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SUMMARY 
 
 
 

Battery electrodes are complex mesoscale systems comprised of an active material, 

conductive agent, current collector, and polymeric binder1. Previous work focused on enhancing 

electron and ion transport in high capacity anode systems by introducing poly[3-(potassium-4-

butanoate) thiophene] (PPBT) as a binder component and a polyethylene glycol (PEG) surface 

coating on magnetite (Fe3O4) nanoparticles2. The PPBT/PEG system will be utilized in this work, 

which takes a closer look at the active material, Fe3O4, and examines the effects of surface 

chemistry and crystallite size (10 nm vs. 20 nm) on battery performance.  

Variations in surface chemistry are due to the synthesis methods used for Fe3O4, which 

use ammonium hydroxide or triethylamine as a base. XRD and TEM initially characterized the 

active materials to confirm the magnetite phase and crystallite size. DLS and zeta potential 

measurements demonstrated aggregate size and colloidal stability. SEM images of the electrodes, 

which are composed of Fe3O4 particles, carbon additives, and the PPBT binder, indicate that the 

bases produce different morphologies. The Fe3O4 particles synthesized with ammonium 

hydroxide appear more dispersed relative to those made with triethylamine, which could have a 

significant impact on the battery performance. Furthermore, XPS and FTIR data indicate that 

these bases produce difference chemical interactions within the electrode. 

Electrochemical testing demonstrates that the triethylamine-based electrode has a higher 

capacity and better capacity retention over 100 cycles at 0.3C as compared to the ammonium 

hydroxide-based electrode. With regards to differences in active material size, the electrodes 

with 20 nm crystallite size Fe3O4 initially have a higher capacity, but the electrodes with 10 nm 

crystallite size Fe3O4 have better capacity retention over 100 cycles at 0.3C. Rate capability 
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testing and electrical impedance confirm the superior performance of triethylamine derived 

electrodes and the 10 nm crystallite size. 
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CHAPTER 1 : INTRODUCTION 
 
 
 

1.1 Overview 
 

Lithium-ion batteries are one of the most important energy storage devices used for 

various applications, but challenges exist to meet demands for high density energy storage3,4. 

The underlying science behind battery technology is often criticized for its slow advancement5. 

New battery technologies are rare and as such, the energy density of lithium-ion batteries has 

increased only 8-9% per year since the 1990s6. However, lithium ion batteries have replaced 

other energy storage device chemistries, especially in the mobile electronics market7. Much 

research is focused on improving both energy and power density and moving towards the top 

right corner of the Ragone plot (Figure 1-1). Clearly, lithium ion batteries have the highest 

combined energy density and power density available from existing rechargeable battery 

technologies, but are still behind the demands of the consumer8. 

 

 

Figure 1-1: Ragone plot for different energy storage technologies. [Reproduced with the 
permission of the author9.] 
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The working principle of a lithium-ion battery is based on reversible intercalation and de-

intercalation of the lithium ions, Li+, into electrodes7, which is illustrated in Figure 1-2. The cell 

is composed of positively and negatively charged electrodes, separated by an electrolyte, which 

enables ion transfer between the electrodes5. The electrodes (Figure 1-3) are complex mesoscale 

systems comprised of an active material, conductive agent, current collector, and polymeric 

binder1. The polymeric binder serves to improve adhesion, mechanical strength and ease of 

processing7. The electrodes are divided by a microporous separator film, which is infused with 

the electrolyte. During the first cycle, the organic electrolyte decomposes to form a solid 

electrolyte interface (SEI) layer on the surface of the electrodes7. The electrode materials are 

crucial to determine the capacity and power density of the lithium-ion battery, whereas the 

capacity retention is governed by the quality and stability of the interfaces within the electrode 

system. 

 
Figure 1-2: Schematic of lithium-ion battery. [Adapted from Reference 7].  
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Figure 1-3: Schematic of electrode: (1) active material, (2) polymeric binder, (3) carbon 
additives, (4) current collector (Cu foil). [Reproduced with permission from the author10] 

 

One of the major challenges for electrodes is to provide high capacity and high 

coulombic efficiency11. Graphite is widely used as a commercial anode material because of its 

high columbic efficiency and stable cycle performance, but it has a very low specific capacity12. 

To meet energy demands, electrode materials with higher energy and power densities are 

required13. Transition metal oxides (MO, where M is Co, Ni, Cu or Fe) are a promising 

alternative, due to their high theoretical capacity (~500-1000 mAh g-1)14–17, but generally suffer 

from moderate coulombic efficiency11. The low coulombic efficiency results from a number of 

limitations, including the formation of the solid electrolyte interphase (SEI) film on the electrode 

surface and subsequent loss of electrical contact of the electrode with the current collector11. 

These shortcomings significantly reduce the effective in operando energy densities of Li-ion 

batteries. Thus, a common motif in battery design is developing a high capacity electrode 

without sacrificing long-term stability.  
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1.2 Magnetite as an Active Material 

Magnetite (Fe3O4), which is particularly attractive, has a high theoretical capacity (~925 

mAh g-1)18, coupled with high electronic conductivity18–20 and low cost; and it is environmentally 

friendly. Its high theoretical specific capacity results from the eight electron conversion reaction 

during the lithiation process21, which is based on a novel conversion (Equation 1)22. 

Fe#O% + 8Li* + 8e+ 	⇄ 	3Fe/ + 4Li1O    (1) 

However, just as most other transition metal oxides,  Fe3O4 suffers from poor cycling 

performance, due to the large volume changes that take place during repetitive charging-

discharging23.  Magnetite has not been practically implemented as an anode material due its poor 

cyclic stability, resulting from drastic volume changes during insertion/de-insertion of Li-ion 

based on its conversion mechanism24. The drastic volume changes lead to electrical 

disconnection between the anode and current collector. Many strategies have been suggested to 

improve Fe3O4, including carbon coatings25–27, nanostructures28 and nanocomposites13,22,24. 

Carbon materials are often used to enhance electrical conductivity29, improve rate performance26 

and have been shown to improve electrochemical properties of Fe3O4 anodes25. Carbon coatings 

improve cycling performance by acting as a buffer to relieve the volume changes occurring and 

therefore enhance electrochemical performance24. Carbon materials have previously been shown 

to be very stable anode materials, due to the small volume changes during Li insertion/extraction 

and that the SEI films on their surface are relatively stable30–32. 

Magnetite can be synthesized by various methods, including sol-gel33, ultrasound 

irradiation34, reverse micelle method35, hydrothermal36–38, thermal decomposition37,39–48 and co-

precipitation29,48–52,52–57. The most commonly used techniques are co-precipitation and thermal 
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decomposition. For this work, co-precipitation was used to synthesize magnetite with varied 

crystallite size and surface chemistries. 

Co-precipitation is a desirable approach since it possible to do at low temperatures and 

does not require elaborate synthetic equipment58. However, co-precipitation does not provide as 

accurate control over particle size, compared to other techniques59. The technique typically 

involves mixtures of Fe2+ and Fe3+ dissolved in water and then base is added to form Fe3O4 

precipitate59. Typical bases used are strong hydroxides, such as ammonium hydroxide58.   

 
1.3 PPBT/PEG System 

 
Most electrode material research for Li-ion batteries focuses on the synthesis of active 

particles, with less emphasis on polymeric binders60–63. Recent studies60–63 show the binder plays 

an essential role in stability and irreversible capacity loss, since the binder ensures electrode 

integrity during the volume changes in cycling. The most widely used polymeric binder, 

poly(vinylidene difluoride) (PVDF), attaches to the active material via weak van der Waals 

forces and fails to accommodate large changes in spacing between particles during cycling62. The 

role of active material-polymer interactions is vital for the electrode composition to enhance 

stability63. 

Recently, a poly[3-(potassium-4-butanoate)thiophene] (PPBT) binder component and a 

polyethylene glycol (PEG) surface coating for the active material was demonstrated to enhance 

both electron and ion transport in magnetite based anodes2. Electron pathway enhancement, such 

as through carbon coatings2,39,41,64,65 is often considered in the design of battery anodes, but 

attention is rarely given to ion transport. PPBT is a water soluble, carboxylate substituted 

polythiophene. Conjugated polythiophenes have relatively high electronic conductivity, which 

enables electron transport1. In contrast, PVDF is insulating and further, requires the use of toxic 
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organic solvents66. As a water soluble binder, PPBT allows for more environmentally friendly 

electrode processing, while supporting pore formation for ion transport.  Incorporation of PEG as 

a coating on the active material, reduces aggregate formation and improves active material 

dispersion leading to electron/ion transport enhancement67. The PEG/PPBT system is further 

investigated in this study as a facile approach to improve battery performance in Fe3O4 anodes.  

While the PEG/PPBT system was shown to improve upon Fe3O4 based anode cycling 

performance2, further performance enhancements are required for the design and development of 

robust Li-ion anode materials.  Specifically, fundamental insight is needed into how active 

material surface chemistry and crystallite size impact battery performance. For instance, the 

synthesis method used for magnetite particle formation affects particle size, size distribution, 

agglomeration and surface chemistry53. Several synthetic methods have attempted to control 

crystallite size36,38,59,68–70; however, few studies attempt to explore the impact of changes in 

synthetic method on electrode performance, vis à vis electron and ion transport53. Further, while 

it has been suggested that the electrochemical activity of Fe3O4 depends on crystallite size59,70, 

conclusions as to whether smaller or larger crystallites are optimal, remain elusive. This work 

explores how crystallite size and surface chemistry work in concert to impact Li-ion battery 

anode performance, thereby demonstrating the critical role of interfaces, coupled with electron 

and ion transport mechanisms, in the design of robust, high capacity electrode materials for 

battery applications. 
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CHAPTER 2 : MATERIALS AND METHODS  
 
 
 

2.1 Materials 

Fe3O4 nanoparticles (~10 nm and ~20 nm) were synthesized by previously reported 

coprecipitation processes, involving triethylamine base59,70 or ammonium hydroxide base by 

collaborators at Stony Brook University. All 20 nm samples were synthesized using ammonium 

hydroxide, whereas 10 nm samples were synthesized with either triethylamine or ammonium 

hydroxide. For preparation of Fe3O4 particles coated with PEG (PEG-Fe3O4), 0.5 g of Fe3O4 

powders in 5 g DI water were sonicated for 1.5 min at room temperature with an ultrasonic probe 

(3 pulses of 30 s each, operated at 50 W, Qsonica Q700 sonicator). Two mL of PEG 1500 

solution (50% w/v, Sigma-Aldrich) was added with sonication for 30 s, and this process was 

repeated four times until the total amount of PEG 1500 added to the aqueous dispersion was 8 

mL.  The PEG-Fe3O4 powders were washed with acetone and extracted by centrifuge separation 

(VWR Clinical 200) with a speed of 6000 rpm for 5 min; this process was repeated 3 times. 

PPBT (Mw: 21 kDa, polydispersity: 2.2, head-to-tail regioregularity: 89%) was purchased from 

Rieke Metals Inc.  

 

2.2 Methods 

2.2.1 Electrode Fabrication and Electrochemistry 

The slurries for the PPBT-based electrode were prepared by mixing of Fe3O4 (or PEG- 

Fe3O4) (0.214 g), carbon additives (0.043 g), and PPBT in DI water (10 wt % solution, 0.43 g), 

and in the case of the PVDF-based electrode, N-methyl-2-pyrrolidone (NMP) solvent was used 

(weight ratio of Fe3O4:carbon:polymer = 71.4:14.3:14.3). The electrodes for field-emission 

scanning electron microscopy (FE-SEM, Zeiss Ultra-60) measurement, energy dispersive x-ray 
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spectroscopy (EDS, Oxford Aztec software) measurement, electrochemical evaluation, and 

spectroscopy characterization were produced by blade coating (doctor blade, MTI corp). The 

PPBT-based electrodes were pre-evaporated at room temperature for 2 h and solvent was 

completely evaporated at 110°C for 12 h in a vacuum oven. In the case of the PVDF-based 

electrodes, the NMP solvent was pre-evaporated at 70°C for 1 h, and the other fabrication 

procedures remained the same as for the PPBT-based electrodes. 

Half-cell stainless steel coin cells (Figure 2-1) were used for electrochemical 

measurements. Lithium metal, purchased from MTI corp., was used as a counter electrode and 1 

M LiPF6 in ethylene carbonate (EC) and diethylene carbonate (DEC) (1:1 by weight), purchased 

from BASF, was used as the electrolyte. Before electrochemical testing, the capacity of each 

coin cell was confirmed by charging and discharging at a current density of 40 mA g-1 (~0.05 C), 

using the Arbin battery cycler. Cycling and rate capability testing was then performed on the 

same Arbin battery cycler. Electrical impedance spectroscopy (EIS, Metrohm Autolab 

PGSTAT101) measurements were conducted in the frequency range from 0.1 MHz to 0.1 Hz. 

 

Figure 2-1: Coin cell schematic 
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2.2.2 Microscopic Characterization 
 

FE-SEM images were observed on the surface view of the electrodes using the Zeiss 

Ultra-60 FE-SEM with an accelerating voltage of 5 kV using the high vacuum mode at room 

temperature. Element analysis was conducted using energy dispersive x-ray spectroscopy (EDS, 

Oxford Aztec software). Transmission electron microscopy (TEM) images were obtained using a 

Hitachi HT7700 TEM. First the Fe3O4 (or PEG-Fe3O4) powders were dispersed in ethanol and 

then the dispersion was drop-cast onto Formvar Film 200 Mesh Copper grids (Electron 

Microscopy Sciences) for subsequent TEM analysis. 

 

2.2.3 Structure Characterization 

X-ray powder diffraction patterns (XRD) of the products were obtained on a PANalytical 

Empyrean. Dynamic light scattering (DLS) and Zeta potential measurements were performed 

using a Malvern Zetasizer NANO ZS instrument (Malvern instruments). Fe3O4 (or PEG-Fe3O4) 

particles were dispersed in aqueous medium through bath-type sonication (Branson 2510) for 30 

min (1 mg particles/1 mL deionized water). Thermogravimetric Analysis (TGA, TA Instruments 

Q600) was carried out in nitrogen in the temperature range of 25‒600°C at a heating rate of 

20°C/min. 

 

2.2.4 Spectroscopic Characterization 
 

The electrode samples for spectroscopic measurements were prepared by scraping 

powder samples from the prepared electrodes. Fourier transform infrared (FT-IR) spectra were 

recorded using KBr pellets of the materials using a Thermo Scientific Nicolet iS50 FT-IR 

spectrometer. X-ray spectroscopy (XPS) characterization was performed using a Thermo K-

Alpha XPS system. The instrument was equipped with a monochromatic Al-K X-ray source 
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(1468 eV). Spectra were collected using the flood gun and an X-ray spot size of 400 µm. Survey 

scans were collected with pass energy of 200 eV with 1 eV increments. High resolution scans 

(for specific elements) were collected with pass energy of 50 eV with 0.1 eV increments. 



11 
 

 
CHAPTER 3 : ACTIVE MATERIAL CHARACTERIZATION 

 
 

3.1 Introduction 

The active materials used in this study, with different crystallite sizes and synthetic 

approaches, were characterized through XRD, TEM and DLS. First, the PEG-coating procedure 

is outlined, with emphasis given on how it reduces aggregates in Fe3O4. Before analyzing Fe3O4 

(and PEG-Fe3O4) electrodes, initial characterization of the active material was done to confirm 

the magnetite phase and crystallite sizes. The magnetite (Fe3O4) phase was confirmed to ensure 

the samples synthesized by collaborators at Stony Brook were not maghemite or goethite, which 

are the most common impurity compounds when using the co-precipitation synthesis method58. 

The crystallite size was also verified, since one of the drawbacks associated with co-precipitation 

is less stringent control of crystallite size59. DLS characterizes colloidal stability71, which 

provided aggregate size distribution and zeta potential for this work. 

 

3.2 PEG-Coating 
 

The propensity of magnetite nanoparticles to aggregate due to strong van der Waals and 

magnetic interactions is well known72. Introduction of polymers or organic molecules has been 

shown to stabilize the particles through both steric and electrostatic forces39,65. Polyethylene 

glycol (PEG) is perhaps one of the most frequently used polymers for such magnetite surface 

modification because it improves the colloidal stability of the particles. Thus, to reduce 

aggregate size and improve particle dispersion, PEG, which was shown previously to reduce 

aggregate size2,64,65, was physically introduced onto the Fe3O4 particle surface. The procedure 

involved dispersion of Fe3O4 particles in a PEG 1500 containing aqueous medium via a probe-
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type ultrasonication process2,64. Thermogravimetric analysis (TGA) confirmed the presence of 

~12 wt % PEG (Figure 3-1).  

 

 
Figure 3-1: TGA profile of PEG coating, which is carried out in nitrogen in the temperature 

range of 25‒600°C at a heating rate of 20°C/min, confirming ~12.7 wt% PEG coating. 
 
 

3.3 Structure Characterization 

Two different Fe3O4 crystallite sizes (~10 nm and ~20 nm), synthesized by a 

coprecipitation method, with either triethylamine and ammonium hydroxide as the base, were 

used in this investigation. As presented in Figure 3-2, XRD analysis confirmed that all samples 

were in the magnetite phase (Fe3O4) and the crystallite size was calculated using the (311) peak. 
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Figure 3-2: XRD patterns of Fe3O4 (or PEG-Fe3O4) 
 

Crystallite size was corroborated through TEM image analysis (Figure 3-3), using ImageJ 

software (Figure 3-4). ImageJ measures the size of particles using its “set scale” function. First, 

the scale bar was measured to find the length in terms of pixels, which was used to set the scale 

bar length in nanometers (200 nm for all TEM images). Visible particles were then traced and 

measured, which could not be done for heavily aggregated particles. The results are summarized 

in Table 3-2. 
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Figure 3-3: TEM images of Fe3O4 (or PEG-Fe3O4) dispersed in ethanol and drop-casted onto 
grids. 

 
 

 

Figure 3-4: Example of ImageJ measurement technique.  
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Table 3-1: Crystallite Size (XRD and TEM). 
Sample  Crystallite Size (XRD) Crystallite Size (TEM) 

10nm Fe3O4 (Et3N) 6.11 nm 6.14 nm 
10nm PEG-Fe3O4 (Et3N) 7.32 nm 8.28 nm 
10nm Fe3O4 (NH4OH) 8.60 nm 7.59 nm 
10nm PEG-Fe3O4 (NH4OH) 8.89 nm 8.69 nm 
20nm Fe3O4 (NH4OH) 17.8 nm 18.79 nm 
20nm PEG-Fe3O4 (NH4OH) 22.0 nm 22.83 nm 

 
 

3.4 Nanoparticle Stability  

The extent to which the Fe3O4 and PEG-Fe3O4 powders formed aggregates during 

processing into electrodes was evaluated using dynamic light scattering (DLS). In efforts to 

mimic the immediate environment surrounding the nanoparticles, they were dispersed in water 

through a bath-type sonication process. The pristine Fe3O4 samples aggregated beyond the size 

limitations of the instrument and thus, aggregate size distribution could not be obtained. In the 

case of the PEG-Fe3O4 particles, DLS results (Figure 3-5, Table 3-2) demonstrated that there are 

two main aggregate sizes present in all PEG-coated samples.  

 
Table 3-2: Aggregate size (DLS) 

Sample  Average Aggregate Size (DLS) 
10nm Fe3O4 (Et3N) -- 
10nm PEG-Fe3O4 (Et3N) 312.3 nm 
10nm Fe3O4 (NH4OH) -- 
10nm PEG-Fe3O4 (NH4OH) 281.7 nm 
20nm Fe3O4 (NH4OH) -- 
20nm PEG-Fe3O4 (NH4OH) 215.6 nm 
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Figure 3-5: DLS results of PEG-Fe3O4 dispersed in DI water  

 
Upon examination of the results presented in Table 3-2, two distinct differences between 

the samples are immediately apparent. First, the average aggregate size is larger for the 10 nm vs. 

20 nm PEG-coated Fe3O4 nanoparticles, which were both prepared with ammonium hydroxide as 

the base. Second, and equally if not more insightful, is that the base used in the nanoparticle 

synthesis plays a role in determining aggregate size. Note that the average aggregate size for 10 

nm crystallites prepared using trimethylamine is larger than that for the ammonium hydroxide 

counterparts, 310 vs. 280 nm, respectively.  These results suggest that surface chemistry and by 

extension interfacial interactions may play a role in composite electrode performance. 

Given previous reports that smaller particles tend to form larger aggregates in solution 

due to their larger surface to volume ratio59, it was expected that the smaller crystallites would 

aggregate and form precipitates having larger average particle size in solution (Figure 3-5). The 

differences observed for particles having nominally the same crystallite size, but prepared using 
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an alternate base, namely, triethylamine or ammonium hydroxide, was not anticipated. In all 

cases examined here, the magnetite samples synthesized using ammonium hydroxide exhibited 

smaller average aggregate size compared to those derived from triethylamine after coating with 

PEG. 

The Fe3O4 (or PEG-Fe3O4) powders were dispersed in water through bath-type sonication 

for zeta potential measurements to determine colloidal stability. Zeta potential is used to 

determine the surface charge of nanoparticles in solution and the magnitude helps predict 

colloidal stability73. Prior to zeta potential measurements, the pH of each solution was measured, 

with an average pH of 8.52 ± 0.6. For accurate zeta potential measurements, the pH should be 

consistent between samples, which is mostly true here.  

 
Table 3-3: Zeta Potential Values for Fe3O4 and PEG-Fe3O4 samples dispersed in water 

Sample Zeta Potential (mV) pH 
10nm Fe3O4 (NH4OH) -36.50 ± 0.95 9.6 
10nm PEG-Fe3O4 (NH4OH) -32.13 ± 1.32 8.88 
20nm Fe3O4 (NH4OH) -37.60 ± 0.36 8.53 
20nm PEG-Fe3O4 (NH4OH) -31.77 ± 0.32 8.35 
10nm Fe3O4 (Et3N) -34.63 ± 1.07 8.06 
10nm PEG-Fe3O4 (Et3N) -34.23 ± 1.26 8.01 

 
 
The zeta potential value ± 25mV is used as the baseline of high stability for solutions. All 

the samples here (Table 3-3) are below –25mV, which indicates a degree of stability. The more 

negative a value of zeta potential, the more stable the sample is. Here, it would be expected that 

the PEG-coated samples would have higher stability, since PEG has been shown to reduce 

aggregates. Due to shielding caused by the PEG-coating, the PEG samples have a lower zeta 

potential value. These zeta potential values provide preliminary indication that the uncoated 

ammonium hydroxide samples (10 nm and 20 nm) have higher stability compared to the 

triethylamine sample (10 nm). Perhaps more significant, with the PEG-coating, it appears the 
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triethylamine sample (10 nm) has higher stability compared to the ammonium hydroxide samples 

(10 nm and 20 nm). These zeta potential results provide preliminary insight into the stability of 

the system to be discussed. 

 
3.5 Conclusion 

XRD confirmed all samples were in the magnetite phase and in conjunction with TEM 

verified the crystallite sizes (~10 nm and 20 nm). DLS and zeta potential results provide early 

insight into the differences between synthetic approaches, i.e. triethylamine vs. ammonium 

hydroxide. The differences in aggregate size favor the ammonium hydroxide system, whereas 

zeta potential indicates the triethylamine PEG-coated samples could be more stable. Further 

information on morphology, electrochemical characterization and chemical characterization are 

provided in forthcoming chapters to explain the differences in crystallite size and surface 

chemistry.  
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CHAPTER 4 : EFFECT OF ACTIVE MATERIAL SURFACE CHEMISTRY ON THE 
PERFORMANCE OF Fe3O4 Li-ION BATTERY ANODES 

 
 

4.1 Introduction 

Controlling the morphology and structure has been shown to influence the performance 

of transition metal oxides21.  Specifically, magnetite of various morphologies has been 

synthesized to achieve better performance25,37. Of the different morphologies, hollow spheres 

have been shown to achieve the highest capacity and capacity retention over 50 cycles29,43. The 

hollow sphere morphology is able to alleviate the stress from volume changes during 

cycling43,74,75. Magnetite nanoparticles with different shapes including octahedral76 and 

hexahedra77 have also shown improved performance. Manipulation of morphology improves and 

alters electrochemical performance. 

For this work, co-precipitation was used to synthesize magnetite with varied surface 

chemistries, using ammonium hydroxide or triethylamine bases, to compare morphology 

differences. Alkyl amines provide pH control, hence triethylamine was used here for its low 

volatility and ability to form a buffer in aqueous solution59. Alternatively, ammonium hydroxide 

is the most frequently used base for synthesis and was used for comparison. However, this 

method requires careful maintenance of Fe2+:Fe3+ ion ratio in 1:2 and adjustment of pH58. 

Several magnetite synthesis methods have been previously described, mainly to provide 

crystallite size control36,38,59,68–70, but few studies exist to describe the effect of different bases53. 

Mascolo et al. studied NaOH, KOH and (C2H5)4NOH bases for the co-precipitation synthesis 

method and how they affected the formation of mesoporous structures, specifically looking at 

magnetite for medical applications. This study indicated particle size decreases according to the 
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cation size of the base in the following manner: Na+ > K+ > N(C2H4)+, which was attributed to 

the effects of steric hindrance hampering agglomeration among individual particles53.  

Although many studies discuss morphological effects of magnetite, there is a gap in the 

literature to address differences in synthetic approaches on magnetite properties for 

electrochemical performance. This section addresses how the triethylamine and ammonium 

hydroxide synthesis techniques impact electrochemical performance.  

 
4.2 Results and Discussion 

4.2.1 Microscopic Characterization 

The impact of the observed aggregation behavior of the particles on electrode physical 

and chemical characteristics, and electrode performance was examined through fabrication of 

magnetite based electrodes via standard procedures: Fe3O4 or PEG-Fe3O4, carbon additives and 

poly[3-(potassium-4-butanoate)thiophene] (PPBT) polymeric binder were mixed in the usual 

manner, the resulting slurry was blade coated onto a Cu foil current collector, and then dried. 

Control electrodes were also fabricated using the more commonly used binder, poly(vinylidene 

difluoride) (PVDF)66. Electrode morphology was investigated using field-emission scanning 

electron microscopy (FE-SEM) to determine the level of materials dispersion within the 

processed composites (Figure 4-1). EDS SEM imaging and elemental (Fe, O, C) image mapping 

(Figure 4-2) confirmed the presence of Fe3O4 nanoparticles, carbon additives, and PPBT binder 

in all fabricated electrodes. 
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Figure 4-1: FE-SEM of top view electrodes. 

 

 
Figure 4-2: EDS SEM image maps of electrodes (top view) with blue corresponding to iron, 

yellow corresponding to carbon and pink corresponding to oxygen in electrodes. 
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As anticipated from previous reports and DLS characterization, introduction of the PEG-

coating onto the Fe3O4 nanoparticles led to a reduction in aggregate size within the composite 

electrode2. For all active material particle sizes and synthesis procedures, incorporation of the 

PEG-coating appeared to decrease aggregation and afford a composite electrode with more 

uniformly dispersed components, which is generally expected to enhance battery performance2. 

Note that the uncoated 10 nm (triethylamine) based electrodes vs. those that were PEG-coated 

exhibited smaller aggregates (Figure 4-1a, c), as was also observed for the 10 nm ammonium 

hydroxide derived electrode (Figure 4-1b, d). 

Closer examination of the images presented in Figure 4-1 do, however, exhibit some 

distinct differences. For instance, the electrodes synthesized with triethylamine (Figure 4-1a, c) 

are not as well-dispersed, even with the PEG-coating (Figure 4-1c). While it has been suggested 

that a reduction in the aggregate size should lead to improved electron and ion transport2, an 

overly uniform morphology might also impede the electron transport process required for 

effective performance and hinder the transport pathways. 

The morphological differences between the triethylamine and ammonium hydroxide 

synthesis methods were further investigated by FE-SEM imaging of electrodes fabricated with 

the control PVDF binder (Figure 4-3). In comparison to PPBT, the use of PVDF results in the 

formation of noticeably larger aggregates (Figure 4-3 insets). Further, the use of ammonium 

hydroxide in the active material synthesis leads to more well-dispersed composites in the case of 

PVDF (Figure 4-3b), though the level of dispersion is not as extensive as was observed with 

PPBT.  
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Figure 4-3: FE-SEM top view images of PVDF control electrodes. 

 

4.2.2. Electrochemistry 

From an electrochemical performance perspective, coin cells with a Li metal counter 

electrode were utilized and all the electrodes were prepared with Fe3O4 (or PEG-Fe3O4) active 

material, carbon additives, and polymeric binder in a 71.4:14.3:14.3 mass ratio. The mass ratio 

was chosen because in a previous study1, the electrode exhibited its percolation threshold in 

electronic conductivity at this ratio. The electrolyte was 1 M LiPF6 in ethylene carbonate (EC) 

and diethylene carbonate (DEC) (1:1 by weight).  

Charging-discharging cycling (Figure 4-4) was conducted at a current density of 240 mA 

g-1 (~0.3 C) to determine capacity retention of the electrodes. The benefits of the PEG/PPBT 

system are apparent for electrodes fabricated from the alternative synthetic chemistries, where 

the PEG-coating significantly enhanced cycling performance. Initial charge capacity (Table 4-1) 

does not provide meaningful differences between synthetic approaches and coated vs. uncoated 

electrodes. More important differences stem from the effect of the synthetic approaches on 

capacity retention.  
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Figure 4-4: Cycling performance (capacity retention as a function of cycle number) collected for 
current density of 240 mA g-1 (~0.3C) between 0.01 and 3V 

 

Table 4-1: Initial discharge capacity values and capacity retention during cycling. 
Electrode Initial Charge/Delithiation 

Capacity (Figure 4-4) 
Capacity Retention (%)  

After 100 Cycles (Figure 4-4)  
10 nm Fe3O4 (Et3N)/PPBT 820 mAh/g Fe3O4 50 % 
10 nm PEG-Fe3O4 (Et3N)/PPBT 790 mAh/g Fe3O4 91 % 
10 nm Fe3O4 (NH4OH)/PPBT 750 mAh/g Fe3O4 54 % 
10 nm PEG-Fe3O4 (NH4OH)/PPBT 790 mAh/g Fe3O4 89 % 
10 nm Fe3O4 (Et3N)/DB/PVDF 698 mAh/g Fe3O4 11 % 
10 nm Fe3O4 (NH4OH)/DB/PVDF 900 mAh/g Fe3O4 10 % 

 

Investigating the impact of synthetic chemistries on capacity retention, the triethylamine 

base (teal line) maintained a higher capacity over 100 cycles compared to the ammonium 

hydroxide base (orange line). Cycling performance further indicates the overly dispersed 

morphology seen in the ammonium hydroxide base could be worse for electron and ion transport. 

Comparing synthetic approaches within the PVDF electrodes effect on cycling 

performance (Figure 4-4), the 10 nm (ammonium hydroxide)/PVDF electrode (red line) had a 

higher initial capacity compared to the 10 nm (triethylamine)/PVDF electrode (black line). This 

difference between synthetic chemistries could be a result of the morphology differences seen in 



25 
 

FE-SEM (Figure 4-3) – recall the ammonium hydroxide/PVDF electrodes are more dispersed 

and exhibit less aggregate formation than the triethylamine/PVDF electrodes. Here, the large 

aggregates present in the triethylamine synthetic approach appear to hinder electron/ion transport.  

To further investigate battery performance, newly fabricated half cells were subjected to 

rate capability experiments (Figure 4-5), where cells were lithiated at a constant current density 

of 80 mA g-1 (~0.1C) and delithiated over a wide range of current densities (80 – 1600 mA g-1) at 

a voltage range of 0.01 – 3 V. Overall, the PEG-Fe3O4/PPBT binder-based electrodes show much 

higher delithiated capacity than the PVDF control, which conveys its superior rate capability. 

Through rate capability testing, the 10 nm (ammonium hydroxide)/PPBT electrode displayed 

higher capacity vs. the 10 nm (triethylamine)/PPBT electrode (teal line), particularly at higher 

current densities, while both exhibited similar capacity retention. The rate capability 

performance differences are best attributed to the morphological differences (Figure 4-1). The 

more dispersed ammonium hydroxide derived electrodes could prove better for rate capability 

testing, as demonstrated at higher current densities. However, EIS analysis and spectroscopic 

characterization provide further insight into the observed differences in performance for 

nanoparticles prepared via the triethylamine and ammonium hydroxide routes, and shed light as 

to the impact of surface chemistry and interfacial interactions between the individual components 

of the anode. 
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Figure 4-5: Delithiation rate capability, where cells were lithiated at a constant current density 
of 80 mA g-1 and delithiated at different current densities between 0.01 and 3V 

 
 

EIS analysis presented in Figure 4-6 supports the cycling (Figure 4-4) and rate capability 

(Figure 4-5) data. The cells used in the EIS study correspond to those cycled between 0.01 and 

3V as shown in Figure 4-4. Impedance testing was performed in the frequency range of 0.1 MHz 

to 0.1 Hz before cycling at 3V and after 100 cycles at their open-circuit voltage (OCV). Superior 

battery electrode performance can be attributed to decreased charge transfer resistance (Rct), 

which is estimated from the diameter of the semicircle78. Initially, the charge transfer resistance 

was not effectively reduced in the PEG-PPBT vs. PVDF control system (Figure 4-6a). 
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Figure 4-6: (a) Impedance spectra measured at 3V before cycling in the frequency range from 
0.1 MHz to 0.1 Hz (b) Impedance spectra measured at open-circuit voltage (OCV) after 100 

cycles in the frequency range from 0.1 MHz to 0.1 Hz 
 

After 100 cycles (Figure 4-6b), the positive effects of introducing PEG/PPBT are clearly 

noticeable for the ‘ammonium hydroxide’ electrodes, where the charge transfer resistance 

decreased significantly, compared to the PVDF electrodes.  More importantly, using 10 nm 

magnetite crystallites synthesized with triethylamine in conjunction with PPBT (teal semicircle) 

afforded still lower charge transfer resistance, which further supports the advantages of one 

synthetic approach over the other, and the resultant impact on surface interactions and ultimate 

performance characteristics of high capacity composite electrodes. Note that the triethylamine 

derived active material (black semicircle) exhibited comparable, but larger, charge transfer 

resistance to the ammonium hydroxide/PPBT system (orange semicircles) after 100 cycles, even 

when PVDF was used as the binder.  

 

4.2.3. Spectroscopic Characterization 
 
Both electron and ion transport are known to be aided through molecular interactions 

between PPBT and Fe3O4 or PEG-Fe3O4
2. Here, Fourier transform infrared (FT-IR) spectroscopy 
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confirmed that PEG effectively interacts with and modifies the surface of Fe3O4 regardless of 

synthetic approach (Figure 4-7). 

 

 
Figure 4-7: FT-IR spectra of materials (bottom lines: PPBT, Fe3O4, PEG-Fe3O4) and electrodes 

(upper lines: Fe3O4/C/PPBT, PEG- Fe3O4/C/PPBT). 
 

 
Sharp C-H and C-O stretching bands at 2875 cm-1 and 1125 cm-1, respectively, confirmed 

Fe3O4 surface modification with PEG67. FT-IR was further used to interrogate the chemical 

interactions within the composite electrodes. This was accomplished by first blending the 

requisite components, fabricating the electrodes and then scraping the resultant system to retrieve 

the powder material. All PPBT-based electrodes fabricated with all Fe3O4 and PEG-Fe3O4 

samples, exhibited the stretching bands associated with the binder, PPBT; specifically, the 

carboxylate anion O-C-O asymmetric and symmetric stretching bands were observed at  

1550 cm-1 and 1400 cm-1, respectively60,61,79,80 (Figure 4-7).  



29 
 

In addition to these peaks, a lower intensity vibration (Figure 4-7 inset) that was seen 

only for the trimethylamine based Fe3O4 and PEG-Fe3O4 electrodes (orange and cyan lines), was 

observed at 1760 cm-1. Based on the peak position, this band is suggested to correspond to a Fe-

carboxylate interaction2. Although the peak intensity is low, neither PPBT nor Fe3O4 exhibit a 

vibration at this position, and thus this band points to chemical interactions between PPBT and 

Fe3O4 within the composite electrode. Such interactions are considered to be a critical factor for 

electrode stability60–63, yet prior to the introduction of PPBT as an alternative binder, interactions 

between active material and binder had only been reported for Si-based anodes. Figure 4-8 

presents a structural representation of the proposed Fe3O4-PPBT chemical interactions, which 

helps illustrate the effects on the C=O and O-C-O FTIR stretching bands2,81.  

 

 

Figure 4-8: Proposed chemical structure of Fe3O4 in the electrode.2 

 
The 1760 cm-1 vibration is not as clearly visible in the spectrum of electrode composites 

fabricated with the ammonium hydroxide derived magnetite. While the O-C-O asymmetric and 

stretching bands (Figure 4-7) are observed, the additional proposed Fe-carboxylate vibration is 

not present. Thus, the vibrational spectroscopy results suggest that the active material synthetic 

method is likely to impact the surface chemistry of the resultant materials and as a consequence 

both bonding and non-bonding interactions between composite electrode components. These 
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interactions may further play a significant role in determining electrode stability, a key factor 

that impacts battery performance. Recall that when the active material was synthesized with 

triethylamine, the electrode exhibited better capacity retention over 100 cycles in comparison to 

the ammonium hydroxide alternative (Figure 4-4). These results serve to emphasize the crucial 

role of surface chemistry and by extension, interfacial interactions on the performance of Fe3O4-

anode systems. In the case of ammonium hydroxide, it is conceivable that the PPBT binder can 

interact with residual base residing on the surface of the nanoparticles, which might explain why 

the previously described Fe3O4-PPBT interactions were not observed in the FTIR spectra of the 

ammonium hydroxide based electrodes (Figure 4-7).   

XPS spectra of the C1s core level (Figure 4-9) further indicate the presence of chemical 

interactions. The bottom lines are spectra from the PEG-Fe3O4 powders of all samples, which 

exhibit a C-OH bond further confirming PEG surface modification to Fe3O4 particles82. The first 

peak at ~285eV, exhibited in all PPBT-based electrodes, corresponds to the C-O bond83. The 

next peak at ~287eV is associated to the carboxylate (COO-) bond. The chemical shifts to a 

lower binding energy indicate an increase in interatomic distance, which could result from the 

additional bonding between PPBT and Fe3O4
84. The remaining two peaks in the XPS spectra are 

associated to satellite peaks, which often result from extended delocalized electrons in a sample 

and provide evidence to p-p* interchain stacking along the PPBT backbone85. Such p-p* 

stacking may induce intermolecular charge transport, which leads to improved electrical 

properties of the PPBT binder system2. 
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Figure 4-9: XPS spectra of C1s scan. (a) 10nm PEG-Fe3O4 (NH4OH)/C/PPBT, (b) 10nm PEG- 
Fe3O4 (Et3N)/C/PPBT, (c) 10nm Fe3O4 (NH4OH)/C/PPBT, (d) 10nm Fe3O4 (Et3N)/C/PPBT, (e) 

10nm PEG-Fe3O4 (NH4OH), (f) 10nm PEG-Fe3O4 (Et3N), (g) PPBT 
 

 
XPS spectra of Fe 2p core level (Figure 4-10) provides additional information about the 

magnetite phase present in the parent materials and electrodes. The first peak at ~712 eV 

corresponds to the Fe 2p3/2 core level electrons and the final peak at ~724 eV corresponds to the 

Fe 2p1/2 core levels86. The remaining middle peak corresponds to Fe3+, which when absent, 

confirms a pure magnetite phase82. The presence of this peak would be further indication of 

chemical interaction between PPBT carboxylic moieties and the Fe3O4 surface, which is seen in 

the PEG-coated triethylamine derived electrode (Figure 4-10b, orange line). Hence, the Fe 2p 

scan provides further evidence to the chemical interactions between Fe3O4 and PPBT in the 

triethylamine synthesized electrodes. The lack of this satellite peak in the ammonium hydroxide 

electrodes further suggests they do not exhibit the chemical interactions indicative of electrode 

stability. 
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Figure 4-10: XPS spectra of Fe 2p scan. (a) 10nm PEG-Fe3O4 (NH4OH)/C/PPBT, (b) 10nm 
PEG-Fe3O4 (Et3N)/C/PPBT, (c) 10nm Fe3O4 (NH4OH)/C/PPBT, (d) 10nm Fe3O4 (Et3N)/C/PPBT, 

(e) 10nm PEG-Fe3O4 (NH4OH), (f) 10nm PEG-Fe3O4 (Et3N), (g) 10nm Fe3O4 (NH4OH), (h) 
10nm Fe3O4 (Et3N) 

 
 

4.3 Conclusion 
 

Surface chemistry plays a crucial role in active material synthesis and influences 

interactions, as was demonstrated by the differences in triethylamine and ammonium hydroxide. 

The different synthetic approaches provided different environments for the electrode system, 

which did not result in the same chemical interactions. The nature and strengths of chemical 

bonding between binder and active material surface have previously been shown to influence 

electrochemical performance63.  As described above, the triethylamine allows for interfacial 

interactions between the active material and binder that are essential for electrode stability. 

Whereas, these interactions are not visibly present in the ammonium hydroxide derived 

electrodes. Differences in interactions could provide further insight into the superior 

electrochemical performance of the triethylamine system, as exhibited in capacity retention and 

decreased charge transfer resistance. Furthermore, morphological differences between both 
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surface chemistries could explain why the ammonium hydroxide derived electrodes resulted in 

superior rate capability performance. Further insight into different surface chemistries and their 

effect on battery performance is needed for a fundamental understanding of their role in 

electrode fabrication towards robust high capacity Li-ion battery anodes.
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CHAPTER 5 : EFFECT OF ACTIVE MATERIAL CRYSTALLITE SIZE ON THE 

PERFORMANCE OF Fe3O4 Li-ION BATTERY ANODES 
 
 

5.1 Introduction 

  In previous studies, researchers studied factors that would affect crystallite size, such as 

pH87,88, stir rate52 and temperature88,89. The first investigation into the crystallite size effect for 

Fe3O4 was conducted by Komaba and coworkers90, where they studied 400, 100 and 10 nm 

magnetite. Since the magnetite used in this study was not synthesized with a uniform technique, 

a clear analysis of crystallite size trends cannot be determined. However, they concluded that 

electrochemical activity is size dependent and that nanocrystalline (10 nm) Fe3O4 had the highest 

initial capacity. 

Sizing down particles to the nanoscale has been shown to shorten the Li+ diffusion 

pathway and increase reversible capacity and rate capability1,21,29. The first report of nanosized 

transition metal oxide electrodes exhibited reversible capacities up to three times higher than 

graphite91. However, nanoparticle-based electrodes have a higher propensity to aggregate 

because of van der Waals interparticle attractions69. Aggregation disrupts conductive pathways 

and can contribute to increased charge resistance in the electrode. Another challenge at the active 

material nanoscale includes undesirable side reactions with electrolyte, due to the large surface 

area8,29. To compensate for these surface area issues, stabilizing agents are attached to the surface 

of the particle to provide spatial insolation69. Furthermore, the large surface area/volume ratios 

provide more pathways for ion movement. The smaller size also improves kinetics in the 

electrode, since the Li+ ion diffusion path occurs along smaller distances29.  

Following Komaba and coworkers’ study, the Takeuchi group further investigated 

crystallite size effects, using Fe3O4 synthesized with the same technique (co-precipitation) and 
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base (triethylamine)59,70. In their first crystallite size control study70, a direct evaluation of 

crystallite size on electrochemical performance was reported. This was the first study where all 

Fe3O4 samples were prepared by the same technique to investigate electrochemistry. Their 

findings demonstrated that the capacity was higher for smaller crystallite size (6 nm vs. 10 nm), 

but no information was provided on capacity retention or rate capability. There is also a margin 

of error associated with each crystallite size, since one of the drawbacks associated with the co-

precipitation synthesis method is less rigorous control of crystallite size59.  

In the Takeuchi group’s next crystallite size control study59, concentration of 

triethylamine provided size control, by keeping temperature, stir rate and pH constant. Again, it 

was determined that the smaller crystallite size (6 nm vs. 10 nm) had a higher capacity, but no 

other electrochemical information was reported. Despite these studies, there is not a clear 

indication of whether smaller or larger crystallite size is preferential. This section addresses how 

different crystallite sizes (10 nm vs. 20 nm) impact electrochemical performance.  

 
5.2 Results and Discussion 

5.2.1 Microscopic Characterization 

The impact of the observed aggregation behavior of the particles on electrode physical 

and chemical characteristics, and electrode performance was examined through fabrication of 

magnetite based electrodes via standard procedures: Fe3O4 or PEG-Fe3O4, carbon additives and 

PPBT polymeric binder were mixed in the usual manner, the resulting slurry was blade coated 

onto a Cu foil current collector, and then dried. Control electrodes were also fabricated using the 

more commonly used binder, PVDF66. Electrode morphology was investigated using FE-SEM to 

determine the level of materials dispersion within the processed composites (Figure 5-1). EDS 
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SEM imaging and elemental (Fe, O, C) image mapping (Figure 5-2) confirmed the presence of 

Fe3O4 nanoparticles, carbon additives, and PPBT binder in all fabricated electrodes.  

As anticipated from previous reports and DLS characterization, introduction of the PEG-

coating onto the Fe3O4 nanoparticles led to a reduction in aggregate size within the composite2. 

For all active material particle sizes, incorporation of the PEG-coating appeared to decrease 

aggregation and afford a composite electrode with more uniformly dispersed components, which 

is generally expected to enhance battery performance2. Note that the uncoated electrodes vs. 

those that were PEG-coated exhibited smaller aggregates for the 20 nm (Figure 5-1a, c) and 10 

nm (Figure 5-1b, d) ammonium hydroxide derived electrodes. Electrodes fabricated with 

magnetite synthesized using the ammonium hydroxide route and then treated with PEG (PEG-

Fe3O4) (Figure 5-1c, d) exhibited essentially identical morphology, despite differences in active 

material particle size. 
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Figure 5-1: FE-SEM of top view electrodes.  

 

 
Figure 5-2: EDS SEM image maps of electrodes (top view) with blue corresponding to iron, 

yellow corresponding to carbon and pink corresponding to oxygen in electrodes. 
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The morphological differences between active material sizes was further investigated by 

FE-SEM imaging of electrodes fabricated with the control PVDF binder (Figure 5-3). In 

comparison to PPBT, the use of PVDF results in the formation of noticeably larger aggregates 

(Figure 5-3insets). Further, use of ammonium hydroxide in the active material synthesis leads to 

well-dispersed composites in the case of PVDF, though the level of dispersion is not as extensive 

as is observed with PPBT.  

 

 
Figure 5-3: FE-SEM top view images of PVDF control electrodes. 

 

5.2.2. Electrochemistry 
 

From an electrochemical performance perspective, coin cells with a Li metal counter 

electrode were utilized and all the electrodes were prepared with Fe3O4 (or PEG-Fe3O4) active 

material, carbon additives, and polymeric binder in a 71.4:14.3:14.3 mass ratio. The mass ratio 

was chosen because in a previous study1, the electrode exhibited its percolation threshold in 

electronic conductivity at this ratio. The electrolyte was 1 M LiPF6 in ethylene carbonate (EC) 

and diethylene carbonate (DEC) (1:1 by weight).  

Charging-discharging cycling (Figure 5-4) was conducted at a current density of 240 mA 

g-1 (~0.3 C) to determine capacity retention of the electrodes. The benefits of the PEG/PPBT 
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system are apparent for electrodes fabricated from either 10 nm or 20 nm Fe3O4 crystallites 

where the PEG-coating significantly enhanced cycling performance. 

 

 
Figure 5-4: Cycling performance (capacity retention as a function of cycle number) collected for 

current density of 240 mA g-1 (~0.3C) between 0.01 and 3V 
 

 
Exploring the impact of crystallite size, while the 20 nm PEG-Fe3O4 (NH4OH)/PPBT 

electrode (purple line) initially had a higher capacity than the 10 nm PEG-Fe3O4 (NH4OH)/PPBT 

alternative (orange line), it did not exhibit the same improved capacity retention over the course 

of 100 cycles. This initial capacity difference between 20 nm PEG-Fe3O4 (NH4OH)/PPBT and 10 

nm PEG-Fe3O4 (NH4OH)/PPBT is ~200 mAh g-1 Fe3O4 (Table 5-1), which can be attributed to 

the differences in thickness and porosity of the electrodes. The results produced for 

electrochemical performance are not completely reproducible because of the inability to control 

thickness and porosity with the doctor blade during electrode fabrication.  
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Table 5-1: Initial discharge capacity values and capacity retention during cycling. 
Electrode Initial Charge/Delithiation 

Capacity (Figure 5-4) 
Capacity Retention (%) 

After 100 Cycles (Figure 5-4) 
10 nm Fe3O4 (NH4OH)/PPBT 750 mAh/g Fe3O4 54 % 
10 nm PEG-Fe3O4 (NH4OH)/PPBT 790 mAh/g Fe3O4 89 % 
20 nm Fe3O4 (NH4OH)/PPBT 930 mAh/g Fe3O4 31 % 
20 nm PEG-Fe3O4 (NH4OH)/PPBT 1020 mAh/g Fe3O4 70 % 
10 nm Fe3O4 (NH4OH)/DB/PVDF 900 mAh/g Fe3O4 10 % 
20 nm Fe3O4 (NH4OH)/DB/PVDF 850 mAh/g Fe3O4 7.9 % 

 

All PVDF electrodes had equally poor capacity retention over 100 cycles, which was 

expected. With regards to the effect of crystallite size, the 10 nm (ammonium hydroxide)/PVDF 

electrode (red line) had a slightly higher initial capacity as compared to the 20 nm (ammonium 

hydroxide)/PVDF electrode (blue line), which confirms the superior performance seen for the 10 

nm crystallite size.  

To further investigate battery performance, newly fabricated half cells were subjected to 

rate capability experiments (Figure 5-5), where cells were lithiated at a constant current density 

of 80 mA g-1 (~0.1C) and delithiated over a wide range of current densities (80 – 1600 mA g-1) at 

a voltage range of 0.01 – 3 V. Overall, the PEG-Fe3O4/PPBT binder-based electrodes show much 

higher delithiated capacity than the PVDF control, which conveys its superior rate capability. 

Through rate capability testing, the 10 nm (ammonium hydroxide)/PPBT system (orange line) 

exhibited higher capacity and superior capacity retention compared to its 20 nm (ammonium 

hydroxide)/PPBT counterpart (purple line), which affirmed the cycling results (Figure 5-4). 
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Figure 5-5: Delithiation rate capability, where cells were lithiated at a constant current density 
of 80 mA g-1 and delithiated at different current densities between 0.01 and 3V 

 
 
EIS analysis presented in Figure 5-6 supports the cycling (Figure 5-4) and rate capability 

(Figure 5-5) data. The cells used in the EIS study correspond to those cycled between 0.01 and 

3V as shown in Figure 5-4. Impedance testing was performed in the frequency range of 0.1 MHz 

to 0.1 Hz before cycling at 3V and after 100 cycles at their open-circuit voltage (OCV). Superior 

battery electrode performance can be attributed to decreased charge transfer resistance (Rct), 

which is estimated from the diameter of the semicircle78. Initially, the charge transfer resistance 

was not effectively reduced in the PEG-PPBT vs. PVDF control system (Figure 5-6a). However, 

in their initial states, the 10 nm (ammonium hydroxide)/PPBT electrode (orange semicircle) 

exhibited lower charger transfer resistance than the 20 nm counterpart (purple semicircle), which 

support the expectation that smaller crystallites should afford superior performance. 
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Figure 5-6: (a) Impedance spectra measured at 3V before cycling in the frequency range from 
0.1 MHz to 0.1 Hz (b) Impedance spectra measured at open-circuit voltage (OCV) after 100 

cycles in the frequency range from 0.1 MHz to 0.1 Hz 
 
 

After 100 cycles (Figure 5-6b) the positive effects of introducing PEG/PPBT are clearly 

noticeable for the ‘ammonium hydroxide’ electrodes, where the charge transfer resistance 

decreased significantly, compared to the PVDF electrodes. EIS testing after 100 cycles further 

confirmed the performance advantages associated with the smaller, 10 nm crystallites, which 

supports the observations derived from cycling experiments (Figure 4-4). While it had been 

speculated that the charge transfer kinetics for composite electrodes fabricated from smaller 

crystallite sizes would be faster due to their greater surface area to volume ratio59, the advantages 

of smaller crystallite size materials should be most apparent at higher current densities. This 

expectation was confirmed by the rate capability results presented in Figure 5-5. 

 

5.2.3. Spectroscopic Characterization 

Both electron and ion transport are known to be aided through molecular interactions 

between PPBT and Fe3O4 or PEG-Fe3O4.
2 Here, Fourier transform infrared (FT-IR) spectroscopy 

confirmed that PEG effectively interacts with and modifies the surface of Fe3O4 regardless of 

crystallite size (Figure 5-7). 
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Figure 5-7: FT-IR spectra of materials (bottom lines: PPBT, Fe3O4, PEG-Fe3O4) and electrodes 

(upper lines: Fe3O4/C/PPBT, PEG-Fe3O4/C/PPBT). 
 

 
Sharp C-H and C-O stretching bands at 2875 cm-1 and 1125 cm-1, respectively, confirmed 

Fe3O4 surface modification with PEG67. FT-IR was further used to interrogate the chemical 

interactions within the composite electrodes. This was accomplished by first blending the 

requisite components, fabricating the electrodes and then scraping the resultant system to retrieve 

the powder material. All PPBT-based electrodes fabricated with all Fe3O4 and PEG-Fe3O4 

samples, exhibited the stretching bands associated with the binder, PPBT; specifically, the 

carboxylate anion O-C-O asymmetric and symmetric stretching bands were observed at  

1550 cm-1 and 1400 cm-1, respectively60,61,79,80 (Figure 5-7).  



44 
 

 

Figure 5-8: Proposed chemical structure of Fe3O4 in the electrode2. 

 
The 1760 cm-1 vibration previously described in Chapter 4 is not as clearly visible in the 

spectrum of electrode composites fabricated with the ammonium hydroxide derived magnetite. 

While the O-C-O asymmetric and stretching bands (Figure 5-7) are observed, the additional 

proposed Fe-carboxylate vibration is not present. Thus, the vibrational spectroscopy results 

suggest that the active material synthetic method is likely to impact the surface chemistry of the 

resultant materials and as a consequence bonding interactions between composite electrode 

components. These interactions may further play a significant role in determining electrode 

stability, a key factor that impacts battery performance. In the case of ammonium hydroxide, it is 

conceivable that the PPBT binder can interact with residual base residing on the surface of the 

nanoparticles, which might explain why the previously described Fe3O4-PPBT interactions 

(Figure 5-8) were not observed in the FTIR spectra of the ammonium hydroxide based electrodes 

(Figure 5-7). 

 XPS spectra of the C1s core level (Figure 5-9) further indicate the presence of chemical 

interactions. The bottom lines are spectra from the PEG-Fe3O4 powders of all samples, which 

exhibit a C-OH bond further confirming PEG surface modification to Fe3O4 particles82. The first 
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peak at ~285eV, exhibited in all PPBT-based electrodes, corresponds to the C-O bond83. The 

next peak at ~287eV is associated to the carboxylate (COO-) bond. The chemical shifts to a 

lower binding energy indicate an increase in interatomic distance, which could result from the 

additional bonding between PPBT and Fe3O4
84. The remaining two peaks in the XPS spectra are 

associated to satellite peaks, which often result from extended delocalized electrons in a sample 

and provide evidence to p-p* interchain stacking along the PPBT backbone85. Such p-p* 

stacking may induce intermolecular charge transport, which leads to improved electrical 

properties of the PPBT binder system2. 

 

Figure 5-9: XPS spectra of C1s scan. (a) 20nm PEG-Fe3O4 (NH4OH)/C/PPBT, (b) 10nm PEG-
Fe3O4 (NH4OH)/C/PPBT, (c) 20nm Fe3O4 (NH4OH)/C/PPBT, (d) 10nm Fe3O4 

(NH4OH)/C/PPBT, (e) 20nm PEG-Fe3O4 (NH4OH), (f) 10nm PEG-Fe3O4 (NH4OH), (g) PPBT 
 
 

XPS spectra of Fe 2p core level (Figure 5-10) provides additional information about the 

magnetite phase present in parent materials and electrodes. The first peak at ~712 eV 

corresponds to the Fe 2p3/2 core level electrons and the final peak at ~724 eV is associated with 

the Fe 2p1/2 core levels86. The remaining middle peak corresponds to Fe3+, which when absent 

confirms a pure magnetite phase82. The presence of this peak would be further indication of 
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chemical interaction between PPBT carboxylic moieties and the Fe3O4 surface. The lack of this 

satellite peak further suggests the ammonium hydroxide derived electrodes do not exhibit 

chemical interactions indicative of electrode stability. 

 

 

Figure 5-10: XPS spectra of Fe 2p scan of materials. (a) 20nm PEG-Fe3O4 (NH4OH)/C/PPBT, 
(b) 10nm PEG-Fe3O4 (NH4OH)/C/PPBT, (c) 20nm Fe3O4 (NH4OH)/C/PPBT (d) 10nm Fe3O4 
(NH4OH)/C/PPBT, (e) 20nm PEG-Fe3O4 (NH4OH), (f) 10nm PEG-Fe3O4 (NH4OH), (g) 20nm 

Fe3O4 (NH4OH), (h) 10nm Fe3O4 (NH4OH) 
 
 

5.3 Conclusion 

The morphology was the same for all ammonium hydroxide derived electrodes, as 

indicated by SEM, which provided an analysis of crystallite size effects without additional 

factors. The ammonium hydroxide electrodes did not exhibit the previously described 

interactions between active material and polymeric binder, but crystallite size effects were 

analyzed from these systems. As previously reported59,70, smaller crystallite size enhances 

electrochemical performance, as demonstrated by capacity retention, rate capability and 

decreased charge transfer resistance. From the first study of crystallite size effects in magnetite90, 

nanocrystalline materials exhibited higher capacity, as a result of the smaller Li+ diffusion path. 
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Furthermore, smaller crystallites exhibit faster charge transfer kinetics for composite electrodes59, 

which supports their superior battery performance. 
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CHAPTER 6 : CONCLUSION AND FUTURE WORK 
 
 

6.1 Conclusion 

Materials dispersion is only one factor to consider when designing a composite electrode. 

As shown, the aggregate size is not indicative of battery performance. Electron and ion transport 

must also be considered, which is often dictated by surface chemistry and molecular interactions 

that allow for enhanced transport. The interactions between the binder and active material leads 

to electrode stability, which leads to improved capacity retention and decreased charge transfer 

resistance. A more dispersed morphology can lead to improvements in rate capability 

performance. Different surface chemistries, resulting from synthesis techniques utilizing 

different bases, lead to different morphologies and chemical interactions. Smaller crystallite size 

also aids in overall battery performance. It is crucial to consider how the active material 

synthesis can lead to enhanced battery performance during electrode fabrication. The results 

presented here show how the PEG/PPBT facile methodology for Fe3O4 anodes can further be 

improved by changes to the active material to produce high-capacity energy materials. The 

approaches described herein are expected to provide fundamental insights into the impact of 

active material synthesis on the design of battery electrodes, especially the crucial role of surface 

chemistry and its influence on interactions.  

 
6.2 Future Directions 

6.2.1 Extension of Crystallite Size and Surface Chemistry Study 

Previously, collaborators at Stony Brook had the capabilities to make the 20 nm 

crystallite size using only the ammonium hydroxide base. Recently, their expertise allows them 

to synthesize 10 nm, 20 nm, and 30 nm crystallite sizes using the triethylamine base. An 

investigation into which of these crystallite sizes has enhanced cycling retention, rate capability 
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and reduced charge transfer resistance would provide a complete analysis into crystallite size 

effects on battery performance and confirm which size is best to use. Using the triethylamine 

base should ultimately show the smaller crystallite size has superior battery performance59,70. 

This work confirmed the importance of active material synthesis on the design of battery 

electrodes, particularly the crucial role of surface chemistry. Since surface chemistry is essential 

for enhancing interactions, it would be useful to investigate other synthesis methods and gain a 

wider repertoire. Collaborators at Stony Brook have indicated using other bases in their synthesis 

procedure, such as sulfides, which would provide useful information about potential interactions 

in the electrode system. A further understanding is still needed of why different bases produce 

distinct interactions and studying additional bases would provide a complete picture.     

6.2.2 Further Investigations into PEG/PPBT System 
 

The PEG/PPBT system has demonstrated improved capacity retention, rate capability and 

reduced charge transfer resistance after 100 cycles2. Part of the reason for this improved battery 

performance comes from the interactions between active material and polymeric binder that have 

been shown to improve electrode stability60,61,92,93. However, a fundamental understanding is 

needed to explain how the PEG/PPBT system works during cycling.  

Recent advances using in situ TEM of electrochemistry allow insight into the inner-

workings of a lithium ion battery during cycling94. In situ TEM would provide insight into 

whether the PEG/PPBT system is able to reduce the volume changes in the Fe3O4 anode. As 

previously discussed, a main limitation of  magnetite as an active material stems from its poor 

cycling performance, due to the large volume changes that take place during repetitive charging-

discharging23. This further analysis of the PEG/PPBT system would provide real time and atomic 

scale resolution during cycling to explain the mechanisms happening. In situ TEM is available at 
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Oakridge National Lab and Brookhaven National Lab, which would provide an accessible way to 

further investigate the PEG/PPBT system. 
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