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SUMMARY

Computational analysis of turbulent reactive flow applications requires reso-

lution of the wide range of scales both in time and space from a flow modeling per-

spective. From a thermo-chemistry point of view, information regarding the radical

chemical species is needed in order to capture flame-turbulence interactions accu-

rately. A detailed investigation of all of these processes is time consuming. Thus,

there is a need for speeding-up the computations by using the state-of-the art mod-

eling capabilities. This study seeks to answer this problem and focuses in particular

on the chemical kinetics calculations. The new approach proposed here is based on

incorporating the artificial neural network (ANN) based modeling of the chemical

kinetics into the large eddy simulation (LES) of reactive flows.

Two separate and new ANN based modeling approaches relevant to the LES are

proposed within the thesis work. Here, the first approach depends on employing

ANN to predict the species instantaneous reaction rates as a function of the thermo-

chemical state vector (ω̇i = ANN(Yk, T )). The second one is based on using ANN

specifically to predict the spatially filtered chemical source terms in the LES modeling

as a function of the filtered thermo-chemical state vector and flow quantities (¯̇ωi =

ANN(Ỹk, T̃ , Re∆,
∂Ỹi

∂x
)).

First part of the thesis work dealt with testing different thermo-chemical tabula-

tion techniques that can be used in connection with the ANN approach for the LES.

Basically, three distinct methods (and tools) are developed here: thermo-chemical ta-

bles based on (i) laminar flames, (ii) laminar flame-vortex interactions (FVI) and (iii)

laminar flame-turbulence interactions (FTI). Results based on premixed flame-vortex-

turbulence interaction simulations showed that the tables generated based on the

xxvi



second and third approaches are capable of representing the actual thermo-chemical

state-space accessed by the LES.

Once the tabulation procedure and the ANN training is achieved, ANN is first

validated against direct numerical simulation (DNS) of a temporally evolving planar

jet flame, which is reported to exhibit complex extinction and re-ignition type of

physics. The flame physics are also investigated for this flame, and it is observed that

the scalar dissipation rate has a weak sensitivity to extinction and re-ignition, than it

is reported in the literature. As a second test case, comparisons against experimental

and previous computational data are provided for a practical combustor simulation.

Overall for all simulations considered here, the results indicated that the ANN works

as a combustion mode independent model and provides fairly accurate results with

considerable amount of speed-up and memory savings.
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CHAPTER I

INTRODUCTION AND OBJECTIVES

1.1 Turbulent Combustion Modeling and Chemical Kinet-

ics: An Overview

Turbulent combustion is described as the continuous distortion of the local flame front

by eddies distributed over a wide range of length and time scales (63). The response

of the flame front depends on the combined effect of molecular diffusion, turbulent

transport, and chemical reaction occurring across the flame, without any clear scale

separation. Eventually, the flame may experience complex, unsteady, local and/or

global features such as extinction, re-ignition and quenching.

Turbulent combustion typically occurs within the combustion chambers of gas

turbine engines. Here, the incoming flow is highly turbulent in order to enhance

both mixing and combustion. In this manner, a shorter flame length can be ensured,

which lead to a more compact combustor with low NOx levels. Accurate prediction

of the scalar and the vectoral fields inside the combustion chamber of a gas turbine

engine is a challenging task and requires the solution of a three dimensional, highly

unsteady, turbulent reactive flow problem. Direct numerical simulation (DNS) of the

high Reynolds number flows is not affordable yet, since the grid resolution dictated

by the solution methodology exceeds the current computer capabilities (22). In the

realm of reactive flow computations, great effort has been spent to capture the time-

dependent processes by large eddy simulation (LES), where the small scale processes

are modeled, and large scale processes are resolved directly

The representation of the chemical kinetics is, however, a problem for both DNS

and LES. Precise knowledge of the time rate of change of fuel/radicals/product mass
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fraction is required to predict ignition, extinction, and pollutant formation (5). In

order to calculate the changes in the species composition due to the chemical reactions,

an ODE system must be solved. The size of the equation system is determined by the

number of species simulated. On the extreme end, a full chemical kinetics mechanism

may be used to represent the thermo-chemical state space, such as GRI-Mech 3.0,

with 53 species and 325 elementary reactions optimized for methane combustion (86).

Apart from the difficulty of solving 53 individual conservation equations; calculating

species reaction rates through 325 reactions under reasonable computational time

may not be practical even for LES. Also, since the radical and major species have a

wide range of time scales, the solution procedure requires employing stiff ODE solvers,

which add further computational burden. Thus, for a detailed reaction mechanism,

the chemical kinetics calculations are very time consuming, and their application

to the engineering problems may be limited similar to DNS due to the need for

enormous computational resources. One common approach used to solve this problem

is to reduce the order of the chemical kinetics mechanism by identifying the partial

equilibrium reactions and steady-state species (56; 31). However, this derivation

may lead to several difficulties, i.e., the final mechanism may be even stiffer than

the original one, the initialization may be troublesome, and most importantly, the

assumptions may hold only for certain conditions, which may not even be valid for

the particular turbulent flame of interest (63).

Tabulation based methodologies, such as intrinsic low-dimensional manifolds (ILDM)

(45) and in-situ adaptive tabulation (ISAT) (65) are used typically in the literature

to decrease the computational time required to calculate the species reaction rates.

Here, ILDM requires generation of a multi dimensional look-up table prior to starting

the flow computations. The number of resolved states by ILDM should be sufficient

enough to include all the possible states that may be accessed during the actual flow

simulation. Since this information is not known apriori, huge tables can be generated,
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which would require large memory allocations (77). ISAT, on the other hand, is no

different than direct integration of the chemical equation system in the early stages

of the simulation, since the look-up table is generated as the simulation proceeds.

All models that use a tabulation strategy has to employ an interpolation scheme,

since it is not possible to fill the table with all the possible states available. However,

it has been previously reported that the search-interpolate-retrieve type of procedure

from a multi-dimensional table may slow down the actual flow simulation and may

induce interpolation errors (34). Furthermore, the dimensions of the pre look-up

tables should be decreased by achieving parameterization with respect to few key

variables, as large multi-dimensional structured tables would exceed the memory limit

of the computers.

Another solution is the artificial neural networks (ANN) (47) methodology, which

is a relatively new technique in the area of chemical kinetics and to date its appli-

cability has not been tested fully for turbulent reactive flow applications. ANN is

widely used for function approximation, classification, time series prediction, filter-

ing, data association, and optimization (16). It is a computing system composed of a

number of simple, highly interconnected, processing elements (PEs) -neurons-, which

process information by dynamic state response to external inputs (27). Contrary to

the conventional computer modeling approach, which relies on solving the equations,

ANN learns by example and provides predictions into new states. The current thesis

work is investigating the implementation of the ANN methodology into the LES of

the reactive flows to speed-up the chemical kinetics calculations. The next sections

will provide a more detailed description of the concepts (i.e., DNS, LES, ILDM, ISAT,

ANN, etc.) introduced briefly in this section.
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1.2 Chemical Kinetics

Combustion is defined as rapid oxidation generating heat, or both light and heat (86).

The oxidation process and heat generation typically occur due to the chemical reac-

tions between different species. The consumption, or production of a given species

due to the chemical reactions, so-called species reaction rates (ω̇k), are computed by

applying the basic laws of chemical kinetics. The calculation procedure requires infor-

mation regarding the set of chemical reactions occurring for the given thermodynamic

state vector (Yk, T , P ). Let us consider the following set of elementary reactions R

containing an arbitrary number of reactants: N , and products M :

N∑

k=1

ν
′

krMk⇋

M∑

k=1

ν”
krMk (1)

for r = 1, ..., R. Here, Mk denotes the chemical symbol for species k. ν
′

kr and ν”
kr are

the stoichiometric coefficients of the forward and backward reactions, respectively.

Based on the given reaction mechanism, the net rate at which species Mk is produced

and/or consumed, the chemical reaction rate, is given by using the following formula:

ω̇k =

R∑

i=1

νkiqi (2)

where qi is the rate-of-progress variable and calculated as:

qi = kfi

N∏

k=1

[Xk]
νki

′

− kbi

M∏

k=1

[Xk]
νki

′′

(3)

and νki = (νki
′′−νki

′

). The rate coefficients of the forward and backward reactions, kf

and kb, are functions of temperature, and are derived mostly from the kinetic theory

of gases. In principle, they represent the collision frequency between the molecules

(Z) and the probability that a collision will lead to a chemical reaction (P), and is

formulated as (86)

k≈ZP (4)
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The probability P is expressed as the multiplication of two factors:

P≈exp
(−EA

RuT

)
p (5)

where EA, Ru, and p are the activation energy, universal gas constant, and the steric

factor, respectively. The activation energy corresponds to the energy barrier that

must be overcome during the reaction, and the collisions that can pass this threshold

can lead to a reaction (91). The steric factor, on the other hand, accounts for the

molecular collision geometry. (86). Thus, only collisions that have the required energy

and the correct orientation result in reactions. It must be noted that kinetic theory

explains the mechanism for a reaction to occur, but cannot provide answers for the

exact values of the EA and p, leaving them to be found empirically. The final form

of the rate coefficient is expressed in the ”modified” Arrhenius form as:

k = AT bexp

(
− EA

RuT

)
(6)

where A and b are the pre-exponential factor, and temperature exponent, respectively.

The values of A, b, and EA for the given reaction mechanism are found through

combined experimental and computational studies and are tabulated.

1.3 Turbulent Combustion Modeling

From a computational point of view, the governing equations for the conservation of

mass, momentum, energy, and species need to be solved together with the equation

of state to investigate the combustion physics. Here, it should be noted that most of

the practical reactive flow applications occur under turbulent conditions in order to

enhance the combustion process. Turbulence can be roughly described as irregular,

unsteady, multi-scale, three-dimensional fluid motion. Turbulent flow is essentially a

collection of range of scales, and these turbulent structures interact with the flame

front in the turbulent combustion process. The largest turbulent scale (integral length

scale (l)) can be considered as equal to the size of the combustion device and is of the
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order of 0.1-1 m. The smallest length scale (Kolmogorov length scale (η)), however,

is determined by the Reynolds number and can be as small as 10−6 m. Turbulent

mixing occurs on the Batchelor length scale, which is even smaller than the η.

Turbulent combustion modeling has to deal with the modeling of turbulence, com-

bustion, and their interaction with each other. Combustion, compared to the turbu-

lence, occurs mostly on the small scales and has a much wider range of time scales.

Thus, the physics of the interaction process is quite complex and computational mod-

els used for the simulations need to be validated carefully to provide an answer into

the problems.

1.3.1 Turbulent Flow Modeling

1.3.1.1 Direct Numerical Simulation

In DNS, the governing set of equations are solved exactly without using any modeling.

DNS provides the most accurate results to the turbulent combustion, since processes

occurring at all length and time scales are directly resolved. In order to achieve this

solution, however, the grid size that is used for simulation should be small enough

to resolve even the smallest turbulent structure to provide a solution at all length

scales. The range of scales in a turbulent flow is a function of the Reynolds number.

As noted earlier, practical combustion devices operate at high Reynolds numbers.

The ratio between l and η is roughly given as Re3/4 (84). Hence, as the Reynolds

number increases, for the same device (constant l), η becomes much smaller. This

leads to the DNS grid resolution in 3D scale with Re9/4. From a computational point

of view, a decrease in η yields a smaller time step size between consecutive iterations,

since maximum step size is proportional to the square of the grid size (93). Overall,

the computational requirement for the DNS of a reactive flow increases by the fourth

power of the Reynolds number (66). Hence, DNS is not yet computationally affordable

in order to be used for practical combustion applications.
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1.3.1.2 Reynolds Averaged Navier Stokes

RANS is based on the assumption that turbulence is statistically stationary, and

any given quantity (e.g., uk, T , etc.) can be represented as a time average mean

and instantaneous fluctuation (94). Based on this assumption, the governing set

of equations are time averaged and solved on a much coarser grid than the DNS.

In RANS, only the mean flow is resolved, hence, no turbulent motion is explicitly

captured, since all scales are modeled. The averaging procedure leads to new terms

(so-called Reynolds stresses) in the governing equations, which need closure. There

exists several techniques in the literature used to calculate the Reynolds stresses (i.e.

Spallart-Allmaras, k-ǫ, k-ω, Reynolds stress model, etc. (94)).

1.3.1.3 Large Eddy Simulations

Fundamental studies in the field of turbulence reveal that the large scale structures

are coherent and geometry dependent, whereas small scale structures are universal.

Also, large scale structures are continuously broken into smaller structures up to a

scale where viscous effects are dominant over the inertial processes (66). At this scale,

the eddies are dissipated by the action of the viscosity. In the LES framework, based

on this hypothesis, a cut-off scale is defined, where scales larger than this scale are

resolved directly similar to the DNS, and smaller scales are subsequently modeled,

as they are universal and geometry independent. This is achieved by applying a

spatial filtering operator to the governing set of equations, which leads to unclosed

terms similar to the RANS. However, for LES, the interpretation of these terms are

fundamentally different. They represent the processes that occur at the scales smaller

than the applied cut-off.

One of the important advantages of the LES over RANS is that, LES does not

invoke any explicit assumption regarding the time variation of the turbulent struc-

tures. The unsteady evolution of the turbulent structures is calculated effectively.
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This is especially important for the reactive flow applications, where the local heat

release is very sensitive to the unsteady evolution of the turbulent structures. This

unsteady interaction process leads to many important physics such as acoustic flame

instabilities, extinction, and flash-back, which can be captured by LES, but not by

the RANS.

1.3.2 Flame Turbulence Interaction Modeling

The above noted methodologies are essentially developed for modeling turbulent

flows, and they provide information on how to solve (or model) the turbulent struc-

tures. For example, the subgrid modeling in LES relies on the observation that the

small scales are mostly responsible for providing dissipation to the energy budget of

the flow. Hence, an eddy viscosity type of closure is widely used for sub-grid represen-

tation of the momentum. However combustion is essentially a small scale phenomena,

where molecular diffusion, turbulent stirring and chemical reaction all occur at the

small scales (which is modeled in LES) in an unsteady manner (which is not the case

in RANS). Handling combustion in LES and RANS, so-called flame-turbulence inter-

action, is a challenge for the modeling of reactive flows. There exists many models in

the literature to answer this issue. These models were first developed for the RANS

applications and were later turned into forms that can be used in the LES as well.

The most widely used flame-turbulence interaction models will be presented next in

the LES context.

1.3.2.1 Eddy Break-Up and Eddy Dissipation Models

Eddy break-up (EBU) is one of the simplest turbulent combustion models and is

essentially used to calculate the filtered reaction rate as a function of the known

turbulent quantities. It was initially developed for RANS applications (79; 80) and is

later extended to the LES. EBU views the reaction zone as a collection of fresh and

burnt gas pockets, and treats the combustion process as a mixing problem, rather
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than as a reaction problem. The basic assumption behind the EBU is that both the

Re and Damkohler (Da) numbers are considerably high. In other words, the chemical

time scale is much smaller than the turbulent mixing time scale (τc << τt). Hence,

combustion proceeds as long as the turbulence allows for species come together and

react with each other, leading to the result that τt is the controlling parameter. As a

result, the filtered reaction rate is calculated as:

¯̇ωF = −CEBU
ρ

τ t
Ỹ ”2

F

1/2

(7)

Here, the turbulent time scale is usually given as τt = k/ǫ. In terms of calculating

the filtered reaction rate, the EBU model is one of the simplest models available in

the literature. It is very easy to implement EBU into existing LES and/or RANS

codes. However, it has a couple of drawbacks. First, since the model highly depends

on the turbulence quantities, it tends to overestimate the reaction rates in highly

strained regions where k/ǫ is very high. Also, the results are highly sensitive to

the model coefficient (CEBU), and different results can be obtained based on slight

changes of CEBU (63). The model is originally proposed for a single-step reaction, and

its extension to detailed kinetics is also problematic, since radical species evolution

cannot be quantified based merely on the turbulent quantities, without considering

the chemical reactions. It should be noted that, the detailed kinetics is important

only when there is unsteady flame dynamics (i.e., extinction, quenching, re-ignition),

in which case the Da number is low and EBU is not valid anyway.

The eddy dissipation model (EDM) (46) is a derivative of the EBU. EBU model

(46) in its original form is based on the ”mixed is burnt” assumption. In EDM it is

assumed that the chemical reactions occur very rapidly compared to the turbulent

mixing process if the turbulence level is high. Also, in EDM, in contrast to EBU,

variance of the product mass fraction ( Ỹ ”2
F

1/2

) is replaced with the mean mass fraction

of the deficient species (Yk). In this manner it is more general and can be applied to

multi-step kinetics as well. Also, both kinetic and mixing rates are calculated at a
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given point within the computational domain, and among them the fastest (smallest)

one is selected. In this manner, the source term of the species equation switches

between the mixing and kinetic rates depending on the level of turbulence.

The mixing rate in EDM for LES is selected as:

¯̇ωmix = min(
∆x√
ksgs

CEBU ỸRmin
,

∆x√
ksgs

CEBU ỸPmin
) (8)

where ∆x, ỸRmin
, ỸPmin

denote the LES grid spacing, the deficient species mass frac-

tion in the reactants and products, respectively.

The kinetic rate is calculated based on the given reaction mechanism and the

thermodynamic state vector (¯̇ωkin = f(Ỹk, T̃ , p̃)). Finally the overall rate is given by:

¯̇ωk = min(¯̇ωmix, ¯̇ωkin) (9)

In this manner, at the shear layers, where ksgs is typically high, the EDM model

tends to pick the mixing rate. Near the walls, where ksgs may acquire unphysically

high values, the reactions tend to be overpredicted by this model, and a limiter should

be used.

Both the EBU (completely) and EDM (partially) reject the chemical rate with

the ”mixed is burnt” assumption. This is valid only for the cases where the turbulent

time scale is much smaller than the chemical time scale. For most of the practical

applications, however, there are certain cases where these two are comparable to each

other. EDM, basically calculates both of these time scales and uses the rate limiting

one. This model will be explined further in the next chapter.

1.3.2.2 Laminar Flamelets with presumed PDF

The flamelet model is valid for moderately high Damkohler (Da) number flames. The

basic assumption behind the model is that the reaction zone is thin and is distorted by

the flow field, whereas its internal structure is not strongly affected by the turbulence

since the flame thickness is much smaller than the turbulent structures (57). Hence,
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(i) the structure of the reaction zone remains laminar (”flamelet”) and (ii) diffusive

transport occurs in the direction normal to the surface of the stoichiometric mixture

(59). Under these conditions, the species evolution can be re-cast into the following

form:

ρ
∂Yk

∂t
=

1

2
ρDχ

∂2Yk

∂Z2
+ ω̇k (10)

Here, D is the mixture diffusivity, Z is the mixture fraction and χ is the scalar

dissipation rate calculated as χ = (∂Z/∂xi)(∂Z/∂xi). It should be noted that the

same form of the equation can be derived for the temperature as well. As a result, the

scalar field is a function of Z and χ only, for the given boundary conditions. Hence,

flamelets allows a lower-dimensional representation of the scalar field. In this manner,

instead of solving the conservation equations for all species in the LES, the scalar

field is provided through pre-computed flamelet tables (Yk = f(Z, χ)). However, it

should be noted that LES requires the filtered quantities, which necessities the use

of presumed PDF in connection with the flamelet tables. The filtered scalar field is

obtained by using:

ρ̄Ỹk =

∫ ∞

0

∫ 1

0

ρYk(Z, χst)P (Z, χst)dZdχst (11)

Here, the Joint PDF of the scalar dissipation rate and the mixture fraction is required

for the integration, which is not known. To proceed with the computation, Z and χst

are assumed to be statistically independent from each other, which allows the repre-

sentation of the joint PDF as two separate single PDFs (P (Z, χst) = P (Z)P (χst)).

The DNS studies show that the PDF of scalar dissipation rate is log-normal. The

PDF of mixture fraction, however, is presumed using β-function, which requires the

calculation of the mean and variance of the mixture fraction (Z̃, Z̃ ′′2). The filtered

scalar dissipation rate (χ̃) in the LES solver is calculated as χ̃ = CǫZ̃”2/k. The link

between χ and χst is given by

χ̃ = χ̃st

∫ 1

0

F (z)

F (zst)
p(z)dz (12)
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where F (z) is

F (z) = exp
(
−2
[
erf−1(2z − 1)

]2)
(13)

To sum up the whole procedure: (i) a flamelet table is constructed by solving Eq.

(10) for a range of Z and χst, (ii) the states in the flamelet table are integrated by

using Eq. (11), with P (Z) and P (χst) modeled as β and log-normal distributions,

respectively. (iii) Hence, the final look-up table tabulates filtered states (i.e. ρ̄Ỹk)

with respect to the Z̃, Z̃ ′′2, χ̃st . (iv) Here, additional equations for Z̃ and Z̃ ′′2 are

solved, where as χ̃ is modeled.

The main advantage of the flamelet modeling is that the scalar field is tabulated

with respect to Z̃, Z̃ ′′2, χ̃. Hence, there is no need to solve species equations explicitly

in the LES solver. As a result, a considerable amount of computational saving is

achieved compared to directly solving the species equations. Furthermore, detailed

multi-step kinetics can still be used during the flamelet table generation, which may

not be affordable for most of the turbulent combustion models. On the other hand,

the assumption that the flame front is laminar with respect to the flow field, may

not be correct when turbulent eddies can penetrate into the reaction zone. This is a

typical case when there is local extinction (57). Also, the flame may be under a high

scalar dissipation rate only for a short period of time, in which case the flame may

not go under extinction. Recently, unsteady flamelets have been used to overcome

this unsteady issue (58).

1.3.2.3 Conditional Moment Closure with Presumed PDF

The Conditional Moment Closure (CMC) method was developed independently by

Klimenko (1990) and Bilger (1993). The main idea in CMC modeling is to find how

the reactive scalars depend on the mixture fraction (ρYk|Z). Here, | denotes the

conditioning: (ρYk|Z) is the value of ρYk for the given mixture fraction (Z). Hence,

in a sense, CMC bears resemblance to the flamelet method. The main difference
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between flamelets and CMC is that the latter solves the exact balance equation of

the conditional species mass fractions, rather than tabulating them as it is done in

flamelet models. In the CMC method, starting from the species conservation equation,

the following form of the conditional species mass fraction equation is derived:

∂Qi

∂t
= ˜< uj|η >

∂Qi

∂xi
+
<̃ χ|η >

2

∂2Qi

∂η2
+ ˜< ω̇k|η >+

∂

∂xj

[
˜< De|η >

∂Qi

∂xi

]
(14)

Here, Qi = ˜< Yk|η >, with η representing the sample space for the mixture fraction.

This equation is solved both in the physical (xi) and the mixture fraction (η) space.

Assuming that the Qi is not changing strongly within the computational domain,

a second and much coarser grid in the physical space (CMC grid) is used for the

solution. It should be noted that this is valid only when there is no extinction (90).

Also, the number of the mixture fraction layers of which the equation is solved should

be selected so as to achieve good results. Another problem associated with the CMC

is that all terms on the right hand side of Eq. (14) ((i) turbulent transport, (ii)

micromixing, and (iii) chemical source) need closure. To achieve turbulent transport

and micromixing modeling, the conditionally filtered values are approximated by

the conditional average of filtered values over the CMC cells ( ˜< uj|η > =< ũj|η >,

<̃ χ|η > =< χ̃|η >). The fluctuations of chemical source term in the mixture fraction

space is neglected, which leads to

˜< ω̇k|η > = ω̇k(Yk|Z) (15)

Thus, there is no need to provide any extra closure for the reaction rate. It should

be noted that this transformation is valid only in the case of fluctuations in the

conditional pdf is smaller than the fluctuations in the physical space (LES). This is

again valid when the flame is in equilibrium with the flow field. For the cases when

there is highly unsteady flame physics, this assumption is questionable. Finally,

similar to that was done for flamelets (Eq. (11)), the link between the LES and CMC
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is achieved by:

ρ̄Ỹk =

∫ 1

0

QiP (Z)dZ (16)

Here, P (Z) is assumed as a β distribution, which requires solution of additional

equations for Z̃ and Z̃”2 on the LES grid.

1.3.2.4 Linear Eddy Mixing

Linear Eddy Mixing (LEM) is a stochastic, Lagrangian-Eulerian coupled model that

simulates the unsteady scalar field evolution on one-dimension. It can be used as a

subgrid scale combustion model within the LES framework as well (LEMLES). In the

LEMLES, the species equation is split into two parts denoting the small scale (molec-

ular mixing, turbulent stirring, reaction) and large scale (advection) processes. As-

suming that the turbulence is essentially isotropic on the sub-grid (which is a central

assumption for the LES), the small scale structures are solved on 1-D lines embed-

ded within each LES grid. Hence, the number of grid points is increased for solving

the reactive scalar field evolution. Diffusion and reaction are treated deterministi-

cally, where as turbulent stirring is modeled in a stochastic manner (triplet-maps).

LEMLES allows the use of detailed kinetics, since species reaction rates appear in

the closed form in the small-scale equation. Also, it is possible to employ multi-

component diffusion on the sub-grid. The details of the LEM formulation and its

implementation into an LES code are given in more details in Sections 2.2.2 and 3.3,

respectively.

1.3.2.5 PDF Transport Model

Both the flamelet and the CMC models require the PDF of mixture fraction (P (Z)),

which is not known, and usually presumed by a beta function(63). Also for the

flamelets, the joint PDF of Z and χ is required, which is again unknown. From a

computational point of view, instead of presuming the PDF and using it in connection

with models, it is possible to directly solve the following balance equation for the full

14



joint PDF (63), and use it as a turbulent combustion model by itself:

ρ
∂P̄

∂t
+ ρ̄ũk

∂P̄

∂xk

=

− ∂

∂xk

[
ρ̄ < u”

k|ψ > P̄
]
− ρ̄

N∑

i=1

∂

∂ψi

[〈
1

ρ

∂

∂xk

(
ρD

∂Yi

∂xk

)
|ψ
〉
P̄

]
− ρ̄

N∑

i=1

∂

∂ψi

(
1

ρ̄
ω̇iP̄

)

(17)

Here, ψ denotes the scalar field state-vector, and P is its joint PDF. In Eq. (17), the

first and third terms on the right hand side represents the turbulent convection and

the chemical reaction, respectively, and they are in the closed form. Hence, the PDF

transport model has the potential to incorporate detailed chemical kinetics, since it

does not require any filtering for the chemical reaction term. However, the molec-

ular diffusion (micromixing) is unclosed, and needs to be modeled (64). Equation

(17) is solved by using the Monte-Carlo method, which is ideal for high-dimensional

equations, since the computational cost is linearly dependent on the dimensionality

of the system. In this method, the Lagrangian particles evolve randomly both in the

physical and compositional space due to the turbulent convection, molecular diffusion

and reaction (66). The motion due to the turbulent convection is implemented as:

x1
i = x0

i +
1

2
u0

i ∆t (18)

The change in the composition due to the molecular diffusion, however, needs to be

modeled. Among these models, the modified curl method uses the following relation

to update the scalar field:

ψ(i,new) = ψi +
1

2
a
(
ψj − ψi

)

ψ(j,new) = ψj +
1

2
a
(
ψi − ψj

)
(19)

In this formulation, a pair of state vectors (ψi and ψj) are selected randomly from

an ensemble of states, and are changed with respect to their difference. Here, a

is a random number, which is uniformly distributed in [0,1]. The interaction with
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Table 1: Handling species equation with different flame-turbulence interaction mod-
els.

# of Equations Scalar field solved on
EBU Nspeci LES grid

Flamelet & PPDF 2 (Z̃,Z̃”2) LES grid
CMC & PPDF Nspeci Physical:CMC grid (coarser than LES)

Compositional:Mixture Fraction grid
LEM Nspeci LEM grid (finer than LES)
PDF Transport Nspeci Monte-Carlo particles

exchange (IEM) method, on the other hand, relates the molecular diffusion to the

turbulent quantities, and modifies the given stat vector as:

dφn

dt
= −1

2
Cφ

ǫ

k

(
ψn − ψ̃

)
(20)

Here, Cφ is the model coefficient, which needs to be calibrated.

As mentioned earlier, the main advantage of solving the PDF transport equation

is that, unlike LES, the reaction rate and the turbulent convection is in a closed

form. However, this advantage is offset by the fact that reactants are brought to the

reaction zone by diffusion, and the micromixing term remains unclosed and requires

modeling. Also, the total number of equations solved is equal to the number of

species plus two, which may not be affordable for very large mechanisms. Lastly,

large number of Lagrangian particles must be used in order to avoid statistical errors.

The comparison of the models described in this section (EBU, Flamelet with

presumed PDF (PPDF), CMC with PPDF, LEM and PDF transport) in terms of

the way they handle the scalar field equations are given in Tables 1 and 2. Here,

Table 1 shows the number of additional equations required to solve the scalar field

evolution. Table 2, demonstrates how each different term in the scalar field equation

is handled.
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Table 2: Sub-models used to handle chemistry, diffusion and turbulent stirring by
different flame-turbulence interaction models.

Chemistry Species Diffusion Turbulent Stirring
EBU N/A LES Modeled LES Modeled
Flamelet & PPDF Offline kinetics Offline diffusion LES Modeled
CMC & PPDF Online kinetics Presumed PDF LES Modeled
LEM Online kinetics Exact triplet-map
PDF Transport Online kinetics Model (i.e. IEM) Exact

1.3.3 Chemical Kinetics Modeling

For the given reaction mechanism and Arrhenius model coefficients, the rate laws for

the species can be represented as

dYk

dt
= Fk(Y1, Y2, ..., YNs, T, p) = ω̇k (21)

which is essentially a first-order ordinary differential equation system. It is possible

to calculate the time rate of change of a given species at a given instant through Eq.

21. However, in actual CFD calculations the rate of change of species in a given time

interval (chemical source term) is needed. It should be noted that a change in Yk leads

to changes in ω̇k as well. Hence, the resulting ODE system needs to be solved with the

given initial conditions. Detailed reaction mechanisms are typically composed of tens

of species, all having different time scales. Starting from an initial state of perfectly

mixed reactants, the radical species (i.e., H,C2H2) may reach to their equilibrium

values in 10−5∼10−8 seconds. On the other hand, 10−1∼10−3 seconds may be needed

for the major species (i.e., CO2, NO) to reach their equilibrium values. Thus, stiff

ODE solvers are needed to calculate the chemical source terms. As the order of the

chemical kinetics mechanism continues to increase, more radical species with shorter

time scales are added to the system and the degree of stiffness increases. As a result,

the stiff ODE solver becomes very time consuming, which acts as a bottleneck in the

CFD simulations (19). Typical solutions used to overcome this difficulty are outlined
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in the following sections.

1.3.3.1 Low-Order Chemical Kinetics Mechanisms

For most CFD applications, the order of the detailed reaction mechanisms are reduced

by using steady-state and partial equilibrium assumptions (93). Careful investigation

of the reaction mechanisms reveals that a certain number of intermediate species

are responsible for the occurrence of slow reactions. Also, it is observed that the

backward and forward reaction rates of certain number of reactions are almost equal.

Hence, assuming steady-state assumption for particular species (dYk/dt = 0) and

equilibrating the forward and backward reaction rates of the certain reactions reduces

the order of the system of ODE. In this way, the new system of equations that

needs to be solved becomes a relatively smaller set of ODEs than the original form

with additional algebraic equations. It should be noted that the reduction process

requires extensive knowledge on the behavior of the species and reactions for the

given particular mechanism (45). Also, the assumptions are only valid for the given

range of conditions (i.e., high/low temperature, pressure, etc.). Finally, it has been

reported that the order reduction may lead to mechanisms stiffer than their original

forms (63).

1.3.3.2 Intrinsic Low Dimensional Manifolds

The intrinsic low dimensional manifolds method is used to reduce the order of the reac-

tion mechanisms automatically without a-priori knowledge of the chemical processes.

For an isobaric, adiabatic system with constant element composition, all trajectories

that are started at distinct points in the compositional state-space eventually lead

to the equilibrium point. ILDM is based on the fact that at a certain portion of the

chemical state-space all trajectories tend to bunch (45). At this lower dimensional

attractor, slow processes are more important than faster ones (44). The identification

of this attractor is achieved by the perturbation analysis. Eq. 21 can be linearized in
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the neighborhood of Y 0
k by using the Taylor series expansion as:

dYk

dt
= F (Y 0

k ) + J(Yk − Y 0
k ) (22)

where J is the Jacobian matrix given by the following formula:

J =




dF1

dY1

dF1

dY2
.... dF1

dYNs

dF2

dY1

dF2

dY2
.... dF2

dYNs

.... .... .... ....

dFNs

dY1

dFNs

dY2

.... dFNs

dYNs




(23)

The Schur decomposition of the Jacobian matrix leads to

J = ΓΛΓ−1 (24)

where Γ is the eigenvalues vector, and Λ is the corresponding eigenvector matrix.

The first advantage of this decomposition is that the ODE system is now transformed

into uncoupled form. Second, it gives a clear explanation to the behavior of the

system to different perturbations. If the system is perturbed, the processes with pos-

itive eigenvalues diverge whereas processes with negative eigenvalues converge to the

low-dimensional attractor in the compositional state-space in the direction of their

corresponding eigenvector (45). In the ILDM methodology, all but a few eigenvalues

are replaced by zeros. In this manner, given state vector (Yk, T ) is projected onto a

lower dimensional attractor (manifold) in the compositional state-space where slow

processes are important. The states that correspond to zero eigenvalues are no longer

needed since they are represented by slow processes. Hence, the dimensions of the

system of equations are drastically reduced to 1-3 from Ns. In this manner, start-

ing from a detailed reaction mechanism, ILDM can reduced the degree of freedom

effectively with the assumption that only slow processes are important.

One of the most important difficulty associated with this methodology is that

the ILDM assumes that only slow processes that are close to the equilibrium are
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important (63). This is strictly true for steady flames. However, flame extinction

or re-ignition the chemistry is not governed with slow processes. To capture these

effects, the dimension of the ILDM has to be increased. Also, the identification of

the lower dimensional attractor can be troublesome especially for high hydrocarbon

fuels such as heptane. A hierarchical reconstruction scheme is proposed to overcome

this problem, which depends on creating the ILDM surfaces by starting from simple

fuels and extending towards more complex ones (9; 71; 39).

1.3.3.3 In-situ Adaptive Tabulation

ILDM methodology requires construction of look-up tables to be used in the CFD

simulations. However, the portion of the compositional state-space that will be ac-

cessed by the flow solver is not known a-priori. Hence, huge structural tables must

be generated for the ILDM reduced set of reaction progress variables. The size of the

look-up tables is restricted by the memory capacity of the computer clusters. This

difficulty is overcome by using ISAT, where the look-up tables are generated during

the actual CFD simulation (65). Unlike ILDM, ISAT does not provide any reduction

on the order of the reaction mechanism. Hence, ISAT can be used by both detailed

and reduced reaction mechanisms effectively.

The formulation for the ISAT model can be described based on the reaction map-

ping, R(Φ0), which is obtained by integrating Eq. 21 between t0 and t0 + △t.

The ISAT table is populated with the Φ0, R(Φ0) and the mapping gradient A =

∂Ri(Φ)/∂Φj . The mapping gradient measures the sensitivity of the reaction map-

ping to changes in the composition and provides coefficients that will be used for

linear interpolations (63). For each entry in the ISAT table there exists a parameter

that shows the size of the region of accuracy. For a new state that lie within this

region (i.e., Φq), there is no need to use a stiff ODE solver during the simulation, and

20



the reaction mapping can be calculated by:

R(Φq) = R(Φq) + A(Φ0)(Φq − Φ0) (25)

When the reaction mapping for a state that is outside the area of accuracy for the

existing states in ISAT table is required, a stiff ODE solver is used. The resulting

reaction mapping is compared with the one that is calculated by Eq. 25. If the error

between two mappings is larger than a given tolerance ǫ, the new state is added to

the table. If the error is smaller, the size of the region of accuracy for the existing

state in the table is increased. In this manner, all states that lie between the existing

state and the newly calculated state can be represented by the ISAT table without

using the stiff ODE solver.

ISAT, as mentioned earlier, is no different than using a stiff ODE solver on the

early stages of the simulation. Also, the speed-up highly depends on the selection of

the ǫ. A large ǫ would provide speed-up with poor accuracy, whereas small ǫ would

yield the code to calculate the reaction mapping by using stiff ODE solvers at most

of the time. There exists no well-established methodology to select an optimum value

for the ǫ.

1.4 Neural Networks

Living organisms solve problems in a completely different manner than the computers.

A computer program can find the exact trajectory for the movement of a stone which is

thrown at t = 0 with a known initial velocity and direction. The movement is governed

by the laws of physics, which is known to the architect who writes the program and

is solved exactly by the computer. Even if the initial velocity and direction are not

known exactly, the computer can provide different trajectories with respect to the

given different initial conditions, so that the path can be predicted from these results.

The human brain, however, does not solve equations. Nonetheless, a person watching

someone throw a stone can know (or predict) the trajectory as well. This is achieved
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(a)

(b)

Figure 1: Schematics of (a) biological (53) and (b) artificial neurons.

by a learning process through given examples. The processors in the brain that let us

think, the neurons, are organized in dense, complex network architectures, and they

perform sophisticated information processing tasks through an inter-communication

procedure (47). The communication is achieved through neurotransmitters, which

generate electrical signals within the somatosensory system. The strength of the

electrical signal, and the pattern of which neurons communicate with each other is

formed by this learning stage.

The ANNs are modeled after their biological counterparts and they emerge as an

alternative way to conventional computer modeling to provide answers into certain

tasks in a much faster manner. Next sections will provide a detailed discussion for

the biological and artificial neurons.
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1.4.1 Biological Neurons

A neuron is the fundamental cellular unit of the nervous system, and can essentially

be thought of as a single microprocessor unit. Fig. 1 (a) shows a typical sketch of

a biological neuron (BN). The basic structure of a neuron consists of a cell body

(soma), a long tail somewhat similar to an electrical cable (axon) and finally branch

like structures both around the cell body (dendrites) and at the end of the axon

(axon terminals) (47). The axon is covered with a myelin sheath which is mainly for

insulation purposes. The dendrites are used to receive electrical signals, whereas the

axon terminal transmits signals to the dendrites of other neurons.

A typical BN rests with a net negative electric potential around -70 mV compared

to the fluid surrounding it (40). When a pre-synaptic neuron releases neurotransmit-

ters, they bind to the receptors of the post-synaptic neuron in its dendrites. This

action causes the ion pumps and controllable ion channels of the post-synaptic neu-

ron to release either positively or negatively charged ions (i.e. Na+, K+, Cl−) (40).

Based on the released ions, the pre-synaptic neuron may either increase (excitatory)

or decrease (inhibitory) the electric potential. It should be noted that not all the

signals may excite the neuron. The net electrical signal needs to pass the threshold

at the axon hillock, which is the part of the BN that merges the soma to the axon.

Once the threshold is passed, the excitatory signals are transmitted through the axon

to the axon terminals. Then, the axon terminals release neurotransmitters to the

dendrites of the neighboring neurons so that the electrical signal sweeps through the

somatosensory system.

The receiving neuron fires its own neurotransmitters depending on the cumula-

tive effect of all excitatory and inhibitory signals arriving from all neurons. The

electric potential threshold of each neuron is different than the each other. Also,

the ion pumps release different ions based on the incoming neurotransmitters leading

to a different type of response (and effect) to the neighboring neurons. All of these

23



parameters are adjusted by a life-long training procedure.

1.4.2 Artificial Neurons

Artificial neurons (AN) are modeled after their biological counterparts. A typical

sketch of an AN is given in Fig. 1 (b). Similar to a BN, an AN has a process-

ing element (soma) which processes the information coming through communication

channels (dendrites) from other ANs that it is connected in the complex ANN archi-

tecture. The AN fires a signal if the cumulative effect of all signals coming from other

ANs are larger than a given threshold (axon hillock). This signal is transmitted to

other neurons (axon and axon terminals), so that the given initial data (stimulis) can

proceed through the ANN (somatosensory system), which leads to the final answer

(reaction).

In an ANN architecture each connection between a particular AN pair (i and j) has

a certain synaptic efficiency, the weight coefficient Wji. Basically, this coefficient

defines the strength of the connection between all AN pairs. The combined effect of

all pre-synaptic neurons on the given AN i and an input vector (neti) is:

neti =

J∑

j=0

Wij[k]yj − bi (26)

where yj is the signal fired from AN j to i and Wij is the respective weight

coefficient. Here, bi represents the internal threshold for the AN i. The net output of

this AN is

yi = g(neti) (27)

where g is an activation function.

For a given ANN architecture and the input/output pairs, the problem is then

to find the values of Wim, which provide the correct output for a given input (16).

This is achieved by the so-called training (learning) process. The training can be

either in a supervised or unsupervised mode. In the supervised mode, an external

teacher exists, who has the capability to identify the error made by the current
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distribution of the weight coefficients for the given input vector. Then, through an

weight adaptation technique (i.e. gradient descent, conjugate gradients etc.) the

weights are modified so that the ANN provides the optimum answer to the given

input vector. In the unsupervised learning, however, there is no external teacher to

quantify the error made by the given ANN. The unsupervised learning is typically

used for the problems, where the inputs are not known, but are rather latent (47).

The ANN learning in this case is achieved by providing a measure of the quality of

the representation that is aimed to be learned.

The activation function (g, see Eq. (27)) represents the rate of firing for the

given AN based on the activity level of the input vector. There are couple of well

known functions used typically for the ANN computations. Among these functions,

the threshold function is the most simplistic one, which assumes that the AN fires if

the cumulative effect of the excitation is above than a given value. Otherwise the AN

rests. The sigmoid function is, however, by far the most commonly used activation

function (16), which is an increasing function that saturates to 0 and 1 at the extreme

values of the excitation. Unlike the threshold function, sigmoids are differentiable,

which makes it a very effective function for the existing learning rules. The output

range of the AN can be increased by using tangent hyperbolic functions. The output

for this function varies between ± 1.

The BNs are much slower than the ANs as it is shown in Table 4. Typical pro-

cessing speed for an AN is of the order of ∼102 Hz, whereas it is ∼109 Hz for a BN.

However, the brain compansates the relatively slow rate of operation of the BNs by

having a huge number of neurons with massive number inter connections between

them. It is estimated that there are of the order of 10 billion neurons in the human

cortex with 60 trillion connections (40). The learning for an AN takes typically 1-2

days, whereas BNs are trained during a life time. Hence, they are more adaptable

compared to the ANs.
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Table 3: Comparison of Biological and Artificial Neurons

Artificial Neurons Biological Neurons
Operation Frequency ∼109 Hz ∼102 Hz
Signal Velocity ∼108 m/s ∼1 m/s
Connections ∼10 ∼104

Operation Sequential/Parallel Sequential/Parallel
Training ∼1 day ∼1—103 days

Table 4: Comparison of Biological and Artificial Neurons

LEMLES LANN-LEMLES TANN-LES
Subgrid Turbulence LDKM LDKM LDKM
Subgrid Combustion LEM LEM TANN
Subgrid Chemistry DI LANN —

1.4.3 ANN for Chemical Kinetics Calculations

ANN for the reactive flow computations has been used by different research groups

in the past. Blasco et al. (7) performed one of the first attempts to incorporate

ANN into chemical kinetics calculations, where the accuracy of the proposed model

was tested in a plug flow reactor calculation. A speed-up of 2700 with ANN was

obtained when compared to direct integration (DI). In a later study (8), time step

size was included as an additional parameter, and it was reported that the memory

requirement for such an ANN computation requires only 24 kbytes as opposed to

19934 kbytes for tabulated chemistry calculations. Choi and Chen (15) trained ANN

for ignition delay time calculations and coupled it with a well-mixed reactor solver.

A speed-up of 600 was obtained. Finally, an integration of ISAT with ANN for a

partially stirred reactor computation was studied by Chen et al. (14), where ANN

was trained based on an already existing ISAT table. Same approach was later re-

visited by Kapoor et al. (32) and applied to unsteady scalar field evolution within

LEM approach.
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In more recent studies, ANN has been used within the LES computations of reac-

tive flows. The work by Kempf et al. (34) investigated the structure of the SANDIA

Flame D (1) by LES, where ANN was used to store a steady flamelet library to

provide species mass fractions, density and viscosity. They reported that the ANN

reduces the storage size of the chemistry library by three orders of magnitude having

almost same efficiency with a linear interpolation scheme. Ihme and co-workers (29)

used ANN to store a flamelet library and applied it to a bluff body stabilized flame.

A general strategy to optimize ANNs (O-ANN) for the given number of layers and

neurons per layers was also proposed. The ANN performance with respect to accu-

racy, data retrieval time and storage requirements was compared with the structured

tabulation methods, and it was shown that ANN yielded comparable accuracy with

considerably lower storage and computational time.

Previous work by Kempf et al. (34) and Ihme et al. (29) used ANN to store

flamelet libraries in connection with the presumed PDF approach, where the thermo-

chemistry is not computed directly within the LES, but rather obtained from the

ANN. In this approach, flamelet itself already provides a considerable amount of

speed-up compared to directly simulating the scalar field, and the merit of using

ANN mostly lies in the memory savings. An alternative approach is to use ANN

to directly represent the multi-step kinetics within the LES approach, and this has

been recently investigated by Sen and Menon (76). Here, a series of simulations of

the unsteady evolution of flame-vortex interactions (FVI) were used to extract the

thermo-chemical information for ANN training table construction. These simulations

of FVI showed that, although the computations are started for a single large scale

vortex, actually a large number of scales are present over the entire simulation period.

Hence, each test case with an initial single vortex of a given size provided additional

data over a much wider range of scales. The ANN was later used to replace the DI

based on a 14-species, 11-steps reduced chemical kinetics mechanism within the LES
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sub-grid calculations of premixed, syngas/air flames. A speed-up factor of around 11

with considerable amount of memory savings was reported.

1.5 Fundamental Flame-Turbulence Interaction Studies

For premixed turbulent combustion studies, the main idea is to investigate the effect

of differential diffusion, flame curvature-strain and unsteady ignition effects on the

turbulent flame speed and flame dynamics. Baum et al. (2) performed a series of

DNS studies to investigate the validitiy of the flamelet assumption in a premixed H2-

Air flame with a detailed reaction mechanism. For each DNS case they changed the

equivalence ratio. The u′/SL and l/LF was roughly kept constant in order to limit

the flames in the wrinkled flames (flamelets) regime of the turbulent combustion

diagram. It was observed that for lean flames the local flame structure correlates

with the curvature, whereas for rich flames with the strain rate. Later, Im and Chen

(30) performed a similar study to further investigate the effect of stretch on the

overall burning rate for an H2-Air flame with detailed kinetics. They also included

preferential diffusion in their simulations. It was concluded that for rich-rich flame

interactions the radical pool exhibits an overshoot instantaneously. The heat release,

interestingly, remained unaffected in those instants exhibiting a smooth profile. This

phenomenon was not observed in lean-lean flame interactions.

Echekki and Chen (18) extended these studies to investigate the CH4-Air flames.

As a first step in this effort, a relatively low order chemical kinetics mechanism with

four steps and seven species was used to calculate the chemical reaction rates. Here,

the correlation of radical species with strain rate and curvature was extracted, and it

was found that diffusive species (i.e. H andH2) are well correlated with the curvature,

whereas less diffusive species (i.e. CO) are affected more by the unsteady strain rate.

The same observation was also made by DNS studies using higher order reduced

mechanisms as well (4; 5). Bell et al. (4) used a 20 species and 84 reactions CH4-Air
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mechanism for their DNS study. They investigated the effect of varying levels of

turbulent intensity on the flame area and laminar flame speed. They concluded that

the flame speed increases faster than the increase in the flame surface area. In a later

study, Bell et al. (5) performed the DNS of a laboratory-scale turbulent slot flame

and provided comparisons with an experimental study, which showed good prediction

of the flame height, global consumption speed and the overall time averaged flame

shape.

The flame dynamics is strongly affected by the effect of wrinkling of the flame

front through turbulent eddies. This effect is different for each different fuel and

equivalence ratio. Bell et al. (3) investigated this effect on two-dimensional DNS

studies of turbulent, lean premixed H2/Air, C3H8/Air and CH4/Air flames. The

results indicated that for methane flames the local burning rate is relatively insensitive

to the flame curvature, whereas hydrogen and propane flames exhibit an increased

level of sensitivity. For propane flames the burning is enhanced in regions of large

negative curvature, and the flames are thermo-diffusively stable.

The non-premixed DNS studies in general focus on investigating the extinction and

re-ignition behavior in strained flames. Sripakagorn et al. (81) examined this process

in an isotropic decaying turbulence using a one step global reaction mechanism. Here

it was argued that the extinction mainly occurs due to the locally strong fluctuations

of the scalar dissipation rate. For the flame reignition, three major scenarios were

identified: independent flame, re-ignition with edge flame propagation and through

engulfment by a hot neighborhood. Pantano (54) investigated the same process for

a CH4/Air flame with a four step reduced mechanism. The joint PDF of the three

dimensional edge velocity and the scalar dissipation rate was extracted and it was

observed that the flame edge propagates with a velocity controlled by the scalar

dissipation range.
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Hawkes et al. (26) provided discussion for the extinction and re-ignition of non-

premixed syngas/air flames with a relatively detailed 21 steps, 11 species reduced

mechanism. The PDF of the scalar dissipation rate conditioned on the mixture frac-

tion was found to be log-normal with a slight negative skewness. Also, the mechanical-

to-scalar mixing timescale ratio calculated for the mixture fraction was found to be

independent of the Reynolds number. On the other hand, the mechanical-to-scalar

mixing timescale ratio calculated for the reactive species was found to be strongly

affected by the Schmidt number and the chemical reactions.

Soot formation in non-premixed flames is also an important issue which needs to

be investigated in details. The DNS study by Lingell et al. (41) examined this process

in 2-D for an ethylene flame with a 15 steps, 19-species chemical kinetics mechanism.

The relative motion between flame and soot particles was found to be resulting in a

wide spread of the soot in the mixture fraction state-space. The relative motion in

general occurs due to the change of flame motion as a result of the flame curvature.

All the aforementioned DNS work used mixture averaged species transport for-

mulations. It is well known that this is valid only under certain assumptions, and

multi-component diffusivities should be used for proper flame computations. Re-

cently Grcar et al. (25) studied the effect of using mixture averaged formulation

agains multi-component diffusivity in a turbulent premixed H2/Air flame computa-

tion. Here it was pointed out that the DNS with multi-component diffusivity indicated

an increased level of extinction. Also, the flame exhibits more local pockets of hot

products compared with the results obtained by mixture averaged formulations.
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1.6 Objectives

The main motivation for this thesis study is to seek a way to use ANN based mod-

eling for speeding up LES of turbulent reactive flows. ANN code development and

incorporation of the new ANN based modeling capabilities into an existing LES solver

is the primary goal. In contrast to the previous LES studies using ANN, the main

purpose here, which is new, is to use ANN to directly represent the multi-step ki-

netics within the subgrid LES. The ANN training database is constructed by using

stand-alone LEM computations. Hence, the thermo-chemical state-space is predicted

without requiring any knowledge on the actual geometry of interest, which is also

new. The objectives in details are follows:

Objective 1 Develop a Tabulation Strategy for Instantaneous Reaction Rates

The chemical source terms (ω̇k) associated with the species conservation equation

need to be calculated during the reactive flow computations. The system of equations

for chemical kinetics calculations is non-linear, coupled and most importantly stiff

which require the use of stiff ODE solvers. The solution procedure based on stiff

ODE solvers is very time consuming and acts as a bottleneck for the reactive flow

computations. Tabulation based models (i.e., ILDM, ISAT) are widely used in the

literature for speeding up the computations. These models have their own drawbacks,

which were explained in the previous sections. The current thesis study is seeking a

way to develop a new tabulation strategy that can be used in the LES of reactive flows.

Within this work, three different tabulation strategies based on the (i) laminar flames,

(ii) laminar flame-vortex interaction and (iii) laminar flame-turbulence interaction

have been developed.

Objective 2 Develop an ANN Methodology in Connection with the First Objective

for Instantaneous Reaction Rates (LANN)

One of the main problem associated with the tabulation based models is the

memory requirement. The look-up table size is restricted by the memory capacity
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of the supercomputer used for the computations. Hence, usually sparse tables are

used in connection with search and interpolation algorithms. Searching the closest

states and interpolating them to find the reaction rate corresponding to the state

calculated by the flow solver may be time consuming and yield interpolation errors.

ANN is used within this thesis work to overcome this problem. ANNs can be trained

on relatively huge tables and can store the information on a much memory efficient

manner. Also, ANNs provide relatively smooth and faster interpolated data compared

to the conventional interpolation schemes. ANN, in this respect, can be used as a

tool to replace computationally expensive chemical kinetics calculations in the LES.

It is possible to assume ANN as a ”black box”, which maps the inputs (Temperature,

species mass fractions) to the output (the reaction rate):

ω̇i = f(Yk, T ) (28)

Once the training is achieved, it can be used for predictions into new states requiring

neither any extensive computational power nor memory.

Objective 3 Evaluate LANN in Premixed Flame-Turbulence-Vortex Interaction

Problem

The developed tabulation procedures in connection with the ANN methodology

is tested in an LES of premixed flame-turbulence-vortex interaction problem. The

scalar field is initialized based on a laminar flame simulation. An isotropic backgound

turbulence and a pair of counter rotating coherent vorticies are used to simulate the

small and large scale flame wrinkling that occurs typically in gas turbine combustors.

The results provide comparison for the accuracy of the proposed LANN model against

the stiff ODE solvers.

Objective 4 Evaluate LANN by a Nonpremixed Flame Exhibiting Extinction-

Reignition Physics

The LANN methodology is tested further on a nonpremixed temporarily evolving
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jet flame. The test case is selected based on a DNS study that exists in the liter-

ature (26). The species conditional PDFs are extracted from the LANN-LEMLES

to provide comparison with the DNS study. The PDFs of the scalar dissipation rate

calculated based on the mixture fraction and species are also calculated and their

evolution during extinction and reignition phases is investigated.

Objective 5 Develop a Tabulation Strategy for Filtered Reaction Rates (TANN)

The conventional LES approach is to solve the filtered species equation on the

resolved level. This approach requires the calculation of the filtered reaction rate

which is not only a function of the filtered mass fractions and temperature, but also

the turbulent quantities. The common approach to calculate the filtered reaction rates

is to assume a locally laminar flame front with respect to the turbulent flow field (as

in flamelets and CMC) and re-construct the subgrid species evolution based on the

reduced dimensions, i.e., scalar dissipation rate, mixture fraction, etc. The current

study proposes a new tabulation model for the filtered reaction rates, which does

not convey any explicit assumption regarding the interaction of turbulence with the

laminar flame front, but solves them directly on their respective time and length scales

through the stand-alone LEM computations. The stand-alone LEM code developed

for the LANN approach is used for filtered reaction rate tabulation by applying a

spatial filter on the table obtained for instantaneous reaction rates. For this approach,

the filtered reaction rate is obtained from the ANN as a function of the filtered

mass fractions, temperature, subgrid Reynolds number and the filtered level species

gradient:

¯̇ωi = f(Ỹk, T̃ , Re∆,
∂Ỹi

∂x
) (29)

Objective 6 Evaluate TANN by a Nonpremixed Flame with Extinction-Reignition

Physics

The table generated for Objective 5 is used in connection with the ANN to replace

the filtered reaction rate calculations on the test case used in Objective 4.
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Objective 7 Apply and Evaluate LANN and TANN for a Complex Combustor

Flow

The final objective is to use both the LANN and TANN approaches on a practical

combustor simulation. The stagnation point reverse flow (SPRF) combustor, which

is developed at the combustion lab of Georgia Institute of Technology is selected

as the test case. The SPRF combustor was studied both computationally (88) and

experimentally (24) before. The current study aims to examine the flame structures

in the same combustor by using a relatively high order (16 species, 12 steps) skeletal

chemical kinetics mechanism on a computationally much affordable way by using the

LANN and TANN techniques.

To achieve these objectives, two major tools are developed within the thesis study:

Stand Alone LEM Solver Development

A stand-alone LEM code is developed, which solves the unsteady evolution of the

scalar field on a one-dimensional line. Unlike the LEM subgrid model (LEMLES) ,

which simulates the scalar field on one dimensional lines embedded within each LES

supergrid cells, the computational domain in the current approach extends across the

whole flame front without using any LES cell. Thus, the LEM cells here are continuos

throughout the flame front. The proposed model solves the governing equations for

the species and temperature fields starting from an initially laminar flame simulation.

In this manner it is possible to identify the unsteady interaction process between the

laminar flame front and the turbulent structures. Hence, the current tabulation ap-

proach may be considered as an extension of the flamelets. The code that is developed

can use mixture averaged and multi component diffusion formulations as well.

ANN Training Code Development

The look-up tables constructed through the developed approaches in the current

thesis study are used with the ANN to achieve computational time and memory

savings. An ANN training code is developed to learn the input/output pairs that exist
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within the look-up table. The ANN code uses a backpropagation learning algrorithm

with gradient descent rule (GDR). An extension of the GDR is also developed and

coded, which uses non-constant model coefficients during the computations. This new

rule is called the adaptive gradient descent rule (AGDR). The ANN training code uses

fully connected processing elements (PEs) with a tangent hyperbolic function.

The details of the both codes will be provided on the next chapters.
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CHAPTER II

MATHEMATICAL FORMULATION

2.1 Gas Phase Governing Equations

The gas phase governing equations of continuity, momentum, energy and species in

the conserved form are given as:

∂ρ

∂t
+
∂ρui

∂xi

= 0

∂ρui

∂t
+

∂

∂xj
[ρuiuj + pδij − τij ] = 0

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui − ujτji + qi] = 0

∂ρYk

∂t
+

∂

∂xi
[ρYkui + Jik] = ω̇k (30)

In the above equations ρ is the density, ui is the i-th velocity component, E is

the total energy and Yk is the k-th species mass fraction. The viscous stress tensor is

computed as:

τij = µ

(
∂ui

∂xj

− ∂uj

∂xi

)
− 2

3
δijµ

∂uk

∂xk

(31)

where δij is the Kronecker function (δij =1 if i = j; δij =0 if otherwise), and µ is the

dynamic viscosity. The total energy is given as:

E = e+
1

2
ukuk (32)

In this formulation the internal energy per given mass is:

e =

Ns∑

k=1

Ykhk −
p

ρ
(33)

The k-th species total enthalpy is calculated as the sum of the chemical and sensible

enthalpies as:

hk(T ) = ∆h0
f,k +

∫ T

T0

cP,k(T
′)dT ′ (34)

36



Here, ∆h0
f,k is the enthalpy of formation at a given reference temperature and pressure

(T0, P0), and represents the heat released or absorbed by the chemical reactions when

simple substances combine into a more complex substance. The second term on the

right hand side is the sensible enthalpy, which is temperature dependent. At the

standard temperature and pressure the sensible enthalpy is zero, which leads to total

enthalpy being equal to the enthalpy of formation. Finally, cP,k is the heat capacity

at constant pressure for the k-th species.

In Eq. 30 the pressure is directly derived from the equation of state for a perfect

gas:

p = ρRuT
Ns∑

k=1

Yk

Wk
(35)

where Ru, Ns, Wk are the universal gas constant, number of species and molecular

weight of k-th species, respectively.

The k-th species mass reaction rate per unit mass (ω̇k) is calculated by solving

the ODE system representing the evolution of the species mass fractions with respect

to the given reaction mechanism. For the given initial values and a time step size, a

variable coefficient ODE solver with fixed leading coefficient implementation is used

to find the new scalar field. Then, the reaction rate is given by:

ω̇k =
(Y t+△t

k − Y t
k )ρ

△t (36)

Heat flux (qi), k-th species diffusion flux (Jik) and the k-th species mass reaction rate

per unit mass will be discussed in more details on the proceeding sections.

2.1.1 Transport Properties

The heat flux (qi) and the k-th species diffusion flux (Jik) introduced in the Eq. 30

require special handling for a multi-component mixture. In their general form, these

terms are given as:

qi =
Ns∑

k=1

Jikhk − κ▽T −
Ns∑

k=1

RuT

WkXk

DT
k dik (37)
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Jik = ρYkVik (38)

where DT
k is the thermal diffusion coefficient and Vik is the k-th species diffusion veloc-

ity. The species diffusion velocity is a complicated expression that takes into account

mass diffusion as a result of concentration gradients (ordinary diffusion), temperature

gradients (Soret diffusion) and pressure gradients. In a typical combustion system

the pressure gradients are not significantly large (86), hence, the discussion here will

be focusing mainly on the ordinary and Soret diffusion.

2.1.1.1 Multi-Component Formulation

For a multi-component mixture with negligible pressure gradients, the total diffusion

velocity is:

Vik =
1

XkWmix

Ns∑

j 6=k

WjDkj
∂Xk

∂xi

− DT
k

ρYkT

∂T

∂xi

(39)

Here, Dkj is the multi-component diffusion coefficient, DT
k is the thermal diffusion

coefficient and Xk is the k-th species mole fraction. The Dkj’s are derived from the

kinetic theory, and given as:

Dkj = Xi
16T

25p

Wmix

Wj
(Fkj − Fkk) (40)

The Fkk and Fkj are the components of the F matrix ([F ]). The [F ] is calculated by

taking the inverse of the [L]. The components of the [L] are given by:

Lkj =
16T

25P

Ns∑

m=1

Xm

WkDkm
[WjXj(1 − δkm) −WkXj(δkj − δjm)] (41)

In this equation, Dkm’s are the binary diffusion coefficients. It assumes a two compo-

nent binary mixture, where species is k diffusing into species m. Based on the kinetic

theory of gases, where the individual gas molecules are modeled as rigid spheres, the

binary diffusion coefficients are found to be proportional to the mean velocity rigid

spheres and the mean free path, which leads to

Dkj =
3

16

√
2πk3

BT
3/mjk

pπσ2
jkΩ

(1,1)
(42)
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Here kB is the Boltzman constant, σjk is the mean diameter (= (σjk + σjk) /2), and

Ω(1,1) is the correction factor used to modify the ideal gas law to account for the

molecular interactions. The reduced mass mjk is the reduced molecular mass of the

species pair j, k, and is given by

mjk =
mjmk

mj +mk
(43)

2.1.1.2 Mixture-Averaged Formulation

The multi-component formulation introduced in the previous section is the correct

and accurate way of addressing the diffusion phenomenon for a multi-species mixture.

However, the calculation requires inverting an Ns×Ns matrix to find the Dkj’s. Fur-

thermore, although it was not shown for the sake of brevity, for DT
K and κ, a 3Ns×3Ns

system of algebraic equations are needed to be solved. Hence, the multi-component

diffusion formulations are avoided in the practical LES. Instead, computationally more

efficient, but not as accurate models are employed. These models will be discussed in

the current and proceeding sections.

The mixture averaged formulation derives the diffusion coefficients from pure

species properties by mixture averaging rules. The mixture averaged formulations

are correct strictly only (i) for binary mixtures and (ii) for mixtures where all species

except one move with nearly the same diffusion velocity (33). Also, mass conservation

is an issue and needs to be confirmed separately, which may be time consuming.

The diffusion velocity for a mixture averaged formulation is given as:

Vik = − 1

Xk
Dkm

∂Xk

∂xi
− DT

k

ρYkT

∂T

∂xi
(44)

where the mixture diffusion coefficient for the k-th species is:

Dkm =

Ns∑

j 6=k

XjWj

Wm

Ns∑

j 6=k

Xj/Djk

(45)
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This formulation needs to be controlled to satisfy the net species diffusion flux to

be zero (
Ns∑

k=1

VikYk = 0). For most of the cases this constraint is not satisfied, which

leads to the violation of the conservation of mass in a given control volume. In a

simple manner this can be corrected by ensuring that
Ns∑

k=1

Yk = 1 and by adding

(or subtracting) the deficient (or excess) species mass fractions from N2. It should

be noted that this would only work if the system is premixed or highly diluted.

Another solution is to add a correction velocity to the convective terms in the species

conservation equation to account for the excess diffusion. The correction velocity is

calculated as:

V c
i = −

Ns∑

k=1

Yk

(
1

Xk
Dkm

∂Xk

∂xi

)
(46)

In this case the k-th species diffusion flux is calculated as:

Jik = ρYk(Vik + V c
i ) (47)

The mixture averaged viscosity is given by the Vilke’s formula:

µ =

Ns∑

k=1

Xkηk

Ns∑

j=k

XjΦkj

(48)

where

Φkj =
1√
8

(
1 +

Wk

Wj

)− 1

2

(
1 +

(
ηk

ηj

) 1

2

(
Wj

Wk

) 1

4

)2

(49)

The ηi in this formulation represents the i-th species viscosity. In a similar manner

the thermal conductivity is calculated by using the following formula:

κ =
1

2




Ns∑

k=1

Xkλk +
1

Ns∑

k=1

Xk/λk




(50)

where λk is the pure species conductivity
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2.1.1.3 Simplified Fickian transport

The diffusion coefficients (viscosity, thermal conductivity and species diffusion) can

be calculated by excluding completely the effect of multi-component diffusion. For

this case the viscosity is given by the Sutherland’s rule as:

µ = S0
T 3/2

T + S1
(51)

where S1 is 110.4 K and S0 is:

S0 =
µref

T
3/2
ref

(Tref + S1) (52)

Here µref is the reference viscosity at the reference temperature (Tref). Once the

viscosity is known, the mixture thermal conductivity and diffusion coefficients are

calculated based on the unity Lewis numbers and the given Schmidt number as follows:

Dkm = µ/Sck; κ = ρCpDkm (53)

Apparently this is the most computationally efficient model among the ones listed in

this section. However, this approach completely rejects the multi-component diffusion

and calculates the mixture thermal conductivity and the species diffusion coefficients

based on non-dimensional numbers and the mixture viscosity calculated for air.

2.2 LES Modeling

An LES approach is employed to solve the fully compressible, reacting, multi species,

Favre averaged form of the conservation equations. In the LES methodology large

scale structures are fully resolved whereas small scale structures (subgrid-scale) are

modeled by using appropriate subgrid momentum and combustion models (94; 66). In

the current approach a spatial top hat Favre filter is used with a kernel size equal to the

grid spacing (∆x). All flow variables are decomposed into the resolved and un-resolved

components as a result of the filtering operation as f = f̃ + f”, where (∼) represents
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resolved scales (which is Favre filtered) and (”) denotes the unresolved subgrid scale

quantities. Since the kernel size is equal to the grid spacing, the separation between

large and small scales is determined with ∆x. Thus, modeling is applied only for scales

smaller than ∆x. The following Favre-filtered form of the Navier Stokes equations

for continuity, momentum, total energy and species conservation are solved for the

current computations:

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0

∂ρ̄ũi

∂t
+

∂

∂xj

[ρ̄ũiũj + p̄δij − τ̄ij + τ sgs
ij ] = 0

∂ρ̄Ẽ

∂t
+

∂

∂xi

[(ρ̄Ẽ + p̄)ũi + q̄i − ũj τ̄ji +Hsgs
i + σsgs

i ] = 0

∂ρ̄Ỹk

∂t
+

∂

∂xi

[ρ̄Ỹkũi + ρ̄ȲkṼi,k + φsgs
i,k + θsgs

i,k ] = ¯̇ωk (54)

Any Favre filtered quantity (i.e. f̃) is calculated as (ρf/ρ), where the overbar

stands for spatial filtering using the top-hat filter. Here, ρ̃, ũi, Ẽ, and Ỹk are the

Favre filtered mixture density, velocity, total energy and k-th species mass fraction,

respectively. The total energy is given as Ẽ = ẽ+ 1
2
ũkũk +ksgs, where ẽ is the filtered

internal energy and ksgs is the subgrid scale kinetic energy. The filtered pressure is

calculated by the filtered equation of state as p̄ = ρ̄RT̃ +P sgs, where R is the mixture

gas constant. Past studies suggested that P sgs can be neglected (21) , and this is

assumed here as well. Ṽi,k is the diffusion velocity of the kth species and based on

the mixture averaged transport formulation, is given as:

Ṽik = −
¯Dkm

X̃k

∂X̃k

∂xi
+ Ṽ C

i (55)

where X̃k is the kth species mole fraction and ¯Dk,m is the mixture averaged species

diffusivity. ṼC is the correction velocity as given in Eq. 46. Finally, the filtered

heat-flux vector is given by
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q̃i = −κ̄ ∂T̃
∂xi

+ ρ̄
Ns∑

k=1

h̃kỸkṼi,k +
Ns∑

k=1

qsgs
i,k (56)

with h̃k and κ̄ denoting the Favre filtered kth species enthalpy and thermal con-

ductivity. The unresolved subgrid-scale terms arising due to the filtering approach on

the conservation equations are denoted with sgs and they need to be modeled. These

terms are the subgrid shear stress (τ sgs
ij ), subgrid viscous work (Hsgs

i ), subgrid viscous

stress (σsgs
i ), subgrid mass flux (φsgs

i,k ), subgrid diffusive mass flux (θsgs
jm ), and subgrid

heat transfer via turbulent convection of species qsgs
i,k . In details they are represented

as:

τ sgs
ij = ρ̄ [ũiuj − ũiũj]

Hsgs
i = ρ̄

[
Ẽui − Ẽũi] + [pui − p̄ũi

]

σsgs
i =

[
ũiτj,i − ũiτ̃j,i

]

φsgs
i,k = ρ̄

[
Ỹkuj − Ỹkũj

]

θsgs
jm = ρ̄

[
ỸkVj,k − Ỹk

˜Vj,k

]

qsgs
i,k =

[
hkDk

∂Yk

∂xi

− h̃k
˜Dkm

∂Ỹk

∂xi

]
(57)

Next, the sgs models selected to represent these unclosed terms for momentum

and combustion will be explained.

2.2.1 Subgrid Momentum Modeling

For the momentum and the energy transport, the major effect of the small scales is

to provide dissipation to the energy budget of the flow. Therefore, an eddy viscosity

type subgrid model is suitable for the calculation of subgrid stresses, τ sgs
ij and the

enthalpy flux, Hsgs
i . The sub-grid stress tensor is modeled as:

τ sgs
ij = −2ρ̄νt(S̃ij −

1

3
S̃kkδij) +

2

3
ρ̄ksgsδij (58)
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where resolved strain-rate is given as S̃ij = (1
2
)[( ∂ũi

∂xj
) + (

∂ũj

∂xi
)]. This expression is

closed if νt and ksgs are known. The subgrid scale eddy viscosity is calculated as

νt = Cν(k
sgs)

1

2 ∆̄, where ∆̄ is the grid cut-off scale (∆̄ = (∆x∆y∆z)
1

3 ). An additional

transport equation for the subgrid scale kinetic energy ksgs is solved, which is in the

form of:

∂ρ̄ksgs

∂t
+

∂

∂xi
(ρ̄ũik

sgs) = P sgs −Dsgs +
∂

∂xi
(
ρ̄νt

Prt

∂ksgs

∂xi
) (59)

where P sgs = −τ sgs
ij

∂ũi

∂xj
, and Dsgs = Cǫρ̄(k̃

sgs)
3

2/∆̄, are the production and the dissi-

pation of the ksgs, respectively. In this equation, Prt = 1, and the two coefficients,

Cνand Cǫ have constant value of 0.067 and 0.916, based on an earlier calibration (12).

The current study uses a dynamic approach to compute the model coefficients Cν

and Cǫ, as a part of the solution procedure. The dynamic approach (LDKM (37;

52; 48; 38; 20; 55) hereafter), assumes that the resolved and the unresolved small

scales behave in a similar manner and, thus, the model coefficients can be computed

using similarity relations. It has been previously reported based on the experimental

observations of high Reynolds number flows that the subgrid stress (τ sgs
ij ) at the grid

filter level ∆ and the Leonard’s stress (Lij) at the test filter level ∆̂(= 2∆) are self-

similar. Here, Lij is given by the following expression

Lij = [〈ρũiũj〉 − 〈ρũi〉〈ρũj〉]/ρ̂ (60)

However, a simple scale model of the form τ sgs
ij = CLLij for the given model coefficient

CL is found to be not providing the proper turbulent dissipation (43), and a better

approach is needed.

LDKM extends this observation by assuming that the Lij and the sub-grid stress

at the test filter level (τ̂ sgs
ij ) are also similar (i.e., τ̂ sgs

ij = ĈLLij). Then, τ̂ sgs
ij is modeled

using the same form used for τ sgs
ij with all variables defined at the test filter level.

This would give a new expression for the Lij as
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Lij =
τ̂ sgs
ij

ĈL

= 2ρ̂
Cν

ĈL

√
ktest∆̂(〈S̃ij〉 −

1

3
〈S̃kk〉δij) +

2

3

1

ĈL

ρ̂ ktestδij (61)

Assuming ĈL = 1, Cν can be determined using a least-square method of Lilly (42)

Cν = −
L′

ijMij

2MijMij
(62)

In the above expression, L′
ij = Lij− 2

3
ρ̂ ktestδij , andMij = ρ̂

√
ktest∆̂(〈S̃ij〉− 1

3
〈S̃kk〉δij).

The expression is closed by using the original definition of the Leonard’s stress Eq.

(60). A similar approach is used to obtain the dissipation coefficient Cε such that:

Cǫ =
∆̂(µ+ µt)

ρ̂ k
3/2
test

[〈T̃ij
∂ũj

∂xi
〉 − ̂̃Tij

∂̂ũj

∂xi
] (63)

where µt = ρνt, the tensor T̃ij is [ ∂ eui

∂xj
+

∂fuj

∂xi
− 2

3
∂fuk

∂xk
δij ], and

̂̃
Tij is the tensor at the

test-filter level.

In general, seven realizability conditions need to satisfied (92) for a sub-grid scale

stress tensor to guarantee a realizable solution. Those conditions are:

(1-3) τii ≥ 0, where i = 1, 2, 3;

(4-6) |τij | ≤ √
τiiτjj, where i 6= j;

(7) det(τij)≥0.

The LDKM approach is ensured to satisfy all the realizability conditions (70) at

majority of grid points even in complex reacting flows. Subgrid viscous work (Hi
sgs)

is handled in a similar manner with the subgrid shear/viscous stress terms. Starting

from the definition of the total energy (Ẽ = ẽ+ 1
2
ũkũk+ksgs), and the thermodynamic

relation between the enthalpy and internal energy (h = e + P/ρ), (Hi
sgs) can be re-

written in the following form

Hsgs
i = ρ[h̃ui − h̃ũi] + ρ[ũkukui − ũkukũi] + ρ[k̃sgsui − k̃sgsũi] (64)

This term is usually modeled in combination with the subgrid shear stress (σsgs
i )

as:
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Hsgs
i + σsgs

i = −ρ νT

PrT

Cp
∂T̃

∂x̃i

+ τ sgs
i,j ũi − (ρ

νT

PrT

+ µ)
∂ ˜ksgs

∂xi

(65)

where PrT is the turbulent Prandtl number (PrT = 0.6).

2.2.2 Subgrid Combustion Modeling

The subgrid mass flux, φsgs
i,k , the subgrid diffusive flux θsgs

i,k , and the filtered reaction

rate ¯̇ωk all require closure as well. However, a closure at the resolved scale (as done for

momentum and energy transport) is not appropriate since combustion, heat release,

volumetric expansion and small-scale turbulent stirring all occur at the small scales,

which are not resolved in a conventional LES approach. To address this important

physics, in this thesis work a subgrid combustion model based on the LEM (35)

model is used to account for the combustion occurring within the LES cells (called

LEMLES, hereafter). With this approach, there is no need to provide explicit closure

for φsgs
jm , θsgs

jm , and ¯̇ωk, since a more accurate and exact closure is implemented within

the subgrid scales.

LEM is a stochastic, Monte-Carlo simulation of the unsteady scalar field evolution

in a turbulent flow. It is based on solving the unsteady reaction-diffusion equation

on a one-dimensional domain, and treating the turbulent convection separately at

its own time scale. The computational domain is aligned with the direction of the

steepest scalar gradient, and the resolution is the smallest turbulent length scale (η),

so that it is possible to resolve all length scales ranging from integral length scale (L)

to η. The main LEM assumption is that the turbulent field is isotropic and with no

boundaries and/or body forces. This simplifies the turbulence representation by using

the well-established inertial range and scaling laws (78). Hence, the problem can be

treated as a one-dimensional front propagation. In LEM, the molecular diffusion and

chemical reaction evolve deterministically (and in an exact manner) from an initial
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scalar field by the solution of the thermo-chemical equations. Past studies of stand-

alone LEM computations (35; 78; 13) have clearly demonstrated the appropriateness

of this model and its ability to capture high Re, Sc, and Da scaling.

Consider the following exact transport equation for the kth scalar Yk, where there

is no spatial filtering:

ρ
∂Yk

∂t
= −ρ[ũi + (u′i)

R + (u′i)
S]
∂Yk

∂xi

− ∂

∂xi

(ρYk(Vi,k + V C
i )) + ω̇k (66)

The convective velocity here is separated into three parts as: ũi + (u′i)
R + (u′i)

S

that represent respectively, the LES resolved velocity field, the LES resolved subgrid

fluctuation (obtained from ksgs), and the unresolved subgrid fluctuation. Using this

definition, Eq. (66) can be recast into the following two-step numerical form (49):

ρ
∂Yk

∂t
= −[(ũi + u′i)

R]
∂Yk

∂xi
(67)

ρ
∂Yk

∂t
= ρ(u′i)

S ∂Yk

∂xi
+

∂

∂xi
(ρYk(Vi,k − V C

i )) − ω̇k (68)

Here, Eqs. (67) and (68) represent large-scale and small-scale processes, respec-

tively. The large-scale step (Eq. 67) advects the subgrid scalar gradient using a 3D

Lagrangian process that ensures strict mass conservation and preserves the small-

scale scalar structure. Within each LES cell the subgrid scale processes (Eq. (68))

represent respectively, the small-scale turbulent stirring, molecular diffusion and re-

action kinetics. Eq. (68) is solved on a 1D line embedded inside each LES cells with

a subgrid resolution that is fine enough to resolve the Kolmogorov scale, η. With

such a resolution, both molecular diffusion and reaction rate are closed in an exact

sense and this is one of the major strengths of the LEMLES strategy. The 1D line is

aligned in the flame normal or the maximum scalar gradient direction and thus, does

not represent any physical Cartesian direction.
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(a) (b) (c)

Figure 2: Scalar field evolution with LEM. (a) initial field, (b) after triplet map and
(c) after solving the diffusion-reaction equation

Based on this approach, in the LEMLES model (or in the stand-alone LEM solver

as well) the following reaction-diffusion equation system is solved on the 1D LEM

level:

ρ
∂Yk

∂t
= Fk,stir −

∂

∂s
(ρYk(Vk,s − V C

k )) + ω̇k

ρCp
∂T

∂t
= FT,stir − ρ

∂T

∂s
(

Ns∑

k=1

Cp,kYk(Vk,s − V C
s )) +

∂

∂s
(κ
∂T

∂s
) + ω̇T (69)

In the LEMLES, the equation system is solved on 1D LEM lines embedded within

each LES cells. In the stand-alone LEM, the 1D LEM line extends through the entire

flame in the flame normal direction. In this equation, heat release due to combustion is

calculated as ω̇T = −
Ns∑

k=1

hkω̇kWk. Here, the subgrid field within each LES supergrid is

resolved by NLEM number of LEM cells along the local coordinate s, which is aligned

in the direction of the steepest gradient.

2.2.2.1 Small Scales: Turbulent Stirring

Within the LEM concept, turbulent stirring is not solved deterministically, but is

rather handled explicitly by a numerical analogus using re-arrangement events (triplet-

maps) (35). This is represented symbolically as Fk,stir and FT,stir in Eq. (69). The

central assumption behind the stirring model is that the effect of the turbulent eddies
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on the scalar field is to stochastically re-distribute the concentration gradients, with-

out changing the scalar values, but by only increasing the scalar gradients. Therefore,

for the given initial scalar profile, the turbulent advection increases the gradients by

the re-distribution process whereas molecular diffusion competes with it by smoothing

out these gradients.

The action of a turbulent eddy on a given hypothetical concentration gradient

through triplet map is seen in Fig. 2. Once the location and the length scale for the

eddy is selected, the given segment of the concentration gradient is divided into three

sub-segments. The gradients in each sub-segment is increased by a factor of three

and the middle one is inverted. The final profile is replaced with the original one to

finish up the stirring process. Mathematically, applying the above mapping sequence

to the segment [xo, xo + l] at time to, transforms ψ(x, to) to ψ̂(x, to) according to:

ψ̂(x, to) =





ψ(3x− 2xo, to) xo ≤ x ≤ xo + l
3

ψ(−3x+ 4xo + 2l, to) xo + l
3
≤ x ≤ xo + 2l

3

ψ(3x− 2xo − 2l, to) xo + 2l
3
≤ x ≤ xo + l

ψ(x, to) otherwise

(70)

Triplet map implementation necessities the number of LEM cells used in the sim-

ulation to be a multiple of three. At the minimum, nine LEM cells are used to resolve

one turbulent eddy. Hence, to resolve a Kolmogorov eddy (smallest length scale), the

LEM domain resolution should be equal to η/6.

The location of stirring event is chosen from a uniform distribution and the fre-

quency of stirring is derived from 3D inertial range scaling laws derived from Kol-

mogorov’s hypothesis as (36):

λ =
54

5

νRe∆̄
Cλ∆̄3

[( ∆̄
η
)

5

3 − 1]

[1 − ( η
∆̄

)
4

3 ]
(71)

where, Cλ = 0.067 (13). The eddy size (l) is picked randomly from an eddy size

distribution f(l) ranging from ∆̄ to η:
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f(l) =
5

3

l
−8

3

η
5

3 − ∆
5

3

(72)

where η = Nη∆̄Re∆̄
−3/4, and Re∆̄ = u′∆/ν is the subgrid Reynolds number.

2.2.2.2 Large Scales: Advection

Once the subgrid evolution has occurred, large-scale advection (Eq. 67) is imple-

mented by a 3D Lagrangian process that determines the amount of mass to be ad-

vected and explictly advecting this amount (and the accompanying subgrid scalar

fields) across the LES cell faces. Further details of this process will be outlined in the

next chapter.

2.2.2.3 Volumetric Expansion

In LEM, volumetric expansion due to heat release is implemented locally within

the subgrid by expanding the LEM domain. Although not required, re-gridding is

employed to keep the total number of LEM cells constant throughout the simulation to

reduce programmatic complexity. Re-gridding can introduce some numerical diffusion

that is shown to be negligible in compressible flow simulations using an explicit time

step ∆tLES (which is limited by acoustic time scale).

2.3 Artificial Neural Networks

ANN is a highly interconnected computing system made up of a number of processing

elements (PEs) connected through uni-communication channels. ANNs can be used

to model the relationships between inputs and outputs of a system through a training

approach. The ANN code used in the study is based on a back-propagation learning

with gradient descent rule (GDR) (16). The back-propagation algorithm is considered

much simpler and to require less memory compared to conjugate gradient based

algorithms. Its validity has been shown elsewhere (73). The training algorithm

basically consists of two parts: (i) forward propagating the input and (ii) backward
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propagating the error. For the given ANN architecture, the output of a single neuron

i at iteration number k is calculated as:

yi[k] = g(neti[k]) (73)

for

g(z) = (ez − e−z)/(ez + e−z) (74)

where g() is the hyperbolic-tangent activation function

In Eq. (73), neti represents the effect of the all PEs that are connected to the PE

i. It can be calculated by using the following formula:

neti[k] =

M∑

m=0

Wim[k]ym[k] − bi[k] (75)

Here, Wim[k] is the weight coefficient between PEs i and m, ym[k] is the output of the

neuron m, bi[k] is the internal threshold for the PE i, and M is the number of PEs

connected to the PE i. Once the output is calculated for all PEs, the global error

(E[k]) for the current weight distribution is the difference between the desired (di)

and the calculated (yi[k]) value at the output layer:

E[k] =
1

2

I∑

i=1

[di − yi[k]]
2 (76)

with I denoting number of PEs at the output layer. The error at the output layer

is backpropagated to all the previous PEs to calculate the new weight coefficients by

using the GDR. This is achieved by adjusting the weights of all connections according

to the gradient of the local error across each connection as:

Wi,j[k + 1] = Wi,j[k] − η
dE[k]

dWi,j[k]
(77)

where η is the global learning coefficient which is constant and same for all PE’s and

iterations. Thus, the main idea behind gradient descent rule is to find a particular

weight distribution among all connections, which would minimize the global error.

In a perfect case this would provide dE[k]/dWi,j[k] = 0 and the algorithm would
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converge. Equation (77) requires calculation of the gradient of the global error with

respect to the individual weights. Considering the fact that the error function at

the output layer is differentiable, with a help of little algebra, the derivative of the

local error with respect to the connection coefficient can be obtained for a connection

between the output and a hidden layer as:

dE[k]

dWi,j[k]
= −[di − yi[k]]g

′(neti[k])yj [k] (78)

and for the rest of the connections as:

dE[k]

dWi,j[k]
= −[

M∑

m=1

δm[k]Wm,i[k]]g
′(neti[k])yj[k] (79)

Here, δm[k] is the local error term of the PE m. Its value depends if the PE m is in

the output or in one of the hidden layers is given by the following formula

δm[k] =





[dm − ym[k]]g′(netm[k]) if output layer

g′(netm[k]).

Z∑

z=0

Wz,m[k]δz[k] if hidden layers
(80)

There are couple of drawbacks of the standart GDR rule (16). The use of a non-

linear activation function leads to a complex error surface topology with respect

to the connection weights that has several local minima. Selecting constant model

coefficients may lead the GDR to be trapped in one of the local minima. Also, the

model coefficients may need to be calibrated for all new cases, and modified during

the course of the training to enhance the stability and the convergence. Hence, there

is need to change dynamically the model coefficients. To overcome these problems,

a new learning algorithm (AGDR) based on the extended delta-bar-delta model has

been proposed (76). AGDR essentially uses the following (instead of Equation (77))

to update the weights:

Wi,j[k + 1] = Wi,j [k] − ηi,j
dE[k]

dWi,j[k]
+ αi,j∆wi,j [k − 1] (81)

The proposed model is based on the fact that all PE’s have their own model parame-

ters (ηi,j and αi,j) and they are updated at every ANN iterations based on the history
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of the global error as

ηi,j [k + 1] = ηi,j[k] + ∆ηi,j[k]

αi,j [k + 1] = αi,j[k] + ∆αi,j[k] (82)

with ∆ηi,j [k], and ∆αi,j [k] given as

∆ηi,j [k] =





κ1ληi,j if φi,j[k]φ̄i,j[k − 1] > 0

−κ1ληi,j if φi,j[k]φ̄i,j[k − 1] < 0

0 if φi,j[k]φ̄i,j[k − 1] = 0

∆αi,j[k] =





κ1λαi,j if φi,j[k]φ̄i,j[k − 1] > 0

−κ1λαi,j if φi,j[k]φ̄i,j[k − 1] < 0

0 if φi,j[k]φ̄i,j[k − 1] = 0

(83)

Here, λ = (1 − exp(−κ2φi,j[k])), φi,j[k] = ∂E[k]
∂Wi,j

, and φ̄i,j[k] = (1 − θ)φi,j[k − 1] +

θφi,j[k]. Also, κ1 and κ2 are the second-order model coefficients selected to be 0.1

and 0.01, respectively based on numerical studies. In the current study, this new

approach (76) is employed for the training process.

Memorization is one of the problems associated with the ANN training, and it

needs to be handled in care. The goal of the ANN training is to minimize the global

error so that the ANN can provide the correct output when it is asked. It is reported in

the literature (16) that the ANNs trained perfectly well on given training data points

usually fail to provide answers for the points that they are not trained for. This is

called the generalization problem and is a direct consequence of data memorization.

The ANN training needs to be stopped at an iteration, after which the ANN starts

to memorize the training data and loose its generality. Usually this can be avoided

by controlling the evolution of the ANN error during the training (16). If the error

is not decreasing for consecutive number of iterations, the training is stopped. This

approach is used in the current work to ascertain the ANN generality.

There are three key differences between the EDBD (16) and the current model.
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The first one is that the model coefficients are increased and decreased by using the

same formula so as to avoid any bias that may arise due to the use of a different

formulation. The second difference is that the model coefficients are updated only

after introducing the whole training table. The batch update as done in the EDBD

causes wild oscillations of the model coefficients, since the input output pairs are

selected randomly. In the current method, the global error for the whole training table

is calculated along with the total change of the weights, so that the dE[k]/dWi,j[k]

term is no longer a local but a global quantity. Finally, the third difference is that

in the EDBD method momentum coefficient is decreased for φi,j[k]φ̄i,j[k − 1] > 0,

which is directly opposite to our formulation. The argument in the EDBD model for

this selection is to increase the numerical stability of the learning algorithm. In our

new model, however, the momentum coefficient is increased along with the learning

coefficients in order to perform a very quick search in the error space so as to find

the closest point to the global minimum. Once the learning algorithm diverges, the

code reverts back to the point where the error was minimum and further decreases

the model coefficients, so that convergence is stabilized again.
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CHAPTER III

NUMERICAL IMPLEMENTATION

3.1 Discretization of the Governing Equations

3.1.1 The Finite Volume Formulation

The LES filtered Navier-Stokes equations are solved with a finite volume scheme.

Finite volume is typically employed in CFD applications since it ensures strictly the

mass conservation, which is not the case for finite difference methods. The basic idea

in the finite volume approach is to solve the governing set of equations in the integral

form. The divergence terms in this form are converted into surface integrals. These

terms are evaluated as fluxes at the surfaces of each finite volume. Another advantage

of finite volume against finite difference is that it can handle skewed grids in a better

way.

More specifically, in the finite volume approach, the governing LES filtered Navier-

Stokes equations are solved in the following integral form:

∂

∂t

∫

V

QdV +

∮

A

(FdAx) =

∫

V

SdV (84)

where V is the control volume delimited by surface A. For the given control volume,

this equation is converted as

−→
Q +

1

V

6∑

i=1

−→
F .

−→
Ai =

−→
S (85)

where, the
∑

operator is used to calculate the fluxes across the surfaces (Ai) of the

control volume (V ). In this equation,
−→
Q ,

−→
F ,

−→
S represent the conserved variables,

flux of
−→
Q across the cell control surface and the source terms, respectively. The flux

vector (
−→
F ) is actually given as the summation of the inviscid flux, viscous flux (

−−→
FLS)

and the subgrid flux term (
−−→
Fsgs).
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Here, Q is given as:

−→
Q =





ρ

ρũ

ρṽ

ρw̃

ρẼ

ρksgs

ρỸm





(86)

In LES, the flux vector is calculated as the sum of the large scale
−−→
FLS and subgrid

scale flux (
−−→
Fsgs):

Fx,LS =





ρũ

ρũũ+ p

ρũṽ

ρũw̃

ρũ(Ẽ + p)

ρũksgs

ρũỸk





−





0

τxx

τxy

τxz

σx − qx

0

ρỸkṼxk





(87)

Fy,LS =





ρṽ

ρṽũ+ p

ρṽṽ

ρṽw̃

ρṽ(Ẽ + p)

ρṽksgs

ρṽỸk





−





0

τ yx

τ yy

τ yz

σy − qy

0

ρỸkṼyk





(88)
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Fz,LS =





ρw̃

ρw̃ũ+ p

ρw̃ṽ

ρw̃w̃

ρw̃(Ẽ + p)

ρw̃ksgs

ρw̃Ỹk





−





0

τ zx

τ zy

τ zz

σz − qz

0

ρỸkṼzk





(89)

Fx,sgs =





0

τ sgs
xx

τ sgs
xy

τ sgs
xz

−ρ νT

Prt
(Cp

∂T̃
∂x̃

+ ∂ ˜ksgs

∂x
) + (τ sgs

xx + τ sgs
xy + τ sgs

xz )ũ

ρ(ν+νt)
Prt

∂ gksgs

∂x

gWk

W̃mix

ρDt
∂ fXk

∂x





(90)

Fy,sgs =





0

τ sgs
yx

τ sgs
yy

τ sgs
yz

−ρ νT

Prt
(Cp

∂T̃
∂ỹ

+ ∂ ˜ksgs

∂y
) + (τ sgs

yx + τ sgs
yy + τ sgs

yz )ṽ

ρ(ν+νt)
Prt

∂ gksgs

∂y

gWk

W̃mix

ρDt
∂fYk

∂y





(91)
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Fz,sgs =





0

τ sgs
zx

τ sgs
zy

τ sgs
zz

−ρ νT

Prt
(Cp

∂T̃
∂z̃

+ ∂ ˜ksgs

∂x
) + (τ sgs

zx + τ sgs
zy + τ sgs

zz )w̃

ρ(ν+νt)
Prt

∂ gksgs

∂z

gWk

W̃mix

ρDt
∂fYk

∂z





(92)

Finally, the source terms are:

−→
S =





0

0

0

0

0

P sgs −Dsgs

˜̇ωk





(93)

3.1.2 Domain Discretization

The numerical simulations presented herein are carried out on structured, three-

dimensional, Cartesian grids. In this approach, the physical space (x, y, z) is trans-

formed into a computational space (ξ, η, ζ) of uniform unity length by:





∂
∂x

= ξx
∂
∂ξ

+ ηx
∂
∂η

+ ζx
∂
∂ζ

∂
∂y

= ξy
∂
∂ξ

+ ηy
∂
∂η

+ ζy
∂
∂ζ

∂
∂z

= ξz
∂
∂ξ

+ ηz
∂
∂η

+ ζz
∂
∂ζ

(94)

where ξx, ηx, ζx, ξy, ηy, ζy, ξz, ηz, ζz are the grid metrics.
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Applying this transformation to the integral form yields the following equation:

∫

V

∂

∂t
Q’dV +

∫

V

(∂F’

∂ξ
+
∂G’

∂η
+
∂H’

∂ζ

)
dV =

∫

V

ΦdV (95)

where:




Q’ = 1
J
Q

F’ = 1
J

(
ξxF + ξyG + ξzH

)

G’ = 1
J

(
ηxF + ηyG + ηzH

)

H’ = 1
J

(
ζxF + ζyG + ζzH

)

(96)

Here, J is the Jacobian of the coordinate transformation:

J =
1

∂x
∂ξ

∂y
∂η

∂z
∂ζ

+ ∂x
∂ζ

∂y
∂ξ

∂z
∂η

+ ∂x
∂η

∂y
∂ζ

∂z
∂ξ

− ∂x
∂ξ

∂y
∂ζ

∂z
∂η

− ∂x
∂η

∂y
∂ξ

∂z
∂ζ

− ∂x
∂ζ

∂y
∂η

∂z
∂ξ

(97)

3.1.3 Time Integration

The governing equations are integrated in time by using an explicit scheme. Explicit

schemes update the variables at a new time step based on the information of the

current step. It is very easy to code and parallelize compared to the implicit schemes.

However, the time step size required for the explicit schemes is often almost 4-5 order

of magnitude less than that is for the implicit schemes due to the stability issues. This

is, however, desired for the current study presented in the thesis, since complex flame

physics occur at scales already on the order of 10−5∼10−9 s. It should be noted that

the time step size gap between the explicit and implicit schemes is highly dependent

on the grid resolution used in the computations. This will be discussed further on

the next paragraphs.

A two step, predictor-corrector type of MacCormack time integration scheme is

used for the current study. The combination of the two steps leads to a scheme second

order in time. In this method, the time integration in the predictor step is achieved

as:

−→
Q∗ =

−→
Qn + d

−→
Qn∆t (98)
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and in the corrector step as:

−−−→
Qn+1 =

1

2

[−→
Qn +

−→
Q∗ + d

−→
Q∗∆t

]
(99)

In the predictor and corrector steps, the variables are updated as:

−→
Q∗ = −∆t

[
1

V

6∑

i=1

(−−→
F−,∗

i .d
−→
Ai

)
−−→
S∗

]
(100)

−→
Qn = −∆t

[
1

V

6∑

i=1

(−−→
F+,n

i .d
−→
Ai

)
−−→
Sn

]
(101)

Here in this formulation,
−−→
F+,n

i and
−−→
F−,n

i represent the fluxes at the surface i, at

time step n, which are evaluated using a forward and backward difference method,

respectively. The alternating is used in order to avoid bias that is a result of using a

specific differencing for fluxes at time integration.

The explicit schemes are conditionally stable when the integration time step size

is smaller than the time that a sound wave travels between adjacent grid points.

This is well the known Courant − Friedrichs − Lewy (CFL) condition, which is

used as a convergence criteria for certain partial differential equations, such as the

Navier-Stokes. Basically the CFL condition reads:

∆t < CFL
∆x

Uprop
(102)

where ∆x is the grid spacing and the u is the wave propagation speed. The grid

spacing in the current implementation is calculated as V/|d−→A |, where V is the volume

of the given cell. For the case of Navier-Stokes equations, Uprop should include the

convective (Vc), acoustic (Va) and diffusion (Vd) velocities:

Vc = u~i+ v~j + w~k

Va = a

Vd = 2γµ
ρ̄Pr

|d ~A|2

Vi,j,k

Uprop = vtot = Va + Vc + Vd

(103)
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where a is the speed of sound. Hence, the time step size is given as

∆t = CFL.minD

(
V

|d−→A |.Uprop

)
(104)

Here minD(φ) operator calculates the minimum value of the given variable φ within

the computational domain D. With a little bit of algebra, this expression is trans-

formed in to the following final equation:

∆t = minD


 CFL

|u|
∆x

+ |v|
∆y

+ |w|
∆z

+ a
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

+ 2γν
ρ̄P r

(
1

(∆x)2
+ 1

(∆y)2
+ 1

(∆z)2

)




(105)

3.2 Characteristic Boundary Conditions

Using an explicit time integration scheme with a compressible formulation neccessi-

ties the proper description of the wave reflection at the boundaries. It is well known

that flow stability and the flame-acoustic interactions highly depend on the accurately

handling waves at the boundaries. In the LES, the numerical viscosity is often elimi-

nated, or very low, so that the acoustic waves within the computational domain do not

vanish. Thus, the numerical simulations need to consider the acoustic waves at the

boundaries and ensure some acoustic conditions such as impedance or amplitude of

the incoming wave (63). Also, apart from the wave reflection, another problem is that

in most of the cases the number of physical boundary conditions known at the bound-

aries is less than it should be. Hence, there is a need for a numerical approach which

accounts for the wave reflection and provide information for the unknown quantities

at the boundaries. The well known characteristic boundary conditions of Poinsot and

Lele (so-called Navier Stokes characteristic boundary conditions (NSCBC)) (62) are

used in this study to answer these problems. This method essentially uses relations

based on the analysis of the different waves crossing the domain boundary. This

method is an extension of the Euler characteristic boundary conditions (ECBC) (63),

61



which uses relations derived from the Euler equations. The current approach extends

ECBC by including the viscous terms as well.

In the NSCBC method the set of the filtered Navier-Stokes equations are re-written

as:




∂ρ
∂t

+ d1 + ∂ρfu2

∂x2
= 0

∂ρfu1

∂t
+ ũ1d1 + ρd3 + ∂ρfu1fu2

∂x2
+ ∂ρfu1fu3

∂x3
=

∂τ1j

∂xj

∂ρfu2

∂t
+ ũ2d1 + ρd4 + ∂ρfu2fu2

∂x2
+ ∂ρfu2fu3

∂x3
=

∂τ2j

∂xj

∂ρfu3

∂t
+ ũ3d1 + ρd5 + ∂ρfu3fu2

∂x2

+ ∂ρfu3fu3

∂x3

=
∂τ3j

∂xj

∂ρ eE
∂t

+ ρũ1d3 + ρũ2d4 + ρũ3d5 + 1
2

(
∂(fu1fu1)

∂x1

+ ∂(fu2fu2)
∂x2

+ ∂(fu3fu3)
∂x3

)

+ d2

γ−1
+ ∂

∂x2

(
ρẼ + p

)
ũ2 + ∂

∂x3

(
ρẼ + p

)
ũ3 +

[(
ẽ− a2

γ(γ−1)

)
d1

]

+
∑N

m=1 ρd6+m

[
ẽm − fRu

eT
MWm(γ−1)

]
= − ∂qj

∂xj
+

∂( euiτij)

∂xj

∂ρksgs

∂t
+ ksgsd1 + ρd6 + ∂(ρfu2ksgs)

∂x2

+ ∂(ρfu3ksgs)
∂x3

=

∂
∂xj

(
ρνt

∂ksgs

∂xj

)
+ P sgs −Dsgs

∂ρ fYm

∂t
+ Ỹmd1 + ρd6+m + ∂(ρfu2

fYm)
∂x2

+ ∂(ρfu3
fYm)

∂x3
=

∂
∂xj

(
ρDm

∂ fYm

∂xj

)
+ ρ ˜̇wm, m = 1, N

(106)

where di are the various partial derivatives with respect to the x1 − th direction:

~d =




d1

d2

d3

d4

d5

d6

d6+m




=




∂ρfu1

∂x1

ρc2 ∂fu1

∂x1
+ ũ1

∂p
∂x1

ũ1
∂fu1

∂x1
+ 1

ρ
∂p
∂x1

ũ1
∂fu2

∂x1

ũ1
∂fu3

∂x1

ũ1
∂ksgs

∂x1

ũ1
∂ fYm

∂x1




=




1
c2

[
L + 1

2

(
L5 + L1

)]

1
2

(
L5 + L1

)

1
2ρc

(
L5 − L1

)

L3

L4

L6

L6+m




(107)

In this formulation Li’s represent the characteristic waves amplitude associated with

the eigenvalue λi:
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~λ =




λ1

λ2

λ3

λ4

λ5

λ6

λ6+m




=




ũ1 − c

ũ1

ũ1

ũ1

ũ1 + c

ũ1

ũ1




(108)

with c denoting the speed of sound (c=

√
γR̃uT̃ ). Here, the λi’s represent the

following:� λ1 is the velocity of the positive sound wave;� λ2 is the velocity of the entropy wave (convection velocity);� λ3 is the velocity of ũ2 advection in the x1-direction;� λ4 is the velocity of ũ3 advection in the x1-direction;� λ5 is the velocity of the negative sound wave;� λ6 is the velocity of ksgs advection in the x1-direction;� λ6+m is the velocity of Ỹm advection in the x1-direction, where m goes from 1

to the number of chemical species considered in the problem. .

The amplitudes of the characteristic waves, Li are:
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L1

L2

L3

L4

L5

L6

L6+m




=




λ1

(
∂p
∂x1

− ρc∂fu1

∂x1

)

λ2

(
c2 ∂p

∂x1

− ∂p
∂x1

)

λ3
∂fu2

∂x1

λ4
∂fu3

∂x1

λ5

(
∂p
∂x1

+ ρc∂fu1

∂x1

)

λ6
∂ksgs

∂x1

λ6+m
∂ fYm

∂x1




(109)

From the analysis of the above equations, the Local One-Dimensional Inviscid

(LODI) relations can be determined (61) and values of the wave amplitude variations

in the viscous, three-dimensional Navier-Stokes equations can be inferred:

∂ρ
∂t

+ 1
c2

[
L2 + 1

2

(
L5 + L1

)]
= 0

∂p
∂t

+ 1
2

(
L5 + L1

)
= 0

∂fu1

∂t
+ 1

2ρc

(
L5 − L1

)
= 0

∂fu2

∂t
+ L3 = 0

∂fu3

∂t
+ L4 = 0

(110)

Based on the LODI equations (Eq. 110) various types of characteristic boundary

conditions can be derived (61). For the purposes of this work, only two such boundary

condition types were needed and will be described in the following.

3.2.0.1 Subsonic Inflow Boundary Conditions

For the inflow, the gas density is computed based on the flow information, while all

other values are specified. The inflow boundary condition employed in this study

required the a-priori specification of the velocity components, u1, u2 and u3 as well

as of the inflow temperature T and pressure, p and of the chemical composition of

the incoming fluid , Ym. For a subsonic, three dimensional, N−species reacting flow,
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5 +N characteristic waves, L2, L3, L4, L5, L6 and L6+N enter the domain and L1

leaves the domain at λ1=u1 − c.

Since u1, u2, u3, T and Ym are known at the inflow, the second, third and fourth

relation from Eq. 106 become irrelevant and can be discarded. The characteristic

boundary condition determines the temporal change in the incoming fluid density, ρ

as follows:

Using the known quantities mentioned earlier, the wave amplitudes can be deter-

mined:

L1 = (u1 − c)
( ∂p
∂x1

− ρc
∂ũ1

∂x1

)
(111)

L5 = L1 −
1

2
ρc
∂ũ1

∂t
(112)

L2 =
1

2

(
γ − 1

)(
L5 + L1

)
+ c2

∂ρ

∂t
(113)

where

∂ρ

∂t
=
ρ

T̃

∂T̃

∂t
(114)

Finally, d1 can be now determined as:

d1 =
1

c2

[
L2 +

1

2

(
L1 + L5

)]
(115)

and:

dρ = −d1 ∗ ∆t (116)

3.2.0.2 Partially Reflecting Subsonic Outflow

At the outflow, second order accurate, partially reflecting conditions are enforced

by allowing a pressure wave coming from downstream to enter the computational

domain. For the conditions of this study, the pressure is imposed downstream of the

outflow, as p∞. Using this, the amplitude variation of in ingoing wave, L1, can be
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determined. Thus, if the current outflow pressure p is different from p∞, reflected

waves will enter the domain to bring the pressure back to p∞. Therefore:

L1 = β
(
p− p∞) (117)

where:

β = σ
(
1 − M

2
) c
L

(118)

and M is the maximum Mach number in the flow, L is a characteristic length scale

chosen in this study to be equal to the length of the computational domain and σ is

the reflection coefficient chosen for this study to be 0.15 (62).

3.3 Linear Eddy Mixing Model Implementation

3.3.1 The Reaction Diffusion Equation

The reaction-diffusion equation introduced in the previous chapter (see Eq. 69) is

solved with an explicit scheme. The time integration is achieved by using an oper-

ator splitting technique, which is based on identifying the different physical process

and updating the given scalar field separately with respect to the time scale of the

each individual process. Basically there exists four distinct physical processes and

time scales in the LEM subgrid model. These are namely, the molecular diffusion,

chemistry, and thermal expansion, turbulent stirring.

The diffusion time step is calculated as:

∆tdiff = Cdiff
∆s2

max(Dk)
(119)

The minimum of the Dk is selected to calculate the ∆tdiff in order to ascertain the

stability of the diffusion process for the lightest species. The Cdiff in the equation is

a model constant, set here to 0.25 for reasons of numerical stability (69). For mixture

averaged formulation, ∆tdiff is typically the largest time scale among all physical

processes considered here. For multi-component diffusion formulation, however, this
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value can be as small as the chemical time scale, which increases the number of

diffusion sub-iterations beyond its practical limit.

The chemical time step size is determined with the stiffness of the reduced mech-

anism used in the computations. The stiffness increases as the number of radical

species in a chemical kinetics mechanism increases. It is well known that the chemi-

cal time step size varies typically in a range of 10−2 to 10−10, with the largest being

NO production and the smallest as the radical recombination (86). In the current

LEM implementation the chemistry is integrated for the given time step size of ∆tdiff .

A stiff ODE solver, which uses adaptive time step size is employed for the integra-

tion process so that each different chemical processes are resolved in their respective

time scales. This approach, nevertheless, is very time consuming, and the current

thesis is providing discussion for implementing ANN based modeling for chemistry

integration. This will be further discussed on the coming chapters.

The thermal expansion time scale is associated with the volumetric expansion

induced by the increase in temperature through chemical heat release. In the current

implementation it is assumed that, the heat release in the fast chemistry limit is

controlled by the molecular mixing (69), therefore:

∆texpansion = ∆tdiffusion (120)

The turbulent stirring, which is mimicked using triplet-maps is implemented as

discrete time events within the given chemistry-diffusion time integration. The time

step size between each triplet map is calculated as:

τstir(x) =
1

λ∆
(121)

where λ is the turbulent stirring frequency, given by Eq. 71.

To sum up with the integration process, for the given diffusion time step size

the chemistry is integrated. Then, the diffusion equation is solved for the species
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Figure 3: Scalar field on the LEM level and LES cell fluxes for a hypothetical
example

and temperature equations. This process is repeated untill the total diffusion time

equals to the LES time step size coming from the CFL condition. The turbulent

stirring, on the other hand, is performed as discrete number of events by interrupting

the time integration of the diffusion-reaction equation at a time step size of ∆tstir.

Overall, for the given LES time step size, the number of stirrings events equal to

Nstir = ∆tLES/∆tstir.

3.3.2 The Splicing Algorithm

The large scale advection is implemented in a Lagrangian sense with the splicing

algorithm. Once the subgrid evolution of the scalar field as a result of the turbulent

stirring, diffusion, reaction and thermal expansion is achieved, the splicing algorithm

is used to advect the scalar field between the LES cells. The advection, from a

computational point of view is implemented as carrying partial LEM cells between
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the adjacent LES cells by the fluxes at the interfaces. The current splicing algorithm

works based on the following rules:� Splicing is done once in every spatial direction.� Splicing is performed using an upwind scheme.� The absolute value and the sign of the term ∂ρ eui

∂xi
determines the order in which

splicing is performed. The largest negative flux will be the first one to exit the

LES cell, while the largest positive flux will be the last one to enter the LES

cell.

Let’s look at a hypothetical 2D example, as illustrated in Fig. 58, and assume the

following order between the magnitudes of the face fluxes:

∂ρũ

∂x

∣∣∣
(i− 1

2
)
<
∂ρũ

∂x

∣∣∣
(i+ 1

2
)
< 0 <

∂ρṽ

∂y

∣∣∣
(j− 1

2
)
<
∂ρṽ

∂y

∣∣∣
(j+ 1

2
)

(122)

Based on this assumption, the volume which needs to be transferred between the

adjacent LES cells (δm) is calculated as:

1

δtLES

δm1

V LES
= F 0

i =
∂ρũ

∂x

∣∣∣
(i− 1

2
)

1

δtLES

δm2

V LES
= F 1

i =
∂ρũ

∂x

∣∣∣
(i+ 1

2
)

1

δtLES

δm3

V LES
= F 0

j =
∂ρũ

∂y

∣∣∣
(j− 1

2
)

1

δtLES

δm4

V LES
= F 1

j =
∂ρũ

∂y

∣∣∣
(j+ 1

2
)

(123)

In this case, δm kg from the donor LEM cell is transferred to the receiver. Here

it should be noted that the cell fluxes (∂ρũi/∂xj) contains the splicing information

due to the mean flow. However, as it was given in Eq. 67, the large scale advection is

a result of both the resolved large scale (ũi) and the modeled subgrid scale velocities
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Figure 4: Species field before and after the splicing of the cell (i,j)

((u′i)
R). In the current implementation, based on the assumption that the velocity

field is isotropic on the small scales, (u′i)
R is calculated as in the following form:

(u′i)
R =

√
2

3
ksgs (124)

In this formulation, it should be noted that unlike ũi, the direction of (u′i)
R is not

known. Thus, the flux arising due to the (u′i)
R is added to the large scale flux by

selecting the direction randomly. Since for most of the cases ũi is much larger than

(u′i)
R, the error made by selecting the direction randomly is not considered to be

huge.

Once all the mass is transferred between the LES cells, the resulting LEM cells

have more number of cells than that it had before the splicing started as shown in Fig.

4. Also, the volume of the cells are different from each other based on the transferred

mass. Re-gridding is applied to uniformly divide all the mass between LEM cells.

This process, apparently, results in an artificial diffusion for the advection, which is

purely numerical and undesired. Earlier studies on this issue has concluded that this

numerical diffusion is negligible when the LES time step size (thus, the spliced mass)

is getting smaller.
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CHAPTER IV

ANN VALIDATION

An ANN code which uses the formulation on Section 2.3 is developed within the

context of this thesis work. The validation studies of this code is presented in the

current chapter.

4.1 A-priori Testing of the GDR and AGDR

An activation function is used in the ANN formulation to calculate the output of

the given processing element based on its input. The most simplistic activation

function that can be selected to be used is the step function. Essentially, as it was

explained in Section 2.3, the backpropagation algorithm searches for the minimum of

the local error function with respect to the weight distribution. This requires that the

activation function that is used on the training algorithm must be differentiable and

continuous within its output range. The sigmoid and tangent hyperbolic activation

functions satisfy these conditions and are used extensively in the ANN computations

(53). Essentially the tangent hyperbolic activation function is the scaled version of the

sigmoid function. The tangent hyperbolic has a much wider output range compared

to the sigmoid ([-1,+1] against [0,+1]), which makes it more sensitive to the changes

in the input/output pairs, and hence, is used in the current study.

The fact that the activation function is differentiable and continuos poses another

problem: The error surface topology is quite complex with several local minima and

maxima (67). The backpropagation algorithm with the GDR can be captured in one

of these local minima, after which the code ceases to update the weight coefficients.

This is illustrated in Fig. 5 (a)-(c) for a hypothetical error surface, which varies with
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respect to the W as in the following form:





E(W ) = −0.02W + 0.02π
4

+ Cos(π
4
) W < π

4

E(W ) = Cos(W ) π
4
≤W < 2π

E(W ) = 2Cos(W ) − 1 2π≤W < 4π

E(W ) = 0.5Cos(W ) + 0.5 4π≤W < 6π

E(W ) = 4Cos(W ) − 3 6π≤W < 8π

E(W ) = Cos(W ) 8π≤W < 53π
4

E(W ) = 0.02W − 0.02×53π
4

+ Cos(53π
4

)

(125)

Here W is the weight coefficient. Starting from an initial value of W = π/4, the

GDR is tested to find the global minimum located at approximately W = 7π. As

seen in the figure, the GDR is trapped in the first local minimum. This is mainly

because of the way GDR updates the the weight coefficients:

W [k + 1] = W [k] − η
dE[k]

dW [k]
(126)

In this formulation, whenever the GDR leads W to a local minimum, the gradient

becomes zero (dE[k]/dW [k] = 0), and the algorithm stops updating W . This problem

can be solved by using a momentum term to update W in the following form:

W [k + 1] = W [k] − η
dE[k]

dW [k]
+ α∆W [k − 1] (127)

with

∆W [k − 1] = −η dE[k − 1]

dW [k − 1]
+ α∆W [k − 2] (128)

where ∆W [k − 1] is the last update applied on the W by the GDR. In this manner,

even if a local minimum is encountered, the algorithm continues on updating the W .

It should be noted that the addition of a momentum term does not guarantee the

convergence of the algorithm. It may (or may not) converge depending on the values

of the model coefficients, the learning rate (η) and the momentum coefficient (α).

This is illustrated in Figs 5 (b) and (c) for the same hypothetical example as in Fig
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Figure 5: Testing GDR on a hypothetical example. (a) α = 0, (b) α = 1 and (c)
α = 2

5 (a). This time, the computations are repeated by using the momentum term. In

Fig 5 (b), a momentum coefficient of 1 (α = 1) is used for the calculations. Although

the results seem to pass beyond the first local minimum, it eventually turns back and

converges at W = π similar to the no-momentum case. For α = 2 case, however, as

shown in Fig. 5 (c), the momentum is strong enough and surpasses the −η(dE/dW )

term, so that the peak value at 2π is passed and the global minimum can be found.

The original GDR method with the momentum term uses constant model coeffi-

cients: η and α are selected before the computations are started. As demonstrated

on Figs 5 (a)-(c) for the hypothetical example considered here, based on the value of

the momentum coefficient the algorithm may be trapped in a local minimum, or can

converge to the global minimum. To overcome this difficulty, in the current thesis
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(a) (b)

Figure 6: Variation of the step size with the AGDR method for a case with (a) the
same sign and (b) alternating sign of the error gardient for consequitive iterations.

(a) Update model coefficients at ev-
ery iteration by using the EDBD rule

(b) Update model coefficients after in-
troducing the whole training dataset
by using the AGDR

Figure 7: Variation of the global error with respect to the ANN iterations.

work an adaptive GDR (AGDR) method which works based on non-constant model

coefficients (α, η) is developed. In this new model, the model coefficients are updated

during the training process, by using the formulation introduced on Section 2.3. The

effect of this approach is demonstrated in Fig. 6 schematically on a hypothetical

example. Lets assume that the gradient of the local error with respect to the weight

is having the same sign for consecutive iterations, which means that a minimum value

is approached from one side. In this case both ηi,j and αi,j are increased to reach

into the minumum point with fewer number of iterations than the standard GDR.

However, if the gradient is alternating for consecutive iterations, then the GDR with

constant coefficients would oscillate around this point and may not be able to con-

verge properly at all if the initial model coefficients are large. The model coefficients
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Figure 8: Testing AGDR on a hypothetical example. (a) αinit = 1, and (b) αinit = 2

in this case are decreased by the new rule, so as to enhance the convergence rate.

The new rule in general is similar to the EDBD rule (53). However, the way the

coefficients are manipulated are different for both of the methodologies (see Eq. (83)).

Also, the EDBD rule relies on updating the model coefficients after introducing each

batch of input/output pairs. This is actually not a very efficient way. As shown in Fig.

7 (a), the error calculated for each batch highly oscillates during the training process.

Thus, the error gradient with respect to the weight is also changing, which leads to

wild oscillation of the model coefficients as well. In the new proposed algorithm,

compared to the EDBD, the model coefficients are updated after introducing the

whole training dataset, as shown in Fig. 7 (b). In this manner, the general trend

can be captured in a better way, since the previous and current ∂E/∂W terms are

actually more correlated.

The performance of the new model against the GDR is tested by a Sinus function.

Starting from the same point and by using the same initial values of the model

coefficients and weights, the GDR required 180 iterations to converge, where as the

new rule converged only in 28 iterations.

For completeness, the performance of AGDR) on the same hypothetical example
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used to test GDR is demonstrated next. The computations are started at π/4 similar

to the previous case. The current run with AGDR uses the momentum coefficient by

default, and its initial value is selected to be 1 (α = 1). The GDR using the same

momentum coefficient was demonstrated to be captured in a local minimum in Fig.

5 (b). With the AGDR method, however, the current computation can succesffuly

wind the global minimum as shown in Fig. 8 (a). Here it should be noted that, the

AGDR method is not as stable as the GDR. The model coefficients may grow beyond

some value which may lead the weights to be unbounded. In this case, the model can

never converge to a state but would oscillate. This is prevented by using save-best

and store options. During the training, if a particular distribution of the weights and

model coefficients correspond to an error less than that was obtained in the previous

iterations, these ANN parameters are saved. Later, once the weights start to oscillate

unboundedly, or if the error cannot be decreased for some number of iterations, the

ANN parameters revert back to the last saved best result, and the model coefficients

are decreased by a factor of two. In this manner, the algorithm starts from an initial

point, performs a very quick sweep over all possible states, finds the position of the

global minimum roughly, and saves the weight coefficients. Once the AGDR starts

to oscillate, the code turns back to the point with minimum value of the error and

continues with much finer step sizes. This is ensured by effectively decreasing the

model coefficients. This process can be seen in Fig. 8 (a). Here, the AGDR method

accesses values of X ranging from -20 to 60. Once the X starts to grow unboundedly,

then the algorithm turns back to the point where F (X) (which is representative of

E for this case) is minimum. Then, the AGDR converges to the global minimum

with small step sizes. This can be seen around X = 20. As the initial value of the

momentum coefficient is increased to 2 (α = 2), there is not much difference on the

results as given in Fig. 8 (b).

Finally, the number of iterations required for convergence based on the initial
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Figure 9: Number of iterations required for convergence based on the initial value
of the momentum coefficient.

value of the momentum coefficient is given in Fig. 9. In consistent with our previous

results, the GDR fails to converge for αinit < 1.1. The AGDR can converge for even

smaller values of the momentum coefficient. As seen in the graph, for αinit = 0.0001,

the number of iterations required for the AGDR method to converge is almost 10000.

This value decreases as the αinit is increased for AGDR.

The evolution of the model coefficients are further tested for a second, and much

simpler, hypothetical error surface topology, which changes as E(W ) = Cos(W ). The

reason for selecting a simpler function is to let GDR converge too, so that a better

comparison can be obtained on a much wider range of model coefficients than it is

shown in Fig. 9. The results obtained for this case are presented in Figs 10 (a)-(b).

Here, the computations are started by using different initial values of the learning

coefficients (ηinit). Both GDR and AGDR are used for calculations to compare the

number of iterations required for convergence. It is well known that for an initially

very small ηinit, the GDR converges in more number of iterations compared to a

case with a higher value of ηinit. This is because the ηinit sets the step size that is

used to update the weight coefficient. The AGDR, however, increases the step sizes

substantially, which leads to a faster convergence. This can be seen in Fig 10 (a),
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Figure 10: AGDR method.

where the number of iterations required for convergence is plotted with respect to

the ηinit. For both GDR and AGDR the convergence is faster if ηinit is high. Also, at

relatively higher values of ηinit (i.e. ηinit > 0.1) the number of iterations required for

the convergence is almost identical for both GDR and AGDR. The difference starts

when ηinit is getting much smaller than 0.1. As given on the figure, the AGDR can

converge in 400 number of iterations at ηinit = 0.0001, whereas GDR needs at least

40000 iterations, which is 100 times more than that is required for the AGDR. It is

also interesting to note that the number of iterations required for convergence varies

linearly with respect to the ηinit for the GDR.

The variation of the η obtained by the AGDR as a function of the value of the

error (which is already defined as Cos(x)) is given in Fig. 10 (b). As it is seen in the

figure, the AGDR method increases the value of η substantially. Independent of the

value of ηinit, they all tend to attain values close to 0.1. The increase in η is more

pronounced at Cos(x) < 1, since in this range the error surface gradient (dE/dW ) is

higher than that is Cos(x) > 1.
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4.2 Validating the ANN Training Code on Generic Func-

tions

The validity of the ANN training code is tested on a simple function. This is an

important step which proves that the ANN code is working fine and can be used as

a tool for chemical kinetics calculations. The function of interest is:

f(x) = exp[−(x− 1)2] + exp[−(x+ 1)2] (129)

which is a typical benchmark problem used in the literature for ANN validation

(16; 17). The ANN training table has nine entries, Once the training is achieved, the

ANN is used to predict the states that it was not trained for. Also, the points outside

the training database are used to evaluate the ANN prediction capability further. The

results are given in Fig. 11 (a)-(b). In ANN computations the training is achieved

usually on a normalized set of variables so as to match the input/output space of

the physical process with that of the ANN training function. For this study, the

normalization is always achieved between [+1, -1], and the ANN output is between

[+0.8, -0.8]. The actual value is later achieved by using a simple transformation. The

results shown in Fig. 11 (a)-(b) represents the untransformed results.

Fig. 11 (a) shows the results obtained by using the GDR rule. The predictions

obtained by using different ANN architectures is given in the figure. The smallest

ANN architecture, with one hidden layer and 10 PEs (1/10/1), can predict the general

trend of the function. However, the two peaks located at approximately x = +− 0.3

cannot be detected. An increase in the number of PEs from 10 to 20 (1/20/1) leads

to better predictions. After this, however, the ANN predictions seem to be insensitive

to the increases in the number of PEs and hidden layers, and the tested ANNs more

or less provide the same answer. The ANN predictions for the same function obtained

by using AGDR is given in Fig. 11 (b). Similar to that was observed for GDR in

Fig. 11 (a), the AGDR results obtained for 1/10/1 ANN architecture cannot capture

the peaks. Interestingly for the AGDR results, however, as the number of PEs and
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Figure 11: Function prediction by the GDR and AGDR methods.

hidden layers are increased the ANN predictions differ, which is in contrast to the

GDR. Another interesting observation is that, although more precise in predicting

the actual value of the function on the training points, the AGDR results exhibits an

asymmetric profile. Overall, the rms error obtained by the AGDR training is much

better than that is obtained by the GDR.

The second function used for validating the current ANN approach is:

f(x, y) = Sin(πx)3.Cos(πy)3 (130)

The ANN training is achieved by using two different training files. First training file

is constructed by 100 points, 10 in x and 10 in y, where as the second one is for

2500 points, with 50 points for each variable. The ANN architecture compromises

of 3 hidden layers with 15, 10 and 4 PEs at each layer. This specific distribution is

achieved by experimenting over different architectures and checking the performance

with the maximum root mean square (RMS) error. The AGDR is used for the training

procedure. The trained nets are used later to predict the function at locations for

which it was not trained and the surface that is calculated with ANN is given in Fig.

12 (a) for the net trained for 2500 points. Here, the general topology seems to be
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accurately captured by the ANN without any significant errors. The absolute error

surface, as seen in Fig. 12 (b) exhibits maximum values corresponding to the regions

where the function reaches into its peak. For the rest of the regions, the error seem

to be acceptable with a maximum value of 0.42 %. Fig. 12 (c) shows the variation of

the actual data and ANN predictions on a cross section taken in a x constant plane.

As it can be clearly seen in the figure, the net trained for 100 points fails to predict

the exact profile especially on the center region where it should be flat. The other

net that is trained for 2500 points, on the other hand, is very accurate and follows

the correct profile in a better way.
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CHAPTER V

EVALUATION OF DIFFERENT TABULATION

STRATEGIES FOR ANN TRAINING

The objective of the current chapter is to propose different tabulation strategies for

the chemical kinetics relevant to the LES of reactive flow applications, and use them

in connection with the ANN methodology to achieve both computational speed-up

and memory savings. The focus here is to use ANN for predicting the instantaneous

(unfiltered) reaction rates. Hence, this methodology is applicable to laminar flames,

DNS, CMCLES, LEMLES, and PDF transport method computations. It cannot be

used to predict filtered reaction rates, which is needed when a conventional filtered

species conservation equation is solved on the LES level. This will be investigated

on the next chapters. Here, basically three different tabulation methodologies are

proposed and used in connection with the ANN. These are: ANN trained on (i) lam-

inar flames (Section 6.3), (ii) laminar flame-vortex interaction (Section 5.2) and (iii)

laminar flame-turbulence interaction (Section 5.3). The proposed tabulation strate-

gies are tested mostly on the LES of premixed flame-turbulence-vortex interaction

computations. As a first step in evaluating the applicability of the ANN approach

for non-premixed flames the last section provides a-priori testing of the proposed

tabulation on stand-alone LEM computations as well, but, this will be investigated

in more details on the next chapter.
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5.1 ANN Trained on Laminar Flames

5.1.1 Laminar Premixed Flame Computation

Applicability of the ANN for substituting the chemical kinetics solver is first tested

for a simple laminar 1-D premixed flame computation. A PSI syngas mixture (11) is

used as the fuel which includes CO2 and H2O as diluents in a CO-H2 fuel mixture.

The main fuel components exhibit distinct reaction pathways. Hence, combustion

simulations for syngas mixtures require relatively large chemical kinetics mechanisms

to capture the correct physics (51), which increases the computational cost. ANN

can be used to decrease the cost for these calculations.

The initial test/train data required for ANN procedure is generated by using PRE-

MIX module of CHEMKIN for an equivalence ratio of 0.6, and a 14 species, 10 step

reduced mechanism is used for representing the chemical kinetics. The mechanism

is accurate for a wide range of operating conditions of syngas flames (50). Result

obtained from the PREMIX calculation resolved the flame on 256 points. Although

an exact definition for the number of train/test data is not given in the literature, it

is advised that for an MLP-ANN to generalize properly, the number of independent

weights need to be fewer by a factor of 10 than the number of input/output training

points (16). Considering the fact that number of PEs used for most of the previous

ANN-chemical kinetics calculations is on the order of 10, 5000 points for the current

computation is appropriate for the training procedure. Thus, the profiles are pop-

ulated to 5000 equi-distance data points and among these points randomly 70 % is

selected for training and 30 % for testing. Similar to the selection of exact number of

training points, the relative percantage of train and test data is also case dependent,

and the range varies between 60-80 % in the literature (8; 15). The ANN architecture

for this particular case consists of 15 inputs and 3 hidden layers with each having

20, 10 and 8 PEs, respectively. The optimum value for the architecture is defined

by experimenting with different values of PEs at the hidden layers and checking the
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Figure 13: Actual test data and ANN predictions.

performance of the ANN for predicting the test data. The architecture used for this

study corresponds to an RMS error at the outpur layer of 0.56 % at maximum for the

OH radical. The errors associated with other species are less than this value, e.g.,

the maximum RMS error for H2 is 0.073 %. 14 independent nets are generated for

the reaction rates of each species. Following the information given in the literature

(53), in order to avoid saturation at the output layer, the normalized reaction rate is

scaled to vary between ± 0.8 as opposed to the normalized input, which is between

± 1.

The comparison of the ANN predictions and the actual test data is shown in Fig.

13 (a) and (b). In general, reaction rates exhibit two distinct profiles depending on the

species. Major species, such as CO, H2, CO2, H2O for this particular case, are either

consumed or produced at all in the flame region corresponding to a profile as given in

Fig. 13 (a). The minor species, on the other hand, are consumed and produced in the

flame region. A typical example for this kind of behavior is given in Fig. 13 (b). It is

crucial and must be proved that ANN is able to predict both profiles correctly, which

is the case for this calculation. For this purpose, the performance of the net has been

tested on the data that it was not trained for as shown in Fig. 13 (a) and (b) with the

dashed lines. For both of these species ANN succesfully captures the correct profile,
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Figure 14: Application of ANN to a laminar, time dependent syngas-air flame.

except for small oscillations in H reaction rate right before it starts to decrease. This

defect is very small and the RMS value averaged for all the input/output pairs at the

at the output layer is less that 1 %, which is a good indicator of the accuracy of the

ANN.

In order to further test the performance of the ANN, a time dependent computa-

tion is performed by creating an ANN module for chemical kinetics calculations in an

existing flow solver. For this purpose, the profiles obtained by PREMIX calculation

is used to initialize a 3-D computation. The initial PREMIX profile is linearly inter-

polated onto a uniform grid of 256 points in the x direction. The same profile is later

replicated to all y locations, and the x− y plane is copied to all z locations, resulting
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a grid of 256x12x2 points in x, y and z directions, respectively. The profiles obtained

by such a calculation is given in Fig. 14 (a)-(c) for H , CO mass fraction and temper-

ature. As to yield a better comparison the DI calculations are also presented in the

figures. The H mass fraction exhibits small discrepancey approximately at 0.005 m.

Although not shown here, this defect shows itself for some other minor species too,

but major species in general are free from this problem. The error does not impact

the resolved flame, as shown in the temperature plot.

5.1.2 Turbulent Premixed Flame Computations

5.1.2.1 Methane-Air Flames

Computation for a simple steady-state, laminar case is carried out to demonstrate

that the developed ANN model for chemical kinetics predictions is working. How-

ever, the realistic combustor applications are generally highly turbulent and unsteady

problems. LES is widely used for the reactive flow analysis and the goal of the current

section is to check the applicability of ANN to be used as a chemistry integrator for

LES. For this purpose, following an earlier LES(68) and DNS(85) study that exist

in the literature we consider a premixed methane-air flame front interacting with an

initially generated isotropic turbulent flow field. Similar to the previous section, the

LES is initialized by using the solution of PREMIX-CHEMKIN and the flame is at

a lean condition (φ=0.8) with the reactants initially preheated up to 570 K. Based

on the initial turbulence level and the flame properties, the premixed flame is in the

thin reaction zone (TRZ) regime. A 5 species (CH4, O2, CO2, H2O,N2), 1 step re-

duced methane-air chemical kinetics mechanism is used for ANN training and LES.

Following the earlier LES(68), the subgrid scale combustion processes are simulated

with LEM by using 12 grid points inside each LES cell.

Two different ANN training procedure has been used for this section of the study.

First one is based on generation of train/test data-set for a single equivalence ratio

(SER), similar to what was done for the laminar computations. The second method,

87



(a)

18800 18900 19000 19100
Number of Input/Output

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 M
et

ha
ne

 r
ea

ct
io

n 
R

at
e

(a)

Figure 15: Actual test data and ANN predictions (a) for all equivalence ratios and
(b) for close up view of three equivalence ratios. ANN-MER approach applied to a
methane-air flame

on the other hand, relies on training ANN for multiple equivalence ratios (MER), so

as to cover a larger portion of the chemical state space. This is particularly important

for turbulence computations with thermally perfect and mixture transport properties,

since small perturbations can change the composition space locally. The procedure

of ANN training based on a SER is exactly similar to the procedure outlined in the

previous section. The solution of PREMIX is populated to 1000 points and several

ANN architectures are used to determine which one is better on predicting the test

data. Although it is generally advised to employ 1 or 2 hidden layers at most (53),

for this particular study 2 hidden layer configuration was the worst case and an ANN
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Figure 16: CH4 mass fraction surface plot and temperature contours obtained with
(a) DI, (b) ANN-SER and (c) ANN-MER

architecture with 1 input, 1 output and 3 hidden layers each having 8, 4 and 2 PEs,

respectively, is constructed. Based on the second training approach, a database of

1-D laminar premixed flame solutions for equivalence ratios ranging from 0.60 to 0.9

with increments of 0.001 is generated. The PREMIX solution for each equivalence

ratio compromises 50 points which is interpolated to 500. ANN results based on the

test data which is a part of the training procedure is given in Fig. 15 (a)-(b). Fig.

15 (a), shows the ANN predictions and actual test data on the CH4 reaction rate -

Temperature hyperplane of the chemical state space. Here, the ANN predictions are

comparable with the actual test data and it is not possible to distinguish between

both of them for most of the region. The only considerable amount of disrcepancy

occurs at the region where reaction rate is at maximum. The reason for this is, this
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Figure 17: CH4 mass fraction profile comparison at cross-sections (a) A-A and (b)
B-B

region is accessed only by couple of equivalence ratios, thus, is not well populated. A

comparison of the profiles with respect to the equivalence ratios is presented in Fig.

15 (b), where the agreement is quite accurate.

Results obtained by using DI, ANN-SER and ANN-MER computations after 4

flow through time is introduced in Fig. 16. Here, 1 flow through time is defined

as l/u′, where l is the largest eddy size and u′ is the turbulent fluctuation. The

effect of different turbulent scales on the scalar field evolution is evident in the CH4

mass fraction surface plot obtained by DI computations as shown in Fig. 16 (a).

The temperature contours covers the maximum value of the CH4 on a thin region

indicating the flame zone. This feature is absent in the ANN-SER computations as

given in Fig. 16 (b). The temperature contours seem to be spread out, covering a

larger area across the flame front. Also, the flame topology seems to be very different

than the DI calculations and do not exhibit any similar structure. On the other hand,

ANN-MER computations predict a very similar flame topology with DI calculations

as shown in Fig. 16 (c).

A better understanding of the effect of different ANN training approaches can be

achieved by investigating the actual profiles along a cross section of the flame and is
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Figure 18: Composition state-space accessed by SER, MER training approaches
and DI computations

introduced in Fig. 17 (a)-(b). The profiles are obtained across the flame front at y=

0.0125 m and 0.0101 for Fig. 17 (a) and (b), respectively. These locations correspond

to a convex and a concave region of the flame. The ANN-MER computation as seen

in Fig. 17 (a), predicts a slightly larger flame region as opposed to DI. In Fig. 17 (b),

on the other hand, the agreement is better. As it was observed in the surface plot,

the predictions obtained by ANN-SER, is very different than the DI results and look

unphyisical. The region on the CH4 mass fraction and temperature hyperplane of the

chemical state-space that is accessed by DI computations and covered by the ANN

MER-SER training procedures is shown in Fig. 18. Here, the ANN-SER results are

shown with black circles and it corresponds to a line on the state-space. The actual

data obtained by DI computations is not a single line, but it covers a region within

the state-space. The ANN-SER approach, therefore, can not provide predictions,

since the region of interest is outside of its training region. The ANN-MER approach

covers a larger space on the state-space which is more general and adapts itself to

local perturbations in the composition state space in a better way.
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Table 5: Simulation parameters for flame turbulence interaction problem
u′/SL l/lf Regime [m] Box Size [cm]

SYN-Case A 10 5 TRZ 3.0
SYN-Case B 5 5 TRZ 5.0

Table 6: Flame parameters used for flame turbulence interaction

Fuel Composition Equivalance R. SL [m/s] lf [m]
H2:CO:CO2 0.0678:0.113:0.0254 0.6 0.2105 8.755 ×10−4

H2O:O2:N2 0.0650:0.1507:0.5781

5.1.2.2 Syngas-Air Flames

The applicability of ANN into flame-turbulence interaction computations by using

LEMLES is studied further in a configuration with an embedded pair of coherent

vorticies in an isotropic background turbulence, where there is wrinkling of the flame

surface both by large and small scales. More specifically a flame front interacting

with a pair of spanwise vorticies superimposed on an isotropic turbulent premixed

mixture is of interest. This is more difficult test case as large scale wrinkling alters

significantly the diffusion of the species across the flame front. uc,max/SL and Dc/lf

for this vortex pair is 50 and 5, respectively. The fuel composition and the size of the

coherent structure are held constant, and in connection with an earlier study (72).

Two different background turbulence levels are simulated, where the flames are in

the thin-reaction-zone (TRZ) regime. A 643 grid is used for all cases, and the size

of the computational domain is selected as to yield a minimum spacing of 3.3 times

the Kolmogorov length scale. In the subgrid level within each LES cell, 12 LEM cells

(NLEM = 12) are used, which allows a resolution of 4 times smaller than η. The fuel

composition is PSI as defined by General Electric (11). Simulation parameters and

flame properties for FTI computations are summarized in Tables 5 and 6, respectively.

The LESLEM results obtained for both cases by employing ANN approach are
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Figure 19: Actual test data and ANN predictions for an ANN-MER approach
applied to a syngas-air flame. (a) general, (b) close-up view

given in Fig. 20 (a)-(b) at a non-dimensional time of 0.3. The time is non-dimensionalized

with the characteristic time, which is calculated based on the backgorund turbulence

level as Dc/u
′. Here, Figs. 20 (a) and (b) shows the contour plot of temperature

superimposed on the vorticity surface plot. The flame front is wrinkled both by the

large scale-coherent vortex pair and the small scale background isotropic turbulence.

The small-scale vorticity in the

As it was shown in the previous section, since an ANN-MER approach is superior

to ANN-SER, the ANN training approach here uses only the MER technique. The

training data is constructed for equivalence ratios ranging from 0.45 to 1.10 with

jumps of 0.005. Also, to avoid poor training due to the few number of data points
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(a) (b)

Figure 20: Application of ANN to a turbulent premixed syngas-air flame:(a) Case
1, (b) Case 2.

associated with each single equivalence ratio, the gridding sensivity of PREMIX is

increased by adding more grid points to sections where there are large gradients,

which yielded approximately 700 points. In total, there is 67128 train and 28768 test

data. The ANN architecture consists of 5 layers, having 3 hidden layers with 20, 10

and 8 PEs, respectively. The exact ANN architecture is constructed following the

same logic that was outlined in the previous sections. The test data and the ANN

predictions for the normalized CO reaction rate is given in Fig. 19 (a). The data

corresponds to an almost non-smooth function of the reaction rate with respect to the

equivalence ratio. The ANN can, however, predict the profile fairly well. A close-up

look of the profiles reveal that as there are more train/test points for each equivalence

ratio, the ANN predictions match with the actual data better than the earlier case.

Although it can not be detected well in these figures, the only considerable amount

of difference between ANN predictions and the test data is at the regions where there

is not any reaction rate which corresponds to a value of 0.8 on the normalized data.

ANN fails to predict an absolute zero value of reaction rate in the post and pre flame

regions. This problem is overcome by adding a threshold to the ANN value, beyond

which the reaction rates are considered to be zero.
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Figure 21: Comparison of species profiles obtained by DI and ANN approaches for
turbulent, premixed syngas-air flame, Case 1. (a) CO and H2O, (b) O, and (c) OH
mass fraction.

incoming turbulent field dissipates across the flame and only the large structures

exist in the burned side due to the high temperature values in this region. A detailed

description of the interaction between the flame and the vortical structures is given

elsewhere (72). The comparison of the computed profiles across the flame is given in

Fig. 21 (a)-(c) for Case 1. The profiles obtained for major species CO and H2O match

well with the DI computations. The minor species, O and OH , show discrepancy

near the peak region. The maximum error for both of the species is less than 18 %.

However, both species mass fraction is on the order of 10−3 and the impact of their

error is not very severe on the major features of the flame.
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Figure 22: Comparison of species profiles obtained by DI and ANN approaches for
turbulent, premixed syngas-air flame, Case 2. (a) CO and H2O, (b) O, and (c) OH
mass fraction.

The agreement between the profiles obtained for flame Case 2, as shown in Fig.

22 (a)-(c), however, is not as good as it is obtained for Case 1. CO starts to be

consumed earlier than that is calculated with DI and the H2O mass fraction exhibits

a peak value within the flame zone. The maximum value of the minor species is

overpredicted, almost 4 times for O and 2 times for OH . The profile for OH also

corresponds to an oscillation which is not physical. In order to gain further insight

into the effect of ANN on the LEMLES, the CO2 − OH hyperplane of the chemical

state-space is presented in Fig. 23. Here, Fig. 23 (a) corresponds to the region that

was accessed by DI, whereas Fig. 23 (b) is by the ANN calculations. In Fig. 23

96



(a) (b)

(c)

Figure 23: CO2 − OH Hyperplane Accessed by (a) DI-LES, (b) ANN training on
coarse data and ANN-LES, and (c) ANN training on fine data and ANN-LES.

(b), the region that was covered within the initial ANN training phase is also given,

and denoted with black dots. The DI computations, similar to that was obtained for

earlier methane-air case, supports the idea why it is not possible to achieve training

and expect accurate results for a SER computation. This time, rhe region is more

complex and can not be represented by a SER, which would actually correspond to

a single line on the hyper-plane. A direct comparison of the region covered by the

ANN training phase and the actual region constructed by DI computations reveal

that only a single portion of the state-space is actually accessed. Since the ANN is

trained for a wide range, the accessed points with the ANN computation is spread
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(b) OH mass fraction profiles by DI and ANN
computations for Case 2

Figure 24: Comparison of species profiles obtained by DI and ANN approaches for
turbulent, premixed syngas-air flame, Case 2 with refined table

over the entire region. Moreover, the ANN training table is sparse in most of the

region, which would avoid ANN to fully generalize on the training data.

In order to get better solution, a new ANN training table is produced for a smaller

portion of the chemical state-space but with a finer resolution. The ANN is trained

for a range of equivalence ratios from 0.5 to 0.7 with 0.001 increments. The CO2−OH

hyperplane representative of the region accessed through ANN training and LEMLES

is given in Fig. 23 (c). The accessed region by LEMLES for this training file is very

similar to the region covered by DI, as shown in Fig. 23 (a). For low values of the

CO2, the region used for training becomes very thin and cannot cover the accessible

region as predicted by DI calculations. Hence, the ANN prediction spreads over a

relatively larger area compared to DI. The species profile as seen in Fig. 22. is much

better than the results in Fig. 24. There is still an overestimation of the minor species

maximum value, but the error is smaller than the previous case and most importantly

the profiles do not exhibit any non-physical structure. Nevertheless this is going to

be studied further for future study.
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As it was outlined in the previous sections, most important merit of using ANN

against stiff ODE solvers is its speed, and against ISAT and ILDM based look-up table

approaches is its efficiency in terms of memory. The time required for one time step

iteration for the laminar, premixed syngas-air flame simulation with DI is 0.21547 sec

and for ANN is 0.06217, which corresponds to a speed up of 3.47. The size of the table

that is used for the training procedure is 23.8 MB. For the turbulent syngas-air flame

simulation, the time required for one iteration is 42.7969 sec for DI and 11.62101 sec

for ANN, which approximately corresponds to the same amount of speed up, 3.68. For

the turbulent flame simulation, compared to the laminar flame, the memory required

for the ANN training is larger since a MER approach is employed. The table that is

used for training is 522.6 MB and hence, using ANN saved a considerable amount of

memory. Finally, for the turbulent methane-air flame a speed up of 1.98 is achieved.

The reason why the amount of speed up decreased compared to the syngas-air flames

is related with the reduced mechanism that is used. The chemical kinetics calculations

for the methane-air calculations are made by using a small, 1 step 5 species reduced

mechanism. Thus, the time required for the solution of the stiff ODE is not as huge

as it is for the syngas flame. Still, ANN saves a 93.4 MB of memory.

5.1.3 Conclusions

In the current section it is showed that, in contrast to employing stiff ODE solvers,

ANN is very time effective, and the memory requirement is not as large as it is for

look-up table approach. Here, the focus is spent for the determinig the reliability

of the ANN predictions, which is highly dependent on the training procedure. For

premixed flames it is showed that the ANN can be trained based on the solution

of a 1D laminar premixed flame. This approach, however, is not very effective for

turbulent computations, since turbulence may perturb the composition state-space

locally which would not let it to be represented simply by one equivalence ratio.

99



Training based on multiple equivalence approach yielded relatively better results as

it is demonstrated for turbulent, premixed methane-air and syngas-air flames. Still,

the accuracy is not as good as it is wanted and next sections will provide ANN

comparisons obtained by different training approaches.
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5.2 ANN trained on Laminar Flame-Vortex Interactions

The current section provides further discussion on evaluating the applicability of the

ANN approach as a chemistry integrator for LES of reactive flows. Here, another

way of generating ANN training tables independent of the computation of interest is

proposed, which is based on the laminar flame vortex interactions (FVI). The train-

ing table is constructed with an independent flame study, and the trained networks

are used in LES of laminar flame-vortex-turbulence interaction studies at different

equivalence ratios and turbulence levels.

5.2.1 Training Table Generation

As noted earlier, the current approach is to train the ANN using a generic setup within

the parameter space of interest, and then to use it for different cases. Therefore, the

training table is constructed by DNS of a laminar flame vortex interaction (60; 72).

A 10 step, 14 species chemical kinetics mechanism for syngas combustion is used.

Since turbulence is a collection of vorticies of different strengths, six cases are run

with UC,max/SL between 10 to 400. In all these cases DC/LF =1. Here, UC,max is the

maximum velocity induced by the vortex and DC is the vortex diameter. The range is

chosen based on observationsin large-scale LES of high-Re combustion in gas turbine

engines (49). The grid is fine enough to resolve the laminar flame thickness by 11

points. Simulations are conducted using a parallel solver and a typical case requires

only around 1.95 sec/iteration on a single processor Intel PC (3.2 GHz Xeon) and

therefore, considered efficient. Simulations are run for 15 eddy turn-over time (t∗ =

DC/UC,max) after which it is observed that the initial vortex significantly diminishes.

The compositional state-space at every 0.2t∗ is recorded, merged for all cases, and used

for the ANN training. As will be discussed later, this approach allows us to include

a large number of vortex length and time scales even though the actual number of

simulations is limited.
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5.2.2 Test Cases

Table 7: Case table for the LES of flame-vortex-turbulence interaction
u′/SL UC,max/SL DC/LF φ

Case 1 10 – – 0.6
Case 2 5 50 5 0.6
Case 3 10 50 5 0.8

Table 8: Flame Parameters
Equivalence Ratio SL [m/s] lf [m]

0.6 0.2105 8.755 ×10−4

0.8 0.3920 5.611 ×10−4

The LES of premixed syngas (PSI (72))/air flame is conducted. A background

isotropic turbulence is generated by using a prescribed spectrum with fixed u′/SL

and L11/LF , selected in accordance with earlier studies (85; 68). Here, L11 is the

integral length scale. The flames are in the thin-reaction zone and the validity of the

LEMLES on this regime has been shown earlier (68). We focus on three simulations

(summarized in Tables 7 and 8), two of which with coherent vortex pair embedded in

the background isotropic turbulence to mimic the effect of large scale wrinkling of the

flame. A 643 grid is used for all cases, with an LES resolution 4 times larger than the

Kolmogorov length scale. On the subgrid level, 12 LEM cells are used within each

LES cell. Characteristic inflow/outflow boundary conditions are used in streamwise

directions, and periodicity in the spanwise and the transverse directions is imposed.

Mixture averaged transport coefficients are used with a thermally perfect gas equation

of state.

5.2.3 Results and Discussion

One hyperplane accessed by the training table is shown in Fig. 25 (a). Although

each simulation is for a single equivalence ratio, the states accessed correspond to a

certain region on the hyperplane. A fast Fourier transformation (FFT) analysis of the
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(a) H2-OH Hyperplane Accessed by the
Training Table.

(b) Correlation between the target value and
ANN prediction for all species obtained by the
10/5/4 ANN.

Figure 25: Training Phase.

u-velocity component obtained across the flame front is performed and the variation

of the amplitude of the most energetic scale (the vortex) is given in Fig. 26 (a). The

interaction represents a decaying process, and approximately after 5t∗ the amplitude

decreases by a factor of 10. The number of wave-lengths that contribute to the 80

% of the energy spectrum is given in Fig. 26 (b), and it is shown that large number

of scales are present over the entire simulation period. Hence, each test case with an

initial single vortex of a given size and strength provides additional data over a much

wider range of scales. Therefore, the current strategy of simulating and storing data

throughout the unsteady flame-vortex interaction process, coupled with the Lewis

number effect (implicit in the multi-component mixture approach used here) allows

us to include a broad region in the compositional state-space (as shown in Fig. 25).

This method is found to be more suitable for generating training data compared to

using PREMIX-CHEMKIN (73) which is steady in its nature and not suitable for

LES. Although the training is not fully independent from the LES case, the flow

features are not the same since the training is based on a laminar study. The LEM

subgrid implementation allows us to use the laminar feature inside LES grid, and
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(a) Variation of the amplitude of the most en-
ergetic wave length.

(b) Number of wave lengths that contribute
80 % of the energy spectrum.

Figure 26: FFT analysis of the flow across the flame front.

therefore this approach is a new startegy to account for turbulent mixing effects.

Table 9: Effect of number of hidden layers and PEs on the training phase
Case ANN Error (%) Time/iteration

A 10 3.91 2.485
B 20 2.97 2.894
C 10/5 1.78 2.728
D 20/10 1.604 4.552
E 10/5/4 1.690 3.959
F 20/10/8 1.704 6.119

The table constructed for the ANN training procedure is around 200 MB. Two

ANN architectures, one with 3 hidden layers (Case E, denoted 10/5/4 ANN) and the

other one with 2 hidden layers (Case C, denoted 10/5 ANN) are discussed here. The

selection of these ANNs for discussion is based on error and speed-up estimations of

several different configurations (see Table 9). Overall, the smallest error is achieved

for Cases E and D, but Case E is discussed here since it is almost 15 % faster than

the latter. Case C is one of the fastest cases but with slightly higher error (compared

to Case D), and is selected as a second case for discussion. The RMS error in the test

phase is at most 3.4×10−3 for the 10/5/4 ANN and 1.3×10−3 for the 10/5 ANN, both

observed for OH . H2 exhibits the minimum RMS error of 3.0×10−4 and 2.8×10−4 for
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Figure 27: Convergence history.

10/5/4 and 10/5, respectively. Although the 10/5 ANN is almost 20 % faster than the

10/5/4 ANN, on the average, the training for one species takes approximately same

amount of CPU time regardless of the number of hidden layers. Fig. 25 (b) shows the

correlation curve obtained for the 10/5/4 ANN. The correlations for all the species

collapse on top of each other, and demonstrate the overall accuracy during the training

phase. The ANN predictions are highly correlated with the target value, except for

some points. Considering that the plot shows almost 570,000 points, there are only

few points outside the target values and they do not affect the overall performance.

The new learning rule proposed within the paper is tested by comparing its per-

formance with standard GDR and EDBD rules in Fig. 27. The EDBD rule has very

poor learning compared to the other methods and does not exhibit a convergence,

but stays almost flat. This is due to the dependance of the EDBD on the model

coefficients, which need to be calibrated. The GDR and the new rules seem similar

in the early stage, but as the number of iterations increases the new rule outperforms

the GDR. Although not shown in the figure, the GDR eventually attains same value

of RMS error with the new rule, but after a larger number of iterations.

To quantify the accuracy of the ANN, time averaged profiles across the flame are
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Figure 28: Comparison of the instantaneous species profiles obtained by the DVODE
(•), the 10/5 ANN (- - -) and, the 10/5/4 ANN (—) at 3t∗ for Case 1.
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Figure 29: Comparison of the instantaneous species profiles obtained by the DVODE
(•), the 10/5 ANN (- - -) and, the 10/5/4 ANN (—) at 3t∗ for Case 2.
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Table 10: Speed-up obtained by ANN compared to DVODE
ANN Connections Speed-Up

20/10/8 986 4.71
10/5/4 390 7.62
10/5 274 11.22

DVODE — 1.00

compared in Fig. 28. For the major species, (H2 and CO2), ANN and DVODE

predicted profiles match very well. For minor species, H and O, the 10/5/4 ANN

exhibits errors around 3 % and 5 %, respectively. The 10/5 ANN over-predicts the

maximum value of some species, and this corresponds to an error of 22 % for H

and 18 % for O at maximum even though the overall profiles are very similar. The

instantaneous profiles across the flame also show similar errors and therefore, are not

shown here. Fig. 29 shows the instantaneous profiles for flow Case 2. Note that,

the same ANN and solver are employed and only the test conditions are changed.

The major species are in good agreement with the DVODE predictions. The 10/5/4

ANN slightly under-predicts the maximum value of H within the flame zone. Overall,

there is around maximum 10 % error for both ANNs. Some radicals show lower error,

e.g., for O the error is around 5 % for the 10/5/4 ANN. The profiles obtained by

the 10/5 ANN are not very accurate in the post flame region and over-predicts the

DVODE computations for both of the species. The same ANN approach is used

for a different equivalence ratio and turbulence level, and the results are presented

in Fig. 30. Similar to the previous cases, the major species are in good agreement

and not shown for brevity. For the minor species, H and O, the 10/5 ANN tend to

broaden the reaction zone thickness, as shown in the figure. The 10/5/4 ANN on the

other hand is more accurate. For both of the species, the 10/5 ANN overpredicts the

maximum value as well. It is clear that the overall level of agreement is not changing

with respect to the turbulence level or equivalence ratio.
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Figure 30: Comparison of the instantaneous species profiles obtained by the DVODE
(•), the 10/5 ANN (- - -), and the 10/5/4 ANN (—) at 3t∗ for Case 3.

Table 11: Memory requirement for the look-up table approach and the ANN
ANN Look-Up Table Size ANN Size

20/10/8 212.6 MB 0.291 MB
10/5/4 212.6 MB 0.150 MB
10/5 212.6 MB 0.107 MB

5.2.4 ANN Speed-Up and Memory Savings

The speed-up achieved by using ANN and the memory requirement for LES of turbu-

lent FVI are summarized in Tables 10 and 11, respectively. For the ANNs discussed

here, we achieve around 7X speed-up for the 10/5/4 ANN and 11X speed-up for the

10/5 ANN compared to a stiff ODE solver. The attainable speed-up by ANN depends

on the number of connections used in the selected architecture. Although the 10/5/4

ANN outperforms the 10/5 ANN both in the training and in the LEMLES, it uses

389 connections in comparison to 273, and is slower. Increasing the number of PEs

to 20/10/8 reduces the speed-up to around 5X. It appears that the ratio of speed-up

between different ANN architectures is roughly equal to the ratio of the number of

connections, and this provides a potential design guideline (that will have to be ver-

ified with further studies). On the other hand, even though the training table size

was large (around 200 MB), the actual ANN stores this information with less than
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1 MB. Thus, storage is drastically reduced and this is very important on cheap PC

parallel clusters where memory is limited.

5.2.5 Conclusions

The efficiency of ANN in terms of memory, time and accuracy for calculating chemical

source terms (for a multi-species reduced kinetics) within LES of turbulent premixed

flames is investigated. A new training table construction and ANN learning strategy

is proposed in this section. The proposed training approach converges faster with a

reasonable RMS error. The training strategy employs a simple flame-vortex test case

but stores the entire unsteady database to provide a large range of time and length

scales. The ANNs trained on this database are used without any change within the

subgrid in the LEMLES and direct comparison with the DVODE evaluations show

that the ANN can accurately predict the species profiles with an acceptable error.

Furthermore, a speed-up of approximately 11 (for 10/5) is achieved, and the memory

requirement is only around 0.1 MB of memory per processor.
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5.3 ANN trained on Flame Turbulence Interaction

The final effort on using ANN to calculate instantaneous reaction rates within the

LEMLES methodology deals with creating the ANN training tables based on the

flame turbulence interactions. Since the DNS of this interaction is computationally

expensive, a stand-alone LEM solver is developed and used to simulate the interac-

tion process in a computationally much affordable manner. The thermo-chemistry is

extracted by stand-alone linear eddy mixing (LEM) model simulations under both

premixed and non-premixed conditions, where the unsteady interaction of turbu-

lence with chemical kinetics is included as a part of the training database. The

proposed methodology is tested in LES and in stand-alone LEM studies of three dis-

tinct test cases with different reduced mechanisms and conditions. LES of premixed

flame-turbulence-vortex interaction provides direct comparison of the proposed ANN

method against DI and ANNs trained on thermo-chemical database created using

another type of tabulation method.

5.3.1 Training Table generation

The ANN training table is constructed by using stand-alone LEM computations for

all cases presented in this section. The details of the tabulation process (i.e., reduced

mechanism, range of Ret and L, etc.) are different for each test case. The LEM

computations start from an initially laminar profile, which is also different based on

the type of the problem (i.e. premixed or non-premixed). The LEM domain for

premixed cases extends from reactants to the products, whereas for non-premixed

cases, it spans the oxidizer and fuel streams, as shown schematically in Fig. 31 as a

1D strip in a multi-dimensional domain. However, it should be noted that the basic

structure of the tabulation and the capabilities of the stand-alone LEM computation

are the same for all cases. These parameters will be identified with more details on

the next sections.

111



R e a c t a n t s P r o d u c t sL E M
(a)

O x F O x
L E M

(b)

Figure 31: Schematics of the actual problem and the LEM sub-domain

Table 12: Test Cases
Mode ANN Testing Reduced Mechanism

Case A Premixed syngas/air LES 10 steps, 14 species (skeletal)

Case B Premixed methane/air Stand-Alone LEM 12 steps, 16 species (skeletal)
Case C Non-premixed syngas/air Stand-Alone LEM 21 steps, 11 species

Table 13: LEMLES Test Cases
u′/SL UC,max/SL DC/LF φ

Case A1 5 – – 0.6
Case A2 5 50 5 0.6
Case A3 10 50 5 0.8
Case A4 10 50 5 0.6

Table 14: Flame Parameters for LEMLES Case A
Equivalence Ratio SL [m/s] LF [m]

0.6 0.2105 8.755 ×10−4

0.8 0.3920 5.611 ×10−4

5.3.2 Test Cases

The proposed methodology for thermo-chemical database construction and ANN ac-

curacy is tested for three distinct reduced (or skeletal) mechanisms and test cases

(Table 12). The first case (Case A) is essentially a series of LEMLES of flame-

turbulence-vortex interaction computations (Table 13). For the LES cases, the ANNs

trained on the thermo-chemical data extracted from stand-alone LEM computations

are used to replace the stiff ODE solver to predict the instantaneous reaction rates at

the sub-grid model [Eq. (66)]. The strategy for the remaining cases (Case B and C) is
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to test the ANN capabilities within the stand-alone LEM computations for different

flames and kinetics mechanisms. Similar to Case A, the thermo-chemical database is

constructed with stand-alone LEM computations, and the ANNs are trained on the

data-base. Once training is achieved, ANN is used to replace the DI technique to

asses the ANN accuracy. Multiple test simulations are conducted in each of the test

cases (Cases A-C).

Case A is a series of LEMLES conducted for a premixed syngas (PSI (72))/air

flame. The LEMLES cases are listed in Table 13. The LES cases are selected so that

they can be compared with the earlier study (76), where the ANNs were trained using

tables extracted from the FVI simulation. Here, we compare the baseline LEMLES

using (a) stiff ODE solver (DI), (b) ANN trained on FVI (F-ANN) (76), (c) ANN

trained on stand-alone LEM (L-ANN) (74), and (d) ANN trained on laminar premixed

flame simulations (P-ANN) (73). The flame properties for the flames considered in

the LEMLES computations are given in (76). For all cases the integral length scale

(L) to the laminar flame thickness (LF ) ratio and the coherent vortex diameter (DC)

to the laminar flame thickness ratios are kept constant, and are selected to be 5

(L/LF = DC/LF = 5). Thus, all the flames are in the thin reaction zone regime.

The LES for all these cases is initialized by using a 1D, laminar, steady solution for

a premixed flame. Then, a pair of counter-rotating vortices are superimposed on an

isotropic background turbulence to induce both large and small scale wrinkling of the

flame front. The details of the initialization process can be found in our earlier studies

(72; 73; 76). A 643 grid is used for all cases, and the grid resolution is approximately

four times larger than the Kolmogorov length scale (∆x = 4η). For sub-grid scalar

field evolution, 24 LEM cells are used within each LES grid, allowing a resolution of

turbulent eddy in the sub-grid approximately of the order of η. The chemical kinetics

is represented by a 14-species, 11-steps reduced skeletal mechanism. Based on the u′

and L selected for each of the cases, the thermo-chemistry is extracted by running
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stand-alone LEM computations for a fixed L and varying Ret. The process of creating

the LEM tables is described in detail later in Section 5.3.3.1.

The second series of test cases (Case B) are selected to construct the thermo-

chemical state-space occuring inside the stagnation point reverse flow (SPRF) com-

bustor (? ). Rather than performing the actual LES, here we perform stand-alone

LEM computations for the SPRF conditions and evaluate the performance of the

ANNs within the LEM framework. Characteristic eddy size (L), fluctuating velocity

(u′) and the local viscosity obtained in a separate LEMLES of this combustor (?

) are used to find the maximum Ret. The characteristic eddy size (integral length

scale) is selected to be the radius of the whole injector assembly (L =8.25×10−3m).

Also, previous LEMLES studies of this configuration obtained u′ ∼10 m/s (? ). The

stand-alone LEM computations are performed for 20 (NRet
=20) different Ret values

ranging from 10 to 400 for a fixed L. For the each different Ret, both η and λ are

changing, so the initial scalar field experiences different level of interaction. This is

similar to the process observed in turbulent flames. It is also found that, as the NRet

is further increased, the states accessed by the LEM computations become nearly

identical for two consecutive simulations, thus NRet
=20 is found to be an optimum

value for this particular case.

The last case (Case C) is based on a DNS of a temporally evolving, plane jet,

syngas/air flame from the literature (26). Similar to case B, stand-alone LEM is

performed here to evaluate the ANN performance. The maximum Ret for this case is

reported to be 175 in the DNS study. Also, the integral length scale is roughly H/3,

with H denoting the initial width of the jet velocity (26). The stand-alone LEM

computations are performed for 20 (NRet
=20) Ret values ranging from 10 to 180, for

a fixed L.

It is noted that LEMLES of Cases B-C using the ANNs developed in this study

are currently being conducted and these results will be reported in the next chapters.
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The current section aims to establish the tabulation based on stand-alone LEM on

different combustion modes and configurations. Hence, we focus primarily on the

development and use of ANN for these test cases.

5.3.3 Results and Discussion

5.3.3.1 Description of the LEM tabulation and ANN training

LEM tabulation

For the premixed cases (Case A and B) the initial profile is calculated as func-

tion of the equivalence ratio and the reactant temperature. For the non-premixed

simulations, however, strain rate is an additional parameter to the thermodynamic

variables. From the LEM perspective, once the non-premixed simulations are started

from an initial strain rate, the small scale turbulent structures will change the strain-

ing locally resulting in different scalar field evolution based on the Ret and L. Hence,

non-premixed LEM computations (Case C) are initialized for a relatively lower strain-

rate than the one used in the DNS computations (26). During the simulation it is

expected that the database created with LEM computations will cover a broader

range in the compositional state-space, compared to the case initialized by a strain

rate very close to the extinction. As will be discussed later, an increase in Ret results

in flame extinction although the initial strain rate is very low.

Once the scalar field is initialized, the stand-alone LEM for all cases is run with

a given time step size (∆t). Here it should be noted that, for the given ∆t, both

turbulent stirring and molecular diffusion proceeds with sub-iterations with their

respective time steps (∆tstir, ∆tdiff ). Thus, the LEM evolution is independent of ∆t.

For two LEM computations with different Ret, the number of stochastic turbulent

stirring events per given time interval (∆t) is distinct, which results in a different level

of flame-turbulence interaction process. Also, the diffusion process counteracts turbu-

lent stirring at its own time and length scale. A typical picture demonstrating these
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Figure 32: Effect of diffusivity for different species.

unsteady interactions is shown in Fig. 32 for Case C. For the given Ret, the dashed

lines represent the LEM result obtained without simulating the effect of diffusion.

The LEM computation with diffusion turned on exhibits smooth variation for both

of the species. Here, first thing to note is that the scalar profile obtained for HO2

is highly wrinkled, whereas H seems almost not affected by the turbulent stirrings.

This is a direct result of using non-equal diffusion coefficients for the species. Hence,

HO2 is more sensitive to the turbulent forcing, which can be captured through LEM

diffusion sub-iterations.

ANN training

Once the LEM database is created, the instantaneous species reaction rates cor-

responding to each state are calculated and added to the look-up table, which is used

for ANN training. Since each LEM iteration requires a certain number of diffusion

and stirring sub-iterations, the generated database cannot be expected to contain all

the available states. Such an attempt would require tabulation of a table of Ns di-

mensions, which is probably not affordable for large chemical mechanisms. However,

if well trained, ANN has the potential to fill out the gaps between the existing states

in the database and provide predictions to the states that it was not trained for. This

is one of the goals of this section.
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(a)

(b)

Figure 33: (a) Thermo-chemical database accessed by the 1D-LEM solver. (b)
Correlation obtained by the ANN testing

The temperature-H2 reaction rate hyperplane from the training table generated

for test Case C is shown in Fig. 33 (a). There are approximately 5M states included

within the training table. In order to increase the sensitivity of the reaction rate

calculations with respect to the temperature, the whole database is divided into nine

equi-distance temperature bins. The number of bins are selected so as to leave at

least 100K datapoints at each bin to achieve a proper training. The boundaries of

each temperature bin is shown with dashed lines in the figure. Once all states are

divided into temperature bins, ANN training is achieved for each bin separately. A

multi-layer perceptron type of ANN is used for the training with arbitrary number of

hidden layers and PEs. The inputs for the ANNs are the species mass fractions and

117



100 1000 10000
Number of Connections

1

2

3

4

5

6

A
N

N
 S

pe
ed

-U
p

Figure 34: ANN speed-up with respect to the number of connections.

the temperature, whereas the output is the reaction rates of all species.

Approximately 85 % of the database is selected randomly and used for training

the selected ANN architecture. The remaining 15 % of the database (test table) is

then used for testing the ANN during the training phase. There is no general rule

that exists to determine the exact proportions of the training to testing database,

and different studies in the literature uses different values (see (32? ; 29)). For this

particular study the aim is to use as much as data for ANN training as possible in

order to increase the ANN sensitivity to the LEM created database. In order to

avoid over-training, which would cause ANN to memorize the training data and may

prevent it from being general, the training is stopped if there is no improvement for

consecutive iterations. The selection of the number of hidden layers and number of

PEs for each hidden layer is an important issue that has to be handled with care.

In the current study, the optimum ANN is selected by experimenting with different

ANNs based on the speed-up provided and the RMS error achieved.

A typical correlation curve obtained during the training phase is given in Fig. 33

(b). Here, the y axis is the actual value of the test data, whereas x axis denotes

the ANN predictions. The figure shows the correlation obtained for all temperature

bins, and for all the species, and proves that a good correlation is achieved on the
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training phase. The correlation curve shown in Fig. 33 (b) is obtained for an ANN

architecture with 5, 3, 2 number of PEs at each hidden layer, respectively (hereafter,

identified as 5/3/2 ANN). The selection of the number of hidden layers and number

of PEs for each hidden layer is an important issue that has to be handled in care. In

the current section, the optimum ANN is selected with experimenting different ANNs

based on the speed-up provided and the RMS error achieved.

It is known that the number of floating point operations for a given ANN is a

function of the number of connections between each PE, as it was shown in Section

??. Figure 34 shows the ANN speed-up against using a stiff ODE solver with respect

to the number of connections, and it is seen that the maximum speed-up that can

be obtained for this particular reduced mechanism is slightly larger than 5. As the

number of connections are increased, the speed-up decreases, and at 500 it is almost

4 % less than the ideal speed-up, which is still an acceptable value. Beyond 500,

however, ANN speed-up seems to be more sensitive to the changes in the number

of connections and it decreases exponentially. Eventually beyond 20K connections,

ANN is slower than using a stiff ODE, which suggests that there should be a limit for

the number of connections used in ANN computations. For this particular study, the

limit is approximately 500, since it gives the best speed-up with respect to the number

of connections.Nevertheless, the exact ANN architecture should be defined not only

based on the ANN speed-up, but also the ANN training error. The selection of a

limit for 500 connections would only be meaningful if the error associated with the

ANNs having connections less than 500 correspond to an acceptable ANN training

error.

The above approach is not optimal, since in general, the exact ANN architecture

should be defined not only based on the ANN speed-up, but also the ANN training

error. The selection of a limit for 500 connections would only be meaningful if the

error associated with the ANNs having connections less than 500 correspond to an
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acceptable ANN training error. The error and the number of connections for some of

the tested ANNs are summarized in Table 15. Here, the ANN error is calculated as :

E = log10

(
1

Ntest

Ntest∑

k=1

1

2I

I∑

i=1

[di − yi[k]]
2

)
(131)

which is an average over the number of PEs at the output layer (I) and number

of test samples (Ntest). As seen in the Table 15, the ANN training error (E) varies

between -3.521 to -4.870, with the latter obtained for a 3 hidden layer ANN archi-

tecture with 20, 10, 5 number of PEs at each hidden layer, respectively (hereafter,

identified as 20/10/5 ANN). However, the number of connections for this particular

ANN is 1240, which is beyond the optimum limit obtained from speed-up analysis.

It has been observed that the ANN error (Eq. (76)) for the architectures with more

than 500 connections is less than -4. Among the ANNs tested in this study that

has number of connections less than 500, this condition can only be satisfied for 1

hidden layer ANN with 20 PEs and 3 hidden layer ANN with 5, 3, 2 PEs at each

hidden layer, respectively (5/3/2, hereafter). As the 5/3/2 ANN has less number of

connections than the 20 ANN, it is selected as the optimum ANN for this test Case

C.

Table 15: List of ANN architectures and their properties used for Case C
ANN Error Connections Time/(Iter×Sample)

5 -3.521 230 1.922×10−5

10 -3.801 340 2.021×10−5

20 -4.056 460 2.279×10−5

5/4 -3.889 358 2.058×10−5

10/5 -3.920 500 2.199×10−5

20/5 -4.114 770 2.437×10−5

20/10 -4.619 1080 2.635×10−5

5/3/2 -4.201 371 2.060×10−5

10/5/2 -4.327 574 2.259×10−5

20/10/5 -4.870 1240 2.813×10−5

It is noted that recently an automatic way of defining the optimum number of PEs

for the given hidden layers has been proposed in the literature (28; 29) (O-ANNs),

120



and the applicability of this approach with our new learning rule will be evaluated in

the future for LEM based tabulation procedure. The approach used so far evaluated

the ANN speed-up and the training error (E) for a certain number of candidates, and

further optimization is possible. However, it should be noted that the ANN training

error cannot be expected to be an absolute ANN error in the LES. It is rather a

measure of how well the current ANN is predicting the states in the test table on an

average sense. These states may never be accessed in the LES computations, or the

LES may access a sub-space of the results where the ANN training error is locally

large. Hence, as long as the training error for a given ANN architecture is less than

a given value (i.e., -4.0 for this case) it is assumed that the ANN is trained well and

fine tuning is not necessary. However, this is an issue for future studies.

The time required to do one training iteration per number of training and testing

samples for the current ANN approach is given in Table 15. For the optimum case,

with approximately 500K number of samples and 500 iterations (which is typical

number of training iterations), it takes only 1.4 hours on a PC (Pentium 4, 2.40 GHz)

to finish the training, which is considerably quite reasonable. Of course, this cost may

change with larger skeletal mechanisms and is an issue currently being investigated.

5.3.3.2 Case A - LEMLES of turbulent flame-turbulence-vortex interaction

The LEMLES cases are selected based on our earlier study (76), and are listed in Table

13. For the each given test case, the LEMLES is carried out using different kinetics

evaluation strategies (DI, F-ANN, L-ANN, and P-ANN). The F-ANN is identical to

the one used in our earlier calculation (76), and the whole methodology of creating

the data-base and ANN training is not repeated here for sake of brevity. The training

table for P-ANN is constructed based on performing laminar, 1-D, premixed flame

calculations for multiple equivalence ratios. Our previous observations on premixed

flames revealed that the species mass fractions may locally deviate from that obtained
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from the laminar flame calculations as a result of the unsteady mixing induced by

the flame-turbulence interaction (73). Hence, rather than creating a table for a single

equivalence ratio (Φ), the training table is formed for multiple-equivalence ratios,

by changing Φ from 0.4 to 1.10, with a step size of 0.001 (∆Φ =0.001). The final

training table includes approximately 482K total entries. For L-ANN, the training

table is constructed similar to the way explained in Section 5.3.3.1. The stand-alone

LEM code is run for a fixed L (L = 5×Lf ) and varying Ret, for the values given in

Table 13. The optimum ANN based on F-ANN for this case was previously found to

be a three hidden layer 10/5 architecture (76). It should be noted that the optimum

ANN architecture depends highly on the training data, and should be different for

each F-ANN, P-ANN and L-ANN. However, for comparison purposes, same ANN

architecture is used for all ANN models considered in Case A.

The time-averaged and instantaneous species profiles obtained across the flame

front at mid-y and z planes is used to evaluate the different ANN methodologies,

and to compare them with the DI computations. The time averaged results for the

variation of a major (H2) and two intermediate species (H , O) across the flame

front for Case A1 are presented in Figs. 35a-c. Other species show qualitatively

similar trends and therefore not shown for brevity. Here, dots represent the LES

results with DI, dashed lines P-ANN, dash-dot lines F-ANN and straight lines L-

ANN. The agreement between all ANN models are acceptable for H2 as seen in

Fig. 35a. However, for H (Fig. 35b), the P-ANN exhibits the most error, with

almost 1.5 times larger values than the DI predictions. P-ANN overpredicts the O

mass fraction as well (Fig. 35c), suggesting that it is not very accurate for minor

species prediction. The F-ANN successfully follows the same profile calculated by DI

computations for all species with an acceptable error, which is in consistency with

our previous observations (76). The L-ANN, on the other hand, is even better than

F-ANN for this case, showing almost identical variation with DI.
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Figure 35: Comparison of the time-averaged species profiles obtained by the DI (•),
the P-ANN (- - -), F-ANN (- . - .), and L-ANN (—) for Case A1.

The corresponding instantaneous results for species H2, H and O at t = 5t∗ is

shown in Figs. 36a-c for Case A2, respectively. The non-dimensional time (t∗) is

calculated based on the maximum velocity induced by the initial coherent vortex and

its size (u′, DC). At this instant, the results obtained by P-ANN is not following

the same trend even for the major species H2, and denotes an early consumption of

the fuel (36a). This is supported by the fact that the peak value for H is reached

at approximately 0.022, whereas DI results detect the peak at 0.028, as seen in Fig.

36b. P-ANN results are not shown for O mass fraction in Fig. 36c, since it exhibits

large amount of error compared to the other ANN models. Similar to Case A1, the

F-ANN and L-ANN results are comparable with each other with an acceptable error.

The L-ANN results seem to be slightly shifted towards the reactants for both of the

123



0.02 0.03 0.04
X[m]

0

0.001

0.002

0.003

0.004

0.005

H
2 M

as
s 

F
ra

ct
io

n

(a)
0.02 0.03 0.04

X[m]
0.0

4.0×10
-5

8.0×10
-5

1.2×10
-4

H
 M

as
s 

F
ra

ct
io

n

(b)

0.02 0.03 0.04
X[m]

0.0

5.0×10
-4

1.0×10
-3

1.5×10
-3

2.0×10
-3

O
 M

as
s 

F
ra

ct
io

n

(c)

Figure 36: Comparison of the instantaneous species profiles obtained by the DI (•),
the P-ANN (- - -), F-ANN (- . - .), and L-ANN (—), at t = 5t∗ for Case A2.

minor species.

Figs. 37a-c (Case A3) shows the instantaneous species mass fraction profiles at

t = 5t∗ for an equivalence ratio of 0.8, and a higher background turbulence intensity

compared to Cases A1 and A2. The equivalence ratio is an indirect input to the

F-ANN and L-ANN computations through the initial data profile used to run both

3D simulations and the stand-alone LEM. Hence, a different ANN is used for F-ANN

and L-ANN in Case A3, than the previous cases, whereas P-ANN is not changed.

Interestingly, the P-ANN underpredicts the actual profiles of the minor species as

seen in Figs. 37a-c at t = 5t∗ for Case A3. This indicates a non-complete combustion

process, which is supported by the H2 plot (Fig. 37a) as well. The H2 mass fraction

exists at locations where it should have been consumed as calculated by the DI.
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Figure 37: Comparison of the instantaneous species profiles obtained by the DI (•),
the P-ANN (- - -), F-ANN (- . - .), and L-ANN (—), at t = 5t∗ for Case A3.

Results obtained by F-ANN is very accurate in capturing the variation of H2, similar

to the previous cases. The location of the reaction zone is also detected well, with a

slight overprediction of the peak value of the mass fractions. The maximum deviation

is 7 % for the O mass fraction. The L-ANN results for this case exhibit better

agreement with the DI computations than the F-ANN.

Finally the instantaneous profiles for H2, H and O species obtained at t = 5t∗

for Case A4 are given in Figs. 38a-c. This case is for the same initial turbulence

quantities with Case A3, but, for Φ = 0.8. Hence, the same ANN used for cases A1

and A2 is used for A4. The increase in initial turbulent intensity resulted in flame

thickening compared to case A2, as seen in the plots. Similar to that is observed

in A3 (Figs. 37a-c), the P-ANN tends the underpredict the correct profiles, and is
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Figure 38: Comparison of the instantaneous species profiles obtained by the DI (•),
the P-ANN (- - -), F-ANN (- . - .), and L-ANN (—), at t = 5t∗ for Case A4.

wrong for all species.

5.3.3.3 Case B - LEM studies of premixed methane/air flames

The LEM is initialized based on the solution obtained from a steady, laminar, one-

dimensional premixed methane/air flame computation at an equivalence ratio of 0.6.

A 16-species, 12-step skeletal mechanism is employed for chemical kinetics calcula-

tions (83). The details of this mechanism is given in the Appendix. A database is

constructed for a range of Ret with a fixed integral length scale L. The recent LES

data on the SPRF combustor (88) reveals that the maximum value of Ret is of the

order of 400. Hence, the Ret is varied from 10 (diffusion dominated) to 400 (turbulent

stirring dominated). The thermo-chemical state-space is recorded at every five itera-

tions, and later the instantaneous species reaction-rates are calculated and stored in
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a training table. The LEM computations are run for a number of iterations up to

1000 number of iterations (N∗ =10). The optimum ANN architecture is found to be

a three hidden layer architecture with ten, eight and four (10/8/4) number of PEs at

each hidden layer.

The comparison of the LEM results for species CH4, H2O, OH and CO obtained

by DI and ANN at Ret =92 is shown in Figs. 39a-d at N = 15N∗. The integral length

scale for this case is larger than the laminar flame thickness of the premixed flame.

Hence, for the given turbulent Reynolds number, the flame front is distributed more

effectively by turbulent stirrings than Case C, as it is shown in Fig. 32. The turbulent

stirrings create multiple flame crossings at each instant. The agreement between the

ANN and DI predictions is fairly good within the flame brush. As it is seen in Fig.

39c, the only discrepancy is observed for OH mass fraction at approximately L =0.06

m.

Figs 40a-d shows the profiles obtained by ANN and DI for CH4, H2O, OH and CO

at a higher turbulent Reynolds number (Ret =290). At this Ret the number of grid

points across the flame front increases, since η decreases. Consequently, the number

of turbulent stirrings per time step increases with a decrease in the characteristic

eddy size. Hence, the flame front exhibits more small scale flame wrinkling as shown

in the figure. This causes a thicker turbulent flame brush compared to that of shown

in Figs. 39a-d for a lower Ret. Regardless, the agreement between ANN predicted

and DI computed profiles is unaffected by Ret

Finally, the evolution of the minor species mass fractions are given in Fig. 41 for

Ret =290. Here, the results up to N = 30N∗ is shown to assess the ANN accuracy,

which is well beyond the limit (N = 30N∗) used to extract the thermo-chemical

state-space. As seen in the figures, the species mass fractions exhibit sudden jumps

during the computations. This is a result of the turbulent stirring process. As it was

mentioned before, the characteristic eddy size (L =0.008m) for Case B is larger than
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Figure 39: Instantaneous scalar profiles obtained for Ret =90 and at Niter = 15N∗:
Case B.
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Figure 40: Instantaneous scalar profiles obtained for Ret =290 and at Niter = 5N∗:
Case B.
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Figure 41: Time evolution of the scalar profiles for Ret =290

the laminar flame thickness, resulting in large scale mixing process within the flame

region. Still, the ANN and DI profiles are mathcing quite well as seen in the figure.

5.3.3.4 Case C - LEM studies of non-premixed syngas/air flames

The initial scalar dissipation rate is selected to be χ=0.50χq, with χq denoting the

extinction scalar dissipation rate (χq=2194s−1). Here, stand-alone LEM computations

are run for 2000 iterations (Niter =2000) with a time step (∆t) size of 4.510−8 s

(tj = 20), at which, the DNS study reports considerable amount of local extinction

occurs. Similar to the DNS study, the non-dimensional time (tj) is calculated by

using the width of the fuel slab (H) and the characteristic jet velocity U (26). ∆t

is selected in accordance with an LES study performed for the same case (74). As

noted earlier, the LEM is independent of ∆t as stirring and diffusion proceeds with

their own time step sizes.

The mean value of the PDF of OH mass fraction conditioned on the mixture
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Figure 42: Conditional means of OH mass fraction and χst with respect to the
mixture fraction for Case C.

fraction (YOH |Z) is shown in Fig. 42a for four different Ret values at approximately

t = 20tj. The laminar flamelet value at extinction (extinction limit) (26) is also pre-

sented for comparison purposes. For a very low Ret (i.e., Ret =10), the initial profile

remains almost unaffected by the turbulence, which is consistent with our previous

observations. As the turbulent Reynolds number increases, the flame is pushed to-

wards extinction and the LEM data agrees well laminar flamelet at approximately

Ret =86, denoting that LEM predicts extinction at this turbulent Reynolds number.

As the Ret is increased beyond 86, the LEM profiles demonstrate increased level of ex-

tinction. The PDF of the scalar dissipation rate at the stoichiometric mixture fraction

P (χst) is given in Fig. 42 (b) for the same conditions shown in Fig. 42 (a). Scalar

dissipation rate is calculated as χst = 2D(∂f/∂s)(∂f/∂s), where f is the mixture

fraction calculated by Bilger’s definition and D is the mixture diffusivity calculated

with a unity Lewis number assumption (26). Here, it is seen that the tails of the PDF

spreads-out as the Ret is increased. Also, the mean value of P (χst) shifts towards

higher values of scalar dissipation rate as Ret is increased, and is approximately 2300

s−1 for Ret =86. The DNS study reports that the extinction scalar dissipation rate

is 2194 s−1. The current LEM prediction is close to this value suggesting that some

of the underlying physics has been captured in our LEM simulation.

131



0.002 0.004 0.006
L [m]

0.00

0.05

0.10

0.15

0.20

0.25

O
2 M

as
s 

F
ra

ct
io

n

DI
ANN

(a)
0.002 0.004 0.006

L [m]
0.000

0.002

0.004

0.006

O
H

  M
as

s 
F

ra
ct

io
n DI

ANN

(b)

0.002 0.004 0.006
L [m]

0.00

0.01

0.02

0.03

0.04

H
2O

  M
as

s 
F

ra
ct

io
n DI

ANN

(c)
0.002 0.004 0.006

L [m]
0

2×10
-4

4×10
-4

6×10
-4

8×10
-4

H
  M

as
s 

F
ra

ct
io

n

DI
ANN

(d)

0.002 0.004 0.006
L [m]

0.0

0.1

0.2

0.3

0.4

0.5

C
O

  M
as

s 
F

ra
ct

io
n

DI
ANN

(d)

Figure 43: Instantaneous scalar profiles obtained for Ret =20 and at t = 10tj : Case
C.

In order to evaluate the generalization of the trained ANNs, the stand-alone LEM

simulation is repeated, by using the trained ANN for the chemical-kinetics. The

species profiles obtained for O2, OH , H2O, and H are given in Figs. 43a-d, respec-

tively, for Ret =20 at t = 10tj . As demonstrated earlier, at Ret = 20, the flame is

diffusion dominated, and turbulence cannot cause an effective flame front wrinkling.

The discrepancy between the ANN predictions and the DI calculations is indistin-

guishable from each other, which suggests that ANN is working excellently for this
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Figure 44: Instantaneous scalar profiles obtained for Ret =20 and at t = 25tj : Case
C.

relatively low Ret. To test the ANN capacity, the number of iterations are further

increased to 2500 (t = 25tj), which is beyond the training database. As seen in Figs.

44a-d, small deviations tend to appear at this late time. This is most apparent espe-

cially at the peak value of H (Fig. 44d) and in the post flame region of H2O (Fig.

44c).

For a higher turbulent Reynolds number (Ret = 80) the time variation of some

of the key minor species mass fraction (OH , H2O, H) obtained by using DI and
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Figure 45: Time evolution of the scalar profiles for Ret =80
at a location within the flame zone : Case C.

ANN are in fair agreement. This is demonstrated in Figs. 45a-c at a location within

the flame zone, where the reaction rates for the species are at their maximum value.

Here, results at every 100 iterations are shown for both of the simulations. For t/tj

between 15 and 22 there is some discrepancy between the ANN and DI, although the

error is less than 1 %. In order to understand if this discrepancy is systematically

created and is enhanced by the ANN predictions or not, the time averaged results

are shown in Figs. 46a-d for the same Ret. The flame front exhibits smooth profiles

for all species, since time averaging smoothens the small-scale wrinkling of the flame

front. Overall, the agreement between the DI and ANN predicted results is quite

good. This suggests that there can be small discrepancies in the instantaneous scalar

profiles, but they do not provide major prediction errors on a time averaged sense. It

still needs to be proved if this is a general conclusion or not, and will be investigated

further in the future.
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Figure 46: Time averaged scalar profiles obtained for Ret =80 : Case C.

Finally, the accuracy of ANN at a turbulent Reynolds number that it was not

trained for (Ret = 70) is investigated, and the results are given in Figs. 47a-d for the

same species at t = 15tj . The results are overall very similar to what was observed for

Ret = 20 and Ret = 80. There is substantial amount of small-scale flame wrinkling

and spreading-out due to turbulence. The intermediate species exhibit increased level

of mass fraction at s = 0 and L, respectively. The agreement between ANN and DI is

still acceptable suggesting that ANN can provide predictions for a Ret that was not

in the training data-base.
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Figure 47: Instantaneous scalar profiles obtained for Ret =70 and at t = 15tj - Case
C.

5.3.4 ANN Speed-Up and Memory Savings

The speed-up achieved by all ANNs considered for Case A is identical, and approxi-

mately 11X, since the same ANN architecture (10/5) is used for the LES cases. The

memory saving is different for each distinct ANN method, since the training tables

are different. As given in Table 16, there is considerable amount of memory saving

achieved by using ANN. The tables used for training F-ANN and L-ANN have nearly
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the same size. The table used for P-ANN training is, however, much smaller by al-

most 3 times than the ones used for F-ANN and L-ANN. So, the poor performance of

P-ANN could be attributed to using a smaller training table size. However, the ∆Φ

used for generating the table is already very small, and the number of grid points has

been increased extensively. Thus, for the range of Φ considered in the LES, increasing

the training table size of P-ANN would be only possible by including states, which are

very similar to those already in the table, and is therefore redundant. These observa-

tions suggest that there is an inherent limitation of the P-ANN approach compared

to the F-ANN and L-ANN.

Table 16: Memory saving by ANN for Case A
Look-up table size ANN size

F-ANN 212.6 MB 0.107 MB
P-ANN 67.5 MB 0.107 MB
L-ANN 242.1 MB 0.107 MB

Table 17: Timing for Case B
Time/(Step×Grid)

Stirring Only 5.66×10−5

Diffusion Only (Le #) 4.52×10−4

Diffusion Only (MA) 7.21×10−4

Reaction Only 2.44×10−2 (7.02×10−4 with ANN)

Table 18: Timing for Case C
Time/(Step×Grid)

Stirring Only 3.12×10−5

Diffusion Only (Le #) 3.69×10−4

Diffusion Only (MA) 7.22×10−4

Reaction Only 2.35×10−3 (6.62×10−4 with ANN)

The time required to perform stirring, diffusion and reaction computations per

number iterations and grid points on an Intel PC (Pentium 4, 2.40 GHz) is given in

Table 17 for Case B. The least time consuming process is the turbulent stirring, since

it is handled in a stochastic manner. The time required to do diffusion calculation is
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approximately one order of magnitude larger than for stirrring. The diffusion cost is

increased further by using mixture averaged (MA) diffusivities for the species equation

compared to the constant Lewis number assumption. Regardless, the reaction rate

calculation by using a stiff ODE solver is the most time consuming process, which is

430 times more expensive than stirring, and approximately 30 times larger than the

diffusion. The time required to calculate reaction rates through ANN computations

is, however, of the same order with the diffusion calculations, and therefore, results

in approximately 35X speed-up for the chosen ANN.

Table 18 lists the time required to perform stirring, diffusion and reaction rate

calculations in the LEM simulation for Case C. The most important difference be-

tween Case B and Case C timing comparison is the reaction rate calculations. For the

methane skeletal mechanism used in Case B, the chemical source term computation

is approximately 30 times slower than the diffusion. For the syngas case, however,

it is only 7 times slower than diffusion. It is well known, the syngas reaction mech-

anism is not as stiff as methane, since syngas combustion is a sub-set of the larger

methane combustion (93). So, for this configuration and kinetics model, ANN is only

3.5 times faster than the DI. Regardless, there is still a speed-up in the computations.

Finally, the ANN table used for training is 3.18 GB, whereas only 0.1 MB of memory

is required to store the ANN coefficients used during the actual computation. Hence,

there is considerable amount of memory saving, which is very beneficial for employing

PC parallel clusters with limited memory. This result is expected to hold regardless

of the mechanism itself.

5.3.5 Conclusions

The study discusses a new approach to calculate chemical source terms in multi-step,

multi-species reaction kinetics mechanisms based on the ANN method. The ANN

training is achieved by stand-alone LEM simulations, where the unsteady interaction
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of small-scale structures with a laminar flame front is captured. The LEM scalar field

is initialized based on the same composition as the LES. However, LEM is not carried-

out for the same geometry as in the LES. Hence, this approach is new and offers a

problem independent method to extract the thermo-chemical states, and therefore

has the potential for developing ANNs independent of the geometry of interest.

The proposed methodology is evaluated for three distinct cases. The first test case

(Case A) is a series of LEMLES of premixed syngas flame-turbulence-vortex interac-

tion computations, where ANN is used to replace DI in the sub-grid LEM model. The

simulations are carried out for four different cases with different equivalence ratios

and turbulence levels. Cases B and C provide a priori ANN testing in the stand-

alone LEM computations by evaluating the ANN predictions inside and outside the

compositional state-space for which it was trained.

The LEMLES studies demonstrate that the current ANN approach is capable

of detecting the correct variation calculated by the DI. Also, while results by L-

ANN and F-ANN are comparable to each other, the P-ANN approach provides the

worst predictions. This confirms that the ANN accuracy is strongly affected by the

look-up table used for ANN training. The table constructed based on laminar flame

calculations lacks the unsteady mixing effect caused by turbulent structures, and

therefore, is not suitable for ANN training. This effect is included both in the 3D

simulation of FVI and in the stand-alone LEM calculations, which leads to more

accurate and reliable ANN predictions.

The thermo-chemical database constructed through LEM does not contain all the

states accessed during the computation. Thus, the ANN’s ability to predict states

for which it is not trained (so-called generality) is addressed by both LEMLES and

stand-alone LEM computations. As the composition is identical in cases A1, A2 and

A4, exactly the same L-ANN is used for the computations. The results shows that

the ANN predictions for these cases have almost the same accuracy. The stand-alone
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LEM computations are also used to simulate conditions outside the training base of

ANN. Results obtained by Case B for a premixed methane/air flame demonstrates

that the LEM with ANN is indistinguishable from the LEM with DI. The same

behavior is observed for a non-premixed syngas/air LEM simulation (Case C). The

ANN’s capability to predict the LEM evolution for a Ret that is not included in the

database is also addressed in Case C, and again, the results are satisfactory.

The ANN speed-up against DI is shown to be highly dependent on the stiffness of

the reduced mechanism that is used to calculate the chemical source terms. For Case

A, the ANN provided approximately 11X speed-up compared to DI, whereas for Case

C, the speed-up is around 4∽5X. This is related to the less stiff mechanism used for

Case C. For the cases considered in this section, the maximum speed-up is obtained

for Case B (35X), since the methane skeletal mechanism used here is much stiffer

than the syngas mechanisms. Regardless of the speed-up, for all cases there is huge

memory saving, e.g., for Case C, the look-up table size is 3.18 GB, whereas only 0.1

MB is needed for the ANN. These results show that in addition to memory saving,

there is a possibility that a well trained ANN could be very cost effective for larger

and stiffer mechanism. This observation has an important implication for LES of

reacting flows with finite-rate kinetics, but more work is needed to fully demonstrate

this advantage. Application of ANN in LEMLES for Cases B and C will be reported

in the next chapters.
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CHAPTER VI

LES OF EXTINCTION AND REIGNITION WITH ANN

6.1 Numerical setup and ANN training

A DNS of turbulent non-premixed combustion in a temporally evolving jet (Case M

(26)) is chosen as a test case for the current LES study. This case corresponds to a

Reynolds number of 4478 and a Damkohler number of 0.011. The DNS study showed

that this case exhibits complex extinction and reignition during flow/flame interaction

and evolution.The computational domain (Lx, Ly, Lz) is (12H , 14H , 8H), where H

denotes the initial width of the jet velocity, and H = 0.96 mm for Case M. The DNS

employs 64 grid points along H , which implies a resolution ofapproximately 350 M

grid points in total, with a minimum resolution of around 2η.

Two LES results are presented here: Cases M-1 and M-2, with 96×112×64 and

192×224×128 number of grid points in x, y and zdirections, respectively. Both

grids are clustered in the shear layer with smooth stretching towards the transverse

boundaries. For Case M-1, the minimum LES resolution in the shear layer is 5η,

whereas it is 2.5η for Case M-2. Thus, these resolution are similar to the DNS the

grid in the other two periodic directions is much larger. 12 LEM cells are used within

each LES cell to account for subgrid turbulence-chemistry interactions. The grid

resolution for each of the cases is given in more details in Table 19. With this grid,

the subgrid resolution is reasonable to capture flame-turbulence interaction. The LES

is initialized identical to the original DNS study with a laminar flamelet solution at

a scalar dissipation rate χ =0.75χq. Here, χq is the extinction scalar dissipation rate,

whichis 2194 s−1. The fuel is composed of 50 % CO, 10 % H2 and 40 % N2, whereas

the oxidizer is air. Isotropic background turbulence is added to trigger the evolution
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of shear-generated turbulence. The initial turbulent integral length scale is H/3

and the turbulence intensity is 0.05U . Characteristic perfectly non-reflecting outflow

boundary conditions are used in the transverse direction, whereas in thestreamwise

and the spanwise directions periodicity condition is imposed. A 21 steps, 11 species

(H2, O2, O,OH,H2O,H,HO2, CO,CO2, HCO,N2)reduced mechanism is used for the

chemical kinetics calculations. Mixture averaged transport properties are used for the

calculation of heat and species diffusion fluxes.

Table 19: Grid resolution used for Cases M-1 and M-2.
∆x [m] ∆y [m] ∆z [m] ∆s (LEM) [m]

Case M-1 1.2×10−4 max. 2.50×10−4 1.2×10−4 max. 1.28×10−5

min. 0.70×10−4 min. 0.84×10−5

Case M-2 0.6×10−4 max. 1.25×10−4 0.6×10−4 max. 0.64×10−5

min. 0.35×10−4 min. 0.42×10−5

The ANN is trained on an unsteady thermo-chemical database constructed through

stand-alone LEM computations. The further details of the table generation by stand-

alone LEM, ANN training and architecture selection relevant to the conditions con-

sidered here are discussed in Section 5.3.3.1 and will not be repeated here for the sake

of brevity.

6.2 LES with LANN

6.2.1 LANN Validation Against DI for Case M-1

Initially the validity of the ANN approach against using stiff ODE solver (DI here-

after) is assessed on the coarse LES grid. For this purpose the LEMLES is run first

with DI (DI-LEMLES hereafter) and later with ANN (ANN-LEMLES hereafter).

The comparison of the time averaged density, axial velocity, transverse velocity and

temperature profiles obtained by both methodologies is given in Figs. 85 (a)-(d),

respectively. Here, the time averaging is achieved on a time window of tj = [0 − 30],

where tj is the non-dimensional time given as tj = t/(H/U). H and U denote the
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Figure 48: Comparison of the time-averaged data obtained for Case M-1 using
DI-(•) and ANN-(—) LEMLES.

jet height and characteristic jet velocity, respectively (26). Averaging in the homo-

geneous x and z directions is also performed, which merged all the data to a single

line.

The agreement between the DI- and ANN- LEMLES obtained profiles is satisfac-

tory, as seen in the Figs. 85 (a)-(d). The density profile, given in Fig. 85 (a), starts

from 0.7 kg/m3 in the oxidizer stream (y/H.2 and y/H&12) and decreases down

to 0.3 kg/m3. Then it increases up to approximately 0.4 kg/m3 in the fuel stream.

The axial velocity indicates that on the average the fuel stream velocity at the center

decreases to almost 50 m/s, whereas it was 100 m/s initially. Close to the upper and

lower boundaries in the y direction, the oxidizer velocity stays almost constant at 100

m/s. The transverse velocity was initialized based on isotropic turbulence solution for

the given length and velocity scales. Fig. 85 (c), however, shows that, the transverse
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Figure 49: Comparison of the time-averaged scalar field obtained for Case M-1 using
DI-(•) and ANN-(—) LEMLES.

velocity developed into a symmetric profile along the centerline. It is also seen that

there is a net flux of flow from oxidizer stream to the fuel stream, which is essentially

because of the combustion. The location of the reaction zone can be clearly seen on

the temperature plot, Fig. 85 (d). According to the plot, the reaction zone is located

approximately at y/H∼=4.5 and y/H∼=8.5, and at this location the temperature at-

tains its maximum value, which is 1100 K on the average. It is noted that this value

is less than the one used to initialize the flame indicating decreased temperature due

to the extinction that occurred within the time window used for averaging.

The time and space averaged variation of the scalar field along the transverse

direction is presented in Figs. 49 (a)-(d), for H2, H , OH and CO2, respectively.

Similar to Fig. 85, the comparison between DI- and ANN- LEMLES is given in the

figures. The initial value of the H2 mass fraction in the reaction zone is 7.9×10−3,
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Figure 50: Comparison of the OH statistics obtained by the coarse and fine LEM-
LES at tj = (a) 20, (b) 40. (•) DNS, (- - -) Case M-1, (—) Case M-2, (...) initial
data, and (- . -) laminar flamelet value at extinction.

whereas the time average data in Fig. 49 (b) shows that it dropped to approximately

5.5×10−3. Both the H and OH mass fraction plots given in (b) and (c) indicate that

there exists radical species within the fuel stream. This is both because of the species

convection through mixing by the vortex roll-up in the shear layer, and the reactions

occuring at this location coupled with the increased level of temperature, as it is

evidented in Fig. 85 (d). The agreement between the DI- and ANN- LEMLES is quite

good for major species H2 and CO2 as seen in 49 (a) and (d). For the radicals, there

exists small dicrepancy at the centerline. Also, particularly for the OH , the ANN-

LEMLES slightly overpredicts the DI-LEMLES results at 3 < y/H < 5 and 11 <

y/H < 11. Overall, the agreement between both methodologies is acceptable, and

the existing discrepancies do not seem to cause any major problem on understanding

the physics of the problem.

6.2.2 Extinction and Reignition Predictions for Cases M-1 and M-2

The mean value of the probability density function (PDF) of OH mass fraction con-

ditioned on mixture fraction obtained at non-dimensional times tj =20 and 40 by

the cases M-1, M-2 and the DNS is shown in Figs. 50a-b, respectively. The time is

non-dimensionalized by the referance time given as t∗ = H/U , where H and U are
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Figure 51: Variation of the mean temperature at the stoichiometric mixture fraction
obtained by the DNS (•), Case M-1 (- - -), and Case M-2 (—).

the initial width of the fuel slab and the characteristic jet velocity, respectively (26).

The initial data at tj = 0 used for all calculations, and the laminar flamelet value at

extinction is also shown in the figures for comparison purposes. The flamelet value

is given by the DNS study (26) and corresponds to the the solution obtained for the

maximum strain rate without any extinction during the flamelet computations. At

tj = 20, as given in Fig 50 (a), the LES and DNS results starting from the initial pro-

file drops below the extinction limit predicted by the laminar flamelet solution. Both

LES results are very similar to each other at this time instant. They also get values

less than the DNS at almost every mixture fraction, indicating that the LEMLES

predicts more extinction. At reignition (Fig 50 (b)), all the profiles show increased

level OH . Especially for mixture fraction values between 0.4 and 0.75, the OH mass

fraction is greater than the extinction limit, clearly indicating the reignition process.

The LES results, especially for Case M-1, exceed the initial data as well, and are

substantially more than the DNS. Case M-2 solution is closer to the DNS data, as

shown in the figure. Although there are differences, overall both of the LEMLES

predict extinction and reignition at approximately the same instant as in the DNS

with relatively good agreement in the trends.

The time variation of the mean value of PDF of temperature at the stoichiometric
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Figure 52: FFT of the mean flow total kinetic energy obtained by the fine LEMLES
at a point located (a) 1H and (b) 4H away from the centerline.

mixture fraction is shown in Fig. 51. The DNS data starts initially at 1450 K, and

then decreases down to approximately 1100 K at tj = 20. After this time instant, the

temperature starts to build up again, indicating the reignition process, and finally

reaches 1300 K, which is less than its initial value. Both ANN-LEMLES exhibit a

similar variation. However, similar to the observations made in Figs. 50 (a)-(b), the

level of extinction and reignition is not captured precisely. Case M-1 indicates that

the temperature at extinction is 1000 K. which is almost 100 K less than that is given

by the DNS. On the other hand, the variation obtained by the Case M-2 is more

similar to the DNS data. The discrepancy at tj = 20 and 40 is almost insignificant.

The Case M-2 simulation result denotes that the extinction occurs at tj = 18, which

is slightly earlier than the DNS. The discussion on the rest of the paper is provided

for Case M-2, since it provides better prediction of the conditional OH statistics

compared to the Case M-1.

As indicated earlier, the original DNS study (26) employed 350M grid points,

whereas the current study uses approximately 700K and 5.5M nodes for the cases M-

1 and M-2, respectively. This is considerably less than that was used for the DNS. In

LES the main assumption is that the cut-off length scale is placed within the intertial

range of the energy spectrum, preferably close to the η, so that the universal small
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Figure 53: Comparison of the instantaneous data obtained by the fine LEMLES
using DI (•) and ANN (—) at tj=4.5.

scale structures can be modeled by the sub-grid models. Figs 52a-b shows the FFT

of the total velocity signal recorded at a location H and 4H away from the centerline.

The FFT calculated for both of the points obeys the well known -5/3 scaling law of

Kolmogorov at least for two decades. This denotes that the grid resolution for the

current LES (Case M-2) is adequete to capture the inertial range of the turbulent

spectrum.

Given the reasonable prediction of the flame structure and extinction/reignition

characteristics obtained by the LEMLES, the LES using ANN (ANN-LEMLES, here-

after) is compared with the LES using stiff ODE solver (DI-LEMLES, hereafter)

next for Case M-2 and the results are given in Figs. 53a-c. Here, the axial velocity,

temperature and OH mass fraction comparisons are shown. The figure shows the
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instantaneous data obtained at tj =4.5 at mid-x− y and y − z planes along the cen-

terline. The accuracy of the ANN for this case is comparable to the DI. Here, the

maximum value of the temperature within the reaction zone is predicted well. Also,

the thickness of the reaction zone, as predicted based on both the temperature (Fig.

53 (b)) and OH mass fraction (Fig. 53 (c)) indicates that the ANN is working rea-

sonably well. There is a slight mismatch in the peak value of the OH mass fraction,

between the ANN- and DI- LEMLES. This mismatch is also observed for the axial

velocity in particular at y/H∼=7. However, it should be noted that the results cannot

be expected to match perfectly well, since they are extracted at two time instants

slightly different than each other. Regardless, the accuracy of the ANN-LEMLES is

acceptable, and can be considered as representative for the actual DI-LEMLES. In

the following, we primarily compare the ANN-LEMLES predictions against the DNS

data in order to obtain a candid assessment of this approach.

6.2.3 Scalar Field Conditional Statistics

The mean value of the PDFs of H2 and CO mass fraction conditioned on the mixture

fraction at extinction (tj = 20) and reignition (tj = 40) are shown in Figs. 54a-d.

The data used to initialize the LES and the laminar flamelet value at extinction are

also shown in the figures. The DNS data shows that the conditional PDF of CO mass

fraction varies almost linearly with respect to the mixture fraction at both tj = 20

and tj = 40, in Figs. 54 (a) and (b), respectively. The variation of the conditional

PDF of H2 mass fraction on the other hand exhibits different slopes with respect to

the mixture fraction. Starting from the fuel stream (Z = 1), the PDF of H2 mass

fraction decreases with a much steeper slope than the CO (Fig. 54 (c))). This is a

direct result of an early H2 consumption within the fuel stream, which release H and

OH radical species that play a key role in speeding up CO oxidation (86). Then,

between Z = 0.2 and 0.6, the H2 consumption speed decreases and the variation of
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Figure 54: Conditional means of CO and H2 at extinction (a, c) and reignition (b,
d) obtained by ANN-LEMLES and DNS. (•) DNS, (—) ANN-LEMLES, (...) initial
data, and (- . -) laminar flamelet value at extinction.

the conditional statistics exhibits a relatively flat distribution, which is a result of

the H2 recombination reactions occuring within this range. At tj = 40, Figs 54 (b)

and (d) shows that there exists no CO and H2 for Z > 0.8 indicating that the fuel is

consumed at this time due to the reignition.

The means of the conditional PDFs obtained by ANN-LEMLES are given in Figs.

54 (a)-(d) along with the DNS data. The ANN predictions at both extinction and

reigntion for the CO statistics matches perfectly well with the DNS data as seen in

54 (a) and (b). For H2 statistics, the profiles obtained by the ANN seem to capture

the same trend as with the DNS. Fig. 54 (c) shows that the slope at 0.2 < Z < 0.6

is, however, more than the DNS prediction. Also, at tj = 40, as given in Fig. 54 (d),

the value of H2 at Z = 0.8 is higher than the DNS value. This indicates that in the
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Figure 55: Conditional means of the CO2 andH at extinction (a, c, e) and reignition
(b, d, f) obtained by ANN-LEMLES and DNS. (•) DNS, (—) ANN-LEMLES, (...)
initial data, and (- . -) laminar flamelet value at extinction.

current ANN-LEMLES the H2 consumption is predicted slightly off, especially on the

fuel rich side.

The mean value of the PDF of CO2 mass fraction at tj = 20 and tj = 40 are

compared in Figs. 55a-b. Similar to the OH mass fraction (as given in Fig. 50 (a)),

the conditional CO2 mass fraction exhibits smaller values than the laminar flamelet

value at extinction. This feature can also be seen in Fig. 55 (c), where the mean of

the PDF of H mass fraction conditioned on the mixture fraction is given at tj = 20.

All of these figures (Figs. 50 (a), 55 (a) and 55 (c) ) indicate that the decrease in the

conditional species mass fractions is not specific for only one species (i.e., OH), but

is actually a general trend for all the species, except for the ones in the fuel mixture

(CO and H2). Both CO2 and H ANN-LEMLES results follow the same trend as the
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Figure 56: Conditional mean of the temperature at extinction (a) and reignition
(b) obtained by ANN-LEMLES and DNS. (•) DNS, (—) ANN-LEMLES, (...) initial
data, and (- . -) laminar flamelet value at extinction.

DNS even though the former approach slightly underpredicts the DNS data especially

at 0.4 < Z < 0.8. Interestingly, the error is less than that is observed for the OH

mass fraction.

At reignition (tj = 40) in Fig. 55 (b), the mean of the PDF of CO2 mass frac-

tion conditioned on the mixture fraction shows increased levels compared to that

of obtained at tj = 20. The values at tj = 40 for both species (CO2 and H) and

temperature are above the laminar flamelet values at extinction indicating reignition,

consistent with the OH data shown in Fig. 50 (b). The CO2 is slightly underpre-

dicted, whereas the ANN-LEMLES calculated H is even greater than the initial data

as seen in Fig. 55 (d). Still, the overall accuracy of the ANN-LEMLES is acceptable.

The variation of the mean value of the PDF of temperature conditioned on the

mixture fraction at tj = 20 is demonstrated in Fig. 56 (a). The maximum value

of temperature at the stoichiometric surface at this time is approximately 1100 K,

which is almost 300 K less than its initial value. At reignition (Fig. 56 (b)), the

temperature recovers its initial value. The agreement between ANN-LEMLES and

DNS is really good for the conditional PDF of the temperature indicating the accuracy

of the current ANN methodology.
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Figure 57: The time variation of the PDF of temperature at the stoichiometric
surface obtained by the ANN-LEMLES.

The stoichiometric mixture fraction (Zst) based on the Bilger’s definition (6) is

approximately 0.43 for the current case. The stoichiometry refers to a perfect com-

bustion where all the fuel is burned. Hence, typically, the scalar PDFs conditioned

on the mixture fraction for temperature and the intermediate species peak at the

stoichiometric mixture fraction value (95). For this particular study, however, it is

interesting to note that both the DNS and ANN-LEMLES extracted PDFs exhibit

the maximum temperature not at the stoichiometric value but at a slightly fuel rich

side. The CO2 mass fraction and temperature peaks at approximately Z = 0.6 as seen

in Figs. 55 (a) and (e). The H mass fraction, on the other hand, peaks at Z = 0.7.

At reignition, the peak of the PDFs are shifted towards the fuel rich side further.

The main reason behind these observations is that the mixture fraction inherently

assumes that the both the fuel and oxidizer has the same diffusion velocity. This

is not correct for syngas flames, where the fuel mixture is composed of a relatively

light (H2) and heavy species (CO) which have different diffusion velocities. Hence,

the results indicate that the mixture fraction formulation may not be an accurate

modeling approach for syngas flames to parameterize thermochemical state-space in

the LES applications. This is an issue that is being investigated.

The evolution of the PDF of temperature at the stoichiometric mixture fraction
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is shown in Fig. 57. The PDF at tj = 10 exhibits a narrow distribution, with a most

probable state residing at 1300 K. This value decreases to 1000 K at tj = 20. The

probability of temperatures less than 1000 K also increases substantially compared to

tj = 10. This leads to a wider PDF, and the probability of the most probable state

decreased from 0.03 to 0.02 at tj = 20. The PDF at later instants shifts towards

higher temperature values, denoting a most probable state of 1100 K and 1400 K at

tj = 30 and tj = 40, respectively. The results shown on the figure indicates that

the PDFs at the reignition and fully burnt cases are much narrower than the one at

extinction.

6.2.4 Syngas Flame Structure

The surface plot of CO and H2 mass fraction at tj = 20 and tj = 40 is shown in

Figs. 58a-d. The stoichiometric mixture fraction (Zst = 0.43) is also indicated in

these figures. The mass fractions of both species show that from tj = 20 ((a) and

(c)) to tj = 40 ((b) and (d)) the flame front is distributed over a finite region. Both

CO and H2 mass fractions decrease at tj = 40 indicating consumption of the fuel.

As seen in Figs. 58 (a)-(c), the stoichiometric mixture fraction at tj = 20 looks like

a boundary, after which both CO and H2 cease to exist. At tj = 40, however, the

CO and H2 mass fraction is spread over a much wider surface and the stoichiometric

mixture fraction resides within this region.

Another interesting observation in Fig. 58 (a), at tj = 20, is that the CO mass

fraction is spread almost homogeneously, and its peak value is not changing much

up to the stoichiometric mixture fraction. The H2 mass fraction, on the other hand,

exhibits peak values in pockets concentrated at the center part of the computational

domain. Evidently, the H2 is mostly consumed within the fuel stream, in contrast to

CO, which is consumed at the stoichiometric surface. Similar to the earlier compu-

tational studies of the syngas flames (72), the current observations suggest that the
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Figure 58: Surface plot of CO ((a)-(b)) and H2 ((c)-(d)) mass fraction at tj = 20
((a)-(c)) and tj = 40 ((b)-(d)).

syngas flames exhibit two reaction zones: An H2 reaction zone which is followed by

CO combustion. This is also consistent with our previous observations based on the

conditional mean PDFs (i.e., Figs. 54 (a) and (c)).

In CO oxidation the main chain branching reaction is the CO+OH⇋CO2+H

step (89). Hence, OH is a key species, which determines the oxidation rate of the CO

in syngas combustion. The OH surface plot at tj = 20 and tj = 40 is given in Figs. 59

(a) and (b), respectively. In Fig. 59 (a), the OH mass fraction peaks at the fuel rich

side of the stoichiometric surface. Comparing with H2 surface plot shows that the

OH is produced roughly around the H2 pockets. Then, OH (and CO) is consumed

through the chain branching reaction, and hence it vanishes near the stoichiometric
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Figure 59: Surface plot of OH mass fraction at (a) tj = 20 and (b) tj = 40.

(a) (b)

Figure 60: Surface plot of HO2 mass fraction at (a) tj = 20 and (b) tj = 40.

surface. The OH mass fraction at tj = 40 (Fig. 58 (c)) is not spread as much as

the fuel mixture (CO and H2) on the fuel lean side of the stoichiometric surface.

There exists localized pocket-like structures with high OH content. This observation

suggests that at this time instant the H2 is mostly consumed by chemical reactions

which leads to the formation of excessive amount of OH . This is also the reason for

the decreased amount of H2 within the center part of the computational domain as

seen in Fig. 58 (d).

The surface plot of HO2 radical species mass fraction at tj = 20 and tj = 40 is
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Figure 61: Surface plot of log10(χst/χq) at (a) tj = 20 and (b) tj = 40.

shown in Figs. 60 (a) and (b), respectively. Unlike OH , the HO2 species is mostly

concentrated on the fuel rich side of the stoichiometric surface at both tj = 20 and

tj = 40 as seen in the figures. Interestingly, the HO2 mass fraction seems to be

almost unaffected by the extinction process. In contrast to the rest of the species,

the HO2 exhibits a continuous and thin layer along the stoichiometric surface. At

reignition (Fig. 60 (b)), the HO2 layer is thicker than it is at extinction, tj = 20.

The maximum HO2 mass fraction value at reignition is only slightly larger than what

is observed at extinction. Here it should be noted that, although the peak value is

larger at reignition, it can only be observed on a local sense. The HO2 mass fraction

at extinction on the overall is higher than that is for reignition. This indicates that

at extinction the HO2 exhibits a radical pool, whereas OH is decreasing. This needs

to be studied further to come up with any conclusion and is a future work.

6.2.5 Scalar Dissipation Rate Statistics

Figures 61 (a) and (b) shows the surface plot of the logarithm of normalized scalar

dissipation rate (log10(χ/χq)) at tj = 20 and tj = 40, respectively. At extinction (Fig.

61 (a)), the scalar dissipation rate is mostly concentrated around the stoichiometric

surface. The variation clearly follows the stoichiometric line, since the gradient term
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Figure 62: PDF of normalized logarithm of scalar dissipation rate at the stoichiomet-
ric mixture fraction at tj = 30. (—) DNS, (- - -) ANN-LEMLES, (-..-..-) log-normal
distribution

(▽Z) attains its maximum value across the stoichiometric surface. At reignition

(Fig. 61 (b)), the χ seem to be more distributed over the computational domain as

in the form of thin sheets. Here, it should be noted that the maximum value of the

χ is almost similar to that obtained at extinction. Also, the sheets of χ covers a

much wider region in the computational domain, which suggests that, based on the

χ information, same level of extinction should be expected at this instant similar to

tj = 20. This issue will be further discussed below.

The normalized PDF of the log10χ at the stoichiometric mixture fraction is given in

Fig. 62 (a) at tj = 30. The figure shows the PDFs obtained by the DNS study and the

current ANN-LEMLES along with the log-normal distribution. The PDF extracted

through ANN-LEMLES follows the same trend calculated by the DNS study. There

are some minor discrepancies especially for the values of the normalized χst less than

-3. ((log10χst − µst)/σχst
< −3). The ANN-LEMLES PDF tends to overpredict the

DNS PDF at this range. Both the DNS and ANN-LEMLES PDFs exhibit a negative

skewness with a log-normal distribution, which is consistent with the earlier studies

(82). The results indicate that the DNS PDF can be matched by the LEMLES, since

it does not carry out any assumption regarding the shape of the PDF. This is one of
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Figure 63: PDFs of normalized logarithm of scalar dissipation rate at the stoichio-
metric mixture fraction at (a) tj = 20 and (b) tj = 40. (•) log-normal distribution,
(—) χ, (- - -) χCO, (-..-..) χOH .

the unique ability of the LEMLES (with DI or ANN). The log-normal distribution

tends to overpredict the correct PDF at higher and underpredict at lower values of χst,

respectively for this case. The log-normal distribution is effectively used in flamelet

approaches to model the PDF of the χst (81; 63). Both the DNS and ANN-LEMLES

data show that the correct PDF differs from its model at the high and small values of

χst. The results may point to possible madified model for flamelet type of simulations

and is one of the being explored for the future.

The normalized PDF of the scalar dissipation rate at tj = 20 and tj = 40 obtained

by the ANN-LEMLES is given in Figs. 63 (a) and (b). The scalar dissipation rate is

typically calculated based on the mixture fraction (63). However, each species have

their own scalar dissipation rates as well, and Figs. 63a-b show these PDFs calculated

at different times of evolution. Here, in addition to the scalar dissipation rate cal-

culated based on the mixture fraction (χ), the CO (χCO = 2DCO▽YCO.▽YCO) and

OH (χOH = 2DOH▽YOH.▽YOH) scalar dissipation rates are also shown along with

the log-normal distribution. For comparison purposes, all the PDFs are normalized

based on their mean and variance. As seen in Fig. 63 (a), at tj = 20 all PDFs follow
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Figure 64: The time variation of the PDF of χ, χCO, χOH at the stoichiometric
surface obtained by the ANN-LEMLES.

the log-normal distribution. Similar to that was observed in Fig. 62 (a), the com-

puted PDFs attain lower values than the log-normal distribution at dissipation rate

greater than 2. The PDFs obtained at reignition is given in Fig. 63 (b). Here, the

discrepancy between the model and computed PDFs decreases at higher values of the

scalar dissipation rate. The PDF of χ and χCO are indistinguishable from each other,

and the log-normal distribution seems to be a proper function for modeling purposes.

The PDF of χOH at lower values of the scalar dissipation rate tends to overpredict

the log-normal distribution. It should be noted that this is not very important for

the overall flow physics, since the model deviates more at very small values of the

scalar dissipation rate.

Figs. 64 (a)-(c) shows the PDFs of χ, χCO and χOH at the stoichiometric surface
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at different times. The scalar dissipation rate at the stoichiometric surface is an

important quantity in modeling flame-turbulence interactions in LES (63), since it

directly provides time scale information on the most reactive portion of the flame. A

high χ at the stoichiometric surface leads to extinction, since local time scales are very

short and the reactions cannot generate required amount of heat release (90). The

variation of χ at Z = Zst as given in Fig. 64 (a), however, shows interesting results.

Similar to the PDF of temperature, given in Fig. 57, the PDF of χ at tj = 10 exhibits

a narrow distribution, with its most probable state located at roughly 0.8. This

indicates that at this time the χ acting on the flame is almost as high as the critical

scalar dissipation rate obtained at extinction by the flamelets. At tj = 20, the most

probable state shifts towards lower values of χ compared to tj = 10. Also, the tail of

the PDF extends barely to 1, which indicates that the time scale at the stoichiometric

surface is large enough for reactions to occur. However, as it was discussed in details

previously, at tj = 20 the flame goes through an extinction process. For tj = 30 and

40, the χ decreases slighly and exhibits a similar shape.

The time variation of the PDF of χCO at the stoichiometric surface is given in Fig.

64 (b). Both χCO and χ shows almost exactly the same variation. It starts from a

narrow pdf and at extinction decreases to more wider distribution. After this point,

the shape of the PDF does not show any change, but it rather shifts towards smaller

value of χCO. The χOH , on the other hand, is the only one that shows a change with

respect to the time. At the initial stage (tj = 10) and at reignition (tj = 40), the

PDF of the χOH shows a narrow and negatively skewed distribution. For both of the

time instants, the χOH obtains a value of -1, with the probabilities of 0.8 and 0.6,

respectively. The shape of the PDF at tj = 20 and tj = 30 is more like Gaussian. our

previous computations (75).
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Figure 65: YOH profiles obtained by stand alone LEM computations (a)0.05 ms, (b)
0.1 ms

6.3 LES with TANN

6.3.1 TANN Model Description

Previous section dealt with using ANN to calculate the instantaneous reaction rates

within the LEM framework. In this section, ANN will be used to predict the filtered

reaction rates (so-called TANN approach) needed to solve the filtered species conser-

vation equation on the LES grid. Here, the filtered reaction rate is parameterized

with respect to the filtered species mass fractions, temperature, filtered level species

gradient on the LEM domain and the subgrid Reynolds number:

¯̇ωi = f(Ỹk, T̃ , Re∆,
∂Ỹi

∂x
) (132)

The ANN training database for TANN is constructed by following the approach

outlined in Section 5.3.3.1. The code is started from the same initial species profiles

and is run for the same range of conditions (Ret, L). The results are, however, filtered

by a filter size equal to the grid spacing used in the LES (74). Fig. 65a-b shows the

variation of the OH mass fraction along the 1D LEM domain obtained by using the

stand-alone LEM code at two time instants. Here, the straight line represents the

LEM level variation, whereas the dashed line is the filtered (representative of the

LES) level variation. As seen in the figures, the LEM level is highly wrinkled due to
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the turbulent stirring. On the filtered level, however, the profile is much smoother,

since the spatial filtering process vanishes the effect of small scale wrinkling of the

flame front on an average sense.

The subgrid Reynolds number in the LEMLES is calculated as:

Re∆ =
u′∆

ν
(133)

where u′ = (2/3)1/2ksgs and ∆ is the LES grid filter. A transport equation for

ksgs is solved on the LES level, so that the subgrid velocity fluctuations u′ can be

calculated. In the current stand-alone LEM code, however, the velocity field is not

simulated explicitly, and the effect of turbulent stirring is taken into account by using

instantaneous re-distribution events. The ksgs (and u′ for that matter) is not known,

and hence, Re∆ cannot be computed explicitly with the current stand-alone LEM

approach. To find the Re∆ in this approach, the following additional equation for the

variation of the k on the LEM domain is solved:

dk

dt
= Pk − ǫ (134)

where Pk is the production term. Along the LEM domain, the k is initially assigned

to be zero. Then, the u′ on a segment of length l, where triplet-map (which is

representative of the turbulent stirring) is applied can be calculated as:

u′ =
νRet

l
(135)

Here l is the characteristics eddy size used for turbulent stirring. Hence, whenever

triplet-map is applied on the scalar field, the representative k is calculated as 3u′u′/2

and this acts as the production term (Pk) which was shown in the Eq. 134. The rest

of the equation (time variation and the dissipation) is solved on the 1D LEM domain

similar to the reaction-diffusion equation. The dissipation term here is modeled as

ǫ = (u′)3/∆s. The main idea in Eq. 134 is that the turbulence is homogeneous, which

leads to the form seen in the equation. This is in consistent with the basic LEM
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Figure 66: Conditional mean of OH mass fraction obtained by TANN-LES and
DNS. (•) DNS, (—) TANN-LES at tj = 20; (�) DNS, (- - -) TANN-LES at tj = 40 ;
(- . -) laminar flamelet value at extinction.

assumption as well, hence the proposed way of calculating the k does not contradict

with any of the assumptions already being made in the LEM formulation.

6.3.2 Results

The conditional mean of the OH mass fraction obtained by the TANN-LES is given

in Fig. 66 at tj =20 and 40. The DNS data (shown by symbols) and the laminar

flamelet value at extinction is also shown in the same figure for comparison purposes.

The TANN-LES approach, as can be seen in the figure can detect the extinction (at

tj = 20) and reignition (tj = 40) with an acceptable error. Unlike LANN-LEMLES

results given in Fig. 50a-b, the TANN-LES tends to slighlty overpredict the OH

profile especially at oxidizer rich conditions. At reignition, the TANN-LES shows

higher values of OH mass fraction within the computational domain. At this time,

the variation of the OH mass fraction with respect to the mixture fraction seems to

be skewed towards the oxidizer side compared to the DNS data as well. Still, the

overall accuracy is considered to be acceptable.

The conditional means of the PDF of CO and H2 mass fractions are given in

Figs. 67a-b at tj =20 and 40. The results obtained by the TANN-LES approach
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Figure 67: Conditional means of (a) CO and (b) H2 mass fraction obtained by
TANN-LES and DNS. (•) DNS, (—) TANN-LES at tj = 20; (�) DNS, (- - -) TANN-
LES at tj = 40 ; (- . -) laminar flamelet value at extinction.

show excellent agreement with the DNS data for conditional CO mass fraction both

at extinction and reignition. Similar to the LANN-LEMLES data, the TANN-LES

shows that at reignition, there is still fuel left in the computational domain at an

equivalence ratio up to approximately 0.85. The DNS data shows that the fuel is

consumed after an equivalence ratio of 0.8. The conditional H2 mass fraction at

extinction agrees well with the DNS data. At reignition, however there are two

main differences. The first one is the maximum value of the mixture fraction up to

which H2 exists. This is similar to that of observed for CO mass fraction in Fig.

67a. The second difference is that the TANN-LES tends to overpredict the H2 mass

fraction at all mixture fraction values compared to the DNS data. Here it should

be re-emphasized that although both CO and H2 are fuel species, their conditional

statistics represent different variations with respect to the mixture fraction. The

CO is almost linear, where as H2 is more curved. The curvature for H2 statistics

is changing with respect to time as seen in Fig. 67b. The TANN-LES seems to be

capturing all of these features for both of the species.

The conditional statistics for mass fraction of a major product (CO2) and a rep-

resentative radical species (H) are shown in Figs. 68a-b. The laminar flamelet value
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Figure 68: Conditional means of (a) CO2 and (b) H mass fraction obtained by
TANN-LES and DNS. (•) DNS, (—) TANN-LES at tj = 20; (�) DNS, (- - -) TANN-
LES at tj = 40 ; (- . -) laminar flamelet value at extinction.

at extinction is also shown in the figures. Both the CO2 and OH statistics obtained

by the TANN-LES exhibit good agreement with the DNS data at extinction. The

accuracy for CO2 is better than that is for H species. This is in consistency with the

LANN-LEMLES results, and is expected to be a result of the overall ANN accuracy.

Overall, the H mass fraction is slightly overpredicted by the TANN-LES approach

especially at lean conditions, which is similar to the OH statistics. At reignition,

the CO2 mass fraction is underpredicted by the TANN-LES approach. However, it

should be noted that the profile obtained by TANN-LES is still larger than the lami-

nar flamelet value at extinction denoting that the TANN-LES can capture extinction

and reignition. Although the results obtained for the H mass fraction shows the same

trend, the TANN-LES tends to overpredict the DNS results. Also, at approximately

a mixture fraction value approximately equal to 0.82, the conditional mean of H

mass fraction obtained by the TANN-LES exhibits a peak value, which does not look

physical. This may be an issue of the ANN training and the ANN coefficients for this

species may need to be re-trained to obtain better results.

Fig. 69 shows the conditional mean of the temperature obtained at extinction and
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Figure 69: Conditional mean of T obtained by TANN-LES and DNS. (•) DNS, (—)
TANN-LES at tj = 20; (�) DNS, (- - -) TANN-LES at tj = 40 ; (- . -) laminar
flamelet value at extinction.

reignition. The conditional mean obtained by the LANN-LEMLES for temperature,

as seen in Fig. 56, shows good agreement with the DNS data. The TANN-LES, on

the other, is not that accurate in predicting the correct variation. the temperature

at both extinction and reignition is underpredicted by the TANN-LES. At reignition,

the maximum value is predicted almost 150 K less than the DNS data. The DNS

data shows that the conditional mean has almost the same variation (and level) with

the laminar flamelet value at extinction, at tj = 40, especially on the lean side, up

to a mixture fraction value of 0.4. The TANN-LES results, on the other hand shows

values less than the laminar flamelet value at extinction in this region. The fuel side

predictions are better, and the data is above the extinction limit.

Finally the time variation of the mean temperature at the stoichiometric mixture

fraction is given in Fig. 70. The TANN-LES results agrees well with the DNS data up

to tj = 10. After this time, the TANN-LES results tend to underpredict the variation

obtained by the DNS. The discrepancy is maximum at tj = 40, which is in consistent

with our observations made based on the conditional statistics of the temperature

at this time instant. Overall, the TANN-LES data tends to predict the same kind
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Figure 70: Variation of the mean temperature at the stoichiometric mixture fraction
obtained by the DNS (•) and the TANN-LES (—).
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Figure 71: Mean value of the PDF of YOH conditioned on mixture fraction calculated
by LANN-LES, TANN-LES and EBU-LES at tj = (a) 20 and (b) 40.

of extinction and reignition behavior with a less accuracy than LANN-LEMLES but

with increased speed-up.

Fig. 71 shows the mean of the PDF of OH conditioned on mixture fraction calcu-

lated with LANN-LEMLES, TANN-LES and EBU-LES at tj =20 and 40. Among the

models considered here, the EBU-LES gives the worst results. The LANN-LEMLES

and TANN-LES, on the other hand provides results comparable with the DNS data.

The LANN-LEMLES predicts more extinction compared to TANN-LES at tj =20.

At tj = 40, on the other hand, the LANN-LEMLES gives better agreement with the

DNS data compared to the TANN-LES. The peak value obtained by the TANN-LES
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at this time instant is shifted towards the fuel lean side.

The fact that LANN-LEMLES predicting more extinction than it should be can be

attributed to the grid resolution. In LEMLES, the basic idea is to provide closure for

turbulent stirring, molecular diffusion and reaction at their respective length scales.

This is ascertained by solving the scalar field equations on the LEM level. For this

particular case, however, the LES level grid resolution is already taken close to the

DNS by clustering the grid through the shear layers. Hence, for this case especially

at extinction, the LEMLES provides more extinction than it should be, since, more

number of turbulent stirrings are performed than it should be per LES cell. On the

other hand, the TANN-LES provides results similar to the DNS, since, as indicated

before, the grid resolution is already close to DNS.

6.4 Time and Memory Savings

Each state obtained from the stand alone LEM computations is used as an entry on

the thermo-chemical database used to train the LANN. The size of the whole database

is 3.18 GB, which was saved entirely by the ANN training. The table constructed

for TANN is 372 MB, much smaller than that of used for RR-ANN. Since filtered

quantitites are needed for LEM-ANN traning, an averaging process was performed on

each individual state, which resulted in a relatively smaller thermo-chemical database.

The computational time required to run one single iteration per number of grid

points on a single processor INTEL PC (3.2 GHz Xeon) by LANN-LEMLES, TANN-

LES, and DI-LEMLES using a stiff ODE solver is given in Table 20. Among the mod-

els considered here, the maximum amount of speed-up is obtained for the TANN-LES.

The TANN-LES is almost 18 times faster than the conventional LEMLES approach.

The LANN-LEMLES, on the other hand provides a speed-up of 5.5 times compared

to the LEMLES using stiff ODE solver. Both the DI-LEMLES and LANN-LEMLES

approaches solve the species equation within the subgrid, on one-dimensional lines
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embedded within each LES cells. Hence, the number of grid points for the scalar field

is increased drastically for these methods. The TANN-LES on the other hand, solves

the species equation on the LES level. Hence, the speed-up obtained for this model

is much higher than that is obtained for the LANN-LEMLES. The results showed

that both of these models detected the extinction and reignition process with a good

accuracy. It should be noted that the LANN-LEMLES is more accurate in detecting

the correct physics compared to the TANN-LES.

Previous computations on premixed turbulent flames indicated almost 11 times

speed-up based on LANN-LEMLES (74), which is not the case here. The stiffness

of the reduced mechanism used for the premixed computation is one of the main

reasons for this. Thus, the speed-up obtained by ANN highly depends on the reduced

mechanism. This issue will be discussed in the next chapter.

Table 20: Speed-up obtained for 21 steps syngas mechanism
Species Equation Time/(step×cell) Speed-Up

EBU-LES LES level 0.36×10−2 19.7
TANN-LES LES level 0.39×10−2 18.3
LANN-LEMLES LEM level (12 cells/LES) 1.29×10−2 5.5

DI-LEMLES LEM level (12 cells/LES) 7.10×10−2 1.0
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CHAPTER VII

LES OF SPRF COMBUSTOR WITH ANN

The main objective of this chapter is to evaluate the speed-up and accuracy of the

proposed ANN based methodologies in the LES of the SPRF combustor. Both

LANN-LEMLES and TANN-LES are performed on the same grid as used in an ear-

lier study (88). The details of the numerical set-up, ANN training and results are

provided in the following sections.

7.1 Numerical Setup and ANN Training

SPRF combustor has recently been designed at the Georgia Tech to meet the lower

emission regulations (10; 23; 87). It uses the exhaust gas re-circulation technique to

reduce both the NOx and CO emissions. The combustor can work both in premixed

and non-premixed modes. Here, for the current computations, only the premixed

mode is considered to demonstrate the ANN capabilities. It should be noted that

the ANN can be extended for non-premixed cases as well, as it was discussed in the

previous chapters. In the premixed mode, the Methane/Air mixture is injected into

the combustion chamber at an effective equivalence ratio of 0.58. Flow enters and

leaves the combustion chamber at the same plane, which provides extensive reactant

preheating and mass entrainment across the shear layers. Thus, the reaction rates

are enhanced and the flame can stabilize at very lean conditions. This phenomenon,

which is known as the exhaust gas recirculation technique, allows feeding the CO

leaving the combustor back into the incoming flow stream, so that any CO that may

exist due to partial combustion can be subsequently burnt again.

The numerical set-up used in the current study is identical to that of used earlier

by Undapalli and Menon (87; 88), and the schematics is given in Fig. 72. The
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Figure 72: Schematics of the SPRF combustor (88).

combustion chamber (5) is enclosed with an end-plate (6) at one end. The outflow

(4) is at the same plane with the injectors (2, 3). In the non-premixed mode the fuel

(2) and the oxidizer (3) streams are introduced into the combustion chamber through

different pipes. In the premixed mode, the central tube (2) is closed and the fuel/air

mixture is discharged from the same pipe (3). The annular jet bulk velocity at the

premixed mode is 122 m/s, whereas it is 104 m/s at the non-premixed mode. Also, the

annular jet is preheated to 500 K at the premixed mode. Hence, the annular injector

Reynolds number is 12,900 at the premixed mode, which is higher than that of for

the non-premixed mode. A 1/8 turbulent velocity profile is imposed as a boundary

condition at the inlet with the mean velocity of 122 m/s. The boundary conditions

are listed in details in Table 21. The chemical reaction rates are calculated based on

a 12 steps, 16 species skeletal Methane/Air reaction mechanism (83). The details of

the mechanism is given in Appendix B.3.

The grid used for the computations is shown in Fig. 73a-b. A two-domain butterfly

type of grid, which comprises of a cartesian grid in the center of a cylindrical grid is

used. Here, 194×75×57 and 194×15×15 number of nodes in x, y and z directions

are used for the cylindrical and cartesian grids, respectively. The grid is clustered

towards the dump plane and the shear layers in order to increase the quality of the

LES in these regions. The validation of the selected grid is given in the previous
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Table 21: Boundary conditions used for the LES (88).
Reacting premixed Reacting non-premixed

Annular jet flow rate [m3/s] 0.00676 0.00638
Central jet flow rate [m3/s] - 0.00038
Annular jet temperature K 500 450
Central jet temperature K - 300
Annular jet bulk velocity m/s 122 104
Equivalence ratio (φ) 0.58 0.58
Annular injector Re (Rea) 12,900 10,160
Central jet Re (Rec) - 7,680
Subgrid Re (Re∆) 304 274

(a) (b)

Figure 73: Side and cross-sectional views of the grid used for the LES.

studies (87; 88) and is not repeated here for the sake of brevity.

The ANN training table for this case is generated by using the stand-alone LEM

code developed within the current thesis work. The database is constructed based on

the conditions relevant to the SPRF combustor, i.e., the scalar field is initialized based

on the laminar solution obtained for an equivalence ratio of 0.58, the Ret is selected

to vary between 10 to 400, etc. The details of this process are explained in Section

5.3.3.3. The same LEM table given in Section 5.3.3.3 is used in this part of the thesis

work. The only difference lies in the fact that no temperature binning is performed for

the training. Hence, each species have their own ANNs with a temperature ranging

from 500 K to 1950 K.
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7.2 LES with LANN

7.2.1 Instantaneous Reaction Rate Comparison

As an initial step, the LANN is tested against the DI and direct source term estima-

tion (DSTE) methods to calculate the instantaneous reaction rates based on a given

snapshot of the scalar field within the combustorat at an arbitrary time instant. The

DSTE method here calculates the species time evolution due to the chemical reactions

on a given ∆tLES by performing sub iterations with a fixed chemistry integration time

step. Hence, in contrast to the DI, which performs the integration with variable time

step sizes based on the stiffness of the reaction mechanism, DSTE leads to a very

simplistic and computationally affordable chemistry integration method (19). For

the current computations, similar to the previous work performed by using the same

reduced mechanism (87), 10 sub-iterations (Nsi = 10) are performed for chemistry

integration. It should be noted that the number of sub-iterations depend highly on

the time step size (∆t) and the thermo-chemical conditions (Yk, T, P ). Hence, Nsi

needs to be validated (or re-calculated) for each distinct test case even though the

same reduced mechanism is used. The results presented in Figs. 74, 75 and 76 are for

three representative key species: the reaction rate of the fuel (CH4), product (CO2)

and an intermediate species (CO), respectively.

Figure 74a shows the surface plot of the fuel reaction rate calculated by the (a) DI,

(b) DSTE and (c) LANN. As seen in Fig. 74 (a), the flame front is highly wrinkled

due to the existence of the small scale structures interacting with the flame. Close

to the injector the fuel reaction rate exhibits a very thin zone. Further downstream

there are pockets of fuel broken from the main flame and burning separately, which

is evidented by the island formations as seen in the figure. These features can also be

detected by the DSTE and the ANN methods as given in Figs. 74b-c. The reaction

rates calculated by the DSTE method exhibit a thicker reaction zone compared to

the DI. The maximum value of the fuel destruction rate (in an absolute sense) has

174



(a)

(b)

(c)

Figure 74: CH4 reaction rate surface plot obtained by (a) DI, (b) DSTE and (c)
LANN (in 1/s).

also increased indicating that more fuel is burning with this method. ANN, on the

other hand detects the same maximum value of the fuel destruction rate by the DI

method as seen in Fig. 74c. The thickness of the reaction zone is also predicted well

with the ANN method indicating that for this species it is working with an acceptable

accuracy compared to the DI.

The reaction rate calculated for the CO2 at the same arbitrary time instant with

results shown in Figs. 74a-c is given in Figs. 75a-c. The previous figures showed that

the fuel is destroyed close to the injector on a very thin region. It is interesting to note

that the CO2 reaction rate as calculated by the DI (Fig. 75a) exhibits a broken zone

close to the injector. Although fuel is destroyed at this location, it cannot directly

form CO2, since the chemical time scale is not sufficient enough for the reactions to

reach the equilibrium point. This feature can be detected by relatively high order

chemical kinetics mechanisms as it was explained in details in (87). Both the DI and
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(b)

(c)

Figure 75: CO2 reaction rate surface plot obtained by (a) DI, (b) DSTE and (c)
LANN (in 1/s).

LANN results lead to these observations consistently with each other. The DSTE

results (Fig. 75b) shows increased level of reaction rate at this region. The CO2

reaction zone is predicted much thicker than that of calculated by the DI and LANN.

The LANN results as seen in Fig. 75c, tend to slightly underpredict the CO2 reaction

rate compared to the DI. This may lead to a decreased level of the CO2 on an average

sense within the combustor. This will be discussed in more details on the incoming

sections.

Finally, the reaction rates obtained for CO is given in Figs. 76a-c. The inter-

mediate species reaction rates, in general, tend to exhibit a two layer structure. At

relatively low temperatures the radical species are produced, whereas they are con-

sumed at high temperatures, which can also be seen in Figs. 76a-c. The CO mass

fraction is produced within the inner layer of the flame zone as shown in Fig. 76a.

Then, the whole flame is covered with negative reaction rate contours indicating that
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(a)

(b)

(c)

Figure 76: CO reaction rate surface plot obtained by (a) DI, (b) DSTE and (c)
LANN (in 1/s).

the CO is consumed on the outer layers. Both the DSTE and LANN methods suc-

cessfully captured this feature (Figs. 76b-c). Similar to the observations made on

the previous figures, the DSTE predicts higher level of consumption and/or produc-

tion of the species with a thicker flame zone compared to both DI and LANN. The

LANN shows similar flame structure with the DI. The production rate of the CO is

predicted well by this method. Although the locations where the CO is consumed

has been predicted well by the LANN, its magnitue shows that the consumption is

not as strong as it is calculated by the DI.

7.2.2 Comparison of the Time Averaged Data

The current LANN-LEMLES is time averaged over a time window of 2τ . Here, τ is

the characteristic time scale, and is the measure of the time required for a fluid parti-

cle that is discharged at the inlet to travel up to the stagnation plate, turn back and
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Figure 77: Comparison of the time-averaged (a) axial velocity and (b) temperature
along the centerline. Experiment, LEMLES, TF-LES, and EBU-LES from (88).

leave the combustor. The variation of the time averaged axial velocity and tempera-

ture along the centerline is given in Figs. 77 (a) and (b), respectively. Here, results

obtained earlier in (87) by using LES with LEM, TF and EBU subgrid combustion

models are also shown for comparison purposes. The earlier LEMLES used DTSE

method in combination with a four steps, seven species reduced mechanism to cal-

culate the species instantaneous reaction rates. The axial velocity comparison (Fig.

77a) shows that both the LEMLES and LANN-LEMLES predicts the same variation

of the axial velocity along the centerline. The LANN-LEMLES is particularly more

accurate than the LEMLES in detecting the axial velocity at an axial distance start-

ing from 100 mm and extending towards 200 mm. Both the TF-LES and EBU-LES

tend to underpredict the time averaged axial velocity during this interval. All com-

putational results show that there is a recirculation bubble located approximately at

an axial distance value less than 25 mm. This feature cannot be detected by the

experimental data. This is related with the BCs and the domain selected for the

computations. The experimental set-up has a central tube which is used to inject the

fuel in the non-premixed mode of the SPRF combustor. Although no flow is coming

from this central tube in the premixed mode, from a computational point of view it
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Figure 78: Comparison of the time-averaged (a) CH4 and (b) CO2 mole fraction
along the centerline. Experiment, LEMLES, TF-LES and EBU-LES, from (88).

is still needed to be included in the LES, since it exists in the experimental set-up.

In the experiments, this tube is connected to a valve in the further upstream. It is

not possible to extend the central tube up to this valve in the current computations,

and hence, a wall boundary condition is enforced after a much shorter distance in

the upstream of the tube. This is believed to be the reason for detecting the small

re-circulation bubble at the center part of the combustor. Nevertheless, the primary

goal of the current section is to test the consistency between the LANN-LEMLES

and the previous LEMLES, which is achieved successfully.

The temperature variation along the centerline is given in Fig. 77b. The ex-

perimental data indicates that the temperature increases up to 1000 K at an axial

distance of approximately 80 mm. The computational results show that the time

averaged temperature tend to increase with a slope less than that is for the experi-

mental data. The LEMLES and LANN-LEMLES exhibit the same kind of behavior

for temperature. The LANN-LEMLES tends to predict slightly higher values of tem-

perature compared to the LEMLES. Overall they converge to the same maximum

value of temperature, which is approximately 1900 K. The TF-LES and EBU-LES

both show a temperature increase with a much smaller slope than that of obtained
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Figure 79: Comparison of the time-averaged axial velocity radial profiles at four
sections. (•) Experiment, (—) LEMLES with DTSE and (- - -)LANN-LEMLES.
Experiments and LEMLES from (88).

by LEMLES and LANN-LEMLES methodologies.

The comparison of the time averaged CH4 and CO2 mole fraction along the cen-

terline are given in Figs. 78 (a) and (b), respectively. Here, TF-LES and EBU-LES

methodologies predict that the fuel exists over a much longer distance along the com-

bustor than it is calculated by the LEMLES based methodologies. They also indicate

that there exists considerable amount of un-burnt fuel. As can be seen in the figure,

close to the stagnation plate (at 300 mm) the fuel mole fraction is 0.05. The LEM-

LES and LANN-LEMLES, on the other hand, show that the fuel is actually consumed

completely at an axial distance of 200 mm. The experimental data is recorded up

to an axial distance of 175 mm. Hence, based on the data presented here it is not

possible to conclude which model is predicting the correct physics in a better way.

However, what is important is that both the LANN-LEMLES and LEMLES show the

same flame physics. The variation of the CO2 mole fraction along the axial distance

is given in Fig 78b. Along the axial distance, from the injector tip to approximately

175 mm, the LEMLES based models provide the best results compared to the ex-

perimental data. The TF-LES and EBU-LES, again, predicts a longer flame. The
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CO2 for these computations build up with a much smaller slope compared to the

experimental data.

The radial profiles of the time averaged axial velocity at four sections is given

in Figs. 79. Here along with the experimental data, for the sake of clarity, only

the computational results for LANN-LEMLES and LEMLES with DSTE are given.

Here, it is interesting to note that almost at all cross-sections the experimental results

are asymmetric. For instance, at the first section (x = 57 mm), for a radial distance

greater than 20 mm the experimental data is almost -10 m/s, whereas it is much closer

to 0 m/s at the other side. As a result of this asymmetry, the computational results

seem to be mismatching with the experimental data at a radial distance greater than

-20 mm. At the second section (x = 113 mm) the location of the peak axial velocity

obtained by the experimental data is shifted to a radial distance of approximately 5

mm. At the same section the LEMLES results are also asymmetric, whereas LANN-

LEMLES is not. At the third section, however, the LANN-LEMLES results are

skewed. Overall the agreement between the experimental and computational results

are satisfactory except for the asymmetry.

7.3 LES with TANN

In this section the results obtained by using the TANN-LES approach for the SPRF

combustor are presented. For this part, the computations are run by using the same

grid, initial and boundary conditions that of used in Section 7.1. The ANN training is

achieved by using the output of the same calculation that was used to train the LANN

in the previous section. This time, the output is spatially filtered with a characteristic

filter size equal to the grid spacing used in the computations. The optimum ANN

architecture is found to be a three hidden layer architecture with ten, eight and four

(10/8/4) number of PEs at each hidden layer. For each species the inputs are the

filtered species mass fractions, temperature, filtered level species gradient and subgrid
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(a)

(b)

Figure 80: (a) Instantaneous and (b) time-averaged temperature surface plot.

Reynolds number.

The instantaneous and time averaged surface plots of the temperature are given

in Figs. 80a-b. Similar to the results provided in the previous section, the time

averaging here is obtained for 2τ . The variation of the instantaneous temperature

within the combustion chamber exhibits a highly wrinkled flame front. Hot pockets of

temperature exists within these structures indicating that the combustion is mainly

occurring at these locations. On a time averaged sense, however, as seen in Fig 80b,

these instantaneous fluctuations vanishes and the flame front becomes much smoother.

The TANN-LES also shows that compared to the LANN-LEMLES, temperature is

lower within the combustion chamber. The region close to the stagnation region

exhibits the maximum temperature. The characteristic velocity at this location is

much smaller than that of close to the injector, hence, it is much more difficult to

obtain a statistical data at this region with the τ used to time average the results in

the current study.

The instantaneous and time averaged surface plots of the CH4 mass fraction are

shown in Figs. 81a-b. The instantaneous picture shows that although the overall

temperature level is decreasing within the combustor, this is not related with decrease

in the overall consumption of the fuel. As seen in the figure, the fuel is consumed

totally within the combustion chamber. The time averaged results are very smooth
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Figure 81: (a) Instantaneous and (b) time-averaged CH4 mass fraction surface plot.
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Figure 82: Comparison of the time-averaged (a) axial velocity and (b) temperature
along the centerline.

close to the injector, whereas some oscillations can be seen close to the stagnation

plate. Again, this is an issue of time averaging window used for the results, and more

time instants are needed to reach statistically converged data at this region.

The comparison of the time averaged axial velocity and temperature are given in

Figs. 82. The axial velocity surface plot shows that the current TANN-LES underpre-

dicts the experimental data almost at all locations after an axial distance of 50 mm.

The temperature plot, however, as shown in Fig. 82b indicates that the experimental

data is captured with a good agreement compared to the results obtained by other

computations. The time-averaged, axial variation of the temperature calculated by

the TANN-LES indicates that the heat release is captured fairly well.
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Figure 83: Comparison of the time-averaged (a) CH4 and (b) CO2 mole fraction
along the centerline. Experiment, LEMLES, TF-LES and EBU-LES, from (88).

The results indicate that the axial variation of the temperature is captured well by

the TANN-LES approach compared to the LANN-LEMLES. However, the predictions

for the axial velocity is worst than the LANN-LEMLES results, which is interesting.

The eddy sizes for turbulent stirring in the TANN training is selected within a range of

η (Kolmogorov’s length scale) to the L (integral length scale. In the actual LEMLES

approach, however, the eddy sizes are restricted within a range of η to ∆xLES (LES

grid spacing). Hence, the current TANN-LES provides small scale turbulent stirring

with eddy sizes effectively larger than those that should have seen in the actual

LEMLES. This leads to a more wrinkled flame front, which in turn increases the

turbulence level within the combustor. As a result, although the heat release is

calculated correctly (as evidented by the temperature plot), the velocity field is not.

Similar to the axial variation of the time averaged temperature, the time averaged

CH4 and CO mole fraction plots given in Figs. 83a-b show that the current TANN-

LES approach agrees well with the experimental data especially close to the injector

(axial distance less than 100 mm.). The time averaged CH4 mole fraction vanishes

completely at an axial distance of 175 mm, whereas the experimental data shows that

the fuel exists over a much longer region. Nevertheless, the experimental variation
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Figure 84: Comparison of the time-averaged axial velocity radial profiles at four
sections. (•) Experiments, (—) LEMLES with DTSE and (- - -) TANN-LEMLES.
Experiments and LEMLES from (88).

of the fuel mole fraction after an axial distance of 175 mm is not known. The CO2

mole fraction variation along the axial distance is not captured as good as the CH4,

as seen in Fig. 84b.

Finally, the radial profiles of the time averaged axial velocity obtained by experi-

ments, calculated by LEMLES and TANN-LES at four sections are given in Figs. 84.

The results given in Fig. 82a for the axial variation of the axial velocity indicated

that the TANN-LES results under predicts the experimental data. The same feature

can be seen in the current figure as well. At the first section (x = 57 mm), the

TANN-LES provides almost the same data with the LEMLES predictions. At the

second section located at x = 113 mm, although the general trends are correct, the

maximum value at a radial distance equal to 0 mm is under predicted by almost 30

m/s. The situation is worst at x = 187 mm, where the TANN-LES indicates that the

flow is almost stagnating.
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7.4 Time and Memory Savings

The methane reaction mechanisms are known to be much stiffer than the syngas

mechanisms, since they typically involve more radical species. Hence, as it was shown

previously in Section 5.3.4, the speed-up obtained for the current mechanism is much

higher than it is obtained for the syngas based computations demonstrated through-

out the current thesis work. The comparison of the speed-up obtained for the TANN-

LES, LANN-LES, DSTE-LEMLES and DI-LEMLES are given in Table 23. In the

DSTE-LEMLES method, the reaction rate is time integrated with 10 steps within a

given LEM diffusion time step. Hence, compared to the DI-LEMLES methodology,

DSTE-LEMLES provides an almost 8 times speed-up. The LANN-LEMLES, on the

other hand, is 49 times faster than the DI-LEMLES, which is even better than the

DSTE-LEMLES. The speed-up obtained by the DSTE-LEMLES can be improved by

using less number of steps for chemistry sub-integrations, however, as it was shown in

Fig. 74-75, the reaction rates are already being over-predicted for the number of steps

that are used here. All LEMLES based methodologies solve the species equation on

the LEM level, which are essentially 1D lines embedded within each LES grid. The

TANN-LES, on the other hand, solves the species equation on the LES level. Hence,

the speed-up obtained for this methodology is much more than it can be obtained

by using LEMLES based methodologies. For this particular case TANN-LEMLES

provides 135 times speed-up compared to the DI-LEMLES. It is almost 2.5 times

faster than the LANN-LEMLES, which is still considerable.

The ANN based methodologies require a training table. However, unlike the

conventional look-up table approaches there is no need to link the flow solver with

the table, but the ANN coefficients would be enough. The table used for LANN

training in this study is 470 MB, whereas ANN required only 0.27 MB of memory.

For TANN training the table size is much smaller, since it essentially includes the

filtered states from the LANN table. The ANN size requirement during the actual

186



Table 22: Speed-up obtained for 12 steps methane skeletal mechanism.
Species Equation Time/(step×cell) Speed-Up

TANN-LES LES level 7.78×10−5 134.9
LANN-LEMLES LEM level (LES/12) 2.14×10−4 49.2
DSTE-LEMLES LEM level (LES/12) 8.79×10−3 7.8

DI-LEMLES LEM level (LES/12) 1.05×10−2 1.0

Table 23: Memory savings obtained for 12 steps methane skeletal mechanism.
Training Table Size Memory Requirement During LES

TANN-LES 182 MB 0.30 MB
LANN-LEMLES 470 MB 0.27 MB
DSTE-LEMLES — —

DI-LEMLES — —

LES is still negligible, which is only 0.30 MB.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this study, two new models to calculate the instantaneous and filtered form of the

chemical reaction rates are developed and studied in detail. The models are based

on the ANN approach, which is a very powerful interpolation scheme that can be

used to map input-output pairs. ANN has the capability to identify the underlying

relations (if exists) between the inputs and outputs and can represent these relations

through simple algebraic equations. Hence, instead of solving the governing equations

of the physical process of interest, it is possible to use ANNs to represent the same

process in a time and memory efficient manner. This ANN based modeling approach

is validated extensively within the thesis work to decrease the computational time

required to calculate the chemical source terms in the LES of turbulent reactive flow

computations.

The most important tasks in the ANN modeling are (i) developing a database

which is representative of the actual process that is going to be simulated, (ii) and

training the ANN on this database. Although tabulation methodologies exist in the

literature, such as ILDM, ISAT, flamelet, etc., they are found not to be suitable for

representing the interaction between turbulence and flame without any reduction in

the number of parameters defining the system of governing equations. Hence, as a first

step, new tabulation strategies are sought and tested along with the ANN approach

for canonical premixed flame turbulence interaction studies.

Basically three distinct tabulation strategies for the first task are proposed in the

thesis work. The first one is based on constructing the thermo-chemical database
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by steady, laminar premixed flame calculations. The ANN trained on this table

worked fairly well on laminar simulations, but not on turbulent flames. The second

method is based on generating the database by simulating the interaction between

a laminar flame front and a single vortex (FVI). Different cases are run by varying

the strength of the initial vortex and it is observed that as the vortex interacts with

the flame, it is broken into smaller structures and leads to different level of scalar

mixing. Hence, in the final ANN training table, each different case accessed different

regions on the compositional state-space. The last method is based on simulating

the interaction of an initially laminar flame front with a homogeneous turbulent flow

field (FTI). The computations are carried out by using a stand-alone LEM solver,

which is developed as a tool within the current thesis work. In the LEM framework,

the governing equations for the scalar field are solved on one-dimensional lines and

turbulent stirrings are modeled by using a stochastic model.

As for the second task, an ANN training code is developed which is used for

manipulating the weight coefficients between the PEs in a given ANN architecture,

so as to provide the correct output for the given inputs. A modified version of the

GDR is developed and used as a learning algorithm in order to avoid being trapped

in one of the local minima of the error surface topology during the training phase.

The code and the proposed learning algorithm are validated by using simple test

functions.

The LES of premixed flame- turbulence-vortex interactions using ANN trained

on tabulation achieved by FVI and FTI approaches provided fairly good predictions

compared to results obtained by employing a stiff ODE solver. This proves that

although the chemical reaction rates are calculated using the chemical kinetics for-

mulations, the perturbation of the flow on the thermo-chemistry is also important

and plays an important role on deciding which part of the thermo-chemical state

space is accessed during the LES. Although the databases constructed based on FVI
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and FTI are found to be working fairly well, the latter is selected over the former

within the current thesis work due to its robustness and ease to use. Hence, all the

validation studies used the database generated by stand-alone LEM computations for

ANN training.

The thermo-chemical database construction relevant to the LES of practical flames

is one of the major problems in the modeling of turbulent reactive flow applications.

Often the databases are constructed based on prototype flames such as laminar flames.

In the current thesis work the look-up tables are created systematically by more

complex techniques, which allowed us to identify the effect of the turbulence on

the generated databases. Overall, the results indicated that species have distinct

sensitivities to the turbulent stirring. Against the action of a turbulent eddy, a

highly diffusive species such as H2 can recover its initial profile very quickly, whereas

heavier species remain wrinkled for the most of the time. Hence, the compositional

state-space exhibits a multi-dimensional variation which cannot be captured by the

laminar flames.

The proposed thermo-chemical database generation methodology and the ANN

modeling are validated further in two distinct test cases. The first case is a tem-

porally evolving, planar, non-premixed syngas/air flame, which has been recently

studied by using DNS (26). The species conditional statistics, syngas flame struc-

ture and the scalar dissipation rate statistics are investigated extensively to test both

the LANN and TANN approaches. The results indicated that both the LANN and

TANN methodologies can detect the extinction reignition processes fairly well. The

DNS results showed that the fuel components CO and H2 has distinct combustion

characteristics. The highly diffusive and reactive H2 species is consumed much earlier

than the CO. The H2 combustion provides the radical species needed for CO oxida-

tion. As a result, considerable amount of CO can be detected at the regions where

there is almost no H2. This also led to the fact that the radical species are distributed
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differently within the shear layers. The exact locations of the species depend mostly

on their diffusion characteristics and reactions that they are involved with. All of

these effects were captured successfully by both of the proposed ANN methodologies.

The LANN is particularly efficient compared to the TANN in predicting the H species

and temperature conditional statistics. This is essentially an expected outcome of the

computations, since, unlike the LANN, the TANN is solving the species equation on

the LES level.

The second test case is the LES of SPRF combustor (10; 23; 87). Here, similar to

the previous test case, both the LANN and TANN closure is used, and the results are

compared with the experimental, as well as, the computational data that exists in the

literature (87) for this particular combustor. The axial variation of the time averaged

velocity and temperature obtained by the LANN-LEMLES approach showed that the

current results are very similar to the LEMLES. The TANN approach provided good

results for the scalar field. Accompanied by the fact that the overall temperature

field is underpredicted, the flow field within the combustor is found to be slower than

that of identified by the experimental study. Both of these observations point out a

lower heat release rate calculated by the TANN-LES, which gives less temperature,

and hence, less acceleration.

The test cases are selected in order to provide a detailed evaluation of the ANN

based modeling as much as possible. It is well known that the flame-turbulence

interaction models that exist in the literature are working fairly well for steady flames.

The goal here is to simulate flames that exhibit complex flame dynamics, where the

chemical kinetics is not de-coupled from the fluid mechanics, and chemical rates

become very important. Detailed chemical kinetics mechanisms are needed for such

simulations that increases the computational burden. Hence, the test cases selected

here to evaluate the ANN capabilities cover a wide range of conditions. Results

obtained based on the LEMLES of a premixed syngas flame that assesses the ANN
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accuracy for different level of premixing and turbulence is presented in Section 6.3.

Chapter 6 provided results for a nonpremixed syngas flame which exhibits extinction

characteristics. Eventually the ANN is tested on a practical combustor simulation

in Chapter 7 for a premixed methane case where there is product gas re-circulation.

Each test case used different reaction mechanism ranging from 11 to 16 species with

a different level of stiffness. As shown in the results, the proposed ANN training and

application procedure demonstrated here provides consistently acceptable predictions

to all of these different test cases. Hence, it can be concluded that the proposed ANN

training methodology is not specific for a particular combustion regime or a reduced

mechanism.

The case setup for ANN training table generation and optimization of the ANN

architecture needs to be defined by the user in this newly proposed approach. The

ANN training table generation through stand-alone LEM code requires selection of

the integral length scale and the range of turbulent Reynolds number. For higher

values of the Ret it is shown that the turbulence effects become the dominant feature

and the flame exhibits a high deviation from the equilibrium solution. Thus, flames

exhibiting high level of local extinction needs to be trained on a data generated

specifically for high values of Ret. A reference value for Ret can be calculated based

on the information on u′, l and T . The definition of the degrees of freedom in the ANN

architecture so far is user dependent and found upon experimenting different values.

The ANN community reports that any continuous function can be represented by a

single hidden layer ANN architecture (16). For the problems considered in this study,

however, the function of interest is Ns dimensional and highly non-linear. Thus, a

three hidden layer ANN is used for most of the calculations. Still, as indicated in

Section 5.3.3.1, the optimum ANN needs to be selected based on the ANN training

error and the speed-up that can be obtained. As mentioned repeatedly in the current

dissertation, an optimum way of defining the ANNs has recently being proposed and
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for a future work this can be used to define the ANN architecture for the given

chemical kinetics mechanism and the operating conditions.

The most important merit of using LANN and TANN is the time and memory

savings. Several different reaction mechanisms are used throughout the thesis work

and different speed-ups are found. The speed-up obtained by using ANN is mainly

based on the stiffness of the mechanism which is considered. For the 21 reactions

syngas mechanism the maximum speed-up that can be obtained is almost 6X. For the

skeletal syngas mechanism, on the other hand, a speed-up of 11X was obtained. The

LANN used to replace the one-step methane mechanism showed that there is almost

no gain. However, the LANN based on 12 reactions skeletal methane mechanism

provided almost a 50X speed-up. The speed-up obtained by TANN is much larger

than LANN, since with the TANN approach, unlike the LANN-LEMLES, the species

equations are solved on the LES level. For the SPRF case the TANN provided 134X

speed-up compared to LEMLES using a stiff ODE solver.

8.2 Recommendations for Future Work

The current thesis study provided discussion for the use of ANN approach in the

LES modeling of turbulent reactive flows. Most of the results provided in this work,

especially for the LANN approach, proved that the model is working fairly accurate

with good speed-up and memory savings compared to the DI. However, it should

be noted that the current way of incorporating the ANN into LES applications is

based on the author’s understanding of the physical phenomenon investigated and

the modeling approaches used in the literature. Hence, the modeling can be improved

and/or expanded into different directions. Nevertheless, it is expected that this thesis

work will stay as a basic reference that can be used to understand the ANN in LES

applications. The author believes that the following points should (or may) be studied

further to improve the modeling approaches used in the thesis work:
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ANN Training:

The current ANN training approach for both the LANN and TANN is based on

off-line training. A training table is generated based on the techniques introduced in

the thesis work (i.e., FVI, stand-alone LEM, etc.) and once the ANN is trained on

this database, it is used as is in the LES. An alternative approach into this method

would be to use a combined off- and on-line training approach. The ANN, in this

approach, would be trained first on a certain database, as it is introduced in the thesis

work. Then, during the actual flow simulation, once the states that were not included

in the original training table, or the states that contribute large training error, are

encountered, then DI can be used to calculate the reaction rates and the ANN can be

re-trained on this new dataset. This combined on- and off-line training necessities the

identification of (i) the new states and (ii) states with large error. For the first one,

a new parameter which determines the ellipsoid of accuracy of a given state, similar

to the ISAT approach, can be used. In that case the number of ANN inputs needs

to be increased. The latter, on the other hand, requires a second ANN architecture.

This second ANN is trained on the training error of the original ANN. Hence, the

training error of the first ANN can be continously controlled with this second (and

preferably much smaller) ANN during the actual computation. This approach has

actually being tested within the context of this thesis work to some extent, and it has

been observed that once the ANNs are trained on new states, they tend to forget the

relations that they were trained in the first place. Once new data is learned, unless

they are linked to the previously learned data, they will be eventually forgotten. This

feature, needs to be studied further to come up with a well established methodology.

The ANNs are capable of defining the relations between different processes through

their non-linear processing elements. This feature of the ANNs can be used for chem-

ical mechanism reduction. Once trained on a database, ANNs can provide the infor-

mation of which species are more important than the others in certain pressure and
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temperature conditions. Hence, by defining some key species, the ANN trained on a

full mechanism can be used on a much smaller number of inputs, which can provide

substantial amount of speed-up.

Stand-alone LEM:

The current way of thermo-chemical database generation depends on the stand-

alone LEM computations: The diffusion and reaction equations are solved exactly and

turbulent stirrings are modeled through a numerical re-arrangement procedure. For

future studies few concepts for this solver can be changed and/or improved as well.

To start with, the current way of simulating the turbulent stirrings depend on the

homogeneity assumption. It is well known that the turbulence is hardly homogeneous

for practical turbulent flames and turbulent structures are mostly concentrated on the

flame front. Also, the turbulent stirring in the current LEM concept is simulated as an

instantaneous re-arrangement process. The fundamental studies in flame-turbulence

interaction reveal that the flame front wrinkling due to the turbulent structures occur

over a certain time and most of the time scales on the order of Kolmogorov’s scale

are very weak for changing the structure of the flame (61). These effects can be

considered for investigation in the future studies.

The stand-alone LEM computations start from an initial distribution of the scalar

field, which is obtained from laminar 1-D flame solution. The stand-alone LEM code

can be extended to generate its own initial data based on the relevant conditions

(i.e., premixing, scalar dissipation rate, temperature, composition, etc.), which would

make this code a package on its own.

TANN:

The TANN approach is introduced in this thesis work and the capabilities of this

method is assessed for the temporally evolving syngas flames and the SPRF combustor

as shown in Chapters 4 and 5, respectively. It should be noted that this approach

still needs to be studied further, and the current thesis only establishes a basis (a first
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step) for this effort. As a matter of fact, the LANN approach is specific to the DNS,

CMC-LES, PDF-LES and LEM-LES approaches. The TANN approach, on the other

hand, is a LES subgrid closure by its own, and has more potential in the numerical

modeling of turbulent flames compared to the LANN.

The selection of the variables used to parameterize the filtered reaction rates

are not validated within this thesis work. Subgrid Reynolds number and the resolved

level species gradients in addition to the filtered thermodynamic state vector are used

for parameterizing the filtered reaction rate. These parameters may not be enough

and appropriate for representing the filtered reaction rate. This needs to be studied

further, and perhaps needs to be validated on several different basic flames.
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APPENDIX A

SHORT MANUAL FOR 1-D STAND-ALONE LINEAR

EDDY MIXING MODEL SOLVER

A.1 Introduction

The stand-alone LEM code solves turbulent stirring, molecular diffusion, and reaction

equation for the scalar field (species and temperature) evolution on a one dimensional

line. The turbulent stirring is modeled stochastically by triplet-maps, where as molec-

ular diffusion and reaction is solved deterministically. Turbulent Reynolds number

(Ret) and integral length scale (l) are selected as the parameters defining triplet map-

pings. Current version of the stand-alone LEM code is capable of running multiple

simulations for a range of Ret. However l is always constant. This can be changed

by modifying the INIT GRID subroutine in the 1dlem.F file.

For more information on LEM model please refer to previous publications on the

literature (78; 13; 75).

The case setup and the input parameters are modified in the Makefile and the

input.data. The executable is generated by typing ”make”. Once the computation is

finished, type ”make collect” and ”c.exe” to collect the LEM accessed states into a

single file called ANN TABLE.dat.

A.2 Directory Structure and the Initialization

The main solver is in 1dlem.F file. Modify the path.dat file to indicate where the

code is going to be run (work directory). Copy *.dat and *.data files into the work

directory with the executable to run the code. Under the work directory create a

post folder. Under post folder, create filt and post folders. post/post will contain
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the restart files on the LEM level, where as post/ave will have the restart files on the

LES (filtered) level.

Check and/or modify the following files before starting a computation: 1) in-

put.dat, 2) LEMin.dat, 3) diff.dat, 4) therm.dat, 5) curv fit coeff.F, 6) chemrate16.F,

7) Makefile

1) input.dat:

Most of the simulation parameters are defined in input.data. The description of the

variables are given in Table 24

The species molecular formula and weights in the input file need to be written in

the same order that they are presented in the reduced mechanism and the restart file

(LEMin.dat).

2) LEMin.dat or chemkin.dat:

The initial profiles of the scalar field is given in LEMin.dat file. The order is: T , Yk.

The profile given in LEMin.dat represents the LES (filtered) level. This is analogous

to initializing an LEM-LES with the LES level scalar profiles. The LEM, however,

increases the number of grid points based on the turbulence parameters (Ret, L) and

initializes itself based on the given LES level profiles. Hence, the number of grid

points given in LEMin.dat file should be less than the expected number of grid points

for the LEM computation. The number of states in the LEMin.dat file should be

equal to the LES GRID.

The LEM can be initialized by using the chemkin.dat file instead of LEMin.dat

as well. chemkin.dat contains the output obtained directly from a CHEMKIN solver

(i.e., PREMIX or OPPDIF). The order of the variables in the chemkin.dat file should

be: i, x(i), ρ(i), T (i), V (i), Yk(i), with i denoting the index number. The output from

chemkin.dat is read if CHEMFILE INP is included as a compile option in the Makefile.

In this case, at the first iteration, the stand-alone LEM solver reads the data in

chemkin.data file, interpolates it onto a new grid, which has LES GRID number of
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grid points and writes it into the LEMin.dat file. In this manner, LEMin.dat is

created automatically by the solver.

3) diff.dat:

Polynomial coefficients to calculate the binary diffusion coefficients. This is in consis-

tency with the Transport package of CHEMKIN. This file includes most of the species,

but check it before starting a simulation to see if species related with that particular

simulation is included in this file or not. This file is used whenever TRANSPORT op-

tion is selected in the Makefile. In case species information cannot be found in diff.dat,

this can be generated easily by using the TRANSPORT package of CHEMKIN.

4) therm.dat:

Polynomial coefficients for the thermodynamic database (cp and H). This is in the

CHEMKIN format

5) curv fit coeff.F:

TRANSPORT CURVE FIT subroutine includes the polynomial coefficients to calcu-

late species viscosity and conductivity. Check it before starting a simulation to see if

species related with that particular simulation is included in this file or not.

6) chemrate16.F:

This is the reduced mechanism which is used to calculate the chemical source terms.

The current version uses 16 species, 12 steps reduced skeletal mechanism for CH4/Air

combustion. See http://public.ca.sandia.gov/TNF/chemistry.html for more informa-

tion on the reduced mechanism. To perform an LEM simulation with another mecha-

nism, simply replace the chemrate files, and check SOURCE subroutine in the 1dlem.F

file. The inputs for this file are the pressure (dynes/cm2), temperature, mass fractions.

The output is the reaction rates of the species (moles/(cm3sec)).

7) Makefile: Makefile is used to compile the *.F files and to create the executable.

Some of the solver options are defined here. Their descriptions are provided in Table

25
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For a full LEM computation (with turbulent stirring, diffusion, reaction) on a

reasonable computational time add the following line to your Makefile:

FFLAGS = -DSTIRRING -DDIFFUSION -DTRANSPORT -DMIXTURE AVE -

DNEWDIF -DDIRECT INT -DCHEMKIN IN -DMAN

Finally, the descriptions for the Fortran files are given in Table 26. A sample input

file is also given in Table 27
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Table 24: Explanations for the variables defined in input.data

SIMTIME : Total simulation time in seconds.
DELTAT : A reference time step size, which is larger than the

∆tdiff and ∆tstir.
PRESSURE : Pressure in Pa.
NSPECI : Number of species.
NREST : Number of restart files written for the given Ret and realization.
NSTR : Number of stirring per one deltat. Used only if the code

is compiled with the -DART STIR option.
L : Domain length in meters.
LES GRID : Total number of grid points used for initialization.
MOLE2MASS : Type 1 if the initial data (i.e., chemkin.dat) is in mole fractions.
EDDYSIZE : Integral length scale in meters.
REYL S : Starting value for turbulent Reynolds number (Ret).
REYL E : End value for Ret.
NREYL : Number of Ret that the code is going

to be run for.
NREAL : Number of realizations.
TREF : Used only for post-processing. States corresponding to a temperature value

less than TREF are not written into the table.
NEULER : Number of Euler steps per given diffusion time step used for

chemistry integration. Used only if -DINDIRECT INT option is
selected in the makefile.

LOC ST : If the code is expected to be run for a subset range of
turbulent Reynolds numbers, this can be set through LOC ST
and LOC TOT. Let’s say among (1-20) Ret, only (3-7) are
wanted. In this case set NREYL to 20, LOC ST to 3 and
LOC TOT to 4.

SPEC : Species molecular formula.
WT : Species molecular weight.

201



Table 25: The compilation options that can be defined in the Makefile.

NREAC : No reaction rates calculation.
NDIF : No diffusion calculation.
ART STIR : Once this option is selected, number of stirrings per

LEM iteration are not determined by the original LEM formulation, but
by the NSTR given in the input.dat file.

TRANSPORT : To access advanced tranport options, should be always
followed by SCHMDT, MIXTURE AVE, or, MULTI COMP.

SCHMDT : The mixture averaged species diffusion coefficients are
calculated based on constant Lewis and Schmidt number
assumptions for all species.

MIXTURE AVE : The mixture averaged species diffusion coefficients are
calculated by using the Binary diffusion coefficients.

MULTI COMP : Multi component diffusion coefficients are calculated and
used for the diffusion velocity.

VEL COR : Used only with MIXTURE AVE. It can be used to ensure that
the summation of the species diffusion velocities are equal to zero.

OLDDIF : Works only with SCHMDT or MIXTURE AVE. Assumes the
diffusion velocity is in the form of (1/Yk)(dYk/ds).
Valid for binary mixtures.

NEWDIF : Works only with SCHMDT or MIXTURE AVE. Assumes
the diffusion velocity is in the form of (Wk/(WYk))(dXk/ds).
Valid for multi-species mixtures.

DIRECT INT : Works only with REACTION. Uses a stiff ODE solver to
calculate the chemical source terms.

ANN : Works only with REACTION. Uses ANN to calculate the
chemical source terms. ANN coefficients are needed to be
given in the ANN/ folder.

INDIRECT INT : Instead of using a stiff ODE solver to calculate
the reaction rates, the code uses a step-wise integration
with a given number of sub-iterations. The number of
integration steps are defined by NEULER.

PREMIXED : Used only for Premixed configurations. The LEM
observation window is shifted during the computations
based on the mass fraction of a reference species defined by
NREF in the input file.

SGS : The filtered (averaged) Yk, T , Ret, dYk/ds and
reaction rates are calculated and written into
the post/filt/filt XX YY ZZ.dat files for TANN approach.

RSTSGS : The LEM level Yk, T are written into the
post/post/post XX YY ZZ.dat files for LANN approach.

MAN : The initialization file (chemkin.dat) is provided.
CHEMKIN IN : Read the CHEMKIN output directly and prepare LEMin.dat file

according to the LES domain size and number of grid points.
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Table 26: Explanations for the Fortran files
1dlem.F : Includes main routines to read the input, initial profiles,

LEM field initialization, allocating-deallocating arrays and
calling routines to calculate the properties.

all data.F : Most of the declarations are made here.
lem.F : Main routine for LEM. Evaluates the time scales and calls

the turbulent stirring and diffusion reaction solver.
stir.F : For turbulent stirring.
diff reac.F : Solving the diffusion-reaction equations for the species

and energy conservation.
chemrate.F : Calculating the species reaction rates.
dvode.F : Performing chemical integration (stiff ODE solver for chemistry)
ann.F : Performing chemical integration using ANN.
rest.F : Based on the options selected in the Makefile, writes

the restart files for the LEM and/or LES level.
init.F : Used basically to generate the initial data. INIT DATA

subroutine reads the chemkin output and turns it into a format
compatible with the current solver. PREP REST subroutine is
used for user defined initial profiles. In its current form
it is hardcoded for a non-premixed system.
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Table 27: A sample input file used for stand-alone LEM computations for the Case
B in Section 5.3.

SIMTIME DELTAT PRESSURE NSPECI NREST NSTR
4E-4 1E-7 101325D0 16 500 0
L (M) LES GRID MOLE2MASS
0.035D0 82 1
EDDYSIZE REYL S REYL E NREYL NREAL TREF
0.001 200 400 20 2 510
LOC ST LOC TOT NEULER
1 20 2
SPEC WT NO
H2 2.0159 1
H 1.0080 2
O2 31.9988 3
OH 17.0074 4
H2O 18.0153 5
HO2 33.0068 6
H2O2 34.0148 7
CH3 15.0351 8
CH4 16.0431 9
CO 28.0106 10
CO2 44.0100 11
CH2O 30.0265 12
C2H2 26.0384 13
C2H4 28.0543 14
C2H6 30.0702 15
N2 28.0134 16
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Figure 85: Flow chart for the stand-alone LEM code.
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APPENDIX B

REDUCED MECHANISMS USED IN THE STUDY

B.1 21 Steps, 11 Species Syngas Mechanism

This mechanism is used in Section 5.3.3.4 and Chapter 6. See (26) for more informa-

tion on the mechanism.

Species: H2, O2, O, OH , H2O, H , HO2, CO, CO2, HCO, N2 O2 + H = OH + O

H2 + O = OH + H

OH + H2 = H + H2O

H2O + O = 2OH

H2 + M = 2H + M

2O + M = O2 + M

H + O + M = OH + M

OH + H + M = H2O + M

O2 + H + M = HO2 + M

H + HO2 = O2 + H2

H + HO2 = 2OH

O + HO2 = OH + O2

OH + HO2 = O2 + H2O

O + CO + M = CO2 + M

O2 + CO = O + CO2

HO2 + CO = OH + CO2

OH + CO = H + CO2

HCO + M = CO + H + M

O2 + HCO = HO2 + CO
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H + HCO = H2 + CO

O + HCO = H + CO2

B.2 10 Steps, 14 Species Skeletal Syngas Mechanism

This mechanism is used in Sections 5.1.2.2, 5.2 and 5.3.3.2. Species: H2, H , O, OH ,

HO2, H2O, CO, O2, H2O2, CO2, CH4, CH2O, NO, N2

H + O2 = O + OH

H2 + O = H + OH

H2 + OH = H + H2O

2H = H2

H + O2 = HO2

2OH = H2O2

O + CO = CO2

O + CH4 = 2H + CH2O

O + O2 + CH2O = OH + HO2 + CO

B.3 12 Steps, 16 Species Skeletal Methane Mechanism

This mechanism is used in Section 5.3.3.3 and Chapter 7. See (83) for more informa-

tion on the mechanism.

Species: H2, H , O2, OH , H2O, HO2, H2O2, CH3, CH4, CO, CO2, CH2O, C2H2,

C2H4, C2H6, N2

O2 + 2CO = 2CO2

H + O2 + CO = OH + CO2

H2 + O2 + CO = H + OH + CO2

HO2 + CO = OH + CO2

O2 + H2O2 + CO = OH + HO2 + CO2
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O2 + 0.5C2H2 = H + CO2

O2 + CH3 + CO = CH4 + CO2 + CH2O + 0.5C2H2

O2 + 2CH3 = H2 + CH4 + CO2

O2 + 2CH3 + CO = CH4 + CO2 + CH2O

O2 + CH3 + CO = H + CO2 + CH2O

O2 + CO + C2H6 = CH4 + CO2 + CH2O

H + OH = H2O

208



Bibliography

[1] Barlow, R. E., Proceedings of the TNF Workshops. Sandia National Labora-
tories, Livermore, CA, 2005. www.ca.sandia.gov/TNF.

[2] Baum, M., Poinsot, T., Haworth, D. C., and Darabiha, N., “H2/O2/N2

flames with complex chemistry in two-dimensional turbulent flows,” J. Fluid
Mech., vol. 281, pp. 1 – 32, 1994.

[3] Bell, J. B., Cheng, R. K., Day, M. S., and Shepherd, I. G., “Numerical
simulation of Lewis number effects on lean premixed turbulent flames,” Proc.
Combust. Inst., vol. 31, pp. 1309–1317, 2007.

[4] Bell, J. B., Day, M. S., and Grcar, J. F., “Numerical simulation of pre-
mixed turbulent methane combustion,” Proc. Combust. Inst., vol. 29, pp. 1987–
1993, 2002.

[5] Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F.,
and Filatyev, S. A., “Numerical simulation of a laboratory-scale turbulent
slot flame,” Proc. Combust. Inst., vol. 31, pp. 1299–1307, 2007.

[6] Bilger, R. W., Starner, S. H., and Kee, R. J., “On reduced mechanisms
for methane-air combustion in nonpremixed flames,” Combust. Flame, vol. 80,
pp. 135–149, 1990.

[7] Blasco, J. A., Fueyo, N., Dopazo, C., and Ballester, J., “Modelling the
temporal evolution of a reduced combustion chemical system with an artificial
neural networks,” Combust. Flame, vol. 123, pp. 38 – 52, 1998.

[8] Blasco, J. A., Fueyo, N., Larroya, J. C., Dopazo, C., and Chen, J. Y.,
“A single-step time-integrator of a methane-air chemical system using artificial
neural networks,” Comput. Chem. Eng., vol. 23, pp. 1127 – 1133, 1999.

[9] Blasenbrey, T. and Maas, U., “ILDMs of higher hydrocarbons and the hier-
archy of chemical kinetics,” Proc. Combust. Inst., vol. 28, pp. 1623–1630, 2000.

[10] Bobba, M. K., Flame Stabilization and Mixing Characteristics in a Stagnation
Point Reverse Flow Combustor. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, October 2007.

[11] Bradar, R. D. and Jones, R. M., “GE IGCC technology and experience
with advanced gas turbines,” ger-4207, GE Power Systems, Schenectady, NY,
October 2000.

[12] Chakravarthy, V. and Menon, S., “Large-eddy simulations of turbulent
premixed flames in the flamelet regime,” Combust. Sci and Tech, vol. 162, pp. 1–
48, 2000.

209



[13] Chakravarthy, V. and Menon, S., “Linear-eddy simulations of Reynolds
and Schmidt number dependencies in turbulent scalar mixing,” Physics of Fluids,
vol. 13, pp. 488–499, 2001.

[14] Chen, J. Y., Blasco, J. A., Fueyo, N., and Dopazo, C., “An economical
strategy for storage of chemical kinetics:fitting insitu adaptive tabulation with
artificial neural networks,” Proc. Combust. Inst., vol. 28, pp. 115–121, 2000.

[15] Choi, Y. and Chen, J.-Y., “Fast prediction of start-of-combustion in HCCI
with combined artificial neural networks and ignition delay model,” Proc. Com-
bust. Inst., vol. 30, pp. 2711–2718, 2005.

[16] Christodoulou, C. and Georgiopoulos, M., Applications of Neural Net-
works in Electromagnetics. Artech House, 2000.

[17] Chuanyl, J., Snapp, R. R., and Psaltis, D., “Generalizing smoothness
constraints from discrete samples,” Neual Computation, vol. 2, pp. 188–197,
1990.

[18] Echekki, T. and Chen, J. H., “Unsteady strain rate and curvature effects
in turbulent premixed methane-air flames,” Combust. Flame, vol. 106, no. 1,
pp. 184–202, 1996.

[19] Eggenspieler, G., Numerical Simulation of Pollutant Emission and Flame Ex-
tinction in Lean Premixed Systems. PhD thesis, Georgia Institute of Technology,
Atlanta, USA, July 2005.

[20] Eggenspieler, G. and Menon, S., “Combustion and emission modeling near
lean blow-out in gas turbine engines,” Prog. Comp. Fluid Dyn., vol. 5, no. 6,
pp. 281–297, 2005.

[21] Fureby, C., “Large-eddy simulation of turbulent anisochoric flows,” AIAA
Journal, vol. 33, no. 7, pp. 1263–1272, 1995.

[22] Goldin, G. M. and Menon, S., “Scalar pdf construction model for turbulent
non-premixed combustion,” Combust. Sci. Tech., vol. 125, pp. 47 – 72, 1997.

[23] Gopalakrishnan, P., Effects of the Reacting Flowfield on Combustion Pro-
cesses in a Stagnation Point Reverse Flow Combustor. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, January 2008.

[24] Gopalakrishnan, P., Bobba, M. K., and Seitzman, J. M., “Controlling
mechnamisms for low NOx emissions in a non-premixed stagnation point reverse
flow combustor,” Proc. Combust. Inst., vol. 31, pp. 3401 – 3408, 2007.

[25] Grcar, J. F., Bell, J. B., and Day, M. S., “The soret effect in naturally
propagating, premixed, lean, hydrogen-air flames,” Proc. Combust. Inst., vol. 32,
pp. 1173–1180, 2009.

210



[26] Hawkes, E. R., Sankaran, R., Sutherland, J. C., and Chen, J. H.,
“Scalar mixing in direct numerical simulations of temporally evolving plane jet
flames with skeletal CO/H2 kinetics,” Proceedings of the Combustion Institute,
vol. 31, pp. 1633–1640, 2007.

[27] Hecht-Nielsen, R., Neurocomputing. Addison-Wesley, 1990.

[28] Ihme, M., Marsden, A. L., and Pitsch, H., “Generation of optimal artificial
neural networks using a pattern search algorithm: Application to approximation
of chemical systems,” Neural Computation, vol. 20, pp. 573–601, 2008.

[29] Ihme, M., Schmitt, C., and Pitsch, H., “Optimal artificial neural networks
and tabulation methods for chemistry representation in LES of a bluff-body
swirl-stabilized flame,” Proc. Combust. Inst., vol. 32, pp. 1527–1535, 2008.

[30] Im, H. G. and Chen, J. H., “Preferential diffusion effects on the burning rate of
interacting turbulent premixed hydrogen-air flames,” Combust. Flame, vol. 131,
pp. 246–258, 2002.

[31] Jones, W. P. and Lindstedt, P. R., “Global reaction schemes for hydrocar-
bon combustion,” Combust. Flame, pp. 223 – 233, 1988.

[32] Kapoor, R., Lentati, A., and Menon, S., “Simulations of methane-air
flames using ISAT and ANN,” AIAA-01-3847, 2001.

[33] Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., F., G. J.,
Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke,

M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E.,
Petzold, L. R., Reynolds, W. C., Caracotsis, M., Stewart, W. E.,
Glarborg, P., Wang, C., Adigun, O., Houf, W. G., Chou, C. P., and
Miller, S. F., “The transport pre-processor and subroutine library,” Chemkin
collection, Release 3.7.1, 2003.

[34] Kempf, A., Flemming, F., and Janicka, J., “Simulation of soot formation
in turbulent premixed flame,” Proc. Combust. Inst., vol. 30, pp. 557 – 565, 2005.

[35] Kerstein, A. R., “Linear-eddy model of turbulent scalar transport and mix-
ing,” Combust. Sci. Tech., vol. 60, pp. 391–421, 1988.

[36] Kerstein, A. R., “Linear-eddy model of turbulent transport II,” Combust.
Flame, vol. 75, pp. 397–413, 1989.

[37] Kim, W.-W. and Menon, S., “A new dynamic one-equation subgrid-scale
model for large-eddy simulations,” AIAA-95-0356, 1995.

[38] Kim, W.-W. and Menon, S., “A new incompressible solver for large-eddy
simulations,” International Journal of Numerical Fluid Mech., vol. 31, pp. 983–
1017, 1999.

211



[39] Konig, K. and Maas, U., “On-demand generation of reduced mechanisms
based on hierarchically extended intrinsic low-dimensional manifolds in general-
ized coordinates,” Proc. Combust. Inst., vol. 32, pp. 553–560, 2009.

[40] Landau, L. J., Concepts for Neural Networks : a Survey. Springer, 1998.

[41] Lignell, D. O., Chen, J. H., Smith, P. J., Lu, T., and Law, C. K.,
“The effect of flame structure on soot formation and transport in turbulent non-
premixed flames using direct numerical simulation,” Combust. Flame, vol. 151,
pp. 2–28, 2005.

[42] Lilly, D. K., “A proposed modification of the Germano subgrid-scale closure
method,” Physics of Fluids A, vol. 4, no. 3, pp. 633–635, 1992.

[43] Liu, S., Meneveau, C., and Katz, J., “On the properties of similarity subgrid-
scale models as deduced from measurements in a turbulent jet,” Journal of Fluid
Mechanics, vol. 275, pp. 83–119, 1994.

[44] Maas, U. and Pope, S. B., “Laminar flame calculations using simplified chem-
ical kinetics based on intrinsic low-dimensional manifolds,” Proc. Combust. Inst.,
vol. 25, pp. 1349–1356, 1992.

[45] Maas, U. and Pope, S. B., “Simplifying chemical kinetics: Intrinsic low-
dimensional manifolds in the composition space,” Combust. Flame, vol. 88,
pp. 239–264, 1992.

[46] Magnussen, B. F. and Hjertager, B. H., “On mathematical modeling of
turbulent combustion with special emphasis on soot formation and combustion,”
Proc. Combust. Inst., vol. 16, pp. 719–729, 1977.

[47] Mehrotra, K., Mohan, C. K., and Ranka, S., Elements of Artificial Neural
Networks. MIT Press, 1997.

[48] Menon, S. and Kim, W.-W., “High reynolds number flow simulations using
the localized dynamic subgrid-scale model,” AIAA-96-0425, 1996.

[49] Menon, S. and Patel, N., “Subgrid modeling for LES of spray combustion in
large-scale combustors,” AIAA Journal, vol. 44, no. 4, pp. 709–723, 2006.

[50] Mosbacher, M., Haynes, J., Janssen, J., Brumberg, J., Lieuwen, T.,
Menon, S., Seitzman, S., and Anand, A., “Fuel-flexible combustion system
for co-production plant applications,” de-fc26-03nt41776, GE Global Research,
Schenectady, NY, October 2006.

[51] Natarajan, J., Nandula, S., Lieuwen, T., and Seitzman, J., “Laminar
flame speeds of synthetic gas fuel mixtures,” ASME Paper, 2005.

[52] Nelson, C. C., Simulations of spatially evolving compressible turbulence using
a local dynamic subgrid model. PhD thesis, Georgia Institute of Technology, 1997.

212



[53] NeuralWare, Neural Computing. A Technology Handbook for NeuralWorks
Professional II / PLUS. NeuralWare, 2001.

[54] Pantano, C., “Direct simulation of non-premixed flame extinction in a
methane-air jet with reduced chemistry,” J. Fluid Mech., vol. 514, pp. 231–270,
2004.

[55] Patel, N., Kirtas, M., Sankaran, V., and Menon, S., “Simulation of spray
combustion in a lean direct injection combustor,” Proc. Combust. Inst., vol. 31,
pp. 2327–2334, 2007.

[56] Peters, N., Numerical Simulation of Combustion Phenomena. Springer-Verlag,
1985.

[57] Peters, N., Turbulent Combustion. Cambridge Monographs on Mechanics,
2000.

[58] Pitsch, H., “Unsteady flamelet modeling of differential diffusion in turbulent
jet flames,” Combust. Flame, vol. 123, pp. 358–374, 2000.

[59] Pitsch, H., “Large eddy simulation of turbulent flames,” Ann. Rev. Fluid
Mech., vol. 38, pp. 233–266, 2006.

[60] Poinsot, T., Veynante, D., and Candel, S., “Diagrams of premixed tur-
bulent combustion based on direct simulation,” Proc. Combust. Inst., vol. 23,
pp. 613–619, 1990.

[61] Poinsot, T., Veynante, D., and Candel, S., “Quenching processes and
premixed turbulent combustion diagrams,” Journal of Fluid Mechanics, vol. 228,
pp. 561–606, 1991.

[62] Poinsot, T. and Lele, S., “Boundary conditions for direct simulations of
compressible viscous flow,” Journal of Computational Phys., vol. 101, pp. 104–
129, 1992.

[63] Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion. Ed-
wards, Inc., second ed., 2005.

[64] Pope, S. B., “Pdf methods for turbulent reactive flows,” Prog. Energy Combust.
Sci., pp. 119–192, 1985.

[65] Pope, S. B., “Computationally efficient implementation of combustion chem-
istry using in situ adaptive tabulation,” Combust. Theory Modelling, vol. 1,
pp. 41–63, 1997.

[66] Pope, S. B., Turbulent Flow. Cambridge Book Company, first ed., 2000.

[67] Rojas, R., Neural Networks - A Systematic Introduction. Springer-Verlag,
Berlin, New-York, 1996.

213



[68] Sankaran, V. and Menon, S., “Subgrid combustion modeling of 3-d premixed
flames in the thin-reaction-zone regime,” Proc. Combust. Inst., vol. 30, no. 1,
pp. 575–582, 2005.

[69] Sankaran, V., Porumbel, I., and Menon, S., “Large-eddy simulation of a
single-cup gas turbine combustor,” AIAA-2003-5083, 2003.

[70] Schumann, U., “Realizability of Reynolds-stress turbulence models,” Physics
of Fluids, vol. 20, no. 5, pp. 721–725, 1977.

[71] Sen, B. A., “Development of a simplified scheme for intrinsic low-dimensional
manifolds by exploiting the hierarchical structures of hydrocarbon fuels,” Mas-
ter’s thesis, Istanbul Technical University - Mechanical Engineering Department,
Istanbul, Turkey, 2003.

[72] Sen, B. A. and Menon, S., “Large-eddy simulations of turbulent flames in
syn-gas fuel-air mixtures,” AIAA-2007-1435, 2007.

[73] Sen, B. A. and Menon, S., “Representation of chemical kinetics by artificial
neural networks for large eddy simulations,” AIAA-2007-5635, 2007.

[74] Sen, B. A. and Menon, S., “Artificial neural networks based chemistry-mixing
subgrid model for LES,” AIAA-2009-0241, 2009.

[75] Sen, B. A. and Menon, S., “Linear eddy mixing and artificial neural networks
for LES sub-grid chemistry closure,” Combust. Flame, accepted for publication,
2009.

[76] Sen, B. A. and Menon, S., “Turbulent premixed flame modeling using artificial
neural network based chemical kinetics,” Proc. Combust. Inst., vol. 32, pp. 1605–
1611, 2009.

[77] Sen, B. A., Ozdemir, I. B., and Warnatz, J., “Implementation of the hi-
erarchical structures of the combustion processes into intrinsic low-dimensional
manifolds technique,” 4th International Symposium on Turbulence, Heat and
Mass Transfer, 2003.

[78] Smith, T. and Menon, S., “One-dimensional simulations of freely propagating
turbulent premixed flames,” Combust. Sci. and Tech., vol. 128, pp. 99–130, 1996.

[79] Spalding, D. B., “Concentration fluctuations in a round turbulent free jet,”
Chem. Eng. Sci., vol. 26, p. 95, 1971.

[80] Spalding, D. B., “Development of the eddy-break-up model of turbulent com-
bustion,” 16th Symp. (Int.) on Combustion, vol. 16, pp. 1657–1663, 1976.

[81] Sripakagorn, P., Mitarai, S., Kosaly, G., and Pitsch, H., “Extinction
and reignition in a diffusion flame: A direct numerical simulation study,” J. Fluid
Mech., vol. 518, pp. 231–259, 2004.

214



[82] Su, L. and Clemens, N., “The structure of fine-scale scalar mixing in gas-phase
planar turbulent jets,” Journal of Fluid Mechanics, vol. 488, pp. 1–29, 2003.

[83] Sung, C., Law, C., and Chen, J., “An augmented reduced mechanism
for methane oxidation with comprehensive global parametric validation,” Proc.
Combust. Inst., vol. 27, pp. 295–304, 1998.

[84] Tennekes, H. and Lumley, J. L., A First Course in Turbulence. MIT Press,
1992.
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