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ABSTRACT

A key issue in complex systems design is measuring the
‘goodness’ of a design, i.e. finding a criterion through
which a particular design is determined to be the ‘best’.
Traditional choices in aerospace systems design, such
as performance, cost, revenue, reliability, and safety,
individually fail to fully capture the life cycle
characteristics of the system.  Furthermore, current
multi-criteria optimization approaches, addressing this
problem, rely on deterministic, thus, complete and
known information about the system and the
environment it is exposed to.  In many cases, this
information is not be available at the conceptual or
preliminary design phases.  Hence, critical decisions
made in these phases have to draw from only
incomplete or uncertain knowledge.  One modeling
option is to treat this incomplete information
probabilistically, accounting for the fact that certain
values may be prominent, while the actual value during
operation is unknown.  Hence, to account for a multi-
criteria as well as a probabilistic approach to systems
design, a joint-probabilistic formulation is needed to
accurately estimate the probability of satisfying the
criteria concurrently.  When criteria represent objective/
aspiration functions with corresponding goals, this ‘joint
probability’ can also be called viability.  The proposed
approach to probabilistic, multi-criteria aircraft design,
called the Joint Probabilistic Decision Making (JPDM)
technique, will facilitate precisely this estimate.

INTRODUCTION

“Decision making is characterized by its involvement with
information, value assessments, and optimization. Thus
whereas inventiveness seeks many possible answers and
analysis seeks one actual answer, decision making seeks to
choose the one best answer.” 1  But the ‘one best answer’
can be difficult to obtain when the decision is based on
several objectives.  Techniques that aid the decision-
maker in determining the best or a set of ‘best’ solutions
have been developed over the past three decades.
Excellent references that give a detailed overview of
most available techniques can be found in References 2,
3, 4, 5, 6, 7, and 8.  Hwang, in particular, introduced two
classifications, the Multi-Attribute Decision Making
(MADM) and Multi-Objective Decision Making (MODM)
techniques.2,3

Copyright  1999 by Bandte, Mavris, DeLaurentis.
Published by SAE International, and the American
Institute of Aeronautics and Astronautics, Inc. with permission.

According to Hwang, multiple attribute decision problems
involve the selection of the ‘best’ alternative from a pool
of preselected alternatives described in terms of their
attributes.2  Attributes are generally defined as
characteristics that describe in part the state of a product
or system.  Objectives can then be defined as attributes
that are associated with a goal and a direction ‘to do
better’ as perceived by the decision maker.  Goals are
thus desired (target) levels in terms of a specific state in
space and time.  In many cases, however, the terms
‘objective’ and ‘goal’ are used interchangeably.  With this
definition for objectives in mind, multi-objective decision
problems involve the design of alternatives which
optimize or ‘best satisfy’ the objectives of the decision
maker.2  In other words, multi-attribute decision
problems are product selection problems, multi-objective
decision problems are optimization problems.  Together
all techniques for solving these problems can be
classified as Multi-Criteria Decision Making (MCDM)
techniques.  While criteria typically describe the
standards of judgment or rules to test acceptability, here,
they simply indicate attributes and/or objectives.  In
general an MCDM problem is described by max{f1(x),
f2(x), …, fk(x)} , where fi, i = 1, .., k, are the criteria and x is
the n-dimensional vector of design variables the criteria
depend on.  If a given vector x satisfies all specified
goals for the criteria, then it is considered to be a viable
solution.

Furthermore, most existing MCDM techniques require
deterministic information about the criteria in order to
find the ‘best’ or set of ‘best’ solutions.  This requirement
presents a significant restriction for systems design,
which is closely related to, if not identical with decision
making (see Ref. 9).  A deterministic formulation,
though, implies complete and known information about
the system and the environment it is exposed to.  This
information, however, may not be available in the
conceptual or preliminary design phases.  Critical
decisions made in these phases often draw from only
incomplete or uncertain knowledge.  One modeling
option is to treat this incomplete information
probabilistically, accounting for the fact that certain
values may be prominent, while the actual value during
operation is unknown.  By assigning probability
estimates to the values within the range of interest, the
method guarantees that all values are kept as possible
solutions.  In other words, a probabilistic design method
yields the aircraft’s attributes, and thus the decision
criteria, as random variables.  Even though probabilistic
design techniques have gained much popularity in
recent years,10,11,12,13,14 they typically treat one criterion
at a time only.  This apparent shortcoming for realistic
systems design situations calls for a new technique that
treats all specified decision/design criteria concurrently
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and as random variables.  The technique presented in
this paper employs a joint probabilistic formulation of the
decision problem in order to address this deficiency,
thereby determining the viability of a system as the
probability of satisfying all criteria goals concurrently.

JOINT PROBABILITY THEORY

Definition:  Let X1, X2, ….,Xn be a set of random variables  
defined on a (discrete) probability space Ω.  The
probability that the events X1 = x1, X2 = x2, ….,and Xn = xn
happen concurrently, is denoted by f(x1, x2,…., xn) =
P(X1 = x1, X2 = x2, …., Xn = xn)

* for the set of desired
solutions A ⊆ Ω.  If the function f(x1, x2,…., xn) is discrete,
it is called the joint probability mass function of
X1, X2, …., Xn and has the following properties:15
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If f(x1, x2,…., xn) is continuous, it is called joint probability
density function of X1, X2, …., Xn and has the following
properties:15

),....,,(0 21 nxxxf≤

1....),....,,( 2121 =⋅⋅⋅∫ ∫
Ω

nn dxdxdxxxxf (2)

[ ] Ω⊆⋅⋅=∈ ∫ ∫ AdxdxdxxxxfAXXXP
A

nnn   ,..),..,,(),..,,( 212121

If the lower bound of A, the set of desired solutions, is
equal to the infimum† of Ω for all Xi, i.e. if A = (infi(Ω), ai],
for all i = 1, 2,..., n, a function F(a1,a2,….,an) can be
defined, such that:
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F is called the joint cumulative probability distribution
function.16  For Ω = ℜn and a continuous function f :‡
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The common notation F(a1, a2,.., an) = P(X1 ≤ a1, X2 ≤ a2, ….,
Xn ≤ an) will be used subsequently also.

The univariate probability function fXi for each criterion Xi,
obtained from the traditional probabilistic design
process, can also be generated with the joint probability
function f.  fXi is called marginal probability mass or
density function of Xi and is defined by:

                                                          
*  P(X1 = x1, X2 = x2, …., Xn = xn) = P[(X1 = x1) ∩ (X2 = x2) ∩….∩ (Xn = xn)].
†  Greatest lower bound.
‡  ℜn denotes the set of all real valued n-touples.
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Figure 1:  Joint and marginal probability density function
of continuous criteria X and Y 17

To further illustrate the concept of joint probability, an
example for two continuous criteria, X and Y, is displayed
in Figure 1.  The joint probability function, fX,Y(x,y),
creates the surface of a probability ‘hump’ in the x-y-f-
space, characterized by rings of constant probabilities.
The distribution curves over the x- and y-axis are the
aforementioned marginal probability functions fX(x) and
fY(y), respectively.  Also displayed in Figure 1 are two
‘cuts’ through the probability ‘hump’, marking the
conditional probability distributions fX,Y(x = a, y) and
fX,Y(x, y = b) and their respective areas underneath fX(a)
and fY(b).

The last necessary concept to mention here for the
development of a joint probabilistic formulation is the
concept of dependence of criteria.  Two random
variables X and Y are said to be independent, if
fX,Y(x,y) = fX(x) ⋅ fY(y) otherwise X and Y are said to be
dependent.  This dependence is a mathematical notion
and should not be confused with ‘causal dependence’.
A simple example for mathematical dependence without
causal dependence is the number of times a person
takes an umbrella to work and the number of times he
wears long pants in a given month.  The two numbers
increase similarly with the number of rainy days in that  
month, i.e. they are (mathematically) dependent.  They
are, however, not causally dependent, since wearing  
pants does not depend on taking an umbrella or vice
versa, but rather on the rain the person has to face on
the way to work.

From here on, mathematical dependence will be referred
to as correlation.  Correlation is measured by the
covariance of two criteria, X and Y, defined by

Cov(X,Y) = E[XY] – E[X]E[Y].17 (8)

It is more convenient, however, to use a covariance
normalized by the standard deviations, σX and σY, for
both criteria, called correlation coefficient:17
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The correlation coefficient is defined over the interval
[-1,1], indicating strongly positively correlated criteria at
values close to 1 and strongly negatively correlated
criteria at values close to –1.  The criteria are
independent, if ρ = 0.  In aerospace systems design ρ
can be quite difficult to calculate by Equation 9.  It is
much more effective to view the correlation coefficient
differently for calculation purposes.  Jointly collected
data from a probabilistic or any other analysis can be
thought of as vectors of numbers.  The correlation
coefficient measures the orthogonality, i.e.
independence, of both vectors.  ρ  is simply the cosine of
the angle between the two criterion vectors, indicating
their alignment.  For ρ = 1, vectors are parallel and point
in same direction, for ρ = -1, vectors are parallel and
point in opposite direction.  For ρ = 0, vectors are
orthogonal and the criteria are independent.  The
correlation coefficient plays a significant role in the
formulation of joint probability distribution models as
described in the next section.

PROBABILITY FUNCTIONS

Attention is now directed to the implementation of this
probabilistic formulation in the design process.  The
necessary transition from the mathematical formulation
above to a probabilistic model that yields the information
relevant for multi-variate decision making is described in
this section.  There are two alternatives for this task.

Joint Probability Model  

The first joint probability density function introduced here
is an analytical probability model for criteria whose
univariate distributions and their corresponding means
and standard deviations are known.  All necessary
information for the model can be generated by the
traditional probabilistic design process, using its output
of univariate criterion distributions.  A particular model
for two criteria with normal distributions, represented by
Equation 10, has been introduced by Garvey and
Taub.18  Garvey further generated models for two criteria
with combinations of normal and lognormal distributions,
which are summarized in Ref. 19.

]})())((2

)[(
22

1
exp{

12

1
),(

2

2
22

Y

Y

Y

Y

X

X

X

X

YX

XY

yyx

x
yxf

σ
µ

σ
µ

σ
µρ

σ
µ

ρρσπσ
−+−−−

−
−−

=
(10)

Note that the only information needed for the Joint
Probability Model consists of the means µX and µY, the
standard deviations σX and σY, and the correlation
coefficient ρ for the criteria X and Y.§  The model
variables, x and y, are defined over the interval of all
possible criterion values.  The advantage of this model is
the limited information needed, which makes it very
flexible for use and application.  For example, if only
expert knowledge and no simulation/modeling is
available in the early stages of design, educated
guesses for the means, standard deviations, and the
correlation coefficient can be used to execute the joint
probability model.  It also lends itself to use in
combination with increasingly important fast probability
integration techniques.
                                                          
§  The normality assumption for the attribute distributions is already part of
the model, however, it may also be regarded as information about the output
distribution that helps to select the model.

Empirical Distribution Function:  

The second probability function identified is the Empirical
Distribution Function (EDF), named after the empirically
collected data samples on which it is based.  The joint
probability mass function can be formulated as:
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ai are the criterion sample values derived from a
sampling method such as the Monte-Carlo simulation
(MCS), while xi are the criterion values of interest.

Consequently, the joint cumulative probability distribution
function can be formulated as:
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The joint EDF depends on joint samples for the criteria
only, and is not limited by any assumptions about
variable distributions made beforehand.  It does not rely
on any particular sampling method either and can be
used as long as sample data is available.  The need for
this data, on the other hand, is its very limitation, since it
can only be used in a design process with available
simulation data.  Given enough sample data, however,
the joint EDF yields the most accurate joint distribution
prediction, since it does not rely on any approximation to
generate the criterion statistics needed.  Its greatest
advantage lies in its lack of a requirement for a
correlation coefficient, which can be difficult to estimate
reliably in a design for new unconventional or
revolutionary products.  For very large numbers of
sample data, the joint EDF can yield the exact solution
for the joint distribution.  However, in product design, a
large number of process evaluations may not be a
feasible option.  In this case, the prediction accuracy of
the Joint Probabilistic Model and joint Empirical
Distribution Function are similar.20

JOINT PROBABILISTIC DECISION MAKING
TECHNIQUE

A key issue in complex systems design is measuring the
‘goodness’ of a design, i.e. finding a criterion through
which a particular design is determined to be the ‘best’.
Traditional choices in aerospace systems design, such
as performance, cost, revenue, reliability, and safety,
individually fail to fully capture the life cycle
characteristics of the system.  Thus, a common
approach has been to combine all criteria together into
one equation termed the overall evaluation criterion,
OEC.  This equation is often very simple in its
mathematical structure due to lack of any better model
for the decision process.  Recognizing this lack of proper
decision process modeling, a different approach is
proposed here, using the system attributes concurrently
as decision criteria for the evaluation of designs.  This
evaluation is not based on a summation of criteria, but
rather the probability of satisfying all criteria at the same
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time, a notion similar to a Pareto-optimality.**  The main
difference with respect to Pareto-optimality lies in the
optimizable objective function, called probability of
success (in satisfying all criteria).

This multi-criteria approach to decision making lends
itself more suitably to aircraft design than a probabilistic
single-criterion approach, since customers typically like
to see all decision criteria satisfied.  For example, a  
probabilistic multi-criteria approach can yield the design
solution, which maximizes the probability of low cost,
high capacity, speed, and dependability, while a single
objective design will only yield an optimum in one of
these criteria, neglecting all others.

An outline for determining the probability of success,
assumptions its calculation is based on, as well as its
use for product selection and optimization is presented
in Figure 2.  This nine step process is described in detail
in the following sections.

STEP 1 – DEFINE CRITERIA

First, the criteria for the decision making process need to
be determined.  They are typically comprised of
customer requirements†† or desirements‡‡ as well as
objectives that need to be satisfied from the designer’s
perspective.  These criteria are usually established in the
early conceptual design phase of the product.  The Joint
Probabilistic Decision Making technique treats this set of
criteria as a random vector,§§ represented by Z.

                                                          
**  State of economic affairs where no one can be made better off without
simultaneously making another worse off.21

††  Customer supplied needs that must be fulfilled.
‡‡  Customer supplied wants that impact product design.
§§  Vector of random variables.

STEP 2 – DETERMINE PREFERENCES AMONG
CRITERIA

Next, customer or designer supplied preferences are
established for each criterion.  They are usually
represented by a set, or vector w, of (preference)
‘weights’ which are normalized to sum to 1, signifying the
relative importance of each criterion.3  If no criterion is
associated with a prevalent preference over other
criteria, all weights wi, i = 1, 2, …, N, are assigned a
value of 1/N, with N being the number of criteria.

STEP 3 – ESTABLISH CRITERION VALUES

Subsequently, values need to be identified which are
considered sufficient for satisfying the particular criterion.
These values include a minimum and a maximum, or
infimum and supremum in the case of minus and plus
infinity, listed in vectors zmin and zmax.  The space limited
by these numbers is called the area of interest for
multiple criteria.  The probability for a design solution to
produce criterion values within this area is called
probability of success and denotes the objective function
in this decision making technique.

STEP 4 – FIX CONTROL VARIABLES

Values for variables that are under the control of the
designer are considered known (with certainty).  For
each probabilistic analysis, these control variables need
to be held constant, while the vector x with their values is
a representation of each alternative under consideration.
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Figure 2:  Joint Probability Decision Making Technique



5

Problem Definition Modeling and
Attributes Simulation

Problem Definition Modeling and
Attributes Simulation

Monte-Carlo
Simulation

Empirical
Distribution

Function

Empirical
Distribution

Function

Joint
Probability

Model

Joint
Probability

Model

Joint
Probability

Model

Response Surface
Equation

Advanced Mean
Value Method

CDF
Regression

CDF
Regression

CDF
Regression

Correlation
Coefficient

MatrixMonte-Carlo
Simulation

Correlation
Coefficient

Matrix

Correlation
Coefficient

Matrix

Method I Method II Method III Method IV Method V

Least
Effort

Most
Accurate

0.000

0.001

0.002

0.003

0.004

0.005

0.006

N
o

rm
al

iz
ed

 F
re

q
ue

n
cy

Joint Probability Distribution

Figure 3:  Step 7  -  Five Methods for the Evaluation of the Joint Probability Distribution

STEP 5 – ASSIGN PROBABILITY
DISTRIBUTIONS

All other variables that are not under the control of the
designer, i.e. their values are not known with certainty,
need to be assigned probability distributions that
represent the likelihood of taking on certain values.
These variables are often called noise variables.  This
step allows the subsequent simulation to use a range of
values for these variables rather than a single value.

STEP 6 – SIMULATION

Next, a computer supported system analysis has to be
identified that evaluates the criterion values based on
the control and noise variables.

STEP 7 – EVALUATION OF THE JOINT
PROBABILITY DISTRIBUTION

Step 7 consists of the determination of the joint
probability distribution for all criteria.  This step is the
cornerstone of this technique and provides the objective
function for the decision making process, Step 8.  Five
methods for the evaluation of the joint distribution have
been developed so far, outlined in Figure 3 and the
subsequent sections.

Method I – Monte-Carlo Simulation with Empirical  
Distribution Function  

The first method uses data from the system analysis
generated by a Monte-Carlo simulation as samples for
the Empirical Distribution Function.  This method is the
most accurate, but also requires the most system
analysis, which can be computationally expensive.

Method II – Monte-Carlo Simulation with Joint Probability  
Model  

For the second method, a Monte-Carlo simulation is
utilized to generate the data, which is regressed for each
criterion individually to obtain a probability distribution
function and it’s associated mean and standard
deviation.  In addition, a correlation coefficient needs to
be determined for each pair of criteria.  The joint
probability distribution can then be determined by using
the correlation coefficient matrix and the statistics for
each criterion distribution in a Joint Probability Model.

Method III – Response Surface Equation/Monte-Carlo  
Simulation with Empirical Distribution Function  

Similarly to Method I, Method III employs a Monte-Carlo
simulation, whereas the data is generated with a
Response Surface Equation (RSE)*** rather than the
computationally more expensive system analysis.  While
this method requires significantly less analysis to
generate the RSE, its accuracy in predicting the joint
probability distribution depends heavily on the prediction
accuracy of the RSE itself.  The obtained data is then
used for an Empirical Distribution Function.

Method IV – Response Surface Equation/Monte-Carlo  
Simulation with Joint Probability Model  

Similarly to Method II, Method IV employs a Monte-Carlo
simulation and regresses the data in order to obtain
mean and standard deviation for the individual criterion
distributions.  However, for the data generation an RSE
is used rather than the computationally more expensive
system analysis.  For the Joint Probability Model
necessary correlation coefficients can be obtained from

                                                          
***  System analysis approximation based on Taylor series expansion.11,12
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either the systems analysis data used for the generation
of the RSE, or the Monte-Carlo simulation data based on
the RSE.  When the DOE table calls for only a few
system simulations, the Monte-Carlo simulation data
provides the greater statistical significance for the
correlation coefficients and is to be preferred, despite the
fact that the data is based on a system analysis
approximation.  When the DOE requires a significant
amount of systems analysis already, the data might as
well be used for the correlation coefficient estimation,
since it is more accurate than the Monte-Carlo
simulation data.

Method V – Advanced Mean Value Method with Joint  
Probability Model  

The fifth method employs the Advanced Mean Value
(AMV)22 method, or one of its derivatives, to obtain an
approximate cumulative distribution function for each
criterion and its associated mean and standard
deviation, which subsequently can be used in the Joint
Probability Model.  A disadvantage of this particular
method, however, is its inability to provide the correlation
coefficient, required by the JPM, which needs to be
determined by some other means.

STEP 8 – JOINT PROBABILISTIC DECISION
MAKING

The eighth step finally combines the criterion values, the
weights, and the joint probability distribution function.  All
alternative solutions under consideration are ranked by
their probability of success (POS), i.e. probability of
satisfying all criteria.  The higher the probability the
better the solution.  Mathematically, the joint probability
of success is determined by:
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for the EDF with M = number of samples, and

∫=
max

min

)(
z

z

zdzfPOS , (14)

for the JPM.

Visually, the ‘goodness’ of a solution can be determined
by how much its probability ‘hump’ overlaps with the
area of interest, depicted in Figure 4.  This, however,
can obviously be exercised with two criteria at a time
only.
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Figure 4:  Display of a Sample Joint Probability
Distribution for Two Criteria

Weight Adjusted Target Values  

While the aforementioned probability of success has a
particular meaning to the decision-maker, namely the
chance the product has of satisfying the needs of the
customer and the company, it does not account for
certain preferences the decision-maker may have
among the criteria.  However, these preferences can be
accounted for, if the probability of success is being
evaluated based on weight adjusted target values t
rather than pure criteria values.  One proposed
adjustment could be:

( ) minmin zNwt ⋅⋅= ,  and (15)

( )Nw

z
t

⋅
= max

max
, (16)

with N = number of criteria.

This formulation essentially narrows the target range of
interest for the criteria with high preference weights and
widens its range of interest for the ones with low
weights.  The formulation for the probability of success
consequently changes to:

∑
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, (17)

for the EDF with M = number of samples, and

∫=
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t

t

zdzfPOS , (18)

for the JPM.

It is essential to note that the POS in this case does not
represent the numerical probability of achieving values
within the area of interest spanned by the criteria, but
rather yields a measured ‘goodness’ for the design
alternatives, accounting for preferences among decision
criteria.  Hence, products fielded based on this
formulation promise to yield a higher customer
satisfaction than products which were fielded based on
the aforementioned probability without criteria
preferencing.†††  This concept is also visualized in
Figure 5, where one design solution (Alternative 1)
appears to be the better one when no preferencing is
applied, while the other solution (Alternative 2) appears
to be the better one when preferencing is applied.

z2
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Alternative 1
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z1z1min z1max

z2min

z2max

z2

Area of
Interest

Alternative 1

Alternative 2
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z1t1min t1max

t2min

t2max

Figure 5:  Comparison of Alternatives Based on Joint
Probability With or Without Preferencing

                                                          
†††  Preferencing = Assigning weighting values to criteria in a decision
making environment.
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Product Selection  

If several alternative design solutions are being
evaluated at the same time, the Joint Probabilistic
Decision Making technique can provide the objective
function based on which the best alternative is
determined.  A joint probability of satisfying all criteria,
with or without preferencing, can be assessed for each
alternative, identifying the solution with the highest POS.
This principle is displayed for two criteria and three
alternatives in Figure 6, with Alternative 2 being the best
solution.  Subsequently, Step 9a will facilitate a desired
change in preferences among the criteria or requirement
traded-off study.

Optimization  

If the decision making problem at hand is an
optimization, i.e. finding the best solution within the
design space spanned by a set of design variables, the
joint probability serves as the objective function for the
optimization routine.  The optimal solution is found when
the design with the highest POS is found within the
design range.  This notion is visualized in Figure 7 for
two criteria, shifting a baseline (starting point) solution
with low probability to the final (optimal) solution with a
high probability of success.  This optimization process
requires the changing of design variables within an
iteration loop, represented by Step 9b.
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 2

Alternative 1

Alternative 3Alternative 2

Area of
Interest

Criterion 1
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ri

te
ri
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 2
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Baseline

Optimal

Figure 6:  POS for Product
Selection

Figure 7:  POS for
Optimization

STEP 9A – CHANGE OF TARGET VALUES

Product selection problems often exhibit a change in
criterion target values resulting from a need for ‘What-If ’
studies executed by the decision-maker.  These studies
greatly enhance the comprehension of the outcome of
the probabilistic analysis and are typically comprised of a
change in criteria preferences or a requirements trade-
off procedure.

Change of Preferences  

If the decision-maker decides to look at a different
preference structure among the criteria, new weight
values need to be assigned to all criteria.  These new
weights yield a change in target values, i.e. changing the
area of interest.  The modified area in return yields a
different POS for each alternative.  This process can be
repeated until the decision-maker has a sufficient
understanding of the dependence of the best design
alternatives on the distribution of weights.

Requirement Trade-Off  

A very common approach to reconcile situations in which
no alternative yields a sufficiently high probability of
success is a trade-off of requirements.  In general one or
more requirements are being relaxed in order to gain
probability or tighten other requirements, while keeping
POS constant.  In other words, values for one
requirement (or more) are being ‘traded in’ for values of
another.  Both principles are depicted in Figures 8 and 9.
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Figure 8:  Requirement Trade-Off to Gain Probability
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Figure 9:  Trade-Off to Tighten Requirement

STEP 9B – OPTIMIZATION ITERATION

Step 9b represents the optimization routine used to
change the input variables in the probabilistic design
process in pursuit of the optimal solution.  Thus, it closes
the optimization loop with the nine-step process for joint
probabilistic decision making.  This iteration loop
changes just the design variables.  All design
assumptions in form of probability distributions remain
constant.  The optimization process is terminated when
no significant improvements to POS are possible.
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Note that in the product selection process, with its
change in criteria preferences and requirement trade-
offs, the joint probability for the alternatives stay constant
while the criterion targets are changing.  Conversely,
during the optimization process the joint probability
distributions are changing and the targets typically stay
constant.

IMPLEMENTATION AND PROOF OF CONCEPT

To demonstrate the application of the Joint Probabilistic
Decision Making technique, an example problem has
been formulated, determining the viability of three
notional supersonic transport concepts.  The basic
configuration used for these alternative concepts is
depicted in Figure 10.  The vehicle has an area-ruled
fuselage (maximum diameter of 12 ft.), a double delta
planform, and four nacelles below the wing, housing
mixed flow turbofan (MFTF) power plants.  The values
for some of the important design parameters are
presented in Table I.  The mission profile for these
aircraft encompasses a split subsonic/supersonic
mission, which results from the restriction of subsonic
flight over land.  The length of the subsonic cruise
segment is assumed to be 15% of the design range.  All
concepts are supposed to carry roughly 300 passengers
over a maximum distance of at least 5000 nautical miles.
Each concept guarantees an average required yield per
revenue passenger mile of ¢13 for the airline.  The sale
price is based on how much the airline is willing to pay
rather then production cost plus profit for the
manufacturer.

Table I:  Description of the Aircraft’s Layout

Parameter Baseline
Span 77.5 ft.
Inboard Sweep 74 deg.
Outboard Sweep 45 deg.
Wing Reference Area 8,500 ft2

Design Cruise Mach Number 2.4
Supersonic Cruise Altitude ~63,000 ft.
Sustained Load Factor 2.5 g

Figure 10:  Notional Supersonic Transport

The three concepts considered are 1) a ‘Baseline
Configuration,’ which has been subject to numerous
trade-offs and optimization exercises in various
publications,13,20,23,25,26,27 2) a maximum range design,
and 3) a maximum number of passenger design.
Together, they predominately constitute a payload-range
trade-off. Each aircraft alternative was sized (through
fuel balance iteration for the stated mission profile) under
a common set of assumptions.  For instance, a certain
level of low speed aerodynamic capabilities were
assumed, thus allowing many of the possible
configurations to satisfy FAA constraints on take-off and
landing balanced field lengths (less than 10,500 ft) and
maximum approach speed (less than 154 kts).

However, other key constraints for a supersonic
transport, such as community and fly-over noise, were
not addressed here.  Thus, all designs are feasible,
based on the applied constraints approach speed and
takeoff and landing field length.  To demonstrate the
Joint Probabilistic Decision Making technique, each step
is applied to the problem and outlined in the following
section.

STEP 1 – DEFINE CRITERIA

Viability of a particular design concept is measured by
the probability of satisfying certain desired levels of the
return on investment for the airline (ROIA) and return of
investment for the manufacturer (ROIM).  Hence the
criteria of the decision making process are ROIA and
ROIM.

STEP 2 – DETERMINE PREFERENCES AMONG
CRITERIA

For the first trial no preferences are identified in the
decision-making process, i.e. w1 = w2 = 1/N = 0.5.

STEP 3 – ESTABLISH CRITERION VALUES

Both ROIA and ROIM are desired to be as large as
possible.  Therefore, +∞ as a maximum value is
assigned to both criteria.  The minimum value that needs
to be satisfied is identified as 10% for ROIA and 12% for
ROIM.

STEP 4 – FIX CONTROL VARIABLES

This step is particularly important for distinguishing
between alternative concepts, since all three have a lot
of commonality.  Only the number of passengers, the
design range and the thrust-to-weight ratio varies
between alternatives.  Their values are listed in Table II
together with the resulting take-off gross weight values.
Note that this example constitutes a proof of concept for
the JPDM technique only.  For a true design problem
many more variables and requirements would need to
be considered concurrently.

Table II:  Control Variable Settings for Each Alternative

Alternatives
Number of
Passengers

Design
Range

Thrust-to-
Weight Ratio

Take-Off
Gr. Weight

Baseline Config. 300 5000 nm 0.32 805 Klbs

Maximum Range 280 5185 nm 0.33 807 Klbs

Max # of Passengers 311 5000 nm 0.33 808 Klbs

STEP 5 – ASSIGN PROBABILITY
DISTRIBUTIONS

All noise variables employed in this example are
manufacturing and operational economic parameters
that strongly influence ROIM and ROIA respectively.
Their distributions, listed in Table III, have been selected
to represent the likelihood of their values during
operation.  ‘Learning Curve’ changes all manufacturing
learning curves.  ‘Load Factor’ is the ratio of the
equivalent full fare booked seats to the number of
available seats, and ‘Economic Range’ is the average
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distance between city pairs the supersonic transport is
scheduled to connect.

Table III:  Noise Variable Distributions

Noise
Variable Range Unit

Distribution
Type Parameter 1 Parameter 2 Parameter 3

Load
Factor

65  -  85 % Triangular Mode:  70

Learning
Curve

0.75  -  0.85 Triangular Mode:  0.8

Fuel Price 0.6  -  1.20 $/gal Weibull Location: 0.6 Scale:  0.20 Shape:  1.6

Economic
Range

3000  -
Design Range nm Triangular Mode:  3200

Production
Quantity

300  -  800 Weibull Location: 300 Scale:  225 Shape:  2.25

Aircraft
Price

200  -  300 K$ Normal Mean:  250 Std Dev.:  6

STEP 6 – SIMULATION

The simulation code used to model the three aircraft
alternatives is a combination of the aircraft synthesis/
sizing code FLOPS28 (FLight OPtimization System) and
the Aircraft Life Cycle Cost Analysis (ALCCA) program.29

It calculates values for ROIA and ROIM based on input
values for the control and noise variables identified in
Steps 4 and 5.

STEP 7 – EVALUATION OF THE JOINT
PROBABILITY DISTRIBUTION

Method III is executed to determine the joint probability
distribution, particularly the Probability of Success
(POS), i.e. viability.  In detail, a response surface
equation is created for each criterion ROIA and ROIM as
a function of the control and noise variables.  The control
variables are set to their corresponding values, and a
Monte-Carlo simulation with the indicated noise variable
distributions is executed for each design alternative.  A
regression of the individual sample data for ROIA and
ROIM, to be used in Method IV, yields the sample means
and standard deviations listed in Table IV.  The
correlation coefficient for ROIA and ROIM is determined
to be ρ = – 0.07.  As a first observation, it can be noted
that the manufacturer’s return of investment varies
considerably less between alternatives than the one for
the airline.  In order to display the distributions in the 2-D
space spanned by ROIA and ROIM, Method IV is used to
determine the location of the joint distributions.  This
transition is necessary to distinguish the different
alternatives visually.  However, due to the skewness of
the data, see Figure 11, Method IV employing the JPM
for normal distributions is not accurate enough to
determine the POS itself.  An extension of the JPDM
technique is being developed that incorporates non-
Gausian distributions for the JPM, capable of handling
such skewed data as in this example.

Table IV:  Sample Means and Standard Deviations

Alternatives
Mean
ROIA

Std. Dev.
ROIA

Mean
ROIM

Std. Dev.
ROIM

Baseline Configuration 11.0681 5.9370 11.4530 5.4674

Maximum Range 6.7633 6.4749 10.6292 5.4798

Max # of Passengers 13.4959 5.4863 10.4607 5.4875

Figure 11:  Joint Probability Distribution for the ‘Baseline
Configuration’ Alternative

STEP 8 – JOINT PROBABILISTIC DECISION
MAKING

Combining the joint probability distribution established in
Step 7, the criterion values of interest from Step 3, and
preferencing weights from Step 2, the Probability of
Success can be determined for each alternative concept.
Table V lists the POS’ as well as the marginal
probabilities for the two criteria to identify the most
restrictive one.

Table V:  Summary of POS for each Alternative

Alternatives Joint POS
Prob. for

ROIA
Prob. for

ROIM

Baseline Configuration 0.2864 0.6373 0.4612

Maximum Range 0.1321 0.3473 0.4063

Max # of Passengers 0.2991 0.7750 0.3942

In principle, Table V constitutes the solution to the
product selection problem at hand, identifying the
‘Maximum # of Passengers’ alternative as the best
solution with the highest POS.  This result is also
reflected by the marginal distributions for ROIA and
ROIM, since this concept generates the most revenue for
the airline, given a fixed average yield and price of the
aircraft, per economic scenario.  But, more passengers
increase the size, i.e. weight, i.e. production cost, of the
aircraft, yielding a low return of investment for the
manufacturer.  The ‘Maximum Range’ concept suffers
from the same disadvantage without the added benefit of
more passengers, making it the least desirable solution
of the three.  However, a possible shift in the Load
Factor distribution due to the increased range and hence
market share has not been accounted for here.  To
further increase insight into the decision problem, an
additional plot, displaying the location of the joint
probability distributions and the area of interest is
provided in Figure 12.  The probability ellipses clearly
indicate that the ‘Baseline Configuration’ has a larger
chance of satisfying high values for ROIM than the
‘Maximum # of Passengers’ concept.  Considering ROIA,
the probabilities are reversed.  Hence, with this plot or
the marginal distributions alone, it would be difficult to
determine which of the two is the ‘better’ concept.  Only
the use of the joint POS lets the decision-maker
discriminate between the two solutions.

-30
-20

-10
0

10
20 25
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Figure 12:  Location of Joint Probability Distributions

STEP 9A – CHANGE OF TARGET VALUES

Change of Preferences  

If, based on the previous results, the decision-maker
decides to change the preference values, new target
values can be established that may yield another ‘best’
solution.  Suppose satisfying the ROIM is 1.5 times more
important than the ROIA criterion.  Weighting values of
0.6 are assigned for wROIM and 0.4 for wROIA.  With
Equation 15 and these weights the target values change
to

tROIA = (0.4 ⋅ 2) ⋅ 10% = 8%

tROIM = (0.6 ⋅ 2) ⋅ 12% = 14.4%.

These new target values, indeed, identify the ‘Baseline
Configuration as the best, since it yields higher ROIM
values than the ‘Maximum # of Passengers’ concept and
emphasis on ROIA has been reduced (compare POS
values in Table VI).  The actual probability of achieving
these new target values, however, remains at the POS
value listed in Table V.  The change in target values, i.e.
area of interest, is also displayed in Figure 13.

Figure 13:  Location of Joint Probability Distributions
and “Revised” Area of Interest

Table VI:  POS Summary with wROIM = 0.4 and wROIA = 0.6

Alternatives Joint POS
Prob. for

ROIA
Prob. for

ROIM

Baseline Configuration 0.2176 0.7436 0.3018

Maximum Range 0.1165 0.4936 0.2538

Max # of Passengers 0.2044 0.8540 0.2444

Requirement Trade-Off  

If, based on the previous results, the decision-maker
decides to increase the ROIA value that needs to be
satisfied to 14% while keeping POS constant, ROIM has
to decline.  This process is demonstrated in Figure 14,
displaying the joint cumulative distribution for the
‘Maximum Number of Passengers’ alternative and the
two points of interest.  The new ROIM value that allows
the airline to have a return on investment of 14% is
9.4%.  If the decision maker simply wants to increase
POS, holding ROIA constant, ROIM has to decline.
Using the same example in Figure 14, decreasing ROIM
to 9.4% yields a POS of 0.44.

Figure 14:  Requirement Trade-Off for ROIM and RIOA

Step 9b is omitted due to the fact that this example
constitutes a product selection problem.

CONCLUSION

A Joint Probabilistic Decision Making (JPDM) technique
is developed to help the designer and decision-maker
identify the best possible solution for a multi-objective
design problem.  It utilizes the information generated by
modern probabilistic design procedures and comprises
this information in one evaluation criterion, the (joint)
Probability of Success (POS).  POS is the objective
function used by traditional optimization methods for
multi-objective optimization, or the selection criterion
based on which the best design is identified among a
closed set of alternatives.  For a given set of values the
POS is obtained through the use of one of two possible
joint probability distributions for the decision-making
criteria: the Empirical Distribution Function and Joint
Probability Model.  Five methods are presented that
determine the joint probability distribution.  The JPDM

Area of
Interest

Area of
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Maximum Range

Baseline Configuration
Maximum # of
Passengers

Maximum Range

Baseline Configuration Maximum # of
Passengers

ROIA = 10%
ROIM = 12%
POS = 0.30 ROIA = 14%

ROIM = 9.4%
POS = 0.30

ROIA = 10%
ROIM = 9.4%
POS = 0.44



11

technique also allows the decision-maker to gain
additional insight about the decision-making problem by
facilitating requirements trade-off studies. Given this
insight, the decision-maker is able to identify which
criterion is the hardest to satisfy and by how much other
criteria need to be relaxed in order to increase the
chance of meeting the criterion goal.  A proposed
extension, which evaluates the sensitivity of POS with
respect to the criteria or weighting factors, will further
enhance the technique’s capability.

The JPDM technique has been successfully applied to a
product selection problem, identifying the best out of
three supersonic transport alternatives based on the
following criteria: probability of exceeding 10% for the
return of investment for the airline (ROIA) and 12% the
manufacturer (ROIM).  The results indicate that the
concept with the maximum number of passengers yields
high values for ROIA, while the ‘Baseline Configuration’
yields high values for ROIM. Determining the best
solution from just the marginal distributions for ROIA and
ROIM is almost impossible.  Only the use of POS reveals
the ‘Maximum Number of Passengers’ concept as the
better one, provided equal preference weighting for both
criteria.  If ROIM is more preferable than ROIA (by a
60/40 ratio), however, the ‘Baseline Configuration’
appears to be the better design solution.  While this
conclusion may seem intuitive for the presented example
with two criteria, an n-dimensional product selection or
optimization problem could prove to be difficult to solve
without the use of the joint POS as an evaluation
criterion.
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