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ABSTRACT 

Perturbation techniques are described for the computation of the 

ima!ginary part of the horizontal wave number (kI) for modes of propagation. 

N=erical studies were carried out for a model atmosphere terminated by 

a constant sound speed (478 m/sec) half space above an altitude of. 125 km. 

The GR
0 
 and GR

1 
 modes have lower frequency cutoffs. It was found that for 

frequencies less than 0.0125 radian/sec, the GR, mode has complex phase 

velocity; kI  varying from near zero up to a maximum of 3 x 10 -4  with 

allalogous results for the GR0  mode. There is an extremely small frequency 

gap for each mode for which no poles in the complex k plane corresponding 

to that mode exist. These mark the transition from undamped propagation 

to damped propagation. In the complete Fourier synthesis, branch line 

contributions compensate for the absence of poles in these gaps. Computa-

tional procedures are described which facilitate the inclusion of the low 

frequency portions of these modes in the waveform synthesis. 



INTRODUCTION 

One of the standard mathematical problems in acoustic wave propagation 

is that of predicting the acoustic field at large horizontal distances 

from a localized source in a medium whose properties vary only with height. 

This problem, as well as its counterpart in electromagnetic theory, has 

received considerable attention in the literature, ) is reviewed extensively 

in various texts 2-7 , and, for the most part, may be considered to be well 

understood. 

A typical formulation of, say, the transient propagation problem 8-9 

 leads (at sufficiently large horizontal distance r) to an intermediate result 

which may be expressed as a double Fourier integration over angular frequency 

w and horizontal wave number k; i.e. for, say, the acoustic pressure, one 

has 

am 	 oo 

p = S(r) Re cf(L.)e
-iwt 

[Q/D(w,k)]eikr  dkdw 
. 

o 	co 

(1) 

Here S(r) is a geometrical spreading factor, 1/3 7i7-  for horizontally stratified 

media, 1/[a sin(r/a )]
1/2 if the earth curvature (a

e
=radius of earth) is to 

be approximately taken into account. The quantity f(w) is a Fourier transform 

of some function characterizing the time dependence of the source; Q(w,k,z,z
o
) 

is a function of receiver and source heights z and zo 
as well as of w and k, 

possibly also of horizontal direction of propagation if, say, winds are included 

in the formulation, but, in any event, should have no poles in the complex 

k plane for given real positive w, and given z and z o . The denominator D(w,k) 

is independent of z and z
o
, may be zero for certain values k (0 of k, and is 

termed the eigenmode dispersion function.  

Typically, in order to uniquely specify both Q and D(w,k) for all complex 



values of k (given w real and positive), branch points must be identified 

and branch cuts must be placed in the complex k plane. The general rule 

may be taken to be that no branch cut should cross the real axis, and, if 

a branch point should lie on the real axis (when w is positive real), the 

branch cut either extends into the upper or lower half plane depending on 

whether the branch point moves up or down when w is given a small positive 

imaginary part. The integration contour for the k integration goes nominally 

along the real axis but skirts below or above (see Fig. la) those poles 

lying on the real axis which move up or down, respectively, when w is given 

a small positive imaginary part. The placing of the branch cuts and the 

selection of the contour in this manner is one method of guaranteeing 

causality in the solution, or, equivalently, of guaranteeing that the solution 

dies out at large distances if a slight amount of damping (Rayleigh's virtual 

viscosity) is added in the mathematical formulation. The necessity of branch 

cuts only occurs if the medium is unbounded either from above or below and 

a choice of phases can always be made such that (given, say, that the medium 

is unbounded from above) Q dies out exponentially as z 0. when w has a small 

positive imaginary part and when k is real. 

The so—called guided mode description of the far field waveform arises 

when the contour for the k integration is deformed (permissible because of 

Cauchy's theorem and of Jordan's lemma
10

) to one such as is sketched in Fig. 

lb. The poles above the initial contour are encircled in the counterclockwise 

manner. There are also contour segments which encircle each branch cut lying 

above the real axis in the counterclockwise sense. The integrals around each 

pole are evaluated by Cauchy's residue theorem and one is left with a sum of 

residue terms plus branch line integrals. Each residue term may be considered 

as corresponding to a particular guided mode of propagation. The branch line 

contributions in some contexts are considered as corresponding to what may 

be termed lateral waves. 11  (The term may be unappropriate unless there is a 
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1. Contours in the complex k (wavenumber) plane for evaluation of individual 

frequency contributionS to waveform synthesis, (a) Original contour. (b) 

Deformed contour. 



sharply defined interface separating two types of media, such as a water-

muddy bottom interface in shallow water propagation.) 

In regards to the guided mode description, one type of approximation 

frequently made is to neglect all poles (i.e. roots k n (w) of D(wA))
,  which are 

above the real axis, the argument being that the corresponding e
ikr 

factors 

in the residues will die out rapidly with increasing r, the bulk of the con-

tribution at large r expected to come from the poles which lie on the real 

axis. In a similar manner, it is argued that the branch line contour con-

tribution also dies out relatively rapidly (a factor of 1/r
3/2 in addition to 

the geometrical spreading) so it too may be neglected at large r compared 

to the terms coming from the real roots. The net result for Eq. (1) would then 

be 
tin 

p = S 1 (r) AA(w) cos[wt-k (0r44 (01 dw n 

Y'L 	6.3 

(2) 

where An (w) and ¢ n (w) are defined in terms of the magnitude and phase of the 

residues of the integrand in Eq.(1); the kn (w) being the real roots of 

D(w,k)=0, numbered in some order with the index n=1, 2, 3, etc., and it being 

understood that, for fixed n, kn (w) should be a continuous function of w 

over some range of w from a lower limit wim  up to an upper limit wun. The 

remaining integral over w can then be approximately evaluated by the method 

of stationary phase or integrated by suitable numerical methods. 

In the present paper, a somewhat subtle set of circumstances intrinsic 

to low frequency infrasound propagation in the atmosphere is discussed for 

which the arguments leading to the approximation of Eq.(1) by (2) are not 

wholly valid, even at distances of the order of more than a quarter of the 

earth's circonference. We suspect that comparable circumstances may arise in 

other contexts, but the present discussion is, for simplicity, illustrated only 



by examples from atmospheric infrasound propagation. 

I. INFRASOUND MODES 

An atmosphere model frequently adopted for infrasound studies is one in 

which the sound speed c varies continuously with height z in a more or less 

realistic manner (Fig.2a) but is constant (=c T) for all heights above some 

specified height zT. [If winds are included in the formulation, their velocities 

are also assumed constant in the upper half space, z>z T.] Conceivably, one has 

some latitude in the choice of z T 
and of the upper halfspace sound speed cT, 

although computations of factors such as Q(w,k,z,z 0) and D(co,k) in Eq. (1) 

become more lengthy with increasing z T. Also, it would seem that the most logical 

choice of c
T 
would be that which would realistically correspond to height z T' 

so the profile c(z) would be continuous with height across z T' as in Fig. 2a. 

Another conceivable choice would be one (Fig. 2b) in which c T 
03, such that 

the surface of air nominally at z T 
would be a free surface or pressure release 

surface (corresponding to the model generally adopted for the water-air interface 

in underwater sound studies). A somewhat intuitive premise which may be adopted 

is that, if the source and receiver are both near the ground and if the energy 

actually reaching the receiver travels via propagation modes channeled primarily 

in the lower atmosphere, then the actual value of the integral in Eq. (1) would 

be somewhat insensitive to the choices of zT 
and c

T. 
This, however, remains to 

be justified in any rigorous sense, so we would be somewhat hesitant to take 

cT  = co at the outset. In typical calculations performed in the past, zT  is taken 

as 225 km, cT  is taken as the sound speed (1",  800 m/sec) at that altitude. 

Since one is often interested in frequencies (typically corresponding to 

periods greater than, say, 1 to 5 minutes) at which gravitational effects are 

important, the formulation leading to the infrasound version of Eq. (1) is based 

on the fluid dynamic equations with gravitational body forces and the associated 

nearly exponential decrease of ambient density and pressure with height included. 
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2. Idealizations of model atmospheres (altitude profiles of sound, speed) used 

in acoustic-gravity wave studies. (a) Atmosphere terminated by an upper 

half space with constant sound speed. (b) Atmosphere temperature formally 

:going to infinity at some finite altitude corresponding to a free surface 

(pz0) at that altitude. 
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The incorporation of gravity leads, among other effects, to a somewhat com-

plicated dispersion relation for plane type waves in the upper half space 

when c
T 

is finite, i.e. one can have solutions of the linearized fluid dynamics 

equations for z > zT  of the form8'9 

P/470  = (Constant) e -iwt 
e  ikx e  ikzz 	

(3) 

where the vertical wave number k (alternately written as iG for inhomogeneous 

plane waves) and the horizontal wave number k are related by the dispersion 

relation (neglecting winds) 

2 	 2 	2 	2 	2 	2 	2 	2 
k
z 
= - 	= [03 - 0.1j5i] / c - 	- wB] k / (4) 

, where w
A 

(y/2)g/c, w
B = (y-1) 	are re two characteristic frequencied 

[w
A 

> wB ] for wave propagation in an isothermal atmosphere (g = 9.8 m/s 2 

 is acceleration due to gravity, yz1.4 is specific heat ratio). Here, for 

brevity, the subscript T on cT  has been omitted. For given real positive w, 

real k, one can have k
2 
 positive or negative (G

2 
negative or positive). The 

values of k at which k
z
2  
 or G

2 
go to zero turn out, as might well be expected, 

to be the branchpoints in the k integration in Eq. (1), i.e., synonymous with 

the branch points of G. Along the real axis, G is either real and positive 

(e
ik

z
z 
 or e

-Gz dying out with increasing z) or else G is a positive or negative 

imaginary quantity. In the latter case, the phase of G may be either 7/2 

or -7/2, in accordance with the well known fact that, for acoustic-gravity 

waves, wavefronts may be moving obliquely downwards (negative k z) when energy 

is flowing obliquely upwards. In particular, for 0 < w <
B
, one has G real 

and positive for k in between the two branch points on the real axis, the 

phase of G is 7/2 (k
z 

< 0) on the remainder of the real axis; the two branch 



points are, from Eq. (4), 

	

2 	2 xi 
w[w

A - w ] 

BR 
c[w

2 
- w

2
] 

The branch lines extend upwards and downwards from the positive and negative 

branch points, respectively. [See Fig. 1.] 

The dispersion function D(w,k) in the atmospheric infrasound case can 

be written in the general form 

"j' k)  = Al2R11 A11R12 - R12 

where R
11 

and R
12 are elements of a transmission matrix [R], these depend on 

the atmosphere's properties only in the altitude range 0 to 4r , they are 

independent of what is assumed for the upper half space. In general, their 

determination requires numerical integration over height of two simultaneous 

ordinary differential equations (termed the residual equations8 ' 9 '12 in previous 

literature). They do depend on w and k (or, alternately, on w and phase 

velocity v) but are free from branch cuts, they are real when w and k are real 

and are finite for all finite values of w and k. The other parameters A l2  

and A
11 depend only on the properties of the upper half space (in addition to 

w and k). Specifically, these are given (for the no wind case and with the 

subscript T omitted on cr) 

= gk
2
/w

2 
- yg/[2c

2
] 
	

(7a) 

	

A
12 = 1 - c

2 k2 /w2 	
(7b) 

(5)  

(6)  
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One may note that, since every quantity in Eq. (6) is necessarily real 

when w and k are real (with the possible exception of G), the poles lying 

on the real k axis (real roots of D) must be in the regions of the (w,k) plane 

[or (w,v) plane] where G
2 
>0. Since the integrand of Eq. (1) divided by r 

should vary with z above z
T 

as 
e-GzT 

one may call the corresponding modes 

fully ducted modes. There is no net leakage of energy for such natural mcdes 

into the upper halfspace. If one considers D as a function of w and phase 

velocity v (or simply v), where v = w/k, the locus of real roots v versus w 

(dispersion curves) has (as has been found by numerical calculation) the general 

form sketched in Fig. 3. The nomenclature for labeling the modes (GR for 

gravity, S for sound) is due to Press and Harkrider. One may note from Eq. (4) 

that there are two "forbidden regions" in the v vs. w plane, i.e. 

v < c[w
2 
- w

2
] / [o

2
A 
 - w

2
]

1/2 

for w < w
B 

and 

2 
v > c[w

2 
- w

2
] / [w

2 
- co

A
] 1/2 

 

for w > w
A' 

Within either of these regions G would have to be imaginary and 

there would accordingly be no real roots for v of D(w,v) = 0. In the high 

frequency limit, this simply implies that the phase velocities of propagating 

modes are always less than the sound speed of the upper halfspace, the branch 

points in the k plane are simply at ± w/cT . The low frequency lower phase 

velocity "forbidden region" appears to be due to the incorporation of gravity 

effects into the formulation. However, if c
T 

is allowed to approach co, 

this lower left hand corner region disappears. We have done numerical studies 

on the effects of varying c T  on the dispersion curves. Briefly, the result 

is that the form of the predicted curves for GR0  and GR1  change very little 

(8a) 

(8b) 
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3. Numerically derived plots of phase velocity v versus angular frequency w 

for infrasonic modes in a model atmosphere corresponding to Fig. 2. The 

labeling of modes is with the convention introduced by Press and Harkrider 

(J. Geophy. Res. 67, 3889-3908 (1962). The lines G
2
=0 delimit regions of 

the v versus w plane where a real root of the eigenmode dispersion function 

cannot be found. 
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with increasing cT ; the lower forbidden regions shrink insofar as frequency 

range is concerned and the curves extend to successively lower frequencies. 

Thus we see that the fully ducted modes GR
o 

and GR
1 
both have a lower frequency 

cutoff [wl,  in Eq. (2)] which depends on CT . The larger one makes cT , the 

smaller is this cutoff frequency. 

We thus have the following apparent paradoxes. Given that frequencies 

below w
B may be important for the synthesis of the total waveform, an apparently 

plausible computation scheme based on the reasoning leading to our Eq. (2) 

will omit much of the information conveyed by such frequencies. Also, in spite 

of the plausible premise that energy ducted primarily in the lower atmosphere 

should be insensitive to the choice for c
T' 

one sees that this choice governs the 

cutoff frequencies for certain modes and that certain important frequency 

ranges could conceivably be omitted entirely by a seemingly logical and proper 

choice for cT . The resolution of these paradoxes would seem to lie in the 

nature of the approximations made in going from Eq. (1) to Eq. (2). The latter 

may not be as nearly correct as earlier presumed and it may be necessary to in-

clude contributions from poles off the real axis and from the branch line 

integrals. Even if r is undisputably large, it may be that the imaginary 

parts of the complex wavenumbers are sufficiently small that 
leikri 

 is still 

 not small compared to unity. Also, a branch line integral may be appreciable 

in magnitude at large r if there should be a pole relatively close to the 

branch cut. 



II. ROOTS OF DISPERSION FUNCTION 

In order to understand the manner in which the solution represented by 

Eq. (2) should be modified in order to remove the apparent artificial low 

frequency cutoffs of the CR and GR 1 modes, we first exagrine the nature of the 

dispersion function D at points in the vicinity of a particular mode's dispersion 

curve. The curve vn (w) of phase velocity v versus u for a given (n-th) mode is 

known at points to the right of the lower cutoff frequency wL . Given this, 

one can find analogous curves va (w) and vb (w) for values of the phase velocity 

w/k at which the functions Ril (w,v) and 1112 (w,v) in Eq. (6), respectively, 

vanish. Since there may be more than one such curve in each case, we pick v a(w) 

and vb (w),  such that these curves are the closest of all such curves to the curve 

n(w) for w > wL . One may note, however, that one may apparently define and 

identify va(w) and vb (w) for frequencies much less than wL , simply from analytical 

continuation. 

A premise which we have checked numerically (see Fig. 4) for a specific 

case is that the curves v 
n 
 (u)

' 
 va(w), vb (w) defined above with reference to 

a particular given mode all lie substantially closer to each other than to 

the corresponding curves for a different mode. In retrospect, this is obvious, 

although it took some time for us to realize that it was so. Briefly, the argument 

goes that, if the mode is predominantly guided in the lower atmosphere, then 

there should be a decay of modal height profiles beyond some point substantially 

lower than zr . Thus, both the p/ 45: and o ov z  profiles for a guided mode 

would have values at zT  substantially less than their peak values at lower 

altitudes. The same would be true for the profiles of the auxiliary functions 

01 and 02 which satisfy the residual equations. Consequently, if guided waves 

are excited, the inverse transmission matrix connecting 0
1 

and 0 2 at the ground 

to those at height zT  would have to have very small [1,2] and [2,2] components. 



GR o  

0.006 	 0.010 

ANGULAR FREQUENCY (radial/sec) 

0.014 0.002 

r: 

0.23 GR, 

0.002 0.003 	 0.010 

ANGULAR FREQUENCY ircd;cniscc.) 

4. Curves in phase velocity (v
n
,v

a
,v

b
) versus angular frequency (w) plane 

along which R11=0  (giving v
a
(4, R12=0  (giving v

b
(4, and D(w,k)=0 

(giving vn (wl. Curves are shown for (a) the GR0  mode and (b) the CR1  

mode. N .te the changes in scale and the relatively close spacing of curves 

corresponding to the same mode. The lines along which G 2=0 are also indicated; 

vn (0 is not a real quantity for w values below the indicated lower cutoff 

frequency. 

0.21 0 .0 I4 



10. 

(Recall that 01  = 0 at the ground.) Since the transmission matrix has unit 

determinant, it follows that elements R12  and Ril  of the transmission matrix 

proper [from height ZT  down to the ground and whose elements appear in Eq. (6)] 

have to be small. 

Given the definitions va
(w) and vb  (w) ' 

 the dispersion relation D=0 for 

a single mode may be written 

2)(a)(v-va) - [A11 	0](43)(v-vb) = 0 	 (9) 

where a = dR11/dv, S = dR
12 /dv

, 
evaluated at v = va and vb' respectively. (For 

simplicity, we here consider D as a function of w and v = w/k rather than of 

w and k.) The above equation may also equivalently be written in the form 

v = va  + (vaTvb )X/[1-X] 

X 
 = ("a) (All G)/Al2 

which may be considered as a starting point for an iterative solution which in 

essence develops v in a power series in va-vb ; G may be considered as a defined 

function of w,v. One starts with v = v a 
as the zeroth iteration, evaluates the 

right:hand side for the value of v to find the starting point for the next 

iteration, etc. The considered procedure should converge provided v a  or vb  

is not near a point at which G vanishes and providing G in the vicinity of va  

or v
b 

is not such that the variable X is close to unity. Among other limitations, 

the iteration scheme would be inappropriate for values of w in the immediate 

vicinity of coL . 

In regards to establishing the general trends represented by the iterative 

type solutions, two relatively general theorems may be of use. These (whose 



proof follows along lines previously used by one of the authors
13  in deriving 

an integral expression for group velocity) are that for real positive w and v, 

R
12 

DR
11

/Dv - R
11 

3R12 /3v > 0 

R
12 

aR
11

/aw — R
11 

DR
12

/aw > 0 

or, alternately, if one inserts Ril  = (a)(v-va ), R12  = (a)(v-vb), he finds 

aa(va  - vb ) > 0 
	

(12a) 

(v - v
b
)(v - v

a
) (aa'-a'a) + aa[v

b 
(v - v

a
) - v

a
' (v - v

b
)] > 0 
	

(12b) 

where the primes represent derivatives with respect to w. The second of these 

should hold for arbitary v in the vicinity of v a  and vb and lead, upon setting 

v = va , v = vb , or v = (vavb' -va'v.1))(vb -va '), along with the use of Eq. (12a), 

to 

vb < 0 (13a) 

va ' < 0 (13b) 

(a/a)" > 0 
	

(13c) 

Equation (12a) implies that as long as a or a do not vanish (which would seem 

unlikely) the two curves va (w) and vb (w) do not intersect. If a and a have the 

same sign the v a  curve lies above the vb  curve; the converse is true if a and a 

increases with w. 

To demonstrate the general utility of the perturbation approach, a brief 

11 



12 

table of values w, va, v
b' 

a, 8, v
(1)

, and v
n 

are given in Table I for the GR 

and GR1 
modes for the case of a U.S. Standard Atmosphere without winds terminated 

at a height of 125 km by a halfspace with a sound speed of 478 m/sec. Here v(1)  

is the result of the first iteration for the phase velocity and v n  is the actual 

numerical result obtained (only if the phase velocity is real) by explicit 

numerical search for roots of the eigenmode dispersion function. One may note 

that, for those frequencies where v
n 

is computed, the agreement between v (1)  

and v
n 

is excellent. A more detailed listing of the perturbation calculation 

results is given in Figs. 5a and b. The plots there give w/k R  or the reciprocal 

of the real part of 1/v
(1) 

(i.e., w divided by the real part of the horizontal 

wave number k) and the imaginary part k I  of k = w/v versus angular frequency. 

Note that kI 
is zero above the corresponding cutoff frequencies. The relatively 

small values of the k
I 
are cc=nented upon in Sec. IV. 

III. TRANSITION FROM NONLEAKING TO LEAKING 

The iteration process described by Eqs. (10) in the preceeding section may 

fail to converge when G is near zero and in any event gives relatively little 

insight into what happens to a modal dispersion curve in the immediate vi-

cinity of wL . To explore this transition region, it would appear sufficient 

to approximate G in Eq. (9) by 

= [(p ) (w -wd + (q)(v_vdi 1/ 2 	 (14) 

where p and q are readily identifiable [from Eq. (4)] positive numbers taken 

Independent of w and v; v
L 

is the phase velocity on the dispersion curve in 

the limit as
L 

from above. The bracketed quantity in Eq. (14) may be re- 

garded as a double Taylor series expansion (truncated at first order) of G
2 
about 

the point w
L' 

v
L 

at which G
2 
vanishes (hence no zeroth order term). The fact that 

both p and q are positive follows since G
2 

is positive to the upper right of the 
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angular frequency in rad/sec, v a  is phase velocity root of R11=0, in 
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11 /dv at v=va 

in sec/km 

8 is dR
12

/dv at v=v
b 

in sec, v (1) is first order perturbation solution for 

phase velocity from equations given in the text (units are km/sec), vn  

is the real root determined by direct numerical solution for zeros of 

eigenmode dispersion function. Note that v (defined only when phase 
n 

velocity is real) agrees exceptionally well with v (1) 
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line in the w,v plane where G2  = 0 and also since the G
2  = 0 line slopes obliquely 

downwards. (See Fig. 3). 

Let us next note that, in the vicinity of the point 0 12  v
L
, the denominator 

D given by Eq. (9) may be further approximated as 

7- (A a-A 6) 	+ pAw) + e(Av + vAw ) 1/4  
12 	11 	

(15) 

where we have abbreviated Av = v-vL' Aw = w -w
L
, v = pig; the quantity p is 

either -dva/dw or -dvb
/dL., the two being assumed to be approximately equal. 

(The use of the minus sign here assumes that p be positive.) The remaining 

quantity c is 

(q 2) (6) (v-vb) 	 (16) 
6A11 

- aA12 

One should note that e depends on v, although, for purposes of initial analytical 

investigation, one may set v = vL 
here. All of the above quantities may be 

considered to be evaluated at w = wL and v = v1,* 
Note that p and v are both 

positive quantities. Furthermore, it should also be noted that v > p since 

the G
2 = 0 curve slopes downwards more rapidly than the lines along which 

R
11 

or  R
12 

= 0 in the v vs Li plane. (See Fig. 4.) 

The roots of Eq. (15) without regard to the sign of the radical are readily 

found to be 

2 - 
= 	+ ()c + e(v-p) 2  [Aw +a] 

where 

a = c 2
/G(v-P7 

Alternately, if 	<< c, the above may be approximated by the binomial 

(17)  

(18)  

theorem to give 



15 

Av = -vAw + [(v-p)
2
/6

2
](Aw)

2 	
(19a) 

or 

Av = +£
2 
- (2p -v) Aw - [(v-p)

2 
 /6

2 
 ](Aw)

2 	
(19b) 

for the upper and lower signs, respectively. The first of these (since Av = 0 

when Aw = 0) is clearly the description of the disperson curve in the vicinity 

of w = wL , v = vL . 

Equation (19a) shows that, as Aw 0 from above, the dispersion curve 

becomes tangential to the line G
2 
= O. The two curves do not intersect. The 

general trend is as indicated in Fig. 6. The solution represented by Eq. (19b) 

is not a proper root of Eq. (15); it corresponds to the wrong sign of the radical 

and accordingly lies on the second branch. Furthermore, one can readily show 

that, for values of Aw slightly less than zero, both roots lie on the second 

branch. Hence, there must be a gap of finite frequency range in which, for 

the choice of branch cuts represented by Fig. 1, there are no poles in the k 

(or v) plane corresponding to the n-th mode. 

To determine the order of magnitude of this frequency gap, it is appropriate 

to consider the trajectory of the second branch roots in some detail and to 

determine just where one of them should cross the branch cut, reappearing on 

the first branch. As long as Av is real and Av + vAw >0 the criterion for a 

root to be identified with the first branch is Av + pAw > O. According to 

Eq. (17), this would automatically place the second root on the second branch 

for all Aw > -a and would place the first root on the second branch for 

-a < Iw < O. Consequently, if either root is to reappear on the first branch, 

it must be at a value of Lw < -a. 

One should note from Eq. (17) that at Aw = -a the two real roots on the 

second branch coalesce. For values of Aw < -a the two roots separate again„but 
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the dispersion curve is tangent to the G
2
=0 line; for frequencies below co L  

down to that corresponding to point B in the sketch there are two real roots for 

v of the eigenmode dispersion function on the second branch. For frequencies 

lower than that corresponding to point. B, there is a complex root for v on 

the first branch (which is the complex conjugate of a second root on the 

second branch). 

6. Sketch illustrating nature of a single mode's dispersion curve in the vicinity 

of the G
2=0 line. At point A (angular velocity to

L' 
 phase velocity v

L
) 



are now complex conjugates. The root in the upper half of the v plane (lower 

half of k plane) can never cross the branch cut so it remains on the second 

branch indefinitely. The one in the lower half of the v plane will cross the 

branch cut at a point which may be approximately estimated as that where 

Re(4v) = -viw or where 

2 
(1/2.) 	c Aw = 

with a corresponding value of Av of 

Av = (e 2 /2) li[v/(v-p)] - 

For subsequent frequencies successively lower than w
L
-2a there is a complex 

root on the first branch with a negative imaginary part which increases with 

decreasing frequency. 

The discussion up to now has assumed that lAvi << IvL-vb i and hence 

that e may be taken as constant. This would seem appropriate for describing 

the transition region since all values of Av of interest in this region are of 

second order of E
2 However, if an improved numerical estimate is required, 

we recommend that one regard Eqs. (16) and (17) as a iterative pair. Success-

fully computed values of Av may be used to recalculate e and the new value of 

e may then be used in obtaining the next higher estimate for Av. 

In Table II the values of w L'  vL , p, q, p, v, e, and a are given for 

the GR
0 
 and GR

1 modes for the model atmosphere corresponding to Fig. 2a. 

The extremely small values of a should be noted. The corresponding plot 

of Av versus 4w (i.e., both branches of Eq.(17)) corresponding to their 

values for the GR
0 
 mode is given in Fig. 7. For simplicity, this is plotted 

in a nondimensional form, i.e. 

V = -{11/[2(v_0]) ; [ 1 	N1/2 	
(20) 

16 

(v-p) 
= 
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GRo GR
1  

wL (rad/s) 

vL  (km/s) 

p(s/kn2) 

q(s/km3) 

1.1 ((m) 

v(km) 

c(1=21/2 1/2
) 

a(rads/s) 

0.0118 

0.31188 

0.14 

1.84 x 10-3 

 2.94 x 10-2  

76 

9.6 x 10
-6  

3.04 x 10
-13 

0.0125 

0.2323 

0.35 

1.86 x 10-3 

4.15 

190 

1.02 x 10-3 

 1.41 x 10-9 

Parameters characterizing the eigenmode dispersion function near points 

in the phase velocity versus angular frequency plane at which the GR
o and 

GR
1 modes undergo transition from leaking to non-leaking. 
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7. Graph of normalized phase velocity versus normalized frequency in the 

vicinity of the point (vL , w
L 
 ) for the GR

0 
 mode. The imaginary and 

real parts are both plotted. The dashed line corresponds to real roots 

on the second Riemann sheet. 
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where v = Av/[2(v-p)a] and 2=Aw/a. Both real and imaginary parts are shown 

on the same graph. The corresponding plots for the GR 1  mode differ only 

slightly from those in the Fig. 7 because of a different value of the para-

meter p/[2(v-p)] in Eq. (20); in. both cases this parameter is small compared 

to unity, i.e. p<<v as may be seen from Table II. 

IV. THE BRANCH LINE INTEGRAL 

Since there is a gap in the range - of frequencies for which a pole 

corresponding to a mode may exist, it is evident that evaluation of the k 

integration in Eq. (1) by merely including residues may be insufficient for 

certain frequencies. Thus it would seem appropriate in such cases to include 

a contribution from the branch line integral. It may be anticipated that such 

branch line integrals are significant at larger values of r only when w. is 

close to some mode's wL  (say the n-th mode), in which case the branch point 

of greatest interest (i.e., that which may have a pole in its immediate vicinity) 

is at k=w/v
L . Consequently, it would appear that an adequate approximation to 

the branch line integral would be 

03 

Branch line 
contribution of 	[Q/D(w,k)]eikrdk 

a°  

f 

Q 	 eikrdk 

Alta Allf3 	x+-v) A w+Ex1/2  

C i 
where the denominator D(w,k) has been approximated by Eq. (15) with the abbreviation 

x for Av+vAw. The quantity outside the integral is assumed to be evaluated at 

w=wL and k=w/vL
. The contour C B  runs down the left side of the branch cut, 

around the branch point (where x=0), and then up the right side. If one next 

changes the variable of integration from k to x, nothing that for small x/v , noting 

k=kB-(w/v
2)x 
	

(22) 

(21) 



he finds approximately that 

	  dx 	 (23) 
x+(p-v)Aw+cx  

Ca  
where (Residue)

o is that residue which the integrand (Q/D)e
ikr 

would be expected 

to have at the n-th mode's pole in the k plane were the parameter c identically 

equal to zero. The mapped contour cg in the x plane may be considered to go 

up on the right and then down on the left of a branch cut extending vertically 

	

downwards from the origin in the x plane. If we set 	then, on the right 

side of the cut, x
12 

should be e-ir/4 C
1/2 

while, on the left side, it is 

-e-in/4
C
1/2

. Consequently, the total integral combines to 
as 

2ce+iw/4 -(w /v
2
)r 

Branch lines 
contribution 	

e L L 	d 

This in turn, with an obvious change of integration variable, may be expressed 

as 0610 

{ 

Branch line 
= (Residue) o 2K 

e
1.7/4

e
-n

n
1/2

dn  
(25) 

contribution) 	 (n-n 1)(n-n2 ) 

where 

K=cv
L
/(w

L
r)

1/2 	 (26a) 

n
2 
= i(K

2
/2)(1+[Aw/2a]) 

± i(K
2
/2)(1+[Aw/c])

1/2 	
(26b) 

with a as defined by Eq. (18). 

In regards to the n integration, the integral can be expressed in general 

in terms of Fresnel integrals of complex argument after some considerable 

mathematical manipulation. One may note, moreover, that ki l l and 111 2 1 are, for 

most cases of interest, considerably less than unity. In this case, the 

appropriate approximate result (derivation omitted for brevity) is 
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-1(w 
L 
 /v2 e 	L)x 

contribution = (ue 
Branch line 	

Resid 

= -(Besidue) 
0 

[-iC+(p-v)Aw]
2
+le

2
C 

a 

(24) 



...' 	e-I V-ri-  do  in 
(27) 1/2 1/2 

ni -"2 
(n-n )(n-n 1 	2 
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where the choice of square root should be such that the imaginary part is 

positive. The net result in this limit then is that the branch line contribution 

is independent of the parameter K. (The dependence on range r comes only in 

the residue.) Thus one may write 

{ Branch line 
= 2ni(Residue)

o 
B
rh

(Lao) 
contribution 

where the function B
rh

(Aw/a) is given by 

B 	= rh 	 1/2 	 1/2 
[1,÷(1/2)-S-2÷-(l+2)

1/2 	+[1+(1/2)n-u+o) 1/2 ] 

Here any consistent choice may be made for the sign of the inner square roots 

but the outer square roots should be taken such that the resulting phases are 

between -n/4 and 3n/4. The quantities in square brackets turn out to be the 

1/2 
squares of (1/1i)[(1+0) 	±1], respectively. The phase restriction then gives 

h (Q) = (I-1-52)
1/2 
 if Q>0 	 (30a) 

= 1 if 0>Q>-2 	 (30b) 

= -i(-S2-1)
-1/2 
 if 52<-2 	 (30c) 

where here all square roots are understood to be positive/ 

To completely describe the transition it is appropriate to add to Eq. (28) 

that contribution (which is zero for 0>Aw>-2a) from the pole on the first branch 

in Eq. (21) which lies in the general vicinity of k=115 1, /vc .'If the pole is 

present, its contribution to the integration over k is 21i times the residue 

(which is not what we have been referring to as (Residue)
o 
unless c is identically 

zero). The evaluation of the residue is moderately straightforward and omitted 

here for brevity. The net result is that 

(28) 

(29) 
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Branch line 	Pole 
contribution 	contribution 

27ri(Residue) O  B rh (Aw,c)+p oz (Aw,G)} 	 (31) 

where the "pole function" P oz (Aw/o) turns out to be given by 

P ok (Aw/6)=1-B rh (Aw/a) 
	

(32) 

We accordingly have the remarkable  (although, in retrospect, not unexpected) result 

that 

Branch line Pole + 	 = 271.(Residue) 
contribution 	contribution 	 o  (33) 

The above gives one a relatively simple prescription for evaluating a given 

mode's contribution to the k integration in Eq. (1). First, all branch line 

integrals are formally neglected. If a pole exists on the first branch, the 

residue which would normally be utilized is replaced by 

LQeikri Qeikr 
Res - 

D 	d'D/dk 
k=pole 

where 

D 
dk = dk (Al2R11-A11R12 )  

-G 	(R
12 

 ) 
dk  

i.e. it differs from the actual derivative of D in that G is formally considered 

as constant. Doing this when w is somewhat removed from the transition region 

near w
L 

should make very little difference since R
12 

is small at values of k which 

are poles. Near the transition, this neglect should almost exactly compensate 

for the neglect of the branch line integral. 

(34)  

(35)  
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A5. Asymptotic high-freeuency behavior of Taided  infrasonic 
mociLls in the aLnoz,chere. Wayne A. Kinney -  (School of 
.Nicchanical Engineering, Georgia Institute of 'Technology, 
Atlanta, Georgia 30332) 

Refinement of previous theoretical formulations and numer-
ical computations of pressurc waveforms as applied to at-
mospheric traveling infrasonic wat -es could include a descrip- 
tion of their asymptotic behavior at high frequencies. In the 
present paper, calculations based on the W. Ic13. J. approxi- 
mation and similar to those introduced by Haskell (J. Appl. 
Phys . 22, 157-167 (1951)] are performed to describe the 
asymptotic behavior of infrasonic guided modes as generated 
by a nuclear explosion in the atmosphere. The results of 
these calculations are then matched onto numerical solutions 
which have teen given by ilarkrider, Pierce and Posey, and 
others. It is demonstrated that the use of these asymptotic 
formulas in conjunction with a computer pro r;Tani which 
synthesizes infrasonic pressure waveforms has enabled the 
elimination of problems associated with high-frequency trunca-
tion of numerical integration over frequency. In this way, 
small spurious high-frequency oscillations in the computer 
solutions have iNeeti avoided. [Work sponsored by Air Force 
Cambridge Research IAboratory.] 



Recently, Allan D. Pierce, Christopher Y. Kapper and Wayne A. Kinney 

at the Georgia Institute of Technology have been working to refine a computer 

program which synthesizes infrasonic pressure waveforms at the ground as 

generated by large explosions in a wind- and temperature- stratified atmos-

phere.
1 

Shown in Fig. 1 are three such pressure waveforms along with the 

modal waveforms from which each of the three individual total waveforms has 

been superposed. Corresponding to each modal waveform is a particular disper-

sion curve (i.e., a plot of phase velocity versus angular frequency). Any 

given dispersion curve defines what is referred to as a mode. Fig. 2 shows 

dispersion curves as they are generated by a portion of the computer program. 

The labels given to these correspond to the labels given to the modal wave-

forms in Fig. 1. 

Due to temperature stratification, the earth's atmosphere possesses 

sound speed channels with associated relative sound speed minima. Fig. 3 

shows a standard reference atmosphere wherein two such sound speed channels 

are indicated; one with a minimum occurring at approximately 16 km altitude 

and the second with a minimum occurring at approximated 86 km altitude. 

Given the presence of such a channel, an acoustic ducting phenomenon can 

occur, as is demonstrated in, Fig. 4, wherein the energy associated with an 

acoustic disturbance can become trapped in the region of a relative sound 

speed minimum.
1 

It is this mechanism of propagation only that is of interest 

here. 

In the computer program, the computation of modal waveforms involves 

the numerical integration over angular frequency of a Fourier transform of 

acoustic pressure where this integration is truncated at the high-frequency 

end. 1 
It has been speculated that this abrupt truncation leads to the 
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generation of what might be called "numerical noise" in the computer output. 

It was felt useful, therefore, to extend this integration beyond the heretofore 

upper angular frequency limit by means of some appropriate high-frequency 

approximation. 

The approximations associated with the W.K.B.J. method of solution
2 

apply to the analytical model on which the computer program is based at fre-

quencies above approximately 0.1 radian/sec. Below that limit, effects due 

to density stratification in the atmosphere and gravitational forces cannot be 

neglected. 	Such effects therefore are not germaine to the discussion here. 

To the best of the authors' present knowledge, the application of the 

W.K.B.J. method of solution to the problem of describing propagation of 

acoustic disturbances in an atmosphere that contains two adjacent sound speed 

channels has not been approached in the literature to date in the manner to 

be presented. To he specific, the approach taken here is to seek a W.K.B.J. 

model for each of the sound speed channels separately, then to combine the 

results rather than to treat the problem with a single model. 

The W.K.B.J. model for propagation of acoustic disturbances in a single 

sound speed channel consists of solving for the acoustic pressure divided by 

the square root of the ambient density expressed as 

P 
- ip(z)e

-iwteikx  

P o 
2 

where w is angular frequency, k is the wave number associated with the hori-

zontal dimension x, z is altitude, and where ip(z) satisfies the reduced wave 

equation, 



	

2 	2 

	

d 	w 	2 
IP 	= 0 k 

dz
2 
	c2  (z) 

[ 

where c(z) is sound speed as a function of altitude. The W.K.B.J. approxima- 

tion as applied to this model would appear to be valid provided 

where A is some representative wavelength of interest. This approximation 

states that substantial changes in sound speed should not occur within distan-

ces corresponding to a typical wavelength of interest if the model is to apply. 

Particular insight into the high-frequency behavior of guided infra-

sonic modes was gained when the following integral was solved numerically by 

computer 

z
top 

[777 7-2 dz - 
1 	1 1 2 (n+1/2)7r  

z
bottom 

where v
p 

is phase velocity, n = 0, 1, 2, 3, ..., and where 
zbottom and  ztop 

identify the lower and upper bounds of the sound speed channel, respectively. 

This integral is a direct result of the W.K.B.J. method of solution
2 
 , and its 

numerical solution enabled the plotting of high-frequency dispersion curves. 

In the lower portion of Fig. 5 are shown two sets of dispersion 

curves generated by integrals of the above form; one set (the dashed curves) 

is appropriate to the W.K.B.J. model for the lower channel and the other set 

(the solid curves) is appropriate to the W.K.B.J. model for the upper channel. 
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In the upper portion of the same figure are shown again dispersion curves as 

generated by the computer model. It should be mentioned that the computer 

model solves a more complex problem in the sense that the simplifications inher-

ent in the W.K.B.J. model are not present. 

As is illustrated in the lower portion of Fig. 5, the two sets of 

dispersion curves generated by the W.K.B.J. models intersect with one another 

at various points. A comparison of the dispersion curves shown in both the 

upper and lower portions of Fig. 5 reveals that these points of intersection 

mark regions of resonant interaction in the phase velocity-angular frequency 

plane between adjacent modes of the computer model. To better illustrate this 

observation, in the right hand portion of Fig. 6 is shown one such region of 

interaction with its corresponding point of intersection between two dispersion 

curves of the W.K.B.J. models shown to the left. It should be mentioned that 

the dispersion curves of the computer model never intersect with one another. 

An analytical explanation of this fact is given in reference 1. 

The above observation may be stated differently by saying that, for 

relatively high angular frequencies, the dispersion curve corresponding to a 

given mode of the computer model is comprised of portions of dispersion curves 

from both sets of the curves generated by the W.K.B.J. models. Two important 

inferences about the asymptotic high-frequency behavior of guided infrasonic 

modes can be drawn from this statement. First, for some frequency ranges, and 

depending on how dispersion curve portions match between curves of the computer 

model and the W.K.B.J. models, it can be inferred that the acoustic energy 

associated with a given mode is comprised of energy associated more with propa-

gation of acoustic disturbances in one sound speed channel than in the other. 

Also, with increasing frequency, this association alternates back and forth 
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between channels. To illustrate, if for a small range of frequencies a portion 

of a dispersion curve of the computer model matches (in the phase velocity-

angular frequency plane) a portion of one of the W.K.B.J. model curves for the 

upper channel, then that implies that, for that mode and for that small fre-

quency range, the acoustic energy density associated with that mode is greater 

in the upper channel than in the lower channel. Secondly, in standard reference 

atmospheres the sound speed minimum for the upper channel is shown to be less 

in magnitude than the sound speed minimum for the lower channel. It can be 

inferred therefore that those acoustic disturbances for which phase velocities 

are less in magnitude than the sound speed minimum for the lower channel are 

associated more with acoustic energy trapped in the upper channel than in the 

lower channel, and thus for this reason do not contribute significantly to the 

acoustic energy at the ground. This inference implies that care must be taken 

as to which modes are chosen to superpose in the attainment of the final pres-

sure waveform at the ground, as some may not contribute. 

In addition to providing a new analytical tool, the manner in which 

the W.K.B.J. method of solution has been applied to the two-channel problem has 

clarified the physical interepretation of a mode as defined in the computer 

model. It is hoped that the computer program can now be modified accordingly 

to gain better high-frequency resolution in the pressure waveform output. 
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Appendix C 



PROGRAM MAIN (INPUT,OUTUTirAPE5=TNPUT,TAP6=0WPUT) 
'DIMENSION ZTS(10) 
COMMON VP,I1,NCS,ZI(100),CI(100),ASOL(100),ZLOW,ZUP 
READ(5 ,* )NCS,(1I(I),I=1,NCS).(CT(I),I=1,NCS).VP,7OL,Z0U,NSCAN 
WPITF(6, * )NCS,(ZI(I),I=1,NCS),(CI(I),I=1,NCS),VP.Z9L 1 ZE3U.NSCAN 
P.EA0*,(7TS(I),I=1,10) 
dRITE*,(ZIS(I),I=1,10) 
CALL OASOL 
PRINT*,"ASOL=",ASOL 
00 5 I=1,10 

5 PRINT*,"CSP=",CSP(ZIS(I)) 
CALL INPNT(VPIZOL,ZqU,NSCAN,NRTS,ZLOW,ZUP) 
PRINT*9"NPTS=" 9 NRTS 
CALL SHIFT(ZLO4,ZUTI) 
PRINT*,"ZLOW=".7LCW,"ZUP=".Z1'P 
CALL RANG (TIME,RLNIHI7LOW $ ZUP) 
PRINT' ,"RTIME=",RTIME,"RLNTH=",RLNTH 

= 1 
Z = 71(5) 
CALL DRVTNP(I,Z,VP,DXDVPUOTOVPU,7LON,ZUP) 
PRINT*,"OXOVPU=",CX0VPU,"CT7VPU=" ‘ OTOVPU 
I =-1 
Z = ZI(3) 
CALL 0 -):VTNP(I,Z,VP.OXOVFLOTOVPL I ZLOW,ZUR) 
PRINT*,"0X0VPL=".CXDVPL,"OTOVPL=",OTOVPL 
Z1 = ZI(3) 
Z2 = ZI(5) 
CALL MOLINT(71,Z2.AMXIN,AMTIN) 
PRINT*,"AMXIN=",AMXIN,"AMTIN=",AmTIN 
CALL OSOVP(I,Z,VP,OXDVR,OTDVPIZLOW,ZUP.ANXIN,AMTIN, 

10X0VPT.OTCVPT) 
PRINT*,"0x0VPT="911X0VPT I "DTOVPT=" 9 0TDVPI 
CALL EXIT 
ENO  
SUBROUTINE SHIFT(ZLOW 1 ZUP) 
N = 0 

5 CHKL = CMVP(ZLOW) 
IF(CHKL .LE. 0.0) GO TO 10 
ZLOW = ZLOW + 1.E-8 
N = N+1 
IF(N .GE. 1000) RETURN 
GO TO 5 

10 CHKU = CMVP(ZUP) 
IF(CHK!J .LE. 0.0) RETURN 
ZUP = ZUP - 1.E-8 
N = N+1 
IF(N .GE. 1000) RETURN 
GO TO. 10 
END  
FUNCTION CMVP(Z) 
COMMON VP 
CMVP = CSP(Z) - VP 
RETURN 
END 
SUROUTINE TNPNT(VP,ZBL,Z9U,NSCAN,NRTS t ZA,Z9) 
EXTERNAL CMVP 
DIMENSION GUESS(3,1),ANS(1),FANS(1) 
COMMON VPC 
VPC = VP 
DELTA = (ZOU - 7BL)/(NSCAN + 1) 
F1 = CMVP(ZBL) 
Zi = ZRL 
NRTS = 0 

10 Z2 = Zi + DELTA 



F2 = CMVP(Z2) 
,TEST 	= 	F1 *F2 
IF(TEST 	.GT. 	0.0) 	GO 	TO 	15 
GZ 	= 	Z1 	- 	F1*DELTI/(F2 	• 	F1) 
GUESS(191) 	= 	GZ 
SUE SS(2,1) 	= 	Z1 	- 	1.E-6 
GUESS(3,1) 	= 	Z2 	+ 	1.E-6 

CALL 	ZAFUP(1,GUESS,10,1.E.•7,1.'T-7,CMVP,-1,ANS.FANS) 
NRTS = NRTS + 1 
IF(NRTS 	.ED. 	1) ZA = 	ANS(1) 
IF(NRTS 	.EQ. 	2) = 	ANS(1) 
IF(NRTS 	.E0,. 	2) GO TO 	20 

15 Z1 	= 	Z2 
Fl 	= F2 
IF(ZAU 	.GE. 	71) GO TO 	10 

20 RETURN 
END 
SUBROUTINE RANG (RTIME,RLNTH,ZLOW I ZUP) 
EXTERNAL ROTOZ,RDX07 
RTINIE = RAINT(ROTC7,7LOW,7UP) 
RLNTH = RAINT(RDXCZ I ZLOW,ZUP) 
RETURN 
ENO  
SUBROUTINE DASOL 
COMMON VP9I1.NCS97I(100),CI(100).ASOL(100) 
N = 1 
DELI = 1.0 
DELC = 0.0 
AKM2 = 0.0 
ALM2 = 0.0 
AKM1 = 0.0 
ALMi = 1.0 
NSTP = NCS - 1 

	

10 DELZP = ZI(N+1) 	ZI(N) 
DELCP = CI(N+1) ••• CI(N) 
ALPHA = OELZ 
GAMMA = DELZP 
`SETA = 2.0*(ALPHA f GAMMA) 
DEE = (OELCP/OELZP) - (OELC/DELZ) 
IF(N .EQ. 1) GO TO 30 
AK = (DEE 	ALPHA*AKM2 	qETA*AKM1)/GAMMA 
AL = ( - ALPHA*ALM2 - BETA*ALM1)/GAMMA 
IF(N .EO. NSTP) GC TO 100. 
AKM2 = AKM1 
ALM2 = ALMi 
AKM1 = AK 
ALM1 = AL 

30N=N+1 
OELZ = DELZP 
OELC = OELCP 
GO TO 10 

.00 ASOL(1) = 0.0 
ASOL(2) = -AK/AL 
OELZ = 1.0 
DELC = 0.0 
N = 1 

	

10 OELZP = ZI(N+1) 	ZI(N) 

	

OELCP = CI(N+1) 	CI(N) 
ALPHA = OELZ 
GAMMA = DELZP 
BETA = 2.0*(ALPSA + GAMMA) 
DEE = (DELCP /DELZP) - (DELC/DELZ) 
IF(N 'E(). 1) GO TO 130 
M = N + 1 



ASOL(M) = (DEE - ALPHA*ASOL(N-11 	BETA*ASOL(N))/GAMMA 
1F(N 	NSTP) GC TO 200 

130 N = N + 1 
DELZ = OELZ 0 

 DELL = DELCP 
GO TO 110 

200 RETURN 
END  
FUNCTION CSP(Z) 
COMMON vp,I1,Ncs,71(100),c1(100),AsoL(100) 
7_ = Zr(1) 
ZP = ZI(NCS) 
IF (7_ .LT. ZL) GO TO 50 
IF (7 .GT. ZP) GO TO 60 
I = NCS 

10 J = I-1 
ZTEST = ZI(J) 
IF (7 .GT. ZTEST) GO TO 40 
T = J 
GO TO 10 

40 CONTINUE 
Z IS BETWEEN 7_I (I-1) AND 7_I (I) 
DELZ = 7_I (I) - ZI(J) 

= (7 - 7I(J))/DELZ 
WBAR = 1.0 - N 
TERM1 = wfw?*ci(,J) + W*CI(I) 
GUT1 = W3AR**3 - WBAR 
GUT2 = W 4  *3 - W 
TERM2 = (E?ELZ**2)*(ASOL(J)*GUT1 + ASOL(I)*GUT2) 
CSP = TERM1 + TERM2 
RETURN 

50 CSP = CI(1) 
RETURN 

60 CSP = CI(NCS) 
RETURN 
END  
FUNCTION OCOZ(Z) 
COMMON VP,I1INCS 9 7I(100),OI(100),ASOL(100) 

= ZI(1) 
ZP = ZI(NCS) 
IF(Z .LT. ZL) GO TO 50 
IF(Z .GT. ZB) GO TO 50 
I = NCS 

10 j = I-1 
ZTEST = ZI(J) 
IF(7. .GT. ZTEST) GO TO 40 
I = J 
GO TO 10 

40 CONTINUE 
Z IS BETWEEN ZI(I-1) AND ZI(I) 
DELZ = 7I(I) — ZI(J) 
DELCI = (CI(I) 	CI(J))/DFLZ 
W = (Z 	ZI(J1)/DELZ 
WBAR = 1.0 — W 
TRM3A = ASOL(I)*((3.0 4 1W* 4 2)) - 1.0) 
TRM33 = ASOL(J) 4 ((3.0*(W9AR**2)) - 1.0) 
TRM3 = DELZ*(TRM3A - TRM39) 
DCDZ = DELCI + TRM3 
RETURN 

50 OCOZ = 0.0 
RETURN 
END 
SUBROUTINE ORVTNP(19ZIVP,OXIDVP,OTOVP,ZLOW,ZUP) 
nnmmnm WPA- T1 _mrC-7T f nn _nT I I 11111 _Acni f 1 nni 



EXTERNAL FDTDV',FDXDVP,CMVP 
VPA = V° 
A = ZLJW 
9 = Z 
IF(I .LT. 0) GO TO 100 
A = ZUP 
9 = 
PRINT 4 ,"A=",A 

.00 VPSD = VP**2 
CSPSO = CSP(3)**2 
ONTR = (CSP(0) 31. 0C07(9))*(SORT(VPSO 	CSPSO)) 
TRMOUT = VP/DNTR 
D = 
CALL QUAD(A,171,0,REL,1,AINTX,FDXOTP,NERR,O) 
IF (I .LT. 0) GO TO 200 
1X0V? = -TRMOUT + AINTX 

!00 DXDVP = TRMOUT - AINTX 
CALL DUAD(A,B,D,RFL,1,AINTT,FOTOVP,NERR,O) 
IF (I .LT. 0) GO TO 300 
DTDVP = -TRMOUT - AINTT 

;00 DTOVP = TRMOUT + AINTT 
RETURN 
ENO  
SUBROUTINE MOLINT(71,729AMXIN,AMTIN) 
EXTERNAL FAMXIN,FAMTIN 
A = 71 
3 = Z2 
0 = 1.E-6 
CALL QUAD(A,9,D,REL,O,AMXIN,FAMXIN,NERR,O) 
CALL QUAO(A,9,D I REL,0,A1TIN,FAMTIN,NEPR,0) 
RETURN 
END  
SUBROUTINE OSOVP(I,7 1 VP,OX0VPIDTDVP I ZLOW I ZUP,AMXIN,AMTIN, 

10XDVPT I DTDVPT) 
COMMON VPA,I1,NCS,7I(100),CI(1001,ASOL(100) 
EXTERNAL FOTOVP,FOX0VP,FAMXIN,FAMTIN 
I = 1 
Z = 71(5) 
CALL DRVTNP(I / Z,V 0 ,0X0VPU,OTOVPU I ZLOW 7UP) 
I = -1 
Z = 7I(3) 
CALL ORVTNP(I,Z,VP,DX0VPL,OTOVPL,7LOR,ZUP) 
Z1 = 71(3) 
72 = 7I(5) 
CALL MOLINT(71,72,AMXIN,AMTIN) 
OX0VPT = DXDVPL + AMXIN + OXDVPU 
OTDVPT = DTDVPL + AMTIN + OTOVPU 
RETURN 
END  
FUNCTION FAMXIN(Z) 
COMMON VP,K 
VPSO = VP**2 
CSPSO = CSP(7)**2 
IF (VPSO .GE. CSPSO) GO TO 20 
K = 1 

10 TRM1 = 1.E-50 
GC TO 30 

20 K = 0 
TRM1 = (SDRT(VPSO - CSPSO)) 44- 3 
IF (TRM1 .LT. 1.E-50) GO TO 10 
TPM2 = CSP(Z)*VR 

30 FANXIN = -TRM2/TRP1 
RETURN 
END 



FUNCTION FAMTIN(Z) 
COMMON VP,K 
VPSD = V 0 **2 
CSPSO = CSP(Z)**2 
IF (VPSO .GE. CSPSQ) GO TO 20 
K = 1 

10 TRMA = 1.F-50 
GC TO 30 

20 K = 0 
TR?IA = SQRT(VPSO -CSPSO) 
IF (TRMA .LT. 1.F-50) GO TO 10 
TRM3 = 1.0/(CSP(7) 4- TRNA) 
TRM4 = VPSO/CCSP(7)*(TRNA**3)) 

30 FAMTIN = TRM3 - TRM4 
RETURN 
ENO 
FUNCTION CODZS(Z) 
COMMON VP.I1,NCS.ZI(100),OI(100),ASOL(100) 
ZL = ZI(1) 
ZP = ZI(NCS) 
IF(7. .LT. ZL) GO TO 50 
IF(Z .GT. ZP) GO TO 50 
I = NCS 

10 J = I-1 
ZTEST = ZI(J) 
IF(Z .GT. ZTEST) !O TO 40 
I = J 
GO TO 10 

40 CONTINUE 
IS BETWEEN ZI(I-1) AND 7_I(J) 

OELZ = ZI(I) - ZI(J) 
W = (Z - ZI(J))/DELZ 
WBAR = 1.0 - W 
OCOZS = 6.0*((WPAR*ASOL(J)) 	(W*ASOL(I))) 
RETURN 

50 DCDZS = 0.0 
RETURN 
END 
FUNCTION FDX0VP(Z) 
COMMON VP,K 
CSPSQ = CSP(Z)**2 
VPSQ = VP**2 
OCOZSQ = OCOZ(Z)2 
IF(VPSQ .GE. CSPSO) GO TO 50 
K = 1 

40 ON = 1.E-50 
GO TO 60 

50 K = 0 
ON = OCOZSQ*(SORT(VPSQ 	CSPSQ)) 
IF(DN .LT. 1.E-50) GO TO 40 

60 FDXDVP = (VP4 DCDZS(Z))/ON 
RETURN 
END 
FUNCTION FOTOVP(Z) 
COMMON VP,K 
REAL NMA,NMO,NMC,NM 
CSPSO = CSP(Z)* 4 2 
VPSQ = VP*2 
DCDZSQ = OCDZ(Z)**2 
CSPCUB = CSP(Z)**3 
IF(VPSQ .GE. CSPSO) GO TO 70 
K = 1 

60 ON = 1.E-50 
GO TO 80 



7L, K = 0 
ON = SORT(VPS( 	CSPSC) 
IF (ON .LT. 1.E-50) GO TO 60 
NMA = 1.0/CSP(Z) 
NMI = (2.0*VPSQ)/CSPCUB 
NMC = (VPSQ*OCOZS(Z))/(CSFST,'CCUZSO) 
rlN = NMA - 	NMC 

80 FDTDVP = NM/ON 
RETURN 
ENO 
FUNCTION PDX0Z(7) 
COMMON VP,K 
CSPSO = CSP(Z)**2 
VPS = V°**2 
IF-(CSPSO .LC. VPSQ) GO TO 10 
K = 1 

5 OSQ = 1.E-50 
GO TO 20 

10 K = 0 
DSOC = 1./CSPS0 
OSQV = 1./VPSO 
DSQ = OSOC 	OSOV 
IF (OSQ .LT. 1.E-50) GO TO 5 

20 ROXOZ = (1./VP)/SCRT(OSC) 
RETURN 
ENO 
FUNCTION RDTOZ(Z) 
COMMON VP,K 
CSPSQ = CSP(Z)**2 
VPSO = VP 4 *2 
IF (CSPSQ .LE. VPSO) GO TO 30 
K = 1 

20 OSQ = 1.E-50 
GO TO 40 

30 K = 0 
OSOC = 1./CSPSQ 
DSQV = 1./VPSO 
OSQ = OSOC - OSOV 
IF (OSQ .LT. 1.F-50) GO TO 20 

40 ROTDZ = (1./CSPSO)/SQRT(OSC)) 
RETURN 
END  
FUNCTION RAINT(DSCZR,ZLOW,ZUF) 
EXTERNAL CSOZR 
ZAVE = (7UP + ZLOW)/2.0 
0 = 
CALL QUAO(ZLOW.7AVE,C,REL.1,ANS1,0S0ZR,NERR,O) 
CALL QUAD(ZUR,ZAVE,O,REL.1,ANS2.0SOZR,NERR.0) 
RAINT 	 ANS2) 
RETURN 
END 
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ABSTRACT 

Perturbation techniques are described for the computation of the 

imaginary part of the horizontal wave number (k I ) for modes of propagation. 

Numerical studies were carried out for a model atmosphere terminated by 

a constant sound speed (478 m/sec) half space above an altitude of 125 km. 

The GR
0 
 and GR

1 
modes have lower frequency cutoffs. It was found that for 

frequencies less than 0.0125 radian/sec, the GR
1 
mode has complex phase 

velocity; kI  varying from near zero up to a maximum of 3 x 10 -4  with 

analogous results for the GR
0  mode. There is an extremely small frequency 

gap for each mode for which no poles in the complex k plane corresponding 

to that mode exist. These mark the transition from undamped propagation 

to damped propagation. In the complete Fourier synthesis, branch line 

contributions compensate for the absence of poles in these gaps. Computa-

tional procedures are described which facilitate the inclusion of the low 

frequency portions of these modes in the waveform synthesis. 



INTRODUCTION_ 

One of the standard mathematical problems in acoustic wave propagation 

is that of predicting the acoustic field at large horizontal distances 

from a localized source in a medium whose properties vary only with height. 

This problem, as well as its counterpart in electromagnetic theory, has 

received considerable attention in the literature,
1 
is reviewed extensively 

in various texts
2-7 , and, for the most part, may be considered to be well 

understood. 

A typical formulation of, say, the transient propagation problem 8-9 

leads (at sufficiently large horizontal distance r) to an intermediate result 

which may be expressed as a double Fourier integration over angular frequency 

w and horizontal wave nir-lber k; i.e. for, say, the acoustic pressure, one 

has 

co 

p = S(r) Re 	f(L.:)e-it71` [Q/D(w,k)]eikr  dkdw 	 (1) . 

-CO 

Here S(r) is a geometrical spreading factor , 1//i7  for horizontally stratified 

media, In e  
a sin(r/a 

e
)]

1/2 
if the earth curvature (a

e 
 =radius of earth) is to 

be approximately taken into account. The quantity f(w) is a Fourier transform 

of some function characterizing the time dependence of the source; Q(w,k,z,z 0) 

is a function of receiver and source heights z and zo 
as well as of w and k, 

possibly also of horizontal direction of propagation if, say, winds are included 

in the formulation, but, in any event, should have no poles in the complex 

k plane for given real positive w, and given z and zo
. The denominator D(w,k) - 

 is independent of z and z
o
, may be zero for certain values k

n
(0 of k, and is 

termed the eigenmode dispersion function.  

Typically, in order to uniquely specify both Q and D(w,k) for all complex 



2 

values of k (given w real and positive), branch points must be identified 

and branch cuts must be placed in the complex k plane. The general rule 

may be taken to be that no branch cut should cross the real axis, and, if 

a branch point should lie on the real axis (when w is positive real), the 

branch cut either extends into the upper or lower half plane depending on 

whether the branch point moves up or down when w is given a small positive 

imaginary part. The integration contour for the k integration goes nominally 

along the real axis but skirts below or above (see Fig. la) those poles 

lying on the real axis which move up or down, respectively, when w is given 

a small positive imaginary part. The placing of the branch cuts and the 

selection of the contour in this manner is one method of guaranteeing 

causality in the solution, or, equivalently, of guaranteeing that the solution 

dies out at large distances if a slight amount of damping (Rayleigh's virtual 

viscosity) is added in the mathematical formulation. The necessity of branch 

cuts only occurs if the medium is unbounded either from above or below and 

a choice of phases can always be made such that (given, say, that the medium 

is unbounded from above) Q dies out exponentially as z co when w has a small 

positive imaginary part and when k is real. 

The so-called guided mode description of the far field waveform arises 

when the contour for the k integration is deformed (permissible because of 

Cauchy's theorem and of Jordan's lemma
10

) to one such as is sketched in Fig. 

lb. The poles above the initial contour are encircled in the counterclockwise 

manner. There are also contour segments which encircle each branch cut lying 

above the real axis in the counterclockwise sense. The integrals around each 

pole are evaluated by Cauchy's residue theorem and one is left with a sum of 

residue terms plus branch line integrals. Each residue term may be considered 

as corresponding to a particular guided mode of propagation. The branch line 

contributions in some contexts are considered as corresponding to what may 

be termed lateral waves. 11  (The term may be unappropriate unless there is a 



kR 

(b) 

1. Contours in the complex k (wavenumber) plane for evaluation of individual 

frequency contributions to waveform synthesis. (a) Original contour. (b) 

Deformed contour. 

F 



3 

sharply defined interface separating two types of media, such as a water-

muddy bottom interface in shallow water propagation.) 

In regards to the guided mode description, one type of approximation 

frequently made is to neglect all poles (i.e. roots k n (w) of D(w,k)),  which are 

above the real axis, the argument being that the corresponding e
ikr 

factors 

in the residues will die out rapidly with increasing r, the bulk of the con-

tribution at large r expected to come from the poles which lie on the real 

axis. In a similar manner, it is argued that the branch line contour con-

tribution also dies out relatively rapidly (a factor of 1/r 3/2 in addition to 

the geometrical spreading) so it too may be neglected at large r compared 

to the terms coming from the real roots. The net result for Eq. (1) would then 

be 

i
c")tItt 

p =):2(r) An (63) cos[wt-kn (w)r+On  (w)1 dw 

YI 	(4) 
Let. 

where An (w) and ¢n (w) are defined in terms of the magnitude and phase of the 

residues of the integrand in Eq.(1); the kn (w) being the real roots of 

D(w,k)=0, numbered in some order with the index n=1, 2, 3, etc., and it being 

understood that, for fixed n, kn (w) should be a continuous function of w 

over some range of w from a lower limit w im  up to an upper limit w nn. The 

remaining integral over w can then be approximately evaluated by the method 

of stationary phase or integrated by suitable numerical methods. 

In the present paper, a somewhat subtle set of circumstances intrinsic 

to low frequency infrasound propagation in the atmosphere is discussed for 

which the arguments leading to the approximation of Eq.(1) by (2) are not 

wholly valid, even at distances of the order of more than a quarter of the 

earth's circumference. We suspect that comparable circumstances may arise in 

other contexts, but the present discussion is, for simplicity, illustrated only 

(2) 
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by examples from atmospheric infrasound propagation. 

I. INFRASOUND MODES 

An atmosphere model frequently adopted for infrasound studies is one in 

which the sound speed c varies continuously with height z in a more or less 

realistic manner (Fig.2a) but is constant (=c T) for all heights above some 

specified height zT . [If winds are included in the formulation, their velocities 

are also assumed constant in the upper half space, z>z
T.

] Conceivably, one has 

some latitude in the choice of z T  and of the upper halfspace sound speed cT , 

although computations of factors such as Q(w,k,z,z 0) and D(w,k) in Eq. (1) 

become more lengthy with increasing zT. Also, it would seem that the most logical 

choice of cT  would be that which would realistically correspond to height z T , 

so the profile c(z) would be continuous with height across z
T' 

as in Fig. 2a. 

Another conceivable choice would be one (Fig. 2b) in which cT  co, such that 

the surface of air nominally at z
T 
would be a free surface or pressure release 

surface (corresponding to the model generally adopted for the water-air interface 

in underwater sound studies). A somewhat intuitive premise which may be adopted 

is that, if the source and receiver are both near the ground and if the energy 

actually reaching the receiver travels via propagation modes channeled primarily 

in the lower atmosphere, then the actual value of the integral in Eq. (1) would 

be somewhat insensitive to the choices of z
T 

and c
T
. This, however, remains to 

justified in any rigorous sense, so we would be somewhat hesitant to take 

cT 
= ... at the outset. In typical calculations performed in the past, z T  is taken 

as 225 km, c T  is taken as the sound speed (z 800 m/sec) at that altitude. 

Since one is often interested in frequencies (typically corresponding to 

periods greater than, say, 1 to 5 minutes) at which gravitational effects are 

important, the formulation leading to the infrasound version of Eq. (1) is based 

on the fluid dynamic equations with gravitational body forces and the associated 

nearly exponential decrease of ambient density and pressure with height included. 



500 260 	340 	420 

SOUND SPEED (m/sec) 

(a)  

260 	340 	420 

SOUND SPEED (m/sec) 

(b) 

500 

2. Idealizations of model atmospheres (altitude profiles of sound speed) used 

in acoustic-gravity wave studies. (a) Atmosphere terminated by an upper 

half space with constant pound speed. (b) Atmosphere temperature formally 

:going' to infinity at some finite altitute corresponding to a free surface 

(13:0) at that altitude. 
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The incorporation of gravity leads, among other effects, to a somewhat com-

plicated dispersion relation for plane type waves in the upper half space 

when c
T 

is finite, i.e. one can have solutions of the linearized fluid dynamics 

equations for z > z
T 

of the form8'9 

= (Constant) e -iwt ikxe 
ikzze 
	

( 3) 

Where the vertical wave number k
z 

(alternately written as iG for inhomogeneous 

plane waves) and the horizontal wave number k are related by the dispersion 

relation (neglecting winds) 

2 	 2 	2 	2 	2 
k
z 
= -G

2 
= 2 - wA] / c - [w - 

WB 
(4) 

where wA  = (y/2)g/c, wB  = (y-1) 2  g/c are two characteristic frequencieS 

[wA  > wB ] for wave propagation in an isothermal atmosphere (g = 9.8 m/s 2  

is acceleration due to gravity, yz1.4 is specific heat ratio). Here, for 

brevity, the subscript T on cT  has been omitted. 	For given real positive w, 

real k, one can have k
2 
 positive or negative (G

2 
negative or positive). The 

values of k at which k
2 
 or G

2 
go to zero turn out, as might well be expected, 

to be the branchpoints in the k integration in Eq. (1), i.e., synonymous with 

the branch points of G. Along the real axis, G is either real and positive 

(e
ik

z
z 
 or e

-Gz dying out with increasing z) or else G is a positive or negative 

imaginary quantity. In the latter case, the phase of G may be either ff/2 

or -Tr/2, in accordance with the well known fact that, for acoustic-gravity 

waves, wavefronts may be moving obliquely downwards (negative k z) when energy 

is flowing obliquely upwards. In particular, for 0 < w < w 13'  one has G real 

and positive for k in between the two branch points on the real axis, the 

phase of G is 7/2 (k z 
< 0) on the remainder of the real axis; the two branch 



points are, from Eq. (4), at 

	

2 	2 ! 
EwA 	w  3  2  

" = 	2 	2'-2 c[wB - w ] 

The branch lines extend upwards and downwards from the positive and negative 

branch points, respectively. [See Fig. 1.] 

The dispersion function D(w,k) in the atmospheric infrasound case can 

be written in the general form 

D ( J , k)  = Al2111 	A11R12 

where R
11 

and R
12 

are elements of a transmission matrix [R], these depend on 

the atmosphere's properties only in the altitude range 0 to
T' 
 they are 

independent of what is assumed for the upper half space. In general, their 

determination requires numerical integration over height of two simultaneous 

8 9 12 . 
A ordinary differential equations (termed the residual equations " 	in previous 

literature). They do depend on w and k (or, alternately, on w and phase 

velocity v) but are free from branch cuts, they are real when w and k are real 

and are finite for all finite values of w and k. The other parameters A
12 

and A
11 

depend only on the properties of the upper half space (in addition to 

w and k). Specifically, these are given (for the no wind case and with the 

subscript T omitted on qr ) 

= gk2 w
2 
 - yg/[2c

2
] 
	

(7a) 

	

A
12 = 1 - c

2
k
2
/w

2 	
(7b) 

(5)  

(6)  
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One may note that, since every quantity in Eq. (6) is necessarily real 

when w and k are real (with the possible exception of G), the poles lying 

on the real k axis (real roots of D) must be in the regions of the (w,k) plane 

[or (w,v) plane] where G 2  >0. Since the integrand of Eq. (1) divided by 	
0 

should vary with z above z
T as e

-Gz
T one may call the corresponding modes 

fully ducted modes. There is no net leakage of energy for such natural modes 

into the upper halfspace. If one considers D as a function of w and phase 

velocity v (or simply v), where v = w/k, the locus of real roots v versus w 

(dispersion curves) has (as has been found by numerical calculation) the general 

form sketched in Fig. 3. The nomenclature for labeling the modes (GR for 

gravity, S for sound) is due to Press and Harkrider. One may note from Eq. (4) 

that there are two "forbidden regions" in the v vs. w plane, i.e. 

2 	2 	2 	2 % 
v < c[wB 	w ] 2  / [w

A 
- w ] 2  

for w < w
B 

and 

v > c[w
2 
- w

2
] 	/ [w

2 
- co

2
]

1/2 

for w > wA. Within either of these regions G would have to be imaginary and 

there would accordingly be no real roots for v of D(w,v) = 0. In the high 

frequency limit, this simply implies that the phase velocities of propagating 

modes are always less than the sound speed of the upper halfspace, the branch 

points in the k plane are simply at ± w/cT . The low frequency lower phase 

velocity "forbidden region" appears to be due to the incorporation of gravity 

effects into the formulation. However, if c
T 

is allowed to approach co, 

this lower left hand corner region disappears. We have done numerical studies 

on the effects of varying cT  on the dispersion curves. Briefly, the result 

is that the form of the predicted curves for GR
o 

and GR
1 

change very little 

(8a)  

(8b)  



0.01 
	

0.03 
	

0.05 

ANGULAR FREQUENCY, (rad/soc) 

3. Numerically derived plots of phase velocity v versus angular frequency w 

for infrasonic modes in a model atmospherc corresponding to Fig. 2. The 

labeling of modes is with the convention introduced by Press and Harkrider 

(J. Geophy. Res. 67, 3889-3908 (1962). The lines G
2
=0 delimit regions of 

the v versus w plane where a real root of the eigenmode dispersion function 

cannot be found. 



8 

with increasing cT ; the lower forbidden regions shrink insofar as frequency 

range is concerned and the curves extend to successively lower frequencies. 

Thus we see that the fully ducted modes GR
o 

and GR
1 
both have a lower frequency 

cutoff [wl,  in Eq. (2)] which depends on cT. The larger one makes cT , the 

smaller is this cutoff frequency. 

We thus have the following apparent paradoxes. Given that frequencies 

below w may be important for the synthesis of the total waveform, an apparently 

plausible computation scheme based on the reasoning leading to our Eq. (2) 

will omit much of the information conveyed by such frequencies. Also, in spite 

of the plausible premise that energy ducted primarily in the lower atmosphere 

should be insensitive to the choice for c
T' 

one sees that this choice governs the 

cutoff frequencies for certain modes and that certain important frequency 

ranges could conceivably be omitted entirely by a seemingly logical and proper 

choice for cT . The resolution of these paradoxes would seem to lie in the 

nature of the approximations made in going from Eq. (1) to Eq. (2). The latter 

may not be as nearly correct as earlier presumed and it may be necessary to in-

clude contributions from poles off the real axis and from the branch line 

integrals. Even if r is undisputably large, it may be that the imaginary 

parts of the complex wavenumbers are sufficiently small that le
ikr 

 is still 

 not small compared to unity. Also, a branch line integral may be appreciable 

in magnitude at large r if there should be a pole relatively close to the 

branch cut. 



II. ROOTS OF DISPERSION FUNCTION 

In order to understand the manner in which the solution represented by 

Eq. (2) should be modified in order to remove the apparent artificial low 

frequency cutoffs of the GRo and GR1 modes, we first examine the nature of the 

dispersion function D at points in the vicinity of a particular mode's dispersion 

curve. The curve vn(w) of phase velocity v versus w for a given (n-th) mode is 

known at points to the right of the lower cutoff frequency co L. Given this, 

one can find analogous curves va(w) and vb (w) for values of the phase velocity 

w/k at which the functions R
11

(w,v) and R
12 (w,v) in Eq. (6), respectively, 

vanish. Since there may be more than one such curve in each case, we pick v a(w) 

and v
b
(w) such that these curves are the closest of all such curves to the curve 

vn (w) for w > wL . One may note, however, that one may apparently define and 

identify va(w) and vb (w) for frequencies much less than wL , simply from analytical 

continuation. 

A premise which we have checked numerically (see Fig. 4) for a specific 

case is that the curves vn (w) , va(w), vb (w) defined above with reference to 

a particular given mode all lie substantially closer to each other than to 

the corresponding curves for a different mode. In retrospect, this is obvious, 

although it took some time for us to realize that it was so. Briefly, the argument 

goes that, if the mode is predominantly guided in the lower atmosphere, then 

there should be a decay of modal height profiles beyond some point substantially 

lower than 41 . Thus, both the p/ sr and o 
o  v z 

 profiles for a guided mode 

would have values at z,1  substantially less than their peak values at lower 

altitudes. The same would be true for the profiles of the auxiliary functions 

0 and 2 which satisfy the residual equations. Consequently, if guided waves 

are excited, the inverse transmission matrix connecting 0 1  and 02  at the ground 

to those at height 41, would have to have very small [1,2] and [2,2] components. 



N ' 

0.21 

0.3119 
G R 0  

0.010 0.014- 0.006 0.002 

0.006 	 0.010 

ANGULAR FREQUENCY ( - akin/sec) 

0.3117 

0.25 

0.002 
	I  

0.014 

1 G 2 -0 

' 0.23 

ANGULAR FREQUENCY (rcidcn/z-...) 

4. Curves in phase velocity (v
n
,v

a
,v

b
) versus angular frequency (w) plane 

along which R11=0 (giving va(4, R12=0 (giving vb (4, and D(w,k)=0 

(giving va (4. • Curves are shown for (a) the GR 0  mode and (b) the GR, 

mode. N .te the changes in scale and the relatively close spacing of curves 
, corresponding to the same mode. The lines along whica G 2=0 are also indicated; 

vn (0 is not a real quantity for w values below the indicated lower cutoff 

frequency. 
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(Recall that 0 1 = 0 at the ground.) Since the transmission matrix has unit 

determinant, it follows that elements R12  and R11  of the transmission matrix 

proper [from height ZT down to the ground and whose elements appear in Eq. (6)] 

have to be small. 

Given the definitions v a(w) and vb (w), the dispersion relation D=0 for 

a single mode may be written 

D "'s(Al2)(a) (v-
va ) - 	

-I- G i (13)(v-vb )  = 0 
	

(9 ) 

where a = dR11/dv, = dR12/dv, evaluated at v = va and vb , respectively. (For 

simplicity, we here consider D as a function of w and v = w/k rather than of 

w and k.) The above equation may also equivalently be written in the form 

v = va  + (va-vb)X/[1-X] 

X  = (R/a"All G)/Al2 

which may be considered as a starting point for an iterative solution which in 

essence develops v in a power series in va-vb ; G may be considered as a defined 

function of w,v. One starts with v = v a 
as the zeroth iteration, evaluates the 

right_hand side for the value of v to find the starting point for the next 

iteration, etc. The considered procedure should converge provided v a  or vb  

is not near a point at which G vanishes and providing G in the vicinity of va  

or v
b 

is not such that the variable X is close to unity. Among other limitations, 

the iteration scheme would be inappropriate for values of w in the immediate 

vicinity of cob . 

In regards to establishing the general trends represented by the iterative 

type solutions, two relatively general theorems may be of use. These (whose 
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proof fellows along lines previously used by one of the authors 13 
 in deriving 

an integral expression for group velocity) are that for real positive w and v, 

R
12 

3R
11

/3v - R
11 

3R
12

/8v > 0 	 (11a) 

R
12 aR/ato — R11  aR12/aw > 0 	 (lib) 

or, alternately, if one inserts Ril  = (a)(v-va ), R12  = (s)(v-vb ), he finds 

agva  - vb ) > 0 
	

(12a) 

(v - v
b
)(v - v

a
) (Ra"-ra) + f3a[v

b 
(v - v

a
) - v

a
" (v - v

b
)] > 
	

(12b) 

where the primes represent derivatives with respect to w. The second of these 

should hold for arbitary v in the vicinity of v a  and vb  and lead, upon setting 

v = va , v = vb , or v = (vavb -va 'vb )(vb -va 	along with the use of Eq. (12a), 

to 

vb ' < 0 	 (13a) 

va ' < '0 	 (13b) 

(a/0" > 0 	 (13c) 

Equation (12a) implies that as long as a or 13 do not vanish (which would seem 

unlikely) the two curves va (w) and vb (w) do not intersect. If a and f3 have the 

same sign the v a  curve lies above the vb  curve; the converse is true if a and $ 

increases with w. 

To demonstrate the general utility of the perturbation approach, a brief 



12 

table of values w, va , vb , a, 8, v
(1)

, and v
n 

are given in Table I for the GR 
 

and GR1 
modes for the case of a U.S. Standard Atmosphere without winds terminated 

at a height of 125 km by a half space with a sound speed of 478 m/sec. Here v
(1) 

is the result of the first iteration for the phase velocity and v
n 

is the actual 

numerical result obtained (only if the phase velocity is real) by explicit 

numerical search for roots of the eigenmode dispersion function. One may note 

that, for those frequencie s where v
n 

is computed, the agreement between v (1) 

and v
n 

is excellent. A mo re detailed listing of the perturbation calculation 

results is given in Figs. 5a and b. The plots there give w/k R  or the reciprocal 

of the real part of 1/v
(1) 

(i.e., w divided by the real part of the horizontal 

wave number k) and the imaginary part kI  of k = w/v versus angular frequency. 

Note that k
I 
is zero above the corresponding cutoff frequencies. The relatively 

small values of the k are commented upon in Sec. IV. 

III. TRANSITION FROM NONLEAKING TO LEAKING 

The iteration process described by Eqs. (10) in the preceeding section may 

fail to converge when G is near zero and in any event gives relatively little 

insight into what happens to a modal dispersion curve in the immediate vi-

cinity of wL . To explore this transition region, it would appear sufficient 

to approximate G in Eq. (9) by 

G = i(P)(to -Lo la) + (q )(v_via )] 1
/2 	 (14) 

where p and q are readily identifiable [from Eq. (4)] positive numbers taken 

independent of w and v; vL  is the phase velocity on the dispersion curve in 

the limit as co -3- w
L 

from above. The bracketed quantity in Eq. (14) may be re- 

garded as a double Taylor series expansion (truncated at first order) of G
2 

about 

the point w
L' 

v
L 

at which G
2 
vanishes (hence no zeroth order term). The fact that 

both p and q are positive follows since G2 
 is positive to the upper right of the 
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5. Numerically derived plots of phase velocity w/k R 
and of the imaginary 

part k
I 

of the complex wavenumber k versus angular frequency for the GR 0 

and GR1 modes. Previous theoretical lower frequency cutoffs for these 

modes are as indicated. Note that k
I 
is identically zero above the 

cutoff frequency. 



GR o 

0-

Frequency dependent parameters correspondin[; to GR and GR
I 

modes; w is 
, 0 

angular frequency in rad/sec, va is phase velocity root of Rll=O, in 

km/sec, vb is analogous root of R12"'O, 0', is dRl1/dv at v=va in sec/km 

13 is dR
12

/dV at v=vb in sec, vel) is first order pCl·turbation solution for 

phase velocity from equations given in the text (units are km/sec), v 
11 

is the real root determined by direct numericnl solution for zeros of 

eigenmocie dispersion function. Note that v (defined only ~.;rhen phaGe 
11 . 

velocity is real) a&rees exceptionally well with vel). 



line in the co,v plane where G
2 = 0 and also since the G2  = 0 line slopes obliquely 

downwards. (See Fig. 3). 

Let us next note that, in the vicinity of the point w
L 

v, the denominator 

D given by Eq. (9) may be further approximated as 

D (A12a-A11a) 	(Av + pAw) + c(Av + vAw 

where we have abbreviated Av = v-v L Aw = w -w
L' 
 v = p/q; the quantity u is 

either -dva/du or -dvb/du, the two being assumed to be approximately equal. 

(The use of the minus sign here assumes that p be_positive.) The remaining 

quantity e is 

(q 2) (6) (v-vb ) 

- aA 
11 	12 

One should note that c depends on v, although, for purposes of initial analytical 

investigation, one may set v = v
L 
here. All of the above quantities may be 

considered to be evaluated at w = col,  and v = v.L . Note that p and v are both 

positive quantities. Furthermore, it should also be noted that v > p since 

the G
2 = 0 curve slopes downwards more rapidly than the lines along which 

R
11 

or  R
12 

= 0 in the v vs u plane. (See Fig. 4.) 

The roots of Eq. (15) without regard to the sign of the radical are readily 

found to be 

- 
Av = -pLu +(%J 2 + c(v-p)2 

% 
 [Aw +a] 

(17) 

where 

a 
	C4 	 (18) 

Alternately, if 'Awl << c, the above may be approximated by the binomial 

(15) 

theorem to give 
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Av = -vAw + [(v-11) 2 	i(Aw) 2 	
(19a) 

or 

Av = +e
2 

- (21.1 -v) Aw - [(v-p)
2
/e

2
](Aw) 2 	

(19b) 

for the upper and lower signs, respectively. The first of these (since Av = 0 

when Aw = 0) is clearly the description of the disperson curve in the vicinity 

of w = 6112  v = vL . 

Equation (19a) shows that, as Aw 0 from above, the dispersion curve 

becomes tangential to the line G 2 
= O. The two curves do not intersect. The 

general trend is as indicated in Fig. 6. The solution represented by Eq. (19b) 

is not a proper root of Eq. (15); it corresponds to the wrong sign of the radical 

and accordingly lies on the second branch. Furthermore, one can readily show 

that, for values of Aw slightly less than zero, both roots lie on the second 

branch. Hence, there must be a gap of finite frequency range in which, for 

the choice of branch cuts represented by Fig. 1, there are no poles in the k 

(or v) plane corresponding to the n-th mode. 

To determine the order of magnitude of this frequency gap, it is appropriate 

to consider the trajectory of the second branch roots in some detail and to 

determine just where one of them should cross the branch cut, reappearing on 

the first branch. As long as /Iv is real and Av + vAw >0 the criterion for a 

root to be identified with the first branch is Av + pAw > O. According to 

Eq. (17), this would automatically place the second root on the second branch 

for all Aw > -a and would place the first root on the second branch for 

-a < Aw < O. Consequently, if either root is to reappear on the first branch, 

it must be at a value of Aw < -a. 

One should note from Eq. (17) that at Lw = -a the two real roots on the 

second branch coalesce. For values of Aw < -a the two roots separate again,_but 



ImV <0 

- B 
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G>0 

DISPERSION 
CURVE 

U.) 

6. Sketch illustrating nature of a single mode's dispersion curve in the vicinity 

of the G
2=0 line. At point A (angular velocity w

L' 
 phase velocity v

L
) 

the dispersion curve is tangent to the G2=0 line; for frequencies below w L 
down to that corresponding to point B in the sketch there are two real roots for 

v of the eigenmode dispersion function on the second branch. For frequencies 

lower than that corresponding to point. B, there is a complex root for v on 

the first branch (which is the complex conjugate of a second root on the 

second branch). 



are now complex conjugates. The root in the upper half of the v plane (lower 

half of k plane) can never cross the branch cut so it remains on the second 

branch indefinitely. The one in the lower half of the v plane will cross the 

branch cut at a point which may be approximately estimated as that where 

Re(Av) = -vLw or where 

Aw = — (1/2) E
2 

(v—p) 
= 

with a corresponding value of Av of 

Av = (e
2
/2) ii[v/(v-p)] - 

For subsequent frequencies successively lower than w
L
-2u there is a complex 

root on the first branch with a negative imaginary part which increases with 

decreasing frequency. 

The discussion up to now has assumed that lAvi << IvL-vb 1 and hence 

that c may be taken as constant. This would seem appropriate for describing 

the transition region since all values of Av of interest in this region are of 

second order of c 2 . However, if an improved numerical estimate is required, 

we recommend that one regard Eqs. (16) and (17) as a iterative pair. Success-

fully computed values of Av may be used to recalculate c and the new value of 

c may then be used in obtaining the next higher estimate for Av. 

In Table II the values of w
L' vL' p, q, p, v, 6, and a are given for 

the GR
0 
 and GR

1 modes for the model atmosphere corresponding to Fig. 2a. 

The extremely small values of a should be noted. The corresponding plot 

of Av versus Lw (i.e., both branches of Eq.(17)) corresponding to their 

values for the GR
0  mode is given in Fig. 7. For simplicity, this is plotted 

in a nondimensional form, i.e. 

V = -{p/[2(v-0]}Q + [1 4. s.2]
1/2 	

(20) 

16 
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GR 
 

GR
1  

wL
(rads) 

v
L
(km/s) 

p(s/km2) 

q(s/km3) 

u(km) 

v(km) 

c(km1/2 /s
1/2

) 

a(rads/s) 

0.0118 

0.31188 

0.14 

1.84 x 10-3 

2.94 x 10-2 

76 

9.6 x 10
-6 

3.04 x 10
-13 

0.0125 

0.2323 

0.35 

1.86 x 10-3 

4.15 

190 

1.02 x 10
-3 

1.41 x 10-9 

Parameters characterizing the eigenmode dispersion function near points 

in the phase velocity versus angular frequency plane at which the GR0  and 

GR
1 
modes undergo transition from leaking to non-leaking. 



7. Graph of normalized phase velocity versus normalized frequency in the 

vicinity of the point (v
L
, WL ) for the GR.

0 
 mode. The imaginary and 

real parts are both plotted. The dashed line corresponds to real roots 

on the second Riemann sheet. 
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where v = Av/[2(1)-11) ] and f2=Aw/o. Both real and imaginary parts are shown 

on the same graph. The corresponding plots for the GR 1  mode differ only 

slightly from those in the Fig. 7 because of a different value of the para-

meter n/[2(v-v)] in Eq. (20); in both cases this parameter is small compared 

to unity, i.e. 1.1<<v as may be seen from Table II. 

IV. THE BRANCH LINE INTEGRAL 

Since there is a gap in the range of frequencies for which a pole 

corresponding to a mode may exist, it is evident that evaluation of the k 

integration in Eq. (1) by merely including residues may be insufficient for 

certain frequencies. Thus it would seem appropriate in such cases to include 

a contribution from the branch line integral. It may be anticipated that such 

branch line integrals are significant at larger values of r only when Ellis 

close to some mode's wL  (say the n-th mode), in which case the branch point 

of greatest interest (i.e., that which may have a pole in its immediate vicinity) 

is at k=w/vL. Consequently, it would appear that an adequate approximation to 

the branch line integral would be 

Oo 

Branch line 
contribution of 	

N/D(w,k)]eikrdk 

c0 

Jr  Al2a-A32
C 
 x-1-01-v)Lco+cx1/2 

0 
where the denominator D(w,k) has been approximated by Eq. (15) with the abbreviation 

x for Av+vL.w. The quantity outside the integral is assumed to be evaluated at 

w=w1,  and k=w/vL . The contour C
B 

runs down the left side of the branch cut, 

around the branch point (where x=0), and then up the right side. If one next 

changes the variable of integration from k to x, nothing that for small x/ , noting 

kzkB -(wLL  /v2 )x 
	

(22) 

Q e
ikr  dk 

(21) 



he finds approximately that 

-i(w v2 )x 
Branch line 	 e 	L ' L  
contribution 

= (Residue 	 dx 
x+(1-v)Aw+cx 

Ca  
where (Residue)

o is that residue which the integrand (Q/D)e
ikr 

would be expected 

to have at the n-th mode's pole in the k plane were the parameter c identically 

equal to zero. The mapped contour ( 3  in the x plane may be considered to go 

up on the right and then down on the left of a branch cut extending vertically 

downwards from the origin in the x plane. If we set x=-1_, then, on the right 

side of the cut, x1/2 should be e-17/4 E1/2 while, on the left side, it is 

-e-in/41/2 • Consequently, the total integral combines to 

Branch lines 
contribution = -(Residue) o,Jr i: 

AAW/4 -(W /v2)rrr 2ce 	e L L 	d 
(20)  

[-1- 4. (1.1-v)1w]
2
+ic

2 

This in turn, with an obvious change of integration variable, may be expressed 

0 as 	 5 

eini4e-n r1 1/2dn Branch line = (Residue) o 2K contribution 	 (n-n 1 )(n-n 2 ) 
(21)  

0 

where 

K=cv
L
/(w

L
r) 1/2 
	

(26a) 

n l , n
2 
= i(K

2
/2)(1+[Aw/20]) 

± i(K
2/2)(1+[Lw/a])

1/2 	 (26b) 

with a as defined by Eq. (18). 

In regards to the n integration, the integral can be expressed in general 

in terms of Fresnel integrals of complex argument after some considerable 

mathematical manipulation. One may note, moreover, that H i ( and In 2 1 are, for 

most cases of interest, considerably less than unity. In this case, the 

appropriate approximate result (derivation omitted for brevity) is 

19 

(23)  



00 

e_nrr, an . 	in  

(n-n )(n-n ) 	1/2 1/2 1 	 n1 +n 2 
o 

where the choice of square root should be such that the imaginary part is 

positive. The net result in this limit then is that the branch line contribution 

is independent of the parameter K. (The dependence on range r comes only in 

the residue.) Thus one may write 

{Branch line = 27i(Residue)
o 

B
rh

(Aco/a) 
contribution 

where the function B
rh

(Aw/a) is given by 

Brh (2) - 	 1/2 	 1/2 
[14-(1/2)s]+-a74-s1)

1/2
] 	+[1+(1/2)0-(1+0)

1/2
] 

Here any consistent choice may be made for the sign of the inner square roots 

but the outer square roots should be taken such that the resulting phases are 

between -7/4 and 37/4. The quantities in square brackets turn out to be the 

squares of (1//i)[(1+2)
1/2 

 ±1j, respectively. The phase restriction then gives 

c2>0 	 (30a) Brh (2) = (1+2)1/2  if 

= 1 if 0>2>-2 	 (30b) 

= -i(-2-1)
-1/2 

	

if fl<-2 	 (30c) 

where here all square roots are understood to be positive; 

To completely describe the transition it is appropriate to add to Eq. (28) 

that contribution (which is zero for 0>Aw>-2a) from the pole on the first branch 

in Eq. (21) which lies in the general vicinity of k=w
L
/v

L.
,Jf the pole is 

present, its contribution to the integration over k is 271 times the residue 

(which is not what we have been referring to as (Residue)
o 
unless e is identically 

zero). The evaluation of the residue is moderately straightforward and omitted 

here for brevity. The net result is that 

20 

(27) 

(28) 

(29) 
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Branch line I + 	Pole contribution 	contribution 

= 2ui(Residue) o  B rh (Aw/a)+P ot (Aw/o) 
	

(31) 

where the "pole function" P ot (Aw/o) turns out to be given by 

P(1w/a)=1-B
rh

Ow/a) , 	
(32) 

We accordingly have the remarkable  (although, in retrospect, not unexpected) result 

that 

Branch line +  Pole 
= 2ui(Residue)

o contribution 	contribution 

The above gives one a relatively simple prescription for evaluating a given 

mode's contribution to the k integration in Eq. (1). First, all branch line 

integrals are formally neglected. If a pole exists on the first branch, the 

residue which would normally be utilized is replaced by 

Res 
D 	d'D/dk 

k=pole 

where 

D _ d 
dk 	dk (Al2R11-A11R12 )  

-G 	(R ) 
dk 	12 

i.e. it differs from the actual derivative of D in that G is formally considered 

as constant. Doing this when w is somewhat removed from the transition region 

near w
L 

should make very little difference since R
12 

is small at values of k which 

are poles. Near the transition, this neglect should almost exactly compensate 

for the neglect of the branch line integral. 

(33) 

Qeikr 	Qe ikr 
(34) 

(35) 
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I. INTRODUCTION 

The present report is concerned with the development of a 

computational model for the prediction of long range infrasound 

propagation in the atmosphere. The computational model discussed 

here is one which is partly based on ray acoustic concepts; it should 

be applicable to wave periods less than three minutes and is intended 

to complement the guided node model of acoustic gravity wave propaga-

tion which has been extensively discussed in previous reports and 

papers. 1-5  

The ray acoustic method has a sizable literature pertaining to 

it; most of the published work is concerned with applications to 

underwater sound. (X brief bibliography of relevant papers is given 

in Appendix A.) Discussions of ray acoustics which are particularly 

germane to infrasound propagation in the atmosphere are an article , 

 published in 1951 by N. Easke116 , a 1966 AFCRL report by Pierce
7 , 

and a 1973 AFCRL report by Pierce, Moo, and Posey.
4 

In the present 

.report, the details of the pertinent theory are assumed to be already 

known; the emphasis is on the computational implementation of the 

- theory. Particular innovations discussed here, not generally included 

in ray acoustic models, are (1) the presence of many rays which connect 

source and receiver, (2) a method of computing ray amplitudes based 

on analytical differentiation of ray formulas appropriate to a 

stratified medium, (3) the inclusion of caustics into the formulation, 

and (4) the inclusion of Lamb's atmospheric edge mode. 

The general model used as a starting point may be taken (Fig. 1) 

as a height stratified atmosphere above a flat rigid ground. The 

sound speed c(z) and ambient density p o (z)are assumed to be continuous 

functions of height z above the ground. For simplicity, winds are 

not included in the present formulation, although we believe that 

this limitation can easily be overcome with only a modest degree of 

effort. The pertinent governing equations are taken as the linearized 

equations of atmospheric compressible fluid dynamics (gravity included). 3  

Nonlinear effects are neglected other than in the selection of a source 

term. Now such a source term appropriate to nuclear explosions may be 

selected has previously been discussed in some detail by Pierce, Posey, 
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Figure 1.  

Sketches illustrating general model used in the analysis. (a) Typical 

sound speed versus height profile. (b) Sketch of point source above 

a flat rigid ground, with a height stratified atmosphere. 
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and Iliff.
8 

It suffices here to only state that the source is assumed 

localized at a point whose coordinates may he taken as x = 0, y = 0, 

z= ZSC 

A modest analysis of the governing equations suggests that the wave 

portion with periods less than approximately three minutes may be des-

cribed at moderate distances from the source (greater than, say, 50 

kilometers) by an acoustic pressure which is separable as follows 

p(r,t) 	= {Lamb mode portion} + {ordinary acoustic portion} 

(I .1) 

where the Lamb mode portion may be computed by techniques such as 

discussed by Pierce and Posey9 
and by Posey. 10 The ordinary acoustic 

portion (which is the only portion considered here) may be taken as 

the ray acoustic (excluding the edge mode) solution of the wave equa- 

tion 

v 2 (01470) 	(11c 2)a 2 (04-0)lat 2 
4711(06a - 1.  I - SC' (1.2) 

where the function f(t) is characteristic of the source. In addi-

tion, p/6-osatisfies approximately the boundary condition 

3p/3z + (g/c
2 )p = 0 at the ground (z=0). The justification for sep-

arating out the Lamb mode portion at the outset follows from a 1963 

paper by Pierce
11 which nay be construed as showing, for the special 

case of an isothermal atmosphere, that such a separation is possible 

at the frequencies of interest here. 

The rays proceeding from the source are lines, each of which 

lies in a vertical plane including the source (Fig. 2). Since.the 

geometry is circularly symmetric, we may limit our consideration to 

rays which lie in the Y,Z plane. A typical ray path passes through 

the source, bends downwards when the ray is proceeding up and the 

sound speed is increasing with height, bends upwards when the sound 

speed is decreasing, etc. This phenomenon of ray bending is known 

as refraction and makes it possible for more than one ray to pass 



RAYS 

SOURCE \ 

zsc 

GROUND 

Figure 2. 

Sketch of acoustic ray paths emanating from a source in an atmosphere 

in which the sound speed varies with height. 
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through a given far field point. For distances and receiver locations 

of interest, one may regard this possibility of multi-ray arrivals as 

typical rather than the exception. The equations for computing such 

ray paths are well known and are discussed in particular in the 1966 

report by Pierce.
7 Computer programs which compute such paths are also 

in widespread use, especially in underwater sound studies. However, 

most such programs do not compute ray amplitudes. 

A somewhat lower order (or, strictly speaking, nonuniform) ray 

acoustic approximation to the solution of Eq. (1.2) is that 

Z pray 
rays 

where the sum extends over all rays which connect the source and re-

ceiver. Here individual terms have signatures and amplitudes which 

may be computed from tae eikonal approximation
12,13and from the con-

dition that p reduces to 

P//P 0 	 f(t- R/c)/R 
	

(1.4) 

in the immediate vicinity of the source. However, the straightfor-

ward application of this procedure leads into difficulties if ray tube 

area, along any ray connecting source and listener, should vanish at 

any intermediate point along the ray. This difficulty, however, may be 

largely overcome
14,15 (although this seems to be rarely done) by simply 

adding a phase shift of 7/2; ie. 

f(t) 	= 	Re 	fr(r) 	dw 

0 

is replaced by 

= 

f Shift (t) 	= 	Re 	e 1-7/2  f(w) e-1-63t  dw 

(1 .5) 

• (1.6) 
0 



this shift being applied each time the ray tube area goes to zero 

along the ray. This is in addition to the normal shift due to travel 

time along the ray from source to listener. The successive shifting 

of phase by intervals of 7/2 is a relatively simple matter; the princi-

pal challenge in the application is that of determining the number of 

such phase shifts to be applied. 

There are two further modifications to Eq. (1.3) which, if in-

corporated into a computational model, should guarantee that results 

be good approximations down to relatively low frequencies and for large 

propagation distances of the order of 1000-18,000 km. These modifi-

cations include the explicit taking into account of caustics and 

lacunae (voids, skip zones, shadow zones, etc.) in the vicinity of the 

receiver. A caustic is a surface formed by a locus of points at which 

ray tube areas vanish or, alternately, at which adjacent rays intersect. 

The eikonal approximation breaks down at any point on a caustic and 

should be suspect near a caustic. The manner in which the computational 

method may be revised to incorporate an accurate theoretical model 

valid near caustics is one of the central topics in the present report. 

Examples of lacunae (see Fig. 3) occur whenever two adjacent rays 

split. The splitting leaves a shadow zone or a region in which there 

is one less ray than in adjacent regions. Lacunae occur in particular 

if there is a maximum in the profile of sound speed versus height. 

They also occur near the ground when the sound speed near the ground 

decreases with height. (The consideration of an image source and 

an image medium indicates the latter may also be regarded as a case 

where adjacent rays split.) The present report does not consider 

the lacuna problem. This is a limitation we hope to overcome in 

subsequent studies. The inclusion of caustics is regarded as a higher 

priority and it seems appropriate to thoroughly check out the tech-

niques for including caustics before proceeding to the development of 

a method for including lacunae. In this regard, it is possible to 

conceive of a hypothetical model atmosphere in which caustics occur 

but lacunae do not. This would be a model in which there is no ground, 

the sound speed has a single minimum but no maxima. This is admittedly 



   

 

SOUND SPEED 

Figure 3.  

Examples of the occurrence of lacunae in the propagation of rays from 

a source in a stratified atmosphere. The lacuna A occurs because of 

the splitting of ray paths at the height of a sound speed maximum, 

lacuna B occurs because of the presence of the ground and the fact 

that the sound speed initially decreases with height. 
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not a realistic model,but it nevertheless should serve as a vehicle 

for checking out the computational method. 

The present report does not give a complete computer program 

for the prediction of acoustic waveforms via the ray acoustic model. 

Such a program is still under development. However, we do include 

in Appendix B a number of Fortran subroutines which have been developed 

to date, which nay be incorporated into such a program, and which 

exemplify the computational techniques. The emphasis in our discussion 

is on these techniques. 

II. SOUND SPEED PROFILE 

Sound speed data typically supplied in any computation scheme 

takes the form of individual values c
i 

(i=1,2,....,NCS) at heights 

zi  (i=1,2,..., NCS). However, in the types of calculations pertinent 

to geometrical acoustical predictions, one needs to know values of 

c(z), dc/dz, and d
2
c/dz

2 at heights not necessarily coinciding with 

one of the z i . To this purpose, we use an interpolation scheme known 

as cubic splines and which was recently introduced into the under-

water sound propagation literature by Moler and Solomon
16 . In these 

authors' notation, one lets 

Lzi  = zi  - z i-1 	 (2.1a) 

Lc 	= (c. - c i-1 
 )/Az 	i=1,...,NCS 	 (2.1b) 

= (z - z i_1)/Azi 	 (2.1c) 

= 1 - w 	 (2.1d) 

and takes the sound speed c(z) for z between zi 
7-1 

and z. to be of the 

form of a.cubic polynomia3 

c(z) = 	i -1 4 we.. . 4. (Az.) 2
ra. 

1 
 (T,

6 
 - ;)+a.(3w2 - 1)1 	(2.2) 1 L 1- 



where the coefficients a i  are constants chosen as described below. 

When z =zi-1  and z = z i
, this automatically reduces to c i-1 

 and c 

respectively, so continuity of sound speed is automatically provided. 

The first, second, third, derivatives of sound speed according 

to the Moler-Solomon equation above are 

SO 

dc/dz=Ac.+Az.La.
1-1  (3w - 1) + a i (3w

2 
- 13 

	

1 	1  

d
2
c/dz

2 
= 6(7a1-1 + wa i) 

d
3
c/dz

3 
= 6(a. - a. )/Az. 1 	1- 	1 

	

dc/dz = Ac. - Az.1 (a.1  + 2ai-1) 	at z
1-1 1  

= Aci  + Az.(2a. + a 	) 	at z. 1 1 	i-1 	 1 

d2c/dz2 = 6a
1-1 	 at z1-1 

= 	6a. 	 at z. 1 	 1 

(2.3a) 

(2.3b) 

(2.3c) 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

Thus continuity of d
2c/dz2 is automatically insured while continuity 

of dc/dz requires 

Ac + Az.(2a. +a 	) 1 	1 i -1 	= Ac1+1 -z. (a 	+2a i) 1+1 i+1 	i (2.6) 

for all values of i. Continuity of the third derivative is not im-

posed on the function. 

To determine appropriate values of the ai  which insure continuity 

of the first derivative T.7e rote that Eq. (2.6) above implies 

a
i+1 	 1 = f(Aci_44-Aci)/Azi.0.-2a1+ Az11dAz.+1 I 

- a
i-1 Az /Az i+1 (2.7) 



and that, given a1 
and a2, one could in principle generate all of the 

succeeding a i 's. The linear 'nature of these difference equations 

implies furthermore that 

ai = Ki 
 + L i  a 2 

 +M a 
" 	 i 1 

for i >2, where 

(2.8) 

K 	= K.  

L. = 

M i+1 =  

A. - B K. - C.K 
1 	il 	1i-1 

-3iLi  - C iLi_i  

-314 i - C iN i-1 

(2.9a) 

(2.9b) 

(2.9c) 

Ai 
= (1ciia- Aci)/Az i+1  

B 	= , Az./Az 
1 	 i 1+1]  

C. = !zihzi+1  
1 

0; 	K3  = A 2' 	
K
4 
= A

3
-B

3
A
2 =  

L
2 

= 1; 	L3  =_3 

M 2 = ; 	3 	2 

	

=-C ' • 	
M

4 
= 2 

Thus, if one starts kith the values K
2 and K3 given above, he may 

generate all of the successive K i' etc. 

Boundaryconditionsonthea.may be taken as 
araNCS

=0. These 

are some•hat arbitrary but imply that the sound speed profile should 

be linear above z_ !,CS a-' below z 1 . With this choice, one has 

(2.12) 

L
4 

= B
3
B
2
-C

3 

(2.10a) 

(2.10b) 

(2.10c) 

(2.11a) 

(2.11b) 

(2.11c) 

'ACS 



and the a. for i=3, 	, NCS are then computed according to Eq. (2.7). 

In this manner all of the a i may be computed. 

The computation just described is realized by a computer sub-

routine DASOL whose deck listing is given in Appendix B. The c i  and 

z. are presumed stored in CO:.DION when this subroutine is called and the 

computed ai 
(clenched ASOL) are stored in COMMON after this subroutine 

returns. The number cf points is denoted by NCS (number of c's). 

The sound speed at an arbitrary value of_z is computed by a 

function subroutine CS?(Z). Given the value of z, this uses the 

values of the ,a., the c i  and the z i  (stored in COMMON) in Eq. (2.2) 

to compute the sound speed. (The deck listing is also given in 

Appendix B.) Analogous function subroutines are DCDZ(Z) and DCDZS(Z) 

which compute the dc/dz and d
2c/dz

2 
at a given value of z according to 

Eqs. (2.3a) and (2.3b). 

III. RAY PARAMETERS 

For a height stratified atmosphere without winds, the ray 

equations of geometrical acoustics predict that 

dx/dz = 	c/(v
2 

- c
2
)
1/2 	

(3.1) 

where x is horizontal distance of the ray, z is vertical distance. 

Here, v , the horizontal phase velocity of the ray, is a constant 

for any given ray. Smell's law (a corollary of the ray equations) 

predicts that 

v
P 
 = c/(sine) = constant 	 (3.2) 

•  

where c is the local soumd speed, e is the angle between the momentary 
ray direction and the vertical. The choice of sign in Eq. (3.1) above 

depends on whether the ray is presently moving obliquely upwards or 

obliquely downwards. 

Pit •c 
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In a similar manner, the ray tracing equations predict that the 

rate of change of net travel time t along a ray with respect to height 

is 

dt/dz = + (vp/c)/(17 - c2)1/2 	
(3.3) 

The magnitudes Idx/dzI and Idt/dzi are computed by function sub- 

routines R3KDZ(Z) and RDIDZ(Z). Both of these use the subroutine 

CSP(Z) to find the sound speed at height z. The phase velocity v p  is 

assumed to be stored in COMMON. 

A turning point for a ray is a value of z at which c(z) = v p . In 

general if the sound speed profile has a minimum then there is an upper zu 

 and a lower turning point zL. These are found by calling a subroutine 

TNPNT. This subroutine takes as inputs the phase velocity VP and the 

lower and upper bounds 23L and ZBU for the search. The search proceeds 

by dividing the interval (ZBU,ZBL) into NCS+4 intervals, each of width 

= (Z3 t - ZBL) (NSCAN + 1) 	 (3.4) 

It successively p,rP ,-, ines  the sign of the function CMVP(Z) = CSP(Z)-VP 

at points ZBU, ZBU 4- L, ZBU + 2A, etc., until an interval is found at 

which the signs at the two intervals are opposite, suggesting that a 

root is bracketed in that interval. The actual value of the root is 

found by a library subroutine ZREAL2. The search then goes on to 

succeeding intervals until a maximum of two roots is found. Output 

is NRTS the number of roots (0,1, or 2) and the values ZA and ZB of 

the roots; ZA is the first root (smallest z) and ZB is the second 

root (larger z). Typically, we would expect ZA to correspond to the 

lower turning point, Z3 to the upper turning point. 

In successive applications of integration between limits, one or 

both of which are turning points, it is important that one not over-

shoot a turning point since then the square root in the denominator 

in Eqs. (3.1)and (3.3) would be imaginary. For this reason we have 

devised another subroutine called SHIFT which adjusts the values 
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ZLOW and ZUP corresponding to a numerical approximation for the actual 

turning points to values which are in the immediate neighborhood of 

the input values but which are such that CSP(ZLOW) < VP and CSP(ZUP) < VP 

The adjustments are carried out in units of 10
8 until these criteria , 

are satisfied. 

Integrals of Idx/dzI and Idt/dzI (or of any other z dependent 

quantity) between arbitrary values ZLOW and ZUP (not necessarily 

turning points) are accomplished by an integration function subroutine - 

RAINT. This performs such that 

cZIP 

RAINT(RDUZ,ZLOW,ZIP) 	= 	Idx/dzI dz 

JZLOW 
cZIP 

RAINT(RDIDZ,ZLOW,ZIP) = 	Idt/dzI dz 

J. ZLOW 

In the execution of this integration, the range of integration is 

broken into integrals from ZLOW to ZAVE and from ZAVE to ZUP where 

ZAVE = (1/2)(ZLOW + ZUP), i.e. 

(3.5) 

(3 . 6) 

ZA\E 	 ZA P 

INTE RAL = 	( INTIG RAND) dz - 	(INTEL RAND) dz.  

ZLOW 	 Z 1P 

(3.7) 

The reason for this is that the library subroutine QUAD used to perform 

the integration is most efficient when it integrates away from a 

singularity and we anticipate the possibility that the integrand may 

be singular at either ZLOW or ZUP; these could be ray turning points. 

The integrals of Idx/dzI and Idt/dzI between lower and upper 

turning points are performed by a subroutine named RANG. The values 

of z corresponding to the turning point values are supplied as inputs, 

the other information needed is presumed stored in COMMON. Outputs 

are RTINE and RIM for the integrals over Idt/dzI and Idx/dzI respect-

ively. The significance of these parameters is that the rays are 

periodic in path. The time required to go N half ray cycles is just 



(N)(RTIME) while the horizontal distance traveled is (N)(RLNTH). 

Ray paths going from a given source location to a far field 

point may be characterized by (1) the horizontal phase velocity VP, 

(2) an index parameter IT which is 1 if the ray is proceding initially 

obliquely upwards, -1 if preceding initially obliquely downwards, 

(3) another index parameter JT whose values +1 or -1 give the sign 

of dx/dz at the final point on the ray, (4) the number NUP of upper 

turning points which the ray passes through, (5) the number NDOWN 

of lower turning points, (6) the initial height ZSC of the ray, and 

(7) the final height ZLIS of the ray. These parameters are further 

explained in Fig. 4. One should note tha lo,if IT=JT, then NUP=NDOWN, 

if IT=1, JT=-1,then NDOWN=NUP-1; if IT=-1,JT=1 then NUP=NDOWN-1. The 

total horizontal distance R which the ray travels is 

R = (N) (RINTH) + RST + REND 	 (3.8) 

where N is the number of complete half cycles the ray makes, given by 

	

N = NIP + DOWN - 1 	 (3.9) 

while 
!;ZIP 

RST = 	Idx/dzI dz 	 IT = 1 	 (3.10a) 

ZSC 

ZSC 

	

Idx/dzI dz 	 IT =-1 	 (3.10b) 

SZLOW 

NIP 

REND 	 Idx/dzI dz 	 JT =-1 	 (3.11a) 

° ZLIS 
ZLIS 

	

Idx/dzI dz 	 JT = 1 	 (3.11b) 

ZLOW 



ZUP 	
2 	 NUP 

ZSC IT= I 	 ZLIS JT=-I 

ZLOW 
NLOW 

RLNTH 
RST REND 

  

Figure 4.  

Parameters describing a guided ray's path through the atmosphere; 

RLNTH is the half cycle ray repetition length, IT=1 or -l'if the ray 

is initially proceeding obliquely upwards or obliquely downwards, 

respectively, ..TT=1 or -1 describes slope at end point, ZUP and ZLOW 

are heights of upper and lower turning points, NUP is the number of 

upper turning points, NLOW is the number of lower turning points, 

RST is horizontal distance to first turning point, REND is correspond-

ing distance from last turning point to receiver, ZSC is height of 

source, ZLIS is height of receiver. 

• 
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The above formulas hold even should both NUP and NDOWN be zero, the 

computation giving for, say, IT=JT=1 

R = 

	

IrtZ IP 	ZLIS 	ZIP 

Idx/dzi dz 

	

14ZSC 	ZLOW 	ZLOW 

fZLIS ldx/dzl dz 	 (3.12) 
ZSC 

The computation of total range with the above listed inputs is 

accomplished by a subroutine named TOTRAN. It calls TNPNT first 

to find the turning points, then SHIFT to adjust the turning points 

so that the integrands exist throughout the integration range, then-- 

 RANG to determine the ray half cycle length RLNTH and uses the library 

subroutine QUAD to find the initial and final integrals RST and REND. 

The above computation algorithms implicitly assume the lower 

point on any given ray is a lower turning point rather than the ground. 

The method may be easily extended to include ground reflections although 

we have not yet done so. 

IV. RAYS CONNECTING SOURCE AND LISTENER 

-Of pertinent interest in any ray acoustic calculation is the 

tabtilation of rays which connect given source and listener (receiver) 

locations. Let us denote source and listener heights by ZSC and 

ZLIS, the horizontal distance of listener from source by RANGE. Then, 

given a ray type denoted by parameters IT, JT, NUP, NDOWN as defined 

previously, and given a phase velocity VP we may define a function 

RMRkYD(VP) as the difference between actual range R and the range which 

would correspond to the given values VP, ZSC, ZLIS, IT, JT, NUP, and 

NDOWN. If this function is zero, then the ray being considered does 

pass through the listener location. Otherwise, it does not. The 

function subroutine RMRAYD computes this difference, VP is an input, 
• 

the remaining necessary parameters are stored in COMMON. 



-19- 

To find the values of VP at which 

Ri RAYD ( 	= 0 
	

(4.1) 

given fixed ZSC, ZLIS, IT, JT, NUP, and NDOWN, a subroutine MVP 

is used. This scans values of VP between VPHST and VPHEND at intervals 

of SDELT until an interval is bracketed within which RMRAYD changes 

sign. Once such an interval is found, a library subroutine ZREAL2 
is used to find the precise value of the root. Up to NMAX such roots 

are found, the number actually found is denoted NFND, the roots being 

denoted V?1,0(1), WW(2) 	  NPED(NIFD). 

By use of FNDVP, one can, in principle, find all rays of a given 

type which connect source and listener. A systematic variation of 

ray types (IT, JT, NUP, and NDOWN) will in this manner give all the 

rays connecting source and listener. 

V. RAY SPREADING 

Two coplanar rays, both proceeding initially either obliquely 

upwards or obliquely downwards, may be characterized by phase velocities 

vP1 and vp2. 
Assuming that vp2 is arbitrarily close (but not identi* 

cally equal to) vpl 
we may characterize the separation of the rays 

by a parameter As which (see Fig. 5) is the perpendicular distance 

from a point on the first ray to the second ray. We consider As as 

positive if the second ray lies above the first, negative if below 

the first. The parameter Asmaylbe considered a function of horizontal 

distance x and also of the phase velocity. The limit 

ds/dv = 	
lim 	As/

p2
_v

pl 
171324.vp1 

may be considered a uniquely defined function of range x, phase velocity 

vP' ray type (IT=1 or -1) and ray initial height ZSC. We term this 

derivative the ray spreadinf function. One may note that within any 



RAY 2 

Figure*5.  

Definition of parameter As characterizing two adjacent rays with 

horizontal phase velocities vp1  and vp2. Note that As changes sign 

when the rays cross. 
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ray segment (i.e. between turning points) 

ds/dvp  = -±(dx/dv )/{1 + (dx/dz)
21/2 

= ± (dx/dv )fl - (c/v )
2
1
1/2 	

(5.2) 

where the plus sign applies if the ray is proceeding obliquely down-, 

 wards (JT=-1), the minus sign if it is proceeding obliquely upwards 

(JT=1), dx/dvp is the rate of change of horizontal distance traveled 

with respect to phase velocity at fixed z and fixed ray initial position. 

The derivative dx/dv may in turn be calculated if one knows the 

general ray type. For a ray proceeding initially upwards (IT=1) and 

going through NUP upper turning points and NDOWN=NUP lower turning 

points and ending with direction obliquely upwards, one has, for 

example, 

	

Z LP 	 sZIP 

Idx/dzI dz + N 	Idx/dzl dz. + 	jdx/dz 

	

4ZSC 	 ZLOW 	 ZLOW 

(5.3) 

where N = NUP + NDOWN -1 = 2(NUP) -1. Here the integrand Idx/dzl 

is given by Eq. (3.1). To differentiate this expression with respect 

to v 13,  one must take into account the fact that ZLOW and ZUP as well 

as Idx/dzI depend on vp. A formal application of the rules for diff-

erentiating an integral with respect to a parameter leads to singu-

larities and some tricks are required to avoid this. In particular, 

it is convenient to rewrite the above as 

= i(zsc,zta) + (N+1) I(zLI,zIp) + (Nu.) I(ZLOW,ZLI) 

+ (N+1) I(ZLOW,ZLI) + (N) I(ZLI,Z1I) + I(ZLI,Z) 

(5.4) 

where I(Z1,Z2) represents the integral of Idx/dzl between the indicated 

limits, ZUI is a fixed (v
P 
 independent) value of z slightly less than 

ZUP, ZLI is slightly larger than ZLOW. (See Fig.G.) One may also note 

that 

• 



RANGE 

Figure 6.  

Definition of parameters ZUI (slightly below upper turning point ZUP) 

and ZLI (slightly above lower turning point ZLOW) used in the calcula-

tion of ray spreading parameter ds/dvp. 



I (Z11,2 1P) = 
	1(ZIP-z) d 	dz 	 (5.5) 

Z11 

Idx/dzi 	-(dc/dz)
-1  (didz)(v

2  - (5.6) 

so an integration by parts gives 

I(ZII,ZIP) = 	f(dc/dz)
-1

(v
2 

- c
2
)
1/2

) 
Z II 

(v
2 

- 
c2)1/2 IKZIP- )(didz)(dc/dz) -1  dz 

Z11 

(5.7) 

and, consequently, one has 

(d/dv )I(Z11,Z12) = f(v /c)(dcidz) -i ldxidz I ) 
211 

ZIP 

+ 	(v ic)Idxidd(didz)(dcidz) -1  dz 
P 

Z1I 

(5.8) 

Providing dc/dz does not vanish in the interval between ZIT and ZIP,. 

both c these terms should be finite. In a similar manner, one can show 

that 

(didv )I(ZLOW,ZLI) = - 1 (v /c)(dc/dz) -1 !dxidzI) 
ZLI 

ZIP 
(v /c)Idx/dzl(didz)(dc/dz) -1  dz 

ZLOW 

(5.9) 

Int• I- 
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The derivatives of the remaining terms in the expression (5.4) are 

relatively simple since the integration limits are independent of,vp. 

In particular one has 

ZII 
(d/dv )I(ZSC,ZII)= - S 	c)(v

2
-c

2
)
-3/2 

dz 
ZSC P  

(5.10) 

Thus one obtains the expression (IT=1, JT=1) 

dx/dv = Il(ZSC,ZII) + (N+1)J1(ZII) + (N+1)I2(Z1I,Z1P) 

- (N+1)J1(ZLI) + (N+1)I2(ZLOW,ZLI) + (N)II(ZLI,ZII) 

+ I1(ZLI,Z) 	 (5.11) 

where we have abbveviated 

ZB 
Il(ZA,ZB) = -cv (v 2-c 2

) -3/2 
dz 

ZA P P 
(5.12a) 

J1(ZA) = f (v /c)(dc/dz) -1 1dx/dzil 	 (5.12a) 
z=ZA 

ZB 
I2(ZA,ZB) = 	(v /c)Idx/dzi(d/dz)(dc/dz) -1  dz 	(5.12c) 

ZA 

In general, for a ray of specified type (IT, „TT, NUP,NDOWN), the 

corresponding expression for dx/dv is 
p 

Il(ZSC,ZII) 
dx/dv p  = 

	

	 • + (2)(NIP)J1(ZII) + (2)(N1P)I2(ZII,ZIP) 
Il(ZLI,ZSC) 

-.(2)(NDOWN)J1(ZLI) + (2)(NDOWN)I2(ZLOW,ZLI) 

+ (;g1P+NDOWN-1)I1(ZLI,Z1I) + 
	

(5.13) 
Il(Z,Z1I) 



The two possibilities for the first term correspond to IT=1 and -1, 

respectively, while two possibilities for the second term correspond 

to JT=1 and -1, respectively. 

The integrand for the integrals of type Il is computed by a func-

tion subroutine FIRM(Z), while twice the values of those of type 12 are 

computed by a function subroutine FIRMUL(Z), i.e. 

Il(ZA,ZB) = RAYINT(FIRM ZA,ZB) 

Il(ZA,ZB) = RAYINT(FIRMUL,iA;ZB)/2 

Also the quantity 2[J1(Z)] is denoted in the program by TRNPT(Z), i.e. 

TRNPT(z) = 2v (dc/d -1
(v

2
-c

2
)
-1/2 	

(5.15) 

so the expression for dx/dv p  becomes 

EICD = TERM ST + (NIP)TRNPT(Z 11) + (N1P)RAYINT ( 11R1 IL ,Z 11,Z IP) 

- (NDOWN)TRNPT(ZLI) + (NDOWN)RAYINT(FIRAIL,ZLOW,ZLI) 

+ (N1P+NDOWN-1)RAYINT( FIRq,ZLI,Z1I) + TE1 LT (5.16) 

where the first and last terms are 

TER4ST = RAYINT(IIRA,ZSC,Z1I) 
	

IT = 1 
	

(5.17a) 

= RAYINT(ELR4,ZLI,ZSC) 
	

IT =-1 
	

(5.17b) 

TERALT=RAYINT(FIRM,Z,Z11) 
	

JT =-1 
	

(5.18b) 

= RAYINT(IIR4,ZLI,Z) 
	

JT = 1 
	

(5.18b) 

One may then calculate ds/dv from Eq. (5.2), i.e. 

DSD%11  = -SEN(JT)(EKDIP)(1-(c/v 1 2 )
1/2 	

(5.19) 
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The sequence of computations just described 

a subroutine CDSDVP. The parameters VP, ZSC, Z, 

are inputs, the output is DSDVP. The parameters 

internally and set to 

ZLI = ZLOW + .ol(zIp-npw) 

Z u =- Z IP - . 01 (Z IP-ZLOW) 

is carried out by 

IT, JT, NUP, AND NDOWN 

ZLI and ZUI are computed 

(5.20a) 

(5.20b) 

The choice of .01 is of course arbitrary. The chief constraint is 

that dc/dz should not vanish between ZLOW and ZLI and between ZUI 

and ZUP. 

If one considers the variation of ds/dv with x along a single 

ray (say with IT=1) it is apparent that up to the first upper turning 

point ds/dv p  should be positive since FIRM(Z) is negative; JT is 

positive. At the turning point one has 

ds/dv = p 	z +ZIP f
u_iciv 1 2) 1/2 37 cv  2  -c  2 )  -3/2 limit 

ZSCP P 

= { 1/ (dc/dz)} 211, (5.21) 

which, interestingly, is independent of ZSC. This follows if one 

breaks the integral above into integrals from ZSC to ZUI and from 

ZUI to Z, given ZUI < Z< ZUP, and expands c in a power series about 

its value v at z=ZIP. 

Between the first upper turning point and the first lower turning 

point the function ds/dv is given by 

ds/dv 	l_(civ )2}1/2 RAYINT ( FIR1 ,ZSC , Z II) 

+ TRNPT (Z 11) + RAYINT(FIRI TL , ZLI , Z IP) 

+ RAYINT ( FIRM ,Z ,Z II)/ 	 (5.22) 

A brief analysis indicates that this can be put in a form independent 

of ZUI, i.e. 



p  
{v /2 

{1-(c/v p)2}1/2 
„  

(ZIP - ZSC) 

1/2- 3/2 (v /2) 	/a 

(zip 	2  

ds 

dv 

)
1/2

/a
3/2 

1/2 
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ZIP 	 EP 
Arg (1)

(zo ,ZIP)dzo  - r  Arg
(1)

(z
o ,ZIP)dz SZSC 

(5.23) 
where 

(1 Arg )- (z,ZIP) 

cv 

(v
2 

- c 2 ) 3/2 

v
2 
p 

 

(ZIP-z) 3/2 (2av ) 3/2 

(5.24) 
and we have abbreviated --afor dc/dz at ZUP. The subtracted term in the 

arguments insures that the integrals exist. Also, as Z+ ZUP the second 

term in the brackets dominates and one has 

'7 , 
- (c/v 	

1/2 	(2a/v )
1/2

(ZIP-z)
1/2 

(5.25) 

and ds/dvo  3  V a in accordance with Eq. (5.21). On this basis, we 

may conclude that the __amity in braces in Eq. (5.22) starts out large 

and positive for Z close to ZUP,decreases monotonically (since FIRM(Z) 

is always negative) and eventually goes to - 03 when Z ZDOWN. Thus 

there is one and only one point on the ray between the first turning 

point and the second turning point at which ds/d/r0. This point is 

identified as a point on a caustic (where adjacent rays intercept). 

At the second turn inz point (first lower turning point) the same 

sort of limiting process described above gives 

ds/dvp  = .1/(dc/dz)} ZLOW 
	 (5.26) 

which as mentioned above is a negative number. 

Between the first lower (second overall) and second upper (third 

overall) turning points, one may similarly argue that ds/dv
P 
 goes 
 

to zero at one and only one point, etc., before that point ds/dvp is 
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negative, after that point it is positive, it approaches it/(dc/dz)l ZUP 
 at the next upper turning point, etc. The general situation is as 

sketched in Fig. 7. 

The number of times ds/dvp goes to zero along a ray path (i.e., 

the number of caustics encountered) is just 

Number of caustics = (Number of complete half ray cycles) 

+ (zero or one) 	 (5.27) 

The second term is zero if JT=l (upgoing ray) and the current value 

of ds/dv is negative or if JT=r-1 (downgoing ray) and the current value 

of ds/dvF  is positive. Otherwise, it is one. 

The number of complete half ray cycles, one may note, is just 

NUP + NDOWN -1 if either NUP or NDOWN are greater than one. Thus, 

it is a simple matter to determine, at a given point on a ray, just 

how many caustics the ray has encountered in passing from source to 

that point. 

VI. RAY AMPLITUDES 

Given that the acoustic pressure in the immediate vicinity of the 

source is of the form implied by Eq. (1.4), the Fourier transform 
-3- ; 

p(w,r))defined such that 

Spa,t) = Re Io(wMe-itut dw 4, 	 (6.1) 
o 

of the acoustic pressure may be inferred from the geometrical acoustics 

model
7 
to be (in first approximation) given by a sum over rays. The 

contribution from any particular ray connecting source and receiver 

is simply 	 / 

-„  
Pray 

= fluOP1/2 (zSC )(Atmosphere factor}{ Spreading factor] 
o  

CO 

N 	iwt 
k { 	c} e  ray (6.2) 
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Figure 7.  

Values of ds/dv p  along two adjacent guided rays, illustrating the 

conclusion that the number of caustics encountered is the number of 

complete half ray cycles traversed plus 0 or 1. 
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where Nc 
is the number of times the ray has touched (tangentially) 

a caustic, tray 
is net travel time along the ray. The atmosphere 

factor is given by 

{Atmosphere factor} = f (o0c) zi(Poc)SC/1/2 
	

(6.3) 

while the spreading factor is the inverse square root of the ray tube 

area normalized such that this factor reduces to 1/R near the source 

(i.e., at the beginning of the ray). The criterion for determination 

of these factors is that 

f
'ray

12/o
oclfray tube area} = constant 
	

(6.4) 

. - 
along a ray, that the limit (1.4) be realized and that the net phase 

ubange from source to receiver be nUt
ray

+
cu/2. 

A consideration of a cylindrically symmetric bundle of rays 

leaving the source at angles between 0 and 0-1-d0 with respect to the 

vertical leads one to the conclusion that the ray tube area should be 

a constant times i(ds/dvdruor l where ds/av
P 
 is the quantity dis- 

cussed in the previous section, rHGr  is horizontal distance from source 

to listener. One can also show, by considering a medium in which 

the sound speed is constant, that near the source 

R2c2/v3 

rHor Ids/dv I 	= 
fl-(c/v ) 2 1 1/2  

(6.5) 

so one identifies the spreading factor as the square root of 

{Spreading factor} 2 
= 

c2/v
3 

    

    

(6.6) 
f1-(c/v

p
)
2
1
1/2 

 rHor lds/dvpl  

where c is here taken as the sound speed of the source. 

One may note that the spreading factor goes to co whenever ds/dv p 

 goes to zero, i.e., at a caustic. This is one indication that the 

general formula may not be applicable everywhere. The modification 
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of the method to take into account proximities to caustics is dis-

cussed in the remaining portions of the report. 

VII. GEOMETRY NEAR CAUSTICS 

When viewed in a vertical plane containing the source, caustic 

surfaces appear locally as arcs of circles, the rays which touch 

it also appear locally as arcs of circles; the situation is as sketched 

in 	8. Each caustic has a shadow side and an illuminated side. 

If a receiver is on the illuminated side, then one may expect in general 

that two rays touching the caustic tangentially will also pass 

through a point A on the illuminated side, both of these rays will 

have approximately the same radius of curvature R
ray 

and will touch 

the caustic at points B and C, such as indicated in Fig. 9. Para-

meters of interest here are (1) the radius R c of curvature of the 

caustic, (2) the distance 6 from point A to the caustic, (3) the arc 

length (A6)Re  = £ along the caustic between points B and C; and (4) 

the angle 4,  between the two rays at point A; as well as (5) the radius 

Rray 
of curvature of the two rays. These parameters are related and it 

is a challenging exercise in analytical geometry to determine their 

interrelationships. Fortunately, the end results are relatively simple 

in the case of interest where 6<< Rc' 6<< Rray.  One finds, in parti- 

cular 

1 
6 = (1/8)(R

c
R
ra
1 
 y)1.2  

0 = (R
-1 
 +R

1  )g 
ray 

(7.1) 

(7.2) 

Another quantity of interest is the separation As between two 

rays which touch the caustic at points 6 = -A0/2 and A6/2 	9). 

Tf we irtPrnret As as positive if the second ray lies above the first, 

then 

AO 
 As/(RAO) = -E(R c

1+ R
r 
1 
ay

) 
c 

 (7.3) 



SHADOW SIDE 

ILLUMINATED SIDE 

Figure 8.  

Sketch of rays in the vicinity of a cau stic. The caustic is approx-
imately an arc of a circle, the rays are also locally arcs of circles. 

Note that the caustic has an illuminated side and a shadow side. 



Figure 9.  

Detailed sketch of two rays which cross on the illuminated side of 

a caustic at a point A and which touch the caustic at points B and C 

respectively; R c  is the radius of curvature of the caustic, st ray  is 

the radius of curvature of either ray; d is the distance of A from 

the caustic, ¢ is the angle between the two rays where they cross, 

£ is arc distance along caustic between points B and C, E is arc length 
along either ray, As is the separation distance between the two rays. 



where is distance along either ray in the positive sense from the 

caustic. Thus, if the upgoing ray in Fig. 9 is characterized by phase 

velocity vpl, the do;ingoing ray by phase velocity v p2 9we may character-

ize their respective ds/dv at the point A by 

 

(ds/dv
p
)
1 
= -(di/dv )(t/2)(R

-1 
+R

1 ) 
ray 

(ds/dv
p
)
2 
= (d2/dv )(Q12)(Rc1 +Rra

1 
y) 

(7.4a) 

(7.4b) 

where 

dk/dv = Z/(vp2
-v

pl
) (7.4c) 

It should be noted that (ds/dvp)1 is equal and opposite to (ls/dv p) 

In typical applications, such as are discussed in the next section, 

it may be presumed that the point A is known, the phase velocities and 

slopes:15f the two rays and therefore ¢ aue known, the ray radius R ray  

is known, the parameters (ds/dvp) 1 and (ds/dvp) 2 are known and are 

equal and opposite, but Rc , 6, and R are not known. A successive 

. solution of Eqs. (7.1-4) for the unknowns in terms of the knowns gives 

= -(1/4)(vp ..- 
z 	)(ds/dvp) 1  = (1/4)(vp2-vp1)(ds/dvp) 2  

= (1/8)(vp2 -vpl  )[(ds/dvp  ) 2  - (ds/dvp) 1 ] 

= • (v
p2

-v
p1

)[(Es/dv
p
)
2-(ds/dv 

1  R
c 

+R
ray 

= f(
vp2

-v
pl

)[(ds/dvp )
2 
 -(ds/dv

p
)
1
11
-1 

(7.5a) 

(7.5b) 

(7.5c) 

If we wish to characterize the distance of the point A from the 

caustic by a relevant dimensionless parameter, the natural choice (as 

explained subsequently) is the caustic proximity parameter whose defini-

tion may be taken to be 

n-21/3
(/c)

2/3
[(1/R ray 

 )+(l/R 
c
)]

1/3 	
(7.6) 
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This is negative on the illuminated side and, as may be noted, depends 

on the angular frequency w. In terms of the ray parameters described 

above, one may state that n for the point A on the illuminated side is 

n = -21/3 (w/c)
2/3

(1/8)f(v
p2

-v
pl)[(ds/dv 
	-(d /dv

p
)
1
11 2/3  

(7.7) 

which should always be negative (i.e.,[-IfD 2/3=[Ifl] 2/3). 

VIII. THE SEARCH FOR CAUSTICS 

To explore the possibility of the receiver being near but on the 

illuminated side of a - -caustic, all of the rays connecting source and 

receiver are ordered according to increasing phase velocity, those 

initially going obliquely upwards and obliquely downwards being con-

sidered as separate groups. For each successive pair of rays (i,i+l), 

one computes the corresponding values of ds/dv and determines the 

number of times each ray has touched a caustic according to the pre-

scription in Sec. V. If the signs are the same or if the N c 's differ 

by a quantity other than one, no action is taken and one proceeds to 

the next pair (i+1-.)-i, ii-2.+1+1). Once the above criteria are satisfied, 

one terms the two rays as a possible caustic pair. They are tempo-

rarily reordered such that the one with the larger N c  is called "the 

first ray" the one with Nc  being 1 less is called "the second ray". 

The slopes of the two rays are determined from Eq. (3.1) and the angle 

¢ (which could be negative) is computed in accordance with the corres-

pondence in Fig. 9. One also computes 6 from Eq. (7.5a). Then one 

checks to see if t, and 6 have the same sign. If not, the process 

starts over with the next pair. If they do have the same sign, then 

one computes the caustic proximity parameter n according to Eq. (7.7). 
If Inl>4, one would decide that the caustic is too far away for any 

special modifications. However?  if one finds Ini.14, the contribution 
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to the sum over rays from those two rays is deleted from the sum and 

replaced by a new composite term involving Airy functions. (The method 

of doing this is explained in the next section.) 

The second possibility is that the receiver lies near a caustic 

but on its shadow side. The following type of search is contemplated. 

First one examines the function RMRAYD(VP) described in Sec. IV. If 

the absolute value of this function has a local minimum (not zero) 

for some value of the phase velocity, then the possibility of the re-

ceiver being near the caustic is indicated. The search for such local 

minima is similar to that described in the discussion of FNDVP: one 

scans successive values of RMRAYD until one finds three successive 

phase velocities such that (1) all three wRAYn's have the same slap 

and (2) the magnitude of the middle one is less than either of the 

two end ones. One then breaks this bracketed interval down into, say, 

20 subintervals, calls FNDVP to see if . there are any roots in the 

interval. If FNDVP finds two roots 2 these are considered as rays 

connecting source and listener and the process stops. If FNDVP finds 

only one, the subdivision is made progressively smaller until two 

roots are found (if there is one, there must be two) and these roots 

are added to the overall group of rays connecting source and listener. 

If FNDVP finds no roots, then the local minimum is found by the above 

scanning process and one continues this iteration until the location 

of the minimum is accurately bracketed. Its precise location is found 

by fitting a parabola to the final triplet of points and then finding 

the minimum of this parabola. The parameters IT, JT, VP, MP, NDOWN 

are then considered as defining a near miss ray. 

To locate the point on the considered caustic which is closest 

to the actual receiver location, one considers the two equationd 

	

x = x(v ,z) 	 (8.1a) 

	

ds/dv
P 
 = r(v ,z) 	 (8.1b) 
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with IT, JT, NUP, NDOWN considered fixed. The two indicated functions 

may be considered as defined by subroutines TOTRAN and CDSDVP. The 

caustic is the locus of points at which dx/dvp=0. The scheme outlined 

above gives one such point. Successive points are determined from 

3 Flav 	= -(3 P/3z)(dz/dv ) 

dx/dv 	= (3,x/av ) + (3x/3z)(dz/dv ) 

or 

dz/dvp  = -(3 F/3v )/(3F/3z) 
	

(8.2a) 

dx/chr 	= (ax/av) — (ax/az) F/av )/(a vaz) 	(8.2b) 

One may note that these two functions on the right hand side are easily 

programed. One now simply numerically integrates these differential 

equations until he reaches a point at which the distance of (x,z) 

from the actual receiver location is a minimum. The scanning regime 

must, however, be restricted to points at which 31P/3z is nonzero, 

the other quantities on the right hand sides should be finite. The 

minimum distance is that corresponding to the allowable scanning region. 

Once this minimum distance point has been found, one varies x and z 

until a neighboring point is found at which two rays pass through 

with approximately the same value of v p  as that corresponding to the 

caustic point. Parameters corresponding to these two rays at this 

new point are tabulated and one determines the approximate circle 

which describes the caustic in their vicinity according to the 

equations given in Sec. VII. The caustic proximity parameter 

corresponding to the receiver location is then computed 

according to Eq. (7.6) only with (l/Rc) + (l/Rray) replaced by Eq. 

(7.5c), 6 is replaced by the negative of the distance of the receiver 

location to the caustic circle. The parameter n so computed should 

be positive, otherwise the search in this instance stops. If n  is 

greater than, say, 5, the presence of the caustic is disregarded. 

ink: a 
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Otherwise, it is taken into account by the method described in the 

next section. 

IX. FIELD NEAR A CAUSTIC 

The method we adopt for incorporating caustics into the computation 

is based on results derived by Haskell
6 in 1951. While Haskell was 

primarily concerned with the nature of guided modes near turning points, 

his analysis may easily be reinterpreted as implying that, near a 

caustic, the contribution due to the two rays which intersect at a 

point A on the illuminated side (see fig. 9) should be replaced by 

p = (G)expr icot e Mi( n ) 
	

(9.1) 

where 

2/3 
= 	(3/2 	d6 
	

(9.2) 

Here Ai(n)is the Airy function 17 defined by 

Ai(n) = (1/1 cos[ (s3/3)+ ns] ds 
o 

(9.3) 

Also, t c  is ray travel time from the source to the point on the caustic - 

' closest to the receiver point; 	is the component, normal to caustic, 

of either ray's wave number vector (w/c times unit vector in ray 

direction); S is the perpendicular distance from the caustic. The 

function G is a slowly 7arying function of position chosen such that 

Eq. (9.1) matches on to the corresponding ray theory expression when 

n « —1. 

V 



As regards the matching on, one may note that, if n « -1, the 

Airy function approaches an asymptotic limit17  

7T -1/2 1n -1/4
sin[(2/3)In1

2/84T
/4] 
	

(9.4) 

so Eq. (9.1) above approaches 

d 
; .+N/(2Oileiu/4/ in11/4] 	r eXPL iWt

c
k,dd] - i expj iwt 	

' 
+i k,dd] 1 

o 

(9.5) 

the first term is identified, with k1>0, as the contribution from the 

ray which has not yet touched the caustic, the second from the ray 

which has already touched the caustic. This follows since the 

	

tray . = tc  T r(ki/w)dd 
	

(9.6) 

correspond to the travel times of the two rays, respectively, to the 

point under consideration on the illuminated side. A verification of 

this latter statement may be given from consideration of the fact 

that the tray  for rays coming into the caustic may be considered as 

a continuous function of position which satisfies the eikonal equation
7 

(Vt
ray

)2 = 1/c2 
	

(9.7) 

where tray reduces to t c at the caustic. Consequently, if the component 

of 
Vtrav normal to the caustic is -ki/w (wave number vector divided 

by w is gradient of the eikonal function) 

then . 

6 
t
ray 

7  t
c 	

Vt
ray dd 

0 
(9.8) 



which is just Eq. (9.7) with the minus sign. Similar considerations 

apply for the eikonal function tray  of rays leaving the caustic and 

the identification corresponding to the plus sign is recovered. 

In the vicinity of the caustic, given the respective geometry 

sketched in Fig. 9, the value of Ici  may be readily shown to be 

approximately 

	

= (w/c)V2i(1/Rray) + (1/Rd] 1/2
,51/2 
	

(9.9 

. 	_ 	. 
this holding to a high relative appvoximation very close - to the caustic. 
Consequently, the value of ri is given by 

2/3 1/3 
rt = -WO 	2 [(1/Rray)q-(1/Re)]

1/3
d (9.10) 

which as might be expected is exactly the same as given in Eq. (7.6) 

for the caustic proximity parameter 

Also, one should note, on eliminating .4, from Eqs. (7.1): and (7.4), 

that 

(ds/dv
p

)
1 

= -(dt/dv )V2 [(1/Rc)+(1/R
ray

)1
1/2 51/2 	

(9.11a) 

	

= -(dsidvp) 2 	 (9.11b) 

SO 

1/1711
1/4 

= (2c/w)
1/6

[(1/1(c)+(1/Rray)] 1/61  dk/dv P  1
1/2 / Idsidv 

P
1 1/2  

(9.1• 	• 

The fact that the two individual terms in Eq. (9.$) must correspond 

to Eq. (6.2) allows us to identify the parameter G in the former as 

1/2, 
f. (m).o

o 
;Atmosphere factorlf Spreading factor with Ids/d1-1/2omitted} 

V 
1 -1/2 (2/0ein/4 (_ i)  pc 

J 

	

(2c/f.:.:)
-1/6  [(1/Rc )+(liR 	W14-61 dtidv 

ray 	I 
P  

■ 
(9.13) 
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where Npc  is the number of prior caustics encountered by the two rays. 

These formulas developed above give one a straightforward method 

for incorporating caustic corrections when the receiver lies on the 

illuminated side of the caustic. Given the parameters describing two 

rays which touch the caustic, these parameters being appropriate to 

the receiver location, one first computes n according to Eq. (7.7), 

computes 1/Re  + 1/Rray  according to Eq. (7.5c), computes 2: according 

to Eq. (7.5b), then di/dvp from Eq. (7.4c). These numbers are then 

used to calculate the factor G in Eq. (9.13). The parameter t e  is 

just the average travel time of the two rays from the source to the 

receiver location. 

As regards the calculation of the Airy function Ai(n), subroutines 

capable of evaluating this' function are given by Posey
10 

in his thesis, 

so there is no real computation problem involved. 

If the receiver is on the shadow side:of the caustic, the process 

is similar, but one must first find two rays passing through a point 

(on a line from the receiver normal to the caustic) on the illuminated 

side in order to determine dk/dvp , [(1/Re) + (1/Rray)], and t
c
. Once 

this is done, the parameter n is computed from Eq. (9.10), only with 

replaced by the negative of the distance from the receiver to the 

caustic. The function G is computed just as described previously. 

Since the Airy function decreases as 

Ai(n) = (1/2)n-1/2n-1/4 e-(2/3)n3/2 
	

(9.14) 

for large positive n, we may anticipate the contribution from the caustic 

on the shadow side to decrease relatively rapidly. Since Ai(0) = .355, 

Ai(5)Z1.1x10 4
, one can certainly ignore values when n is greater than 5. 

X. CONCLUDING REMARKS 

The computational method outlined here is still under development 

and, at present, computer subroutines are available for performing 

only part of the steps envisioned for the overall waveform synthesis. 
33•3̂ :. 3. 
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The computer subroutines presently available are given in Appendix 

B along with a sample MAIN program which calls them and which may be 

used in studying acoustic propagation with the use of these subroutines. 

The project is being continued as a Ph.D. dissertation by Mr. 

Kinney and it is expected that an operational and comprehensive com-

puter program based on the computation method should be available by 

summer 1976. 

It should also be stressed that the overall method described here 

is expected to avoid many of the limitations one customarily associates 

with ray theory computations. The fact that the method produces 

amplitudes and phases rather than merely finding ray paths and travel 

times is significant. Also the fact that it allows for the possibility 

of more than one ray connecting source and receiver is important for 

realistic infrasound applications. The method of taking the presence 

of caustics into account should extend the applicability of the geomet-

rical acoustics theory down to frequencies formerly considered to be 

the sole domain of guided mode theory and should be regarded as an 

important extension of the geometrical acoustics theory. 

There are still some unsatisfactory features in the theory which 

might be given additional attention. One of these is the neglect 

of lacunae previously mentioned in the Introduction. While some work 

has been done on propagation into a shadow zone, e.g. by Pekeris 18 

 and by Ingard and Pridmore-Brown,19 the results are difficult to inter-

pret in the generalized sense required for incorporation into a com-

putation scheme such as described here. Thus, some considerable 

intellectual effort probably remains to be exerted before one may 

satisfactorily handle lacunae. 

Closely related to the lacunae problem is the coupling of two 

adjacent sound channels. The present theory assumes, in particular, 

that energy trapped in one channel stays in that channel. In reality, 

there is always some penetration of energy from one channel to the 

other and one may envision that a satisfactory description may be found 

by using an extended WKB approximation, matching at turning points 

on both sides of the barrier comprised of the region where the sound 

speed is higher than the horizontal phase velocity. 



There is also the problem of aretes20  formed by the meeting and 

termination of caustic surfaces. Here the idealization of a caustic 

having a radius of curvature much larger than a wavelength breaks down 

and the theory developed here becomes inapplicable. However, we 

believe aretes to be so isolated in occurrence that the possibility 

of a random receiver location being close to an arete or of lying 

on a ray which touched a caustic close to an arete is relatively small. 

Thus, there would seem to be little urgency in taking such phenomena 

into account. 

The incorporation of winds, additional dispersion due to gravity, 

earth curvature, sound absorption due to dissipative processes, and of 

phase shift on ground reflection would seem to be relatively minor 

problems since the theory for doing so is relatively well developed 

and is discussed in particular in previous reports written under this 

project. We have chosen not to include such effects in the discussion 

here primarily because of the premise that one may make faster progress 

in the long run if he first starts out with a simpler model, checks 

this model out thoroughly, and then adds the embellishments needed 

for a more nearly accurate simulation of nature in a sequential fashion. 
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DO 5 1=1,19 	 MAIN 	11 
ZC = ZTS(I) 	 MAIN 	12 
CALL COSCVP(Vt7.C.ZSC,IT,JT,NUR,NCOWNtOSOVP) 	 MAIN. 	13 

5 PPINT 4 ,"OSOVP=",OSOVP 	 MAIN 	14 
CALL EXIT 	 - MAIN 	i5 
END 	 MAIN 	16 

SUBROUTINE TOTRNIVP,IT,JJ,NUP,NCCWN,ZSCIZLIS,P) 
COMMON VPT 
rXT=RNAL PDXDZ 
CALL INFNT(VP,7.2L,Z0U.N.SCEN.N-ITS,2LOWIZUP) 
CELL SHIFT(ZLOWtZU?) 
CELL PANG(RTIYE,PLNTStZLO:4,7Uc) 
0 = 1.E-6 
Ir (IT ,LT. 0) GO TO 5 
CALL GUE0(ZUZSC,D,REL,1tANS1tRCYOZ1NERR 7 0) 
RST = —ANSi 
GO TO 10 

5 CONTINUE 
CALL OUAD(ZLOWtZSCO,RELtl,ANS2,RCXCZ t NERR I O) 
RST = A%S"? 

10 IF (JT .LT. 0) CO TO 20 
CALL OUAC(ZLOWsZLISICirEL,ItANS3,FOXOZ I NERR,0) 
RENO = ANS.? 

- GO TO 30 
20 conrinu: 

CALL CUAC(ZUR,ZLIS,OtREL,1tANS41PCX0Z,NERPt0) 
REND = 

30 N -= NUIP + NCOWN — 1 
R . = N*RLNTH + RST + RFNC 
RETURN 
ENO  

TOTRAN 
TOTRAN 	2 
TOTPAN 	3 
TOTPAN 	.4 
TOTRAN 	5 
TOTRAN 
TOTRAN 	7 
TOTRAN 	8 
TOTRAN 	9 
TOTRAN 	10 
TOTRAN 	11 
TOMAH 	12 
TOTRAN 	13 
TOTRAN 	14 
TOTRAN 	15 
TOTRAN 	16 
TOTRAN 	17 
TOTRAN 	18 
TOTRAN 	19 
TOTRAN 	2C 
TOTRAN 	21 
TOTRAN 	22 
TOTRAN 	23 
TOTRAN 	24 
TOTRAN 	25 

SUBPOUTIN= FNOV c (KMAX,ZSCtZLIS.FANGE,IT,JT,NUF.NOCHNOPqS1t 	FNOVP 	1 
11/FNNO,SCELTA,NFNC I VPFNC) 	 FNOVP 	2 
CCMPON V c rviltNCS.ZI(10C),CI(:3C),ASOL(100), 	 FNOVP 	-3 

1ZSCCtZLISC,R:.•SECtITC1JTC.NUPC,NCCWNC 	 FIOVP 	4 
oimixsr:N V=FNO(1),X(1) 	 FNOVP 	. 5 
eXT=RNAL FtlAY0 	. 	 FNOVP 	6 
ZSC( = ZSC 	 FNOVP 	7 
ZLI .3C = ?LIS 	 - Fnnvo 	8 
RANSEC = PANG:: 	 FNOVP 	 9 
ITC = IT 	 FNOVP 	. 	10 
JTC = JT 	 FNOVF 	 11 
%UPC = NN 0 	 FNOVP 	12 

'NCOWNC = KDOWN 	 FNOVP 	13 
NFNO = 0 	 FNOVF 	 14 
V 0 1 = VP"ST 	 'FNOVP 	 15. 
Fl = c.1•=4YO(V1) 	 FNOVP 	16 	• 

	

3 v;t2 = Itz, + SOELTA 	 FNOVP 	17 
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F2 = 0 M 7 4Y0(Vn2) 
IF fF1*F2) 10,5,5 

5 IF (VP2 .GT.-VPHEK0) F,ETURN 
VP1 = V 0 2 
FS = F2- 
GO TO 3 

10 GZ = VF1 - F1*SZELTA/(F2 - =1) 
X(1) = GZ 
CALL ZPEAL2(RMRAYC,I.E-5,.7.:1,SDEL 1 4,5,1,X,101IFR) 
NFtil = KFND + 
VPFNO(NPNC) = X(1) 
IF (NFNO .E1. NyAx) PETCR 
GC TO 5 	 - 
ENO 

FNDVP 	18 
FNDVP 	19 
FMCVP 	20  
FNInvP 	 21 

22 
FFPtig: 23 
FNDVP  24 
FNDVP  25 
FNDVP 	26 
FNDVP 	27 
FNDVP 	28 
FNDVP 	29 
FMCVP 	 30 
FNDVF 	3i 

FUNCTION FNRAY1tV=I7- 	 RMRAYD 	1 .  
CCHMON VPP,I1,::CS.Z:(1 1:70,Citl::),ASOL(100), 	 RMRAYD 	2 

1ZSCC.ZLISC,RANGEC,ITC,JTC,NURC,NCCWNC 	 • RmRAY0 	3 
- ZSC = ZSCC 	 ;MAYO 	4 
ZLIS =' ZLISC 	 RMRAYD 	5 
Rcoe = RAt:GFC 	 RMRAYO 	6 
IT = ITC 	 RMRAYD 	7 
JT = JTC 	 RMRAYD 	8 
NUP = NU'C 	 RMRAYD 	9 
4.CoWN = NEoWNe 	RMRAYD 	10 

• CALL TOTR44(VPI•IT,JT,NLF,NCG.w4,ZSC,ZLIS,R) 	 RMRAYD 	11 
RMRAYD = PCOM - R 	 RMRAYD 	12 

- RETURN 	 RMPAYO 	13 
ENO 	 4MRAYD 	14 

SUSROUTINE SHIFT(ZLOw,ZUP) 	 SHIFT 	1 
SU34OUrINE SHI=T MOVES THE VALUES OF Z (ZLOW,ZUP) FOUND - 	 SHIFT 	 2 
FoR TUE ruRNING PCINTS (FY TNPNT) SG AS TO AVOID INTEGRATION 	 SHIFT 	 3 
THROUGH SINGULARITIES., AS C:ULE cJA;;EN IN THE CALCULATION • 	 SHIFT 	4 
OF ALMGST ALL THE CUANTITIES I\CLOCEC IN THIS PROGRAM. 	. 	 SHIFT 	5 
SHIFT IS CALLED EY VIIN ONLY, :43 AFTER TNPNT IS CALLED. 	 SHIFT 	6 

n = 0 	 SHIFT 	7 
CALCULATE THE )IFFEPENCE EETHEE', THE SOUND SPEED AT THE LOWER 	 SHIFT 	 8 
TURNING POINT AND THE PAS_ VEL:CITY. 	 SHIFT 	9 
5 C'KL = C!'"IP(ZLOw) SHIFT 	10 
IF THE SCUNO Sf.I EED IS LESS TH1% :.7 P, li."--.'RE SAFE, AND WE GO ON TO 	SHIFT 	11 
CHECK IHE UPPER. TUR.NING PCIA.T. 	:-.:ThEPWISE, WE 4C0 A TINY ViCUNT 	SHIFT 	12 
TO ZLOW . ANC CONTP.UE DOING SC 1..\TIL THE SOUNC SPEED IS LESS THAN 9P. SHIFT 	13 

IF(CHKL .LE. ::.:1) G3 TO :• 	
. 

: SHIFT 	14 
7Lo4 = ZLCW + L.E-3 	 SHIFT 	15 
4 = N+1 	 SHIFT 	16 

IF SHIFT IS UNSUCC=SSFUL :\ A ;C.::.! TRIES, WE WANT IT TC STOP. 	SHIFT 	17 
IF(N .GE. 113;.:) 	.7-.TUPN 	 SHIFT 	. 18 
GO TO 5 	 SHIFT 	19 

WE TRY TH= sl ,•.:: =0= THE UP=E --Z TU-:NINE POINT, AND AGAIN, AS LONG AS 	SHIFT 	20 
THE SOUND S=E-1 :S LF$S TH:\ V:, WE'RE SAFE,. 	 SHIFT 	21 
13 CHKU = CmV 0 (ZI:n) 	 ' 	SHIFT 	22 

IF(CH4U .LE. t;.C) ::ETURN 	 SHIFT 	23 
ZUP = ZU 3  - 1.z.7 - 	SHIFT 	24 
N = N+I 	 SHIFT 	25 
IFfN .GE. 13C2) RETU=N 	 SHIFT 	 26 
GO TO 10 	. 	 SHIFT 	27 
cm] 	 SHIFT 	28 
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FUNCTION C1VP(2) 
THIS FUNCTICN ROUTHE SII'FLY CALCULATES THY. DIFFERENCE 
CAS A FUNCTICN OP NE/GHT 7) r._7;47pN TH= PHASE VELOCITY 
(WHICH IS INPUT) ANC THE Seer:3 SPEED (WHICH IS A FUNCTION 
OF HEIGHT Z). 

COMMON V= 
CMV° = CSF(7) - V= 
RETURN 
END 

CMVP 
CMVF 	 2 
•CMVP 	 3 
CNVP 	4 
CNVP 	5 
CMVP 	 6 
CMVP 	 7 
CdVP 
CMVF 	9 

sUARcurINE Th 0 NT(VP.ZBL,2E, U,N2CAN I NRTS,ZA,29) 	 TNPNT 	1 
SUBROUTINE TNPNT FINES THE TURN:NG PCINTS (VALUES OF 2  

	

_TNPNT 	2  
AT WHICH THE OIFFECENCE FIE'reE• THE SOUND SPEED ANO THE PHASE 3 TNPNT 
VELOCITY VANISiES) GIVEN THE P=AS_ VELCCITY (VP). ZBL AND "ZnU 	TNPNT 	4 . 
ARE THE LO•Eq AND UPFER BCUNCS, RESFrCTIVELY, BETWEEN NHICH THE 	TNPNT 	5 
SEARC4 FOR I'VE TUR/sING FCINTS IS CCNCUOTED. NSCAN + 1 IS THE 	TNPNT 	6 
NUM2ER OF SUBINTERVALS INTc WA/C4 THE INTERVAL OF SEARCH IS 	 TNPNT 	7 
SU3DIVIDEB. NRTS IS THE Nt.:-3ER OP TURNING PCINTS FOUND (WE 8 TNPNT 
NORMALLY EXPECT TWO). ZA IS THE LOWER TURNING POINT (IF FOUND) 	TNPNT 	9 
ANO Z3 IS THE UP =EP CNE (IF FOUND). /0 

EXTERNAL cmVP 	 11 
DIMENSION X(1) 	 ET 	12 . 
60N -40N VrC,I1INCS,ZI(160) 	 TNPNT 	13 
VPC = V 0 	 TNPNT 	14 
ZPL = ZI(1) 	 TNPNT 15 

TNPNT ZeU = zi(Ncs) 	 16 
NSCAN = NCS + 3 	 TNPNT 	17 

CALCULATE THE WICTH CF THE SU2InTERVALS 	 TNDNIT 	18 
OELTA = (23U - ZPL)/(NSCAN + 1) 	 TNPNT 	19 

- CALCULATE CSF(29L) - VP 	. 	 , 	TNPNT 	20 
F1 = CMVP(ZBL) 	 TNPNT 	21 

START. THE SEARCH AT 28L 	 TNPNT 	-22 
21 = Z8L 	 TNPNT 	23 
NRTS = 0 	 TNPNT 	•24 

FIND THE UPPER LIMIT OF THE SUBINTERVAL 	 TNPNT 	25 
10 Z2 = 2 	 TNPNT 1 * DELTA 	 26 
CALCULATE CSF(72) - VP 	 TNPNT 	27 

F2 = CMVP(22) 	 TNPNT 	25 
TAXE THE P-;ccUDT OF =1 ANC F2, 4NO IF IT IS POSITIVE, WE HAVE•T 	TNPNT 	29 

	

FOUND THE  SUFINTERVAL WITH A TURNING POINT IN IT YET. SO WE GO TO 15 T(.1°NT 	30 
AND START AT THE 2CTTC1 CF THE NEXT SUBINTERVAL. ' 	 TNPNT 	31 

TEST = F1l'F-2 	 TNPNT 	32 
TNPNT IF(TEST .GT. G.0) GO TO I": 	 33 

IF F1*F2 IS NET,ATIVE. WE'VE GOT A SU2INTERVAL WITH A TURNING 	- TNPNT 	34 
POINT IN IT. AT THIS POINT, WE N4<E Ottt. GUESS" . FOR THE 	 TNPNT 	35 
TuRNING - ociNT. 	 TNPNT 	36 

GZ = 21 - FlvDECTA/(F2 - Fl) 	 TNPNT 	37 
X(1) = GZ 	 TNPNT 38 

2REAL2 IS AN INTrRN::TIONAL ":TH SCIENCE LI9qARY ROUTINE 	 NPNT TINE FOR 	 . 39 
FINDING THE 7. 11-!CES CF A SFECIrIEC rUNCTION 	 TNPNT 	40 

CALL ZP.At.z. cc-7 2 ,1.E-7,0.01,0ELTA,7,1.X,10,TER) 	 TNPNT 	. 41 
NRTS = 1.■ TS 4 1 	 TNPNT 	42 

IF WE HAVE SCN7 THrMGH THIS LC0 0  SUCCESSFULLY ONCE, THEN WE HAVE 	TNPNT 	43 
POUND THE LOSE' TU..7 ■.TNI FCINT. 	1r WF HAVE GONE THROUGH TWICE, WE 	TNPNT 	44 
HAVE FOUND ?CT'. TUF•IN:S FCInTS, 	NO WE'RE DONE. 	 TNPNT 	45 
Tr(NTs .Eq. 1) 7:. = x(1) TNPNT 46 
IPCNRTs .F0. Z) 7'1  = X(1) 47. 
IF(NRTS .E0. Z) GC TO 2 TNPNT 

	

TNPNT 	48 
15 71 = 72 

= F2 	

. TNPNT 	t.g 
r1 

	

TNPNT 	:0 
IF WE HAVE SEAR.CHEC 4LL THE inlY TO Z c li. WE'RE PON E . OT HERWISE, wR 	TNPNT 	51. 
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• 

GO ON To_THF n:xT SUIATERVAL. 
IF(ZOU .GE. ZI) GC TO 10 

20 RETURN 
"ENO 

TNPNT 	52 
TNPNT 	53 
TNPNT 	54 

. TNPNT 	55 

SUCROUTINE RANG (FTImE,RLNrH,7Low,zu 0 ) 	 RANG • 	.1 
SU:ROUTINE PANG PERFCRNS THE FIt.:aL STEF IN THE CALCULATICN 	 RANG 	 2 
('Y INTFGRATION OF OT/OZ ANC OX/W. OFTWE=N THE TURNING POINTS' 	RANG 	 3 
ZLO4 t ZUP) OF THE RAY REcETITIcN TIME AND LENGTH, RTI9E AND 	 RANG 	 4 
RLN14, ,4ES=ECTIVELY. 	 RANG 	 5 

EXT=RNAL RGTOZePOYOZ 	 RANG 	 6 
RT/ME = PAINT(POTCZ,7LOW,ZU=) 	 RANG 	 7 
?,LOTH = RAINT(RCXCZ,ZLOw,ZU=) 	 RANG 	 8 
RETURN 	 RANG 	 9 
END 	 RANG 	 10 

. SUBROUTINE DASOL 	 DASOL 	 1 
SU9ROUTINE DASOL CALCULATES THE COEFFICIENTS OF - THE CUOIC 	 OASOL 	2 
SPLIhE USEG TO APaROxIMAIE THE SC NC-SPEED PROFILE, ANC AS 	 OAS OL 	3 
OEFINFC SY 	 DASOL 	4 

DASOL nELzci)*:.scL(r-1) I. 2* 	 W 	 4- CCELZ(I) - DELZ(I+1ASOL(I) 	 5 

	

+ DELZ(I41) 4 ASCLII+1) = GELC(I41) - QELC(I) 	 OASOL 	6 
WHERE 	CELZ(I) = Z(/) - Z(I-1) 	 DASOL 	 7 

	

CELCII) = (C(I) - C(I-1))/DELZ(I). 	 DASOL  8 
COMMON vo,ri,Ncs,w 	 DASOL ic6),crcioo),AsoLcioo) 	 9 
N = 1 	 OASCL 	10 
OELZ = 1.0 	 DASOL 

OASOL 	
ii 

DELC = o.a 	 i2 
AKM2 = 0.0 	 , 	 DASOL 	13 
ALM2 = 0.0 	 OASOL 14 

DASOL AKM1 = 0.0 	 15 
ALM1 = 1.0 	 OASCL 	16 

' NSTP = ACS - 1 	 DASOL 
OASOL 	

17 
10 0E1.2 0  = ZI(N+1) - ZI(N) 	 18 

DELCI = CI(N+1) - CI(N) 	 04501 	i9 
ALPHA = OELZ 	 DASOL 	20 
GAMMA = OELZP

2. 	
21 

gal= OFTA = .C*IALPHA + GL 	 22 
OEE = (CELC 0 /CELZ°) - (CELC/CELZ) 	 DASOL 	23 
IF(N .E1. 1) GO TO 30 	 DASOL 	24 
AK = (OEE - AL"HA}AK•2 - 2ETA•.0'1)/GAMMA 	 OASOL . 25 
AL = I - ALPHA* 	 DASOL ALP2 - eETA*ALmil/GAMmA 	 26 

DASOL IF('l .=1. NSTP) GC TO 1G.3 	 27 
AKM2 = 4X''1 DASOL 1 	 28 
ALM2 = ALM1 

if)ggti. 	
29 

AKM1 = AK 	 30 
ALM1 = AL 	 DASOL 	31 

30 N = N + 1 	 OASOL 	32 
, OELZ = CELZP 	 04501 	33 
OELC = DELCc 	 DASOL  

04501 	
34 

GO TO 10 	 35 
100 ASOL(1) = 0.0 	 OASOL 	36 

ASOL(Z) = -AK/AL 	 DASOL 	37 
OELZ = 1.0 	 OASOL 	38 
OELC = 0.0 	 DASOL 	39 
N = 1 	 DASOL 	40 

g= 
110 0Eiz3 = zI(4+1) - ZI(N) 	 41 

DELCP = CIC1+11 - CI(A) 	 42 
' 	A1 0:44 = '7.P'LZ 	 DASUL 	43 

GAMMA = GELD' 44 DASOL 



-58- 

?;,TA = 2.ce(lLpHA 4 GArwA) 	 OASOL 	 45 
:EE = (::LC?/DEL7P) - (CELC/OELZ) 	 DASOL 	 46 
1c- ( N s Ef:. 1) GO TC 1.3 13 	 DASOL 	 47 
M =N+1 	 DASOL 	 48 
AOL(m) = ( 7)E.E - ALPHA'ASOL(N-1) - BETA‘ASOL(N))/GANMA 	 DASOL 	 49 
:F(N .E':. NITP) GC TO 2C3 	 DASOL 	 50 

133 N = (N + 1 	 DASOL 	 51 
CELZ = CILZ° 	 DASOL ' 	52 
:_LC = CEL:P 	 DASOL 	 53 
SO T3 11: 	 DASOL 	 54 

2:0 RETU-N 	 DASOL 	. 55 
ENO 	 DASOL 	 56 

FUnCTION CSPCZ) 
	

CSP 	 - 
CSP 	 2 

THIS FUNCTICk: R:UTINF CALCULATES INTERMEDIAT7 VALUES OF 	 CSP • 	 3 

	

THE SOUND SPEED 7 R. C=ILE ACCC•CING TO THE EQUATION 	 CSP 	 4 
CSP(?) = 4.:1 4R'C(I-1) + N=C(I) + 	 CSF 	 5 

cu:ELzcil**2)4,- LtscL(i-1) , (:i5,IR4.:E - WBAR + ASCL(I)* 	 CSP 	 6 

	

*CW 44'3 - H)). 	 CSP 	 7 
CSP 	 8 

ccw-tcr: VP,II,NCS,ZI(1.00),CI(10C).ASOL(100) 	 CSP 	 9 
CEFIE - THE LC D_? 4NC UPPER ECUNDS CF THE SOUND-SPEED PRCFILE. 	 CSP 	 10 

ZL = ZI(1) 	 CSP 	 11 .•  
ZP = zir%:s) 	 . 	 CSP 	 12 

CUTS:OF OF THESE 1"?.DU%0S, LET THE SOUND SPEED 8E CONSTANT AND EQUAL 	CSP 	 13 
TO 1. 6.-  CORRESPDNDI5 ADJACENT IALUES. 	 CSP 	 14 

17 (Z .LT. ZL) GC TO 50 	 CSP 	 15 
IF (Z .GT. Z?) G.O TO 60 	 CSP 	 16 
I = NCS 	 CSP 	 17 

10 J = I-1 	 CSP 	 18. 
FOR 1NY '1 L"= Z, .;:r 144!:T I SUCH THAT Z IS BETWEEN ZI(I-1) AND Z1(I). CSP 	 19 
W= START WIT!-,  TH= iiIGHEST VALU= 70R I ANO WORK DONNWARC UNTIL WE 	CS° 	 20 
FIND Ills" TNT 7 P1: 1.. TH4T CONTAFIS Z. 	 CSP 	 21 

ZTEST = 71(J) 	 - 	 CSP 	 22 
IF 7  IS 9ETEN Z:(I-1) ANC ZI(I), WE GO TO 40 AND CALCULATE CSF(Z). CSP 	 23 

IF (Z .GT. ZTEST) GC TO 40 	 CSP 	 24 
IF Z IS ?.OT '7ETW=EN 7I(I-1) AN ZI(I)• WE CHOSE THE NEXT VALUE LCWER CSP 	 25 
FCR I AND C:ATINUE THE SEARCH. 	 CSP 	 26 

I =. J 	 CSF 	 - 27 
50 TO 10 	 CSP 	 28 

4C CV:TV:U.7 	 CSP 	 29 
Z IS 2=TWEEN ZI(I-11 AC Z/(I) 	 CSP 	 '30 
DZLZ = ZI(2) - ZI(J) 	 CSP 	 31• 
4  -''' (Z "' .71(.1))/C 1L-Z 	 - CSP 	 32 
W=A? = 1.: - W 	

. . 
CSP 	 33 

T=Rmi = wr-. .,,R-::cJ) 4- w*c/cI) 	 CS° 	 34 
GUT1 = W?4P•'.3 - W34= 	 CSP 	 . 35 
G"T = 4•• -3. - 4 	 - 	 CSP 	 - 36 
T=RM2 = (CELZ"2)s(ASCL(J)*GUT1 + ASOL(I) 4 GUT2) 	• 	 CSP 	 37 
4.... ‹. p  , Tr...7.w! 4 T=Pv2 	 CS° 	' 	38 
RETURN 	 . CSP 	'-.39 

:: 	:7 P = ci(I) 	 CSP 	 40 
R=TURN 	 CSP 	 41 
CSP = CI ('.CSI 	 CSP 	 42 
RETURN 	 CSP 	 43 
2%0 	 CS? 	 44 

THE =U%:TIC:, 0:0'(7) CALCULATES TM: FIPST DERIVATIVE or 
OCOZ 
OCOZ 
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0c07 	 3 
(ICOZ 	4 
OCOZ 	 5 

OCOZ(Z) = DELC(I) + CELZ(1) 4 (-40L(I-1) 4 t3 4 WDAP: 43+2 - 1) + 	 OCOZ 	6 
+ ASOLCI1*(3*W"2 -1)) 
	

DCOZ 	 7 
.OtOZ 	 a 

PLEASE SEE FUNCTICi CSF(Z) FCR A mCPE DETAILED EXPLANATICN O THE 	OCUZ 	 .9 
CALCULATIONAL 0 ROCECURE THAT FCLLOWS, AS THE TWC PROCEDURES ARE 	OCOZ 	10 
NEARLY IDENTIC1L. 	 OCOZ 	11 

COMmCN Vo.I1$NCS.7"I(1CC),CI(10J)..•SOL(110) 	 DCOZ 	. 12 
DEFINE THE LOWER 4+C UPPEP OCUNDS CF THE SOUND-SPEED PRCFILE. 	OCCZ 	13 

ZL = ?ICI) 	 OCOZ ' 	14 
ZP = ZIPICS) 	 .DCOZ 	15 

OUTSIDE OP THESE BOUNDS. LET DC/OZ = 0. 	 OCOZ 	16 
IF(7. .LT. ZL) GC TO 50 	 new 	17 
IF(z .GT. 2.) GC TO 50 	 OCOZ 	18 
I = NCS 	 ()COL 	19 • 

10 J = I-1 	. 	 • OCCZ 	20 
ZTEST = ZI(J) 	 bcoz 	21 
'F(7_ .GT. zrEsT) .Go To 40 	 ocnz 	22 
1 = J 	 DCOZ 	23 
GO TO 10 	 ncoz 	24 

.0 CONTINUE 	 ocoz 	25 .-: 
z Is BETWEEN ZICI-1) 4hC Zit') 	 DCOZ 	26 
OPLZ = 7I (I) - ZI(J) 	 DCOZ 	27 .• 
DELCI = ICI(I) - CI(J))/CELZ 	 DCOZ 	28 
W = (Z - ZI(J))/CTLZ 	 OCOZ 	29 
WPAR = 1.0 - W 	 DCOZ 	30 
Tp.:43,%• = ASOL(I)*((3.0*(."2)) - 1.0) 	 DCOZ 	31 
TRM38 = ASOL(J).*((3.0*(:E,IR,B2)) - 1.0) 	 DCOZ 	32 
TRi3 = CELZ*(TR;34 - TR:, 39.) 	 DCOZ 	33 
3CD2 = DELCI + TP?3 	 DCOZ 	34_ 
RETURN 	 OCOZ 	35 

50 CCOZ = 0.0 	 DCOZ 	36 
RETURN 	 DCOZ 	37 
END 	 . DCOZ 	38 

SUBROUTINE COSOVPCVPaC,ZEC,IT T JT.NUP,NOCWN,CSOVP) 	 COSOVP 	1 
COMMON V°T . 	 COSCVP 	2 
EXTERNAL FTRMUL,FTRM 	 COSDVF 	3 
VPT-= Vo 	 COSOVP 	4 
CALL TN=NT(VR,Z9LTZPU,NSCAN,NRTS9ZLOW,ZUP) 	 CDSCVP 	' 5 
CALL S4IFTIZL04,ZUP) 	 COSCVF 	6- 
3 = 1.E-6 	 CDSOVP 	7 - 
ZIU = ZUP - 0.51 4 fZUF - ZLOW) 	 COSOVP 	6 
n1 = ZLO).: + 1.C1*(ZUF - ZLCW) 	 COSO'IP 	9 
CALL OLIAC(ZIL,ZIO,O,REL,),TRP), ,FTcM,NFRR,O) COSOVP 	to -,
IF •(IT .LT. 0) GO TO le  CDSCIIIF 	' 11 
CALL CUAC(ZSC,Z1U,O.RZL,J.TR?'/,FTP4,N=PR,O) 	 • CQSDVP 	12 
SC 13 15 13 • COSCVP 

10 OP, LL OUA7(ZIL,Z5C,O,REL,J,TI,FTFM#NERRIpa) 	 CDSOVP 	14: 
15 IF (JT .LT. 0) GO TO 20 	 COSCVP ' 	15 

CALL CUA.ICZIL,ZC.O9PEL,OITR2F,FTRP.NERRO) 	 COSUIP 	16 
SO TO 25 	

C=171° 	
17 

W 20 CALL 	ACCZC.ZIU,C,REL,0. 1"RmF,FTR:-,NERR.0) 	 18 
25 CCNTINUE 	 CDSOVP 	19- 

, 	TomUl = TPN-3 T(Z/U) 	 COSCVP 	20. 
TRmL1 = TRNPT(ZIL) . 	 21- 
CALL rIU ,10 U C , P,ZIV.O,REL+1.TqVU2,FT 0 PULIN 7tR E.0) 	 ("OlS4VV I3P 22 
1:A.E. r"Jaf7C:LC.:.7.1L.:;,P=:-.1.7.',=T-ZMUL,N:NR,8) 23. 

 Cill(C,!? = r!-)1 	I. I. + t:L(TR).L 	i' 1 - 	lL1')) I. (NUia•+.NOOWN 	 M - 1) 4̀ TRP + 	gt= 24 
1 NOOWN 4 (-TRML1 - + TRPL2) f TPMF 	 COSCVP 	25:- 

THE SOUNO SPEED WITH R=SPECT TO HEIGHT Z, ANC ACCORDING 
To  THE ECU4TION 
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%in t./ 	VF 40 2 
CSPZC = CEPtZC) 
csPzsn = csP(zc)**2 
IF tJT .LT. 0) GO TO 30 
OSOvp = -tCSPZC 4  (SORT (VFS: - CSPZSQ) /VPSO)) 4 COX0vF 
GO TO 35 

30 OSO• P = tCSPZC*(SCRTtVPSC 	csgzsni/vPsn))icoxovp 
35 CONTINUE 

RETURN 
ENO 

FUNCTION FT?M(Z) 

COSOVP 	26 
COSOV 0 	27 
COSOVP 	28 
COSOVP. 	29 
COSCVP 	30 
CDSOVP 	31 
COSCV! 	32 
CDSOVP 	33 
COSCVP 	34 
MOW, 	35 

FIRM 	 , 

FTRM 	 2 
-CSPFVF 	 FTRM 	 3 

FIR4tZ) =  	 FIRM 	 4 

	

tVP**2 - CSF' 4 21 4 *1.5 	 FIRM 	 5 
FTRM 	 6 

COMMON VD,K - 	 FTRM 	 7 
VPS1 = 1/c X 4 2 	 FIRM 	 8 
CSPSQ = CSP(Z)**2 	 V 	 FTRM 	 9 
IF (VPSC .GE. CSPSO) GO TO 20 	 FIRM 	 10 
C = 1 	 V 	 FIRM 	 it 

10 TPH1 = 1.E-50 	 FTRM 	 12 
GO TO 30 	 FIRM 	 13 

20 C = 0 	 FTRM 	 14 
TF-1.1 = (SORT(VPSC1  - CSPSC))**3 	 FIRM 	 15 
IF tTR41 .LT. 1.E-50) GO TO 10 	 FIRM 	 16 
TRM2 = CSP(Z) *VP 	 FTRM 	17 

30 FIRm = -TFM2/1-ZP1 	 FTRM 	 18 
RETURN 	 FTRM 	19 
ENO 	 FTRM 	 20 

FUNCTION OCOZS(Z) 	 - DCOZS 	 1 
DCDZS 	2 

FUNCTICN OCCZS(Z) CALCULATES rHE SECCNC OERIVATIVE OF THE 	 'OCCzS . 	3 
SOUND SPEED C KWITP RESPECT TO HEIGHT z, AHD ACCORtING TO THE 	 DCOZS 	4 
E2UATION 	 OCOZS 	5 

DCDZS 	 6 
OCOZS(Z) = E 4 (W8A5.:*ASOL(I-1) + W*ASCL(I)) 	 DCOZS 	 7 

DCOZS 	- a 
PLEASE SEE FUNCTICN CSP(Z) FC- Ja 4CRE DETAILED EXPLANATION OF THE 	"DCDZS 	9 
CALCULATIONAL DROCEO(;RE THAT FOLLOWS. AS THE TWC PROCECURES ARE 	DCDZS 	10 
NEARLY IDENTICAL. 	 OCOZS 	11 

commoN vri,II,N3S.7It100).CI(19.0).ASOL(100) 	 • OCOZS 	12 
DEFINE THE UPPER ANC LCwE EOUNCS CF THE SOUND -SFEE0 PROFILE. 	 DCOZS 	13 

ZL = ZItl) 	 OCOZS 	14 
Z= = ZI(KCS) 	 OCOZS 	. 15 - 

OUTSID= OF THESE 20UNOS, LET DCIOZS(Z) = O. 	 OCOZS 	16 
IFIZ .LT. ZL) G,C 10 53 	 OCOZS 	17 
IF(7 - .GT. Zp) GC TO 50 	 DCOZS 	18 
I = NCS 	 DCOZS 	19 

10 J = I-1 	 DCDZS 	20 
ZTEST = ZI(j) 	 OCOZS 	21 
IF(Z .GT. ZTEST) GO TC 40 	 DCDZS 	22 
I-= J 	 OCOZS 	23 
GO TO 10 	 . DCDZS 	24 

40 CONTINUE 	 DCOZS 	25 
Z IS 9FTwFEN ZI(T - 1) ANC ?I(J). 	 OCOZS 	26 
ort., = Z' (I) - zI(J) 	 DCOZS 	27 - 
W = (Z - ZI(J))/CF_LZ 	 . 	 OCOZS 	28 
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WEAR 	=- 1.0 	- OCOZS 29 
OCOZS 	= 	6.0 4 (C..N24 04 Ascl(J)) 	+ 	(14 4 ASOL(I))) OCOZS 30 
RETURN OCOZS 31 

50 	OCOZS = 0.0 OCOZS 32 
RETURN DCOZS 33 

.EhO DCO7S 34 

FUNCTION FTRMUL(7) FTPMUL 1 
FTRMUL 2 

- 2.*V P *CCO7S FTRMUL 3 
FTRMUL(Z) 	- 	  FTRMUL 4 

(DCOZ**2)*(VP* 4 2 	-CSP* 4 2)**0.5 FTRMUL 5 
FTRMUL 6 

CCMMCN Vv,K FTRMUL 7 
CSPSO = CsP(Z)* 4 2 FTRMUL 6 
vcsri = VP 4 *2 FTRMUL 9 
OCOZSO 	= 	CCOz(Z)**2 FTRMUL 10 
IF(JPSD 	.GE. 	CS 0 SP.) 	GO TC 	50 FTRMUL 11 
K = 1 FTRPUL 12 

40 ON = 1.E-50 FTRMUL 13 
GO TO 60 FTRMUL 14 

50 K = 0 FTRMUL 15 
Oh = CCOZSC*(S'PT(VPsC - CS=s1)) FTRMUL 16 
IF(1N 	.LT. 	1.E-5C) 	(",0 	TC 	43 FTRMUL 17 

60 	FTRPUL 	= 	-2.*(VP*CCOZS(7.))/CN FTRMUL 18 
RETURN FTRMUL 19 
END • FTRMUL 20 

FUNCTION TRNPT(Z) 
CCmmOn V 0 0( 
CS 0 S0 = CSP(Z)**2 
VPS1 = V 0 **2 

TRNPT 
TRNPT 
TRNPT 
TRNPT 

1 
2 
3 
4 

IF 	(VPSC 	.GE. 	CSPSO) 	GO TO 50 'TRNPT 5 
X = 1 TRNPT 6 

40 ON 	= i.E-50 TRNPT 7 
GC TO 60 TRNPT 8 

50 K = 0 TRNPT 9 
ON = 0007(2)*(SCPT(V 0 SC CSPSQ)) TRNPT 10 
IF 	(.1i3S(n) 	.LT. 	1.E-5G) Go TO 40 TRNPT 11 

60 TRNT = 	(2.*vP)/Dk TRNPT 12 
RETURN TRNPT 13 
ENO TRNPT 14 

FUNCTION 	FOXCZ(Z) RDXCZ 1 
ROX02 2 

FUNCTION RCACZCZ) 	C!LCULATES 	THE 	INTcGRAND USED VT SUBROUTINES ROXOZ 3 

	

E 	=y PEPETICION RA%G ANC 	?TNT 	TC 	cr.LcULATE 	THE 	i LENGTH, 	RLNTH. LEN ROX127 4 
THE ECUATIoN 	FOR 	PCCZ(Z) 	IS R•X02 5 

RDXDZ 6 
1/V° ROXC2 7 

ROx0Z(Z) 	- 	  ROXOZ 8 
(1/CSP ,"Z 	- 	1/VP**2)**;1.5 RDXDZ 9 

ROXDZ 10 
CCMMOH VP,K RDXOZ 11 
CSPSC 	= CSPC7 )**2 ROXCZ 12 
VPS"! 	= 	V=**? R1XOZ 13 

	

ll 	GC 	TO 	10 IF 	(CSPil 	.LF. 	4°'+7) ROX02 14 
K = 	1 . ROXCZ 15 
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5 	OS' 	= 	1.E-50 
GO TO 20 

	

LO 	K = 	0 
DSO: = 1./CSPSO 
OSOV = 1./VPSI 
OSO = CSCC - OSCV 
IF 	(OSO 	.LT. 	1.E-EJ) 	GO 	TO 	5 

ROXCZ 
ROXOZ 
ROXOZ 
ROXDZ 
ROXOZ 
ROXOZ 
ROXCZ 

16 
17 
18 
19 
20 
21 
22 

?0 	RCXJZ = 	(l./VP)/SCRT(OSC) ROXCZ 23 
RETUR1 ROXOZ 24 
ENO RDXCZ 25 

FUNCTION ROTOZ(Z) ROTOZ 1 
ROTCZ 2 

FUNCTION RCTCZ(Z) 	CtLCULATES 	THE 	I ► TEGRANO USEO BY SUOROUTINES ROTC? 3 
RANG AND PAINT 	TO CALCULATE 	THE 	PAY KEFETITION TIME, 	RTIME. ROTOZ 4 
THE EQUATION FOR ROTCZ(Z) 	IS ROTCZ 5 

ROTOZ 6 	• 

1/CSP* 4 2 ROTOZ . 	7 
ROTOZ(Z). - ROTCZ 8 

Cl/CSP**2 - i/V" 4 2)**0.5 ROTOZ q 
ROTCZ. 10 

COMMON 1/ 2 ,K ROTOZ 11 
.CSPS3 = 	CSP(Z)**2 ROTOZ 12 	. 
VPS3 = V0 ** 2  ROTC? 13 
IF 	(OSPSC 	.LE. 	VF50) 	GO TO 30 ROTC? 14 
K = 1 RDTCZ 15 

20 .CS() 	= 	1.E-50 ROTOZ 16 
GO TO 40 ROTC? 17 

!O 	K = 	0 ROTCZ 18 
• DSCC = 1./CSPSO ROTC? " 19 
OSCV = 1./V 0 SI ROTOZ 20 
OSO = OSCC - CSIV ROTOZ 21 
IF 	COSI 	.LT. 	1.E-5C) 	GO 	TO 	2C ROTOZ 22 

0 	RCTDZ = 	(1./CSP50)/SCRT(CSI) - ROTCZ 23 
RETURN ROTOZ 24 
ENO ROTC? 25 

FUNf;TION FAINT(CSCZR,ZLOW1ZUP) RAINT 1  
RAINT 2 

UNCTION RAINT PERFOcHS THE 	INTEGRATION'OF ROXOZ ANO RCTOZ 3 
;ECESSAY TO 0.1TAIN 	THE 	FAY REPETITION LENGTH ANO TINE, 	RLNTH 4 
■ NO PT-E. 	RESnEOTIVELY. 	 # v - 	RAINT 5 

EXTERNAL CSCZR 
RAINT 
RAINT 7 

ZAVE 	= 	CZUP 4- ZLO0/2.0 RAINT 8 
0 = 	1.E-6 RAINT 9 
CALL 	OUAO(ZLOw.Z.:7Z,C.P.U.I.ANS1,CSOZR.NER 0 ,0) RAINT 10  
CALL 	OUAC(ZUn,ZAVE,D,SEL,1,4xS2,CSOZR.NERRIO) RAINT 11 
RAINT 	= 	(ANS:. 	- 	ANS2) RAINT 12 
RETURN RAINT 13 
ENO RAINT 14 
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SUEROUTINE 7•EAL2 (F,EPS,EPS2,E1A,NSIG,N0,1TMAX,1ER) 2FELC010 
2RELCC20 
2FELCC33 
2FELE640 

C 
C-ZFEAL2 	--S 	 3- 
C 

 

 

	

C 	FUNCTION 	 - ZREAL2 FINES THE REAL ZERCS OF A REAL FUNCTION2FELCu50 

	

C 	 -- USED 1,HEN INITIAL GUESSES ARE GCCC 	 2RELOCEJ 

	

C 	LSAGE 	 - CALL 2RrAL2(F,EFS,EPS2,ETA,NtIG,N,X,17MAX,IER)2FEL007(1 

	

C 	FARAVETEFS 	F 	- 	- A FU•CTICN F(X) SUEPEiCGRAF WRITTEN EY THE LSEF2RELCCE0 

	

C 	 EFS 	- 21: -.; STCFPING CRITEFICN. A KCOT X IS ACCEPTED 2RELG0S0 

	

C 	 IF TkE AESOLLTE VALLE OF F(X) 	.LE. FPS 	2REL01CC 

	

• C 	 (INPUT) 	 2REL0110 

	

C 	 EFS2 	- SPREA: CRITERIA FCR MULTIPLE RCCTS. IF THE 	2RELC120 

	

C 	 ETA 	ITH RCCT (X(I)) HAS BEEN COMFUTED ANC IT IS 2RE10133 

	

C 	 FCIN:. TILT THE'ABSCLUTE VALUE CF 	 2RELC140 

	

C 	 _X(I)-x(J) .LT. EFS2 WHERE X(J) IS A 	 2RELC153 

	

C 	 FREVICUSLY CCMPUTEC RCOT, THEN THE 	 2RELL1b0 

	

C 	 COMFUTATICN IS RESTARTEC WITH A GUESS EQUAL 2RELC170 

	

.0 	 TO XII) 4 ETA. (INPUT) 	 • 2REL0180 

	

C 	 NSIG 	- 1ST STCPPING CFITERICN. A RCOT IS ACCEPTED IF ZRELC190 

	

C 	 TWC SUCCESSIVE AFPFOXIMATICNS TO A GIVEN 	2RELC2G0 

	

C 	 RCCT AGREE IN THE FIRST NSIG CIGITS. (INPUT)2AELG213 

	

C 	 N 	- ThE bUMSER CF ROOTS TO CE FCUNC (INPUT) 	2RELC22C 

	

C 	 X 	- CU It.FCT X IS AN N-VECTOR OF INITIAL GIESSES 2RELC230 

	

C 	 FCR N RCCTS. ON CUIPUT, X CONTAINS THE 	2REL024J 

	

C 	 COMPUTED RCOTS. 	 2REL•250 

	

C 	 IT•AX - Ch :NFLT = THE MAXIMUM ALLOWAELE NLMEER CF 	2RELC2E0 

	

C 	 ITERATICNS PER RCOT AND ON OUTPUT = THE 	2FELC270 

	

.0 	 _ 	 TiUki!EF OF ITERATIONS USED ON THE LAST ROCT. 2FELE,2tG 

	

C 	 .- TER 	- ERROR P;RAPETER (OUTPUT) 	 2REL .0293 

	

C 	 WARNING ERRCR = 32 + N 	 2FELL300 

	

C 	 N = 1 INCICA1ES A SINGLE ROOT WAS ONFASSED 2FELC313 

	

C 	 EECALSE ITMAX WAS EYCEEDEC FOR THIS RCCT. 2FELC320 

	

C 	 X(I) FCR THIS FCCT IS SET TO 111111. 	2FEL0330 

	

. C 	 N = 2 INCICATES A SINGLE FOOT WAS EYFASSEC 2RELL340 

	

C 	 EECf-USE THE CERIVATIVE CF F FOR THIS 	2RELC350 

	

Z 	 ROOT BECOMES TCC SMALL. X(I) FCR THIS 	2FELC360 

	

C 	 FOCI IS SET TO 222222. NOTE THAT THIS 	2RELC37C 

	

C 	 ERROR CCNCITION tAY CAUSE AN OVERFLCW. 	2RELC38C 

	

C 	 N = 3 INEICATES THAT SEVERAL CF THE ABCVE 	2RELC3E) 

	

C 	 ERRCR CCNDITIONS OCLURRED. EACH'X(I) IS 	2RELC4OU 

	

C 	 SET TO EITWER 111111. OR 222222. AS ABCVE 2RELC415 
2REL0420 
2FECC433 . 

 2REL041i0 
2FELL'.5C 
2RELL4EJ 
2RELC470 
2RELC480 
2RELC4SC 
2FEL0500 
2REL051° 
2RELC520 
7FELC53J 
2RELL.540 
2RELC550 

C 	PRECISION 	 - cINSL= 
C 	FEQU. IMSL RCL1INES - LERTST 
C 	LANGUAGE 	 - FCRTR;h 

C 	LATEST REVISICN 	- CC10EER E t  1973 
C 

DIMENSION 	 X(11 
DATA 	 Pl,P•ClIZERC,ONE,TEN/.1,.00120.0,1.0,10.0/. 
IEF = C 
I R=0 
CRIT1 = TEJ 	(-NS1G) 
DO 30 I=1,N 

IC = 1 
XI = 



5 	AXI = AESIXI) 	 2FEL0560 
IF 	.EC. 1) GC IC 15 	 2REL0570 
NM1=1-1 	 2RELC580 
CO 1C J = 1,NM1 	 2RELE550 

IF tA0S(xI -.X(J1) .LT. EP521 XI = Xi + ETA 	 2RE10600 
10 	CONTINUE 	 2RELE61d 
15 	FxI = FIXI) 	 2RELC620 

AFXI = AESIFXI) 	 2RELE63J 
C 	 TEST FCR CONVERGENCE 	 2RELE64a 

IF (AFXI .LE. EFS) GC TO 25 	 2RELL65J 
CI = .C201 	 2RELC6E0 
IF TAXI .GE. P1) DI = PS21*AxI 	 2REL067.1 
hI = AMIh1(AFXI1DI) 	 2REL0680 
FXIPNI = F(XI + 	 2REL.06S.J 
DER = IFxIPHI - FXI)/ ■,I 	 2RELC7OG 
IF ICER .EC. ZERO) GO 70 20 	 . 2RELG716 
XIP1=FXT/DER 	 2RELL720 
IF (LEGv.5R(xIPI) .NE. 0) CO 10 2C 	 2REL0720 
XIPI=XI-XIPI 	 2RE1.674.1 
ERR = ABSIXIFI - XII 	 2REL0750 
XI = XIPI 	 2RELC7E0 

C 	 TEST FOR CONVERGENCE 	 2REL0770 
IF(AXI.EC.ZERO) AxI=CNE 	 2RELLf780 
ERR1=ERR/AxI 	 2RELO7S0 
IF tLEGVAP(EFR1) .NE. 2) ERF1 = ERR 	 2RELC800 
IFIERR1.LE.CRIT1) GO IC 25 	 2REL0810 
IC = IC + 1 	 2REL082B 
IF (IC 	ITHAX) GC TO 5 	 2REL0830 

C 	 RCCT NOT FOLNC, NO CONVERGENCE 	2RELC842 
XII) = 111111. 	 2REL085J 
IR=I;f1 	 2RCLO8E2 
IER=23 	 2REL0870 
GO 7C 33 	 2RELL880 

C 	 RCCT NOT FOUND, DERIVATIVE = E. 	2RELu890 
20 	YID = 222222. 	 2fiEL0903 

IR=IF+i 	 2REL0910 
IER=34 	 2RELC.922 
CC TC 30 	 2RELG933 

25 	XII)=XI 	 2FEL0940 
2C CONTINUE 	 2RELL952 

I1- PAX = IC 	 2RELC96C, 
IFIIER.EC.J) GC TO 9.;15 	 2RELE970 
IFIIR.LE.1) L,0 TO 9& C3 . 	 2RELE98G 
IER=35 	 2RELCEISO 

'000 CO.TINUE 	 2REL1.03 
CALL UE;ISTIIER.614ZRELL2) 	 2REL101;) 

SOE5 RETURN 	 2REL1E20 
ENC 	 2REL1030 
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SUBROUTINE OLAC(4,2,C,REL,NrANS,FLN,NERR,IMAP) 	 QUAD 	2 
A = Lti, ER LIVIT CF INTEGR:,TICN 	(INPUT) 	 QUAD 	4 

	

0 = UFFER LIPIT CF I;;TEG;:::.TICN (INPUT) QUAD 	5 
D = RECUIREC RELATIVE TOLtRA:.CE (INPUT) .  6 
REL = ESTIt'ATE OF RESULTING RELATIVE TCLERANCE 	(OUTPUT) 	 (OlitiJ AAg 	7 
N = SII■ GULA:iIII FLAG. SET N=0 6HEN NO SINGULARITY ALONG PATH. 	QUAD 	8 

SE7 N=1 ilHEN ONE CR !:DRE SINGULARITIES LIE CA PATH 	QUAD • 	9 

	

ANS = CO•FLTEC 1121LE-CF :.TEGRAL (OUTPUT) QUAD 	10 
FUN = NAME CF FW.CTION GENERATING THE INTEGRANT] 	 QUAD

ttg 	
11 

NERR = ERFCR FLAG (OUTPUT) 	 12 
NEFA = -1 STEP SIZE C:N NCI BE NAGE SMALL ENOUGH 	 QUAD 	13 
NERR = -2 CURD INCOPLETE IN 	LIM (200) TRIES 14 
NEiR = -•..7 G FAS 2EEN SET TOO SMALL 	

QUAD 

	

QUAD 	15  
NERR .GT. C --SUCCESS--GIVES NUMEER OF TRIES HECUIRED 	 QUAD 	16 

IMAP = PROGRESS VAP FLAG. SETIMAP=1 V1HEN MAP IS DESIRED. 	 QUAD 	17 
SET IMAF=J AHEN NOT DESIRED 18 QUAD 

	

CIMENSION 104(2),i;3(4).0. , 12(E), Z4(2),2044), Z12(6) QUAD 	19 
couaLE PRECISION YCOLE  

	

QUAD 	20 
DATA )+411),114(2),(im3(1),1=1,4),CW12(I),I=1,61/.652145154862546, 21 QUAD 

	

1.347P.54845137454,.2E2Ed27EZ37a362,.3137C6645877887,.22228103445337 QUAD 	22 
15, 	.1C122e..F.ZE. 29Z376,.24 41753134::3,.23349.2536538355, . ..,.,_.„.:.,:.,,.... _ QUAD

' 	
23 

-' 1.2631Ei42E722CE6,.1ECC7832e5:12345 1 .1C6S3B325995318, 	- 	 QUAD 	24 

	

1.04717E.33E""/2/ QUAD 	 25 
LIM. CAN 2E CHANGED IF EITHER MCRE OR LESS TRIES ARE DESIRED •  26 
LIM=2CC 	

QUAD 

	

QUAD 	 27 

	

C=D QUAD 	28 
IS C SET TCO SMALL  29 

QUAD IF (C.LT. 1.E-13) CO TC 2S0 	 30 
M 10 IF (IGP.EC. 1) PRINT 1 	

QUAD 
•  

	

QUAD 	31 
1 FORMAT ( 2X,14HLEFT ENC PCINT,23X16HLENGTH.26X$12H8.-P7. RESULT 	QUAD 	32 
1 11X,19HREL.ERROR IN 3-PI. TI1X,4H1000 ) 33 QUAD 

	

MCP = C.0 QUAD 	 34 
K = 0  

	

QUAD 	35  

	

?CNSEK = 0 QUAD 	36 
NCL7 = I  

	

QUAD 	37 
ANS = C. 	 38 QUAD 
F2 = O. 	 QUAD 	39 
NERR=0 	 QUAD 	40 

	

Y = A QUAD 	41 
YOBLE = DELE(Y)  42 
F = C/200. 	

QUAD 

	

QUAD 	43 
E = 0. 	 / 44 QUAD 

	

FO.ii****441 .11.4.******* ******** ****4 ********* ****44#4.414******44***44444** QUAD' 	45- 

	

- FIRST TRY CN FULL SPAN AND ALSO LAST STEP GO THROUGH HERE QUAD 	46 
20 H = (9-Y)/2.  47 

EGN 	N =SIGCI.,),) 	
QUAD 

48 
H=A2S(H) 	

QUAD 
49 

LAST = 1 	
QUAD- 

50 
ALL INIERMEOITE STEPS BEGIN HERE 	

QUAD 
.51 

30 X = Y • H*SGN 
	 QUAD 
	52 

	

IS H TOO ShALL IC BE SENSE: RELATIVE TO X QUAD 	. 53 
IF(X+.1*H.E7..x) GO TO 	27C  

	

QUAD 	54 
IF(K.G1.LI1) GC TO 	28C55 QUAD 
	 .....,*,44- ************ V*******441 4 ****** 41.41480#4, QUAD 	56 

4 FCINT !:iSCI.SS:E. 57 
Z4(1)=.33ii!1C43.-“I a5E*H 	 58 
14(2)=.86112E311:34053*H 	

QUAD 

	

QUAD 	59 
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C 	8 FCINT AESCISSAE 
28111=.183434642495E50 4 H 
28(2)=.52552240991E329 4 H 
ZE(3)=.79EEE6477413627 4H 

Z8(4)=.966E89856497536 4 14- 
C 

	

	EVALUATE FLNCTION AND FERFCRP WEIGHTED SUM 
G4=14 4 (1%4(1)*(FLN(X+24(1))+FUNCX-24(1)))4 
1W4(2) 4 (FUN(X424(2))+FUN(X-24(2)))) 
G8=0. 
CO 40 1=1,4 
21=FUN(X+20(I)) 
22=FUN(X—Z8(I)) 

40 	GE=GE41.8(I) 4 (21+22) 
G8=G8 4 1, 

QUAD 	60 
QUAD 	61 
QUAD 	62 
QUAD 	63 
QUAD 	64 
QUAD 	65 
QUAD 	66 
QUAD 	67 
QUAD 	68 
QUAD 	69 
QUAD 	70 
QUAD 	71 
QUAD 	72 
QUAD 	73 

	

QUAD 	75 
TE=ABS(G8—G4)+1.E-14 4AEG 	 QUAO 	76 

C 	RE IS THE RELATIVE ERRCR IN THE SUBINTERVAL THE 4 PT. RESULT RAKES QUAD 	77 
C 	 IF THE 8 PT. RESULT IS EXACT 	 QUAD 	78 

RE = 1.E-14 + TE/AEG 	 QUAD 	79 
IF(K.EC.3) F=A8G 	 .- 	 QUAD 	80 

C 	P IS T1-E MAX AES VALUE OF ENTIRE INTEGRAL AS HE KNOW IT UP TO HERE QUAD 	81 
C 	K IS THE CCLNTER OF THE NUMBER OF ATIEVPIS QUAD 	82 

50 K = K 4. 1  

	

QUAD 	83 
EH = F 4 P 	 QUAD 	E4 
ER = TE*RE 	 QUAD 	85 
Q= EW/ER 	 QUAD 	86 
IF(IMPF.NE.1) GO TO 70 	 QUAD 	87 

60 XLONTH=2 4 H 88 
ERR=RE442 	

QUAD 

	

QUAD 	89 
' 	G100=0 4100.0 ' 	 QUAD 	90 

	

PRINT 2 ,Y,XLGNTH.G8 ,ERR,C100 QUAD 	91 
2-FORMAT (E22.15, 2E30.15, 2E22.5) 	 _  

92 
70 01E = G4*.CE25 

	 QUA 
	93 

	

Cl = H/2./5E 44 .125 QUAD 	94 
D2 = HiD1 4 C1E  55 

C 	Cl IS THE ESTIMATE CF THE DISTANCE - A -  TO THE SINGULARITY 	
QUAD 

96 

C 	 TO C.1 . WHEN THE RESULT IS UNIMPORTANT, 02 IS LARGE. 	
QUAD 
QUAD 

	

QUAD 	98 
C 	02 IS AN IPFCRTANCE FACTOR WHICH NORMALLY RANGES FROM AEOUT 10. 	 97 

	

- QUAD 	99 
THE MAGIC GC—GC CR NO—GO QUANTITY IS 100Q 	FCUND AS FCLLQWS. 	QUAD 	100 
WE RECLIRE THAT THE RELATIVE ERROR IN THE 8 PT. SUBINTERVAL 	 QUAD 	101 

 . 	VALUE (RE 44 2) TIMES THE ImPQRTANCE OF THE SUDINTEGRAL (ABG/P) 	QUAD 	102 
BE LESS THAN HALF THE REQUIRED TOLERANCE C . 	 QUAD 	103 
ALTERNATIVELY, (C/2)*(F/AEG)./(RE* 4 2) RUST BE GREATER THAN 1.0 	QUAD 	104 
THE AECVE EXPRESSICN, t•.HEN MULTIPLIED CUT, IS 1000.- 	 QUAD 	105 
IF(Q.LE. 0.C1) GO TO 120 	 QUAD 	106 
COMPARISON CF 4 FT. ANC 8 PT. LOOKS GCCD. 	 QUAD 	107 

80 ES = O. 	 QUAD 	108 
IF(N.NE.1) CC TO 200' 	 QUAD 	109 

:44-*  	 * ***** .*********************4*** QUAD 	110 
CHECK THE 12 PCINT RESULT 	 QUAD 	111 

12 FOINT ABSCISSAE 	 QUAD' 	112 
212(1)=.122334085114E9 4LH 	 QUAD 	113 
212(2)=.3E782149e958180 4 H 	 QUAD 	114 
212(3)=.58731754226617 4 H 	 QUAD 	115 
212(4)=.76S5C2E7194305 4 H 	 QUAD 	116 

C 	4-44744,-*******4 * 	 *** *44 ***** 4114*******44,4*******IL.OUAO 	 74 
ABG=AEZ(G8)41.E-260 
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212(5)=.90411725E370475+H 	 QUAD 	117 
212(6)=.9815E0634246719*H 	 QUAD 	118 

C 	EVALLATE FLNCTION ANC PERFCRi4 WEIGHTED SUM 	 QUAD 	119 
G12=0 	 QUAD 	120 
DO 100 I=1,6 	 QUAD 	121 

13 	G12=G129-W12tI)*(FUN(X*Z12(I))+FUN(X212(I))) 	 QUAD 	122 
Ci2=G12 4 H 	 QUAD 	123 
ES=AES(G12•-GE) 	 QUAD 	124 
G8=G12 	 QUAD 	125 
ER=ES 	 QUAD 	126 
IF(ES ■. 100. 4 EW) 	200,200,110 	 QUAD 	127 

C 	NCT GCCD ENCUGH. TRY AGAIN. 	 QUAD 	128 
110 H=H/4.0 	 QUAD 	129 

F1 = 0.25 	 QUAD 	130 
GO TC 190 	 .QUAD 	131 

	

c ***** ******4*****44** ***** * ****** ************************************** QUAD 	132 
C 	 QUAD 	133 
C 	THIS REGICN CF THE PROGRAM MCCIFIES THE STEP LENGTH WHEN 	 QUAD 	134 
C 	 SUBINTERVAL IS NOT SHALL ENCUGH 	 QUAD 	135 

120 IF (NCLT .NE. 1) GO TO 130 	 QUAD 	136 
C 	FIRST CUTBACK 	 QUAD 	137- 

F1 = C16 	 QUAD 	138 
H=AHIN1(.754N,C14016) 	 • 

	

QUAD 	139 
GO TO 190 	 QUAD 	140 

C 	SUBSECLENT CUT2ACKS IN THIS SERIES. 	 QUAD 	141 
130 Fl = F1*016 	 QUAD 	142 

H = F1*H 	 QUAD 	143 
190 NCNSEK = 0 	 QUAD 	144 

NCUT = 0 	 QUAD 	145 
LAST = 0 	 QUAD 	146 
GO TO 30 	 QUAD 	147 

C***** 	*** ****** ******************************************** 1***** QUAD 	148 
C 	 QUAD 	149 
C 	SUCCESSFUL SLEINTERVAL INTEGRATION 	 QUAD 	150 
C 	INCREASE STEP AS INCICATEC 	 QUAD 	151 
200 ANS=ANZ*G8 	 QUAD 	152 

E = E -, AMAX1(ER, 	ES,1.E•14*ABG) 	 QUAD 	153 
IF(LAST.EC.1) GO IC 300 	 QUAD 	154 

C 	HCP IS AN CLC SUCCESSFLL STEP 	 QUAD 	155 
210 IF(HCF) 220,220,230 	 QUAD 	156 
220 HCP = H 	 QUAD 	157 
230 F2 = 0.50*F2 * ALOG(H/HCP) 	 QUAD 	158 

HCP = H 	 QUAD 	159 
YOBLE = YDELE + DBLE(2.0*H'SGN) 	 QUAD 	160 
Y = YDELE 	 QUAD 	161 
NCNSEK = NCNSEK + 1 	 QUAD 	162 
IF(NCt, ZEK .GT. 4 ) GO TO 250 	 QUAD 	163 
IF(F2) 	24C,250,250 	 QUAD 	164 
F2 .LT. O. SAYS IT- HAS NOT FCRGOTTEN THE PAST FAILURES Y'7 1. 	 QUAD 	165 

240 P, C = C1*021(1.+2.*D2) 	 QUAD 	166 
GO IC 260 	 QUAD. 	167 
F2 *GE. O. SAYS THE HISTORY hAS SEEN SUCCESSFUL . 	 QUAD 	168 

250 HC = C2*(C1+2.*H) 4 016 	 QUAD 	169 
260 H = HG 	 QUAD 	170 

NCLT = 1 	. 	 QUAD 	171 
P = AMtX1(F,AEG) 	 cluAn 	172 
IF(SGN'Y + 2.C'H •• SGM*8) 30120920 	 QUAD 	173 

• 	 ***** . • 6.... • 	• • • - 



C 
C 
C 

************ 4**4444, 414 

ERROR EXITS 

QUAD 

QUAD 
OLAC 

174 
175 
176 

270 hERR=-1 QUAD 177 
WRITE(€, 	3 	) 	H,Y 	 . QUAD 17O 

3 FORMATC53H GLAD 	FAILURE, 	STEF SIZE CANNOT BE MADE SMALL ENCUGH./ QUAD 179 
1E6H 	IF 	YOU 	'AISH 	TO CONTIN1,E ;•OvE 	SINGULARITY TO 	THE 	ORIGIN./ QUAD 180 
211H 	STEP 	SI2E=,E24.1E, 	luX,15:-LEFT 	ENO 	PCINT=,E24.1E) 	. QUAD ial 
GO TO 	300 QUAD 182 

280 	hERR=-:2 QUAD 183 
WRITE(E, 	4 	) 	LIM,Y,H 	 - QUAD 184 

4 FORMAILIAH1CLAD 	INCOHDLETE IN 	14, 7H TRIES.,17H 	LEFT ENO POINT= QUAD 185 
1E24.1E,10X,11H 	STEF 	SIZE=,E2 ,:..16), QUAD 186 

GO TO 	300 QUAD 187 
290 NERR=-Z - QUAD 183 

PRINT 	5 	
. 	

. 	 \ CUA0 189 
5 FCRMAT 	(68h RECUESTED TOLERANCE TCO SMALL, ROUTINE WILL FROCEEU US QUAD 190 
ZING 	10.0E-14 	J QUAD 191 

C=10.CE-14 	 - QUAD 192 
GO TO 	10 QUAD 153 

C QUAD 194 
C HERE WE RETURN TC THE MAIN; PFCGRAM WITH OR WITHOUT AN ANSWER QUAD 195 

360•REL= 	2.*E1(.5ES(ANS)+1,E-29C) QUAD 196 
IF(NERR.GE.G.) 	NERR=K QUAD 1.97 
IFt8-A.LT.O.J,ANS=-ANS QUAD 198 
RETURN  QUAD 	• 199 
END QUAD 200 
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ABSTRACT  

A discussion is given of theoretical studies on infrasound propaga-

tion through the atmosphere which were carried out under the contract. 

Topics discussed include (1) the modification and adaptation of a computer 

program for the prediction of pressure signatures at large distances from 

nuclear explosions to include leaking guided modes, (2) the nature of guided 

infrasonic modes at higher infrasonic frequencies and the methods of ex-

tending waveform synthesis procedures to include higher frequencies, and 

(3) the propagation of infrasonic pressure pulses past the antipodes 

(over halfway around the globe). Summaries are included of all papers, 

theses, and reports written under the contract and conclusions and recom- 

mendations for future studies are given. An updated version of the computer 

program INFRASONIC l•VETORMS originally given by Pierce and Posey in the 

report AFCRL-70-0134 is included as an appendix. 



Chapter I 

INTRODUCTION 

1.1 SCOPE OF THE REPORT 

The present report summarizes investigations carried out by the 

authors during the years 1973-1976 on the propagation of low frequency 

pressure disturbances under Air Force Contract No. F19628-74-C-0085 

with the Air Force Cambridge Research laboratories, Bedford, Massachusetts. 

The study performed was theoretical in nature. 

The central topic of this study was the generation and propagation 

of infrasonic waves in the atmosphere. The principal emphasis was on 

waves from man made nuclear explosions although certain aspects of the 

study pertain to waves generated by natural phenomena including, in 

particular, severe weather. 

Specific topics considered during the study include the following: 

1.) The adaptation of the computer program INFRASONIC WAVEFORMS to 

include leaking modes and to improve its accuracy in synthesizing early 

long period arrivals. (INFRASONIC WAVEFORMS is a digital computer program 

for the prediction of pressure signatures as would be detected at large 

horizontal distances following the detonation of a nuclear device in the 

atmosphere. The original version of this program was developed by Pierce 

and Posey
1 

under a previous Air Force Contract [F19628-67-C-0217].) The 

developed theory for this adaptation has already been explained 2  in 

Scientific Report No. 1 of the present contract; the present report 

describes the numerical implementation of this theory (Chapter III), 

and gives some specific numerical examples. The complete current version 

of INFRASONIC WAVEFORMS is included here as Appendix A. 

2.) The development of a ray acoustic model for the synthesis of higher 

frequency portions of infrasonic waveforms. The theory developed during 



this study is given3  in some detail in Scientific Report No. 2 and a 

discussion of this phase of the work is accordingly not repeated here. 

3.) The modification of the multi-modal synthesis method to avoid 

truncation of upper limits on frequency integration. The method develop-

ed is presented here in Chapter IV and represents an extension of the 

W.K.B,J. technique to the case when the atmosphere has two sound channels. 

The resulting theory clarifies the problem of selection of modes for in-

elusion into the synthesis and leads to a relatively simple method for 

revising the synthesis program. (This revision, however, has not yet 

been carried out.) 

4.) Study of infrasonic waveform synthesis for propagation near and past 

the antipodes. The method for doing this was briefly mentioned in the 

1973 AFCRL report (pages 25 and 26) by Pierce, Moo, and Posey
4 

. In 

Chapter V of the present report the theory underlying this is given and 

•some numerical examples are given. 

In Chapter II, we list all of the reports, papers, and theses which 

were written during the course of this study. The abstracts given there 

plus the abstract of the present report should be considered as a compre-

hensive summary.of the accomplishments during the contracting period. In 

subsequent chapters of the present report, detailed discussions are given 

of some of the topics described above. In Chapter VI, some recommenda-

tions are made for future work in the field. 

1.2 BACKGROUND OF THE REPORT 

The general topics of infrasonic wave propagation, generation, and 

detection have been of considerable interest to a large segment publish-

ed bibliography (the existence of which allows us to omit extensive 

citations here) lists [Thomas, Pierce, Flinn, and Craine, 1971]
5 

over 

600 titles, most of which are directly cncerned with infrasound. Litera-

ture pertaining to the infrasonic detection of nuclear explosions con-

stitutes a considerable portion of these. Earlier work by Rayleigh 
6 [1890] , Lamb [1908,1910]

7 , G. I. Taylor [1929,1936]
8 

, Pekeris [1939, 



1938] 9 and Scorer [1950] 10 , among others, which was concerned with waves 

from the Krakatoa eruption [Symond, 1888] 11 and from the great Siberian 

meteorite [Whipple, 1930] 12  is also directly applicable to the understand-

ing and interpretation of nuclear explosion waves. 

The present report thus merely summarizes a continuation of a small 

number of facets of a lengthy pattern of research which has been carried 

on by a large number of investigators in the past. In a more restricted 

sense, the work reported here represents a continuation of work done in 

three previous studies performed under contract for Air Force Cambridge 

Research Laboratories. The first of these was Air Force Contract No. 

AF19(628)-3891 with Avco Corporation during 1964-1966; the second was 

Air Force Contract No. AF19628-67-C-0217 with the Massachusetts Institute 

of Technology during 1967-1969, the third was AF19628-70-C-0008 (also 

with M.I.T) during 1970-1972. Summaries of the earlier work may be found 

in the appropriate final reports by Pierce and Moo . [1967]
13

,,by.Pierce 

and Posey [1970) 1  , and by Pierce, Moo, and Posey [1973) 4  . 

One of -thd principal results of the first two aforementioned pre-

.vious contracts was a canputer program INFRASONIC WAVEFORMS; the deck 

listing of the then current version of which is given in the report by 

Pierce and Posey [1970] 1 . This program enables one to compute the pres-

sure waveform at a distant point following the detonation of a nuclear 

explosion in the atmosphere. The primary limitation on the program's 

applicability to realistic situations is that the atmosphere is assumed 

to be perfectly stratified. However, the temperature and wind profiles 

may be arbitrarily specified. The general theory underlying this pro- 

gram is somewhat similar to that developed by Harkrider [ 1964] 14  but differs 

from his in that it incorporates background winds and in that it has a 

different source model for a nuclear explosion. 



Chapter II 

PAPERS, THESES AND REPORTS  

The following gives author, title, and abstract of papers, theses, and 

reports written during the course of this project. 

2.1 A. D. Pierce, "Theory of Infrasound Generated by Explosions," 

Colloque International sur les Infra-Sons, Proceedings (Centre National 

de la Recherche Scientifique (CNRS) 15, quai Anatole Prance, 75700 Paris, 

September, 1973). 

A review is given of recent studies by the author and his colleagues 

on infrasound generation by explosions and the subsequent propagation 

through the atmosphere. These studies include (i) development of 

computer programs for the prediction of pressure signatures at large 

distances from nuclear explosions, (ii) development of an alternative 

approximate model for waveform synthesis based on Lamb's edge mode, 

(iii)development of a geometrical acoustics' theory incorporating 

nonlinear effects, dispersion, and wave distortion at caustics, and 

(iv) theoretical models for the mechanisms of wave generation by 

explosions. The basic theory is briefly outlined in each case and 

some of the more significant results are explained in terms of 

simplified physical models. Such results include the predicted 

dependence of far field waveforms on energy yield and burst height, 

suggested techniques for estimating energy yield from waveforms, 

and an explanation of amplitude anomalies in terms of focusing and 

defocusing of horizontal ray paths. 

2.2 W. A. Kinney, C. Y. Rapper, and A. D. Pierce, "Acoustic Gravity 

Wave Propagation Post the Antipode," J. Acoust. Soc. Amer. 55, S75 (A) 

(1974). 

The previous theoretical formulations and numerical computations 

of pressure waveforms (such as described by Harkrider, Pierce, and 

Posey, and others) apply only to atmospheric traveling waves which 

have traveled less than 1/2 the distance around the earth. In the 



present paper, a technique resembling that previously introduced 

by Brune, Nafe, and Alsop [Bull. Seismol. Soc. Am. 51, 247-257 

(1961)] for elastic surface waves on the earth is discussed and 

applied to the acoustic-gravity wave propagation past the antipode 

problem. The principal modification to the older theory is a 

shift in phase of n/2 to the Fourier transform of the wave after 

it has traveled over halfway round the globe from the source. The 

source of the wave is presumed to be a nuclear explosion of given 

energy E. Numerically synthesized waveforms of antipodal arrivals 

are exhibited and compared with those for direct arrivals. The 

necessary modifications to the Lambmode model theory of Pierce and 

Posey [Geophys. J. Roy. Astron. Soc. 26, 341-368 (1971)] are also 

described. 

2.3 C. Y. Kapper, "Leaky Infrasonic Guided Waves in the Atmosphere," 

J. Acoust. Soc. Amer. 56, S2 (A) (1974). 

Prior theoretical formulations and computational techniques for 

the prediction of pressure waveforms generated by large explosions 

in the atmosphere have considered only fully ducted modes. In the 

present paper, a technique for including weakly leaking guided 

modes in concert with fully ducted modes is developed. Modification 

of previous theory includes the extension of the boundary condition 

at the upper halfspace to include a complex horizontal wavenumber. 

The major alterations to the computer program infrasonic Waveforms 

(as described in report by Pierce and Posey, 1970) incurred consist 

of the computation of the imaginary part of the newly incorporated 

complex wavenumber, extension of the normal-mode dispersion function 

to lower frequencies, and a second-order correction factor to the 

phase velocity. 

2.4 W. A. Kinney, "Asymptotic High-Frequency Behavior of Guided Infrasonic 

Modes in the Atmosphere," J. Acoust. Soc. Amer. 56, S2 '(A) ( 1974). 

Refinement of previous theoretical formulations and numerical compu- 

tations of pressure waveforms as applied to atmospheric traveling 

infrasonic waves could include a description of their asymptotic 

behavior at high frequencies. In the present paper, calculations based 

on the W.K.B.J. approxirlation and similar to those introduced by 



Haskell [J. Appl. Phys. 22, 157-167 (1951)] are performed to describe 

the asymptotic behavior of infrasonic guided modes as generated 

by a nuclear explosion in the atmosphere. The results of these cal-

culations are then matched onto numerical solutions which have been 

given by Harkrider, Pierce and Posey, and others. It is demonstrated 

that the use of these asymptotic formulas in conjunction with a 

computer program which synthesizes infrasonic pressure waveforms 

has enabled the elimination of problems associated with high-

frequency truncation of numerical integration over frequency. In 

this way, small spurious high-frequency oscillations in the computer 

solutions have been avoided. 

2.5 C. Y. Kapper, Computational Techniques in Infrasound Waveform Synthesis, 

M. S. Thesis, School of Mechanical Engineering, Georgia Institute of Technology 

(December, 1974). 

This thesis is concerned with two major theoretical and programming 

modifications to the digital computer program INFRASONIC WAVEFORMS 

for the synthesization of acoustic-gravity pressure waveforms generat-

ed by large explosions in the atmosphere. The first modification 

involves the extension of the guided mode approximation for pressure 

waveforms in the atmosphere into leaking mode regions and a conse-

quent search for the imaginary part of the complex horizontal wave 

number. Particular results include a plot of phase velocity versus 

angular frequency showing the extension of the normal mode dispersion 

function into a leaky mode region for a multilayer atmosphere and a 

report on the search for the imaginary part of the complex horizontal 

wave number of a leaky mode for a two layer atmosphere. The second 

modification involves the extension of the systhesis of acoustic-

gravity pressure waveforms to distances beyond the antipode. A 

phase shift is noted for waves passing through the antipode and 

a comparison of pre and post antipodal waveforms is presented. 

2.6 W. A. Kinney, A. D. Pierce, and C. Y. Kapper, "Atmospheric Acoustic . 

Gravity Modes Near and Below Low Frequency Cutoff Imposed by Upper Boundary 

Conditions," J. Acoust. Soc. Amer. 58, S1 (A) (1975). 

Perturbation techniques are described for the computation of the 

imaginary part of the horizontal wavenumber (kI) for modes of 



propagation. Numerical studies were carried out for a model 

atmosphere terminated by a constant sound-speed (478 m/sec) half 

space above an altitude of 125 km. The GR 0  and GR1  modes have 

lower-frequency cutoffs. It was found that for frequencies less 

than 0.0125 rad/sec, the CR, mode has complex phase velocity; lc, 

varying from near zero up to a maximum of 3 X 10-4  km-1  with 

analogous results for the GR 0  mode. There is an extremely small 

frequency gap for each mode for which no poles in the complex k 

plane corresponding to that mode exist. These mark the transition 

from undamped propagation to damped propagation. In the complete 

Fourier synthesis, branch line contributions compensate for the 

absence of poles in these gaps. Computational procedures are 

described which facilitate the inclusion of the low-frequency 

portions of these modes in the waveform sysnthesis. 
• 

2.7 A. D. Pierce, and W. A. Kinney, Atmospheric Acoustic Gravity Modes 

at Frequencies Near and Below Low Frequency Cutoff Imposed by Upper 

Boundary Conditions, Report AFCRL-TR-75-0639, Air Force Cambridge Research 

Laboratories, Hanscom AFB, Mass. (March, 1976). 

Perturbation techniques are described for the computation of the 

Imaginary part of the horizontal wavenumber (k I) for modes of pro-

pagation. Numerical studies were carried out for a model atmosphere 

terminated by a constant sound-speed (478 m/sec) half space above 

an altitude of 125 km. The GR
0 
 and GR

1 
 modes have lower-frequency 

cutoffs. It was found that for frequencies less than 0.0125 rad/sec, 

the GR1 mode has complex phase velocity.'  k 1  varying from near zero 

up to a maximum of 3 X 10 -4  km-1  with analogous results for the GR 0  

mode. There is an extremely small frequency gap for each mode for 

which no poles in the complex k plane corresponding to that mode exist. 

These mark the transition from undamped propagation to damped propa-

gation. In the complete Fourier synthesis, branch line contributions 

compensate for the absence of poles in these gaps. Computational 

procedures are described which facilitate the inclusion of the low-

frequency portions of these modes in the waveform sysnthesis. 

2.8 A. D. Pierce, and W. A. Kinney, Geometric Acoustics Techniques in 

Far Field Infrasonic Waveform Synthesis, Report AFCRL-TR-76- 	, Air 



Force Cambridge Research Laboratories, Hanscom AFB, Mass. (1976). 

A ray acoustic computational model for the prediction of long 

range infrasound propagation in the atmosphere is described. 

A cubic spline technique is used to approximate the sound speed 

versus height profile when values of sound speed are input for 

discrete height intervals. Techniques for finding ray paths, 

travel times, ray turning points, and rays connecting source and 

receiver are described. A parameter characterizing the spreading 

of adjacent rays (or ray tube area) is defined and methods for its 

computation are given. A method of determining the number of times 

a given ray touches a caustic is also described. Formulas are given 

for the computation of acoustic amplitudes and waveforms which 

involve a superposition of contributions from individual rays 

connecting source and receiver and which incorporate phase shifts 

at caustics. The possibility of a receiver being in the proximity 

of a caustic is considered in some detail and distinction is made 

between cases where the receiver is on the illuminated or shadow 

sides of a caustic.- It is shown that a knowledge of parameters 

characterizing two rays at a point in the vicinity of a caustic 

provides sufficient information concerning the caustic to allow 

one to give a relatively accurate description of the acoustic field 

in its vicinity. The resulting theory involves Airy functions and 

uses concepts extrapolated from a theory published in 1951 by 

Haskell. The net result is a detailed computational scheme which 

should accurately cover the contingency of the receiver being near 

a caustic in the calculation of amplitudes and waveforms. A number 

of FORTRAN subroutines illustrating the method are given in an 

appendix. Limitations of the theory and suggestions for future 

developments are also given. 



Chapter III 

NUMERICAL SYNTHESIS OF WAVEFORMS  

INCLUDING LEAKING MODES  

3.1 INTRODUCTION 

The computer program INFRASONIC WAVEFORMS has been modified to 

allow inclusion of the contribution at low frequencies from leaking 

modes (specifically the GR 0  and GR1  modes) to numerically synthesized 

infrasonic pressure waveforms. The procedure incorporated in this 

modification involves a partly manual calculation of the imaginary and 

real parts of the horizontal wavenumber, k I  and kR, respectively) as 

discussed in Scientific Report No. 1. 2 That calculation is outlined 

in more detail here. The numbers presented for illustration are appro-

priate to the case of observations at 15,000 km distance from a 50 

megaton explosion, where the explosion is at 3 km altitude, and where 

the atmosphere is assumed to contain no winds. (This restriction is just 

for illustrative purposes, but is not a limitation on the method.) 

3.2 CALCULATION OF COMPLEX WAVENUMBERS 

The first step in the calculation is to obtain values for the phase 

velocities vn(w), va
(0, and vb (0 for the GR0 

 and GR
1 modes, and to 

obtain values for the elements R 11 (w,v) and R12 (w , v) of the transmission 

matrix [R]. These calculations should be done, in particular, for all 

frequencies extending below the mode's nominal lower cutoff frequency. 

As mentioned in the previous report 2 , R11 and R12 
depend on the atmos-

pheric properties only in the altitude range 0 to z T  (the bottom of the 

upper half space), and these are independent of what is assumed for the 

upper half space. Also, vn (w) is the phase velocity for a given (n-th) 

mode for values of w greater than the lower cutoff frequency coL ; here 

va  (w) and vb (w) are values of the phase velocity w/k at which the functions 



$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END 

$NAM2 IMAX=24, 

ZI=1. ,2.,4.,6.,8.,10.,12. ,14.,16.,18.,20.,25. 30.,35.,40.,45.,55., 

65.,75.,85.,95.,103.,115.,125., 

T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,227., 

237.,249.,265.,260.,240.,205.,185.,184.,200.,250.,400.,570., 

LANGLE=1, 

WINDY=25*0.0, 

WANGLE=25*0.0 

SEND 

$NAM4 

THETKD =35., 

VI = 0.143, V2 = 0.3318, 

CM1 = 0.001, 	0M2 = 0.031, 

= 30, NVPI = 80, 

NAXMJD = 10 

SEND 

$NAM1. NSTART=6, NPRNT=1 , NPNCH=-1, NCMPL=-1 $END 

Listing of input data required to generate tabulations of Rll 
and R

12 
versus phase velocity and angular frequency in the 

vicinity of the dispersion curves for the G R 0 
 and G R

1 
modes. 

Figure 1. 
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Figure 2. Model atmosphere showing sound speed versus altitude for numer-
.ical example treated in the present chapter. The atmosphere is 
bounded by an isothermal upper half space beginning at 125 km 
altitude. 



R11 and R
12, respectively, vanish. For a given mode, the values of v a 

and vb 
chosen are those from the curves va

(w) and vb (w) which lie the 

closest of all such curves to the curve vn
(0 for w>wL . 

As regards the calculation of R
11 

and R12, the computer program 

INFRASONIC WAVEFORMS may be used, only with an alternate version of the 

subroutine TABLE. 	A copy of subroutine TABLE with the appropriate 

modifications incorporated and indicated is given in Appendix B. A 

deck listing of all of the input data that is required to obtain R11 

and R12, and that is appropriate to the running example, follows in 

Fig. 1. Values for R il  and R12  need only be calculated for phase 

velocities between, say, 0.143 and 0.3318 km/sec, and for frequencies 

between 0.001 rad/sec (as close to zero as would seem necessary and 

corresponding to a period of 6,283 sec or 1.75 hr) and the value of w B 

 for the upper half space (.0128 rad/sec in our numerical example). In 

the calculations reported here, the upper frequency was taken as .031 

rad/sec in order to confirm the continuity of the dispersion curves. 

A sample portion of the printout of Rli  and R12  corresponding to the 

model atmosphere of Fig. 2 is given in Fig. 3 . The same set of out-

put from a computer run which lists the R 11  and R12  also includes the 

vn (0 for the GR0 
 and GR

1 
modes. 

Values of v
a
(0 and v

b
(w) for these modes are obtained by two 

successive runs of INFRASONIC WAVEFORMS using in sequence two modified 

versions of the subroutine NMDFN. These modifications are so minor 

that the deck listing is omitted and we describe here the nature of 

the modifications. 

To obtain v
a
(0, one need only change the third from end execut-

able FORTRAN statement of subroutine NMDFN from 

FPP = RPP(1,1)*A(1,2) - RPP(1,2)*(GU + A(1,1)) 
	

(3.1) 

to 

FPP = RPP(1,1). 	 (3.2) 



P 	
R11 	 R

12 v 

' OME6A -= .30928-02 
.14300+00 
.14539+00 

.21671+01 
-.72963-01 

-.65152+02 
-.22523+02 

• 14778+00 -.19992+01 .16898+02 
.15017+00 -.34415+01 .493364-02 
.15256+00 -•43203+01 .72532+02 . 1 54 95 + 130  -.46324+01 .85619+02 .15734+00 -.44356+01 .88883+02 
• 15973+ 0 0 -.38270+01 .83475+02 
• .6212+00 -.29260+01 .71114+02 .16451+00 -.18579+0i .53814+02 .16890+00 -.74204+00 .33657+02 
.16929+00 .31761+00 .12611+02 
.17168+00 .12 376+01 -.75995+01 
• 1 7407+ 0 0 .19579+01 -.25568+02 
.17646+00 -.24418+01 -.40247+02 
• 17885+00 .26746+01 -.50952+02 
.18124+00 .26605+01 -.57340+02 
.18363+00 .24195+01 -.59371+02 
• 18602+00 -.19834+01 -.57261+02 
.18641+00 .13917+01 -.51424+02 .19080+00 -.68860+00 -.42421+02 .19319+00 ...,80574-01 -930906+02 .19558+00 -.87165+00 -.17582+02 
.19797+00 -.16447+01 -.315614-01 
• 20036+00 -.23637+01 .116904-02 
• 20275+00 -.29996+01 .26326+02 
.20514+00 -.35295+01 ,40198+02 
.20753+00 -.39379+01 .52832+02 .20992+00 -.421531-01 .63849+02 

_ • _ 
3 

Figure 3. 	Sample printout of RH  and R12  versus phase velocity for vari- 
ous fixed values of angular frequency. Output generated with 
the input data of Fig. 1. 



To obtain vb (w), one need only change the same statement to 

.FPP = RPP(1,2). 	 (3.3) 

The same limits for phase velocity and angular frequency as are used for 

the calculation of R 11 
and R

12 
should be used in the calculations for v

n' 
va, and vb. 

In our example, when these limits are used, the GR 1 mode 

corresponds to mode #3, and the GR 0  mode corresponds to mode #4 for the 

case when vn (w) is calculated. For the cases when va
(w) and vb (w) are 

calculated, the GR
1 
mode corresponds to mode #4 and the GR

0 
 mode corre- 

sponds to mode #6. A sample output listing of vn (w), va (w) and vb (w) for 

the two modes is given in Fig. 4. An additional listing of vn (w), 

va (w), and vb (w) for the two modes versus various values of w is given 

in Table 1. 

3.3 CALCULATION OF a AND a 

The next step in the -procedure is to manually calculate values for 

the variables a and $ which enter into an approximate version [Eq. (9) in 

Scientific Report No. 1] of the eigenmode dispersion function. These 

parameters represent the partial derivatives of R 11  and R12 , respectively, 

with respect to phase velocity v evaluated at v=v a  and v=vb , respectively. 

Since R11 and R12 
also depend on w, a and $ may be considered as functions 

of angular frequency (but not of phase velocity). 

It may be recalled that va (w) and vb (w) are values for the phase 

velocity at which R11  and R12 , respectively, vanish. From the listing 

of, say, R11  versus v and w, let the adjacent values R111, 
 R211 , R311  and 

R411 
for  R

11 
corresponding to the values for phase velocity v 11 , v21 , v31  

and v41, respectively (for same chosen w), such that v 21  and v31  brackett 

a value for v a' • R211 
 and R

311 
would then be of opposite sign. In the 

listing of v, R11 ,  R12 
for various co, the values for v should all turn 

out to be equally spaced. Given this fact, it is possible to reasonably 

approximate a from the listings of R 11  by the formula 

d = (1/Avi)([5/6]ell+[1/12]fil+[1/41glihil) 
	

(3.4) 



Table 1. Tabulation of frequency dependent parameters for the GP ° 
 and GPI  modes. Tabulation is for frequencies below 

cutoff, definitions of the various quantities are given 
in the text and in Scientific Report No. 1. 



I ' 

GR0  MODE 

V
n 	 Va 	w 	vb  

. 	 GRI  MODE 

. w 	V 	 va Vb  

L2375 .31185608.001030 .31205939 .001030 .31209836 '.013407 .22781499 .001030 .24434330.001030 .2 5 C734, L3407- .31181806.002 0 61 	.31205552 . 002061 	.31209447 .013624 .22664568 .002061 .24409612 .001738 .250544, 
.4 0 38 
5460  
6 501 
7 5 32 
6 563 
9070 
9079 

.31177597.003093,31204906 .003093 .31208799 

	

.31172882 .004124 .31204001 	.004124 .31207393 

	

.31167509 .005156 .31202834 	.005156 .31i!06727 

.31161209 .006187 .31201405 .006187 .31205303 

.31153394 .007218 .31199710 .00 7218 .3 1 203620 

.31148610 .008250 .31197748 .000250 .31201679 

.31148516 .009281 .31195515 .00928 1 .31199478 

.014040 .22425580 .003 0 93 .24367787 .002061 

.014424 .22186593 .003655 .24337478 . 0 03093 

.01 1443/1 .22177526 .004124 .24307887 .004124 

.014778 .21947606 .005156 .24228453 .00515 6  

.015107 .21708619 .006187 .24127431 .005160 

.015413 .21469631 .005 11 45 .24098491 . 0 0618 7 
 .015469 .21423833 .007210 .24001984 .006963 

.25u424, 
•2459,30 ; 

 .24(,11,1,01  

•24/3j 59, 
.246154, 
.246acp, 
.2 4 5764/ 0 595 .31142505 .010312 .31193006 	.010312 	.31197010 .015699 .21230644 .008181 .23859504-00 7218 .2 4 5350; 9053 .31138841 .011344 . .31190215 	,011344 	.31194291 .015066 .20991657 .008750 .23848240,000250 .2 4 3461 ►  
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Figure 4. A sample output listing of vn (w), va(w), and vb (w) for the 
G Ro  and G R

1 
modes. 



Table 1. Tabulation of frequency dependent parameters for the GR 0 
 and GR,4  modes. Tabulation is for frequencies below 

cutoff, definitions of the various quantities are given 
in the text and in Scientific Report No. 1. 



where 

v41 - v31 = 1131 V21 v21 - V11 

e
11 

= R
311 

 - R
211 

f11 = R411  - R311  + R211  - R111 

gll = (R211 R311)/ell 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

h
11 

= R
311 

 + R
211 

 - R
111 

 - R
411 	

(3.5e) 
 

In like manner, from the listing of R 12  versus v and w, if one lets the 

adjacent values R112 , R212 , R312 , and R
412 

for R
12 

correspond to the 

values for phase velocity Y12' v22 ,  v32 , and v42, 
respectively (for some 

chosen w), such that v 22 and v32 
bracket a value for v

b' 
then one can 

approximate 8 by the formula 

8 = (1/Av2)([5/6]e12 + [1/12]f12 + [1/4]g12h12 ) 
	

(3.6) 

where Av2' e12 , 	
g12' and  h12 

are defined by equations analogous to 

Eqs. (3.5) (last aubscript changed from 1 to 2). 

Because we use a numerical method (i.e., that described above) to 

calculate a derivative (it would be preferable to have an explicit formula), 

there is a small amount of numerical noise in the tabulation versus w of a 

and 8 computed in the above manner. This noise is noticable only for the 

GR1 
mode and may for all practical purposes be filtered out by plotting a 

and 8 versus w and then drawing smooth curves through the respective sets 

of points. (See Figs. 5 and 6.) 	While this procedure is somewhat labori- 

ous, it circumvents doing additional runs of the program to get values of 

R
II 

and  R12 
at more closely spaced values of phase velocity. It also cir-

cumvents a somewhat elaborate computer programming chore which would do 



Figure 5. A plot of the parameter a versus to for the G R 1 mode. The para-
meter a is 2R

11 
 /av

p 
 evaluated at the phase velocity where 

R
11

150. 



Figure 6. A plot of the parameter 13 versus w for the G Ri  mode. The para- 
meter (3 is alt. /avp 

 evaluated at the phase velocity where 
R12

z.O. 



such steps automatically. (We suspect that the programming time would 

surpass all time which would ever actually be spent on manual circula-

tions such as described above.) In any event, in view of the relatively 

small values of k
I which are actually obtained (as described further 

below) and in view of the recommendations (also given further below) 

concerning the use of the same lc, in many different types of calculations, 

the accuracy of the a and 13 so obtained is more than sufficient. 

3.4- CALCULATION OF COMPLEX PHASE VELOCITY 

The applicable expression for calculation of a mode's phase velocity 

(real above cutoff frequency, complex below) is Eq. (10a) in Scientific 

Report 2  No. 1 (which for brevity is not repeated here). This involves 

parameters v
a 
and v

b 
(whose computation is described in Sec. 3.1), and 

X, which may be considered as a function of w and which is defined by 

Eq. (10b) in the prior report. This latter quantity X depends on a/a, 

A11, G and A12. The latter three are computed by taking the phase velo-

city as v
a 

and using Eqs. (4), (7a), and (7b) of the prior report. 

These calculations are straight forward, and do not require detailed 

explanation. Listings of G, A 11
, Al2 , and X for various values of w 

and for the GR
1 
and GR

0 
 modes are given in Table 1. 

As explained in the prior report, below cutoff (that is, below w L  = 

0.0125 rad/sec for GR1  and below wL  = 0.0118 rad/sec for GR o , in the run-

ning example) the real part k R  of the horizontal wavenumber is the real 

part of w/v
(1)

, and the imaginary part k I  is of course zero. Finally, 

the extension by first iteration of the normal mode dispersion curves 
 

below cutoff is obtained by simply calculating w/k R. Listing of v
(1) 

 , 

kR , and w/kR  for various w for the GR
0 
 and GR

1 
modes are given in 

Table 1. Plots of kI  and w/kR  are given in Fig. 7. 

3.5 INPUT DATA FOR GR
o 
AND GR

1  

The present version of INFRASONIC WAVEFORMS allows for the possibil-

ity of phase velocity w/kR , imaginary component kI , and source free ampli-

tude AMP to be input as functions of angular frequency w for any given 



G R0  CUTOFF 

0.012 0.002 	0.004 	0.006 	0.008 	0.010 .  
ANGULAR FREQUENCY (radian/sec) 

C)0.32 
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Figure 7. 	Numerically derived plots of phase velocity w/kR  and of the 
imaginary part k, of the complex horizontal wavenumber k ver-
sus angular frequency w for theG Ro  andGRi  modes. Nominal 
lower frequency cutoffs for these modes are as indicated. 
Note that lc, is identically zero above the cutoff frequency. 



mode. The only modes for which this is necessary are GR
0 
 and GR

1. 
This 

input data is partly obtained by the procedure described above. Here 

we describe how the remaining portion of the input data is obtained. 

To obtain values of phase velocity and source free amplitude at 

frequencies above cutoff one uses the current version of INFRASONIC 

WAVEFORMS with the variable NCMPL of NAMELIST NAM51 set less than zero. 

This gives an output essentially identical to what would be obtained 

with the original version of the program. The input data for this run 

would be the same as if one were computing waveforms without considera-

tion of leaky modes. A sample listing of such input data is given in 

Fig. 8. The run will give mode numbers and tabulations of phase velo-

city VPHSE and amplitude AMP versus angular frequency OMEGA for the GR0 

 and GR
1 modes at frequencies,above cutoff. The only output which need 

be retained for future use are the tabulations of VPHSE versus OMEGA for 

these two modes, since amplitudes at frequencies above cutoff are comput-

ed automatically in the run which utilizes this information as input data. 

A sample tabulation of the pertinent output (for the running example 

considered here) is given in Fig. 9. 

Input data of phase velocity VPHSE and amplitude AMP for frequen-

cies below cutoff are obtained by a second run of the program, again 

with NCMPI, < 0, only with the original model atmosphere replaced by one 

which has a thick intermediate layer plus on upper half space replacing 

the original upper half space. Thus, in the NAM2 input list, MAX is 

increased by one, the original ZI and T are unchanged, but one adds a 

ZI for the new value of IMAX which is, say 100 km larger than the largest 

ZI for the original model atmosphere; the temperature T for the new MAX 

+ 1 layer (i.e. for the new upper half space) is set equal to an arbitrarily 

very large value (say, 2x10 7 ° K). Doing this will artificially shift the 

cutoff frequencies for GR0  and CR1  down to values which are, for all 

practical purposes, equal to zero. The input data for this run should 

include choices of angular frequency and phase velocity limits (V1, V2, 

OM1, and 0M2 of NAM4) which are appropriate for an exploration of the 

properties of GR0  and GR1  at frequencies below their original cutoff frequen- 

cies. It is imperative that 0M2 not be too large since INFRASONIC WAVEFORMS will 



$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 SEND 

$NAM2 IMAX=24, 

ZI=1.,2.,4.,6.,8.,10.,12.,14.,16.,18. 20.,25.,30.,35.,40.,45.,55., 

65.,75.,85.,95.,105.,115.,125., 

T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,217., 

237.,249.,265.,260.,240.,205.,185.,184.,200.,250.,400.,570., 

LANGLE = 1, 

WINDY = 25*0.0, 

hANGLE = 25*0.0 

SEND 

SNAM4 
THETKD = 35., 

V1 = 0.15, V2 = 0.495, 

GNI = 0.005, OM: = 0.1, 

NOY1 = 30, NA,PI = 30, 

MAr.10D = 8 

SEND 

SNAM5 ZSCRCE = 3.0, :OBS = 0.0 SEND 

$NAM8 YIELD = 50.E3 SEND 

SNAN10 ROBS = 15000., 

TFIRST = 46.2E3, TEND = 52.2E3, 

DELTT = 15., 

IOPT = 11, 

SEND 

SNAMEI NSTART=6 SEND 

Figure 8. 	Input data to obtain phase velocity versus angular frequency 
above cutoff frequency for theGR

0 
 ancIGR

1 
modes. 
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Figure 9. Sample output of phase velocity versus angular frequency at 
frequencies above cutoff for the G R

0  and G R
1 modes corres- 

ponding to the input data of Fig. 8. 



encounter numerical difficulties at higher frequencies when the height 

of the upper halfspace is as high as considered here. (If it were not 

for this fact, this run could be used to generate essentially the same 

information as in the previous run.) For comparison, Fig. 10 indicates 

the types of atmospheric profiles used in the two runs with NCMPL < O. 

The second run gives values for the source free amplitudes AMP and 

phase velocities VPHSE for the GR
0 
 and GR

1 
modes for frequencies below 

cutoff. The latter of these are expected to be virtually identical to 

the w/kR  which are obtained by the method described in Sec. 3.4. Also, 

the source free amplitudes are expected to match on smoothly to those 

obtained from the prior run for high frequencies even though the two 

model atmospheres are not identically the same. (This is because the 

energy transported by the GR0  and Gill  modes is predominantly in the 

lower atmosphere.) Furthermore, we expect these amplitudes to be virtual-

ly the same as would be obtained by the modified residue method described 

in Scientific Report No. 1 for the original model atmosphere. The actual 

amplitudes should have a small imaginary part, but in view of the rela-

tively small values of the k
I 

(less than 10
-3 

nepers/km) obtained, we 

are confident that this imaginary part may be neglected to an excellent 

approximation. The only aspect of the leaking phenomena which conceiv-

ably could be of significance is the accumulative exponential decay 

represented by the factor exp(-k ir), which is retained in subsequent 

calculations. 

Sample input data for this second run with NCMPL < 0 are given in 

Fig. 11; a listing of the output values for OMEGA, VPHSE, and AMP below 

the original cutoff frequencies for the GR 0  and GR
1 
modes of the running 

example is given in Fig. 12. 

3.6 WAVEFORM SYNTHESIS 

The final step in the waveform synthesis is to run the program 

INFRASONIC WAVEFORMS with input data including the information concern-

ing the GR
0 
 and GR

1 
modes computed as described in the preceding two 

sections. The essential difference between this run and the first such 
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Figure 10. Two model atmosphere profiles; the first is the same as in 
. Fig. 2; the second has the original upper halfspace replaced 
by a layer of finite but large thickness with a halfspace 
above it of extremely high temperature and sound speed. 
Second atmosphere is used to generate phase velocities and 
source free amplitudes at frequencies below nominal cutoff 
frequencies. 



$NAM1 NSTART=1, NPRNT=1, NPNGH=-1, NCNPLF-1 $END 
$NAM2 IMAX=25, 

21=1.,2.,4.,6.,8.,10.,12.,14.,16.,18.,20.,25.,30.,35.,40.,45.,55., 

65.,75.,85.,95.,105.,115.,125.,225., 

T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,227., 

237.,249.,265.,260.,240.,205.,185.,184.,200.,250.,400.,570. 1 2.E7, 
LANGLE=1, 

WINDY=26*0.0, 

WANGLE=26*0.0 

$END 

$NAM4 

THETKD= 35., 

V1 = 0.18, V2 = 0.34, 

ON1 = 0.001, 0M2 = 0.02, 

NCOff = 30, NCPI = 30, 

MANYOD = 8 

$END 

$NAM1 NSTART=6 $EXD 

Figure 11. Input data to obtain phase velocity and source free amplitudes 
below nominal cutoff frequencies for theGR0  and G R1  modes. 
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modes correspon- 
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Iture 12. 



run described in Sec. 3.5 is that one sets NCMPL > 0, and that one supplies 

values for the par
P 
 ameters in the input list NAM51. A listing of the in-

put data for the run, allowing for the leaking modes, and appropriate . to 

our running example is given in Fig. 13. The phase velocities input for 

the GR
0 
 and GR

1 
modes are those derived from the two computer runs describ- 

ed in Sec. 3.5. The source free amplitudes for these modes are supplied 

only for frequencies below cutoff and these are derived from the second 

run of Sec. 3.5. The inlPginary parts of the wave number are the numbers 

whose computation is described in Sec. 3.5. The reason we use the phase 

velocities below cutoff as computed in Sec. 3.5, rather than as in Sec. 

3.4, is that both calculations agree to the same order of accuracy as 

would be expected for the approximations inherent in the method of Sec. 

3.4. Consequently, we expect the values from the computer run to be the 

more nearly accurate. Of course, the values of k I  have to be computed 

by the method of Sec. 3.4 since the computer program in its present form 

does not compute these directly. 

In Fig.14 we show CAICOMP plots of modal and total waveforms ob-

tained before and after the inclusion of leaking modes. (This is for 

our running example, 15,000 km from a 50 megaton burst at 3 km altitude, 

the receiver being on the ground.) One may note that the inclusion of 

the leaking modes eliminates the spurious precursor in the waveform and 

raises the amplitude of the first peak. It is also important to note 

that the waveform with leaking modes included begins with a pressure 

rise. This is what one would probably expect from intuition alone, and 

would also appear to be more realistic. 

3.7 FURTHER EXAMPLE (HOUSATONIC) 

To further explore the effects of inclusion of leaking modes, we 

chose the case of waveforms observed by Berkeley, California, following 

the Hausatonic detonation at Johnson Island on October 30, 1962. A 

previous comparison of theoretical and observed waveforms for this event 

is given in the Geophysical Journal article by Pierce and Posey 1 5 This 

case is also the central example in the 1970 AFCRL report by Pierce and 



Figure 13. Sample input data for synthesis of infrasonic waveform inclu-
ding leaking modes. The data for the NA151 input list is as 
derived from previous computations described in the present 
Chapter. 



Figure.14. CALCG1P plots of modal and total waveforms before and after 
inclusion of leaking modes. Example is for the case of a 50 
megaton burst at 3 km altitude in the atmosphere of Fig. 2; 
receiver is at distance of 15,000 km. 



Poseyl , and is discussed within the Lamb edge mode theory context in some 

detail in Posey's thesis. 16  

The model atmosphere assumed for the computation is exactly the same 

as in Fig. 3-12 of the 1970 report, only we let the upper half space begin 

at 125 km (IMAX = 24). Rather than repeat the tedious calculations of 

the kI 
for the GR

0 
 and GR

1 
modes for this model atmosphere, we assumed that 

they would be essentially the same as for the running example in the pre-

vious section. Thus the steps in Secs. 3.5 and 3.6 needed only to be 

carried out to obtain a waveform sysnthesis. 

In Fig. 15, we give comparisons of the CALCOMP plots for this event 

before and after the inclusion of leaking modes. One may note that the 

first of these does not agree with the comparable CALCOMP plots in Fig. 

3-10 of the 1970 AFCRL report. This is of course because we have here 

taken the upper halfspace to begin at a lower altitude. This choice of 

where the upper halfspace begins is of little consequence when leaking 

modes are included, and consequently the agreement of the old computation 

with the leaking mode included case is quite substantial. Further, the 

new computation is regarded as an improvement in that the spurious initial 

pressure drop has been eliminated. 

On the basis of the calculations described above, we have redrawn 

the Fig. 7 in the Geophysical Journal article which compares observed and 

theoretical pressure waveforms for the Housatonic-Berkeley event. This 

revised figure is given here as Fig. 16. The only difference is in the 

center waveform. The precursor is now absent and the first peak to trough 

amplitude has been changed from 157 pbar to 170 pbar (less than 10% increase); 

the remanider of the waveform is virtually unchanged. The discrepancy 

with the edge mode synthesis hasn't been diminished and remains .a topic 

for future study. (It was not addressed during the present study.) 
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Figure 15. CALCOHP plots of modal and total waveforms before and after 
.the inclusion of leaking modes. The eventis observations 
at Berkeley, California, following the Housatonic detonation 
at Johnson Island on 30 October 1962. The energy yield assumed 
in the theoretical computations was 10 megaton. The model 
atmosphere is as previously used by Pierce and Posey in 
AICRL-70-0134, only the upper halfapace begins at 125 km. 
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California, following the Housatonic detonation at Johnson 
Island on 30 October 1962. The observed waveform is taken 
from Donn and Shaw (1967). The energy'yield assumed in 
the theoretical computations was 10 megatons. This is a 
revised version of the Fig. 7 in the 1971 paper by Pierce 
and Posey Oeophys. J. Roy. Astron. Soc. 26, 341-368). 
The original multi-mode synthesis figure has been replaced 
by one including leaking modes. 



Chapter IV 

AS PTOTIC HIGH-FREQUENCY BEHAVIOR  

OF GUIDED MODES  

4.1 INTRODUCTION 

Due to temperature and wind stratification, the earth's atmosphere pos-

. sesses sound speed channels with associated relative sound speed minima. 

Fig.17 shows a standard reference atmosphere wherein two such sound 

speed channels are indicated; one with a minimum occurring at approxi-

mately 16 km altitude and the second with a minimum occurring at approx-

imately 86 km altitude. Given the presence of such a channel, an 

acoustic ducting phenomenon can occur, as is demonstrated in Fig.18, 

wherein the energy associated with an acoustic disturbance can become 

trapped in the region of a relative sound speed minimum. It is this 

mechanism of ducting only that is of interest here. 

In the computer program INFRASONIC WAVEFORMS, the computation of 

modal waveforms involves the numerical integration over angular fre-

quency of a Fourier transform of acoustic pressure where this integra-

tion is truncated at the high-frequency end. 	It has been speculated 

that this abrupt truncation leads to the generation of what might be 

called "numerical noise" in the computer output. It was felt useful, 

therefore, to extend this integration beyond the heretofore upper 

angular frequency limit by means of some appropriate high-frequency 

approximation. In the case of an atmosphere with just one sound channel, 

the technique for doing this is well known and dates back to a paper 

published by N. Haskell 	1951. Haskell's method is the W.K.B.J. 

(Wentzel, Kraners, Brillouin, Jeffreys) method, then in common use in 

quantum mechanics, although its invention dates back to Carlini- 8 
 19 

Green in the early 19th century. 

The approximations associated with the W.K.B.J. method of solution 

apply to the analytical model on which the computer program is based at 
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frequencies above approximately 0.05 radian/sec (periods less than 2 

minutes). Below that limit, effects due to density stratification in 

the atmosphere and gravitational forces cannot be neglected. Such 

effects therefore are not germane to the discussion here. 

The application of the W.K.B.J. method of solution to the problem 

of describing propagation of acoustic disturbances in an atmosphere that 

contains two adjacent sound speed channels has previously been discussed 

in the literature by EckartP who invented the simple method of seeking 

a W.K.B.J. model for each of the sound speed channels spearately, then 

combining the results rather than treating the problem with a single 

model. In the present chapter, Eckart's method is applied and numerically 

verified for the case of infrasonic waves in the atmosphere. 

4.2 THE W.K.B.J. MODEL 

The W.K.B.J. model for propagation of acoustic disturbances in 

a single sound speed channel may be considered as an approximation for 

the acoustic pressure divided by the square root of the ambient density, 

which in general may be expressed as 

P_ *(z ) e-iwteikx 

0 

	 (4.1) 

where w is angular frequency, k is the wave number associated with the 

horizontal dimension x, z is altitude. Here 4(z) satisfies the reduced 

wave equation, 

where c(z) is sound speed as a function of altitude. The W.K.B.J. approxi-

mation applies in general to all differential equations of this type if the 

coeffieient of IP is sufficiently "slowly varying." It would appear in par-

ticular to be valid in the present context provided 

(4.3) 
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where A is some representative wavelength of interest. This approxima-

tion states that substantial changes in sound speed should not occur 

within distances corresponding to a typical wavelength of interest if 

the model is to apply. 

A particular sesult of the W.K.B.J. approximation is that dispersion 

curves (v vs. w) of guided modes are given by the equation 

(4.4) 

where v is phase velocity, n = 0, 1, 2, 3, 	and where zbottom and 

ztop  identify the lower and upper bounds of the sound speed channel, 

respectively. This integral is a direct result of the W.K.B.J. method 

of solution21 , and its numerical solution enables the plotting of disper-

sion curves. 

4.3 COMPARISON OF DISPERSION CURVES 

Particular insight into the high-frequency behavior of guided in-

frasonic modes was gained when the above integral was solved numerically 

by computer for both the upper and lower channels, the model atmosphere 

being that given in Fig.17. The resulting dispersion curves computed in 

this manner are shown in the lower portion of Fig 19. One set of curves 

(the dashed curves) is appropriate to the W.K.B.J. model for the lower 

channel and the other set (the solid curves) is appropriate to the W.K.B.J. 

model for the upper channel. In the upper portion of the same figure 

are shown again dispersion curves as generated by the computer model 

INFRASONIC WAVEFORMS. It should be mentioned that the computer model 

solves a more complex problem in the sense that the simplifications in-

herent in the W.K.B.J. model are not present. 

As is illustrated in the lower portion of Fig.19, the two sets of 

dispersion curves generated by the W.K.B.J. models intersect with one 

another at various points. A comparison of the dispersion curves shown 

in both the upper and lower portions of Fig. 19 reveals that these points 
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of intersection mark regions of resonant interaction in the phase velo-

city-angular frequency plane between adjacent modes of the computer model. 

To better illustrate this observation, in the right hand portion of Fig. 20 

is shown one such region of interaction with its corresponding point of 

intersection between two dispersion curves of the W.K.B.J. models shown 

to the left. It should be mentioned that the dispersion curves of the 

computer model never intersect with one another. An analytical explana-

tion of this fact has previously been given by Pierce 22 . 

4.4 INFERENCES CONCERNING ENERGY VERSUS HEIGHT DISTRIBUTION 

The above observation may be stated differently by saying that, for 

relatively high angular frequencies, the dispersion curve corresponding 

to a given mode of the computer model is comprised of portions of dis-

persion curves from both sets of the curves generated by the W.K.B.J. 

models. Two important inferences about the asymptotic high-frequency 

behavior of guided infrasonic modes can be drawn from this statement. 

First, for some frequency ranges, and depending on how dispersion curve 

portions match between curves of the computer model and the W.K.B.J. 

models, it can be inferred that the acoustic energy associated with a 

given mode is comprised of energy associated more with propagation of 

acoustic disturbances in one sound speed channel than in the other. 

Also, as frequency increases, this association alternates back and forth 

between channels. To illustrate, if, for a small range of frequencies, 

a portion of a dispersion curve of the computer model matches (in the 

phase velocity-angular frequency plane) a portion of one of the W.K.B.J. 

model curves for the upper channel, then that implies that, for that 

mode and for that small frequency range, the acoustic energy density 

associated with that mode is greater in the upper channel than in the 

lower channel. Secondly, in the standard reference atmosphere, the 

sound speed minimum for the upper channel is less in magnitude than the 

sound speed minimum for the lower channel. It can be inferred, therefore, 

that those acoustic disturbances for which phase velocities are less in 

magnitude than the sound speed minimum for the lower channel are associated 

more with acoustic energy trapped in the upper channel than in the lower 

channel, and thus, for this reason, do not contribute significantly to 

the acoustic energy at the ground. This inference implies that care must 
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be taken as to which nodes are chosen to superpose in the attainment of 

the final pressure waveform at the ground, as some may not contribute. 

4.5 IMPLICATIONS FOR WAVEFORM SYNTHESIS 

In the previous synthesis of guided pressure waveforms at long dis-

tances, the acoustic modes were numbered in order of increasing phase 

velocity (i.e., SO, Sl, S2,..., etc.) and the sum over modes was truncated 

at a finite maximum number of modes. The analysis given here indicates 

that this may be a very poor approximation for synthesizing high frequency 

portions of waveforms observed near the ground since there is always some 

frequency above which the first, say, N modes all correspond to channelling 

in the upper sound speed channel. 

The preferable alternative would appear to be (for synthesis of ground 

level arrivals from sources below 50 km altitude) to ignore the upper 

sound speed channel completely for frequencies above, say, at least 0.2 

rad/sec (possibly 0.1 rad/sec) corresponding to periods below at most 

30 sec (possibly 1 min). - The dispersion curves could then be taken as 

given by the W.K.B.J. approximation and the mode amplitude versus height 

profiles could be computed by the method' outlined by Haskell. The Dis-

persion curves and amplitudes so computed would fit directly into the 

general scheme outlined by Pierce and Posey" which forms the theoretical 

basis for the current version of INFRASONIC WAVEFORMS. 



Chapter V 

EXTENSION OF INFRASONIC WAVEFORMS TO INCLUDE  

DISTANCES BEYOND THE ANTIPODE  

5.1 INTRODUCTION 

Previous theoretical considerations incorporated into the digital 

computer program INFRASONIC WAVEFORMS restricted synthesis to waves that 

had traveled less than one-half the distance around the earth. The pur-

pose of this chapter is to further exemplify techniques to enable computer 

synthesis of acoustic-gravity pressure waveforms at points whose distances 

are greater than halfway around the world from a nuclear explosion. 

Extension of prior theory shows that for wave propagation past a point on 

a spherical earth, one-half the great circle distance away from the point 

of detonation (i.e., the antipode), a phase shift of w/2 radians to the 

Fourier transforms of each modal wave is incurred. Modification to the 

computer program necessitates the reinterpretation of the great circle 

distance r, the inclusion of the 7112 phase shift, and a modification to 

the earth curvature correction factor. Computations are presented for 

pre and post antipodal waveforms. 

5.2 THEORETICAL CONSIDERATIONS FOR POST ANTIPODAL WAVEFORMS 

In considering acoustic-gravity waves that have passed beyond the 

antipode, certain specific definitions for the various waveforms must be 

adopted. To an observer located on the surface of a spherical earth be-

tween the source and the antipode the pressure waveform that is first ob-

served is the direct arrival or A l arrival. The Al arrival has traveled 

the shortest great circle distance r to reach the observation point. The 

next waveform observed at the above observation point is the A
2 
or antipo-

dal arrival. The A
2 
arrival has traveled the longer great circle distance 

from the explosion point around the glove passing through the antipode to 

reach the observation point. The A3 arrival is the Al  pressure waveform 

that has traveled completely around the globe with respect 



to the observation point. Further arrivals exist but are not considered 

here. The distance r is measured in kilometers and is the great circle 

distance measured from the detonation point to the final observation 

point. Figure 21 shows some typical pressure waveforms recorded in subur-

ban New York for the Russian explosion of 58 megatons at Novaya Zemlya 

on 30 October 1961.
23 

Previous numerical syntheses of acoustic-gravity waveforms have 

only considered direct arrivals. The extension of this theory to include 

waveform prediction for antipodal arrivals is described here. An inves-

tigation of a small region of the earth's surface in the vicinity of the 

antipode where prior theory breaks down yields certain waveform charac-

teristics that enable waveform synthesis to be extended to ranges past 

the antipode. By taking the antipodal region small in area than say 

1/100th of the earth's area as a whole we can consider this region to 

be flat. Then the equation governing propagation of any frequency in 

any guided mode near the antipode is the cylindrical wave equation in 

the form of 

a 2 F/arA2  + wridaivarA  (11vp
2
)a

2
Vat

2 
= 0 	 (5.1) 

where F would represent the rA  and t dependent part of the integration 

kernal for synthesization (i.e., integration over frequency of any 

given modal waveform where the height dependent part is omitted here)• 

The quantity V
P 
 is the corresponding phase velocity. The assumed cir- 

cular symmetry of the wave about the antipode is inherent in the absence 

of the angular derivative terms in the above equation. The distance r A 

 is measured positive out from the antipode. The wave solution to Eq. 

(5.1) for the total acoustic pressure p and small r A  can be written for 

time t as 

Ao 

F = DJ (krA  )cos(wt+e) (5.2) 

For the above, k = w/V represents the horizontal wave number, w the 

angular frequency, and e some phase angle. The quantity D is some arbi-

trary constant while J o (krA) is the Bessel function of zero order. 
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Figure 21. Infrasonic "pressure waveforms recorded in suburban New York 
following the detonation of a 58 megaton yield nuclear device 
in Novaya Zemlya LISSR on 30 October 1961. [Extracted from 

.Donn and Shaw, Rev. of Geophys. 5, 53-82 (1967).] 



When r
A 

is suffienciently large (i.e., greater than three wavelengths) 

a solution for the total acoustic pressure p can be considered as a sum 

of ingoing and outgoing waves with respect to the antipodal region. The 

asymptotic solution for large krA  can be written for time t as 

F = A(rA  )-1/2cos(wt+krA
+ D

in) 
(5. 3) 

+ B(rA)-1/2cos(wt-krA+ (Pout) 

In Eq. (5.3) 0 is some phase angle while w and k are as previously defined. 

The plus sign in the argument of the cosine denotes an ingoing wave. 

Equation (5.3) is not defined at rA  = 0 and,as rA  approaches zero, wave 

amplification is predicted. Figure 22illustrates waveform amplification 

approaching the antipode for three different values of r for a ten mega-

ton nuclear explosion. The antipode is reached when r = 20,000 km. 

Realizing that Eqs. (5.2) and (5.3) should represent the same pre-

sure waveform at large rA  we can now show the existence of a phase differ-

ence between waveforms approaching and leaving the antipode. For large 

rA , the Bessel function J o (krA) can be represented by its asymptotic 

approximation such that Eq. (5.2) becomes 

F = D(2/wr
A
k) 1/2cos(kr

A 
 -n/4)cos(wt+e) 

or with the aid of trigonometric identities as 

(5.4) 

F = 2 --D(2/7rAk)
1/2 

[cos(wt+e+kr
A 
 -114) 

(5.5) 

+ cos 

Equating (5.3) 

(wt+e-krA  +7/4)] 

to (5.5) then requires that 

A=B  1/2 D/(2irk (5.6a) 

E it/4 (5.6b) 

out w /4  (5.6c) 
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(5.7) 

The latter shows that a pressure waveform undergoes a phase shift of 90 

degrees. Based on this knowledge the computer program has been altered 

to synthesize pressure waveforms for the A2  arrival that passes through 

the antipode. 

5.3 MODIFICATIONS TO INFRASONIC WAVEFORMS FOR POST ANTIPODAL WAVEFORMS 

Waveform synthesis for ranges beyond the antipode necessitates only 

minor adjustments to the computer program. By considering the theoretical 

development of Brune, Nafe, and Alsop (1961)24  for circular spreading of 

waves over a spherical surface of radius r e  (i.e., r e  = 6374 km for earth) 

the amplitude correction factor for the curvature of a spherical earth, 

appearing in subroutine TMPT, is altered for post antipodal waveforms by 

replacing the term sin(rir e) by its absolute magnitude, where . r is inter-

preted as the total distance the wave has traveled from the point of 

detonation. For post antipodal arrivals considered here r would be between 

"e  and 2wre  kilometers. The earth curvature correction factor in subroutine 

TMPT appearing as 

CF = (1.1(6374. * SIN(RAD)))**0.5 	 (5.8) 

is replaced for post antipodal waveforms by 

CF = (1./(6374.*ABS(SIN(RAD))))**0.5 	 (5.9) 

where ROBS = r and 

RAD = ROBS/6374. 	 (5.10) 

To accomodate the change in phase as the waveforms pass through the anti-

pode two computer cards of the form 

PH2 = PH2 + 1.570796 	 (5.11) 



are inserted in the deck listing of subroutine TMPT after lines 160 and 

177. 

After incorporating the above modifications into subroutine TMPT 

the computer program was then utilized to synthesize various theoretical 

waveforms. Using the Soviet shot of 30 October 1961 as the source, a 

phase shift upon passing through the antipode is exhibited in Fig. 23 

for two observation ranges of a synthesized pressure waveform. Further 

dispersion beyond the antipode of the pressure waveform is shown in 

Fig. 24 for a ten megaton explosion. A comparision of antipodal arrivals 

for a computer synthesized pressure waveform and a microbarograph recorded 

by Donn and Shaw in suburban New York 5  for the 58 megaton Soviet test is 

presented in Fig. 25. Considering the scattering in waveforms that can 

occur at such large arrival distances, it is not unreasonable to say that 

the amplitudes and typical periods of the two plots are of the same order 

of magnitude. 
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Chapter VI. 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 REMARKS CONCERNING INFRASONIC WAVEFORMS 

The new version of INFRASONIC WAVEFORMS contained in this report 

(Appendix A) allows for the computation of waveforms which have propa-

gated past the antipode and for the computation of waveforms including 

leaking modes. Our re-74rks here concentrate on the latter modification. 

If one chooses a model atmosphere in which the sound speed is con-

stant above some arbitrary large height, it is inevitable that the GR 0 

and GR 1 modes should have lower cutoff frequencies and be leaking below 

that altitude. Beyond a certain point, one would expect that the compu-

tations should be independent of this choice of height, provided the 

analysis were carried through with some degree of exactitude. If there 

were a genuine sensitivity, this would indicate that these modes carry 

an appreciable fraction of their energies at high altitudes and this 

would in turn suggest that the neglect of physical dissipative mechanisms 

(such as viscosity and thermal conduction, Joule heating, etc.), which 

increase dramatically at extremely large heights for the frequencies of 

interest here, is not a valid approximation. 

The reason we cannot take the bottom of our upper halfspace to be 

arbitrarily large is that some modal height-amplitudes decrease exponen-

tially at large altitudes. This exponential decrease implies that, if 

one attempts to calculate the transmission matrix [R] connecting variables 

at the bottom of the upper halfspace to those at the ground, then the 

elements of [R] are going to be extremely large and the mathematical 

theorem that the determinant of [R] be 1, while true in principle, is not 

going to be satisfied for the actual numerical values computed because 

of the loss of significant figures. The net result is such large 

fluctuations in the eigenmode dispersion function due to round-off 

errors that it is impossible to determine its roots. This problem 



always arises at sufficiently high frequencies when the upper halfspace 

bottom is taken too high. 

In Chapter III, a simple expedient for circumventing this difficulty 

is implicitly described. One uses one atmosphere for low frequencies, 

another atmosphere for higher frequencies. The atmosphere for the higher 

frequency calculations has its halfspace beginning at, say, 125 km alti-

tude while the atmosphere for the lower frequency calculations has its 

upper halfspace beginning at, say, 225 km. Given the premise that, for 

the CR0  and GR1 
modes (which appear to be the only modes for which we have 

problems at low frequencies), the energy is ducted below 125 km, the 

temperature above 225 km can be made as large as one desires without chang-

ing the answers. Thus one simply chooses this temperature to be so large 

that the lower cutoff frequencies for the two modes are, for all practical 

purposes, zero. In this manner one can construct the phase velocities 

and source free amplitude functions versus frequency for these modes 

down to arbitrarily small frequencies. 

Another question is whether or not the k I  (imaginary part of wave-

number) for the leaking modes are physically meaningful. They obviously 

would be meaningful were the actual atmosphere terminated by an upper 

halfspace and were there no physical dissipation mechanisms. However, 

the actual atmosphere is more complicated than this model and one has 

to accept the fact that (1) an approximate atmosphere is going to give 

rise to approximate answers and (2) that the values of the k I  are going 

to depend on the choice of the bottom height of the upper half space. 

Thus the kI 
are really somewhat arbitrary. Fortunately, the values of 

the kI 
so derived are very small, at least for the example we have numeri-

cally carried out, that the computed waveforms are almost the same as 

if the k
I 
were identically zero. 

With the above remarks in mind, it is recommended that the calcula-

tions of the k
I 
for the CR

0 
 and GR

1 
modes below cutoff not be carried out 

in the synthesizing of waveforms. Rather, one should either set the k I 

 for frequencies below cutoff as given in our numerical example or to 
-10 

2x10 	(i.e., for all intents and purposes, zero). The reason the k I 



should not be set identically to zero is that the computer program uses 

the nonzeroness of k
I as a flag to decide whether to look for an input 

value of AMP (source free amplitude) or to compute the number internally 

(it can't do this at frequencies below cutoff and will consequently 

return ANP = 0). While this may seem a rather simple thing to do, con-

sidering the elaborate mathematical theory developed 2  in Scientific 

Report No. 1, the analysis and computations which preceded the formula- 

tions of this recomMendation were necessary, if only to establish that 

the procedure has some rigorous mathematical basis. 

In any event, it is evident that one must and should include con-

tributions from the frequencies below the nominal low frequency cutoff 

(determined by the upper halfspace) if one is to adequately synthesize 

the initial portions of waveforms. The present report shows how this 

may be done. The procedure, although requiring several (three, in 

general) runs of the program rather than just one run to accomplish 

this, is relatively straightforward. It is obviously feasible to auto-

mate this so that only one run is necessary, but the time limitations 

of the present study precluded our doing so. 

6.2 DISCREPANCY WITH LAMB EDGE MODE THEORY 

It was hoped that the inclusion of leaking modes into the multi-

mode synthesis would eliminate the discrepancy between the numerical 

predictions of the Lamb edge mode theory and the multi-mode theory. 

It is evident, however, from Fig. 16 in the present report that this 

was not turned out to be the case. The cause of the discrepancy has 

not been resolved and time limitations precluded its resolution. 

There is always the possibility that either program may have a mistake. 

However, barring this, it should be pointed out that the modified 

multimode theory should be the more nearly correct. The Lamb edge mode 

theory 1S contains a number of approximations which the multi-mode 

theory does not contain. Consequently, it is recommended that the 

multi-mode model as modified here be used in preference to the Lamb 

edge mode model. 



The relative simplicity of the edge mode model still retains an 

intrinsic appeal and, consequently, it is recommended that some future 

effort be expended in revising the model (possibly by including higher 

order terms in the dispersion relation) such that the discrepancy is 

resolved. 

6.3 GUIDED MODES AT HIGHER FREQUENCIES 

The procedure outlined in Chapter IV for using a modified W.K.B.J. 

approximation to order the modes and to compute modal parameter at high 

frequencies looks eminently feasible and is recommended for inclusion 

into the multi-mode synthesis program INFRASONIC WAVEFORMS. Although, 

again, time limitations precluded this, we regret not having done so in 

the present study. The motivation for doing this, however, is not as 

strong as for the low frequency modifications because the commonly avail- 

able data in the open literature is markedly poor as regards high frequency 

arrivals. If and when such a modification is carried out, one should 

ideally have appropriate data with which to compare the numerical predic-

tions. 

Another problem is that there is some question as to whether a mult-

modal theory with a finite number of modes (even when judiciously selected) 

can ever adequately synthesize higher frequency arrivals. In many respects, 

we believe that an appropriate modification of a geometrical acoustics 

theory would-be preferable. 

6.4 GEOMETRICAL ACOUSTICS MODEL 

The geometrical acoustics model described3  in Scientific Report No. 2, 

although still incompletely developed, appears to hold considerable promise 

for the understanding of higher frequency arrivals. We know now how to 

take the edge mode into account and how to handle the problem of caustics. 

Problems of aretes, lacunae, and wave diffusion from channel to channel 

still remain, but we believe these can be overcome with only a modest 

amount of additional theoretical effort. 



The ultimate objective of the analysis should be to develop the 

simplest possible theory sufficient to explain and interpret available 

data. In this'respect, we would suggest that both the multi-mode and 

geometrical acoustical models. While perhaps more elaborate than should 

be ideally required, could be used as research tools to conduct numeri- 

cal experiments which test simpler models. The statistical models develop-

ed by p. Smith25  for underwater acoustics appear especially attractive 

in this regard and we believe that one should be able to test his models 

using the geometrical acoustics model described in Scientific Report No. 

2. Also, the types of numerical experiments envisioned should provide 

the inspiration and support required to refine Smith's models such that 

they be capable of a more nearly precise description of infrasonic wave-

forms. 
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APPENDIX A  

SOURCE DECK LISTING OF THE PRESENT 

VERSION OF INFRASONIC WAVEFORMS 

This supercedes the source deck listing originally given by 

Pierce and Posey in AFCRL-70-0134. Changes incorporated include those 

described by Pierce, Moo, and Posey in AFCRL-TR-73-0135 and those 

described in the present report. 



APPENDIX B  

SOURCE DECK LISTING OF 

AN ALTERNATE VERSION OF SUBROUTINE TABLE 

This version of SUBROUTINE TABLE is used, as described in Chapter III 

of the present report, to tabulate listings of R 11  and R12  versus angular 

frequency OMEGA and phase velocity VPHSE which are used in calculating the 

parameter a and a for the GR0  and GR1  modes which in turn are used in 
calculating the values of the imaginary component lc" of horizontal wave-

number for these modes at frequencies below cutoff. This version of 

TABLE should replace the version in Appendix A when a tabulation of R11 

 and R
12 is desired. 



74/74 	CPT=1 
	

FTN 4.4+8401 	/5/094'69. 12.21. 

SUBROUTINE TABLE(ON1,012,v1,ve,NOm,NvP,THETK,OM,V,INMODE,NuPT) 
C 	TABLE (SUBROUTINE) 	 7/19/68 	LAST CARD IN DECK IS NO.. 
C 

----AESTRACT---- 

C TITLE - TABLE 
C • 	GENERATION CF SUSPICILNLESS TABLE OF NORMAL MODE DISPERSION 
C 	 FUNCTION SIGNS 
C 

TABLE CALLS SUDRCuTINE mPOuT TO CONSTRUCT THE MATRIX OF 
C 	 NORMAL MODE DISPERSION FUNCTION SIGNS INMODE (STORED IN 
C 	 VECTOR FORM CCLomN AFTER COLUMN) FOP,. REGION IN FREQUENCY- 
C 	 PHASE VELOCITY PLANE (OMI.LE.OmEGA.LE.0M2.AND.V1.LE.VP.LE 
C 	 .V2). SUBROUTINE stSFCT IS CALLED IC EVALUATE THE SUSPI- 
C 	INDEX ,ISUS, OF EACH INTERIOR ELEMENT IN THE MATRIX ' 
C 	 SCANNING FROM LEFT TO RIGHT, TOP TO BOTTOM. IF ISUS .NE. 
C 	 C , INMODE IS ALTERED AS FOLLOWS. 
C 	 ISUS=1. ROA ADDEO ABOVE SUSPICIOUS ELEMENT AND COLUMN 
C 	 ADJEc TO ITS LEFT 
C 	 =2 COLUmN ADDED TO RIGHT OF SUSPICIOUS ELEMENT- 

AN3 RCW ADDED ABOVE IT 
C 	 =3 RC.: ADDED BELOW SUSPICIOUS ELEMENT AND COLUMN 
C 	 ADDED TO ITS RIGHT 
C 	 =4 COLuN tiluEu TO LEFT OF SUSPICIOUS ELEMENT 
C 	 AND ROW ADDED BELOW IT 
C 	 HOWEVER, NEITHER THE NUMBER OF ROWS NVP NOR THE NUMBER OF 
C 	 COLUMNS NOM WILL EE INCREASED BEYOND 160. IF ISUS CALLS 

FOR AN ADDITIoN.:L RCW WHEN NVP = 100 , THE MESSAGE 
iNVP = 1CO 	 N = XX 	M = XX) WILL BE PRINTED. 

C 	 N IS ROW NO. CF SUSPICIOUS ELEMENT. N IS COLUMN NO. IF 
C 	 ISOS CALLS FOR AuDITILN OF A COLUMN WHEN NOM = 11:10, THE 
C 	 MESSAGE (NOm = 1C.0 	 N = XX 	M = XX) IS PRINTED. 
C 	 wHFN INMOD7:. HAS EEEN EXPANDED SCANNING IS RESUmEU AT THE 
C 	 ELESIENT IN NEW !,.ATRix WITH SAME ROW AND COLUMN NOS. AS 

THOSE OF SUSPICIOUS ELEMENT IN OLD MATRIX. IF NUPT IS 
PCSITIVE ItimCCE WILL EE PRINTED AS IT IS RETURNED FROM 
mFouT AND IN ITS FINAL FORM. 

LANGUAGE 	- FORTRAN IV (3E0, REFERENCE MANUAL 	C28-6515-4) 

	

AUTHOR 	- J.W.PCSEY, M.I.T., JUNE91958 
C. 
r 

--USAGE-- 
C 
C 	SUBROUTINES MRCUT,SOSPCT,LNGTHN,WIDENtNMDFN ARE CALLED IN TABLE. 
C 
C FORTRAN USAGE 

CALL TAULE(0 ,11,0M2,V1,V2,NL,m,NvP,THETK,OM,V,INmODE,NoPT) 
C 
C INPUTS 
C 

	

4;1!1 	 mlNIn.m VALUE OF FicEOLENCY TO BE CONSIDERED. 
C 	R 4 4 
C 	0m2 	mAXIMLm VALUE CF FRE:-..LENY TO BE CONSIDERED 
C 	F*4 
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FTN 4.4.4-R401 	75/09/09. 12.21 

• V1 	 MINImum VALUE OF PHASE VELOCITY TO BE CONSIDERED 
. C 	R*4 

C 	V2 	 MAXIMUM VALUE OF PHASE VELOCITY TO BE CONSIDERED 
C 	R. 
• NOM 	INITIAL NO. OF FREQUENCIES TO BE CONSIDERED 
C 	I*4 
C 	NVP 	INITIAL NO. OF PHASE VELOCITIES TO - BE CONSIDERED 
C 	I*4 

• C 	THETK 	PHASE VELOCITY DIRECTION (RADIANS) 
C 	R*4 - 
• NOPT 	PRINT OUT OPTION. IF NOPT = -1, NO PRINT. IF NOPT = 1, 
C 	I*4 	INMOCE IS PRINTED IN ITS INITIAL FORM (GENERATED-BY MPOUT) 
C 	 AND IN ITS FINAL FORM. 

C OUTPUTS 
C 
• NOM 	. -TOTAL NO. CF FREQUENCIES CONSIDERED 
C . 1+4 
C 	NVP 	TOTAL NO. OF PHASE VELOCITIES CONSIDERED 
C 	I*4 
C 	OM 	 VECTOR WHOSE ELEMENTS ARE THE VALUES OF ANGULAR FREQUENCY 
C 	R;4(D) CORRESPONDING TO THE COLUMNS OF THE INMOUE MATRIX 

C 	V 	 VECTOR WHOSE ELEmENTS ARE THE VALUES CF PHASE VELOCITY 
C 	R}4(D) CORRESPONDING TO THE ROWS OF THE INMOBE MATRIX 
C 
C 	INMODE 	EACH ELEMENT CF THIS MATRIX CORRESPONDS TO A POINT IN THE 
C 	I*4(D) FREQUENCY (O1 - PHASE VELOCITY (V) PLANE. IF THE NORMAL 
C 	 MODE EISPERSION FUNCTION (FPP) IS POSITIVE AT THAT POINT, 

• C 	 THE ELEMENT IS +1, IF FPP IS NEGATIVE, THE ELEMENT IS -1, 
C 	 IF FPF COES NOT EXIST, THE ELEMENT IS 5. INMODE HAS'NVP 

• C 	 ROWS AND NOM COLUMNS. MATRIX IS STORED AS A VECTOR, 
C 	 COLUMN AFTER COLUMN. 

• C 
C 
C 	 --EXAMPLE-- 

•C 
C LET INMODE = -1,5,5,5,1,-11-1,-1,1,11-17*1,101,1.1 
C 	WITH NON = NVP = 4 
C 	ANC OM = 	 THETK = 3.14159 
C 	 V = 1.0,2.0,3.0,4.0 
C. (VALUES NOT CORRECT, FOR ILLUSTRATION ONLY) 
C 

• C THEN THE TABLE WILL BE PRINTEC AS FOLLOWS. 
C 
C VPHASE 	MORHAL MODE DISPERSION FUNCTION SIGN 
C 1.00003 
C 2.00030 	X-++ 
C 3.00000 	X--+ 
C 4.00000 	x--+ 
C 
C 	OMEGA 1234 
C 	 PHASE VELOCITY DIRECTION IS 	90.0000EOREES 
C 
C OMEGA = 
C 	0.10002E 01 	0.15000E 01 	0.20000E 01 	0.25000E 01 
C 
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C 
--PROGRAM FOLLCWS BELOW-- 

C 
C 
C 

DIMENSICN 0 3 (10G),V(100),INMODE(10000),DORN(100),KORN(100) 
DIMENSION F??(2,2) 
COMMON IAAX,C1(105),VXI(100),VYI(100),HI(100) 

C 
C :)POUT IS CALLED TO PrWCUCE INMODE tiATRIX AND OM AND V VECTORS. 

CALL MROuT(OM1,0M2,V1,V2,NuM,NUP,INMODE,OM,V,THETK) 
C 
C IFLAG = 1 INDICATES FIRST TINE THRCUGH WRITE PROCEDURE 

- -• IFLAG = 1 
C 
C INMODE IS PRINTED IF NOPT IS POSITIVE 

IF (Ni.iPT.GE.0) GO TO 123 
5 IFLAG = C 

NOPER=0 
C NCPFIR IS THE NUM3ER OF EXPANSION OPERATIONS PERFORMED IN THE PRESENT 
G SCAN OF Tri. MATRIX. THUS, NOPER IS THE NUMBER OF SUSPICIOUS POINTS 
C FOUND IN THE PRESENT SCAN. - 
C 
C BEGIN SCANNING OF INTERIOR ELEMENTS OF INMODE IN UPPER LEFT CORNER 

N = 2 
M = 2 

10 CALL SUSPCT(N,M,NVP,INMODE,ISUS) 
C 
C POINT (N,m) IS SUSFICIOJS IF ISUS.NE.0 

IF(ISUS.NE.0) CO TO 60 
C 
C CHECK FOR END CF RCH 

20 IF (V.LT.(t.0-1)) GO TO 30 
C 
C CHECK FOm LAST ROW 

IF (N.LT.(NVP-1)) GO TO 40 
GO TO 121 

C - MCVE ONE COLUMN TO RIGHT 
M = M+1 
GO TO 10 

C 
C ADVANCE ONE ROW AND START AT COLUMN TWO 

N = N+1 
M = 2 
GO TO 10 

C 
C CHECK FOR MAXIMJA VALUE OF NVP 

60 IF(NVP.LT.1Jj) GO TO 62 
61 FORMAT (24H NVF = 100 

wRITE (6,61) N,H 
GO TO 20 

62 IF(NC.m .LT. 100) GO TO 70 
63 FORm.tT(244N3M = 100 
64 WRITE(6,3) N,M 

GC TO 20 
70 IF(I.)US .NE. 1) GO TO 75 

N =,I3,814 	H =.I3) 

N=,I3, 8H 	M=,I3) 
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C 
C ADD ROW ABOVE SUSPICIOUS POINT 

N1=N-1 
C 
C ADD A COLUMN TO LEFT OF SUSPICIOUS POINT 

M1=M-1 
GO TO 100 

75 IF(ISUS .NE. 2) GO TO 83 
C 
C ADD A COLUMN TO RIGHT OF SUSPICIULS POINT 

M1=M 
C 
C ADD ROW ABOVE SUSPICIOUS POINT 

N1=N-1 
GO TO 100 

80 IF(ISUS .NE. 3) GO TO 85 
C 
C ADD A COLUMN TO RIGHT OF SUSPICIOUS POINT 

M1=M 
C 
C ADO ROW BELOW SUSPICIOUS POINT 

N1=N 
GO TO 100 

C 
C ADO ROW BELOW SUSPICIOUS POINT 

85 N1=N 
C 
C ADD A COLUMN TO LEFT OF SUSPICIOUS POINT 

M1=M-1 
100 CONTINUE 

CALL UNGTHN(OM,V,INMODE,NCM.NVF,NVPP,N1.1,THE7K) 
CALL WICEN(OM,VgINMODE,NOM,NOMP,NVPP,M1,1.THETK) 
NVP=NVPP 
NOM=NOMP 
NOPER=NOPERfl 
GO TO 10 

121 CONTINUE 
IF(NOFER .GT. 0 .AND. NVP .LT. 100 .AND. NOM .LT. 100) GO TO 5 

C 
C DO NOT PRiNT INMODE IF NOPT IS NEGATIVE 

IF1NOPT .LT. 0) RETURN 
C 
C LABELING 

122 FORMAT (6H1VPHSE,E0C,36HNORMAL MODE DISPERSION FUNCTION SIGN') 
123 WRITE (6,122) 

DO 133 I=1,NVF 
DO 128 J=1.N0M 
J88=(J-1)*NVP+I 
J89=INMODE(Jd8)-1 
IF (J89) 126,125,124 

124 CONTINUE 
C 
C IF IhMODE = 5, DORN = 1HX 

CATA 01/1HX/ 
DORN(J) = 01 
GO TO 127 

125 CONTINUE 
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FIN 4,4 -1 R4(11 	75/(19/09. 

C 
C IF INMOUE 	1, DORN = 1H4 

DATA 02/1H+/ 
DORN(J) = 02 
GO TO 127 

126 CONTINUE 
C 
C IF INMODE = —1, DORN = 

DATA 03/1H.-./ 
DORN(J) = 03 

127 CONTINUE 
128 CONTINUE 

C 
C PRINT ROW I OF TABLE 

WRITE (5,132)VII),(DORN(J), J=1,N01) 
130 FORMAT(1H ,Filie5,3X 1 1011A1) 
133 CONTINUE.  

J1U = 10 
DO 150 J=1,NOM 	- 

C 	• 
C NUMBER COLUMNS 

150 KORN(J) = MOD1J,J10) 
WRITE (6,213) (KORN(J), ..1=1,NOM) 

213 FORMAT (bHGOMEGA,6X,1G0I1) 
C 

- C CONVERT THETK FROM RADIANS TO DEGREES 
X = THETK*18J/3.14159 
WRITE (6,413) )( 

413 FORMAT (1H ,11X$27HPHASE VELCCITY DIRECTION ISIF9.3, 
1 	8HOEGREES ) 
WRITE (6,513)- 

51$ FORMAT ( dHaOMEGA =I 
C 
C LIST VALUES OF OMEGA WHICH CORRESPCND TO COLUMNS CF TABLE 

WRITE (6,613) (UM(I),I=1,NOM) 
613 FORMAT ( 1H ,5E14.5) 

C 
C IF SUSPICION ELIMINATION HAS NOT BEEN PERFORMED, BEGIN IT AT THIS TIME 

IF(IFLAG.EQ.1) GO TO 5 
DOLVP=(V2-111.)/(NVP-1) 
OMEGK=0M1 
DELOM=(OM2-0M1)/(NOM-1.) 
CO 9dS IAA=1,NOM 
WRITE (6,933) CMEGK 

933 FORMAT (1H t3X16H0MEGA=,E14.5) 
DO 977 JAA=1,NVP 
VE=V1+(JAA-1)*COLVP 
AKX=OMEGK/VE 
AKY=6:C 
CALL RiiRR(OMEGK,AKX,AKY,RPP,KY) 
WRITE (6,944) VE,RPP(1,1),RPP(1,2) 

944 FORMAT (1H ,E12.5,6X,E12.5,3X,E12.5) 
977 CONTINUE 

OMEGK=OEGKI-DELOM 
986. CONTINUE 

RETURN 	 - 

ENO 
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