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Abstract

Functional RNAs (fRNAs) are being recognized as an important regulatory component in biological processes. Interestingly,
recent computational studies suggest that the number and biological significance of functional RNAs within coding regions
(coding fRNAs) may have been underestimated. We hypothesized that such coding fRNAs will impose additional constraint
on sequence evolution because the DNA primary sequence has to simultaneously code for functional RNA secondary
structures on the messenger RNA in addition to the amino acid codons for the protein sequence. To test this prediction, we
first utilized computational methods to predict conserved fRNA secondary structures within multiple species alignments of
Saccharomyces sensu strico genomes. We predict that as much as 5% of the genes in the yeast genome contain at least one
functional RNA secondary structure within their protein-coding region. We then analyzed the impact of coding fRNAs on the
evolutionary rate of protein-coding genes because a decrease in evolutionary rate implies constraint due to biological
functionality. We found that our predicted coding fRNAs have a significant influence on evolutionary rates (especially at
synonymous sites), independent of other functional measures. Thus, coding fRNA may play a role on sequence evolution.
Given that coding regions of humans and flies contain many more predicted coding fRNAs than yeast, the impact of coding
fRNAs on sequence evolution may be substantial in genomes of higher eukaryotes.
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Introduction

There are numerous exceptions to the ‘‘standard’’ flow of

genetic information depicted in the central dogma of molecular

biology. For example, some genes code for ‘‘non-coding’’ RNA

(ncRNA) that are never translated. Such non-coding RNAs play

important roles in vital biological processes, especially in the

regulation of gene expression [1,2]. Here, we use the term

functional RNA (fRNA) to refer to both ncRNA and conserved

fRNA secondary structures within coding regions.

Interestingly, recent computational studies have predicted a

large number of functional RNA secondary structures within

protein-coding regions (referred to as ‘coding fRNA’) in verte-

brates [3], yeast [4], and flies [5]. There are already some known

examples of coding fRNAs playing significant biological roles in

higher eukaryotes, such as in programmed frameshifting [6], A-to-

I RNA editing [7], and selenocysteine insertion at stop codon sites

[8]. However, the predicted abundance of coding fRNAs is

surprising. If the majority of these computational predictions are

accurate, the presence of coding fRNAs will play an important role

in molecular evolution of protein sequences.

Specifically, we hypothesize that the presence of coding fRNAs

will impose additional evolutionary constraint on coding sequences

because coding fRNAs require the DNA primary sequence to

simultaneously code for conserved secondary structures in addition

to the amino acid sequence. As far as we are aware, the influence

of coding fRNAs on evolutionary rates has not yet been explored.

In this study, we investigate the distribution and evolutionary

impact of predicted coding fRNAs in Saccharomyces cerevisiae.

Although there are relatively few known fRNAs in the yeast

genome, studying yeast has several advantages. First, there are

many sequenced yeast genomes available, enabling comparative

studies. The divergence among the Saccharomyces sensu stricto

genomes is comparable to that among the eight vertebrate

genomes used to search for fRNAs in an earlier study [3]. Second,

advances in yeast functional genomics have provided a wealth of

other functional genomics data to be used in evolutionary analysis

[9–11]. Third, yeasts are more conducive to experimental

manipulation, so the biological function of a predicted fRNA

can be learned more easily, compared to vertebrates. For example,

an fRNA may play a tissue- and developmental stage- specific role

in humans and cannot be easily validated by experimental

methods. Thus, our search for coding fRNAs in yeast comple-

ments similar computational searches in higher eukaryotes and

provides a valuable set of coding fRNA candidates for future

experimental studies.

We found that as much as 5% of the genes in the yeast genome

may contain at least one coding fRNA. These predicted coding

fRNAs tend to constrain evolutionary rates in protein coding

regions. In particular, evolutionary rates at synonymous sites were

strongly affected by the proportion of predicted coding fRNAs

within a gene. This relationship was independent of other

functional variables known to affect protein evolutionary rates in
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yeast. Thus, the yeast genome may contain a considerable number

of coding functional RNAs that decrease protein evolutionary rates.

Results
Yeast genome harbors a substantial number of coding
fRNAs

We used several filtering steps while combining two prediction

methods to assess the distribution of functional RNA secondary

structures within genomes of the Saccharomyces sensu stricto clade. The

first method, implemented in the EvoFold program, uses a

phylogenetic stochastic context free grammar (phylo-SCFG) model

that identifies fRNA based upon substitutions that maintain a

conserved secondary structure among nucleotide sequences in a

multiple species alignment [3]. The second prediction method,

implemented in the RNAz program, utilizes information on both

conserved secondary structure and thermodynamic stability to

identify RNA secondary structures in multiple sequence alignments

[12]. We believe our methodology (outlined below) has produced a

stringently defined set of potential fRNAs that should be useful in

determining targets of future investigation. For further details, please

refer to the Methods section and Supplementary Text S1.

We first determined ‘optimal’ sets of comparative alignments by

maximizing the number of known ncRNAs, serving as positive

controls, recovered by different prediction conditions (Text S1).

RNAz and EvoFold exhibit different sensitivity in this positive

control test (Table S1), reflecting the fundamental differences in

their algorithms. From this analysis, we determined that data set

with the best predictive power was the set of EvoFold predictions

produced by the 5-species alignment (with an FPS value greater

than 0, see below) that were independently verified by the RNAz

predictions made using the 6-species alignment (with P-value of

0.9, see below). The number of folds predicted by different

methods is shown in Figure S1.

The significance of a predicted fRNA from the EvoFold program

was determined by a folding potential score (FPS). FPS is a length

normalized likelihood-ratio score and is defined as follows: FPS = log

(P(x|wfRNA)/P(x|wbg))/l, where P(x|wfRNA) refers to the probability

that a sequence fits an fRNA structural model, P(x|wbg) refers to the

probability that the sequence fits the background model (i.e. no-

fRNA structure model), and l refers to the length of the fold (defined

by the outermost basepair of a fRNA structure) [3]. We required all

folds in the final dataset to have an FPS greater than 0. Requiring a

higher cutoff value for the FPS score does not substantially improve

the accuracy of our dataset, since it did not increase the recovery of

positive controls (results not shown). The error rate of the phylo-

SCFG method in EvoFold is predicted to be substantial (around

60%), even though it is difficult to determine the precise false positive

rate for these predictions [3].

Next, we chose a subset of fRNAs that were independently verified

by EvoFold and RNAz predictions. The RNAz program uses a

machine learning technique to produce p-values based on estimated

false positive rates [12]. For the set of RNAz predictions, we chose a

cutoff P-value of 0.9, which corresponds roughly to a 1% false

positive rate according to the RNAz authors [12]. In comparison, a

cutoff P-value of 0.5 corresponds to 4% false positive rates.

Furthermore, we removed EvoFold predictions that were

shorter than 10 nucleotides because the vast majority of

predictions that were less than 10 nucleotides were not likely to

form a stable RNA secondary structure.

Following these four steps, we identified 919 predicted fRNAs.

When compared to the maximum number of folds that could be

predicted for either of these methods (using the 5-species

alignment for EvoFold and the 4-species alignment for RNAz),

our pipeline for reducing false positives resulted in a 55.5%

reduction of EvoFold predictions and an 85.4% reduction in

RNAz predictions (Figure S1).

The genomic distribution of these folds is shown in Figure 1.

The majority of fRNAs were predicted in intergenic regions.

Nevertheless, a considerable proportion (33%) of the total fRNAs

was found within protein coding regions. Overall, 272 genes were

found to contain at least one coding fRNA. Given that there are

approximately 6000 genes in the yeast genome, our results predict

that as much as 5% of the yeast proteome may encode at least one

coding fRNA.

For our functional analyses, we further restricted our data to

only use well-curated genes across different yeast genomes (see

Methods). For example, we removed genes with introns, because

exon/intron boundaries may not be conserved in different yeast

genomes. This procedure left a set of 169 genes. We performed

two additional analyses to detect potential false positives. First, we

only chose coding fRNAs with negative free energy, which is the

minimum thermodynamic requirement to expect coding fRNAs

could fold in vivo, resulting in 143 coding fRNAs considered for

functional analysis (see Methods). Note that results obtained using

data without undergoing the last step were qualitatively similar to

those obtained using the most restricted data. Second, we used a

codon shuffling approach, which also led to similar results (see

Methods and Text S1).

The average length for a coding fRNA considered for functional

analysis (see Methods) is 22.5610.3 bps. Coding fRNAs tend to be

evenly distributed within coding regions (the average relative

position for a coding fRNA is 0.5160.29 of the length of the

coding region).

Under-representation of coding fRNAs in yeast compared
to vertebrates and Drosophila

We found that EvoFold had a greater propensity to predict

coding fRNAs in vertebrates than in yeast. A previous study for

conserved fRNAs in the human genome using the EvoFold

program found that 23% of the predicted fRNAs were found

within coding regions [3]. For comparison, only 18% of the

comparative data set used in this study was coding regions (as

measured by the proportion of phastCons elements found within

coding regions) [13]. In contrast, we found only 33% of fRNAs in

coding regions of yeast, which contain 86.1% of the phastCons

elements [13]. Another way to understand this comparison is to

note that 303 coding fRNAs were found in 65,348 phastCons

CDS blocks in yeast while 12736 coding fRNAs were found in

23,580 phastCons CDS blocks in vertebrates [3,13]. Thus, in

terms of the proportion of coding fRNAs to phastCons CDS

blocks, coding fRNAs are about 10 times more likely to be found

in vertebrates than yeast.

Figure 1. Substantial Proportion of Predicted fRNAs within
Coding Regions.
doi:10.1371/journal.pone.0001559.g001

fRNAs Reduce Evolutionary Rate
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It should be noted that Pedersen et al. [3] use a slightly different

method of defining the fold location for a given fRNA secondary

structure, and the phastCons elements was defined across a slightly

more diverged multi-species alignment for yeast (longest uncon-

served divergence = 1.290, 7 species compared) than for verte-

brates (longest unconserved divergence = 1.198, 5 species com-

pared) [13]. Still, the large difference in the abundance of coding

fRNAs in vertebrates and yeast warrants future investigations of

the role of coding fRNA in higher eukaryotes.

A recent study also revealed that a significant number of coding

fRNAs reside in Drosophila genomes, using the EvoFold program

[5]. The distribution of phastCons elements in Drosophila is

roughly similar to the phastCons distribution for vertebrates [13].

Thus, it appears that coding fRNAs are less abundant in yeast

compared to humans and Drosophila. It would be informative to

conduct functional genomic analysis similar to that described in

this paper on recently discovered coding fRNA predictions in

higher eukaryotes to determine the role of fRNAs on coding

sequence evolution.

Genes with coding fRNAs enriched with specific ontology
annotations

We analyzed the distribution of GO annotations for genes

containing at least one coding fRNA, to test for possible sources of

bias in the dataset and to determine whether genes containing coding

fRNAs otherwise tend to be enriched with any particular biological

functions. We compared the distribution of GO annotations in our

dataset with that in the whole yeast genome and tested for significant

deviations (Methods). We found that genes containing coding fRNAs

tend to be enriched with the following GO categories: various

metabolic processes (amino acid (GO ID: 6519), carbohydrate (GO

ID: 5975), and vitamin (GO ID: 6766)), transcription (GO ID: 6350),

translation (GO ID: 6412), and transport (GO ID: 6810) (Figure 2).

Enrichment with ribosomal genes can be problematic because of

some of the unique characteristics associated with these generally

well-conserved proteins [14–17].

More specifically, the genes associated with translation (GO ID:

6412) have significantly greater values of fRNA coverage and

significantly smaller values of evolutionary divergence than the set

of all genes in the strictly defined dataset (Wilcoxon rank sum test,

p-value,0.05, data not shown). Due to this concern, ribosomal

genes (GO ID: 6412 translation) were removed for the statistical

analysis described in the following section.

Predicted coding fRNAs significantly constrain
evolutionary rates

Here, we investigate whether the predicted coding fRNAs from

yeast genomes are likely to be biologically relevant. If coding

fRNAs serve a biological function, then the presence of coding

fRNAs should constrain evolutionary rates because of the added

Figure 2. Distribution of GO Annotations in Strictly Defined Dataset. This figure shows the distribution of GO annotations for the set of
genes containing at least one predicted fRNA fold (‘strict’) compared to the background set of genes in the yeast genome as annotated in the SGD
database (‘SGD’). Some GO annotations have been abbreviated for the interest of space limitation. p-values: * = 0.05, ** = 0.01, *** = 0.001.
doi:10.1371/journal.pone.0001559.g002

fRNAs Reduce Evolutionary Rate
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constraint to conserve a fRNA sequence on the messenger RNA.

Thus, evolutionary rates of genes harboring fRNA should be

reduced more than expected based upon other known functional

factors. We specifically test this prediction.

Although we employed several filtering steps to identify likely

fRNAs, we took additional cautions to remove false positives

before evolutionary analysis (see Methods). We note that all the

results presented here were qualitatively similar when we

performed analyses without this last step or when we used a

different approach to eliminate potential false positives (Text S1).

For our functional genomic analysis, we define a new variable,

percent ‘fRNA coverage,’ which is the length of the coding region

for a gene overlapping a predicted fRNA divided by the length of

that gene. First, we assessed how fRNA coverage impacts

evolutionary rates. After removing false positives for folds that

were not thermodynamically stable, we found that fRNA coverage

is negatively correlated with divergence at both nonsynonymous

(Pearson’s r= 20.235, P,0.05, sample size = 81) and synonymous

sites (r= 20.497, P = 0.005). All variables are log transformed to

approximate normality. Non-parametric correlation tests provided

similar results (data not shown). In order to correct for the impact

of codon usage bias on evolutionary rates, we also calculated an

adjusted value for synonymous site divergence, dS9 [18]. We found

that there are significant negative correlations with dS9. Thus,

coding regions with a greater proportion of sequence overlapping

coding fRNAs evolve more slowly.

However, we need to ensure that the association between

predicted fRNA coverage and evolutionary rate is not due to the

influence of a third secondary factor (or set of secondary factors)

because many functional variables are known to affect protein

evolutionary rates of yeast. Several recent studies emphasize the

importance of proper statistical methods to assess independent

effects of specific variables of interest [9–11,17]. For example, Wall

et al. [10] used partial correlation analysis to show that gene

expression and gene dispensability have significant, independent

impacts on evolutionary rates. Drummond et al. [9] used principal

component regression analysis to conclude that indicators related

to gene expression (gene expression, CAI, and protein abundance)

are the dominant determinants of evolutionary rates in yeast. We

analyzed the impact of fRNA on evolutionary sequence diver-

gence, while controlling for other factors, using both the partial

correlation and the principal component regression methods.

We did not consider gene length as a variable in our multivariate

analysis because gene length and fRNA coverage are not

independent variables (due to the way the variable fRNA coverage

is defined: see above). Because gene length and evolutionary rates are

positively correlated [11,19] and fRNA coverage and gene length are

negatively correlated, it is important to show that the impact of

fRNA coverage on evolutionary rate is still significant when

controlling for the influence of gene length. To address this concern,

we conducted partial correlation between fRNA coverage and

evolutionary rates while controlling for gene length. Significant

correlation between fRNA coverage and evolutionary rates

remained after this step (Table S2). In addition, we compared the

amount of variance in our data that can be explained by fRNA

coverage versus to that by 1/(gene length). We observe that fRNA

coverage can explain greater amount of variance than 1/(gene

length), for all measures of evolutionary rates (Table S2). Thus,

fRNA coverage appears as a measure that is more robust than either

coding fRNA length or gene length alone.

We considered the following seven functional variables that are

known to be important determinants of yeast evolutionary rates:

gene expression, CAI, gene dispensability, degree, centrality,

mRNA half-life, and fRNA coverage [9,11]. Among our final data

set, there are only 25 genes with all seven variables defined, and

only 22 genes after removing genes with negative minimum free

energy (mfe).

Because analyses of such a small data set may be strongly

influenced by stochastic effects, we removed degree, centrality and

mRNA half-life from our analyses presented in the main text. It has

been shown in earlier studies that network variables such as degree

and centrality tend to have minor effects on yeast evolutionary rates

[9,11,17], and mRNA half-life is not often considered as an

important determinant of yeast evolutionary rates. This step allowed

us to have a moderate sample size (73 genes).

Table 1 presents Pearson’s correlations and partial correlations for

genes with negative mfe. There is a negative correlation between

fRNA coverage and all five measures of evolutionary rates. When all

other functional measures are considered for partial correlation

analysis, fRNA coverage appears to affect dS9 most significantly. We

found similar results with additional functional variables (sample

size = 22, Table S3), across a shorter evolutionary timescale (sample

size = 128, Table S4). Thus, partial correlation analysis reveals that

fRNA coverage imposes a significant constraint on sequence

evolution, especially on synonymous sites after correcting for the

effect of codon usage bias.

The relative impact of fRNA coverage on evolutionary rate

observed from partial correlation analysis is also corroborated by

results from principal component regression analysis (Table 2).

The results in table 2 show that principal components 1 and 4 are

related to gene expression while principal components 2 and 3 are

influenced by fRNA coverage. As seen previously [9,11],

components associated with gene expression explain a significant

percent of the variance in the dataset. Interestingly, the principal

component 2, which has a large contribution of fRNA coverage,

has a strong influence on dS and dS9.

We also present results obtained after identifying and removing

potential false positives using a codon shuffling method (Methods).

Table 1. Correlation and partial correlations show coding fRNAs decrease evolutionary rates (genes with negative mfe).

dN dS dS9 dN/dS dN/dS9

Gene Expression 20.163 (0.583****) 20.322 (20.735***) 20.203# (20.237*) 20.062 (20.360**) 20.135 (20.567****)

CAI 20.376*** (20.620****) 20.514*** (20.762****) 0.206 (20.015) 20.211# (20.391***) 20.404*** (20.632***)

Dispensability 0.293* (0.370**) 20.170 (0.294*) 0.160 (0.223#) 0.233* (0.300**) 0.275* (0.350**)

fRNA Coverage 20.089 (20.235*) 20.183 (20.311**) 20.334** (20.409***) 20.033 (20.139) 20.040 (20.191)

Note: Pearson Correlations are shown in parenthesis below partial correlation in the above table. For above dataset, ribosomal genes are removed and all other factors
are considered for partial correlation analysis. Sample size is 73 genes. Significant correlations with fRNA coverage are shown in bold; p-values: # = 0.1, * = 0.05, ** = 0.01,
*** = 0.001, **** = 1024.
doi:10.1371/journal.pone.0001559.t001

fRNAs Reduce Evolutionary Rate
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The sample size is 55 genes. Partial correlation (Table 3) and

principal component regression analysis (Table 4) show that the

fRNA coverage is generally negatively correlated with evolution-

ary rates, and the effect is the most pronounced for dS9. In

particular, in Table 4 we can see that the effect of fRNA coverage

and gene dispensability are separated into components 2 and 3

respectively, and that the component 2 (which mostly represents

the effect of fRNA coverage) has a clear effect on dS9. Results are

also similar when principal component regression analysis is

applied to evolutionary rates when considering additional

functional variables (Table S5) and across a shorter timescale

(Table S6). Thus, fRNA coverage has a significant, independent

impact on evolutionary rates, especially at synonymous sites.

Discussion

In this study, we demonstrated that there are a substantial

number of predicted coding fRNAs in the yeast genome (as much

as ,5% of the protein-coding genes) and that these predicted

fRNAs seem to play a biologically significant role (based upon

statistical analysis of evolutionary rates). More specifically, genes

containing a larger proportion of fRNAs evolve significantly more

slowly at synonymous sites, independent of codon usage bias and

effects of other functional variables (see Tables 1–4).

Coding fRNAs may have a stronger effect on evolutionary rates

at synonymous sites than at nonsynonymous sites, because there

are many more sources of functional constraint for nonsynon-

ymous sites, thus requiring a survey with greater statistical power

to understand the more subtle influences of coding fRNA on

nonsynonymous rates. It is also interesting that coding fRNAs

have a relatively greater influence on synonymous site evolution

because synonymous sites are traditionally considered to evolve at

a neutral rate, and we show that predicted coding fRNAs may be a

significant source of non-neutral evolution at synonymous sites.

Below we discuss the limits of computational predictions, and

factors that could have influenced our statistical analyses and the

conclusions on evolutionary impacts of coding fRNAs.

Determining false positive rates for predicted fRNAs
Although it is difficult to gauge the statistical power of this

search for coding fRNAs because there are not many known

coding fRNAs in yeast, there is promising evidence that our final

set of predicted fRNAs has successfully recovered biologically

Table 2. Principal component regression reveals coding
fRNAs have significant influence on evolutionary divergence
(genes with negative mfe).

Principal Components

1 2 3 4 All

Component Composition:1

Gene Expression 0.425 0.046 0.006 0.523

CAI 0.375 0.171 0.000 0.454

Gene Dispensability 0.101 0.310 0.587 0.002

fRNA Coverage 0.099 0.473 0.407 0.021

Percent Variance Explained:2

dN 44.48 0.15 1.62 1.03 47.28

dS 66.15 1.52 0.06 0.33 68.06

dS9 5.64 13.01 1.74 2.90 23.29

dN/dS 17.60 0.01 2.43 0.85 20.88

dN/dS9 42.61 0.70 2.09 1.57 46.97

1Numbers in bold correspond to predictors that contribute at least 20% to
indicated component.

2Using information from regression analysis, underlined font means p-
values,0.1; bold font means p-value,0.05.

Sample size is 73 genes. Results are similar when considering divergence across
a shorter timescale and additional functional variables (see Tables S6,S7).
doi:10.1371/journal.pone.0001559.t002

Table 3. Correlations and Partial Correlations using Pearson Correlations on Genes with EFP.0.

dN dS dS9 dN/dS dN/dS9

Gene Expression 0.035 (20.430**) 20.260# (20.683****) 20.159 (20.119) 0.112 (20.152) 0.057 (20.414**)

CAI 20.451*** (20.563****) 20.551**** (20.737****) 0.256# (0.149) 20.255* (20.274) 20.477*** (20.581****)

Dispensability 0.288* (0.334*) 0.179 (20.282*) 0.109 (0.143) 0.215 (0.235) 0.273* (0.315)

fRNA Coverage 20.151 (20.166) 20.221 (20.251#) 20.356** (20.412**) 20.072 (20.066) 20.098 (20.114)

Note: Pearson Correlations are shown in parenthesis below partial correlation in the above table. For above dataset, ribosomal genes are removed and all other factors
are considered for partial correlation analysis. Sample size is 55 genes. Significant correlations with fRNA coverage are shown in bold; p-values: # = 0.1, * = 0.05, ** = 0.01,
*** = 0.001, **** = 1024.
doi:10.1371/journal.pone.0001559.t003

Table 4. Results of Principal Component Regression Analyses
for Genes with EFP.0.

Principal Components

1 2 3 4 All

Component Composition:1

Gene Expression 0.460 0.002 0.029 0.508

CAI 0.399 0.125 0.030 0.445

Gene Dispensability 0.111 0.102 0.780 0.007

fRNA Coverage 0.029 0.770 0.161 0.040

Percent Variance Explained:2

dN 30.24 0.09 0.95 7.44 38.71

dS 61.72 0.05 1.11 1.53 64.4

dS9 0.08 20.86 0.20 2.23 23.38

dN/dS 5.11 0.05 2.49 5.76 13.41

dN/dS9 29.62 0.78 1.06 8.49 39.96

1Numbers in bold correspond to predictors that contribute at least 20% to
indicated component.

2Using information from regression analysis, underlined font means p-
values,0.1; bold font means p-value,0.05.

Sample size is 55 genes.
doi:10.1371/journal.pone.0001559.t004

fRNAs Reduce Evolutionary Rate
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relevant fRNA secondary structures. For example, HAC1 is a well-

studied gene in yeast that undergoes non-spliceosomal splicing for

dual-coding regions, and the mRNA for this gene is known to

require conserved mRNA secondary structures in order to

undergo alternative splicing [20,21]. A stringently defined coding

fRNA was recovered within HAC1 (although it should be noted

that this gene was excluded from statistical functional analysis

because it contains an intron). It is interesting to note that many

dual-coding genes in higher eukaryotes (GNAS1, XBP1, INK4a, and

ADCY8) discussed in a recent study [22] also contain at least one

EvoFold prediction of a coding fRNA [3]. Therefore, the results of

this and similar studies may help explain the splicing mechanisms

for dual-coding regions and other exciting biological functions

associated with coding fRNAs.

Some previous studies have discovered novel ncRNAs in yeast.

For example, one earlier study used the QRNA program to produce

a list of ,100 ncRNA candidate genes [23]. More recently, a study

identified a number of novel candidate coding and non-coding

fRNAs in yeast [4]. To our surprise, none of our stringently defined

coding fRNAs overlap with predictions from the most stringently

defined set of coding fRNAs in Steigele et al. [4].

This observation is a poignant reminder that the current fRNA

prediction programs and false-positive tests suffer from a large and

essentially unknown error rates, and different computational

methods likely to respond to different signals and/or categories of

fRNAs. Indeed, it has been noted that in vertebrates, the predictions

by the RNAz and EvolFold have less than 10% overlap [24].

Another source of discrepancy between our results and those in

Steigele et al. [4] is that in the latter the authors used an RNAz

scoring measure that placed greater emphasis on conserved

covariance between sites, whereas average thermodynamic

stability between species was the dominant factor determining

which RNAz predictions were defined in our dataset. Neverthe-

less, given that we used commonly used algorithms (EvoFold

[3,5,25–29], and RNAz [4,12,28–33]) and that we used several

filtering steps, including two different methods to exclude potential

false positives (Methods), we consider our results to have strong

computational support.

Ultimately, the only way to determine true false positive rates is

experimental validation. Thus, our results should provide a

valuable complement to this earlier study and provide experimen-

tal scientists with a new list of candidate coding fRNAs. Our results

should be also helpful to better evaluate computational methods to

predict fRNAs.

Prediction methods are not biased by evolutionary
constraint

Although there is clearly a significant negative correlation

between fRNA coverage and evolutionary rates, it is necessary to

show that the correlation between percent fRNA coverage and

evolutionary rates is not due to a bias in prediction methods. The

RNAz program is not known to have any specific bias towards

predicting false positives [12]. In fact, even though the RNAz

program was designed to search for non-coding RNAs, it predicted a

larger proportion of coding fRNAs than EvoFold (Text S1). In

comparison, EvoFold requires moderately well conserved multiple

species alignment to successfully predict fRNA secondary

structures. In particular, EvoFold’s measure of significance for

folds, FPS (see Results section), has a bias towards ranking highly-

conserved, short fRNAs with a high FPS [3]. Indeed, we observed

a negative correlation between FPS and synonymous and

nonsynonymous rates in our original predicted fRNAs. However,

these correlations were mainly caused by ribosomal genes. When

we removed ribosomal genes from our data set, FPS was no longer

significantly correlated with evolutionary rates. Furthermore, there

is no significant difference in the average value for evolutionary

rates in genes with short versus long fRNAs (see Table S7). Thus, it

is unlikely that our analysis is biased due to spurious predictions of

multiple and/or short coding fRNAs within conserved genes.

Conclusions
Our results indicate that the presence of coding fRNAs constrain

evolutionary rates of yeast proteins. The list of coding fRNAs

presented in this study should warrant future experimental validation.

Since coding fRNAs are likely to be more prevalent in genomes of

higher eukaryotes including human and Drosophila, the impact of

coding fRNA on sequence evolution in those species is likely to be

substantial. Overall, this study suggests that the evolutionary impact

of coding fRNAs may have been underestimated.

Methods
Functional RNA predictions

We use the EvoFold and RNAz algorithms to screen the Multiz

alignment for Saccharomyces sensu stricto species for functional RNA

secondary structures [3,12,34]. EvoFold is a program that uses

comparative genomic analysis to identify conserved fRNAs based

upon compensatory substitutions required to maintain a particular

RNA secondary structure [3]. In contrast, the RNAz program uses

comparative genomic analysis to compare independently predict-

ed RNA secondary structures for a multiple species alignment

based upon thermodynamic predictions form each species’

primary sequence [12]. We required our fRNAs to be indepen-

dently verified by both of these very different methods (in addition

to other strict requirements – see ‘‘Calculation of Nonsynonymous

and Synonymous Divergence’’ section).

Screening for functional RNAs was conducted using EvoFold

and RNAz programs to provide independent predictions of fRNAs

[3,12]. These two programs should predict fRNAs independently

because EvoFold utilizes a functional RNA model based on

stochastic context-free grammars while RNAz primarily utilizes

thermodynamic information to predict RNA secondary structures

(while also considering covariance between secondary structures in

a multi-species alignment). For more information about the multi-

species alignments used for these fRNA prediction programs, see

Text S1. The optimal multi-species alignment for each program

was determined by iteratively comparing the proportion of

recovered known ncRNA annotations from the SGD database

[35] to the proportion of recovered known ncRNAs at a more

liberal threshold (see Text S1, Tables S1,S2,S3, Figures S1,S2,S3).

The location of each fRNA was determined by the position of

the middle of each fRNA secondary structure (i.e. a fRNA was in a

particular category if .50% of the fold was in that type of region).

All folds were categorized as coding, intronic, or intergenic.

Finally, we performed two tests to estimate potential false

positive rates. First, we used the RNAfold program to calculate the

minimum free energy (mfe) of each of the EvoFold predictions in

the set of 169 genes described above [36]. If we require our folds to

have a negative mfe for the EvoFold prediction in S. cerevisiae, then

148 of these genes meet this requirement and we get an estimated

false positive rate of 12.4% (and every gene with a negative mfe in

S. cerevisiae also has a negative average mfe for all the species in the

multi-species alignment).

Additionally, we used the method in Katz and Burge [37].

Briefly, we calculated the excess folding potential (EFP) for genes

containing coding fRNAs, as described by Katz and Burge [37].

This method uses the DicodonShuffle algorithm [37], and then

uses the RNAfold program to determine if the native ORF has

greater local mRNA stability than the shuffled ORF [36]. When
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considering the set of 169 genes considered for functional analysis

(i.e. the stringently defined dataset with ribosomal genes removed),

we found 101 genes containing coding fRNAs had an EFP greater

than 0 (which would correspond to a 40% false positive rate).

However this method may be inappropriate for our data, because

we have defined in such a way that coding fRNAs must have at

least a 50% overlap with coding regions, allowing folds to have

some overlap with upstream and downstream regions. The codon

shuffled method above cannot capture selection for stability in

non-coding regions surrounding ORFs. Thus, the false positive

rates estimated this method is likely an overestimate. Nevertheless,

evolutionary analyses yielded similar results after excluding false

positives detected by these two methods (Tables 1 and 2 versus

Tables 3 and 4). This renders strong support to our conclusions

that coding fRNAs likely to constrain evolutionary rates.

GO annotation analysis
Biological Process GO Slim annotations were downloaded using

the SGD GO Term Mapper interface [35,38]. Enrichment of GO

annotations was calculated by using the proportion test in R [39].

Similar results were found when a hypergeometric distribution was

used to determine enrichment of GO terms. The Wilcoxon rank

sum test was used to compare average values for fRNA coverage

and evolutionary divergence (small dN, small dS, small dS?, small

dN/dS, small dN/dS?) between the entire strictly defined dataset

and subsets of genes associated with Cell Cycle (GO ID: 7049),

Organelle Organization and Biogenesis (GO ID: 6996), RNA

Metabolic Process (GO ID: 16070), Transcription (GO ID: 6350),

Translation (GO ID: 6412), and Transport (GO ID: 6810). We

used values for evolutionary divergence across a shorter timescale

because they provided a larger dataset in order to control for bias

due to small sample size. We choose the above subsets of genes

because these are the only categories of GO annotations associated

with greater than 20 genes in the strictly defined dataset, and a

sample size of less than 20 genes would be too small for a robust

statistical analysis.

Calculation of nonsynonymous and synonymous
divergence

We used data from Wall et al. [8] (available from the

supplementary material for Drummond et al. [7]), which are

evolutionary rates at synonymous and nonsynonymous sites

calculated over four yeast genomes, providing an evolutionary

measure of protein divergence. Additionally, we estimated

divergence on the shorter timescale (referred to as small dN,

small dS in the main text and Text S1) between S. cerevisiae and S.

paradoxus using PAML [40]. Adjustment for codon usage bias at

synonymous sites was calculated as described by [18] (namely,

dS9 = dS2m* c, where m = 22.02 for the all 4-species and

m = 20.386 for S. cerevisiae2S. paradoxus divergence). Recalculation

on a shorter timescale is useful because it provides an opportunity

to see if coding fRNAs have a different evolutionary impact on a

species that are more closely related.

In order to recalculate nonsynonymous and synonymous

divergence on a shorter timescale, the Multiz alignment was

downloaded for all verified protein-coding genes containing at

least one coding functional RNA secondary structure [34]. The

Multiz alignment for these genes was obtained using the Galaxy

server on the UCSC Genome Browser [41,42]. All coding fRNAs

were first defined using annotations for protein-coding genes from

the SGD database [35,42]. We only considered experimentally

verified SGD annotations for protein-coding genes. In order to

obtain reliable values for evolutionary divergence using PAML,

the set of genes was further filtered based upon the quality of the

Multiz alignment. More specifically, we removed genes with

introns, premature stop codons and/or gaps in Multiz alignment,

alignments without all 4 species, non-AUG start codon, and genes

less than 300 bp.

Functional variables considered in the analysis
In order to assess the biological relevance of our predicted

coding fRNAs, we used rigorous statistical analysis to study the

impact of fRNA coverage on evolutionary rates, relative to other

previously established functional variables. The functional vari-

ables analyzed include gene expression, CAI, protein abundance,

gene dispensability, gene length, degree, centrality, and mRNA

half-life. Gene expression and mRNA half-life values are from

Holstege et al. [43]. Codon Adaptation Index (CAI) and gene

length are from Drummond et al. [9]. Protein abundance data are

from Ghaemmaghami et al. [44]. Dispensability data was down-

loaded from http://chemogenomics.stanford.edu/supplements/

01yfh/files/orfgenedata.txt [45]. The number of interactions in

the yeast protein-protein interaction network (degree) was from the

filtered yeast interactome data set [46]. This dataset was also used

to calculate the centrality for genes in the protein-protein

interaction network.

Gene length, protein abundance, degree, centrality, and mRNA

half-life were excluded from certain comparisons. Gene length was

excluded from analysis simply because fRNA coverage is strongly

correlated with gene length, meaning that the two variables are

clearly not independent. As described earlier, most other variables

were excluded to remove bias from small sample size and/or

overfitting.

Multivariate statistical analysis
Partial correlation and principal component regression are two

primary tools for functional genomic analysis in yeast. These

statistical tools work in fundamentally different ways, and

combined analysis can provide useful information about significant

biological factors that govern evolutionary rates [11,47]. More

specifically, partial correlation analysis factors out the influence of

a third known variable (or vector of known variables), while

principal component regression analyzes the variance for a set of

independent variables in order to identify unknown variables. For a

more detailed discussion on the comparative performance of these

two tools, see Kim and Yi [11].

Thus, principal component regression analysis requires two

steps; first, a principal component analysis to define components

and second, a regression analysis to determine which components

have a statistically significant impact on evolutionary rates.

Principal component regression was carried out using the R

‘‘pls’’ package [39,48].

Partial correlation analysis can be carried out by applying the

relatively straightforward equation rDK|X = (rDK2rDX*rKX)/

![(12r2
DX)(12r2

KX)] when testing for a correlation between D

and K while factoring out the influence of the third variable (or

vector of variables) X. In other words, partial correlation analysis

can be also used to remove the effects of a set of variables. Here,

we can define X as a vector of the other N variables X1, X2, …XN.

Then the correlation between D and K independent of X can be

calculated as the correlation between D-D(X1, X2,…, XN) and K-

K(X1, X2, …, XN), where D(X1, X2, …, XN) and K(X1, X2, …,

XN) are the multiple linear regression of D and K, respectively, on

X1, X2,..XN. This method was used in Kim and Yi [11] to assess

the independent effect of each functional variable. We can also use

the variance-covariance matrix using the assumption of normality

(p. 134, [49]).
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We modified R scripts available from the supplemental material

for Drummond et al. 2006 for partial correlation (factoring out

only expression) and principal component regression analysis [39].

An R code for our method of partial correlation analysis that

controls for the influence of multiple variables (which was used to

produce the data in Table 1) is available at Yi lab website (www.

yilab.gatech.edu).
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