiver

is simply - v
' p (w)p! 2 X ding factor}
P = f(w)p (ZSC)fAtmosphere factor}{ Spreading factor
ray o _ :
N imtra ‘
% {(-1) Ye T (6.2)
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Figure 7.

Values of ds/dvp along two adjacent guided rays, illustrating the
conclusion that the number of caustics encountered is the number of

complete half ray cycles traversed plus 0or 1.
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where Nc is the number of times the ray has touched (tangentially)
a caustic, tray
‘factor is given by

is net travel time along the ray. The atmosphere

1/2

{ Atmosphere factor} = {(poc)z/(poc)sc} (6.3)

while the spreading factor is the inverse square root of the ray tube
area normalized such that this factor reduces to 1/R near the source

(i.e., at the beginning of the ray). The criterion for determination

of these factors is that /

~ 2
{lprayl /poc}{ray tube area} = constant (6.4)

aloﬁé_; ray, that the limit (2.4) be reaiized.and that the net phase

vhange from source to receiver be —amr + Ncw/Zu

A consideration of a cylindrically symmetric bundle of rays
leaving the source at angles between 6 and 8+d6 with respect to the
vertical leads one to the conclusion that the ray tube area should be
a constant times W(ds/dvp)ryorl where ds/ilvp is the quantity dis-
cussed in the previous section, rﬁor is horizontal distance from source
to listener. One can also show, by considering a medium in which

the sound speed is constant, that near .the source

l y | R2c2/v3
r ds/dv =
Ho X (6.5)
.
so one identifies the spreading factor as the square root of>
) c2/v3 . 3
{ Spreading factor}” = P (6.6)

~ 2.1/2
{1 (?/vp).} | rHorlds/dva

where ¢ is here taken as the sound speed of the source.

One may note that the spreading factor goes to « whenever ds/dvP
goes to zero, i.e., at a caustic. This is one indication that the

general formula may not be applicable everywhere. The modification

.
ERTON
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of the method to take into account proximities to caustics is dis—

cussed in the remaining portions of the report.

VII. GEOMETRY NEAR CAUSTICS

When viewed in a vertical plane containing the source, caustic
surfaces appear locally as arcs of circles, the rays which touch
it also appear locally as arcs of circles; the situation is as sketched
_ip'}igl 8. Each caustic has a shadow side and an illuminated side.
If a receiver is on the illuminated side, then one may expect in general
that two rays touching the caustic tangentially will also pass
through a point A on the illuminated side, both of these rays will
have approximately the same radius of curvature Rray and will touch
the caustic at points B and C, such as indicated in Fg. 9. Para-
meters of interest here are (1) the radius Rc of curvature of the
caustic, (2) the distance 6§ from point A to the caustic, (3) the arc
length (AS)Rc = % along the caustic between points B and C; and (4)
the angle ¢ between the two rays at point A; as well as (5) the radius
Rray of curvature of the two rays. These parameters are related and it
is a challenging exercise in analytical geometry to determine their
interrelationships. TFortunately, the end results are relatively simple

in the case of interest where 6<< R,,8<< Rray' One finds, in parti-

cular
_ -1 ,.-1.,.2 ‘
§ = (1/8)(Rc +Rray)!. (7.1)
PR R | o '
¢ = (Rc +Rray)z _ o | (7.2)',

Another quantity of interest is the geparation As between two

ravs which touch the caustic at points 6 = -08/2 and A0/2 (FHg. 9).

Tf we intervret As as positive if the second rayv lies above the first,

then

~ ool -1 7.3)
As/(R_88) = ER_+ Rray) | , ¢
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ILLUMINATED SIDE

RAYS

CAUSTIC

SHADOW SIDE

Figure 8;

Sketch of rays in the vicinity of a cauStic. The caustic is approx-
imately an arc of a circle, the rays are also locally arcs of circles.

Note that the caustic has an illuminated side and a shadow side.
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Detailed sketch of two rays which cross on the illuminated side of
a caustic at a point A 2nd which touch the caustic at points B and C
respectively; R, is the radius of curvature of the caustic, Rray is

the radius of curvature of either ray; 6 is the distance of A from

the caustic, ¢ is the angle between the two rays where they cross;

£ is arc distance along caustic between points B and C, £ is arc length

along either ray, &s is the Separation distance between the two rays.
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where £ is distance along either ray in the positive sense from the

caustic. Thus, if the upgoing ray in Fg. 9 is characterized by phase
velocity Vpls the downgoing ray by phase velocity Vp2,we may character-

ize their respective ds/dvp at the point A by

) | (7.42)

(@s/dv ), = -(dl/dvp)(z/Z)(Rgl ray

(@s/av ), = (@aldv ) (2/2) (RS +R ;) | .y
where |

dafav = 2/(v )=V ) | | (7.4c)

.It éhould be noted that (ds/dvp)l is equal and opposite to (ds/dvp)

In typical applications, such as are discussed in the next section,
it may be presuneé tL&L the p01nt A is known, the phase velocities and
slopeswnf the two rays and therefore ¢ aee known, the ray radius R ray
is known, the parameters (ds/dv )1 and (ds/dv )2 are known and are
equal and opposite, but R o’ 8§, and % are not known. A successive

solution of Egqs. (7.1-%) for the unknowns in terms of the knowns gives

5 = _(1/4)(vp2_vpl)(ds/dvp)l = .(1/4)(vp2—vpl)(ds/dvp)2

= /8 (v ,mv. ) (ds/dv ),=(ds/dv )] (7.52)
Ty (vpz-vpl)[(as/avp)z-cds/dvp511/¢ (7.5b$
R +R;iy < {(vpz—vpl)[(ds/dvp)z-(ds/dvp)l]}—l (7.5¢)

If we wish to chzracterize the distance of the point A from' the
caustic by a relevant dizensionless parameter, the natural choice (as

explained subsequently) is the caustic proximity parameter whose defini-

tion may be taken to be .

1/3

@ ?Pram, yram s (7.6)
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This is negative on the illuminated side and, as may be noted, depends
on the angular frequency w. In terms of the ray parameters described
above, one may state that n for the point A on the illuminated side is

13, 04213
(/o)1 /B (v v T (ds/av ) ~(as/av ) 1%/

- (7.7)

2/3_ 2/3

which should always be negative (f.e.,[- [fl] =[|£]]

VIII. THE SEARCH FOR CAUSTICS

To explore the possibility of the receiver being near but on the
illuminated side of a?caustiq, all of the rays connecting source and
receiver are ordered according to increasing phase velocity, those
initially going obliquely upwards and obliquely downwards being con-
sidered as separate groups. For each successive pair of rays (i,i+1),
one computes the corresponding values of ds/dv_ and determines the -
number of times each ray has touched a causticpaccording to the pre-
scription in Sec. V. If the signs are the same or if the Nc's differ
by a quantity other than one, no action is taken and one proceeds to
the next pair (i+l-i, i*2+i+l) Once the above criterla are satlsfied
one terms the two rays as a possible caustlc palr. They are tempo—
rarily reordered such that the one with the larger NC is called "the
first ray" the one with N, being 1 less is called "the second ray".
The slopes of the two rays are determined from Eq. (3.1) and the angle

(which could be negative) is computed in accordance with the corres-
pondence in Fg. 9. One also computes § from Eq. (7.5a). Then one -
checks to see if $ and & have the same sign. If not, the process
starts over with the next pair. If they'do have the same sign, then
one computes the caustic proximity parameter n according to Eq. (7.7).
If |nl>4, one would decide that the caustic is too far away for any
special modifications. Foweven if one finds ]n]s4, the contribution

Eca
ERLN
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to the sum over rays from those two rays is deleted from the sum and
replaced by a new composite term involving Airy functions. (The method
of doing this is explained in the next section.?)

The second possibility is that the receiver lies near a caustic
but on its shadow side. The following type of search is contemplated.
First one examines the function RMRAYD(VP) described in Sec., IV. If
the absolute value of this function has a local minimum (not zero)
for some value of the phase velocity, then the possibility of the re-
ceiver being near the caustic is indicated. The search for such local
minima is similar to that described in the discussion of FNDVP: one
 scans successive values of RMRAYD until one finds three successive
phase velocities such that (1) all three ™IRAYD's have the same sien
and (2) the magnitude of the middle one is less than either of the
two end ones. One then breaks this bracketed interval down into, say,
20 subintervals, calls FXDVP to see if there are any roots in the
interval. If FNDVP finds two rootsythese are considered as rays
connecting source and listener and the process stops. If FNDVP finds
only one, the subdivision is made progressively smaller until two
roots are found (if there is one, there must be two) and these roots
are added to the overall group of rays comnecting source and listener.
If FNDVP finds no roots, then the local minimum is fouhd by the above
scanning process and one continues this iteration until the location
of the minimum is accurately bracketed. TIts precise location is found
by fifting a parabola to the final triplet of points and then finding
. the minimum of this parabola. The parameters iT, JT, VP, RNUP, NDOWN
are then considered as defining a near miss ray. '

To locate the point on the considered caustie which is closest

to the actual receiver location, one considers the two equations

"
]

'x(vp,z) | . | | (8.1a)

ds{dvp Kvp,z) , (8.1b)
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with IT, JT, NUP, NDOWN considered fixed. The two indicated functions
may be considered as defined by subroutines TOTRAN and CDSDVP. The
caustic is the locus of points at which dx/dvp=0. The scheme outlined

above gives one such point. Successive points are determined from

3 F/avP = -(3¥3z) (dz/dvp)
dx/dvp = (ax/évp) + (ag/az)(dz/dvp)
or \ |
dz/dvp = —(anavp)/(aIVBz) (872a)
dx/dvp = (BX/BVP)vn (ax/az)(aIVavp)/(aIYaz) (8.2b)

One may note that these two functions on the right hand side are easily
programed. One now simply numerically integrates these differential
equations until he reaches a point at which the distance of (x,é)
from the actual receiver location is a minimum. The scanning regime

" must, however, be restricted to points at which 3F/3z is nonzero,
the other quantities on the right hand sides should be finite. The
minimum distance is that corresponding to the allowable scanning region.
Once this minimum distance point has Been found, one varies x and z
until a neighboring point is found at which two rays pass through

with approximately the same value of v, as that corresponding to the

P
caustic point. Parameters corresponding to these two rays at this
new point are tabulated and one determines the approximate circle

which describes the caustic in their vicinity according to the
equations given in Sec. VMII. The caustic proximity parameter

corresponding to the receiver location is then computed

according to Eq. (7.6) only with (1/Rc) + (1/Rpay) réélacéd by- Eq.
(7.5c), 8 1s replaced by the negative of the distance of the receiver
location to the caustic circle. The parameter n so compuged should
be positive, otherwise the search in this instance stops. If n is

greater thamn, say, 5, the presence of the caustic is disregarded.
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Otherwise, it is taken into account by the method described in the

l

next section.

i

IX. FIELD NEAR A CAUSTIC

- The method we adopt-for incorporating caustics into the computation
is based on results derived by Haskell6 in 1951. While Haskell was
primarily concerned with the nature of gu}ded modes near turning points,
his analysis may easily be reinterpreted as implying that, near a '

caustic, the contribution due to the two rays which intersect at a
4
poin; A on the illuminated side (see Hg. 9) should be replaced by

It

P G ) expl lwt _}Ai(n) | o (9.1)

where

=
]

| 5 2/3
- (3/2 S k, da} . (9.2)
3 _,

_Here Ai(n)is the Airy functionl7 defined by
“Ai(n) = ﬂl/w)j cos[(53/3)+ ns] ds (9.3)

o

Also, t, is ray travel time from tHe source to the point on the caustic’’
* closest to the rgceiver point; k, is the component, normal to caustic,
of either ray's wave number vector (w/c times unit vector in ra§
direction); § is the perpendicular distance from the caustic. The
function G is a slowly wvarying function of position chosen such that
Eq. (9.1) matches on to the corresponding ray theory expression wheﬂ

n << -1.
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As regards the matching on, one may note that, if n << -1, the

Airy function approaches an asymptotic limitl?

ALG=[a]) ¥ n'1/2|n|‘1/4sin[(2/3§|n|2’3+w/4] | (9.4)
so Eq. (9.1) above approaches
P> [G/(2/n)][eiﬂ/4/[nll/4] { expl imtc-i‘rk_._d:S] - 1 expl iwtc+ijsk_,_d6]}
(o} Yo
(9.5)

the first term is identified, with k,>0, as the contribution from the
ray which has not yet touched the caustic, the second from the ray

which has already touched the caustic. This follows since the

tray LT tc F r(kl/m)dG . .(9.6)
°© PO .

correspond to thélffavel times of the two rays, respectively, to the

- point under consideration on the illuminated side. A verification of

this latter statement may be given from consideration of the fact

that the tp,y for rays coming into the caustic.may be considered as

a continuous function of position which satisfies the eikonal equation

(Vtray)Z = 1/c2 - , 9.7

where tray reduces to tc at the caustic. Consequently, if the component:
of Vtrav normal to the caustic is - ij (wave number vector divided
by w is gradient of the eikonal function)

then

3
- >
tray , tC + SOVtray-n dé (9.8)
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which is just Eé. (9.7) with the minus sign.

apply for the eikonal function t

Similar considerations

ray of rays leaving the caustic and
the identification corresponding to the plus sign is recovered.

-

In the vicinity of the caustic, given the respective geometry

sketched in Hg. 9, the value of k, may be readily shown to be

approxinately

ko= (/e (UR ) + (/R 1M 26 (9.9)

this holding to a high relatlve appsox1mat10n very close to the caustlc.

Consequently, the value of n is glven byn
"

~ /ey 3,113

1/3 | o
n [(1/Rray)+(1/Rc)] § (9.10)

which as might be expected is exactly the same as given in Eq. (7.6)

for the caustic proximity parameter

Also, one should note, on eliminating £ from Egs. (7.1) and (7.4),
that '

@sfav)), = -(dr/dv )2 [QURD+Q/R )]1/2 V2 9.11a)

-(ds/dvp)2 ' o (9.11b)

S0

VnE = e amraim,, 21 assav M2 assay [

(9.12)

The fact that the two individual terms in Eq. (9.5) must correspond

to Ea. (6.2) allows us to identify the parameter G in the former as

-

. . ) ..1 2 ) E
3 = f(m)pl[z{Atzosphere factorH Spreading factor with Ids/dvé / omltted}\
o . e

N
(2c/u)—l/6[(1/Rc)+(1/Rr 1/6]d2/d pl-1/2(2/ﬂ)eiﬂl4§fi) pe
. Vi '

we ' | (9.13)
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where Npc is the number of prior caustics encountered by the two rays.
These formulas developed above give one a straightforward method

for incorporating caustic corrections when the receiver lies on the

illuminated side of the caustic. Given the parameters describing two

rays which touch the caustic, these parameters being appropriate to

the receiver location, one first computes n according to Eq. (7.7),

computes 1/R. + l/Rray according to Eq. (7.5c), computes £ according

to Eq. (7.5b), then di/dvp from Eq. (7.4¢). These numbers are then ~

used to calculate the factor G in Eq. (9.13). The parameter te. is

just the average travel time of the two rays\from the source to the

receiver location.

As regards the calculation of the Airy function Ai(n), subroﬁtines
capable of evaluating this function are given by Posey10 in his thesis,
so there is no real computation problem involved. )

~If the receiver is on the shadow sidéAof the caustic, the process
is similar, but one must first find two rays passing through a point
(on a line from the receiver normal to the caustic) on the i1lluminated
side in order to determine dz/dvp, [(A/Re) + (1/Rray)]’ and t, Once
this is done, the parameter n is computed from Eq. (9.16), only with
6 replaced by the negative of the distance from the receiver to the
caustic. The function G is computed just as described previously.

Since the Airy function decreases as
179 —1/4 - 3/2
Ai(m) = (1/2) Y274 ~@2/3)n (9.14)

for large positive n, we may anticipate the contribution from the éaustic
on the shadow side to decrease relatively rapidly. Since Ai(0) = .355,

. ~4 . . .
Ai(5)=21.1x10 °, one can certainly ignore values when n is greater than 5.

X. CONCLUDING REMARKS

The computational method outlined here is still under development
and, at present, computer subroutines are available for performing

only part of the steps envisioned for the overall waveform synthesis.

e R
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The computer subroutines presently availaBle are given in Appendix
B along with a sample MAIN program which calls them and which may be
used in studying acoustic propagation with the use of these subroutines.

The project is being continued as a Ph.D. dissertation by Mr.
Kinney and it is expected that an operational and comprehenéive com-—
puter program based on the computation method should be available by
summer 1976,

It éhould also be stressed that the overall method described here
is expected to avoid many of the limitations one customarily associates
with ray theory computations. The fact that the method produces
amplitudes and phases rather than merely finding ray paths and travel
times is significant. Also the fact that it allows for the possibility
of more than one ray conﬁecting source and receiver is important for

realistic infrasound applications. The method of taking the presence

of caustics into account should extend the applicability of thé'géomet—
-rical acoustics theory down to frequencies formerly considered to be
the sole domain of guided mode theory and should be regarded as an
important extension of the geometrical acoustics theory. .

There are still some unsatisfactory features in the theory which
might be given additional attention. One of these is the neglect
of lécunae previously mentioned in the Introduction. While some work
has been done on propagation into a shadow zone, e.g. by P'e'kerisla'
and by Ingard and Pridmore-Brown,19 the results are difficult to inter-
pret in the generalize@ sense required for incorporation into a com—
putation scheme such as described here. Thus, some considerable
intellectual effort probably remains to be exerted before one may
satisfactorily handle lacunae.

Closely related to the lacunae problem is the coupling of two
adjacent sound channels. The present theory assumes, in particular,
that energy trapped in one channel stays in that channel. In reality,
there is always some penetration of energy from one channel to the
other and one may envision that a satisfactory description may be found
by using an extended WKB approximation, matching at turning points
on both sides of the barrier comprised of the region where the sound

speeguis higher than the horizontal phase velocity.

e



There is also the problem of aréte920 formed by the meeting and
termination of caustic surfaces. Here the idealization of a caustic
having a radius of curvature much larger than a wavelength breaks down
and the theory developed here becomes inapplicable. However, we
believe aretes to be so isolated in occurrence that the possibility
of a réndom receiver location being close to an arete or of lying
on a ray which touched a caustic close to an arete is relatively small.
Thus, there would seem to be little urgency.in taking such phenomena
into account.

The incorporation of winds, additional dispersion due,fo gravity,
earth curvature, sound absorption due to dissipative processes, and of
phase shift on ground reflection would seem to be relétively-minor
problems since the theory for doing so is relatively well developed
and is discussed in particular in previous reports written under this
project. We have chosen not to include such effects in the discussion
here primarily because of the premise that one may maké fééferAprogfesg
in the long run if he first starts out with a Simpler model, checks
this model out thoroughly, and then adds the embellishments needed

for a more nearly accurate simulation of nature in a sequential fashion.
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APPENDIX B

DECK LISTING OF FORTRAN SUBROUTINES

FOR CGECMETRICAL ACOUSTICS COMPUTATIONS
IN A MEDIUM WHERE SOUND SPEED

VARTES WITH HEIGHT
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POOGRAM MATIN (INPUTSOUTFUT,TARESE INEUT,TAREE=CUTPUT)
COMMNM VF,IL,NCS,Z7I(100),CI{20J),AS0L(100)

DIMENSION ZT3(19)

REACIS s *INC32 (ZICI) 3T =14NCSYLICTLIV o I=1,NCS)

LT, JTaNUO W NIOAN 7 S0 7L 15 A MY ,RANTE JYPHS TS VPHERND »SDSL T AL YE
HRITE (R, *INGS, (ZT0I) 4 I=2,805) ,(CIMIY,I21,N35),

LIT e JITH NUE L HI0WN, 7SC, ZL IS AYEX ,RANGE G VPHST 3 VFHEND,, SDELTA, VF
REAS(5+*V(ZT5(I)4I1=1,1S)

WRITE(6,*) (ZTS (1) 4I=4,1G)

CiLL DASOL

30 5 I=i,19

ZC = Z2TS(1) :

CALL COSOVR(Y2,7C+Z5C,IT,JTsNU2,NCOUN,DOSOVP)
PRINT*,")SDYP="",0SOVF

CALL EXIT

END

SUS2JUTINE TOTREN(VP, ITy JTo MIF 4 NCCHNSZSCy ZLIS,4R)
coMMOoN varT .
EXTIRNAL FDU32Z

CALL TNFRNT(YFR Z2LZOULRSCANLNRTSLZL0OH,,2UP)
CALL SHIFT(ZLO4W,ZL?)

CELL RANG(RTINMI,RLNTH,ZLCH,2Z2UC)

D= 1.5-¢ :

I (IT .LT. 0) GO TO S

CALL GUARIZUP,ZSCs0yRELLsARNS1yREXNDZ4NERRLC)
RST = ~ANS1 - '

G0 7O 10 s

CONT INUE

CALL DUAD(ZLCY,2SC40+REL+14,ANS2+sRITXSZ4NEIR,D)
RST = AANS?

CELL OUAC(ZLGCH+ZLIS 0 e7EL+1450NSTHFOX0OZLNERR, (D)
REND = ANSZ

Go T9 30

CONTINMNYE

CALL RUALIZUP,ZL IS D3 REL s L9 ANSLREXDZ4NIRR,0)
REND = -ANSYH )

N = NUD ¢ NIOOWN - 1

R = M*RILNTH + RST + RENC

RETURN

EXD

SUQROUTINI FHNOVEIMMAKX v ZSCyZLISRANGEyITJTSANUFVNDOCHNIPHST,
LVEHEIND 9 SCELTALZRFAT ZYSFND)

COMMON YEF,T1,NCSZT(150).,CICI5%),ASDL (100},
17ZSCCHZLISCyRAMNGICWITL s JTT W NURL L NCCHNEC

OIMINSIIN VEFRNOULY X {L)

ExvZNAL RMRAYD

Zscc = 2S¢

ZLIsSC = ?LIS

RAMBIC = RAYUGE

ITC = IV

JTC = JT

\Leg = NJe2
" MCSHNC = ADAUN

NFND = 0 -
Vo1 = yaugy

Fi = §M2AY0(va1)
VF2 = V=i ¢ 3DILTA

MAIN
HAIN
MAIN
MAIN
HAIN
MATM
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

"TOTRAN
TOTRAM
TOTRAN
TOTPAN
TOTRAN
TOTRAN
YOTRAN
TOTRAN
TOTRAM

_TOTQAN
TGTRAN
TOTYRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
TOTRAN
YOTRAN
TOTRAN

FNOVP
FNOVP
FNDVP
Flove
FNDVE
FuNVP
FNDYP
Funye
FNDVP
FHave
FNDVE
FNDYP
FNODVP
FNOVF

F FNOVYP
FHOVP
FNOVP
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F2 = PMRAYD(YD2)
IF (F1*F2) 10,5,5 ot
5 IF (VP2 .Y, YFEENQ) RETURM ' :
ypL = ¥92
FL = F2
Go TO 3
10 GZ = VP! - FI*STELTA/(FZ - =21)
X1y = GZ : R
CALL ZPCALZ2IRMPAY N 4252, 432, SOELTA5,1+X410,4I5R)
NFMT = NFAD + '
VEFEJINENTC) = £(1)

IF (KFHD LE7T. N¥AX) SZTLIM .
GG TO0 5 - '
END

FUHCTION FM2AYDIY=2TI) .
CMMOM YSP aT1 4NCS,ZI(2C53),0I8257),A50L(a00),
‘Zscv‘ZLIDC’.::-I“G‘_CiIT'«IJTLQ‘Y FCs MICHNC

- 2SC = 23C¢C

ZLIS = ZLISC

RCOM¥ = RAMGEC )

IT = ITC

JT = J4vC

N2 = NU®C

NECOHA = NLOWMC _ .

CALL TOTRANIVFEIsITyJToMLFMNUSHN,ZSC,7ZLISR)
2M24Y0 = FCON -~ R . '
RITURN

END

SUSS0UTINE SHIFT{ZLOH,2L5) :
Z (ZLOW,ZUP) FOUNT-

SUYIICUTINT SHMIFT MIVIS THI ¥aLUZS CF
FQI THI TUINTINS PCIKTS (Y TN2ATY £ AS TO AVOIO INTEGRATION
THRIUSY SIASULARITITS, AS 2IULL “AFEZH IN THE CALCULATION
OF ALMZST BLL THI JUANTITIZIS INZLUDEZT IN THIS PRCGRAM.
SHIFT IS CALLED BY PIINX CHLT, ANS LFTZR TNPNT IS CALLED.
N=3
CALCHLATE THY DIFFEPENCEI SITNIIYW THI SOUND SPIED AT THE LGOHER
UanNIus =20INT AND THRZ B8=AST YVILICTITY.
5 CHKL = C¥VYP(ZLIW)
IF THg SCQUAD S2ZZD IS LISS THAIN V2, WI'RI SAFS, AND HE GO ON TO
CHECK iMZ UFSI2 THUSNING BPCINT.  ZTHISUISZs WE ACG A TINY AMCURT
TO ZLORK ANEG CONTINUE DBOIAG 2T LNTIL THZI SOUNC SFESD IS LESS THAN VP,
IFCCURL Jif. 3,.3) G2 TC 13 )

ZLo4 = ZLCH + 1.E2-3
¥y = ll+1
IF SHIFT IS UNSE
IF(N +GS. i1
"G50 T30 S

UL Ih A 5202 TRIESs WE UANT IT TC STOP.
=

HE TRY TUET $247 £32 TUT LUF=Ix JUSNING PRINT, ANO AGAIN, AS LGONG AS
THT SOYMNT ST=77 I35 LFSS ThIN Y=, Wit S4FZ.
13 CHKXYJ = Cryo(2Zn0)

IFICHACY L. CL.C) AZTURM

Zup = 2U° - L.,zZ=-2

N = N+i

IFIN +GT. 1302) RETURM -

G3 10 10 .

- EXND

FROVSP
FHNOVF
FNGVP
FNRVE
FNDVP
FHDVE
FHDVP

FNOVP -

FNDVP
FNOVP
FNOVP
FNOVP
FNOVYS
FNOVF

RMRAYC
RMRAYD

" RMRAYO

RMRAYD
RMRAYO
RMRAYD
RMRAYD
RMRAYD
RWRAY(Q

 RMRAYQ

RMRAYC
RMREYD
RMRAYD
{[MRAYD

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

" SHIFTY

SHIFT
SHIFT
SMIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

OV ENO SN
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FUNCTION £MVD(2)
THIS FUANCTICA 22UTINE SIPFLY CALTULATLS THI DIFFERINCC
(A5 A FUNCTIC!! OF HEIGHT 7) CITWTON THZ PYASS VEILOCITY
(WHICH I5 INSUT) ANC THE SOUND S2EEQ (WHICH IS A FUNCTION
OF HEISHMT Z).

CoMMOH V= .

CHve = £SE(7) - ye

RETURM

END

.

SUBRCUTINE TAONT{UP,ZEL , 23, A3CAN,NITS,ZA,28)
SUSROUTINI TNPNT FIKLS THE TU2NING PCINTS (VALUES OF Z
AT WHICH THS DIFFZSEACS GETRESH THT SOUND SPEED AND THIT ©HASE
VELOCITY YANISHSS) GIYIN THI P=AS2 YSLCCITY (VFY. Z7L AMD 200
ARZ THS LJ4NSE AND UFSZR ACUNCS, RESFECTIVELY, SITHWEEN WHICH THE
SEARCH FOR THE TURNING FCINTS IS ZCONCUCTED. NSTAM + 1 IS THE
NUMIED QF SUAINTERVALS IANTC WHISH THE INTZRVAL OF SEARCH IS
SU3NIVIONII. N2ATS IS THE AL F3Z2 0F TURNING PCINTS FOUND (WE
MORMALLY EXO7CT TA2), ZA I3 THZ LOWER TURINING POINT {IF FOUAD)
AN 23 I3 THS UFFSE CNS (IF FoUND).

EXTIRNAL CcMifP

DIMTRSION X(1)

S COMHMON YT, TL,NCSHZItiGY)

vec = Ve
ZBL = ZI(1)
Z2U = ZI(MCS)

NSCAN = NCS + 3
CALCULATE THS WICTH CF THE SUIIMTIRVALS
DELTA = (Z3Y -~ Z2L)/{NSCaA &+ 1)
CALCULATE CSF(ZAL) - VP
Fi = £MY2(2Z3L)
START. THE SZARCH AT 23L : -
21 = Z8L _ S SR
“hRYS = § -
FIND THE UFSER LIMIT OF THZ SUBINTERVAL
10 72 = 721 + BILTA
CALCULATZ £SF(72) - yP
F2 = CMVE(Z2)

TAKI THE BSGCUCTT OF 1 AMNC F2, 4ND IF IT IS POSITIVE, HWZ HAVEN®

m

FOUND THI SUSINTERYLL ITH & TUPNING POINT IN IT YZT. SO WK GO TC 1S

AND STLRT AT THE B2TTTY OF THI NILT SUBINTERVAL.

TEST = FL*F2

IF(TEST .CT,. 6,08} 5O TO 13
IF Fi*F2 IS MESATIVE. wZ*VE G
POINT IN IT., AT THIS POINT,
TURINIHG "P3INT.

GZ = Z1 - FL*¥JZLTA/(F2 =~ F1l])

X{1)y = 52
ZREAL2 IS AN INTEIRKZ
FIKDING THZ Z2Z-2CI3

CaLlL ZREALZ(C

NRTS = AN2T§ +

A SUSTINTERVAL WITH A TUPNING
Ma<I owNe GUISS FOR THE

MEL MATH SCIEANCE LISRARY ROUTINE FOR
SFECIFIZT SUMCTION
‘7 anu-!u:LTA'7'1'X'10]I€Q,

-t
[AEI. 1 Cl

THIS L2

[l ol 1 ‘\
0
>0

IF WE HAYT 2CN7 THECLGH 2% SUCCESSFULLY ONCT s THEN WE HA
FOUNE THE Long? TU<NING FCIMT, I W& HAVE GONE THRGUGH THICE,
HAVE FQUKD ACTH TUSMNING FCINTS, AND LE*RI NONc.

IF(A>TS 20, 1) 22 = X(D)

IF(NRTS FO. 2) 7= = x({1)
o IF(ARTS LE0. &) 6C TO 23
i5 721 = 72 -
' Ft = €2

IF HE HAYI SSAQCHEN ZLL THI waY T) Z:U, WE'RE DONE. OTHESWISE,

T

VE
HWE

WE

cHVS

CMVF

- CcMYP

cMvP
CMHY P
CMYPp
CMve
cHVP
CMVF

TNPNT
TNOMT
TNONT
TNPNT
TNPNT
TNPNT
TNPNT
THNPNT
THPMNT
TNPKNT
TNPNT
THPNT
TNPNT
TNPNT
THRPNT
THANT
TNPNT
TNONT
TNPNT
TNONT
TNPNT
TNPHNT
TNPKT
THENT
TNPNT
TNPMT
THPNT
TNPNT
TMPNT
THONT
THOMNT
THENT
TNPRT
THANT
THPNT
TNPNT
TNPNT
TNPNT
THENT
THONT
TNPNT

TNPNT

TNPKT
TNPNT
TNPNT
TNPNT
TNPNT
TNPAT
TNPNT
TNPKT
TNENT

DN WN

D NN & W
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GO 9N VO _TUE NIXT SURINTERVAL.
IFtZ2U .GZ. Z1) GC TO 10

20 RETURN
END

SUERCUTINT ARG (ETIMELRLNTH,7LCW,ZlB)
SUARQUTINT 2ANG PIRFCRMS THS FINAL STEF IN TME CALCULATICN

(Y INTZGRATION CF OT/DZ ANC DX/907 BITHEIM THZ TURNING POINTS.
ZLOA % ZUP) GOF THE TAY REFZTITICN TIFPE AND LENGTHs RTIME ANMO

CLETH, 2ZSZICTIVILY.
EXTEZANAL &0OTOZ2.FDXx2Z

RYIMZ = PAINT(ROTCZ,ZL04,7U=)
ALHTH = CAINTIRCXEZ,Z2LGCW,2U%)
RETURN

=ND S '

. SUBRIUTINE DASOL
SUARGUTINE D£SOL CALCULAT
SELIAE USZO 10 APIROXIMAG
DIFINER BY

OSLZ (I} ®ASCLIT-L) ¢ 2%(CELZ(I) - BELZII+1))*ASOL(TI) +

+ DSLZ(I+1)*LSCLCI+1) = GILT(I+1) - JELCUI)
UHIRE CELZLI) = Z{I) - Z(I-%) o
CELC{I) = (C(I) - CUI~1))/DELZ(I).
COMMDN V2,11 ,NCS,2I(166),CI(1302,4S0L(100)

Az COSFFICIENTS OF THE CURIC

2 T
£ THI SCUNC-SPECZD PROFILE, ANC AS

N =1
9TLZ = 1.8 ) \ ]
9ELC = 5.3
AKM2 = C.C -
ALMZ = 0.0
AKML = 0,0
ALMD = £.0
* NSTPF = ACS =~ 1 : :
10 QSLZP = ZIN+1) - ZIC(N)
BELCF = CI(N#1} = CI(N)
ALOHA = OELZ
GAMMA = RELZP

BETA = Z.C*(ALPHL ¢ GaMM2)

‘DEE = (CEILCP/CELZ3) - (LELCT/PELZ)

IF(H .ET. 1) GO TO 30

AK = (DBZE = ALSPHA¥AKMZ - ZTTA*AKVM1)/GAMMA
AL = U - ALPHA®ALNMZ = BETA*ALMLI)/GAMMA
IF(N .27, N3TO) GC TO 132

4KXM2 = AXve
ALMZ = ALNME
AXML = 2K
CAULMY1 = AL
338 = N+ 3
DELZ = CgLZ>
O£LC = D=LCe
SC TO 19
100 ASOL(1) = C.0
ASOL(L) = -AX/AL
asez = 1.0
DELe = 0.0
N =1
110 280 Z2 = ZI{M+1) =~ ZI(N)} N
DL = CT(N+1) - CIUMN)
AL®CHA = SFLZ
HAMMA =

ceLze e

TNONT
TNPNT
TNPNT

"TNPNT

RANG
QANG
RANG
RAMG
RANG
RANG
RANG
RANG
RANG
RANG

DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASCL
DA SOL
BASOL
DA SOL
DASOL
DASOL
DASCL
DASOL
0ASOL
DASOL
DASOL
DASOL
pasoL
DASOL
pasoL
pASOL
nasoL
DASOL
DASOL
DASOL
naseL
0ASaL
DASOL
DASOL
DASOL
DASOL
nasol
pASOL
DASOL
pasoL
DASOL
pasol
DASOL
DASUGL
DASGL

52
53
St
55

QO B®NOT & WN

=

O OONDAE WA



THIS FUNSTIZN 22L57INT CALCULATTS INTERMESOIATE VALUSS OF
THZ S$oUND SEIED ©3CTILE ACCCITING T2 THE EAQUATION
CSFL7) = WI22*0(I-1) + W*C(I) +
+ ({TELZLIN**Z) = (ASOL(I-2) 7 (WE27*%3 - HAAR + ASCL(I}*
F(H**3 - 1)) .
CoMYCYY VS, T4,%0S,ZT(0G0).CI{2400),2S0L(100)
DEFIND CTHI LC4I ANT UPPER ECUNSDS CF THE SOUND-SPEED PRCFILE.
2L = ZItid :
TZf = ZINTS) ] )
SUTSIDT 0F THISZ acU\as, LET THS SCUND SSEED BE CONSTAMT AMND ENQUAL
TO TSE CSRITIPINSIAG ADJACENT YEILUES.
IT {Z .L7. ZL) &C T" 53
iF (Z .GT. Z2) G2 7O &L
I = KC3
18 J = I-1
€OT INY WALUS Z, WT WANT I SUCH TH2T Z IS BETHEEN ZI(I-1) AND ZI(I).
WS START AITH T=5I mILHIST YILUS £D3 I ANO WORK DOHMNWARD UNTIL WE
FIND THTZ INTISY2L TYaT COMTAIMNS Z. -
ITSST = ZItJ) .
IF 2 I3 AETaSgY ZILT-1) ANC ZI(I), %= GO TO 40 AND CALCULATE CSF(Z).
I {Z .57, 275ST) G6 T80 40 )
IF Z IS %OT STTwIIn 2XI(I~4) ANT ZI(I), HWZ CHOSE THE MEXT VALUE LCHWER
FSR I ANS CIANTINUT THZ SELRCH.
I =24
52 T3 10
%3 ZomTInugs .
Z I3 3ITTHTEN ZILI-2) AND ZI(I) .
JTLZ = ZI(Z) - ZI(N
W= (Z - Z2I(JdII/0TL2
'h”f:-:’ = 1.: - A
TTIML = A728=22I{0) + W®CI(I)
GUTE = WIIPss3 o« W3AD
SUT2 = wWeeI = A .
TERMZ = (CILZ<=2)*{ASCLIJYI*SUTL ¢ ASOL{D)*GUT2) .
2SP 3 TITv: & TIPw2
RTTUIIY -
sIP o2 CIty)
aTTUE
s CSP =z ZI(nZ3)
2ITU3N
s
THNSTION C2O7E)
THZ SUNITICH OI37(2) CALCULATES THI FIRST DERIVATIVE OF

~-58~-

BITA = 2.C*{2LPHA ¢ GLMYA)

2T = (TILCP/I2ZL7FRY) - (CELC/OTLD)

IflN «Z%. 1) GO TC 124

Moz o1

ASOL((M) = (2TZT - ELPHA®ASCLIA=-Y) - BETA*ASOL(NI}/GAMMA
TN .Zhe NGT2) LC TC 223 :

o= N o L

TILZ = CILZe .
ZELC = CILcE

53 TQ 12

RITU2NM

=XND

0AasSQL
DASGL
DaSOoL
pasoL
DASOL
DASOL
DASOL
DASOL
DASOL
DASQL
DASOL
DASOL

CSP
CSF
csSpP
csSP
csfF
csp
cse
cspP
csp
csp
c3P
csP
csP
cse
cse
csP
cse
csr
csP
cs®
cseP
cse
CSp
csP
csP
cse
CSF
csp
cse
cse
cse
csp
cse
cse
cs?
cse
CSP
cse
csP
csp
csP
csP
cse
csh

o9
o0
[ =)
NN
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THI SOUND SPLEN WITH RSSFECT TO HEIGHMT Z, ANC ACCORDING
TO THE ECU2TION

DCDZ(2Z) = GILC(I) + DELZ(I)*(-ASOL(I-1)*{3*UDARY*2 « 1) +
+ ASOLCIN*(2rd>»»2 -1)) '

PLTASE SES FUMCTICN C3F(Z) FCR A MCST DETAILEGC EXFLANATICN OF THE
CALCULATIONAL PROCECURE THAT FCOLLOWS, AS THE THC SRGCIQURES ARCS
NEA3LY IOSNTICIL.
COMMEN VO, I14NCSeZI1100)»CI(200),250L(130)
EFINE THE LOWIR AMC UPFER 3CUNDS CF THE SOUND-SPEED PRCFILE.
2L = 7I(1) -
ZF = ZI(HCS)
QUTSIDS 0F THESE B3UNDS, LIT 2¢/0z = 1,
IF(7Z JLT. ZL) GC TO S¢C .
IF(Z +GT. Z2) GC TO 50
I = KCS
10 J = I-g
ZTEST = ZI(Y)
IF(Z «6T. ZTE3T) .GO TO 4@
I =4
GO TOo 10
L0 CONTINUE
Z IS BSTHEEN ZICI-1) ANC Z2I(D)
95LZ = Z2I0IY - ZI (D)
JELCI = [(CI(I) - CICJ)IV/CELZ
W= (Z -~ ZI(D)/CELZ
HE&IE'JI.C-N . h
TRM3A = ASOLII)*((3.6G%(a**2)) - 1.0)
TRMIG = ASCL(JL*{(2.0*(WEARF*Z)) - 1,0)
TRM3 = OSLZ®F(TIF3A - TRN29)
acDZ = DELCI + TRM3
RETURN
50 oC0Z
RETYRN
END

0.0

"SUBROUTINT COSOYPIVP L ZC,Z2SCsIT+JT+NUPLNICHN, CSOVP)
COMMaHN VoY
STXTZRNAL FTRMUL,FTRM
ver.= ys . :
CALL THNSATIVO,ZL 428U ,NSCAMNZNRTS,2L0H,2U2)
SALL SHIFT(ZLGCH,ZUP) '
J F 1.8~
ZIU = ZUs = G.IL*(2UF - Z2L04W)
ZIL = ZLOW # D C1*(ZUF - ZLCW) :
CALL OUAT(ZILsZTU 4D REL s IFTRMMFTEML,HNERR,L0)
IF (IT LY. £) GO Ta LC
CALL QUECHTZSC42IUI+RE Ly +TRMILFTRAMaNIRR,0)
5C T3 15 :
10 CALL 2UANLZILWZSC+DyREL3I»TEMIFTRMyNERRSD)
15 IF (JT +L¥. 0) GO TO 2C _
CALL QUAS(ZILsZC s PTLy 39 TAMFSFTRPLNE2R,0)
39 TO 25
20 C2LL YUAC(ZC,ZIUsCoREL D s TRAMFSFIRI® G NERR, 0}
25 comnTIngs -
TomUL = TRN2TIZIW)
TRMLL = TRMNOT(ZIL)Y .
CALL NUAREZUP y 2T D 3REZL a1+ TRFUZLFT2MULWHERRO)
TERL TUATL D a Tl e BTl g L TOMLT LTI NUL L, NIRR L)
COXCVR = T ¢ KUY (TRMUY = TH2XUT) # (KUP ¢, NIIUM = {)I®TRMY +
i MOOUNF(-TRMLL & TRML2) ¢+ TRPMF

ocnz

tcoz
ocnz
acnz
0enz

Jacoz

ncoz
ocnz
icnz
Dcnz
ocaz

ocoz -
.ocez

pCDZ
ncoz
0c0Z
pcoz
occz
pcoz
ocnz
ocoz
ncoz
ncnz
DCnZ
0coz
DCOZ
ocoz
DCnz
ncoz
DCOZ
ocoz
0coz
0c07
ocoZ
pcoz
ocoz

CO3aVF
coscyr®
COSOYF
CnSovP
coscy?
COSOVF
cOSOVP
CDSGYF
cosoye
cosove
cosoue
cRsSove
coscve
cosove
coSCVs
cosavP
cNsoYP
cnsove
cosove
coscve
COSOVP
CASCVF
cosnv?
cosnve
coscys

o
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VPSQ = YFe»2

CSPZC = C<pPtZcy

CSPZS = CSP(ZCY**2

IF (JT .LT. &) GO TO 20

OSDVP = ~(CSPZC*(SURAT(VESH - CSFZSN)/VPST)I*CLXDVF

50 TG 35 .
30 0SDYP = (CSPZC*(SHART(VFSC. =~ CSSZSNYI/VPSAYY*COXDVP
35 COMTINUE

RETURIM

END

FUHCTION FTRM{D)

~CSF*VF
FIRM(Z) = =mm=mm—mcecamcaccce—ancceaa--
(Vo*¥2 - CSP*¥2)**1,5

CCMMON V2,K - : ' o : - T
VFS7 = yexx2 ’

CSP37T = CSPlZ)**2 o -

IF (YPS7 .G6Z. CSPSQ) GO TO 20

X =1 ‘ . - 8
10 ToMI = 1.E-50

50 TO 30
20 X = 0

TRML = (SORT(VPSG - CSFSC))**3
IF (TRM! .LT. 1.E-50) GO 70 10
TRMZ = CSF(Z)*VF
30 FTaNM = -TEM2/TRML
RETURN S ’ LT T
END :

FUNCTION DCDZS(Z2})

"FUNCTICN DC2ZS(Z) CALCULATES THE SZCCND SERIVATIVI OF THE
SQUND SFEED C KWITKF RISFECT TO HIIGHY Z, AMD ACCORDING TO THE
EQUATION

DLAZS(2) = E*(WRASFASOL(T-11) + W*ASCLII)).

PLEASE SE£ EUNCTICN CSP(Z) FC 4 4
CALCULATIOMAL 9ROCIOURI THAT FOLLO!
NEA2LY IDENTICAL.
COMMON VE,I1,N35.2X(100),2I(100),2S0L(10D)
JDEFINE THZ UFPIR AND LCWER EOUNDS CF THE SOUND-SFEED PROFILE.
ZL = ZT(1) -
ze = ZI{NCS)
OUTSIDS OF THESE 20UANAS, LET JCRZS(Z) = 0.
IF({Z LT, ZL} 5C 70 S5
IF(Z .GT. Z°) GC TQ 5C R
I = NCS .
10 4 = I-1 _ ' -
ZTEST = 21(J)
IF(Z GT. ZTSST) GO TC 40
I =4
56 10 10 . . e e
40 CCHTIAUE o
Z IS SSTWEEN ZI(I=-11 ANC 21(J). - .
arL? = ZIC1) = 21D
H o=tz - 721td)/08L2 .

STAILED EXFLANATION OF FTHE
S THZ THC PROCZCURIS ARE

cosove
casave
casoyep

cosove

cosCve
CDSOVF
cosGve
cosavre
COSscve
cosgv»

FTRM
FTRM
FTRM
FTRHM
FTRM
FTRM
FTRM
FTRM
FTRM
FTRM
FTRM
FTRN

- FTRYM

FTRH
FTRN
FTRM
FTRM
FTRM
FTRM
FTRHN

' 0CHzs3

DCcnzs

‘ocezs

pcozs
DCO0ZS
ocDZs
DCcozs
DcoZs

. ocozs

oconzs
ocnzZs
ocozs
ocozs
0COZS
0Ccozs
ocozs
Dcozs
ocozs
DCcozZs
pcozs
ocnzs
ocuzs
0cozs
ocnzs
BCo2Zs
0Ccozs
ocozZs

‘0cozs
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WA = 1.0 - W :

DCDZS = 5,67 ((ADAS*ASCL(J)) + (UPESOLII)))

RETU2N ‘
50 5CDZS = 0.0

RETURN

END

FUNCTION FTRMUL(Z)

-2.*VE3CCA7S
FTRMUL (Z) = =e-emmemesccccccecmcmcm e mnaes
(CCDZ**2)1*(VP¥32 ~CSE¥r2)*r],5

CCHMCH V2,K

CSP30 = CSP(Z)**Z

VESN = yp*x2

DC0237 = penz(zZy**2

IFIYPSA LCE. CSPST) GO TC 5%

XK =1
‘}0 oN = 10":"50
GO TQ 50
50 x =0 :
N = DCOZSE¥(SI?T(VPST - CSFSTY))
IF(IN +LT. 1.5-3G) GO TC 43 (
0 FTRMUL = -2.%(YP*LCIZS(Z2)) /0N h
RETURY B ' :
END . | .

CFONCTION TRNPTI(Z)
CCMMON VP ,X
SSP3] = CSP(Z)**2
VFES) = yp**2

IF (vyesSf .GE. CSFEN) GO TS 53 -

¥ =1

IOD DN = .E-SO
GC TO 60

50 ¥ =90

DN = CCONZ(Z)Y*{SCRT{VOSEC - £SPSN))

IF {A2S(2A) LLT. 1.€£-5G) %50 70 40
60 TRN2T = (2.%YF) /DA

RETURN

£ND

FUNCTION FOXTZ (2}

FUNCTION RCXDZ1Z) C2LCULAYZS THE IMTIEGRAND USED Y SUBROUTINES .

RANG ANT WAINT TC CALCULATE TH
THZ SCQUATICN FCR RCxTZ(2) IS

CAY FEFPETITICN LEMNGTH,

ROXJIZ(Z) = ==mamceececcscccecaccanca
(1/CSP**7 = 1/VF*+2)**2,5

CCMMON VP,K

gcEP3E = CSP(72)»*2

YFSTY = y=re?

IF (C3PSY JLE. VB3 6GC TO 10

K =1 e

RUNTH.

Dcnzs
0cozs
ocnzs
ocn7s
bcozs
nenzs

FTP¥UL
FTRVMUL
FTRMUL
FTRILL
FTRIFUL
FTRMUL
FTRMUL
FTRIUL
FTRFUL
F.IRNMUL
Fremuy
FTRNUL
FTRIUL
FTRMUL
FTR¥UL
FIRMUL
FTRIUL
FTRMUL
FTRMUL
FTRMUL

TRNPT
TRNPT
TRNPT
TRNFT

T TRMPT

TRNPT
TRNPT
TRN®T
TRNPT
TRNET
TRNPT
TRNFT
TRNPT
TRNFT

RDXCZ
RDXGZ
ROYXOZ
ROXDZ
RAX0DZ
RDX0D2
ROXC2Z
ROXO2Z
ROX0Z
ROXD2Z
RDXBZ
ROXCT2
ROX0Z
R»OX0Z
ROXCZ

VONOWNE N

b e b b b
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~nN
(=]

SNV E N



5 087 = 1.2-57

L G

FUNCTICN RCTCZ(Z}

50 10 26

K= 0

DS0% = 1./CSPSA

ISV = 1./V730

0SQ = BSZC - NSOV

IF (DS2 .LT. 1.€-50) GC TQ 5
RCXIZ = (1./YP)/SCRTIDSE)
RETURN

END

FUNCTICN RGTDZU2)

RANG LND PAINT TO CELZLCULATE THEZ
THZ EQUATICS FJIR RITCZUIZ) IS

ROTNZ(Z) = ~mmeemmecmdecmccaceaoo-

L/C5p¥*2

-62-

CELCULATES THE INTEGRANN USEOD 8Y SUBRCUTIKNES

FAY REFZTITION TIMEe RTIME,

- -

(L/CSP¥¥E = 1/7VE*rx2)14%],5

COMMON V3,X ’ .

.CSPST = CSPLZ)**2

VFSZ = yesxx2

IF (C3P37 .LZ. V¥F3Q) GO TO 30
K =1

£Sd = 1.2-50

GO TO 48 .

K =40 .

DSCC = 1./CSP3) ,

assv = 1./vOsn

DsC = psnc - C3TV
IF (337 JLT. 1.2-30) GO 10 2¢C

RCTDZ = (1./03PSTY/ZSGRTICSN) -
‘RTITURN

END

FUNZTION FAINTU(TSCZR,ZLCW,2UP

) .-

SUNCTIZH RAILT PERFCEMS THE INTEGTATION'QOF ROXOZ ANO RCTOZ

{ECZSSARPY TS C3TAIM

IND PTIME, RIZISPZICTIVEZLY.

EXTERNLL [SOZR
ZAVE = (ZUP + ZLCW} /2.0

-_=z
g0 = 1.5-2
e T

THSC KAY REFETITICN LINGTH AND TINME, RLNTH

2

CALL NUAN(ZLIWsZ2¥ZeDeRIL+1AHSL2CSIZRWNZRO,0)
CALL SUAR(ZUR,28YE 4D REL 9212 ANS2,CSDZR,NERR,O)

REINT = (AN3L - £AS2)
Rz TURN
END

ROXC2
ROXDZ
ROXQZ
ROX0Z
RIXCZ
ROx02Z
ROXC2Z
ROXCZ
ROXOZ
ROXCZ

’0T02
ROTCZ
ROTO7Z
ROTDZ
ROTCZ
ROTGZ
ROTE?Z
ROTCZ
ROTOZ
ROTCZ
RDTD2Z
ROTDZ
ROTGZ
ROTOZ
rROTCZ
ROTQZ
RDTG?Z
RATC?Z
ROTELZ
ROTOZ
RDTOZ
ROTOZ
ROTCZ
ROTOZ
RDTO2

RAINT
RAINT
RAINT
RPAINT
RAINT

" RAINT

RAINT
RAIRY
RATINT
RAINT
RAINT
RAINT
RAIKRY
RAINT

16

i8
19
20
21
22
e3
24
25

[y
QDO NONI NN
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[FERETS
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SUEROUTINe ZREALZ

FUNCTION

LSAGE
FARAMETEF

FRZICISICH
FEQD.
LANGUAGE

Nt b

I

EFSZ
ETA

IFSL RCUITINE

TEh** (-7NSIG)

=1
1
X(I)

“ZFEALZ~sse~e=eGmmmmnnn

(%)

-6 3

(F 3P S,IPS24ETALNSIG,N 2, 1TFAX,y 1ER)

LICIAEY occcmevmcocmnccecerca=can - n - - -————

(4

FINCS THE REAL ZERCS COF £ REAL FUNCYIOM
SED RREN INITIAL GUESSES BRE GCCL

STALE(F 3 SF S EPS24+cTAYNSIGINI X2 ITMAXLIER)
CN F(X) SUBPKCGKAM WRITTEN EY TRE LSEF
FIMNG CrRITZRICHK. A ECOT X IS ACCEPTED
AESQLUTE VALLE OF F ({X) olLEs. EPS

cn

© =4 0

- N T |

—

o
n >
I el O N

-
[ §

T CRITERIA FCKR NMULTIFLE RCCTS. IF THE

CCT (X(I}) HAS BEEN COMFUTED ANC IT IS

FOLNS TrAT THE ABSCLUIE VALUE CF
XUI)=x(J) LT, EFSZ WHFERS XtJ) IS &
FEEVICUSLY CCHPUTEL RCOT, THEN THE .
CONFLTATICH IS RESTARTEL WITH A GUESS EQUAL
TC X(I) + ETE. (INPLT)

487 STZFPING CKITERICN, A RCOT IS ACCEFTED IF
THC SLCCESSIVE AFPROXIMATICAS TO A CIVEN
RCCT AGREEZ IN THE FIRST NSIG CIGITS. (INPUT)

Thi KUHMSIR CF RCOTS T8 EE FCUNC (INPLT)

€ INFUT X IS #M N-VECTCR OF INITIAL GULESSES

FCR M RGCTS. CN CUTPUTs X CONTAINS TkE

CCFPUTED RCOTS. :
INFLT = THE MAXIMULM ALLOWAELE NUMEER CF

I7TZSATICAS PER RCOT AMD ON OLIPUT = THE

NUFZER OF ITERATICAS USED ON THE LAST ROCT.

RAMETER (OUTFUT)

ZIRRCR = 32 + N

INCICATES A SINGLE ROQOT HAS EYFASSED

2USE ITHAX KAS EXCEEDEG FOR THIS RCLT.

I} FCR THIS RCCY IS SET TO 1111i3.

2 INCICATES & SINCLE ROOT WAS EYFASSED

CLUSE THE CERIVATIVE CF F FGR Thils

T BECQM=ZS TCC SKELL. X(€I) FCR THIS

IS SET T0 222222. NOTE THAT T+1IS

R CCNCITION FAY CAUSE AN GVERFLCH.

INCICATES THET SeuERKAL CF THE ABCVE

X CCADITIONS CCLURREZD. EACK X{(I) IS

TO EXTHER 111111. 0K 2z2222. AS ABCVE

-t ™
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a
U
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O
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PasC 0l s ZERC+CNEZ 3 TEN 01 o001 300051091 0.07

ZRELCO1S
2RELLCZD
2RELCL3D
2RELEGLO
2RELCUED
ZRELGCED
ZRELOLTL
ZKELGCES
JRELGSSY
ZRELD1GY
2RELG21D
ZRELL1ZE
ZRELC13
2ZRELC145
2RELL153
2RELL 166
ZRELGL7D
ZRELG182
ZRELL1GC
2KELG 26D
2KELG213
ZRELC22¢8
ZRELG220
ZRELL243
ZRELG2ED
ZRELCZED
ZRELG27i
ZRELL280
2RELEC2SD
ZRKELL3LG
ZRELE31D
ZRELE32D
ZRELG330
ZRELL345
ZRELL350
IRELG36G
ZRELG27G
2RELC323
2KELL3SY
ZRELC&4GY
IRELCL5
ZRELOL 20D
ZRELT433
2RELGL40
ZRELL&50
2ZRELCHED
ZRELG4LTD
2RELD4LES
2EELC4SD
ZRELESES
2RELGS 10
ZRELL520
ZRELE52)
2RELL54G
2RELLSS)
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AXI = AES(X1)
IF (1 J2C. 2} GC TIC 1S
NMi=1-1
.CC 1Tt J = 1,.,h8M4 . _ _
IF (AQS(XI =.X(J)) HLT. EFS2) XI = XI + ETA
CORTINUE :
FXI = F(xI
AFXI = ABS(FXI) .
TEST FCR CONVERGENCE
IF. (2FXI LS. SFS) GC TO 25
CI = (281
IF (2XI .GE. P1) BI = pPoCi*2xl
FI = ARINI(AFXILOII
FXIFRI = F(XI 4+ HI)
DER = (FAXIFRY - FXI)s&l
IF (CER .tGs ZERGY GC TO 20
XIF1=FXI/DEK
"IF (LEGVAR(XIPI) WNE, 3) GO 10 2¢C
XIFI=XI-XIPI
ERE = LBS(XIFI - XI}
xI = XIPI
TEST FOR CONVERGENCE
IF(AXILZC.2ER0) AXI=CHE
ERR1=SRR/AXI
JF (LEGVAFR(ERRY) JNE. 1) ERR1 = ERR
IF(ERRL.LELCRIT1) GG TC 25
IC = IC + 1
_IF (I1C .LE, ITMAX) ©GC TQ 5
.. ' RCCT NOT FCLMNG, KO CONVERGENCE
SX€Iy = 113111, ) . }
IR=IR¢+1
CIER=23
GO TC 32

X(I3 = 22¢&222. . . .
" IR=IR+1
IER=3Y4
GC 1C 24
x(Ii=X1
CONTINUE
ITMRAX = IC
IF(IERcCs3) GC TC 9213
IF(IR.LE41) LC TO QLD :
ISK=235 : *
CorTInUE
CALL UCATSTIIER6H2Z2RELL2) . -
REITLAN
ENC

RCCT NCT FOUND, OERIVATIVE = (.

2REL0S60
2RELLSTD
ZRELLSSE0
2RELL5ED
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2RELLBIY
ZRELLH4Y
2RELL654
2RELEGED
2RELDB7J
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ZRELGES
2RELL7I0
ZRELGT71G
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2RELG7 44
2RELL7S5]
ZRELCG7EQ
ZRELELT7T7D
2RELVT B
ZKELO7¢<D
ZRELGBLO
ZRELLSB1C
ZRELC820
ZRELC83U
ZRELCB4D
ZRELLBS)
ZRELOEED
2RELOBTO
2RELLBSQ
ZRELUBSO
2RELCSED

. ZRELCS1D -

ZRELLS2C
ZRELLGY3D
2RELOI4D
ZRELLSST
ZRELLSaD
ZRELCS?O

ZRELL{Q8C

ZRELCSSD
ZREL1EE)
2RELI01J
2REL1G20
ZREL1C30
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SUBROUTINE QLAC(A,B,C, REL K )yANS, FUN, NERR, INAP)

LCRER LIMIT CF INTEGRATICN (INPUT)

UFFER LIMIT CF ILTEGRATICH (INPUT)

RELUIRZD RELATIVE TCLLRAMCE (INPUT)

= ESTIFATE OF RISULTING FELATIVE TCLERANCE (QUTPUT)

SIMNGULARITY FLAG., SET &= hHEN N0 SINGULARITY ALCHG PATH.
SET MN=1 sHEIN GivE CR MIRE SINGULARITIES LIE CM PATH

COMELTZIC V2LLE CF InLTEG2AL (CUTPUT)

hNAME CF FUMCTION GINIRATING THC INTEGRAND

NERR = ERFCR FLAC (JUTPU2

m
r=ununn

bt
7]
Hon

NZFR = =3 ST:ZP SIZE CaAN NCT BE MALCE SMALL ENMOUGH

NERR = =2 CU2D ILCCHELETE IN LIK (200) TRIES

NEFR = -2 6 FAS #TEN S=7 TS0 SMALL

MNERR «CGTe 8 ~--SUCCESS=--CIVES AUMBER OF TRIES REGUIRED
IMAP = PRCGRESS MAF FLAG. ST IHAFP=12 WHEN MAP 1S DESIRED.

Sel IMAF=] nr=IH NHCT DZISIRZID

CINENSION W4{2) s k2 (3121205, Z5(2)52844), Z12(6)
COUBLE PRECISICH YR3LEZ

CATA RAQLZ) 9nllzZ) 5y (n3(I)4I=2,4)38H22(]1)2I=1,6)/.652145154862546,
1.3472248452376554,432C283837E3372352,4,313706645877687,422239103445337
15, e 101228538283 0370,4243247303313403,.233452536538355, e
1. 2C31€f%Zt?cSCE&,.1&32?63265%2345,.¢C6°3932599‘318, T
AOG"?-.?E37C1EE§12/

LIX C2Mh B CiaNGZD IF EIThHIR MCRI QR LESS TRIES ARE DESIRED

LIF=2(C

C=D

IS €& SZT 1C0 SFALL
IF (C.LT., 1.E-23) GO TC 2€<8
IF {I¥EP.EC. 1) FPRINT 1

1 FORMAT € Z2Xx,34HLEFT ENC PLCINT+2)X4EHLENGTH»26X12H8~PTs RESULT

1 11X,3i9HRELWERRCR INX 3-PT. $121X,4H100Q )

HCP = (.0

K= 2

MNCNSEX =

NCLT = &

ANS = (.

F2 = 0.

KERR=L

Y = A

YOBLE = DELE(Y}

F = C/200. _
E = 0, e

FIRST TRY CK FULL SFAYN AND ALSC LAST STEP GO THROUGH HERE

H = (a-Y)z2.

SON=SICH (1.5}

H=A3AES(F)

LAST = 1

ALL IMISEMEQIATI STZPS BIGIHN HIRE

X = ¥ ¢ H*SGN

IS H TOTC SPALL TC 83 SEWHSECD 2L ATIVE TO X
IF(X+,1*H,ES.+2) €2 70 27¢C

IF(K.GT.LIF) GC T2 2an

4 FCINT 2s2sgicsaiz
2401)=,33%%21C43224356%H
ZL(2)=,861123€21522345053*H

QUAD
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8 FCINT BAESCISSAE
Z281{1)=.,143434642435E50%H
ZB3(2)=e525E22403%1E329%H

ZE8U3)=.79EEEBHT77413027%H
28(6)=,356323S856497536"H -
EVALUATE FUNCTION ANO FZRFCEN WCIGHTED SUM
GLU=H* (RL (1) ¥ [FLII{X+Z4L (1)) +FUNIX~Z4(1)) ) +

iHQIZ)‘(FUh(XfZQ(c))*FUh(X Z402))))

63=0.

O 43 I=1,4
Zi=FUMIX+ZAL(I))
22=FUN(X=-Z28(1))
G2=Ga+%8(I)*¥(Z1+22)
€8=63*F

ABG=AES(G8)+1.£E~250
TE=ABS(G8~G4)+1.E~14*ABG

RE IS THc KRELATIYVYZ ERRCR IN THE SUBINTERVAL THE & PT. KESULT HNAKES

IF THE 8 PT. RESULT IS EXACT
RE = 1.£-14 + TE/AEG
IF(K+EC+ ) F=ABG

P IS THE MAX AES VALUE OF ENTIRC INTEGaAL AS HE KNOH IT UP TO HERE

K IS THE CCLANTER OF THE NUMBEK OF ATTENMPTS

K=K ¢ 1

EH = F¥P

ER = TE*RE

Q= EH/ER

IF(IMAF.NEL1) GO TO 70
XLGNTH=2%*H

ERR=RE?**2

CG100=G*120.0
PRINT 2 +Y,XLGHTH+G8 LERR,Ci00

-FORMAT (£23.15y 2EZ0.15,s 2E22.5) _ -

Q1e = (¥*,0€25

D1 = KHs2./5E+%%,125

D2 = H/D1*C1E

L1 IS THE ESTIMATE CF THc DIQTAVCC A" TO THE SINGULARITY

02 IS AN IPFCRTANCE FACTGE WRICH NORMALLY RANGES FRCH AE0UT 10.
" YO Cel o HWHEN THEZ RESULT IS UNIMPORTAMTY, D2 IS LARGE.

THE MAGIGC GC-GC CR NO-CO QUANTITY IS 100Q , FCUMD AS FCLLCHS.
HE RECLIRE THAT THE RELATIVE £5ROR IN THE 8 PT, SUBINTERVAL
VALUE (RE*¥%2) TIMES THE IMPCERTANCE OF THE SUBINTEGRAL (ABG/P)
€ LESS THEN HALF THE EREGUIRED TOLERANCE C .

ALTERNATIVELYy (C/2)*({F/2EG)/(RE**2) PMUST BE GREATER THAN 1.0
THE AECVYE EXFRESSICN, WHEIN MULTIPLIED CUT, IS 100Q.-

IF(Q.LEs 0.C1) GO TO 120 .o
COMFARISON CF 4 FT. ANL 8 FT. LOOKS GCCD.

ES = ¢,

IF(hN.MELL)Y €C TO 200
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190 NCHSEK = 0 QUAD
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INCREASE STEF A4S INCICATEC QUAD
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€ = £ ¢ AMAX1lER, £S.1.E=14%ABG) QUAD
IF(LAST.EQ.1) GO TG 306 Qu A
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220 HCP = k QUAD

230 F2 = C.50%F2 + ALOGIH/HCP) QuAD
HCP = k Quap
YOBLE = YDELE + DBLE(2.0*K*SCK) QuUAD
Y = YDELE QuAD
NCNSEK = NCNSEX + 1 QuAD
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"IF(F2) 246,250,250 QuAD
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260 HC = C1%D2/(1.42.%02) QUAD
GO IC 260 QUAD -
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250 HC = C2*(C1+2,*H)*Q16 ) QUAD

260 F = HG QUAD
NCLT = 3 . QuAD
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ABSTRACT

A discussion is given of theoretical studies on infrasound propaga-
tion through the atmosphere which were carried out under the contract.
Topics discussed include (1) the modification and adaptation of a computer
program for the prediction of pressure signatures at large distances from
nuclear explosions to include leaking guided modes, (2) the nature of guided
infrasonic modes at higher infrasonic frequencies and the methods of ex-
tending waveform synthesis procedures to include higher frequencies, and
(3) the propagation of infrasonic pressure pulses past the antipodes
(over halfway around the globe). Summaries are included of all papers,
theses, and reports written under the contract and conclusions and recom-—
mendations for future studies are given. An updated version of the computer
program INFRASONIC VAVEFORMS originally given by Pierce and Posey in the
report AFCRL-70-013%4 is included as an appendix. .



Chapter I

INTRODUCTION |

1.1 SCOPE OF THE REPORT

The present report summarizes investigations carried out by the
authors during the years 1973-1976 on the propagation of low frequency
pressure disturbances under Air Force Contract No. F19628-74-C-0065
- with the Air Force Cambridge Research laboratories, Bedford, Massachusetts.

The study performed was theoretical in nature.,

The central tépic of this study was the generation and propagation
of infrasonic waves in the atmosphere. The principal emphasis was on
waves from man made nuclear explosions although certain aspects of the
study pertain to waves generated by natural phenomena including, in

particular, severe weather.
Specific topics considered during the study include the following:

1.) The adaptation of the computer program INFRASONIC WAVEFORMS to
include leaking modes and to improve its accuracy in synthesizing early
long period arrivals. (INFRASONIC WAVEFORMS is a digital computer program
for the prediction of pressure signatures as would be detected at large
horizontal distances following the detonation of a nuclear device in the
atmosphere. The original version of this program was developed by Pierce
‘and Posey1 under a previous Air Force Contract [F19628-67-C-0217].) The
developed theory for this adaptation has already been explained2 in

Scientific Report No. 1 of the present contract; the present report
describes the numerical implementation of this theory (Chapter III),
and gives some specific numerical examples. The complete current version

of INFRASONIC WAVEFORMS is included here as Appendix A.

‘2.) The development of a ray acoustic model for the synthesis of higher

frequency portions of infrasonic waveforms. The theory developed during



this study is given3 in some detail in Scientific Report No. 2 and a

discussion of this phase of the work is accordingly not repeated here,

3.) The modification of the multi-modal synthesis method to avoid
truncation of upper limits on frequency integration. The method develop-
ed is presented here in Chapter IV and represents an extension of the
W.K.B.J. technique to the case when the atmosphere has two sound channels.

The resulting theory clarifies the problem of selection of modes for in-

clusion into the synthesis and leads to a relatively simple method for
revising the synthesis program. (This revision, however, has not yet

been carried out.)

4.) Study of infrasonic waveform synthesis for propagation near and past
the antipddes. The method for doing this was briefly mentioned in the
1973 AFCRL report (pages 25 and 26) by Pierce, Moo, and Posey4 . In
Chapter V of the present report the theory underlying this is given and
-some numerical examples are given.

In Chapter II, we list all of the reports, papers, and theses which
were written during the course of this study. The abstracts given there
plus the abstract of the present report should be considered as a compre-
_hensive summary of the accomplishments during the contracting period. In
subsequent chapters of the present report, detailed discussions are given
of some of the topics described above. In Chapter VI, some recommenda-

tions are.made for future work in the field.

1.2 BACKGROUND OF THE REPORT

The géneral topics of infrasonic wave propagation, generation, and
detection have been of considerable interest to a large segment publish~
ed bibliography (the existence of which allows us to omit extensive
citations here) lists [Thomas, Pierce, Flinn, and Craine, 1971]5 over
600 titles, most of which are directly cncerned with infrasound. Litera-
ture pertaining to the infrasonic detection of nuclear explosions con-
stitutes a considerable portion of these. Earlier work by Rayleigh
[1890] 6 , Lamb [1908,1910]7 , G. I. Taylor [1929,1936]° , Pekeris [1939,



1938]9 and Scorer [1950]10, among others, which was concerned with waves
from the Krakatoa eruption {Symond, 1888]ll and from the great Siberian
meteorite [Whipple, 1930]12 is also directly applicable to the understand—

ing and 1nterpretatlon of nuclear explosion waves.

The present report thus merely summarizes a continuation of a small
number of facets of a lengthy pattern of research which has been carried
.on by a large number of investigatofs in the past. In a more restricted
sense, the work reported here represents a continuation of work done in
three previous studies performed under contract for Air Force Cambridge

Research Laboratories. The first of these was Air Force Contract No.
AF19(628)—3891 with Avco Corporation during 1964-1966; the second was
Adr Force Contract No. AP19628-67-C—0217 with the Massachusetts Institute
of Technology during 1967-1969, the third was AF19628—70—C—0008 (also
with M.L.T) during 1970-1972. Summaries of the earlier work ﬁay'be found
in the appropriate final reports by Pierce and Moo'[1967]13,,by‘Pierce
and Posey [1970]l , and by Pierce, Moo, and Posey [1973]4 -

One of‘thé‘ﬁrincipal-fesults of the first two aforementioned pre-
‘vious contracts waé a computer program INFRASONIC WAVEFORMS; the deck
iisting of the ﬁhen current version of which Is given in the report by
~ Pierce and Posey [1970]1. This program enables one to compute the pres-
sure waveform éf a distant point following the detonation of a nuclear
explosion in the atmosphere. The primary limitation on the program's
applicablllty to realistic situations is that the atmosphere is assumed
to be perfectly stratified. However, the temperature and wind profiles
may be arbitrarlly specified. The general theory underlying this pro-
gram is somewhat similar to that developed by Harkrider [1964]l4 but differs
from his in that it incorporates background winds and in that it has a

different source model for a nuclear explosion.



Chapter II

PAPERS, THESES AND REPORTS

The following gives author, title, and abstract of papers, theses, and

reports written during the course of this project.

- 2.1 A. D. Pierce, "Theory of Infrasound Generated by Explosions,”

Colloque International sur les Infra-Soms, Proceedings {Centre National

de la Recherche Scientifique (CNRS) 15, quai Anatole France, 75700 Paris,

September, 1973).
A review is given of recent studies by the author and his colleagues
on infrasound generation by explosions and the subsequent propagation
through the atmosphere. These studies include (i) development of
computer programs for the prediction of pressure signatures at large
distances from nuclear explosions, (ii) development of an alternative
approximate model f9r waveform synthesis based on Lamb'sbedge mode,
(iid) deﬁelopment of a geometrical acoustics' theory incorporating
nonlinear effects, dispersion, and wave distortion at caustics, and
(iv) theoretical models for the mechanisms of wave generation by
explosions. The basic theory is briefly outlined in each case and
gome of the more significant results are explained in terms of
simplified physical models. Such results include the predicted
dependence of far field waveforms on energy yield and burst height,
suggested techniques for estimating energy yield from waveforms,
and an explanation of.amplitude anomalies in terms of focusing and

defocusing of horilzontal ray paths.

2.2 W. A. Kinney, C. Y. Kapper, and A, D. Pierce, "Acoustic Gravity
Wave Propagation Post the Antipode," J. Acoust. Soc. Amer. 55, S75 (A)
(1974),
The previous theoretical formulations and numerical computations
of pressure waveforms (such as described by Harkrider, Pierce, and
Posey, and others) apply only to atQOSpheric traveling waves which

have traveled less than 1/2 the distance around the earth. In the



2.3

present paper, z technique resembling that previously introduced
by Brune, Nafe, and Alsop [Bull. Seismol. Soc. Am. 51, 247-257
(1961)] for elastic surface waves on the earth is discussed and
applied to the acoustic-gravity wave propagation past the antipode
problem. The principal modification to the older theory is a
shift in ﬁhase of ©/2 to the Fourier transform of the wave after
it has traveled over halfway round the globe from the soﬁrce. The

source of the wave is presumed to be a nuclear explosion of given

"energy E. Numerically synthesized waveforms of antipodal arrivals

are exhibited and compared with those for direct arrivals. The
necessary nodifications to the Lambmode model theory of Pierce and
Posey [Geophys. J. Roy. Astron. Soc. 26, 341-368 (1971)] are also

described.

C. Y. Rapper, '"Lezky Infrasonic Guided Waves in the Atmosphere,”

J. Acoust. Soc. Amer. 56, S2 (A) (1974).

2‘4
Modes

Prior theoretical formulations and computational techniques for

the prediction éf pressure waveforms generated by large explosions
in the atmosphere have considered only fully ducted modes. 1In the
present paper, a technique for including weakly leaking guided

modes in concert with fully ducted modes is developed. Modification
of previous theory includes the extension of the boundary condition
at the upper halfspace to include a complex horizontal wﬁvenumber.
The major alterations to the computer program infrasonic Waveforms
(as described in report by Pierce and Posey, 1970) incurred consist
of the computation of the imaginary part of the newly incorporated
conplex wavenunber, extension of the normal-mode dispersion function
to lower frequencies, and a second-order correction factor to the

phase velocity.

W. A, Kinney, "Asymptotic High-Frequency Behavior of Guided Infrasonié
in the Atmosphere,” J. Acoust. Soc. Amer. 56, S2 (A) ( 1974).
Refinement of previous theoretical formulations and numerical compu-
tations of pressure waveforms as applied to atmospheric traveling
infrasonic waves could include a description of their asymptotic
behavior at high frequencies. In the present paper, calculations based

on the W.X.B.J. approximation and similar to those introduced by

~



Haskell [J. Appl. Phys. 22, 157-167 (1951)] are performed to describe
the asymptotic behavior of infrasonic guided modes as generated

by a nuclear explosion in the atmosphere. The results of these cal-
culations are then matched onto numerical solutions which have been
given by Harkrider, Pierce and Posey, and others. It is demonstrated
that the use of these asymptotic formulas in conjunction with a
computer program which synthesizes infrasonic pressure wavefofms>

has enabled the elimination of problems associated with high-
frgquency truncation of numerical integration over frequency. In
this way, small spurious high-frequency oscillations in the computer

solutiqns have been avoided.

2,5 C. Y. Kapper, Computational Techniqﬁes in Infrasound Waveform Synthesis,
M. S. Thesis, School of Mechanical Engineering, Georgia Institute of Technology

' (December, 1974). ' -
This thesis is concerned with two major theoretical and programming
modifications to the digital computer program INFRASONIC WAVEFORMS
for the synthesizagion of acoustic-gravity pressure waveforms generat-
ed by large explosions in the atmosphere. The first modification
involves the extension of the guided mode approximation for pressure
waveforms in the atmosphere into leaking mode regions and a conse-
quent search for the imaginary part of the complex ﬁorizontal wave
number. Particular results include a plot of phase velocity versus
angular freduency showing the extension of the normal mode dispersion
function into a leaky mode region for a multilayer atmosphere and a
report on the search'for the imaginary part of the complex horizontal
wave number of a leaky mode for a two layer atmosphere. The second
modification involves the extension of the systhesis of acoustic-
gravity pressure waveforms to distances beyond the antipode. A
phase shift is noted for waves passing through the antipode ana

a comparison of pre and post antipodal waveforms is presented.

2.6 W. A, Kinney, A. D. Pierce, and C. Y. Kapper, "Atmospheric Acoustic
~ Gravity Modes Near and Below Low Frequency Cutoff Imposed by Upper Boundary
Conditions," J. Acoust. Soc. Amer. 58, S1 (A) (1975).

Perturbation techniques are described for the computation of the

fmaginary part of the horizontal wavenumber (ky) for modes of



2.7

pfopagation. Numerical studies were carried out for a model

. atmosphere terminated by a constant sound-speed (478 m/sec) half

space above an altitude of 125 km. The GR and GRq modes have
lower-frequency cutoffs. It was found that for frequencies less
than 0.0125 rad/sec, the GRl mode has complex phase velocity; kI
varying from near zerc up to a maximum of 3 X 1074 1m~1 with
analogous results for the GRO mode. There is an extremely small
frequency gap for each mode for which no poles in the complex k

plane corresponding to that mode exist. These mark the transition

 from undamped propagation to damped propagation. In the complete

Fourier synthesis, branch line contributions compensate for the
absence of poles in these gaps. Computational procedures are

described which facilitate the inclusion of the low—-frequency

portions of these modes in the waveform sysnthesis.

A. D. Pierce, and W. A. Kinney, Atmospheric Acoustic Gravity Modes

at FreQuencies Near and Below Low Frequency Cutoff Imposed by Upper

Boundary Conditions, Report AFCRL-TR-75-0639, Air Force Cambridge Research
Laboratories, Hanscom AFB, Mass. (March, 1976).

2.8

Perturbation techniques are described for the computation of the
imaginary part of the horizontal wavenumber (kI) for modes of pro-
pagation. Numerical studies were carried out for a model atmosphere
terminated by a constant sound-speed (478 m/sec) half space above

an altitude of 125 km. The GRO and GR1 modes have lower-frequency
cutoffs. It was found that for frequencies less than 0.0125 rad/sec,
the GRl mode has complex phase velocity; kI varying from near zero

up to a maximum of 3 X 10™% km~1 with analogous results for the GR
mode. There is an extremely small frequency gap fof each mode for
which no poles in the complex k plane corresponding to that mode exist.
These mark the transition from undamped propagation to damped propa-
gation. In the complete Fourier synthesis, branch line contributions
compensate for the absence of poles in these gaps. Computational
procedures are described which facilitate the inclusion of the low-

frequency portions of these modes in the waveform sysnthesis.

A, D, Pierce, and W. A. Kinney, Geometric Acoustics Techniqueé in

Far Field Infrasonic Waveform Synthesis, Report AFCRL-TR-76~ , Alr



Force'Cambridge Research Laboratories,Haﬁscom AFB, Mass. (1976).
A ray acoustic computatiopal model for the prediction of long
range infrasound propagation in the atmosphere is described.
A cubic spline technique is used to approximate the sound speed
versus height profile when values of sound speed are input for
discrete height intervals. Techniques for finding ray paths,
travel times, ray turning points, and rays connecting source and
receiver are described., A parameter characterizing the spreading
of adjacent rays (or ray tube area) is defined and methods for its
computation are given. A method of determining the number of times
a given ray touches a caustic is also described. Formulas are given
for the computation of acoustic amplitudes and waveforms which
involve a superposition of contributions from individual rays
connecting scurce and receiver and which incorporate phase shifté
at caustics. The possibility of a receiver being in the proximity
of a caustic is considered in some detail and distinction is made
between cases where the receiver is on the illuminated or shadow
sides of a caustic.- It is shown that a knowledge of parameters
characterizing two rays at a point in the vicinity of a caustic
provides sufficient information concerning the caustic to allow
one to give a relatively accurate description of the acoustic field
in its vicinity. The resulting theory involves Airy funpﬁions and
uses concepts extrapolated from a theory published in 1951 by
Haskell. The net result is a detailed computational scheme which
should accurately cover the contingency of the receiver being near
a caustic in the calculation of amplitudes and waveforms. A number
of FORTRAN subroutines illustrating the method are given in an
appendix. Limitations of the theory and suggestions for future

developments are also given.



Chapter III

NUMERICAL SYNTHESIS OF WAVEFORMS

INCLUDING LEAKING MODES

3.1 INTRODUCTION

The computer program INFRASONIC WAVEFORMS  has been modified to
allow inclusion of the contribution at low frequencies from leaking
modes (specifically the GR, and GR

0 1
infrasonic pressure waveforms. The procedure incorporated in this

modes) to numerically synthesized

modification involves a partly manual calculation of the imaginary and
real parts of the horizontal wavenumber, kI and kR’ respectively) as

2 That calculation is outlined

discussed in Scientific Report No. 1.
in more detail here. The numbers presented for illustration are appro-
priate to the case of observations at 15,000 km distance from a 50
megaton explosion, where the explosion is at 3 km altitude, and where

the atmosphere is assumed to contain no winds. (This restriction is just

for illustrative purposes, but is not a limitation on the method.)

3.2 CALCULATION OF COMPLEX WAVENUMBERS

The first step in the caiculation is to obtain values for the'phase
velocities vn(w), va(w), and vb(w) for the GR0 and GR1 modes, and to
obtain values for the elements Rll(w,v) and Rlz(w,v) of the transmission
matrix [R]. These calculations should:be done, in particular, for all

frequencies extending below the mode's nominal lower cutoff frequency.

As mentioned in the previous report2 s R11 and R12 depend on the atmos-
pheric properties only in the altitude range 0 to Zp (the bottom of the
upper halfspace), and these are independent of what is assumed for the
upper halfspace. Also, vn(m) is the phase velocity for a given (n-th)

mode for values of w greater than the lower cutoff frequency w, ; here

L;
Va(w) and vb(w) are values of the phase velocity w/k at which the functions



$NAML NSTART=1, NPRNT=1, NPNCH=-1, NQMPL=-1 $END

$NAMZ IMAX=24, :

z1=1.,2.,4.,6.,8.,10.,12,,14.,16.,18. ,20.,25.,30.,35.,40.,45.,5'5.,
65.,75.,85.,95.,105,,115,,125.,

T=292.,288.,270.,260.,249.,236.,225. 215.,205.,193.,205 ,215.,227.,
237.,249.,265.,260. ,240.,205.,185,,184.,200.,250.,400.,570.,

LANGLE=1,

WINDY=25%0.0,

WANGLE=25%0,0

SEND

SNAM4

THETKD =35.,

V1 = 0.143, V2 = 0.3318,

oMl = 0.001, OM2 = 0.031,

NOMI = 30, NVPI = 80,

MAXMOD = 10

$END

$NAML NSTART=6, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

Hgure 1. Listing of input data required to generate tabulations of R
and R versus pnase velocity and angular frequency in the
V1c1n1%y of the dispersion curves for theGRo andGRl modes,
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Figure 2, Model atmosphere showing sound speed versus altitude for numer-
.ical example treated in the present chapter, The atmosphere is
bounded by an isothermal upper half space beginning at 125 km
altitude. : :



R11 and RlZ’ respectively, vanish. For a given mode, the values of v,

and vy chosen are those from the curves va(m) and vb(w) which lie the

closest of all such curves to the curve vn(w) for W, .

As regards the calculation of R11 and RlZ’ the computer program

INFRASONIC WAVEFORMS may be used, only with an alternate version of the
subroutine TABLE, A copy of subroutine TABLE with the appropriate
modifications incorporated and indicated is given in Appendix B. A
deck listing of all of the iInput data that 1s required to obtain R

11

and R12’ and that is appropriate to the rumning example, follows in

Fig. 1. Values for R11 and R12 need only be calculated for phase
velocities between, say, 0.143 and 0.3318 km/sec, and for frequencies
between 0.001 rad/sec (as close to zero as would seem necessary and
corresponding to a period of 6,283 sec or 1.75 hr) and the value of We
for the upper halfspace (.0128 rad/sec in our numerical example). In
the calculations reported here, the upper frequency was taken as .031
rad/sec in order to confirm the continuity of the dispersion curves.

A sample portion of the ﬁ;intout of R11 and R12 corresponding to the
model atmosphere of Fig. 2 is given in Fig. 3 . The same set of out-
put from a computer run which lists the R 1 and Rlz»also includes the

vn(w) for the GR0 and GR1 rodes.

1

Values of va(m) and vb(w) for these modes are obtained by two
successive runs of INFRASONIC WAVEFORMS using in sequence two modified
versions of the subroutine NMDFN. These modifications are so minor
that the deck listing is omitted and we describe here the nature of
the modifications.

To obtaih va(m), one need only change the third from end execut-

able FORTRAN statement of subroutine NMDFN from

FPP = RPP(1,1)*A(1,2) - RPP(1,2)*(GU + A(1,1)) .1

to

RPP(1,1). , (3.2)

FPP



v, R R
" OMEGA= .30828_¢02
«14300+00 «21671+01 ~,65152+02
e 14539400 ~e 7296393 ~. 22523402
«14778+00 -+199%2+01 .16898+02
+15017+09 —-e 34415401 «49335+02
«15256+00 ~e 43233401 « 712532+02
e15495400 - 46320401 .6519+02
15734400 - 44356401 .88g83+02
«15273+00 -+38279+01 «83475+02
+1p212+00 ~e29260401 71114402
«16451+00 —018579+Dl «93814+02
«16690+00 ~e 74204400 «33657+22
«16229+00 31761409 - Jl2gl3+02
«17168+00 - 12376401 ~-. 75995+91
«17407+00 «12579401 -.25568+02
017646+00 "024418+01 “040247+02
«17685+03 26745401 ~.50955+02
«181244+03 026605401 -« 57340402
«18363+00 2241585403 ~-,558371+02
«18602+00 © 019834491 -, 57261402
«18541+00 - «139174+03 —~e91424402
«19080+090 ~+68860+0g ~. 32421402
+19319+00 ~e800574~01 ~-.30906+02
«19558+00 ~.871654+00 -,17582+02
019797‘*‘00 —.164'47'{"01 "031561""31
«20036+00 -e23637+01 «1190+02
«20275+090 ~e299%6+01 e 26326102
20518400 ~+35295+01 L46193+02
« 20753400 =e393794+01 «52832+52
«20992+00 ~-.42153+0 .63849+02

Sample printout of R,. and R o Versus phase velocity for vari-
ous fixed values of angular %requency. Output generated with
the input data of Fig., 1,

Figure 3,



To obtain vb(w), one need only change the same statement to
FPP = RPP(1,2). (3.3)

The same limits for phase velocity and angular frequency as are used for

the calculation of Ril and R12 should be used in the calculations for Vi

Vs and Vi In our example, when these limits are used, the GR1 mode

corresponds to mode #3, and the GR, mode corresponds to mode #4 for the

i 0
case when vn(w) is calculated. Tor the cases when va(w) and vb(w) are’

calculated, the GR., mode corresponds to mode #4 and the GR, mode corre-

1 0

sponds to mode #6. A sample output listing of vn(w), va(w) and vb(w) for -
the two modes is given in Pig. 4. An additional listing of vn(m),

va(w), and vb(w) for the two modes versus various values of w is given

in Table 1.

3.3 CALCULATION OF o AND B

The next step in the procedure is to manually calculate values for
the variablesla and B which enter into an approximate version [Eq. (9) in
Scientific Report No. 1] of the eigenmode dispersion function. These
parameters represent the partial derivatives of R11 and R12’ respectively,
with respect to phase velocity v evaluated at v=v_ and V=V respectively.
Since R,. and R1

11 2
of angular frequency (but not of phase velocity).

also depend on w, o and B may be considered as functions -

It may be recalled that va(w) and vb(w) are values for the phase
velocity at which R11 and R12’ respectively, vanish, From the listing

versus v and w, let the adjacent values R nd

of, say, R,y 111° o110 Rapp 2

R411 for R11 corresponding to the values for phase velocity Vi1® Vopr V31

and V41 respectively (for same chosen w), such that Va1 and Vag brackett

a value for v, R211 and R311 would then be of opposite sign. In the

listing of v, R for various w, the values for v should all turn

11° Rz
out to be equally spaced. Given this fact, it is possible to reasonably

approximate o from the listings of R11 by the formula

6 = (1/8v,)([5/6]e; #[1/12]f,  +[1/4]g; 1 by ) (3.4)



Table 1. Tabulation of frequency dependent parameters for the GRO
and GR, modes. Tabulation is for frequencies below
cutoff; definitions of the various quantities are given
in the text and in Scientific Report No. 1.
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GR, MODE

’

vV
n

«311856n8
.311818n6
«31177597
. 31172882
31167509
« 31161209
31153394
.311480610
+31148516
«31182505 :
«31158841 01134y’
031134515 012375
«311224A0 013007
.31029529i.014uaa
«31029116:.0n15469
«30790129:, 016501
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+ 28248366 025783
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+ 25639246 :D27R46
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L001030
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L0NUI24
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Figure 4.

GR, and G

Va
31205939
31205552
31204906
+31204001
+31202834
31201405
31199710
¢31197748
+31195515
31193006
31190215
+31187139
+31183768
+31180093,
«31176104]
31171788
+31167120
«31162087
» 31156653
«31150781
$31144415
«31137478
+31129855
«31121368
31111721
+31100382
.31086276
« 31066848
«31034189

W

.001030
»0020561
.0030903
LOusiau
. 005156
L006187
,007218
.008250
009241
.010312
s 11344
312375
L1347
L0144 38
015469
L016501
017532
0018563
. 019595
+U20626
. 021658
, 022689
023720
e 024752
+ 025783
026814
,0278y6
028877
e 029909

1

103110971“

W

“b

GR1 MODE

Yn

W

Vé W

31209836 s N134907 22781499 001030 ,24434330,001030

«31209447] s 013A24
+3120a7ag 014040
0311.'960’2 +N1443R
+3L2p5353]. 014778
«31203620/.015107
«31291679,.015413
+ 31199475/ 015069
+3119791 5]« 015699
»31104291{.015%6A
+3311913,2/-016217
¢31108045/s 016153
+311845) 8{. 016501
.016A75
«N116REH
« 017085
017274
+017054
«N17532
017626
017790
.01796
. 018096
.018258n
.018%7R
, 118510

« 31176630
« 31167591
eo1lige2650
e 3115733y
31151721
« 311394y
+31132738
«31125619
+31118049
+31109%4
'31101364'018663
.3lCQZIIQb018638

. F

+

)

22604568 002161
« 22425580 « 003193
+22186593 .003R”55
022177526 N1 24
«21947606 .005156
« 21708619 006187
« 21469631 .00buys
« 21423833 .00721R
21230644 .0nAIAY
« 20981657 .00825n
« 20752670 009281
«2051360R2 LOU9LT79
«2NUB3I3IN9 LN103L12
« 20274695 L,01051A
«20035708 .N11344
019796721 011301
19557733, 012115
+ 19318748 .n12375
«19211887 .n12752
« 19079759 .n13311
« 18840772 «N1340T
« 18601784 013700
« 18362797 ,0D1425%
218123810 ,n1yu3n
«17888823 ,n14A/59
+ 17645836 ,015027
« 17547997 L015%64
¢17406848 ,015469

24228453

«2440%032 001738
« 24367787 ,002061
« 24357478 ,003053
«243078487 004124
.00515b
005150
0061487

« 24127431
«24n98491
«2400319484 ,006955
23859504 .,007218
« 23848240 ,008250
. 23660913, 008295
23620517 ..009248i
c236327061, 009362
«233381529 ,010260
«23153728..010312
23142502 »01103%
22903555
«22809942
« 2266USHE
«224255R80
£ 22351942
«22186593
.21947606
¢ 21842295
+21708619
21469631
021230644
+21151653

011712

A sample output listing of vh(w), v (w), and vb(w) for the
R, modes. a

-

Yb
« 250738,
.25'151;4.
2054204
220859150
28059,
s 2401 5t
-2“63@,?!
02“575“(
+ 285350,
293061
2243370
0241183:
200980
0230595(
o238 g0 A

011384 ,235148"

J01231% ,231425:
2012379 ,231158¢
0124355 ,229335:
L0133559 (220605
013407 (226305¢
L013790 . 224255
,01419Y ,221455¢
«01U438 225306,
L014575 ,21uy76¢
0147222 ,217086}



Table 1. Tabulation of frequency dependent parameters for the GR0
and GR1 modes, Tabulation is for frequencies below
cutoff] definitions of the various quantities are given
in the text and in Scientific Report No. 1.



where

Avy = V41 T V31 T V31 TV t Va1 T V1 (3.5a)
e11 =~ B3~ Ropg - (3.5b)

) [}
o F11 = Rypa 7 Bapg Y Ropn m R ' (3.5¢)
811 = Ry = Rgppdiey; (3.5d)
h,, =R,,. +R,.. -R.. -R (3.5e)

11 311 211 111 411

In like manner, from the listing of R., versus v and w, if one lets the

12

adjacent values R112’ R212, R312, and R412 for R,, correspond to the

12
values for phase velocity V193 Voo Vags and V0 respectively (fqr some
chosen @), such that Voo and Vao bracket a value for vy then one can

approximate B by the formula
g = (l/sz)([5/6]e12 + [1/12]f12 + [1/4]g12h12) | (3.6)

where sz, e12"f12’ By and h12 are defined by equations analogous to
Eqs. (3.5) (last subscript changed from 1 to 2).

Because we use a numerical method (i.e., that described above) to
calculate a derivative (it would be preferable to have an eiplicit formula),
there is a small amount of numerical noise in the tabulation versus w of «
and B computed in the above manner. This noise is noticable only for the
GRl node and may for all practical purposes be filtered out by plotting a
and 8 versus w and then drawing smooth curves through the respective sets
of points. (See Figs. 5 and 6.) While this procedure is somewhat labori~
ous, it circumvents doing additional runs of the program to get values of
R., and R

Il 12
cumvents a somewhat elaborate computer programming chore which would do

at more closely spaced values of phase velocity. It also cir- -



‘Figure 5. A plot of the parameter o versus w for theG R, mode. The para-
meter o 1s BRll/ va evaluated at the phase ve.ll.ocity where
R, =0, :
11



"Flgure 6., A plot of the parameter B versus w for theGR, mode. The para-
meter B 1s 3R12/3vp evaluated at the phase ve}ocity where

R12=0 .



such steps automatically. (We sﬁspect that the programming time would
surpass all time which would ever actually be spent on manual circula-
tions such as described above.) 1In any event, in view of the relatively
small values of kI which are actually obtained (as described further
below) and in view of the recommendations (also given further below)
concerning the use of the same kI in many different types of calculatioms,

the accuracy of the o« and B so obtained is more than sufficient.

3.4  CALCULATION OF COMPLEX PHASE VELOCITY

The applicable expression for calculation of a mode's phase velocity
(real above cutoff frequency, complex below) is Eq. (10a) in Scientific
Report2 No. 1 (which for brevity is not repeated here). This involves

parameters v_ and v, (whose computation is described in Sec. 3.1), and

b
X, which may be considered as a function of w and which is defined by
Eq. (10b) in the prior report. This latter quantity X depends on B/a,
All’ G and A12'

" "city as v, and using Eqs. (4), (7a), and (7b) of the prior report.

The latter three are computed by taking the phase velo-

These calculations are straight forward, and do not require detailed

explarnation. Listings of G, A A12’ and X for various values of w

11°

and for the GRl and GR0 modes are given in Table 1.

As explained in the prior report, below cutoff (that is, below Wy, =
0.0125 rad/sec for GR, and below w, = 0.0118 rad/sec for GR)» in the run-
ning example) the real part kR of the horizontal wavenumber is the real

(1)

part of w/v' "', and the imaginary. part kI is of course zero. Finally,

the.ex§ension by first iteration of the normal mode dispersion curves
below cutoff is obtained by simply calculating m/kR. Listing of v(l),
kI, kR’ and w/kR for various w for the GRO and GRl modes are given in
Table 1. Plots of k; and m/kR are given in Fig. 7.

3.5 INPUT DATA FOR GRO AND GRl

The present version of INFRASONIC WAVEFORMS allows for the possibil-
ity of phase velocity m/kR, imaginary component kI, and source freevampli—

tude AMP to be input as functions of angular frequency w for any given
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Fgure 7. Numerically derived plots of phase velocity w/k  and of the
imaginary part k., of the complex horizontal wavenumber k ver-
sus angular frequency w for theG R, and G R, modes. Nominal
lower frequency cutoffs for these modes are as indicated.
Note that kI is identically zero above the cutoff frequency.



mode. The only modes for which this is necessary are GR0 and GRl' This
input data is partly obtained by the procedure described above. Here

we describe how the remaining portion of the input data is obtained.

To obtain values of phase velocity and source free amplitude at
frequencies above cutoff one uses the current version of INFRASONIC
WAVEFORMS with the variable NCMPL of NAMELIST NAM51 set less than zero.
This gives an output essentially identical to what would be obtained
with the original version of the program. The input data for this rum
would be the same as if one were computing waveformé without considera-
tion of leaky modéé. A sample listing of such.input datg is given in
Fig. 8. The run will give mode numbers and tabulations of phase velo-
city VPHSE and amplitude AMP versus angular frequency OMEGA for the GR0
and GR1 modes at frequencies,above cutoff. The only output which need
be retained for future use are the tabulations of VPHSE versus OMEGA for
these two modes, since amplitudes at frequencies above cutoff are comput-
ed automatically in the run which utilizes this information as input data.
A sample tabulation of the pertinment output (for the running example:

considered here) is given in Fig. 9.

Input data of phase velocity VPHSE and amplitude AMP for frequen—
cles below cutoff are obtained by a second run of the program, again .
with NCMPL < 0, only with the original model atmosphere replaced by one
wvhich has a thick intermediate layer plus on upper half space replacing
the original upper half space. Thus, in the NAM2 input list, TMAX is
- increased by one, the original ZI and T are unchanged, but one adds a
ZI for the new value of IMAX which is, say 100 km larger than the largest
ZI for the original model atmosphere; the temperature T for the new IMAX
4+ 1 layer (i.e. for the new upper half space) is set equal to an arbitrarily
very large value (say, 2x107 °K). Doing this will artificially shift the
cutoff frequencies for GR_, and GR

0 1
practical purposes, equal to zero. The input data for this run should

down to values which are, for all

include choices of angular frequency and phase velocity limits (V1, V2,
OM1, and OM2 of NAM4) which are appropriate for an exploration of the
properties of GR_ and GR, at frequencies below their original cutoff frequen—

0 1
cles. It is imperative that OM2 not be too large since INFRASONIC WAVEFORMS will



SNAML NSTART=1, NPR\T=1, NPN(H=-1, NCMPL=-1 $END
SNAM2 IMAX=24,
z1=1.,2.,4.,6.,8.,10.,12.,14.,16.,18.,20.,25.,30.,35.,40.,45.,55.,
65.,75.,85.,95.,105.,115.,125., _
T=292.,288.,270.,260.,249,,236.,225.,215.,205.,198.,205.,215.,217.,
237.,249.,265.,260.,24(5.,205.,185.,18.4.,200.,250.,400.,570.,
LANGLE = 1,
WINDY = 25%0.0,
WANGLE = 25%0.0
SEND
SNAMA
THETKD = 35.,
V1l = 0.15, V2 = 0.495,
OML = 0.005, OMZ = (.1,
NOMI = 30, NVPI = 30,
MANMOD = 8
SEND
SNAVS  ZSCRCE = 3.0, ZCBS = 0.0 $END
SNAM8  YIELD = 50.E5 SEND
- $NAMIO ROBS = 13000.,
TFIRST = 46.2E3, TEND = 52.2E3,

DELTT = 15.,
I0PT = 11,
SEND

SNAML NSTART=6 SEND

Figure 8, Input data to cbdtain phase velocity versus angular frequency

above cutoff frequency for theGR0 andGRl modes.



GRy MODE GR; MODE
OMEGA Vn OMEGA . Vn
« 0143275y « 3517388 «01458275¢ «2191361%
+ 018402352 ¢ 21127707 01851253 $20S4827¢
U1725 .53 #31152320 «01cu852 +2G500238¢
+01e23 243 « 213157220 «517:1538 «19752¢21
e SL8322,2 «21252353%¢ e 01723443 1€cuyee1
«3ig322¢2 e 3314875¢ « 91756053 e 161637932
«Ji974233 s S1lavyee «017355¢3 «18568¢5¢k¢
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Figure 9. Sample output of phase velocity versus angular frequenéy at
frequencies above cutoff for theGR0 andGRl modes corres-—
ponding to the input data of Hg. 8.



encounter numerical difficulties at higher frequencies when the height
of the upper halfspace is as high as considered here. (If it were not
for this fact, this run could be used to generate essentially the same
information as in the previous run.) For comparison, Fig. 10 indicates

the types of atmospheric profiles used in the two runs with NCMPL < 0.

The second run gives values for the source free amplitudes AMFP and
phase velocities VPHSE for the GR0 and GRl modes for frequencies below
cutoff. The latter of these are expected to be virtually identical to
the w/kR which are obtained by the method described in See. 3.4. Also,
the source free amplitudes are expected to match on smoothly to those
obtained from the prior run for high frequencies even though the two
model atmospheres are not identically the same. (This is because the
energy transported by the GR0 and GRl modes is predominantly in the
lower atmosphere.) Furthermore, we expect these amplitudes to be virtual-
ly the same as would be obtained by the modified residue method described
in Scientific Report No. 1 for the oéiginal model atmosphere. The actual
amplitudes should have a small imaginary part, but in view of the rela-
fively snall values of the kI (less than 10"3 nepers/km) obtained, we
are confident that this imaginary part may be neglected to an excellent
approximation. The only aspect of the leaking phenomena which conceiv-
ably could be of significance is the accumulative exponential decay
represented by the factor exp(-kIr), which is retained in subsequenﬁ

calculations.

Sample input data for this second run with NCMPL < 0 are given in
Fig. 11; a listing of the output values for OMEGA, VPHSE, and AMP below

the original cutoff frequencies for the GRO and GR, modes of the running

1
example is given in Fig. 12,

3.6 WAVEFORM SYNTHESIS

The final step in the waveform synthesis is to run the program
INFRASONIC WAVEFORMS with input data including the information concern-
ing the GR, and GR, modes computed as described in the preceding two

0 1
sections. The essential difference between this run and the first such
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$NAML NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

SNAMZ IMAX=25, _

z1=1.,2.,4.,6.,8.,10.,12.,14,,16.,18.,20.,25.,30.,35.,40.,45. 55, ,
65.,75.,85.,95.,105.,115,,125.,225., |

T=292.,288.,270.,260.,249,,236.,225.,215.,205.,198, , 205.,215. ,227.,
237.,249.,265.,260.,240.,205.,185. ,184.,200. ,250.,400. ,570.,2.E7,

LANGLE=1,

WINDY=26%0.0,

WANGLE=26%0.0

$END

SNAMA

THETKD= 35.,

V1 = 0.18, V2 = 0.34,

OML = 0.001, OM2 = 0.02,

NOMI = 20, NCPI = 30,

MAXMOD = 8

$END

$NAML NSTART=6 S$SEND

Figure 11. Input data to obtain phase velocity and source free amplitudes
below nominal cutoff frequencies for theGRO andGRl modes.
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run described in Sec. 3.5 is that one sets NCMPL > 0, and that one supplies
values for the p;;ameters in the input list NAMS51l. A listing of the in-
put data for the run, allowing for the leaking modes, and appropriate to
our running example is given in Fig. 13, The phase velocities input for
the GR0 and GRl modes are those derived from the two computer runs describ-
ed In Sec. 3.5. The source free amplitudes for these modes are supplied
only for frequencies below cutoff and these are derived from the second

run of Sec. 3.5. The imaginary parts of the wave number are the numbers
whosebcomputation is described in Sec. 3.5. The reason we use the phase
velocities below cutoff as computed in Sec. 3.5, rather than as in Sec.
3.4, 1s that both calculations agree to the same order of accuracy as

would be expected for the approximations inherent in the method of Sec.
3.4. Consequently, we expect the values from the computer run to be the
more nearly accurate. Of course, the values of kI havé to be computed

by the methoad of Sec. 3.4 since the computer program in its present form

does not compute these directly.

In Fig.l4 we show CAICOMP plots of modal and total waveforms ob-
tained before and after the inclusion of leaking modes. (This is for
our runniné example, 15,000 km from a 50 megaton burst at 3 km altitude,
the receiver being on the ground.) One may note thafrthe inclusion of
‘the Ieaking modes eliminates the spurious precursor in the waveform and
raises the amplitude of the first peak. It 1s also important to note
that the waveform with leaking modes included begins with a pressure
rise. This is what one would probably expect from intuition alone, and

would also appear to be rmore realistic.

3.7 FURTHER EXAMPLE (EOUSATONIC)

To further explore the effects of inclusion of leaking modes, we
chose the case of waveforms observed by Berkeley, California, following
the Hausatonic detonation at Johmson Island on October 30, 1962. A
previous comparison of theoretical and observed waveforms for this event
is given in the Geophysical Journal article by Pierce andrPosey}s This
case is also the central example in the 1970 AFCRL report by Pierce and




Hgure 13,

=,

Sample input data for synthesis of infrasonic waveform inclu-
ding leaking modes. The data for the NA{ 51 input 1list is as
derived from previous computations described in the present
chapter., :



Hgure.l4, CALCOIP plots of modal and total waveforms before and after
inclusion of leaking modes. Example is for the case of a 50
megaton burst at 3 km altitude in the atmosphere of Fig. 2;
receiver is at distance of 15,000 km.



Poseyl , and is discussed within therLamb edge mode theory context in some

detail in Posey's thesis. 16

The ﬁodel atmosphere assumed for Ehe computation is exactly the same
as in Fig. 3-12 of the 1970 report, only we let the upper half space begin
at 125 km (IMAX = 24), Rather than repéat the tedious calculations of
the kI for the GR0 and GRl modes for this model atmosphere, we assumed that
they would be essentially the same as for the running example in the pre-
vious section. Thus the steps in Secs. 3.5 and 3.6 needed only to be |

carried out to obtain a waveform sysnthesis.

In Fig. 15, we give comparisohs of the CALCOMP plots for this event
before and after the inclusion of leaking modes. One may note that the
first of these does not agree with the comparable CALCOMP plots in Fig.
3-10 of the 1970 AFCRL report. This is of course because we have here
taken the upper halfspace to begin at a lower altitude. This choice of "
where the upper halfspace begins is of little consequence when leaking
. modes are included, and consequently the agreement of the old computation
with the leaking mode included case is quite substantial. Further, the
new computation is regarded as an improvement in that the spurious initial

pressure drop has been eliminated.

On the basis of the calculations described above, we have redrawn

the Fig. 7 in the Geophysical Journal article which compares observed and
theoretical pressure waveforms for the Housatbnic—Berkeley event. This
revised figure is given here as Fig. 16. The only difference is in the
center wéveform. The precursor is.now absent and the first peak to trough
amplitude has been changed from 157 ubar to 170 ubar (less than 10% increase);
the remanider of the waveform is virtually unchanged. The discrepancy

with the edge mode synthesis hasn't been diminished and remains a topic

for future study. (It waé not addressed during the present study.)
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Chapter IV

ASYMPTOTIC HIGH-FREQUENCY BEHAVIOR

. OF GUIDED MODES . h

4.1 INTRODUCTION

Due to temperature and wind stratification, the earth's atmosphere pos-
. sesses sound speed channels with associlated gelative sound speed minima.
Fig.1l7 shows a standard reference atmosphere wherein two such sound

speed channels are indicated; one with a minimum occurring at approxi-
mately 16 km altitude a2nd the second with a minimum occurring at approx-
imately 86 km altitude. Given the presence of such a channel, an

acoustic ducting phenozenon can occur, as is demonstrated in Fig.1l8,

wherein the energy associated with an acoustic disturbance can become
trapped in the region of a relative sound speed minimum. It is this

mechanism of ducting only that i1s of Interest here.

In the computer program INFRASONIC WAVEFORMS, the computation of
modal waveforms involvez the numerical integration over angular fre-
quency of a Fourier transform of acoustic pressure where this integra-
tion is truncated at the high-frequency end. It has been speculated
that this abrupt truncation leads to the generation of what might be
called "numerical noise” in the computer output. It was felt useful,
therefore, to extend this integration beyond the heretofore upper
angular frequency limit by means of some appropriate high-frequency
approximation. In the case of an atmosphere with just one sound channel,
the technique for doing this is well known and dates back to a paper
published by N. Haskelf’7 in 1951. Haskell's method is the W.K.B.J.
(Wentzel, Kramers, Brillouin, Jeffreys) method, then in common use in
quantum mechanics, although its invention dates back to Carlinil8

19
Green 1In the early 19th century.

The approximations associlated with the W.K.B.J. method of solution
apply to the analytical model on which the computer program 1is based at
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frequencies above approximately 0.05 radian/sec (periods less than 2
minutes). Below that limit, effects due to density stratification in
the atmosphere and gravitational forces cannot be neglected. Such

effects therefore are not germane to the discussion here.

The application of the W.K,B.J. method of solution to the problem
of describing propagation of acoustic disturbances in an atmosphere that
contains two adjacent sound speed channels has previously been discussed
in the literature by Eckart?o who invented the simple method of seeking
a W.K.B.J, model for each of the sound speed channels spearately, then
combining the results rather than treating the problem with a single
model. In the present chapter, Eckart's method is applied and numerically

verified for the case of infrasonic waves in the atmosphere.
4.2 THE W.K.B.J. MODEL

The W.K.B.J. model for propagation of acoustic disturbances in
a single sound speed channel may be considered as an approximation for
the acoustic pressure divided by the square root of the ambient density,

which in general may be expressed as

~§p— = Y(z)e 0t 1kx (4.1)
s}

where w is angular frequency, k is the wave number associated with the
horizontal dimension x, z is altitude. Here Y(z) satisfies the reduced

wave equation,

2 2 )
d“y (A

)__4.+ - k2 l = 4.2

dz2 c2(z) v 0 ( )

where c(z) is sound speed as a function of altitude. The W.K.B.J. approxi-
mation applies in general to all differential equations of this type if the
coeffiefent of ¢ is sufficiently "slowly varying." It would appear in par-

ticular to be valid in the present context provided

ToeT << A - (4.3)



where A is some representative wavelength of interest. This approxima-
tion states that substantial changes in sound speed should not occur
within distances corresponding to a typical wavelength of interest if

the model is to apply.

A particular sesult of the W.K.B.J. approximation is that dispersion

curves (vp vs. w) of guided modes are given by the equation

ztop

-2 _ -2 i - (20t+1)T :
[ -, ] *dz 20 (4.4)
Zbottom :

where vp is phase velocity, n =0, 1, 2, 3, ..., and vhere Zy ottom and
ztop identify the lower and upper bounds of thg sound speed channel,
respectively. This integral is a direct result of the W.K.B.J. method

of solution21, and its nuzmerical solution enables the plotting of disper-

sion curves.

4.3 COMPARISON OF DISPERSION CURVES

Particular insight into the high-frequency behavior of guided in-
frasonic modes was gained when the above integral was solved nurmerically
by computer for both the upper and lower channels, the model atmosphere
being that given in Fig.l7. The resulting dispersion curves computed in
this manner are shown in the lower portion of Fig 19. One set of curves
(the dashed curves) is appropriate to the W.K.B.J. model for the lower
channel and the other set (the solid curves) is appropriate to the W.K.B.J.
model for the upper channel. In the upper portion of the same figure
are shown again dispersion curves as generated by the computer model
INFRASONIC WAVEFORMS. It should be mentioned that the computer model.
solves a2 more complex problen in the sense that the simplifications in-

herent in the W.K.B.J., model are not present.

As is illustrated in the lower porfion of Fig.19, the two sets of
dispersion curves generated by the W.K.B.J. models intersect with one
-another at various points. A comparison of the dispersion curves shown

in both the upper and lower portioms of Fig. 19 reveals that these points
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of intersection mark regions of resonant interaction in the phase velo-~
city-angular frequency plane between adjacent modes of the computer model.
To better illustrate this observation, in the right hand portion of Fig. 20
is shown one such region of interaction with its corresponding point of
intersection between two dispersion curves of the W.K.B.J. models shown

to the left., It should be mentioned that the dispersion curves of the
computer model never intersect with one another. An analytical explana-

tion of this fact has previously been given by Pierce?2,

4.4 INFERENCES CONCERNING ENERGY VERSUS HEIGHT DISTRIBUTION

The above observation may be stated differently by saying that, for
relatively high angular frequencies, the dispersion curve corresponding
to a given mode of the computer model is comprised of portions of dis-
persion curves from both sets of the curves generated by the W.K.B.J.
models. Two important inferences about the asymptotic high-frequency
behavior of guided infrasonic modes can be drawn from this statement.
First, for some frequency rangés, and depending on how dispersion curve
portions match between cu%ves of the computer model and the W.K.B.J.
models, it can be inferred that the acoustic energy associated with a
given mode is comprised of energy associated more with propagation of
acoustic disturbances in one sound speed channel than in the other.

Also, as frequency increases, this association alternates back and forth
between channels. To illustrate, if, for a small range of frequencies,

a portion of a dispersion curve of the computer model matches (in the
phase velocity-angular frequency plane) a portion of one of the W.K.B.J.
medel curves for the upper‘channel, then that implies that, for that

mode and for that small frequency range, the acoustic energy density
associated with that mode is greater in the upper channel than in the
lower channel. Secondly, in the standard reference atmosphere, the

sound speed minimum for the upper channel is less in magnitude than the.
sound speed minimum for the lower channel. It can be inferred, therefore,
that those acoustic disturbances for which phase velocities are less in
magnitude than the sound speed minimum for the lower channei are associlated
more with acoustic energy trapped in the upper channel than in the lower
channel, and thus, for this reason, do not contribute significantl& to

the acoustic energy at the ground. This inference implies that care must
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curves are nearly the same except in the region of resonant
~ interaction. : '
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be taken as to which odes are chosen to superpose in the attainment of

the final pressure waveforn at the ground, as some may not contribute.

4.5 IMPLICATIONS FOR WAVEFORM SYNTHESIS

In the previous synthesis of guided pressure waveforms at long dis-
tances, the acoustic modes were numbered in order of increasing phase
velocity (i.e., SO, S1, S2,..., etc.) and the sum over modes was truncated
at a finite maximum nusber of modes. The analysis given here indicates
that this may be a very poor approximation for synthesizing high frequency
portions of waveforms observed near the ground since there is always some
frequency above which the first, say, N modes all correspond to channelling

in the upper sound speed channel.

The preferable alternative would appear to be (for synthesis of ground
level arrivals from sources below 50 km altitude) to ignore the upper

sound speed channel cozpletely for frequencies above, say, at least 0.2
rad/sec (possibly 0.1 rad/sec) corresponding to periods below at most

30 sec (possibly 1 min). - The dispersion curves could then be taken as
given by the W.K.B.J. approximation and the mode amplitude versus height
profiles could be computed by the method' outlined by Haskell. The Dis-
persion curves and amplitudes so computed would fit directly into the
general scheme outlined by Pierce and Poseyl which forms the theoretical

basis for the current version of INFRASONIC WAVEFORMS.



Chapter V

EXTENSION OF INFRASONIC WAVEFORMS TO INCLUDE

DISTANCES BEYOND THE ANTIPODE

5.1 INTRODUCTION

Previous theoretical considerations iIncorporated into the digital
computer program INFRASONIC WAVEFORMS restricted synthesis to waves that
had traveled less than one-half the distance around the earth. The pur-
pose of this chapter is to further exemplify techniques to enable computer
synthesis of»aéoustic—gravity pressure waveforms at points whose distances
are greater than halfway around the world from a nuclear explosion.
Extension of prior theory shows that for wave propagation past a point on
- a spherical earth, one-half the great circle distance away from the point
of detonation (i,e., the antipode), a phase shift.of 7/2 radians to the
Fourier transforms of each modal wave 1s incurred. Modification to the
comﬁuter program necessitates the reinterpretation of the great circle
distance r, the inclusion of the 7/2 phase shift, and a modification to
the earth curvature correction factor. Computations are presented for

pre and post antipodal waveforms.

5.2 THEORETICAL CONSIDERATIONS FOR POST ANTTIPODAL WAVEFORMS

In considering acoustic-gravity waves that have passed beyond the
antipode, certain specific definitions for the various waveforms must be
adopted. To an observer located on the surface of a spherical earth be-
tween the source and the antipode the pressure waveform that is first ob-
served is the direct arrival or A, arrival. The A, arrival has traveled
the shortest great circle distance r to reach the observation point. The
next waveform observed at the above observation point is the A2 or antipo—
dal arrival, The A2 arrival has traveled the longer great circle distance
from the explosion point around the glove passing through the antipode to
reach the observation point. The A3 arrival is the Al pressure waveform

that has traveled completely around the globe with respect



to the observation point. Further arrivals exist but are not considered
here. The distance r is nmeasured in kilometers and is the great circle
distance measured froz the detonation point to the final observation
point. Figure 21 shows some typical pressure waveforms recorded in subur-
ban New York for the Russian explosion of 58 megatons at Novaya Zemlya

on 30‘October 1961.23

Previous numerical syntheses of acoustic-gravity waveforms have
only considered direct arrivals. The extension of this theory to include
waveforn prediction for antipodal arrivals is described here. An inves-
tigation of a small region of the earth's surface in the vicinity of the
antipode where prior theory breaks down yields certain waveform charac-
teristics that enable waveform synthesis to be extended to ranges past
the antipode. By taking the antipodal region small in area than say
1/100th of the earth's area as a whole we can consider this region to
be flat. Then the equation governing propagation of any frequency in
any guided mode near the antipode is the cylindrical wave equation in
the form of -

2’F/or + (1/t,)8F/3r, - (lez)azF/atz =0 (5.1)

where F would represent the rp and t dependent part of the integration
kernal for synthesization (i.e., integration over frequency of any
given modal waveform where the height dependent part is omitted here) «

The quantity V_ is the corresponding phase velocity. The assumed cir-

cular symmetrypof the wave about the antipode is inherent in the absence
of the angular derivative terms in the above equation. Thé distance r,
is measured positive out from the antipode. The wave solution to Eq.
(5.1) for the total acoustic pressure p and small r, can be written for
time t as ‘

A

F = DJ,(kry)cos(ut+e) - (5.2)
For the above, k = w/Vp represents the horizontal wave number, w the
angular frequency, and € some phase angle. The quantity D is some arbi-

trary constant while Jo(krA) is the Bessel function of zero order.
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When rA is suffienciently large (i.e., greater than three wavelengths)
- a solution for the total acoustic pressure p can be considered as a sum
of ingoing and outgoing waves with respect to the antipodal region. The

/
asymptotic solution for large k;A can be written for time t as

= -1/2

F A(rA) cos(wt+krA+ ¢in)
. (5.3)
-1/2

+ B(rA) cos(wt—krA+ $out’
In Eq. (5.3) ¢ is some phase angle while w and k are as previously defined.
The plus sign in the argument of the cosine denotes an ingoing wave.
Equation (5.3) is not defined at r

A
amplification is predicted. Figure 22 {llustrates waveform amplification

= 0 and,as r, approaches zero, wave

approaching the antipode for three different values of r for a ten mega-

ton nuclear explosion. The antipode 1s reached when r = 20,000 km.

Realizing that Eqs. (5.2) and (5.3) should represent the same pre-
sure waveform at large r, we can now show the existence of a phase differ-
ence between waveforms approaching and leaving the antipode. For large
¥, the Bessel function Jo(kpA) can be represented by its asymptotic

approximation such that Eq. (5.2) becomes
1/2
F = D(2/w;Ak) cos(k#A—w/4)cos(wt+e) - (5.4)
or with the ald of trigonometric identities as

F I=-§-D(2/1rrAk)1/2 [cos(wt+e+krA-w/4)

(5.5)
+ cos (wtte-kr, +m/4)]
Equating (5.3) to (5.5) then requires that
A =3 =D/(ml/? (5.62)
Oin = €~ /4 (5.6b)
¢ f e+ w/4 (5.6c)

out
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out = ¢in + /2 .7

The latter shows that a pressure waveform undergoes a phase shift of 90
degrees. Based on this knowledge the computer program has been altered
to synthesize pressure waveforms for the A2 arrival that passes through

the antipode,

5.3 MODIFICATIONS TO INFRASO&IC WAVEFORMS FOR POST ANTIPODAL WAVEFORMS

Waveform synthesis for ranges beyond the antipode necessitates only
minor adjustments to the computer program. By considering the theoretical
development of Brune, Nafe, and Alsop (1961)24for circular spreading of
wav;; over a spherical surface of radius ry (i.e., ry = 6374 km for earth)
the amplitude correction factor for the curvature of a spherical earth,
appearing in subroutine TMPT, 1s altered for post antipodal waveforms by
replacing the term sin(r/r.) by its absolute magnitude, where.r is inter-
ﬁreted as the total distance the wave has traveled from the point of
detonation. For post antipodal arrivals considered here r would be between

T, and 2y, kilometers. The earth curvature correction factor in subroutine

TMPT appearing as

CF = (1./(6374. * SIN(RAD)))**0.5 o (5.8)
is replaced fof post antipodal waveforms by

CF = (1./(6374.%ABS(SIN(RAD))))**0.5 | - (5.9) |
where ROBS = r and

RAD = ROBS/6374. ' (5.10)

To accomodate the change in phase as the waveforms pass through the anti~

pode two computer cards of the form

PH2 = PH2 + 1.570796 (5.11)



are inserted in the deck listing of subroutine TMPT after lines 160 and
177.

After incorporating the above modifications into subroutine TMPT
the computer program was then utilized to synthesize various theoretical
waveforms. Using the Soviet shot of 30 October 1961 as the source, a
phase shift upon passing through the antipode is exhibited in Fig. 23
for two observation ranges of a synthesized pressure waveform. Further
dispersion beyond the antipode of the pressure waveform is shown in ‘
Fig. 24 for a ten megaton explosion. A comparision of antipodal arrivals
for a computer synthesiéed pressure waveform and a microbarograph recorded
by Donn and Shaw in suburban New York5 for the 58 megaton Soviet test is
presented in Fig. 25. Considering the scattering in waveforms that can
occur at such large arrival distances, it is not unreasonable to say that
the amplitudes and typical periods of the two plots are of the same order

of magnitude,
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Chapter VI.

CONCLUSIONS AND RECOMMENDATIONS

4.1 REMARKS CONCERNING INFRASONIC WAVEFORMS

The new version of INFRASONIC WAVEFORMS contained in this report
(Appendix A) allows for the computation of waveforms which have propa-
gated past the antipode znd for the computation of waveforms including

leaking modes. Our recarks here concentrate on the latter modification.

If one chooses a model atmosphere in which the sound speed is con-
stant above some arbitrary large height, it is inevitable that the GR0
and"GR1 modes should have lower cutoff frequencies and be leazking below
that altitude. Beyond z certain point, one woqld expect that the compu-
tations should be independent of this choice of height, provided the
analysis were carried through with some degree of exactitude. If there
were a genuine sensitivity, this would indicate that these modes carry
an appreciable fraction of their energies at high altitudes and this
would in turn suggest that the neglect of physical dissipative mechanisms
(such as viscosity and therczal conduction, Joule heating, etec.), which
increase dramatically at extremely large heights for the frequencies of

interest here, is not a valid approximation.

‘The reason we cannot taie the bottom of our upper halfspace to be
arbitrarily large is that some modal height-amplitudes decrease\exponen~
tially at large altitudes. This exponential decréase implies that, if
one attempts to calculate the transmission matrix [R] connecting variables
at the bottom of the upper halfspace to those at the ground, then the
elements of [R] are goirg to be extremely large and the mathematical
theorem that the determinent of [R] be 1, while true in principle, is not
going to be satisfied for the actual numerical values computed because
of the loss of significent figures. The net result is such large
fluctuations in the eigenmode dispersion function due to round-off

errors that it is impossible to determine its roots. This problem



always arises at“sufficiently high frequencies when the upper halfspace
bottom is taken too high.

In Chapter III, a simple expedient for circumventing this difficulty
is dmplicitly described. One uses one atmosphere for low‘frequencies,
another atmosphere for higher frequencies. The atmosphere for the higher
frequency calculations has its halfspace beginning at, say, 125 km alti-
tude while the atmosphere for the lower frequency calculations has its
upper halfspace beginning at, say, 225 km. Given the premise that, for
the GRO and GR1 modes (which appear to be the only modes for which we have
problems at low frequencies), the energy is ducted below 125 km, the
temperature above 225 km can be made as large as one desires without chang-
ing the answers. Thus one simply chooses this temperature to be so large
that the lower cutoff frequencies for the two modes are, for all practical
purposes, zerc. In this manner one can construct the phase velocities
and source free amplitude functions versus frequency for these modes
down to arbitrarily small frequencies.

Another question is whether or not the kI (imaginary part of wave-
mumber) for the leaking modes are physically meaningful. They obviously
would be meaningful were the actual atmosphere terminated by an upper
halfspace and were there no physical dissipation mechanisms. However,
the actual atmosphere is more complicated than this model and one has
to accept the fact that (1) an approximate atmosphere is going to give
rise to approximate answers and (2) that the values of the kI are going
to depend on the choice of the bottom height of the upper halfspace.

Thus the’kI are really somewhat arbitrary. Fortunately, the values of
the kI so0 derived are very small, at least for the example we have numeri-
cally carried out, that the computed waveforms are almost the same as

‘if the kI were identically zero.

With the above remarks in mind, it is recommended that the calcula-

tions of the kI for the GR, and GRl modes below cutoff not be carried out

0
in the synthesizing of waveforms, Rather, one should either set the kI

for frequencies below cutoff as given in our numerical example or to

2310-10 (i.e., for all intents and purposes, zero). The reason the kI



should not be set identically to-zero is that the computer program uses
the nonzeroness of kI as a flag to decide whether to look for an input
value of AMP (source free amplitude) or to compute the number internally
(it can't do this at frequencies below cutoff and will consequently
return AMP = 0), W¥hile this may seem a rather simple thing to do, con-
sidering the elaborate mathematical theory developed2 in Scientific

Report No. 1, the analysis and computations which preceded the formula-

tions of this recomrendation were necessary, if only to establish that

the procedure has some rigorous mathematical basis.

In any event, it is evident that one must and should include con-
tributions from the frequencies below the nominal low frequency cutoff
(determined by the upper halfspace) if one is to adequately synthesize
the initial portions of waveforms. The present report shows how this
nmay be done. The procedure, although requiring several (three, in
general) runs of the program rather than just one run to accomplish
this, is relatively'straightforward. It is obviously feasible to auto-
mate this so that only one run is necessary, but the time limitations

of the present study precluded our doing so.

6.2 DISCREPANCY WITH LAMB EDGE MODE THEORY

It was hoped that the inclusion of leaking modes into the multi-
mode synthesis would eliminate the discrepancy between the numerical
predictions of the Lamb edge mode theory and the multi-mode theory.

It is evident, however, from Fig. 16 in the present report that this
was not turned out to be the case. The cause of the discrepancy has
not been resolved and time limitations precluded its resolution.

There is always the possibility that either program may have a mistake.
However, barring this, it should be pointed out that the modified
multimode theory should be the more nearly correct. The Lamb edge mode
theoryl5 contains a number of approximations which the multi-mode
theory does not contain. Consequently, it is recommended that the
nulti-mode model as modified here be used in preference to the Lamb

edge ‘mode model.



The relative simplicity of the edge mode model still retains an
intrinsic appeal and, consequently, it is recommended that some future
effort be expended in revising the model (possibly by including higher-
order terms in the dispersion relation) such that the discrepancy is

resolved.

6.3 GUIDED MODES AT HIGHER FREQUENCIES

The procedure outlined in Chapter IV for using a modified W.K.B.J.
approximation to order the modes and to compute modal parameter at high
frequencies looks eminently feasible and is recommended for inclusion
into the multi-mode synthesis program INFRASONIC WAVEFORMS. Although,
again, time limitations precluded this, we regret not having done so in
the present study. The motivation for doing this, however, is not as
strong as for the low frequency modifications because the commonly avail-
able data in the open literature is markedly poor as regards high frequency
arrivals. If and when such a modification is carried ocut, one should
ideally have appropriate data with which to compare the numerical predic-

tions.

Another problem is that there is some question as to whether a mult-
modal theory with a finite number of modes (even when judiciously selected)
can ever adequately synthesize higher frequency arrivals. In many respects,
we believe that an appropriate modification of a geometrical acoustics

theory would.be preferable,

6.4 GEOMETRICAL ACOUSTICS MODEL

The geometrical acoustics model described3 in Scientific Report No. 2,
although still incompletely developed, appears to hold considerable promise
for the understanding of higher frequency arrivals. We know now how to
take the edge mode into account and how to handle the problem of caustics.
Problems of aretes, lacunae, and wave diffusion from channel to channel
still remain, but we believe these can be overcome with only a modest

amount of additional theoretical effort.



The ultimate objective of the analysis should.be to dévelop the
simplest possible theory sufficient to explain and interpret available
data. .In this‘respect, we would suggest that both the multi-mode and
geometrical acoustical models. While perhaps more elaborate than should
be ideally required, could be used as research tools to conduct numeri-
cal experiments which test simpler models. The statistical models develop-
ed by p. Smith25 for underwater acoustics appear especially attractive
in this regard and we believe that one should be able to test his models
using the geometrical acoustics model described in Scientific Report No.
2. Also, the types of numerical experiments envisioned should provide
the inspiration and support required to refine Smith's models such that
they be capable of a more nearly precise description of infrasonic wave-

forms.
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APPENDIX A

SOURCE DECK LISTING OF THE PRESENT
VERSION OF INFRASONIC WAVEFORMS

This supercedes the source deck listing originally given by
Pierce and Posey in AFCRL-70-0134. Changes incorporated include those
described by Pierce, Moo, and Posey in AFCRL-TR-73-0135 and those

described in the present report.



APPENDIX B

SOURCE DECK LISTING OF

AN ALTERNATE VERSION OF SUBROUTINE TABLE

This version of SUBROUTINE TABLE is used, as described in Chapter III
of the present report, to tabulate listings of Rll and R12 versus angularx
frequency OMEGA and phase velocity VPHSE which are used in calculating the
parametexr o and R for the GRo and GRl modes which in turn are used in
calculating the values of the imaginary component kI of horizontal wave-
number for these modes at frequencies below cutoff. This version of
TABLE should replace the version in Appendix A when a tabulation of R11

and R is desired.

12
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VEGCTOR FOr CCLuUMN, AFTER CCLUMN) FOR. REGION IMN FREQUENCY-
PHASE VELUZITY PLANE (OM1.LC.OMEGA.LE.OMZ.AND.V1.,LE.VYP.LE
«V2) e SUBERGUTINT SUSFCT IS CALLED TC EVALUATE THE SUsPL-
Clon INDEX 5ISUS, OF EACH IMNTERIOR ELEMENT IN THE MATRLIX -

. SCANMNING FRCHM LZFT 70 RIGHT, TOP TO BDTTOH- IF ISUS .NE.
0 », INMODE IS ALTERELO AS FOLLGHS.
ISuUS=41 R2W4 ADZcd ABOVYZ SU)PICIUES,LLtM:NT AND CcOLuMR
AsJ3zu TG ITS LEFT
=2 COCLU~N ALLCED TO RIGHY OF SUSPICIOUS ELEMENT-
A3 KRCHW ADDED ABOVE IT
=3 RCA ALDED BELOAd SUSPICIGUS ELEMENT AND CULUHN
RIDEC TC ITS RIGHT
=4 COLUNNX RJUED TO LEFT OF SUSPICIOUS ELEMENT
AKD =G4 ALDED 8zL0W IT
HOAEVER, NZITHZE THZ MUMBZR OF ROWS NVP NUOR THE NUMBER OF
COLUMMAS NOM WILL E£F INUREALSED BEYOND 100. IF ISUS CALLS
FCrR AN ADDITICNAL RCWH KWHEN NVP = 100 » THE MESSAGE
{NVP = 1G¢C N = XX M = XX} WiILUL 8 PRINTCD.
N IS KOW NO. CF SUSFICIQUS ELEZMENT. ¢ IS COLUMN NO. IF
ISUS CALLS FOR ALIJITIULN OF A COLUMN WHEN NOM = 1008, THC

MCSSAGE (KO = 0L N = XX M = XXy IS PRINTED.
WHEIN INMOUC HAS ESgh EXPANIZD SCANNING IS RESUHZIU AT THE
ELZASNT IN nTH YATRiIX WITH SAME ROW AND CCLUMN MNUS. AS

THQSE OF SUSPICICUS eiEMENT IN OLD MATRIX. IF NUPT IS
PCSITIVEZ INMUTZ wWILbL EE PRINTED AS IT IS RETURNED FROM
MFUUT AND IN ITS FINAL FORM.

L ANGUAGE - FORTRAN IV (322, REFZRENUE MANUAL - (28-6515-4)
AUT!"!GR - J.H-PCSEY’ M.I-T., JUP\Eflg:JB
~===USAGE-=-~

SUBRCUTINES MFCUTySUSPCT,tNGTHNsWICZI N, NMDFN ARE CALLED IN TABLE.

‘FCBTRAN USAGE
CALL TASLE{OML1,0M2sV1 W2 shiM 2P, THITK UMV, INMODE,NOPT)

etk ke sk Rl Raka Ra ks akakatt ik Raks e kakataRakaka s ik Ko kot Rz ks o ReRaRaRa Rz Rk a ka2 R RakakaRakaka)

INFULTS
uML MIRIMLM VALUS CF FXZQULENGCY TO 8E& CONSIOERED,
R* 5%
oM2 MAXIMLM VALUZ C©rF FREGUENY TO d2 CONSIUERED
F*y ‘

12.21%.
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vi
R* & -
vz
R* 4
NOM
I*4
NVP
I*4
THETK
R*b .
NOFT
I*4

OuUTPUTS

NGH
I*4

HVP
I*4

oH _
R*4(D)

v
R*44(D)

IMHODC
I*45(2)

LET INHMODE =
WITH NOM =
AKD O = 1

Vv = 1.

74  CPT=1 FTN 4 .4#R401 75/09/09. 32.21

HINIMUMN VALUZ OF PHASE VELOCITY 7O BE CONSIUERED
MAXINMUM VALUZ OF PHASE VELUCITY TO BE CONSIDERED

INITIAL NU. OF FREQUENCIES TO BE CONSIDERED

INITIAL MU. OF PHAST VELOCITIES TO BZ CONSIDERED

PHASE VELCCITY BIRECTION (RADIANS)
PRINT OUT CPTICK. IF NOPT = -1, NO FRINT; IF NOPT = 1,

INMOCE IS PRINTED IN ITS INITIAL FORM (GENERATED BY MPOUT)
AND In ITS FINAL FORM.

TOTAL NO. OF FREGQUENCIES GONSIDERED

TGTAL MO. OF PHASE VELOCITIES CONSIDERED

VECTOR KR0St ZLEHENTS ARE THE VALUES OF ANGULAR FREQUENCY
CORRESPONIING TO THE COLUNMNS OF THE INMODE MATRIX

VECTOR WHOSZ TLEMENTS ARE THE VALUES CF PHASE VELOCITY
CORRESPONDQING TO THE KROWS OF THE INMCEE MATRIX

EACH ELEMEZINT CF THIS MATRIX CORRESPONDS TO A POINT IN THE
FRIQUENCY (GM) — PHASE VELOGITY (V) FLANE. IF THE NORMAL
MO0z [ISPZIRSICH FUNCTION (FPP) IS POSITIVE AT THAT POINT,
THE ELEMeENT IS +1, IF FPP IS NEGATIVE, THE ELENENT IS -1,
IF FPF DCES NOT EXIST, THE ELEMENT IS 5. INMODE HAS NVP
ROWS AND MhOM CCLUMNS. MATRIX IS STORED AS A VECTOR,
COLUMN AFTEZR COLUMN.

- EXAHMPLEw—=~
=15558:5:;1)=1,-1s=1s1y1,-1,-191s1,41»1
MVYP = 4
2031 e8324652.5 THETK = 3.14159

0’20013.!’14.9 . 7 B

C{VALUES NOT CORRECT, FOR ILLUSTRATION ONLY)

THEN THE TASBLE WILL BZ PRINTEC AS FOcLLOWS.

VPHASE RORHAL H2IS OISPERSION FUNCTION SIGN
1.006G3 -ttt

2.06033 X~

+¥

3.00C08 X==+
4.000CC X==%

OMEGA 1234
PHASE VeELCCITY CIRECTIOM IS 90,0000EGREES

JHEGA =
0.10002€ &

1 6.150C0z 012 0.2G000E 012 0.250668 01
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~==~FROGRAM FOLLCWS BELOW~=~--

EIMERSICH QMUL105), VILE0) ,INHOUDZ (10G00) »DORNI2Z00) ,KORNILO0)
DIMENSICN EPP (2,2
COUMMON IMAX,CI1{133),VXI(1£0) ,VYI(100),HI(100Q)

4POUT IS CALLED TO PRODUCE INNMGDE HATRIX'AND oM ANO V VECTbRS.
CALL HFGUT(Oﬂl,OHZ.V1,V2,hUH,NVP,INHODE,OH,V,THETK)

IFLAG = * INDICATES FIRST TIME THRCUGH WRITE PROCECURE
- IFLAG = 1- . : R

INMOCE I> PRINTED IF HOPT IS POSITIVE
S IFLAG = &

NGFPER=D B : ’ : :
HCPER IS THE NUM3ER OF EXPANSICHN OFERATIONS PERFORMED IN THE PRESENT
SCAN OF TsHib MATRIX, THUS, HNOPER IS THZ NUMBER OF SUSPICIQGUS POINTS
FOUND IN THE PRESENT SCAN. g : : :

BEGIN SCAKMNING OF INTERIOR ELEMENTS OF INMODE IN UPPER LEFT GORNER
N = 2 ~ .
10 CALL SUSPCT(NaM,NVP,INMODE,ISUS)
POINT (N,M) IS SUSFICICYS IF ISUS.AE.O
M IF(ISUS.NEL8) CO TO 60

CHECK FCR END CF RCH
26 IF (B.LT.(N3H4-1)) GO TO 30
CHECK FOx LAST RGW ’
IF (H.LT.(NYP~1)) GO TO &g . - -
G0 TC 121 B -

"MCVE GNWE CGLUMN TQ RIGHT

30 M = M+1 ] . o . e
GO TO 10 - ' t

ADVANCE ONE ROW ARD STARY AT COLUMN THO
46 N = N+1
- H 2
GO TO 138

n

CHECK FCR MAXIMJHA VALUEZ OF RVYP o :
60 IFCGLVYP.LT.W2d3) GD TO 62
61 FORMAT (2%H NVF = 100 N =,13+8H H=,13%
AWRITZ (6,61) NyHM
GO TC 22 .
€2 IF (Y JLT. 18C) GO TO 7¢C
63 FCORMAT(25HM3M = 16GC N=,I3, 8H =,1I3)
64 HWRITZI(z,53) N»¥
GC TG 23 .
70 IF(IoLUS oNE. 1) GO TC 75

e~ = . e e . - TR T T UL
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c .
C ADD ROW ABOVE SUSPICICUS POINT
. N1=N-1
c _
C ADD A COLUMN TO LEFT GOF SUSPICIOUS POINT
M1=M-1
GO TO 100
75 1F(ISUS «NE, 2) GO TC 83
c
C AOD A COLUMN TO RIGHT OF SUSPICIULS PGINT
M1=M
C -
C ~DD ROW ABOVE SUSFICIOUS POINT : o
Ni=N-1 . : _ | o .
GO 70 120 : ' a R A
80 IF(ISUS .NE. 3) 60 TQ 85
c
¢ ADD A COLUMN TO RIGHT OF SUSPICIOUS POINT
Hi M
c : '
C ADD ROW BELOW SUSFICIGUS PJINT - - T
Ni=H : ' - » : T .
G0 TO 100 ' - : o
c :
C ADO ROW BELOW SUSPICIGUS POINT
85 N1=N
c .
C ADD A CGLUMN TO LEFT OF SUSPICIOUS POINT
Mi=M-1
: 100 CONTINUE
CALL LNGTHN(CM,V,INNMCDE, NCH BVF,NVPP N1yl s THETK)
CALL WICENCOMsY,INHODE,NOM,NOMPsNVPP,HM151, THETK)
NVP=HNVPP
NOM=NOMP
NOPER=NOPER#+1
GO 10 10
121 CONTINUE ) : :
IF(NOPER «GTs 0 .AND. NVP oLT. 100 +AND. NOM .LT. 180) GO TO S
c . -
C DC NOT PRINT INMCDE IF HOPT IS NEGATIVE
IF(NOPT LT, 0) RETURH
[ .
C LABELING ' o

122 FORMAT (6H1VPH<t,6X 36HNGRMAL MODE DISPERSION FUNCTION SIGN/)
123 HWR1TE (o0,122)
DO 133 I=1,NVP
DO 128 J=1,NOM
J88=1J=1) *KNVP+ 1]
JB89=1INKNMGOZ(JB88) -1
* IF (J3%) 126,125,124
124 CONTIRUE ’

C IF INMODZ = 5, DGRN = 1HX
CATA Qi/1HX/
DORN(JY = Q1
G0 Y0 127
125 CONTINUE
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JTINE TABLE Thr7h cPT=1% FTN & ,4%R401 75/68/09. 12,21,

C IF INMODE = 1, DORN = 1H+ : - . : - Ll
DATA Q2/1H+/ ' -
DORN(J) = Q2
GO TO 127

126 CONTINUE

- C IF INMODE = -1, DORN = 1H~ S . T - T ! e
DATA Q3/71H-/ o . ' .
BORN(I) = Q3
127 CONTINUE
128 CONTINUE

C PRINT ROW I OF TABLE v
WRITE (5,137VII), (DORN(J), J=1,NOM A - ,
130 FORMAT(1H »F8.5,3%,10UA1) - I : . o
123 CONTINUE. ' B S o B
Jid = 10 5 C T R
Bo 150 J 1 HOM S : L R

C NUMBER COLUMNS _ - e
158 KORN(J) = MOD{(J,J10) : o . o
WRITE (652130 (KURNCJ), J=1,NON) o . - oo

213 FORMAT (oHCOMEGA,6X,16011) : , g =

C CONVERT THETK FROM RADIANS TO DEGREES
x = THETkR*18Jd/2.14159
WRITE (6,413) X
413 FORMAT (1H »11%,27HPHASE VELCCITY UIRECTION IS1F9.3’
1 8HUEGREES )
HRITE (6,513}
513 FORMAT ( B8HAUMEGA —)

o R
| :"7 <l f:..( .

C LIST VALUES OF OMEGA WHICH CORRESPCND TO COLUMNS CF TABLE ' S
KRITE (6,613) (OUM(I),I=1,NO0H) S -
613 FORMAT ( 1H ,5E14.5) - ; ' E

C IF SUSPICIGN ELIMINATION HAS NOT BEEN PERFORMED, 8EGIN IT AT THIS TIHE e
IF(IFLAG.EG.1) GO TO 5 ‘ B
DOLYP= (V2-V1)/ INVP-1) ' ' - -
GMEGK=0H1 : : : -
DELOM= (CM2-041) / (NOM-1)

CO 933 IAA=1,NCHM
- WRITE (6,933) CMEGK

833 FORMAT (1H ,3X,6HOMZGAS,E14.5)

DO 977 JAA=1,NVP
VE=V2+(JAA-1)*COLVP

AKX=0HEGK/VE

AKY=0 40

CALL RRRR{OMEGK,AKXsAKY,EPP,KY)
WRITE (6,944) VESRPP(1,1),R%PP(1,2)

944 FCRMAT (1H 4312.5,6X,E12.5,3X,E12.5)

977 CCNTINUE -

. OMEGK=O0MZGK+DELOM - L

988 CCNTINUE :

RETURN TR -
END
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