
Scaling Continuous Query Services for Future Computing

Platforms and Applications

A Thesis
Presented to

The Academic Faculty

by

Buğra Gedik

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

August, 2006

Scaling Continuous Query Services for Future Computing

Platforms and Applications

Approved by:

Dr. Ling Liu, Advisor
College of Computing
Georgia Institute of Technology

Dr. Calton Pu
College of Computing
Georgia Institute of Technology

Dr. Sol M. Shatz
Department of Computer Science
University of Illinois at Chicago

Dr. Leo Mark
College of Computing
Georgia Institute of Technology

Dr. Kishore Ramachandran
College of Computing
Georgia Institute of Technology

Dr. Christian S. Jensen
Department of Computer Science
Aalborg University, Denmark

Date Approved: 25 May 2006

To my family,

Yusuf, Meral, and Tuğba Gedik.

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the generous help and encouragement of

many individuals. I would like to express my gratitude to everyone who has contributed to

the process leading to my dissertation. Here I would like to mention a few of these people.

First and foremost, I would like to thank my advisor Prof. Ling Liu for her tremendous

help and guidance in every phase and aspect of my Ph.D. study. The flexibility and freedom

she has provided me in deciding and evolving my research focus has been an invaluable asset

in my quest to acquire, generate, and disseminate new knowledge. I’m indebted for the

countless hours she has spent on perfecting my work and the immense amount of advice she

has given me on research, career, and life related matters. She has set the perfect example

of being an inspiring researcher and teacher for me. Her example has been very influential

in shaping this work and will undoubtedly continue to light my way in my future career.

I would like to give my special thanks to Prof. Calton Pu for being an inspirational

figure for me and for his always apposite and timely advice. I would like to also thank

every member of our DiSL research group for providing a friendly and dynamic working

environment and for engaging in insightful research discussions with me, that have helped

in continuously improving and polishing my work.

I would like to thank my manager Dr. Philip S. Yu and my mentor Dr. Kun-Lung Wu at

IBM T.J. Watson Research Labs for letting me work on topics related to my thesis during

my three summer internships with them. Their impact on my research perspective has

definitely helped me in raising the quality of my work; and making their acquaintance have

opened several new doors in my research career.

I would like to thank my committee members Prof. Sol M. Shatz, Prof. Leo Mark,

Prof. Kishore Ramachandran, and Prof. Christian S. Jensen for being very supportive of

my research and for their constructive critiques that have greatly contributed to my thesis.

iv

I would like to thank my dear friends Selçuk Aktürk, Şeyhmus İnci, Tarık Arıcı, and

Gültekin Kuyzu for being the colors of my life in Atlanta, to my long time friend Onur

Özyer for always keeping in-touch with me, and to Tansel Özyer for his brotherly advice.

I would like to dedicate this work to my father, mother, and sister for their everlasting

love and gratuitous support for me.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xvi

I INTRODUCTION . 1

1.1 CQs and Information Monitoring . 2

1.2 Example Applications . 2

1.2.1 Web Monitoring in Internet Systems 3

1.2.2 Location Monitoring in Mobile Systems 3

1.2.3 Environmental Monitoring in Sensor Systems 4

1.3 Challenges and Issues . 4

1.3.1 Peer-to-Peer Systems . 5

1.3.2 Mobile Systems . 6

1.3.3 Sensor Systems . 7

1.4 Contribution of the Thesis . 8

1.4.1 Common Design Philosophy . 9

1.4.2 P2P CQ Services . 10

1.4.3 Mobile CQ Services . 11

1.4.4 Sensor CQ Services . 12

1.5 Organization of the Thesis . 13

II PEERCQ - P2P INFORMATION MONITORING IN INTERNET SYS-
TEMS USING CQS . 15

2.1 Introduction . 15

2.2 System Overview . 18

2.3 The PeerCQ P2P Protocol . 20

2.3.1 Overview . 21

2.3.2 Capability-Sensitive Service Partitioning 24

vi

2.3.3 PeerCQ Service Lookup . 32

2.3.4 Peer Joins and Departures . 33

2.3.5 Handling Node Failures with Dynamic Replication 35

2.4 Simulation-based Experiments and Results 39

2.4.1 Effect of Grouping Factor . 40

2.4.2 Effectiveness with respect to Load Balancing and System Utilization 43

2.4.3 Effect of Relaxed Matching Criteria 50

2.4.4 CQ Availability under Peer Failure 52

2.5 Related Work . 54

III MOBIEYES - DISTRIBUTED LOCATION MONITORING IN MO-
BILE SYSTEMS USING CQS . 56

3.1 Introduction . 57

3.2 System Model . 59

3.2.1 System Assumptions . 61

3.2.2 The Mobile Object Model . 61

3.2.3 Moving Query Model . 63

3.3 Distributed Architecture . 65

3.3.1 Data Structures . 66

3.3.2 Server Side Processing . 68

3.3.3 Mobile Object Side Processing . 70

3.4 Optimizations: Efficient and Reliable Processing of MQs 72

3.4.1 Efficient Processing of MQs . 72

3.4.2 Reliable Processing of MQs . 81

3.5 Experiments . 85

3.5.1 Simulation Setup . 85

3.5.2 Server Load . 87

3.5.3 Messaging Cost . 90

3.5.4 Amount of Computation on Mobile Object Side 96

3.6 Related Work . 98

vii

IV MAI - CENTRALIZED LOCATION MONITORING IN MOBILE SYS-
TEMS USING CQS . 101

4.1 Introduction . 101

4.2 The System Model . 104

4.2.1 Basic Concepts and Problem Statement 105

4.2.2 Overview of the Proposed Solution 107

4.3 Efficient Evaluation of Moving Continual Range Queries 109

4.3.1 Motion Sensitive Bounding Boxes 110

4.3.2 Predictive Query Results on a Per Object Basis 112

4.3.3 Determining Predictive Query Results Using MSBs 114

4.3.4 Motion Adaptive Indexing . 115

4.3.5 Setting α and β Values . 121

4.4 Evaluating Moving kNN Queries with Motion Adaptive Indexing 123

4.5 Experimental Results . 125

4.5.1 System Parameters and Setup . 126

4.5.2 Performance Comparison . 128

4.5.3 Effect of Adaptive Parameter Selection 129

4.5.4 Storage Cost . 131

4.5.5 Effect of Data and Query Skewness 132

4.5.6 Scalability Study . 133

4.5.7 Performance Comparison for Continual kNN Queries 135

4.6 Related Work . 137

V ENERGY-EFFICIENT DATA COLLECTION FOR SENSOR CQ SYS-
TEMS . 141

5.1 Introduction . 142

5.1.1 Data Collection in Sensor Networks 143

5.1.2 Contributions and Scope of the Chapter 145

5.2 System Model and Overview . 147

5.2.1 Network Architecture . 147

5.2.2 Selective Sampling Overview . 149

5.3 Sensing-driven Cluster Construction . 151

viii

5.3.1 Cluster Head Selection . 152

5.3.2 Cluster Formation . 153

5.3.3 Cluster-connection Tree Formation 156

5.3.4 Effect of α on Clustering . 157

5.3.5 Setting of Clustering Period τc . 159

5.4 Correlation-based Sampler Selection and Model Derivation 159

5.4.1 Subclustering . 160

5.4.2 Sampler Selection . 161

5.4.3 Model and Schedule Reporting . 163

5.4.4 Effects of β on Performance . 163

5.4.5 Setting of Schedule Update Period τu 164

5.5 Selective Data Collection and Model-based Prediction 165

5.5.1 Calculating predicted sample values 166

5.5.2 Prediction Models . 168

5.5.3 Setting of Forced and Desired Sampling Periods τf and τd 168

5.6 Performance Study . 169

5.6.1 Messaging Cost . 169

5.6.2 Data Collection Quality . 173

5.7 Discussions . 179

5.8 Related Work . 181

5.8.1 Sensor Data Collection Systems . 181

5.8.2 Node Clustering in Ad-hoc Networks 183

5.8.3 Inference in Sensor Networks . 183

VI RESOURCE-AWARE JOIN EVALUATION FOR SENSOR CQ SYS-
TEMS . 185

6.1 Introduction . 185

6.1.1 Summary of Contributions . 189

6.2 Preliminaries . 190

6.3 Operator Throttling . 191

6.3.1 Setting of the Throttle Fraction . 192

6.3.2 Buffer Capacity vs. Tuple Dropping 194

ix

6.4 Window Harvesting . 194

6.4.1 Fundamentals . 195

6.4.2 Configuration of Window Harvesting 197

6.4.3 Bruteforce Solution . 199

6.5 GrubJoin . 201

6.5.1 Heuristic Setting of Harvest Fractions 201

6.5.2 Learning Time Correlations . 205

6.5.3 Join Orders and Selectivities . 208

6.6 Experimental Results . 209

6.6.1 Setting of Harvest Fractions . 209

6.6.2 Results on Join Output Rate . 212

6.7 Discussions . 220

6.8 Related Work . 221

VII CONCLUSION AND FUTURE WORK 223

7.1 Open Issues and Future Research Directions 226

7.1.1 Open Issues in the Context of this Thesis 226

7.1.2 An Outlook of Future Research Directions 228

APPENDIX A — EFFECTIVE DONATION (ED) CALCULATION IN
PEERCQ . 231

APPENDIX B — ANALYTICAL MODEL FOR MESSAGING COST
ESTIMATION IN MOBIEYES . 233

APPENDIX C — ANALYTICAL MODEL FOR IO COST ESTIMATION
IN MAI . 236

APPENDIX D — ANALYTICAL MODEL FOR MESSAGING COST
ESTIMATION IN SELECTIVE SAMPLING 239

APPENDIX E — ANALYTIC MODEL FOR COST AND OUTPUT ES-
TIMATION IN GRUBJOIN . 242

REFERENCES . 244

VITA . 254

x

LIST OF TABLES

1 Basic API of the PeerCQ system . 23

2 Simulation parameters . 86

3 Impact of MSBs and predictive query results on query evaluation cost . . . 111

4 System parameters . 126

5 Comparison of motion-adaptive index with existing approaches 139

6 Notations for network architecture . 147

7 Notations for sensing-driven clustering . 152

8 Notations for correlation-based sampler selection and model derivation . . . 160

9 Error for different α values . 174

10 Impact of the join condition cost on the performance 218

11 Symbols and their meanings . 236

xi

LIST OF FIGURES

1 PeerCQ architecture . 20

2 Example peer to peer id. set mapping . 25

3 Effect of grouping for a = 0, a = 8, and a = 10 41

4 Effect of grouping for a = 12, a = 14, and a = 16 41

5 Influence of a on avg. CQ group sizes and avg. # of CQ groups 41

6 Optimized relaxed matching compared to strict matching 42

7 Effect of a and relaxed matching on mean peer load 46

8 Effect of a and relaxed matching on average network cost 46

9 Effect of a and relaxed matching on load balance 47

10 Effect of a and relaxed matching on load distribution 49

11 Load distributions, for normally distributed CQ interest 49

12 Load distributions, for zipf distributed CQ interest 49

13 Balance in loads for different utility functions 50

14 Balance in loads for different threshold values in PLF 50

15 Mean CQ processing load for different utility functions 51

16 Network cost as a function of r for different utility functions 51

17 Deadly failures rf = 2 . 52

18 Deadly failures rf = 3 . 53

19 Deadly failures rf = 4 . 53

20 Cost of replication relative to monitoring cost 53

21 Illustration of concepts . 61

22 Algorithm: New moving query posted to server 69

23 Algorithm: Mobile object query processing logic 71

24 Dead reckoning in MQ evaluation . 73

25 Algorithm: Mobile object changed velocity vector 74

26 Conveying velocity vector changes . 74

27 Algorithm: Mobile object changed its current grid cell 76

28 Minimizing duplicate processing by grouping moving location queries 78

xii

29 Safe period optimization . 80

30 Impact of distributed query processing on server load 88

31 Error associated with lazy query propagation 89

32 Effect of α on server load . 89

33 Effect of α on messaging cost . 91

34 Effect of number of objects on messaging cost 91

35 Effect of objects speeds on messaging cost 92

36 Effect of number of objects changing velocity vector on messaging cost . . . 93

37 Effect of base station coverage area on messaging cost 93

38 Effect of # of queries on object power consumption due to communication . 95

39 Effect of α on the avg. # of queries evaluated per step on a mobile object . 96

40 Effect of the total # of queries on the # of queries evaluated on a mobile
object . 96

41 Effect of the safe period opt. on the query processing load of a mobile object 97

42 Roadmap of methods applied for moving query evaluation 107

43 Motion update generation . 109

44 Motion sensitive bounding boxes, MSBs . 110

45 Calculating the valid prediction time intervals 112

46 An illustration of how PQRs integrate with MSBs 115

47 Motion update processing . 117

48 Query evaluation: General view . 118

49 Moving object table scan . 119

50 Moving query table scan . 119

51 Analytical node IO estimate and experimental query evaluation time 122

52 A sampled subset of the αβTable from the experiment of Figure 56 122

53 Optimistic and guaranteed safe radius calculation for 2NN queries 125

54 Query evaluation time . 127

55 Query evaluation node IO . 128

56 Performance gain due to adaptive parameter selection 130

57 Storage cost of MAI relative to other alternatives 131

58 Query and object distribution for Nh = 5 and Nh = 30 132

xiii

59 Effect of data and query skewness on performance 133

60 Effect of query range and moving query percentage on performance 134

61 Effect of number of objects on performance 134

62 Total query evaluation time for moving continual kNN queries 135

63 Node IO count for moving continual kNN queries 135

64 Range MCQ result accuracy for kNN queries 137

65 Illustration of energy-quality trade-off . 145

66 System architecture . 148

67 Sensing-driven cluster construction . 154

68 Illustration of sensing-driven clustering . 158

69 Correlation-based sampler selection and model derivation 162

70 Notations for selective data collection and model-based prediction 165

71 Selective data collection and model-based prediction 167

72 Total # of messages as a function of the sampling fraction 170

73 Total # of messages as a function of desired to forced sampling ratio 171

74 Total number of messages as a function of the number of nodes 172

75 Total number of messages as a function of the average cluster size 172

76 Clustering quality with α . 173

77 Effect of β on prediction error . 175

78 MAD with different subclusterings . 176

79 Prediction error vs. lifetime trade-off . 177

80 Load balance in schedule derivation . 178

81 Multi-way, windowed stream join processing, join directions, and join orders 190

82 z adaptation example . 193

83 Example of window harvesting . 197

84 Optimal window harvesting example . 200

85 Greedy heuristic for setting the harvest fractions 203

86 Illustration of the greedy heuristic . 205

87 Effect of different evaluation metrics on optimality of greedy heuristic . . . 209

88 Running time performance w.r.t. m and number of basic windows 210

89 Running time performance with respect to m and throttle fraction 211

xiv

90 Running time of greedy algorithms with respect to z 212

91 Effect of varying the input rates on the output rate w/wo time-lags 214

92 Effect of varying the amount of time correlations on the output rate 214

93 Effect of the # of input streams on the improvement provided by GrubJoin 215

94 Effect of basic window size on output rate 216

95 Effect of adaptation period on output rate 217

96 Tuple dropping behavior of operator throttling 219

97 Effective donation calculation . 232

98 Comparison of analytical messaging cost with simulation results 234

xv

SUMMARY

The ever increasing rate of digital information available from on-line sources drives

the need for building information monitoring applications to assist users in tracking relevant

changes in these sources and accessing information that is of interest to them in a timely

manner. This growth in the amount of digital information available is partly due to the

emergence of pervasive networks and ubiquitous computing platforms. These advances not

only make it easy to access information from anywhere at anytime, but also facilitate the

acquisition and generation of new information. For instance, the advances in mobile and

sensor systems create a new set of information sources, capturing the changes in the physical

environment, as well as the changes in the activity and location context of mobile users.

Continuous queries (CQs) are standing queries that are continuously evaluated over dy-

namic sources to track information changes that meet user specified thresholds and notify

users of new results in near real-time. CQ systems can be considered as powerful middleware

for supporting information monitoring applications. A significant challenge in building CQ

systems is scalability, caused by the large number of users and queries, and by the large and

growing number of information sources with high update rates. Further stressing the im-

portance of the scalability problem in providing CQ services is the unique challenges posed

by the future computing platforms, such as P2P, mobile, and sensor-based computing plat-

forms. Highly distributed and decentralized characteristics of these environments, as well as

the constrained nature of network, computing, and power resources in these environments,

call for new techniques to scale CQ services in supporting information monitoring applica-

tions, different than the traditional techniques applied in client/server-based systems where

most of the CQ processing is performed at a centralized location.

This thesis uses CQs to shepherd through and address the challenges involved in sup-

porting information monitoring applications in future computing platforms. The focus is

xvi

on P2P web monitoring in Internet systems, location monitoring in mobile systems, and en-

vironmental monitoring in sensor systems. Although different computing platforms require

different software architectures for building scalable CQ services, there is a common design

philosophy that this thesis advocates for making CQ services scalable and efficient. This

can be summarized as “move computation close to the places where the data is produced.”

A common challenge in scaling CQ systems is the resource-intensive nature of query evalu-

ation, which involves continuously checking updates in a large number of data sources and

evaluating trigger conditions of a large number of queries over these updates, consuming

both cpu and network bandwidth resources. If some part of the query evaluation can be

pushed close to the sources where the data is produced, the resulting early filtering of up-

dates will save both bandwidth and cpu resources. This is the main intuition behind this

common design philosophy.

In summary, this thesis develops system-level architectures and techniques to address

scalability problems in distributed information monitoring services through the use of CQ

systems and concepts. Briefly, the following contributions are made in the areas of P2P,

mobile, and sensor CQ systems:

• We introduce PeerCQ, a scalable peer-to-peer architecture for continuous query-based

information monitoring on the Internet. Within the PeerCQ framework, we also intro-

duce a dynamic passive replication scheme to support reliable information monitoring.

• We introduce MobiEyes, a scalable distributed architecture for continuous query-based

location monitoring in mobile systems. Furthermore, we introduce the MAI indexing

technique for server side query processing support for location monitoring CQs.

• We introduce a selective sampling-based energy-efficient data collection framework

for sensor CQ systems. In addition, we introduce resource-aware query evaluation

techniques for CQ systems dealing with sensor streams.

This thesis shows that distributed CQ architectures that are designed to take advantage

of the opportunities provided by ubiquitous computing platforms and pervasive networks,

xvii

while at the same time recognizing and resolving the challenges posed by these platforms,

lead to building scalable and effective CQ systems to better support the demanding infor-

mation monitoring applications of the future.

xviii

CHAPTER I

INTRODUCTION

The proliferation of ubiquitous computing devices and pervasive networks has fueled the

growth in the amount of digital information that is available at anytime and accessible from

anywhere. On the bright side, the increasing number of on-line and dynamic information

sources enable dissemination of fresh information and rapid response to changes. On the

down side, high aggregate update rate of these large and growing number of information

sources, and large number of user subscriptions for change detection and notification create

challenges for building scalable information monitoring applications.

Continuous Queries (CQs) have traditionally been used to express information moni-

toring interests of users over on-line and dynamic data sources [124, 78]. CQ Services, that

accept user subscriptions expressed in the form of CQs and continuously execute CQs to

provide streams of results to users, are employed to support information monitoring appli-

cations [78, 80]. Although scalable CQ middleware has been an important topic of research

in the literature [78, 31, 27, 6, 10], new designs and architectures are needed, that can cope

with the challenges posed and exploit the opportunities provided by the emerging ubiquitous

computing platforms. These platforms often exhibit highly distributed, heterogeneous, and

decentralized nature, different than the traditional client/server-based systems assumed by

the existing work in this area.

Before discussing the challenges and issues involved in scaling CQ services for future

computing platforms and applications, we first provide some background information on

CQs and information monitoring services they support, give motivating application exam-

ples, and describe the properties of the computing platforms on which the CQ services are

expected to run in a pervasive computing world.

1

1.1 CQs and Information Monitoring

Continual Queries are primitives used to express information monitoring requests. They are

standing queries that monitor information updates and return results whenever the updates

reach certain user specified thresholds. There are three main components of a CQ: query,

trigger, and stop condition. Whenever the trigger condition becomes true, the query part

is executed and the part of the query result that is different from the result of the previous

execution is returned. The stop condition specifies the termination of a CQ.

Compared to traditional queries, CQs have a number of distinguishing characteristics:

• As opposed to traditional queries that are evaluated over a single snapshot of the data

sources and provide one-time results, CQs are evaluated continuously over changing

data sources and provide a stream of results.

• CQs provide users with a push-based model for accessing information, as opposed

to pull-based (request/response) model of traditional queries. User subscriptions are

expressed in the form of CQs and interested information updates are pushed back to

the users by the CQ service in the form of result notifications.

• Evaluating CQs is resource intensive. The continuous nature of the process requires

adapting to dynamics of the system during runtime. Traditional queries are usually

optimized before execution.

Due to their continuous execution model and push-based result delivery, CQ services

are well suited for supporting information monitoring applications. Given the resource

intensive nature of CQ evaluation, scaling CQ services is an important consideration in

building large-scale information monitoring applications.

1.2 Example Applications

The types of information monitoring applications that can benefit from CQ services are

diverse. Here we would like to give three examples from three different domains, namely:

i) Web Monitoring in Internet Systems, ii) Location Monitoring in Mobile Systems, and

iii) Environmental Monitoring in Sensor Systems.

2

1.2.1 Web Monitoring in Internet Systems

Web monitoring refers to monitoring and tracking various types of changes to static and

dynamic web pages. An example web information monitoring request could be as follows:

“Notify me with the IBM stock price (www.quote.com/quotes.aspx?symbols=NYSE:IBM)

when the Nasdaq index (www.quote.com/quotes.aspx?symbols=NASDAQ) increases by 5%,

during the next 3 months”. In CQ terms, the trigger condition of this information monitor-

ing request is “Nasdaq index increases by 5%”, the query component is “retreive the IBM

stock price”, and the stop condition is “3 months pass after query submission”.

Centralized software architectures for providing web-based CQ services has been a topic

of study in the past [80]. Recent commercial interest in similar functionality, such as

Google Alerts [50], and the ever increasing number of web pages [125] attest to the need for

architechting scalable and distributed CQ services for web monitoring.

1.2.2 Location Monitoring in Mobile Systems

Location monitoring refers to monitoring and tracking various types of changes to positions

of mobile objects. An example location monitoring request could be as follows: “Give me

the locations and names of the gas stations offering gasoline for less than $1.2 per gallon

within 10 miles, during next half an hour” posted by a car driver. In CQ terms, the trigger

condition of this information monitoring request is “there is a change in the set of gas

stations within 10 miles of the user’s location”, the query component is “retrieve locations

and names of the gas stations within 10 miles of the user’s location”, and the stop condition

is “half an hour passes after query submission”. Note that in this example the query point

(user’s location) is mobile, whereas the queried objects (gas stations) are still. The example

scenarios also include cases in which both the query point and the queried objects are

mobile, such as CQs used to monitor nearby taxi services (e.g. Google Ride Finder [51]).

The proliferation of mobile devices is creating an increasing interest in location-based

services [111]. The additional complexity brought by the continuously changing nature of

the queries in addition to the queried objects, makes location monitoring CQs particularly

challenging to evaluate efficiently. The computational capabilities of today’s mobile devices

3

create opportunities to scale CQ services through distributed query processing architectures,

for supporting large-scale location monitoring applications.

1.2.3 Environmental Monitoring in Sensor Systems

Environmental monitoring refers to monitoring and tracking various types of changes to

readings of sensors that are used to capture environmental phenomena, such as temperature,

humidity, solar radiation, etc. An example environmental monitoring request could be as

follows: “Report me the locations and values of the sensor nodes reporting at least 10%

above the average temperature value when the average temperature raises by 5◦ Celcius,

during the next 10 days”. In CQ terms, the trigger condition of this information monitoring

request is “average temperature raises by 5◦ Celcius”, the query component is “retrieve

the locations and values of the sensor nodes reporting at least 10% above the average

temperature”, and the stop condition is “10 days pass after query submission”.

The emergence of small, low cost, and low power sensor devices is enabling seamless

integration of the physical world with pervasive networks [41]. CQ services running on

networks formed by large number of sensor nodes are highly beneficial for environmental

monitoring applications. However, unique features of sensor networks such as their low

power budget, as well as the unique features of the data collected from sensor networks

such as the high and unpredictable aggregate rates of sensor streams, create challenges in

efficient collection of data from sensor networks, and scalable query processing over the data

collected from sensor networks. Thus, new techniques and architectures are needed to scale

sensor-based CQ services for supporting environmental monitoring applications.

1.3 Challenges and Issues

Scalability, in terms of number of users, queries, and data sources, is a common obstacle in

building continuous query services in future computing environments. Large number of long

standing continuous queries and data sources on which these CQs are defined put a heavy

burden on processing resources (due to cost of frequent query re-evaluation), as well as on

network resources (due to frequent access of data items from remote sources to track their

updates). Besides these generic problems, there are also challenges specific to different

4

computing platforms on which CQ services are to be built. Diversity of the application

domains for continuous queries is an indication of the diversity of the computing platforms

involved in building scalable CQ service architectures to support information monitoring

applications. The unique features of these different computing platforms necessitate designs

that are tailored to the challenges posed and opportunities provided by these platforms.

Traditional distributed computing systems that are based on the client/server model and

wired-networks have long served as a strong foundation for the development of distributed

information systems. Although client-server based distributed computing paradigms con-

tinue to hold their strong place in today’s computing systems, some new paradigms have

also emerged in recent years. These include large-scale decentralized computing systems

exemplified by peer-to-peer overlays and grids, and wireless computing systems exemplified

by mobile networks and services. Interestingly, recent developments in sensor networks have

brought together decentralized operation and wireless communications in one domain. Fol-

lowing these trends, this thesis aims at developing system-level architectures and techniques

to support CQ services in peer-to-peer, mobile, and sensor platforms.

We now discuss some of the limitations and challenges faced in P2P systems, mobile

systems, and sensor systems, as well as challenges faced in scaling CQ services in supporting

information monitoring applications in these computing platforms.

1.3.1 Peer-to-Peer Systems

Peer-to-peer (P2P) systems are massively distributed computing systems in which nodes

communicate with one another to distribute tasks, exchange information, and collabora-

tively perform a function in a decentralized manner. P2P computing has a number of

attractive properties. First, P2P systems do not rely on centralized control, but have decen-

tralized operation. This avoids central-point of failure and provides better fault-tolerance.

Second, P2P systems exhibit self-organizing and self-adapting behavior. Thus, they do not

incur administrative costs associated with setup, reconfiguration, and maintenance. Third

but not the least, P2P systems scale with the number of clients, since the nodes of the

system (called peers) act both as servers and clients.

5

1.3.1.1 General Challenges

P2P computing possesses many advantages, but it also brings about many challenges [86].

In particular, decentralized control makes it harder to make optimal choices with regard

to system configuration. This is due to the lack of global knowledge at any node and the

difficulty of resource look-up. The large number of nodes that are both clients and servers

result in high peer failure rate, which makes providing quality of service and achieving high

levels of reliability harder than they are in traditional distributed systems.

1.3.1.2 CQ Specific Challenges

In P2P computing, partitioning of long standing continuous queries to processing nodes

(peers) entails new techniques for coordinated use of network and processing resources.

Balancing peer loads and maximizing system utilization are two major challenges in the

presence of node heterogeneity, decentralized operation, and non-uniform user interest dis-

tributions. Moreover, replication techniques are needed for ensuring reliable execution of

long standing monitoring queries on a heterogeneous network of peer nodes, with high

peer failure and turn-over rate. Such replication techniques should establish uninterrupted

execution of CQs, in the existence of peer failures and frequent peer departures.

1.3.2 Mobile Systems

Mobile systems are characterized by lightweight clients that are battery powered and can

communicate wirelessly, which effectively make them mobile and ubiquitous. Mobile sys-

tems provide users with the ability to stay on-line while on-the-go and access information

services pervasively. These information services are usually tailored toward the location

and/or activity context of the mobile users; much to their convenience. While provid-

ing opportunities to offer value-added services to users, mobile systems also create many

challenges in designing, building, and deploying such services, mainly due to the unique

properties of mobile devices and networks [108].

6

1.3.2.1 General Challenges

Mobile devices are resource constrained, in terms of processing power as well as memory

and disk capacity. They have low power budget and limited network bandwidth (which

may be asymmetric as in the case of cellular networks, in which upload bandwidth is

usually lower than download bandwidth). Wireless communication is unreliable and may

not always be available, resulting in intermittent connection. Due to the small size of mobile

devices, user interfaces are also restricted. These challenges set mobile systems apart from

traditional distributed systems, and they should be taken into account when designing

software architectures for providing information services in mobile systems.

1.3.2.2 CQ Specific Challenges

When nodes are mobile, the highly dynamic nature of position information and limited

wireless bandwidth available to mobile nodes introduce new challenges to location moni-

toring applications, due to the spatio-temporal nature of mobile continuous query services.

On one hand, such continuous location services demand scalable server side processing to

handle the large amount of highly dynamic location queries. On the other hand, the limited

wireless bandwidth available to mobile devices and the location-dependent characteristics

of queries call for distributed and bandwidth aware architecture design that is effective for

partitioning continuous query processing tasks and utilizing processing capabilities of mo-

bile clients. Such distributed architectures, that push some of the query processing to the

mobile client side, should also respect the resource-limited nature of mobile clients.

1.3.3 Sensor Systems

Sensor nodes are tiny, low cost, and low power devices that can perform computation, wire-

less communication, and environmental sensing. Networks formed by sensor nodes enable

seamless integration of the physical world with pervasive networks [59]. The decentralized

and unattended nature of operation make sensor networks an attractive tool for extracting

and gathering data by sensing real-world phenomena. As a result, environmental monitoring

applications are expected to benefit enormously from sensor network services.

7

1.3.3.1 General Challenges

The large number of networked sensors brings a number of unique system design challenges,

different from those posed by traditional distributed systems. First, a major limitation of

sensor devices is their limited battery life. Different from mobile devices, sensor nodes are

not easily recharged due to their tiny form factor and often harsh physical deployment en-

vironments. Second, unreliable wireless communication, asymmetric connectivity between

the nodes, and ad-hoc network infrastructure make building reliable distributed protocols

within sensor networks a significant challenge. Third, sensor devices have scarce resources,

in terms of cpu, memory, and wireless bandwidth. These resources are orders of magnitude

smaller in capacity compared to most mobile devices. Thus, resource-aware low-power de-

signs are not only desirable but a key design consideration in building in-network services

for supporting sensor network applications.

1.3.3.2 CQ Specific Challenges

When the nodes are low cost and low power sensor nodes capable of environmental sensing

and producing continuous streams of data, we need to address two additional challenges

in order to make continuous query services scalable. First, we need energy-efficient data

collection mechanisms to extract data streams from power constrained sensor nodes, in order

to achieve longer network lifetimes. Second, we need scalable techniques for energy-efficient

processing of data streams within the sensor network and for resource-aware evaluation of

continuous queries over sensor streams at query processing centers. High aggregate rate of

sensor streams calls for a paradigm shift in how CQs are processed, moving away from the

traditional “store and then process” model of database management systems to “on-the-fly

processing” model of emerging data stream management systems, such as StreamBase [117].

1.4 Contribution of the Thesis

This thesis aims at developing system-level architectures and techniques to support continu-

ous query services for future computing platforms and applications, focusing on information

monitoring applications in mobile, peer-to-peer, and sensor network computing domains.

8

To our knowledge, this is the first dissertation work that utilizes CQs to shepherd through

and address the challenges involved in supporting information monitoring applications in

future computing platforms. Before we present the individual contributions of this thesis

in each of these areas, namely contributions with regard to P2P CQ services, mobile CQ

services, and sensor CQ services, we first discuss the common design philosophy this thesis

have in solving problems related with scalability of CQ services in these areas.

1.4.1 Common Design Philosophy

Although different computing platforms require different software architectures for building

CQ services, there is a common design philosophy that this thesis advocates for making CQ

services scalable and efficient. This same design philosophy is applied in developing solutions

to provide scalable CQ services in the three application domains we have discussed so far,

each associated with a different computing platform. These are: P2P web monitoring in

Internet systems, location monitoring in mobile systems, and environmental monitoring in

networked sensor systems. This common philosophy can be briefly stated as follows: “Move

computation close to the places where the data is produced.”

One of the challenges in CQ systems is the resource-intensive nature of query evaluation,

a major part of which is continuously checking updates in a large number of data sources

and evaluating trigger conditions of a large number of queries over these updates, consum-

ing both cpu and network bandwidth resources. If we can move some part of the query

evaluation close to the sources where the data is produced, the resulting early filtering of

updates will save both bandwidth and cpu resources.

In the context of P2P information monitoring on the Internet, executing CQs at peers

that are closer to the data sources will save bandwidth resources, as well as cpu resources

by the way of grouping similar CQs whose triggers are defined on the same data sources. In

the context of location monitoring in mobile systems, moving part of the query evaluation

into the mobile nodes, in order to filter some of the position updates reported wirelessly to

the central server for processing, will reduce both the wireless network bandwidth consumed

and the cpu resources used at the server side. And finally, in the context of environmental

9

monitoring in sensor systems, moving certain filtering functionality into the individual sen-

sor nodes will reduce the amount of wireless communication required to extract data from

the network, and thus will improve the network lifetime.

We now list the individual contributions of this thesis in these areas:

1.4.2 P2P CQ Services

In regard to P2P CQ services, this thesis addresses the challenges involved in executing large

number of continuous queries on a network of unreliable peers. A decentralized architecture

called PeerCQ and effective service partitioning algorithms associated with it are developed

for distributing continuous queries to peers in a way that improves system utilization, while

maintaining good load balance of peers and providing high reliability. The main technical

highlights of this development are twofold, the service partitioning mechanism and the

dynamic replication mechanism.

1.4.2.1 Service Partitioning

Service partitioning is defined as the assignment of CQs to peers for execution. We develop

an effective mechanisms for service partitioning at the P2P protocol layer. Concrete contri-

butions include the donation-based peer-aware query assignment mechanism for handling

peer heterogeneity, request similarity based CQ-aware assignment mechanism for handling

skewness in information monitoring requests, and the relaxed matching technique that pro-

vides a good balance between system utilization and load balance in the presence of peer

joins, departures, and failures. We present experimental results to show that due to non-

uniform nature of information monitoring requests, effective grouping of CQs will benefit

both load balance and system utilization, but maximizing the grouping of similar CQs and

thus the overall system utilization will not result in good load balance.

1.4.2.2 Dynamic Replication

We develop an effective dynamic passive replication scheme to ensure reliable processing of

long-running information monitoring requests in a decentralized environment of inherently

unreliable peers. We derive analytical models to formalize the fault-tolerance properties

10

of this replication scheme. We present experimental results to demonstrated that, when

equipped with this dynamic replication scheme, PeerCQ is able to achieve high reliability

for moderate values of the replication factor.

1.4.3 Mobile CQ Services

In regard to mobile CQ services, this thesis develops a distributed continuous location query

processing framework that promotes effective partitioning of continuous location query pro-

cessing between the server and the mobile clients, by taking advantage of the increasingly

available computational power available in mobile clients. In addition, we develop a central-

ized continuous location query processing framework that employs motion adaptive spatio-

temporal indexes to evaluate continuous location queries in an IO and time efficient manner,

on the server side. These two solutions are complementary in the sense that the former is

more suitable for resource-wise more capable mobile clients, whereas the latter one better

suits mobile clients with scarce resources that can not contribute to query processing.

1.4.3.1 Distributed Location Monitoring

We develop a distributed location monitoring architecture through the design of MobiEyes.

The main idea behind MobiEyes’ distributed architecture is to promote a careful partition-

ing of a near real-time location monitoring task into an optimal coordination of server-side

processing and client-side processing. Such a partitioning allows evaluating moving loca-

tion queries with a high degree of precision using a small number of location updates, thus

providing highly scalable and more cost-effective location monitoring services. A set of

optimization techniques are used to limit the amount of computation to be handled by the

mobile objects and enhance the overall performance and system utilization of MobiEyes.

We present experimental results to show that MobiEyes can lead to significant savings in

terms of server load and messaging cost when compared to solutions relying solely on central

processing of location information.

11

1.4.3.2 Motion-adaptive Indexing

We develop a motion adaptive indexing scheme for efficient evaluation of moving continuous

queries over mobile object locations, in a centralized server. It uses the concept of motion-

sensitive bounding boxes to model moving objects and moving queries. These bounding

boxes automatically adapt their sizes to the dynamic motion behaviors of individual objects.

Instead of indexing frequently changing object positions, less frequently changing object

and query motion-sensitive bounding boxes are indexed. This helps decrease the number

of updates to the indexes. More importantly, predictive query results are employed to

optimistically pre-calculate query results, and thus decrease the number of searches on the

indexes. We present experiments to show that the proposed motion adaptive indexing

scheme is IO and time efficient for the evaluation of moving continuous queries.

1.4.4 Sensor CQ Services

In regard to sensor CQ services, this thesis develops energy-efficient techniques for contin-

uous data collection in sensor networks. Such data streams extracted from sensor networks

are key to building environmental monitoring applications. To further support these appli-

cations, we develop techniques for evaluating CQs over sensor streams in a resource-aware

fashion, adapting to the rates as well as other key characteristics of the sensor streams.

1.4.4.1 Sensor Network Data Collection

We develop an adaptive model-based prediction framework that uses the selective sampling

concept to enable energy-efficient data collection in sensor networks. It requires smaller

number of nodes to sample and report their values, thus significantly lowering the power

consumption. Values of non-sampler nodes are predicted using the locally derived proba-

bilistic models. We present experimental results to show that this framework can achieve

high accuracy with low power consumption, by exploiting the strong spatial and temporal

correlations existent among the sensor readings.

12

1.4.4.2 Data Stream Processing

We develop rate-aware adaptive query evaluation techniques for scalable processing of long

running window-based continuous queries over sensor streams. We present results to show

that adaptation to stream statistics, such as stream rates and time-correlations among

different streams, can improve result accuracy during rate bursts when the available com-

putational resources are not sufficient to process every update in a timely manner, especially

for large window sizes or costly query conditions. The main focus is on multi-way stream

joins and resource constrained scenarios.

1.5 Organization of the Thesis

The rest of this thesis is organized as a series of chapters, each one dedicated to a specific

topic within the context of P2P, mobile, and sensor CQ systems. In each of these chapters,

background information and system models are given before the core technical content

is described. The specific contributions are given in the introduction part of each chapter,

whereas the related work in the literature is reported at the end of each chapter. Concretely,

this thesis is composed of the following chapters.

Chapter 2 presents the PeerCQ system, which is a peer-to-peer architecture for con-

tinuous query-based information monitoring on the Internet. Two major components of

the PeerCQ system, namely the service partitioning mechanism and the dynamic replica-

tion mechanism, are discussed and several experimental results are presented to study the

scalability and the effectiveness of the PeerCQ system.

Chapter 3 presents the MobiEyes system, which is a distributed architecture for con-

tinuous query-based location monitoring in mobile systems. Mechanisms for partitioning

of CQ processing between the server side and the mobile client side, as well as mechanisms

for mobile client side optimizations, are discussed. Experimental results are presented to

study the scalability and the effectiveness of the MobiEyes system.

Chapter 4 presents MAI, a motion-adaptive indexing scheme for continuous query-based

centralized location monitoring in mobile systems. Two major components of the MAI

scheme, namely the motion-sensitive bounding boxes and the predictive query results, are

13

discussed and several experimental results are presented to study the scalability and the

effectiveness of the MAI approach.

Chapter 5 presents an energy-efficient data collection framework for sensor CQ systems.

There main components of this framework are discussed in order − i) sensing-driven cluster

construction, ii) correlation-based sampler selection and model derivation, and iii) selective

data collection and model-based prediction. Experimental results are presented to study

the scalability and the effectiveness of this data collection framework.

Chapter 6 presents resource-aware query evaluation techniques for CQ systems dealing

with sensor streams. An algorithm, called GrubJoin, is presented for performing load shed-

ding with the aim of maximizing the output rate of multi-way join queries in CPU limited

scenarios. Experimental results are presented to study the scalability and the effectiveness

of GrubJoin.

Chapter 7 discusses some open issues and concludes the thesis.

14

CHAPTER II

PEERCQ - P2P INFORMATION MONITORING IN

INTERNET SYSTEMS USING CQS

We present PeerCQ, a decentralized architecture for Internet scale information monitoring

using a network of heterogeneous peer nodes. PeerCQ uses Continual Queries (CQs) as its

primitives to express information-monitoring requests. The PeerCQ development has three

unique characteristics. First, we develop a systematic and serverless approach to large

scale information monitoring, aiming at providing a fully distributed, highly scalable and

self-configurable architecture for scalable and reliable processing of large number of CQs

over a network of loosely coupled, heterogeneous, and possibly unreliable nodes (peers).

Second, we introduce an effective service partitioning scheme at the P2P protocol layer

to distribute the processing of CQs over a peer-to-peer information monitoring overlay

network, while maintaining a good balance between system utilization and load balance

in the presence of peer joins, departures and failures. A unique feature of our service

partitioning scheme is its ability to incorporate strategies for handling hot spot monitoring

requests and peer heterogeneity into the load balancing scheme in PeerCQ. Third but not

the least, we develop a dynamic passive replication scheme to enable reliable processing

of long-running information monitoring requests in an environment of inherently unreliable

peers, including an analytical model to discuss its fault tolerance properties. We report a set

of experiments demonstrating the feasibility and the effectiveness of the PeerCQ approach.

2.1 Introduction

Peer-to-peer (P2P) systems are massively distributed computing systems in which peers

(nodes) communicate directly with one another to distribute tasks, exchange information

or share resources. There are currently several P2P systems in operation, and many more

are under development. Gnutella [47] and Kazaa [71] are among the most prominent first

15

generation peer-to-peer file sharing systems operational today. These systems are often

referred to as unstructured P2P networks and they share two unique characteristics. First,

the topology of the overlay network and the placement of the files within the network are

largely unconstrained. Second, they use a decentralized file lookup scheme. Requests for

files are flooded with a certain scope. There is no guarantee to find an existing file within

a bounded number of hops. The random topology combined with flooding-based routing

is clearly not scalable since the load on each peer grows linearly with the total number of

queries in the network, which in turn grows with the size of the system.

Chord [116], Pastry [103], Tapestry [142], CAN [101] are examples of the second gener-

ation of peer-to-peer systems. Their routing and location schemes are structured based on

distributed hash tables. In contrast to the first generation P2P systems such as Gnutella

and Kazaa, these systems provide guaranteed content location (persistence and availabil-

ity) through a tighter control of the data placement and the topology construction within

a P2P network. Queries on existing objects are guaranteed to be answered in a bounded

number of network hops. Their P2P routing and location schemes are also considered more

scalable. These systems differ from one another in terms of their concrete P2P protocol

design, including the distributed hash algorithms, the lookup costs, the level of support for

network locality, and the size and dependency of routing table with respect to the size of

the P2P overlay network.

Surprisingly, many existing P2P protocols [35, 116, 101, 103, 47] do not distinguish peer

heterogeneity in terms of computing and communication capacity. As a result, these proto-

cols distribute tasks and place data to peers assuming all peers participate and contribute

equally to the system. Work done in analyzing characteristics of Gnutella in [107] shows that

peers participating in these systems are heterogeneous with respect to many characteristics,

such as connection speeds, CPU, shared disk space, and peers’ willingness to participate.

These evidences show that P2P applications should respect the peer heterogeneity and user

(application) characteristics in order to be more robust [107].

In this chapter we describe PeerCQ [45], a peer-to-peer information monitoring system,

16

which utilizes a large set of heterogeneous peers to form a peer-to-peer information mon-

itoring network. Many application systems today have the need for tracking changes in

multiple information sources on the web and notifying users of changes if some condition

over the information sources is met. A typical example in business world is to monitor avail-

ability and price information of specific products, such as “monitor the price of 5 mega pixel

digital cameras during the next two months and notify me when one with price less than

$500 becomes available”, “monitor the IBM stock price and notify me when it increases by

5%”. In a large scale information monitoring system [78], many users may issue the same

information monitoring request such as tracking IBM stock price changes during a given

period of time. We call such phenomenon the hot spot queries (monitoring requests). Opti-

mizations for hot spot queries can significantly reduce the amount of duplicate processing

and enhance the overall system utilization.

In general, offering information-monitoring service using a client/server architecture

imposes two challenging requirements on the server side. First, the server should have the

ability to handle tens of thousands or millions of distributed triggers firing over hundreds or

thousands of Web sites. Second, the server should be scalable as the number of triggers to

be evaluated and the number of Web sites to be monitored increase. It is widely recognized

that the client/server approach to large-scale information monitoring is expensive to scale,

and expensive to maintain. The server side forms a single point of failure.

Compared to information monitoring in client-server systems, peer-to-peer information

monitoring has a number of obvious advantages. First, there is no additional administrative

management cost as the system grows. Second, there is no hardware or connection cost,

since the peers are the user machines and the connections to the data sources are the user

connections. Third, there is no upgrade cost due to scaling since resources grow with clients.

The only cost for PeerCQ information monitoring from the perspective of a service provider

is the cost of developing the PeerCQ application and making it work effectively in practice.

PeerCQ uses continual queries as its primitives to express information monitoring re-

quests. Continual Queries (CQs) [78] are standing queries that monitor information updates

and return results whenever the updates reach certain specified thresholds. There are three

17

main components of a CQ: query, trigger, and stop condition. Whenever the trigger con-

dition becomes true, the query part is executed and the part of the query result that is

different from the result of the previous execution is returned. The stop condition specifies

the termination of a CQ.

PeerCQ poses several technical challenges in providing information monitoring services

using a P2P computing paradigm. The first challenge is the need of a smart service-

partitioning mechanism. The main issue regarding service partitioning is to achieve a good

balance between improving the overall system utilization and maintaining the load balance

among peers of the system. By balanced load we mean there are no peers that are over-

loaded. By system utilization, we mean that when taken as a whole the system does not

incur large amount of duplicated computations or consume unnecessary resources such as

the network bandwidth between the peers and the data sources. Several factors can af-

fect the load balancing decision, including the computing capacity and the desired resource

contribution of the peers, the willingness of peers to participate, and the characteristics of

the continual queries. The second technical challenge is the reliability of CQ processing in

the presence of peer departures and failures. The study reported in [107] shows that large

scale peer-to-peer systems are confronted with high peer turnover rate. In PeerCQ, failure

handling mechanisms are needed to detect failures and ensure correct CQ execution.

2.2 System Overview

Peers in the PeerCQ system are user machines on the Internet that execute information

monitoring applications. Peers act both as clients and servers in terms of their roles in

serving information monitoring requests. An information-monitoring job, expressed as a

continual query (CQ), can be posted from any peer in the system. There is no scheduling

node in the system. No peers have any global knowledge about other peers in the system.

There are three main mechanisms that make up the PeerCQ system. The first mech-

anism is the overlay network membership. Peer membership allows peers to communicate

directly with one another to distribute tasks or exchange information. A new node can join

the PeerCQ system by contacting an existing peer (an entry node) in the PeerCQ network.

18

There are several bootstrapping methods to determine an entry node. We may assume

that a PeerCQ service has an associated DNS domain name. It takes care of resolving the

mapping of PeerCQ’s domain name to the IP address of one or more PeerCQ bootstrapping

nodes. A bootstrapping node maintains a short list of PeerCQ nodes that are currently alive

in the system. To join PeerCQ, a new node looks up the PeerCQ domain name in DNS

to obtain a bootstrapping node’s IP address. The bootstrapping node randomly chooses

several entry nodes from the short list of nodes and supplies their IP addresses. Upon

contacting to an entry node of PeerCQ, the new node is integrated into the system through

the PeerCQ protocol’s initialization procedures.

The second mechanism is the PeerCQ protocol, including the service partitioning and

the routing query based lookup algorithm. In PeerCQ every peer participates in the process

of evaluating CQs, and any peer can post a new CQ of its own interest. When a new CQ

is posted by a peer, this peer first determines which peer will process this CQ with the

objective of utilizing system resources and balancing the load on peers. Upon a peer’s

entrance into the system, a set of CQs that needs to be re-distributed to this new peer is

determined by taking into account the same objectives. Similarly, when a peer departs from

the system, the set of CQs of which it was responsible is re-assigned to the rest of peers,

while maintaining the same objectives − maximize the system utilization and balance the

load of peers.

The third mechanism is the processing of information monitoring requests in the form of

continual queries (CQs). Each information monitoring request is assigned to an identifier.

Based on an identifier matching criteria, CQs are executed at their assigned peers and

cleanly migrated to other peers in the presence of failure or peer entrance and departure.

Figure 1 shows a sketch of the PeerCQ system architecture from a user’s point of view.

Each peer in the P2P network is equipped with the PeerCQ middleware, a two-layer soft-

ware system. The lower layer is the PeerCQ protocol layer responsible for peer-to-peer

communication. The upper layer is the information monitoring subsystem responsible for

CQ subscription, trigger evaluation, and change notification. Any domain-specific informa-

tion monitoring requirements can be incorporated at this layer.

19

e-mail
notification

direct
notification

PeerCQ
Network

A

B

Information
Sources

CQ

PeerCQ servant application on PeerA

user

PeerCQ
Protocol

LayerMigration
Manager

Identifier
Mapper

 Replication
Manager

Lookup
Manager

Membership
Manager

Service
Partitioner

Notification
Module

CQ Subscription
Module

CQ Processing
Module

Information
Monitoring

Layer

Information
Monitoring

Layer

PeerCQ
Protocol

Layer

Information
Sources

Internet

Notification
Module

CQ Subscription
Module

CQ Processing
Module

Migration
Manager

Lookup
Manager

Membership
Manager

Identifier
Mapper

Service
Partitioner

 Replication
Manager

PeerCQ servant application on PeerB

Figure 1: PeerCQ architecture

A user composes his or her information monitoring request in terms of a CQ and posts

it to the PeerCQ system via an entry peer, say Peer A. Based on the PeerCQ’s service

partition scheme (see Section 2.3.2), Peer A is not responsible for this CQ. Thus it triggers

the PeerCQ’s P2P lookup function. The PeerCQ system determines which peer will be

responsible for processing this CQ using the PeerCQ service partitioning scheme. Assume

that Peer B was chosen to execute this CQ. Peer B is referred to as the executor peer of

this CQ. After the CQ is assigned to Peer B, it starts its execution there. During this

execution, when an interested information update is detected, the query is fired, and the

peer that posts this CQ is notified with the newly updated information. The notification

could be realized by e-mail or by directly sending it to Peer A if it is online at the time of

notification. Note that, even if a peer is not participating in the system at a given time, its

previously posted CQs are in execution at other peers.

2.3 The PeerCQ P2P Protocol

The PeerCQ protocol specifies three important types of peer coordination: (1) how to find

peers that are best to serve the given information monitoring requests in terms of load

balance and overall system utilization, (2) how new nodes join the system, and (3) how

PeerCQ manages failures or departures of existing nodes.

20

2.3.1 Overview

Similar to most of the distributed hash table (DHT) based P2P protocols [69, 35, 116, 103,

142, 93], PeerCQ provides a fast and distributed computation of a hash function, map-

ping information monitoring requests (in form of continual queries) to nodes responsible for

them. PeerCQ protocol design differs from other DHT based protocols, such as Chord [116],

Pastry [103], Tapestry [142], and CAN [101], in a number of ways. First, PeerCQ provides

two efficient mapping functions as the basic building blocks for distributing information

monitoring requests (CQs) to peers with heterogeneous capabilities. The mapping of peers

to identifiers takes into account of peer heterogeneity and load dynamics at peers to in-

corporate peer awareness into the service partitioning scheme. The mapping of CQs to

identifiers incorporates CQ grouping optimization [81] for hot spot CQs found frequently

in large scale information monitoring applications, striving for efficient processing of large

number of information monitoring requests and minimizing the cost for duplicate processing

of hot spot CQs. Second, PeerCQ introduces relaxed matching algorithms on top of the

strict matching based on numerical distance between CQ identifiers and peer identifiers,

when distributing CQs to peers, aiming at achieving good load balance and good system

utilization.

In PeerCQ, an information monitoring request (subscription) is described in terms of a

continual query (CQ). Formally, a CQ is defined as a quadruplet, denoted by cq : (cq id,

trigger, query, stop cond) [78]. cq id is the unique identifier of the CQ, which is an m-

bit unsigned value. trigger defines the target data source to be monitored (mon src),

the data items to be tracked for changes (mon item), and the condition that specifies

the update threshold (amount of changes) of interest (mon cond). query part specifies

what information should be delivered when the mon cond is satisfied. stop cond speci-

fies the termination condition for the CQ. For notational convenience, in the rest of this

chapter a CQ is referenced as a tuple of seven attributes, namely cq : (cq id, mon src,

mon item, mon cond, query, notification, stop cond). Consider the example monitoring

request “monitor Nasdaq index and tell me IBM stock price when Nasdaq index value in-

creases by 5% in the next three months”. One way to express this request is to use the

21

following continual query: 〈 cq id, mon src: http://www.quote.com, mon item: Nasdaq in-

dex (/quotes.aspx?symbols=NASDAQ), mon cond: increase by 5%, query: IBM stock price

(/quotes.aspx?symbols=NYSE:IBM), notification: my email, stop cond: next 3 months 〉.
The PeerCQ system provides a distributed service partitioning and lookup service that

allows applications to register, lookup, and remove an information monitoring subscription

using an m-bit CQ identifier as a handle. It maps each CQ subscription to a unique,

effectively random m-bit CQ identifier. To enable efficient processing of multiple CQs with

similar trigger conditions, the CQ-to-identifier mapping also takes into account the similarity

of CQs such that CQs with the similar trigger conditions can be assigned to same peers (see

Section 2.3.2 for details). This property of the PeerCQ is referred to as CQ-awareness.

Similarly, each peer in PeerCQ corresponds to a set of m-bit identifiers, depending on

the amount of resources donated by each peer. A peer that donates more resources is

assigned to more identifiers. We refer to this property as Peer-awareness. It addresses the

service partitioning problem by taking into account of peer heterogeneity and by distributing

CQs over peers such that the load of each peer is commensurate to the peer capacities (in

terms of cpu, memory, disk, and network bandwidth). Formally, let P denote the set of

all peers in the system. A peer p is described as a tuple of two attributes, denoted by

p : ({peer ids}, (peer props)). peer ids is a set of m-bit identifiers. No peers share any

identifiers, i.e. ∀p, p′ ∈ P, p.peer ids ∩ p′.peer ids = ∅. The identifier length m must be

large enough to make the probability of two nodes or two CQs hashing to the same identifier

negligible. peer props is a composite attribute which is composed of several peer properties,

including IP address of the peer, peer resources such as connection type, CPU power and

memory, and so on. The concrete resource donation model may be defined by PeerCQ

applications (see Section 2.3.2 for further details).

Identifiers are ordered in an m-bit identifier circle modulo 2m. The 2m identifiers are

organized in an increasing order in the clockwise direction. To guide the explanation of the

PeerCQ protocol, we define a number of notations:

− The distance between two identifiers i, j, denoted as Dist(i, j), is the shortest distance

between them on the identifier circle, defined by Dist(i, j) = min(|i− j|, 2m − |i− j|). By

22

this definition Dist(i, j) = Dist(j, i) holds.

− Let path(i, j) denote the set of all identifiers on the clockwise path from identifier i to

identifier j on the identifier circle. An identifier k is said to be in-between identifiers i and

j, denoted as k ∈ path(i, j), if k �= i, k �= j, and it can be reached before j going in the

clockwise path starting at i.

− A peer p′ with its peer identifier j is said to be an immediate right neighbor to a peer p

with its peer identifier i, denoted by (p′, j) = IRN(p, i), if there are no other peers having

identifiers in the clockwise path from i to j on the identifier circle. Formally the following

condition holds: i ∈ p.peer ids ∧ j ∈ p′.peer ids ∧ �p′′ ∈ P s.t. ∃k ∈ p′′.peer ids s.t. k ∈
path(i, j). The peer p with its peer identifier i can also be referred to as the immediate left

neighbor(ILN) of peer p′ with its identifier j. The definition is symmetric.

− A neighbor list of a peer p0 associated with one of its identifiers i0, denoted by

NeighborList(p0, i0), is formally defined as follows: NeighborList(p0, i0) = [(p−r, i−r),

. . . , (p−1, i−1), (p0, i0), (p1, i1), . . . , (pr, ir)], s.t.
∧r

k=1((pk, ik) = IRN(pk−1, ik−1)) ∧∧r
k=1((p−k, i−k) = ILN(p−k+1, i−k+1)). The size of the neighbor list is 2r + 1 and we call

r the neighbor list parameter. Informally, the neighbor list of a peer p0 with identifier i0

consists of three components: (1) the first r number of identifiers on the clockwise path

starting from i0, (2) the first r number of identifiers on the counter clockwise path starting

from i0, and (3) identifier i0 of p0 itself. For each identifier, the neighbor list also stores the

peer who owns this identifier.

Table 1: Basic API of the PeerCQ system
Function Description
p.join(out: status) a node p adds itself to the PeerCQ system
p.leave(out: status) a node p departs the PeerCQ system
p.post(in: cq, out: cq id) a node p posts a cq to the system for execution
p.terminate(in: cq id) a node p posts a termination request for a CQ with id. cq id.

The basic application interface (API) provided by the PeerCQ system consists of four

basic functions, shown in Table 1. The first two API calls are functions for nodes to join or

leave the PeerCQ system. p.join(status) function adds a node p to the PeerCQ system and

returns status information regarding the result of this operation. p.leave(status) function

23

departs a node p from the system and returns a status value indicating whether an error

has occurred or not. Given a peer p, when p.post(cq, cq id) is called, PeerCQ finds the

destination peer that should be responsible for executing the cq posted by peer p and ships

cq to that destination peer for execution. We call p the initiator peer of the given CQ and

the destination peer the executor peer of the CQ. p.post(cq, cq id) returns the cq id as a

result of the operation. The function p.terminate(cq id) is used by the issuer peer of a CQ

to terminate the processing of its CQ specified by the identifier cq id.

2.3.2 Capability-Sensitive Service Partitioning

The PeerCQ protocol extends the existing routed-query based P2P protocols, such as

Chord [116] or Pastry [103], to include a capability-sensitive service partitioning scheme.

Service partitioning can be described as the assignment of CQs to peers. By capability-

sensitive, we mean that the PeerCQ service partitioning scheme extends a randomized

partition algorithm, commonly used in most of the current DHT-based protocols, with

both peer-awareness and CQ-awareness capability. As demonstrated in [116, 103, 142, 93],

randomized partitioning schemes are easy to implement in decentralized systems. However

they perform poorly in terms of load balancing in heterogeneous peer-to-peer environments.

PeerCQ capability-sensitive service partitioning manages the assignment of CQs to ap-

propriate peers in three stages: (1) mapping peers to identifiers to address peer-awareness;

(2) mapping CQs to identifiers to address CQ-awareness, and (3) matching CQs to peers

in a two-phase matching algorithm. The main objective for the PeerCQs capability-aware

service partitioning is two folds. First, we want to balance the load of peers in the system

while improving the overall system utilization. Second, we want to optimize the hot spot

CQs such that the system as a whole does not incur large amount of redundant computa-

tions or consume unnecessary resources such as the network bandwidth between the peers

and the data sources.

We implement peer-awareness based on peer donation and dynamic mapping of peers

to identifiers. Each peer donates a self-specified portion of its resources to the system and

can dynamically adjust the amount of donations through on-demand or periodical revision

24

of donations. The scheduling decisions are based on the amount of donated resources. We

implement CQ-awareness by distributing CQs having similar triggers to the same peers.

Two CQs, cq and cq′, are considered similar if they are interested in monitoring updates

on the same item from the same source, i.e. cq.mon src = cq′.mon src ∧ cq.mon item =

cq′.mon item. These CQs share the same monitoring source (a stock quote web site) and

the same monitoring item (IBM stock price). By CQ-awareness, we mean that CQs with

similar triggers will be assigned to and processed by the same peers.

Identifier
Circle

2m-1 0 identifiers
increase

CQc

CQb

CQa

Peer identifiers of p'
Peer identifiers of p''

Mapping
Matching

CQ identifiers

strict_match(cqa) = (p'', .)
strict_match(cqb) = (p'', .)
strict_match(cqc) = (p', .)

Figure 2: Example peer to peer id. set mapping

2.3.2.1 Mapping peers to identifiers

In PeerCQ a peer is mapped to a set of m-bit identifiers, called the peer’s identifier set

(peer ids). m is a system parameter and it should be large enough to ensure that no two

nodes share an identifier or this probability is negligible. To balance the load of peers with

heterogeneous resource donations when distributing CQs to peers, the peers that donate

more resources are assigned more peer identifiers, so that the probability that more CQs

will be matched to those peers is higher. Figure 2 shows an example of mapping of two

peers, say p′ and p′′, to their peer identifiers. Based on the amount of donations, peer p′

has 3 peer identifiers, whereas peer p′′ has 6. The example shows that p′′ is assigned more

CQs than p′ using the strict matching defined in Section 2.3.2.3.

The number of identifiers to which a peer is mapped is calculated based on a peer

donation scheme. We introduce the concept of ED (effective donation) for each peer in the

PeerCQ network. ED of a peer is a measure of its donated resources effectively perceived by

25

the PeerCQ system. For each peer, an effective donation value is first calculated and later

used to determine the number of identifiers onto which this peer is going to be mapped. The

calculation of ED is given in Appendix A. The mapping of a peer to peer identifiers needs

to be as uniform as possible. This can be achieved by using the base hashing functions like

MD5 or SHA1 (or any well-known message digest function).

The following algorithm explains how the peer identifier set is formed given the effective

donation of a peer:

GeneratePeerIDs(p, ED)
(1) p.peer ids← ∅
(2) for i = 1 to donation to ident(ED)
(3) d← concat(p.peer props.IP , counter)
(4) add SHA1(d, m) into p.peer ids
(5) increment counter

The function donation to ident is re-

sponsible of mapping the effective donation

value of a peer to the number of m-bit

identifiers in the 2m identifier space, which

forms the peer’s peer identifier set. SHA1 is a message digest function. The first param-

eter of this digest function is the input message that will be digested. The input message

is formed by concatenating the IP address of the peer, and a counter which is initialized

to a one second real time clock at the initialization time and incremented each time a peer

identifier is generated. This concatenation forms a unique input message for each peer

identifier. The second parameter m is the length of the output in bits.

In summary, the peer-to-identifier mapping algorithm maps a peer to a set of randomly

chosen m-bit identifiers on the m-bit identifier circle. The number of identifiers each peer

will be mapped to is determined in terms of the effective donation (ED) of the peer, initially

computed upon the entry of the peer to the PeerCQ overlay network. In order to handle

run-time fluctuations of workload at each peer node, a peer can revise its effective donation

through periodic updates or by an on-demand revision upon sudden load surge experienced

at the peer node.

2.3.2.2 Mapping CQs to identifiers

This mapping function maps a CQ to an m bit identifier in the identifier space with modulo

2m. An important design goal for this mapping function is to implement CQ-awareness by

mapping CQs with similar triggers (same monitoring sources and same monitoring items)

26

to the same peers as much as possible, in order to produce the CQ to peer matching that

achieves higher overall utilization of the system.

A CQ identifier is composed of two parts. The first part is expected to be identical

for similar CQs and the second part is expected to be uniformly random to ensure the

uniqueness of the CQ identifiers. This mechanism allows similar CQs to be mapped into a

contiguous region on the m-bit identifier circle. The length of a CQ identifier is m. The

length of the first part of an m-bit CQ identifier is a, which is a system parameter called

grouping factor. Given m and a, the method that maps CQs to the CQ identifiers uses two

message digest functions. A sketch of the method is described as follows:

CalculateCQID(p, cq)
(1) d← concat(cq.mon src, cq.mon item)
(2) part1← SHA1(d, a)
(3) d← concat(p.peer props.IP , counter)
(4) part2← SHA1(d, m− a)
(5) cq.cq id← concat(part1, part2)
(6) increment counter

The first digest function generates the

same output for similar CQs, and the sec-

ond digest function generates a globally

unique output for each CQ posted by a peer.

Although there is a small probability of gen-

erating the same identifier for two different CQs, the collisions can be detected by querying

the network with the generated identifier before posting the CQ. Similar argument is valid

for peer identifiers. The first parameter of the first digest function is the concatenation of

the data source and the item of interest being monitored. The second parameter is the

length of the output in bits. The second digest function generates a random number of

length m − a for each CQ. The first parameter of the second digest function is the con-

catenation of the IP address of the peer posting this CQ, and a counter which is initialized

to a one-second real time clock at the initialization time and incremented each time a CQ

identifier is generated. The second parameter is the length of the output in terms of bits.

The CQ-to-identifier mapping returns an m-bit CQ identifier cq id by concatenating the

outputs of these two digest functions.

According to the parameter a (grouping factor) of the first digest function, the identifier

circle is divided into 2a contiguous regions. The CQ-to-identifier mapping implements the

idea of assigning similar CQs to the same peers by mapping them to a point inside a

contiguous region on the identifier circle. As the number of CQs is expected to be larger

27

than the number of peers, the number of CQs mapped inside one of these regions is larger

than the number of peers mapped. Introducing smaller regions (i.e., the grouping factor a

is larger) increases the probability that two similar CQs are matched to the same peer. This

by no means implies that the peers within a contiguous region are assigned only to CQs that

are similar for two reasons. First, if the grouping factor a is not large enough, then two non-

similar CQs might be mapped into the same contiguous region by the hashing function used

(SHA1 in our case). Second, peers might have more than one identifier possibly belonging

to different contiguous regions. Given the non-uniform nature of the monitoring requests,

there is a trade-off between reducing redundancy in CQ evaluation and balancing load.

By setting larger values for the grouping factor a, two extreme situations may occur. On

one hand, there may be regions on the identifier circle, in which peers are responsible for

too many CQs, and on the other hand, there are some other regions in which peers may

be assigned too few CQs and are starving. Thus, the grouping factor a should be chosen

carefully to optimize the processing of similar CQs while keeping a good balance of the peer

loads. We refer to the grouping provided by the CQ-to-identifier mapping as the level-one

grouping. A fine tuning of the level-one grouping will be described later in the relaxed

matching discussion.

2.3.2.3 Assignment of CQs to Peers: The Two Phase Matching Algorithm

In PeerCQ, the assignments of CQs to peers are based on a matching algorithm defined

between CQs and peers, derived from a relationship between CQ identifiers and peer iden-

tifiers. The matching algorithm consists of two phases, namely the strict phase and the

relaxed phase.

In the Strict Matching phase, a simple matching criterion, similar to the one defined in

Consistent Hashing [69], is used. A distinct feature of the PeerCQ strict matching algorithm

is the two identifier mappings that are carefully-designed to achieve some level of peer-

awareness and CQ-awareness, namely the mapping of CQs to CQ identifiers that enables

the assignment of CQs having similar triggers to same peers, and the mapping of peers

with heterogeneous resource donations to a varying set of peer identifiers. In the Relaxed

28

Matching phase, an extension to strict matching is applied to relax the matching criteria

to include application semantics in order to achieve the desired level of peer-awareness and

CQ-awareness.

Strict Matching

The idea of strict matching is to assign a CQ to a peer such that the chosen peer has a

peer identifier that is numerically closest to the CQ identifier among all peer identifiers

on the identifier circle. Formally, strict matching can be defined as follows: The function

strict match(cq) returns a peer p with identifier j, denoted by a pair (p, j), iff the following

condition holds:

strict match(cq) = (p, j), where

j ∈ p.peer ids ∧ ∀p′ ∈ P,∀k ∈ p′.peer ids, Dist(j, cq.cq id) ≤ Dist(k, cq.cq id)

Peer p is called the owner of the cq. This matching is strict in the sense that it follows

the absolute numerical closeness between CQ identifier and peer identifier to determine the

destination peer. In other words, suppose two adjacent peer identifiers (together with their

peers) (p, i) and (q, j) on the identifier circle such that the CQ identifier lies between i and

j. If Dist(i, cq id) ≤ Dist(j, cq id), then the peer p associated with identifier i is the owner

peer of this CQ.

Relaxed Matching

The goal of Relaxed Matching is to fine tune the performance of PeerCQ service partition-

ing by incorporating additional characteristics of the information monitoring applications.

Concretely, in the Relaxed Matching phase, the assignments of CQs to peers are revised to

take into account factors such as the network proximity of peers to remote data sources,

whether the information to be monitored is in the peer’s cache, and how peers are currently

loaded. By taking into account the network proximity between the peer responsible of exe-

cuting a CQ and the remote data source being monitored by this CQ, the utilization of the

network resources is improved. By considering the current load of peers and whether the

information to be monitored is already in the cache, one can further improve the system

utilization.

29

We calculate these three measures for each match made between a CQ and a peer at

the strict matching phase. Let p denote a peer and cq denote the CQ assigned to p.

− Cache affinity factor is a measure of the availability of a CQ that is being executed at

a peer p, which monitors the same data source and the same data item as cq. It is defined

as follows:

CAF (p.peer props.cache, cq.mon item) =

⎧⎪⎪⎨
⎪⎪⎩

1 if cq.mon item is in p.peer props.cache

0 otherwise

− Peer load factor is a measure of a peer p’s willingness to accept an additional CQ to

execute, considering its current load. The PLF factor provides opportunity for reassigning

a CQ to a less loaded peer whenever the executor peer of this CQ needs to be determined.

It is defined as follows:

PLF (p.peer props.load) =

⎧⎪⎪⎨
⎪⎪⎩

1 if p.peer props.load ≤ thresh∗max load

1− p.peer props.load
MAX LOAD if p.peer props.load > thresh∗max load

− Data source distance factor is a measure of the network proximity of the peer p to

the data source of the CQ specified by identifier cq. SDF is defined as follows:

SDF (cq.mon src, p.peer props.IP) =
1

ping time(cq.mon src, p.peer props.IP)

Let UtilityF (p, cq) denote the utility function of relaxed matching, which returns a

utility value for assigning cq to peer p, calculated based on the three measures given above:

UtilityF (p, cq) = PLF (p.peer props.load)∗

(CAF (p.peer props.cache, cq.mon item) + w ∗ SDF (p.peer props.IP, cq.mon src))

Note that the peer load factor PLF is multiplied with the sum of cache affinity factor CAF

and the data source distance factor SDF . This gives more importance to the peer load

factor. For instance a peer which has a cache ready for the CQ, and is also very close to

the data source will not be selected to execute the CQ if it is heavily loaded. w is used as

a constant to adjust the importance of data source distance factor with respect to cache

affinity factor. For instance a newly entered peer, which does not have a cache ready for the

30

given CQ but is much closer to the data source being monitored by the CQ, can be assigned

to execute the CQ depending on the importance of SDF relative to CAF as adjusted by

the w value.

Although the PLF (peer load factor) used in the relaxed matching helps assigning a

CQ to a less loaded peer, an increase in the load of a peer after CQs are assigned is not

considered by the PLF . However, the PeerCQ design provides easy mechanisms to address

such situations. The dynamic changes in the load of a peer can be handled by adjusting

the number of peer identifiers. For instance, an increase in the load due to other processes

executed by the peer can be handled by decreasing the number of peer identifiers possessed

by the peer. This will offload the CQs associated with the dropped peer identifiers to other

less loaded peers (as determined by the PLF component of relaxed matching).

Formally, relaxed matching can be defined as follows: The function relaxed match(cq)

returns a peer p with identifier i, denoted by a pair (p, i) if and only if the following holds:

relaxed match(cq) = (p, i), where

(p′, j) = strict match(cq) ∧ (p, i) ∈ NeighborList(p′, j)

∧ ∀(p′′, k) ∈ NeighborList(p′, j), UtilityF (p, cq) ≥ UtilityF (p′′, cq)

The idea behind the relaxed matching can be summarized as follows: The peer that is

matched to a given CQ according to the strict matching, i.e. the owner of the CQ, has the

opportunity to query its neighbors to see whether there exists a peer that is better suited

to process the CQ in terms of load awareness, cache awareness, and network proximity of

the data sources being monitored. In case such a neighbor exists, the owner peer will assign

this CQ to one of its neighbors for execution. We call the neighbor node chosen according

to the relaxed matching the executor of the CQ.

It is interesting to note that the cache-awareness property of the relaxed matching

provides additional level of CQ awareness by favoring the selection of a peer as a CQ’s

executor if the peer has a cache ready for the CQ (which means that one or more similar

CQs are already executing at that peer). We refer to the cache-awareness based grouping

as level-two grouping, which can be seen as an enhancement to the mapping of similar CQs

31

to the same peer in the strict matching phase.

An extreme case of relaxed matching is called the random relaxed matching. Random

relaxed matching is similar to relaxed matching except that, instead of using a value function

to find the best peer to execute a CQ, it makes a random decision among the neighbors of

the CQ owner. In the rest of this chapter we call the original relaxed matching optimized

relaxed matching. Unless otherwise specified, the term relaxed matching and optimized

relax matching are used interchangeably.

2.3.3 PeerCQ Service Lookup

The PeerCQ service lookup implements the two-phase matching described in the previous

section. Given a CQ, the lookup operation is able to locate its owner and executor using

only O(log N) messages in a fully decentralized P2P environment, where N is the number

of peers. Similar to several existing design of the DHT lookup services [103, 142, 93,

116], the lookup operation in PeerCQ is performed by routing the lookup queries towards

their destination peers using routing information maintained at each peer. The routing

information consists of a routing table and a neighbor list for each identifier possessed by a

peer. The routing table is used to locate a peer that is more likely to answer the lookup

query, where a neighbor list is used to locate the owner peer and the executor peer of the

CQ.

Two basic API functions are provided to find peers that are most appropriate to execute

a CQ based on the matching algorithms described in the previous section:

p.lookup(i): The lookup function takes an m-bit identifier i as its input parameter, and

returns a peer -identifier pair (p, j) satisfying the matching criteria used in strict matching,

i.e. j ∈ p.peer ids ∧ ∀p′ ∈ P,∀k ∈ p′.peer ids, Dist(j, cq.cq id) ≤ Dist(k, cq.cq id).

p.get neighbors(i): This function takes an identifier from the peer identifier set of p as

a parameter. It returns the neighbor list of 2r + 1 peers associated with the identifier i of

the peer p, i.e., NeighborList(p, i).

The p.lookup(i) function implements a routed query based lookup algorithm. Lookup

is performed by recursively forwarding a lookup query containing a CQ identifier to a peer

32

whose peer identifier is closer to the CQ identifier in terms of the strict matching, until it

reaches the owner peer of this CQ. A naive way of answering a lookup query is to iterate

on the identifier circle using only the neighbor list until the matching is satisfied. The

routing tables are used simply to speed up this process. Initialization and maintenance of

the routing tables and the neighbor lists do not require any global knowledge. The number

of messages used by our lookup operation is logarithmic with respect to the number of

peers in the system. More importantly, neither the mappings introduced by PeerCQ nor

the implementation of PeerCQ’s relaxed matching increases the asymptotic complexity of

the number of messages required by the lookup service to carry out CQ to peer matching.

2.3.4 Peer Joins and Departures

In a dynamic P2P network peers can join or depart at any time and peer nodes may fail

without notice. A key challenge in implementing these operations is how to preserve the

ability of the system to locate every CQ in the network and the ability of the system to

balance the load when distributing or re-distributing CQs. To achieve these objectives,

PeerCQ needs to preserve the following two principles: (1) Each peer identifier’s routing

table and neighbor list are correctly maintained. (2) The strict matching and the relaxed

matching are preserved for every CQ.

The maintenance of the routing information for DHT based P2P systems in the presence

of peer joins and departures is studied in the context of several P2P systems [103, 142, 93,

116]. As a result, in the following subsection we focus on the mechanisms used in PeerCQ to

ensure the second principle. Then we extend the discussion to the maintenance of relaxed

matching. We defer the discussion on how PeerCQ handles node failures to the next section.

2.3.4.1 Maintaining the Two-Phase Matching of CQs to Peers

It is important to maintain the two-phase matching criteria in order to preserve the ability

of the system to sustain the installed CQs, while balancing the peer load in the presence of

peer joins, departures, and failures.

Joins, Departures with Strict Matching

Assuming that after a new peer p joins the PeerCQ network, its routing table and neighbor

33

list information are initialized, the subset of CQs that need to transfer their ownership to

this newly joined peer p can be calculated as follows: For each identifier i ∈ p.peer ids, a

set of CQs owned by p’s immediate left and right neighbors before p joins the system, is

migrated to p if they meet the strict matching criteria. The departure of a peer p requires a

similar but reverse action to be taken. Again for each identifier i ∈ p.peer ids, p distributes

all CQs it owns to immediate left and right neighbors associated with i according to strict

matching.

Joins, Departures with Relaxed Matching

For CQs migrated to a new peer p, p becomes the owner of these CQs. By applying the

relaxed matching, the executor peer can be located from p’s neighbor list. Concretely, each

peer keeps two possibly intersecting sets of CQs, namely Owned CQs and Executed CQs.

Owned CQs set is formed by the CQs that are assigned to a peer according to strict matching

and the executed CQs set is formed by the CQs that are assigned to a peer according to

relaxed matching. CQs in the executed CQs set of a peer are executed by that peer, whereas

the CQs in the owned CQs set are kept by the owner peer for control purposes.

A peer p upon entering the system first initializes its owned CQs set as described in

the strict matching case. Then it determines where to execute these CQs based on relaxed

matching. If peers different than the previous executors are chosen to execute these CQs,

then they are migrated from the previous executors to the new executors. Peers whose

neighbor lists are affected due to the entrance of the peer p into the system also re-evaluate

the relaxed matching phase for their owned CQs, since p’s entrance might have caused the

violation of relaxed matching for some peers.

The departure process follows a reverse path. A departing peer p distributes its owned

CQs to its immediate neighbors in terms of strict matching. Then the neighbors determine

which peers to execute these CQs according to the relaxed matching. The departing peer

p also returns CQs in its executed CQs set to their owners, and these owner peers find the

new executor peers of these CQs according to the relaxed matching.

Concurrent Joins & Departures

34

Concurrent joins and departures of peers introduces additional challenges both in initial-

izing routing information of newly joined peers, updating routing information of existing

peers, and redistributing CQs. More concretely, the problem is how to guarantee concur-

rent updates of neighbor lists correctly and efficiently as the PeerCQ network evolves. In

order to provide consistency in the presence of concurrent joins and departures, in the first

prototype of PeerCQ, we enable only one join or one departure operation at a time within a

neighbor list. This is achieved by a distributed synchronization algorithm executed within

neighbor list boundaries, which serializes the modifications to the neighbor list of each peer

identifier. We use a mutual exclusion algorithm [102] to ensure the correctness instead of

a weaker solution based on periodic polls to detect and correct inconsistencies as it is done

in Chord [116].

2.3.5 Handling Node Failures with Dynamic Replication

It is known that failures are unavoidable in a dynamic peer-to-peer network where peer

nodes correspond to user machines. A failure in PeerCQ is a disconnection of a peer from

the PeerCQ network without notifying the system. This can happen due to a network

problem, computer crash or improper program termination. Byzantine failures that include

malicious program behavior are not considered. We assume a fail-stop model where timeouts

can be used for detecting failures. In PeerCQ, failures are detected through periodic pollings

between peers in a neighbor list.

Failures threaten the system reliability in two aspects. First, a failure may result in

incorrect routing information. Second, a failure of a peer will cause CQ losses if no addi-

tional mechanisms are employed. The former problem is solved using routing maintenance

mechanisms similar to those in handling peer departure. The only difference is that the de-

tection of a failure triggers the maintenance of the routing information instead of a volunteer

disconnection notification. However the latter problem requires a more involved solution.

There are two important considerations in PeerCQ regarding providing fault-tolerant

reliable service. One is to provide CQ durability and the other is to provide uninterrupted CQ

processing. CQ durability refers to the ability of PeerCQ to maintain the property that no

35

CQs executed at a peer will get lost when it departs or fails unexpectedly. Uninterrupted CQ

processing refers to the ability of PeerCQ to pick up those CQs dropped due to the departure

or failure of an existing peer and continue their processing. Whenever CQ durability is

violated, the uninterrupted CQ processing will be violated too. Furthermore, when a peer

p fails, if there are existing peers that hold additional replicas of the CQs that p runs as

their executor, but do not have sufficient information on the execution state of those CQs,

then the execution of these CQs will be interrupted, possibly resulting in some inconsistent

behavior. The proper resumption of the CQ execution upon the failure of its executor peer

requires the replicas to hold both the CQs and their runtime state information.

2.3.5.1 PeerCQ Replication Scheme

In order to ensure smooth CQ execution and to prevent failures interrupting CQ processing

and threatening CQ durability, we need to replicate each CQ. We describe PeerCQ repli-

cation formally as follows: A CQ, denoted as cq, is replicated at the peers contained in the

following set:

ReplicationList(cq) = [(p−�rf/2�, i−�rf/2�), . . . , (p−1, i−1), (p0, i0), (p1, i1), . . . , (p�rf/2�, i�rf/2�)],

where
�rf/2�∧
k=1

pik = IRN(pk−1, ik−1) ∧
�rf/2�∧
k=1

pi−k
= ILN(p−k+1, i−k+1)

∧ (p0, i0) = strict match(cq)

This set is called the replication list, and is denoted as ReplicationList(cq). Size of the

replication list is rf +1, where rf is called the replication factor. Replication list size should

be smaller than or equal to the neighbor list size to maintain the property that replica-

tion is a localized operation, i.e. ReplicationList(cq) ⊂ NeighborList(p, i), where (p, i) =

strict match(cq).

In addition to replicating a CQ, some execution states of the CQ needs to be replicated

together with the CQ and be updated when the CQ is executed and its execution state

changes, in order to enable correct continuation of the CQ execution after a failure. Recall

Section 2.2, the executor peer of a CQ needs to maintain three execution states about this

CQ: (1) the evaluation state of the trigger, which contains monitoring source, monitoring

36

item and trigger condition evaluation result; (2) the query result returned since last CQ

evaluation, and (3) the notification state of the CQ. In PeerCQ, changes on the states

associated with each CQ are propagated to replicas of the CQ in two steps with either

an eager mode or a deferred mode: (1) Whenever an executor peer of a CQ updates the

related states of a CQ, it notifies the CQ owner immediately to ensure that such updates

be propagated to all replicas of the CQ. (2) Upon receiving update notification from the

executor peer of a CQ, the owner peer of the CQ may choose to send update notifications

to all other peers holding replicas of the CQ immediately (eager mode) or to propagate the

update to rest of the replicas using a deferred strategy that considers different tradeoffs

between performance and reliability. The propagation of state update to the owner ensures

that at least two peers hold the update state of each CQ and the probability of both executor

peer and owner peer fail together is relatively low.

Since CQs should be available for processing at anytime once they are installed in the

system, PeerCQ requires a strong and dynamic replication mechanism. By strong and

dynamic replication we mean that at any time each CQ should have certain number of

replicas available in the system, and this property should be maintained dynamically as the

peers enter and exit the system. As a result, our replication consists of two phases. In Phase

one, a CQ is replicated at a certain number of peers. This phase happens immediately after

a CQ is installed into the system. In Phase two, the number of replicas existing in the

system is kept constant, and all replicas are kept consistent. The second phase is called the

replica management phase and lasts until the CQ’s termination condition is met or the CQ

is explicitly removed from the system.

One important decision for PeerCQ replication scheme is where to replicate CQs. In

order to preserve the correctness of the lookup mechanism, and preserve good load-balance

we select the peers to host the replicas of a CQ from the peers in the neighbor list of

the owner peer of this CQ. Moreover, choosing these peers from the neighbor list localizes

the replication process (no search is required for locating replica holders), which is an

advantage in a fully-decentralized system. Furthermore, peers that are neighbors on the

identifier circle are not necessarily close to each other geographically, thus the probability

37

of collective failures is low.

2.3.5.2 Fault Tolerance

Given the description of the PeerCQ replication scheme, we define two different kinds of

events that result in loosing CQs. One is the case where the existing peers that are present

in the system are not able to hold (either for replication or for execution) any more CQs

due to their heavy load. There is nothing to be done for this if the system is balanced

in terms of peer loads. Because this indicates insufficient number of peers present in the

system. The other case is when all replica holders of a CQ (or CQs) fail in a short time

interval, not letting the dynamic replica management algorithm to finish its execution. We

call this time interval the recovery time, denoted by Δtr. We call the event of having all

peers contained in a replication list fail within the interval Δtr, a deadly failure. We first

analyze the cases where we have deadly failures and then give an approximation for the

probability of having a deadly failure due to a peer’s departure. We assume that peers

depart by failing with probability pf and the time each peer stays in the network, called

the service time, is exponentially distributed with mean st.

Let us denote the CQs owned by a peer p that satisfies strict match(cq) = (p, i) as

Op,i. Let RLp,i(t) be the set of peers in the replication list of CQs in Op,i at time t, where

replication list is a subset of the neighbor list and has size rf +1. rf is named as replication

factor. Assume that the peer p fails right after time ta. Then RLp,i(ta) consists of the

peers that are assumed to be holding replicas of CQs in Op,i at time ta. Let us denote the

time of the latest peer failure in RLp,i(ta) as tl and the length of the shortest time interval

which covers the failure of peers in RLp,i(ta) as Δt where Δt = tl − ta. If Δt is not large

enough, i.e. Δt < Δtr, then p’s failure at time ta together with the failures of other peers

in RLp,i(ta) will cause a deadly failure. This will result in loosing some or all CQs in Op,i.

Let Prdf (p) denote the probability of a peer p’s departure to result in a deadly failure.

Then we define: Prdf (p, i) = Pr{All peers in RLp,i(t) has failed within a time interval <

Δtr, where p failed at time t}. Then we have:

Prdf (p) = 1−
∏

i∈p.peer ids

(1− Prdf (p, i))

38

If we assume
⋂

i∈p.peer ids RLp,i(t) = p, then ∀i,j∈p.peer ids Prdf (p, i) = Prdf (p, j). Then

we have:

Prdf (p) = 1− (1− Prdf (p, i))p.ident count (1)

Let t0 denote a time instance at which all peers in RLp,i(t) was alive. Furthermore

let us denote the amount of time each peer in RLp,i(t) stayed in the network since t0 as

random variables A1, . . . , Arf+1. Due to the memorylessness property of the exponential

distribution, A1, . . . , Arf+1 are still exponentially distributed with λ = 1/st. Then, we have

Prdf (p, i) = pf rf+1 ∗ Pr{MAX(A1, . . . , Arf) < Δtr}, which leads to:

Prdf (p, i) = pf rf+1 ∗
rf∏
i=1

Pr{Ai < Δtr}

Prdf (p, i) = pf rf+1 ∗
rf∏
i=1

(1− e−Δtr/st) (2)

Equations 1 and 2 are combined to give the following equation:

Prdf (p) = 1−
(
1− pf rf+1 ∗

rf∏
i=1

(1− e−Δtr/st)
)p.ident count

In a setup where rf = 4, pf = 0.1, Δtr = 30secs and st = 60mins, p.identifier count = 5,

Prdf (p) turns out to be � 2.37∗10−13. We further investigate the fault tolerance capability

of PeerCQ in Section 2.4.4. Note that the greater the replication factor rf is, the lower the

probability of loosing CQs. However having a greater replication factor increases the cost

of managing the replicas. As described earlier, the job of dealing with replica management

of a CQ is the responsibility of the CQ’s owner.

2.4 Simulation-based Experiments and Results

To evaluate the effectiveness of PeerCQ’s service partitioning scheme with respect to system

utilization and load balancing, we have designed a series of experiments. Here we first

describe our experimental setup.

We built a simulator that assigns CQs to peers using the service partitioning and lookup

algorithms described in the previous sections. The system parameters to be set in the simu-

lator include: m, length of identifiers in bits; a, grouping factor; r, neighbor list parameter;

39

N , number of peers; K, number of CQs. With this simulator, we conduct our experiments

under different stabilization states of the system as well as under unstable states. The sys-

tem states were modeled with different numbers of peers, different workloads of CQs, and

different configurations of some system parameters. The measurements were taken on these

snapshots. In all experiments reported in this chapter, the length of the identifiers (m) is

set to 128.

We model each peer with its resources, the amount of donation, the reliability factor,

and its IP address. The resource distribution is taken as normal distribution. The donations

of peers are set to be a half of their resources. We model CQs with the data sources, the

data items of interest, and the update thresholds being monitored. There are D = 5 ∗ 103

data sources and 10 data items on each data source. The distribution of the user interests

on the data sources is selected to model the hot spots that arise in real-world situations

due to the popularity of some triggers. Both normal distribution for modeling the user

interests on the data sources and a zipf distribution (Section 2.4.2.4) are considered in the

experiments.

2.4.1 Effect of Grouping Factor

An important factor that may affect the effectiveness of the service partitioning scheme

is the grouping factor. Recall Section 2.3.2.2, the grouping factor a is introduced at the

protocol level to promote the idea of grouping similar CQs to optimize the processing of

similar information monitoring requests. The grouping factor a is designed to tune the

probability of assigning similar CQs to the same peer. The larger the a value is, the higher

the probability that two similar CQs will be mapped to the same peer, and thus the fewer

number of CQ groups per peer. However, increasing a has limitations as discussed in Section

2.3.2.2.

This experiment considers a 10,000 node network (N = 104), and the total number of

CQs in the network is 100 times of N , i.e., K = 106. Figure 3 shows the effects of increasing

a on grouping when a is 0, 8, and 10. Figures 4 shows the effects of increasing a on grouping

when a is 12, 14, and 16. The values on the x-axis are the number of CQ groups that the

40

15 16 17 18 19 20
8.00E-04 6.00E-04 8.00E-04 2.00E-04 6.00E-04

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

x
0.

00
1

of CQ groups per peer

fr
eq

ue
nc

y

a(grouping factor): 0
a(grouping factor): 8
a(grouping factor): 10

Figure 3: Effect of grouping for a = 0, a = 8, and a = 10

0.0024 0.0044 0.0086 0.011 0.0156

a(grouping factor): 12
a(grouping factor): 14
a(grouping factor): 16

of CQ groups per peer

x
0.

00
1

fr
eq

ue
nc

y

0 10 20 30 40 50
0

50

100

150

200

250

Figure 4: Effect of grouping for a = 12, a = 14, and a = 16

peers have and the corresponding values on the y-axis are the frequencies of peers having x

number of CQ groups. From these two figures one can observe that when a is set to 0, there

is nearly no grouping since the average CQ group size is close to one and the number of CQ

groups is large (one CQ per group, and the number of CQs a peer is responsible for may

reach up to 200). The number of groups decreases as a is set to a larger value. The average

size of the CQ groups also increases as a is set to a larger value. Consider the simulation

results from Figure 3 and Figure 4, when a = 8 the largest number of groups a peer may

have is decreased to 120 or so. When a = 10 the largest number of groups a peer may have

is dropped to less than 70. When the grouping factor a is set to be 16, the largest number

of groups a peer has is less than 20. Small number of CQ groups implies larger sizes of the

CQ groups.

0
97.3332 99.54063

average # of CQ groups
average CQ group size

a (grouping factor)
0 8 10 12

0
10
20
30
40
50
60
70
80
90

100

Figure 5: Influence of a on avg. CQ group sizes and avg. # of CQ groups

41

Figure 5 compares the average group size and the average number of groups per peer.

The values on the x-axis of Figure 5 are the grouping factors, where the two series represent

average CQ group size (average number of CQs per CQ group) and average number of CQ

groups per peer respectively. When a = 0, there is nearly no grouping since the average CQ

group size is close to one and the number of CQ groups is large (one CQ per group). As

the grouping factor increases, the average size of the CQ groups also increases, while the

number of CQ groups decreases.

These observations have an important implication. Assignment of CQs to peers that

try to achieve better grouping (setting the grouping factor a to be higher) will decrease the

number of CQ groups processed by a peer, while increasing the number of CQs contained

in each CQ group (CQ group size). As a result, the average load of peers will be decreased

and the overall system utilization will be better. However, increasing the grouping factor

too much causes a lot of peers getting no CQs!

of CQ groups per peer

x
0.

00
1

fr
eq

ue
nc

y

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40
Optimized Relaxed Matching (a=10)
Random Relaxed Matching (a=10)

Figure 6: Optimized relaxed matching compared to strict matching

To provide an in-depth understanding of the effect of grouping factor, we compare the

optimized relaxed matching algorithm with the random relaxed matching algorithm under

a given grouping factor. Figure 6 compares the two matching algorithms when a = 10.

It is clear that the optimized relaxed matching is more effective in its ability to group

CQs, which is due to its cache-awareness. We can say that random relaxed matching has

only level-one grouping which is the grouping provided by the grouping factor, where the

optimized relaxed matching algorithm also has level-two grouping supported through its

cache-awareness.

42

2.4.2 Effectiveness with respect to Load Balancing and System Utilization

This section presents a set of experiments to evaluate the effectiveness of the PeerCQ

service partitioning scheme with respect to load balance and system utilization. By better

system utilization, we mean that the system can achieve higher throughput and lower overall

consumption of resources in terms of processing power and network bandwidth. By load

balancing, we mean that no peer in the system is overloaded due to joins or departure of

other peers or due to the increase of requests to monitoring data sources that are hot spots

at times.

2.4.2.1 Load Balance v.s. System Utilization

It is interesting to point out that by incorporating the grouping optimization into PeerCQ,

we observe that the goal of balancing the load over peers may not always be consistent with

the goal of maximizing the overall system utilization in PeerCQ.

To illustrate this observation, consider a simple example: Assume we have two peers, p

and p′, which are identical in terms of their capacities. Assume that there are seven CQs that

need to be distributed to these two peers. One CQ of type a denoted as cqa1 and six CQs of

type b denoted as cqb1,. . . ,cqb6. Furthermore, assume that CQs of the same type are similar

and thus can be grouped together. The scenario that shows a better overall utilization of

system resources is the case where p is assigned only one CQ which is cqa1 and p′ is assigned

six CQs, namely cqb1,. . . ,cqb6. By using the full power of CQ grouping, one can minimize

the repeated computation and duplicated consumption of network resources. However, the

optimal system utilization may not necessarily imply a good balance of loads on peers. Even

though the most expensive computation of the CQ processing is the continued testing of CQ

triggers, our experience with the continual query systems show that the cost of grouping,

querying, and notification is not negligible [78]. Therefore, it is likely that the scenario

where the system is best utilized may not be the same as the scenario where the load of the

system is best balanced among peers.

43

2.4.2.2 CQ Load of a Peer

We define the CQ load of a peer to be the number of CQs processed by the peer divided

by the number of identifiers it has. Due to the support of grouping in the CQ processing,

the CQ load of a peer should not be used as a measure to compare peer loads. To illustrate

this observation, consider a case where a peer, say p, is assigned 10 CQs and another peer,

say p′, which has twice the number of peer identifiers that p has, is assigned 20 CQs. Note

that their CQ loads are equal. Furthermore, assume that the 10 CQs assigned to p are

partitioned into five CQ groups of sizes 4, 2, 2, 1, 1; and the 20 CQs assigned to p′ are

partitioned into two CQ groups of sizes 12, 8. In this case it is quite possible that the peer

p′ is loaded less than peer p although their CQ loads are equal. This due to the fact that,

the number of CQ groups in p′ (which is 2) is smaller than the number of CQ groups in p

(which is 5), although their CQ loads are equal.

2.4.2.3 Computing Peer Load

In order to analyze the load on peers we first formalize the notion of load on a peer. In

PeerCQ, the cost associated with the P2P protocol level processing is considered to be

proportional to peer capacities, since the protocol level processing is proportional to the

number of identifiers a peer has. Based on this understanding, we consider the continued

monitoring of remote data sources and data items of interest to be the dominating factor

in computing the peer load. We formalize the load on a peer p as follows1:

Let Gp represent the set of groups that peer p has, denoted by a vector 〈g1, . . . , gn〉, where

n is the number of CQ groups that peer p has. We refer to n as the size of Gp denoted

by size(Gp). Each element gi represents a group in p, which can be identified by the data

source being monitored and the data items of interest. The size of a group gi, which is the

number of CQs it contains, is denoted by size(gi). Let cost(gi) be the cost of processing all

CQs in a group gi, monCost(gi) be the cost of monitoring a data item, and gCost(size(gi))

be the cost of grouping for group gi, which is dependent on the number of CQs in gi. Then

the cost of processing all CQs in a peer, denoted as cost(Gp), can be calculated as follows:

1For the purpose of simulation, it is assumed that the frequency of changes is the same for all data items.

44

cost(Gp) =
∑size(Gp)

i=1 cost(gi) =
∑size(Gp)

i=1 (monCost(gi) + gCost(size(gi)).

In our experiments, we assume that the cost of grouping increases linearly with group

size. In particular if processing one CQ costs 1 unit, then processing k similar CQs costs

1 + x ∗ k units, where x ∗ k corresponds to the cost of grouping k CQs. x is taken as 0.25

in our simulations. This setting was based on the grouping effect and cost study we have

done on WebCQ [81].

Given that the cost of detecting changes on the data items of interest from remote data

sources is the dominating factor in the overall cost of processing a CQ, we assume that the

cost of monitoring is the same for all data items independent of the monitoring conditions

defined by CQs, and is equal to monCost, then the cost of processing all CQs on a peer p

can be reduced to: cost(Gp) = size(Gp) ∗monCost +
∑size(Gp)

i=1 gCost(size(gi)).

In order to calculate the load on a peer, the cost is normalized via dividing it by the

effective donation. Because, the notion of load on a peer in our system is relative to the

effective donation of the peer. Let EDp be the effective donation of peer p. We calculate

the load on a peer as: load(p) = cost(Gp)/EDp.

The load values of peers are used as both a measure of system utilization and a measure

of load balance in our experiments. First, the mean peer load, which is the average of peer

load values, is used as a measure of system utilization. The smaller the mean load is, the

better the system utilization is. However, the system utilization is also influenced by the

amount of network bandwidth consumed, which is captured by the average network cost

defined below. Second, the variation in peer loads is used as a measure of load balance.

To compare different scenarios, the load variance is normalized by dividing it by the mean

load. This measure is called the balance in peer loads. Small values of balance in peer loads

imply a better load balance.

PeerCQ service partitioning makes use of network proximity between peers and data

sources when assigning CQs to peers. It aims at decreasing the network cost of trans-

ferring data items from the data sources to the peers of the system. For simulation

purpose, we assign a cost to each (peer, data source) pair in the range [10,1000]. We

45

model such a cost by the ping times between peers and data sources. Then we calcu-

late the sum of these costs for each CQ group at each peer and divide it by the total

number of peers to get an average. Let P denote the network consisting of N peers,

and net cost be the function that assigns costs to (peer, data source) pairs, then the re-

sulting value named as average network cost and denoted by avgNetCost, is equal to:

avgNetCost = 1
N

∑
p∈P

∑size(Gp)
i=1 net cost(p, gi.mon src)

2.4.2.4 Experimental Results

All experiments in this section were conducted over a network consisting of N peers and K

CQs, where N = 104 and K = 106. To evaluate the effectiveness of the optimized relaxed

matching algorithm, we compare it with the random relaxed matching algorithm using the

set of parameters discussed earlier, including the grouping factor a, the mean peer load, the

variance in peer loads, the balance in peer loads, the average network cost, and the variance

in CQ loads of peers.

Optimized Relaxed Matching

Random Relaxed Matching

a (grouping factor)
0 2 4 6 8 10 1412

0

2

4

6

8

10

12

m
ea

n
lo

ad

Figure 7: Effect of a and relaxed matching on mean peer load

Optimized Relaxed Matching

Random Relaxed Matching

a (grouping factor)

av
g.

 n
et

w
or

k
co

st

0 2 4 6 8 10 1412
0

100

200

300

400

500

600

Figure 8: Effect of a and relaxed matching on average network cost

Figure 7 shows the effect of the grouping factor a on the effectiveness of relaxed matching

with respect to mean load. Similarly, Figure 8 shows the effect of the grouping factor a on

46

the effectiveness of relaxed matching with respect to network cost. From Figures 7 and 8,

we observe a number of interesting facts:

First, as the grouping factor increases, both the mean peer load and the average network

cost decreases. Increasing the grouping factor helps in decreasing the mean peer load,

since it reduces the redundant computation by enabling more group processing. Optimized

relaxed matching provides more effective reduction in the mean peer load due to its level-

two grouping. Level-two grouping works better as the grouping factor a increases (i.e., the

level-one grouping increases).

Second, increasing the grouping factor also helps in decreasing the average network cost,

since the cost of fetching data items of interest from remote data sources incurs only once

per CQ group, and served for all CQs within the group. It is also clear that optimized

relaxed matching provides more effective reduction in their average network cost, due to its

level-two grouping (which results in better grouping) and its data source awareness, which

incorporates the network cost of accessing the data items of a CQ that are being monitored

into the service partitioning decision.

Third but not least, the decrease in the mean peer load and in the average network cost

is desirable, since it is an implication of better system utilization. However if the grouping

factor increases too much, then the goal of load balancing over the peers of the system will

suffer.

Optimized Relaxed Matching

Random Relaxed Matching

a (grouping factor)

0 2 4 6 8 10 1412

ba
la

nc
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 9: Effect of a and relaxed matching on load balance

Figure 9 shows the effect of increasing the grouping factor a on load balance of both

the optimized relaxed matching algorithm, and the random relaxed matching algorithm.

As expected, the optimized relaxed matching provides better load balance, since optimized

47

relaxed matching explicitly considers peer loads in its value function for determining the

peer that is appropriate for executing a CQ. In the case of a = 0 it provides the best load

balance. However, as the grouping increases, peers having identifiers belonging to some hot

spotted regions of the identifier space are matched much more CQs than others (due to the

non-uniform nature of information monitoring interests and the mechanisms used to match

CQs to peers). Consequently, the load balance gets worse as the grouping increases. For

our experiment setup, the load balance degrades quickly when a is 8 or higher.

It is interesting to note that random relaxed matching shows an improvement in load

balance for smaller values of the grouping factor and start switching to a degradation trend

when a is set to 10 or higher. This is mainly due to the fact that random relaxed matching

only relies on randomized algorithms to achieve load balance in the system. Thus the

load balance obtained in the case of a = 0 is inferior when compared to optimized relaxed

matching. This means that there are overloaded and under-loaded peers in the system.

Grouping helps decreasing the loads of over-loaded peers by enabling group processing.

This effect decreases the gap between overloaded peers and under-loaded peers, resulting in

a better balance to some extent.

Finally, it is important to note that, when we increase a too much, the optimized relaxed

matching loses its advantage in terms of load balancing over the random relaxed matching.

Intuitively this happens due to the fact that in optimized random relaxed matching there

are two levels of grouping, whereas in random relaxed matching there is only one level of

grouping. More concretely, in overloaded regions of the identifier space, there is nothing to

balance. In under-loaded regions, when a increases, the optimized relaxed matching maps

more CQs to fewer peers due to the second-level grouping, causing even more unbalance

since several peers get no CQs at all from the under loaded region.

In summary, to provide a reasonable balance between overall system utilization and load

balance, it is advisable to choose a value for a, which is equal to or smaller than the value

where the randomized relaxed matching changes its load balance trend to degradation, but

is greater than half of this value. This results in the range [6, 10] in our setup. In this

range, higher values are better for favoring overall system utilization, whereas lower values

48

peer loads

fr
eq

ue
nc

y

Optimized Relaxed Matching a=10

Optimized Relaxed Matching a=6

x
0.

01

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

4 5 6 7 8 9 10 11 12

Figure 10: Effect of a and relaxed matching on load distribution

are better for favoring load balance. Figure 10 shows this trade-off. The values on the x-axis

are the peer load values, and the corresponding values on the y-axis are the frequencies of

peers having x amount of load. By looking at the points it is easy to see that the balance

is better when a = 6 and load values are lower when a = 10.

CQ processing loads
0 2 4 6 8 10

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

fr
eq

ue
nc

y

Figure 11: Load distributions, for normally distributed CQ interest

CQ processing loads
0 2 4 6 8 10

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

fr
eq

ue
nc

y

12 14

Figure 12: Load distributions, for zipf distributed CQ interest

Figure 11 shows the distribution of the CQ processing loads over peers. Figure 12 plots

the same graph except that the information monitoring interests of CQs that are used to

generate the graph follow a zipf distribution which is more skewed than the normal dis-

tribution used in Figure 11. The vertical line in Figure 12 which crosses the x-axis at 10

49

marks the maximum acceptable load, thus the region on the right of the vertical line rep-

resent overloaded peers. Comparing these two figures show that more skewed distributions

in information monitoring interests reduce the balance in CQ processing loads.

2.4.3 Effect of Relaxed Matching Criteria

The relaxed matching criteria, which is characterized by the utility function used in selecting

CQ executors, has influence on several performance measures. In this section we examine

the effect of each individual component of the utility function on some of these measures.

The experiment is set up over a network of 104 nodes with 106 CQs. and the grouping

factor a is set to be 8.

FULL nSDF
nCAF nPLF
RND

r (neighbour list parameter)
0 1 2 3 4 5

ba
la

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 13: Balance in loads for different utility functions

thresh=0 thresh=0.2 thresh=0.4
thresh=0.6 thresh=0.8 thresh=1

r (neighbour list parameter)
0 1 2 3 4 5

ba
la

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 14: Balance in loads for different threshold values in PLF

Figure 13 shows the effect of individual utility function components on the balance in

CQ processing loads as a function of neighbour list size, r. The line labeled as FULL

corresponds to the unmodified utility function. Lines labeled as nX correspond to utility

functions in which the component X is taken out (X ∈ {PLF, CAF, SDF}). The line

labeled as RND corresponds to a special utility function which produces uniformly random

values in the range [0,1] resulting in randomized relaxed matching. The first observation

50

from Figure 13 is that in all cases except RND, the balance shows an initial improvement

with increasing r which is replaced by a degradation for larger values of r. For RND the

balance continuously but slowly improves with r. The degradation in balance is due to

excessive grouping. When r is large, there is more opportunity for grouping and excessive

grouping leads to less balanced CQ processing loads. Figure 13 clearly shows that PLF

is the most important factor in achieving a good load balance. Since PLF is the most

influential factor in achieving good load balance, a lower thresh value used in PLF factor

increases its impact thus slows down the r related degradation in the balance. This is shown

in Figure 14. Figure 13 also shows that CAF is responsible for the degradation of balance

with increasing r values. However CAF is an important factor for decreasing the mean CQ

processing load of a peer by providing grouping of similar CQs. Although RND provides

a better load balance than FULL for r ≥ 3, the mean CQ processing load of a peer is not

decreasing with increasing r when RND is used as opposed to the case where FULL is used.

The latter effect is shown in Figure 15.

FULL
RND

r (neighbour list parameter)
0 1 2 3 4 5

m
ea

n
lo

ad

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

Figure 15: Mean CQ processing load for different utility functions

FULL nSDF
nCAF nPLF
RND

r (neighbour list parameter)
0 1 2 3 4 5

0

50

100

150

200

250

300

ne
tw

or
k

co
st

Figure 16: Network cost as a function of r for different utility functions

Figure 16 shows the effect of individual utility function components on the network cost

due to CQ executions. The increasing r values provide increased opportunity to minimize

51

this cost due to larger number of peers available for selecting an executor peer with respect

to a CQ. Since SDF is explicitly designed to decrease the network cost, its removal from the

utility function causes increase in the network cost. Figure 16 shows that CAF also helps

decreasing the network cost. This is because it provides grouping which avoids redundant

fetching of the data items.

2.4.4 CQ Availability under Peer Failure

One situation that is crucial for the PeerCQ system is the case where peers are continuously

leaving the system without any peers entering; or the peer entrance rate is too low when

compared to the peer departure rate, so that the number of peers present in the system

decreases rapidly. Although we do not expect this kind of trend to continue for a long

period, it can happen temporarily. In order to observe the worst case, we have setup our

simulation so that the system starts with 2 ∗ 104 peers and 106 CQs and each peer departs

the system by failing after certain amount of time. The time each peer stays in the system

is taken as exponentially distributed with mean equal to 30 mins, i.e. st = 30 mins. It is

clear that in such a scenario the system will die loosing all CQs, since all peers will depart

eventually. However, we want to observe the behavior with different rf values under a worst

case scenario to see how gracefully the system degrades for different replication factors.

0

50

100

150

200

250

300

15 30 45 60
Service time (mins)

D
ea

dl
y

fa
ilu

re
s

Recovery time 15 secs
Recovery time 30 secs
Recovery time 45 secs
Recovery time 60 secs

Figure 17: Deadly failures rf = 2

The graphs in Figures 17, 18 and 19 plot the total number of deadly failures that have

occurred during the whole simulation for different mean service times (st), recovery times

(Δtr), and replication factors (rf). These graphs show that the number of deadly failures

is smaller when the replication factor is larger, the recovery time is smaller and the mean

service time is longer. Note that our simulation represents a worse scenario, where every

52

0
5

10
15
20
25
30
35
40

15 30 45 60

Service time (mins)

D
ea

dl
y

fa
ilu

re
s Recovery time 15 secs

Recovery time 30 secs
Recovery time 45 secs
Recovery time 60 secs

Figure 18: Deadly failures rf = 3

0

1

2

3

4

5

15 30 45 60

Service time (mins)

D
ea

dl
y

fa
ilu

re
s Recovery time 15 secs

Recovery time 30 secs
Recovery time 45 secs
Recovery time 60 secs

Figure 19: Deadly failures rf = 4

peer leaves the system by a failure and no peer enters into the system. However, a replication

factor of 4 presents a very small number of or even no deadly failures.

These experiments show that the dynamic replication provided by PeerCQ is able to

achieve high reliability with moderate values for the replication factor. Although stronger

reliability guarantees can be achieved through increasing the replication factor further, it has

the side-effect of increasing the cost of replication. Here we provide a sample experimental

result pertaining to cost of replication, in order to give a general idea of the trade-offs

involved in deciding an appropriate value for the replication factor.

30
60

90
120

150
180

1
5

10
15

20
25

30
0
1
2
3
4
5
6

from top to bottom: rf = 4, 3, 2

monitoring period
(in minutes)

service time
(in minutes)

re
pl

ic
at

io
n

co
st

 /
m

on
ito

rin
g

co
st

Figure 20: Cost of replication relative to monitoring cost

53

Figure 20 plots the network cost of replication relative to the network cost of monitoring

as a function of mean peer service time and CQ monitoring period. Mean peer service time

is the average time a peer stays in the network before it fails or departs. Monitoring period

is the time between two successive pollings of the data sources for monitoring changes on

data items. It is observed from the figure that the cost of replication is small compared to

the monitoring cost when the mean service time values are high or when the monitoring

period values are low. It is also observed that smaller replication list sizes (i.e. smaller

rfs) help in decreasing the relative cost of replication. For applications with tighter latency

requirements the monitoring period should be small and the replication is less likely to be

an issue in terms of network cost. On the other hand, for applications specifying larger

monitoring periods, the cost of replication can be adjusted by changing the rf values and

adjusting the desired level of reliability.

2.5 Related Work

WebCQ [80] is a system for large-scale web information monitoring and delivery. It makes

heavy use of the structure present in hypertext and the concept of continual queries. It is

a server-based system, which monitors and tracks various types of changes to static and

dynamic web pages. It includes a proxy cache service in order to reduce communication with

the original information servers. PeerCQ is similar to WebCQ in terms of functionality but

differs significantly in terms of the system architecture, the cost of administration, and the

technical algorithms used to scheduling CQs. PeerCQ presents a peer-to-peer architecture

for large scale information monitoring, which is more scalable and less expensive to maintain

due to the total decentralization and the self-configuring capability.

Scribe [104] is an P2P application that is related to event monitoring and notification.

It presents a publish/subscribe based P2P event notification infrastructure. Scribe uses

Pastry [103] as its underlying peer-to-peer protocol and builds application level multicast

trees to notify subscribers from events published in their subscribed topic. Pastry’s location

algorithm is used to find rendezvous points for managing the group communication needed

for a topic. It uses topic identifiers to map topics to peers of the system. However, Scribe is a

54

topic based event notification system, where PeerCQ is a generic information monitoring and

event notification system. In PeerCQ notifications are generated based on the monitoring

done on the web using the supplied CQs that encapsulate the interested information update

requests. In Scribe notifications are generated from publish events of the topic subscribers.

Several P2P protocols have been proposed to date, among which the most representative

ones are CAN [101], Chord [116], Tapestry [142], and Pastry [103]. Similar to these existing

DHT based systems, the PeerCQ P2P protocol described in this chapter is developed by

extending the Plaxton routing proposal in [93]. The unique features of PeerCQ are its ability

to incorporate peer-awareness and CQ-awareness into the service partition scheme and its

ability to achieve a good balance between load balance and overall system utilization. The

peer awareness in PeerCQ is supported by virtual peer identifiers. Although our solution

was developed independently [45], the concept of virtual servers in [100] also promote

the use of varying number of peer identifies for the purpose of load balancing. However,

load balancing in PeerCQ has a unique characteristics. Its use of virtual peer identifies is

combined with CQ grouping and relaxed matching techniques, making the PeerCQ service

partitioning scheme unique and more scalable in handling hot spot monitoring requests.

Finally, our dynamic passive replication scheme share some similarity to the replication

techniques used in CFS [37] with a number of major differences. First, in PeerCQ there is a

need for updating the state of the replicas as the CQs execute and change state. Thus the

replication scheme needs to maintain strong consistency among replicas. Second, PeerCQ

provides dynamic relocation of CQ executors as better peers for executing them join the

system to maintain the relaxing matching dynamically.

55

CHAPTER III

MOBIEYES - DISTRIBUTED LOCATION MONITORING

IN MOBILE SYSTEMS USING CQS

With the growing popularity and availability of mobile communications, our ability to stay

connected while on the move is becoming a reality instead of science fiction just a decade

ago. An important research challenge for modern location-based services is the scalable

processing of location monitoring requests on a large collection of mobile objects. The

centralized architecture, though studied extensively in literature, would create intolerable

performance problems as the number of mobile objects grows significantly. This chapter

presents a distributed architecture and a suite of optimization techniques for scalable pro-

cessing of continuously moving location queries. Moving location queries can be viewed

as standing location tracking requests that continuously monitor the locations of mobile

objects of interest and return a subset of mobile objects when certain conditions are met.

We describe the design of MobiEyes, a distributed real time location monitoring system in

a mobile environment. The main idea behind the MobiEyes’ distributed architecture is to

promote a careful partition of a real time location monitoring task into an optimal coordina-

tion of server-side processing and client-side processing. Such a partition allows evaluating

moving location queries with a high degree of precision using a small number of location

updates, thus providing highly scalable location monitoring services. A set of optimization

techniques are used to limit the amount of computation to be handled by the mobile objects

and enhance the overall performance and system utilization of MobiEyes. Important met-

rics to validate the proposed architecture and optimizations include messaging cost, server

load, and amount of computation at individual mobile objects. We evaluate the scalability

of the MobiEyes location monitoring approach using a simulation model based on a mobile

setup. Our experimental results show that MobiEyes can lead to significant savings in terms

of server load and messaging cost, compared to solutions relying on central processing only.

56

3.1 Introduction

With the growing availability of mobile communications, and the rapid drop in prices for

basic mobility enabling equipments like GPS devices [127], smart cell phones, and hand-

helds, we are entering a world where people, computers, vehicles, and other mobile objects

are interconnected, and traditional wired networks are being replaced by their wireless

counterparts, which facilitates our ability to stay connected while on the move.

There are two representative types of emerging location-based services: location-aware

content delivery and location-sensitive resource management. The former uses location

data to tailor the information delivered to the mobile users in order to increase the quality

of service and the degree of personalization. Examples include delivering accurate driv-

ing directions, instant coupons to customers nearby or approaching a store, or answering

location-based queries for nearest resource information like local restaurants, hospitals, gas

stations, or police cars within 5 miles upon a car accident. The latter uses location data

combined with route schedules and resource management plans to direct service person-

nel or transportation systems, optimize personnel utilization, handle emergency requests,

and reschedule in response to external conditions like traffic and weather. Examples in-

clude systems for fleet management, mobile workforce management, and transportation

management. Scalable location query processing is an enabling technology for all these

applications [130, 129].

An important research challenge for location information management and future mo-

bile computing applications is a scalable architecture that is capable of handling large and

rapidly growing number of mobile objects and processing complex queries over mobile object

positions. Significant research efforts have been dedicated to techniques for efficient process-

ing of spatial and temporal continuous queries on mobile objects in a centralized location

monitoring system [119, 74, 94, 25, 105, 92, 112, 72, 1]. However, as several researchers have

pointed out [19, 57, 129], the centralized location monitoring architecture can create intol-

erable performance problems as the number of mobile objects grows rapidly. We observe

two inherent assumptions that limit the scalability of many existing centralized approaches.

First, most of the existing location management systems assume that mobile objects are

57

only responsible for reporting their location information periodically, and the server (or a

hierarchy of servers) is fully responsible for detecting interesting location changes, deter-

mining which mobile objects should be included in which moving queries at each instance

of time or at a given time interval, and return those location updates that match certain

thresholds to the users. For mobile applications that need to handle large number of mobile

objects, these centralized approaches can suffer from dramatic performance degradation in

terms of server load and network bandwidth. The second drawback of the existing central-

ized architectures is the assumption that all mobile objects in a given universe of discourse

and their location updates are relevant for answering moving queries posted to the system.

In reality, only a small subset of mobile objects is relevant to a given moving location query

at any given instance of time. Thus, the amount of processing on the location updates of

those mobile objects that do not contribute to the answers of the moving location queries

is unnecessary and wasted, and it may cause significant performance degradation when the

number of mobile objects is large and growing dynamically.

Keeping these problems in mind, we design and develop MobiEyes, a distributed real-

time location monitoring service for moving location queries over a large and growing num-

ber of mobile objects. A moving location query can be viewed as a standing location

tracking request that continuously monitors the locations of mobile objects of interest and

return a subset of mobile objects that satisfy certain conditions. In this chapter we focus on

the distributed architecture and a suite of optimization techniques for scalable processing

of moving location queries on mobile objects.

A promising approach to tackle the scalability problem of centralized location monitoring

architectures is to ship certain amount of the moving query processing down to a set of

“nearby” mobile objects and to have the server mainly act as a mediator between these

mobile objects. The distribution of some moving query processing effort from the server to

a selective set of mobile objects can be seen as a mechanism for moving computation close

to the places where the location data of interest is produced. Such techniques are especially

beneficial when there are a large number of continuously mobile objects, generating immense

number of position updates, but only a small subset of the location updates are of interest

58

to each location query. By utilizing the computational capabilities available at the mobile

objects, we can reduce the load on the server, filter irrelevant location updates, and increase

the overall utilization and the scalability of the system. This computation partitioning

approach taken by MobiEyes for evaluating moving queries is further motivated by the

rapid and continued upsurge of computational capabilities in mobile devices, ranging from

GPS-based navigational systems in cars to hand-held devices and smart cell phones.

In order to control the amount of computations to be handled by the mobile objects

that are nearby the spatial regions of active location queries, and to enhance the overall per-

formance and system utilization of MobiEyes, we develop a set of optimization techniques,

such as Moving Query Grouping, Lazy Query Propagation, and Safe Query Periods. We

use Query Grouping to constrict the amount of computation to be performed by the mobile

objects and to minimize the number of messages sent on the wireless medium in situations

where there are large groups of moving queries with identical focal objects. We use Lazy

Query Propagation to allow tradeoffs between query precision and network bandwidth cost

as well as energy consumption on the mobile objects. We use Safe Periods to decrease the

query processing load on mobile objects due to periodic reevaluation of moving queries.

Important metrics to validate the proposed architecture and optimizations include messag-

ing cost, server load, and amount of computation at individual mobile objects. We present

an analytical model for estimating the messaging cost of our solution, which guides us to

find the optimal settings of certain system-wide parameters. We evaluate the scalability of

the MobiEyes distributed location monitoring approach using a simulation model based on

a mobile setup. The experimental results show that the MobiEyes approach can lead to

significant savings in terms of server load and messaging cost, when compared to solutions

relying on fully centralized processing of location information at the server(s).

3.2 System Model

The MobiEyes system model includes the set of underlying assumptions used in the design

of MobiEyes, the mobile object model, and the moving query model. Before we get into a

formal description of the system model, we first informally describe the concept of moving

59

queries on mobile objects.

A moving location query on mobile objects (MQ for short) is a spatial continuous moving

query over locations of mobile objects, and we also call a moving location query a moving

query (MQ) for reference convenience. A MQ defines a spatial region bound to a specific

mobile object and a filter which is a Boolean predicate on object properties. The result

of a MQ consists of objects that are inside the area covered by the query’s spatial region

and satisfy the query filter. MQs are continuous queries [78] in the sense that the results

of queries continuously change as time progresses. We refer to the object to which a MQ is

bounded, the focal object of that query. The set of objects that are subject to be included

in a query’s result are called target objects of the MQ. Note that the spatial region of a MQ

also moves as the focal object of the MQ moves.

There are many examples of moving queries on mobile objects in real life. For instance,

the query MQ1: “Give me the number of friendly units within 5 miles radius around me

during next 2 hours” can be submitted by a soldier equipped with mobile devices marching

in the field, or a moving tank in a military setting. The query MQ2: “Give me the positions

of those customers who are looking for taxi and are within 5 miles (of my location, at an

interval of every minute) during the next 20 minutes” can be posted by a taxi driver moving

on the road. The focal object of MQ1 is the solider marching in the field or a moving tank.

The focal object of MQ2 is the taxi driver on the road. Different specializations of MQs can

result in interesting and useful classes of queries on mobile objects. One such specialization

is the case where the target objects are static objects in the query region, which leads

to moving queries on static objects. An example of such a query is MQ3: “Give me the

locations and names of the gas stations offering gasoline for less than $1.2 per gallon within

10 miles, during next half an hour” posted by a driver of a moving car, where the focal

object of the query is the car on the move and the target objects are buildings within 10

miles with respect to the location of the car on the move. Another interesting specialization

is the case where the queries are posed with static focal objects or without focal objects. In

this case, a MQ becomes a static spatial continuous query on mobile objects. An example

query is MQ4: “Give me the list of AAA vehicles that are currently on service call in

60

base station
coverage area α

α

spatial region of qi

focal object oi of qi

α

α

bounding box of qi

monitoring region of qi

grid

current grid cell of oi

some possible areas
the spatial region of
qi can move into as
oi travels in its
current grid cell

Server

BS

BSBS

BS

BS

BS

(a) Base station related
concepts

(b) Mobile object concepts (c) MQ related concepts

Figure 21: Illustration of concepts

downtown Atlanta (or 5 miles from my office location), during the next hour”.

3.2.1 System Assumptions

The design of the MobiEyes system is based on the following assumptions. All these as-

sumptions are widely agreed upon by many or have been seen as common practice in most

existing mobile systems in the context of monitoring and tracking of mobile objects: (1)

Mobile objects are able to locate their positions and are able to determine their velocity

vector, e.g. using GPS [127]. (2) Mobile objects have synchronized clocks, e.g. using GPS

or NTP [85]. (3) Mobile objects have computational capabilities to carry out computational

tasks.

In addition, we assume that the geographical area of interest is covered by several base

stations, which are connected to the service provider’s server farm (simply called the server

in the rest of the chapter). We assume that all location service requests are served through

a three-tier architecture, that consists of mobile objects, base stations, and the server.

Broadcast is used to establish connections from the server to the mobile objects through

the base stations. The mobile objects can only communicate with the base station if they

are located in the coverage area of the base station. Base stations can communicate with

the server through wired networking. Figure 21 (a) shows this architecture.

3.2.2 The Mobile Object Model

Let O be the set of mobile objects. Formally we can describe a mobile object o ∈ O by

a quadruple: 〈oid, pos, vel, {props}〉. oid is the unique object identifier. pos is the current

61

position of the object o. vel = (velx, vely) is the current velocity vector of the object,

where velx is its velocity in the x-dimension and vely in the y-dimension. {props} is a

set of properties about the mobile object o, including spatial, temporal, and object-specific

properties (even application specific attributes registered on the mobile unit by the user).

The basic notations used in the subsequent sections of the chapter are formally defined

below:

Rectangle shaped region and circle shaped region : A rectangle shaped region is defined

by Rect(lx, ly, w, h) = {(x, y) : x ∈ [lx, lx + w] ∧ y ∈ [ly, ly + h]}, where lx and ly are the

x-coordinate and the y-coordinate of the lower left corner of the rectangle, w is the width

and h is the height of the rectangle. A circle shaped region is defined by Circle(cx, cy, r) =

{(x, y) : (x− cx)2 +(y− cx)2 ≤ r2}, where cx is the x-coordinate and cy is the y-coordinate

of the circle’s center, and r is the radius of the circle.

Universe of Discourse (UoD): We refer to the geographical area of interest as the universe

of discourse, which is defined by U = Rect(X, Y, W, H), where X is the x-coordinate and Y

is the y-coordinate of the lower left corner of the rectangle shaped region corresponding to

the universe of discourse. W is the width and H is the height of the universe of discourse.

Grid and Grid cells: In MobiEyes, we map the universe of discourse U = Rect(X, Y, W, H)

onto a grid G of cells. Each grid cell is an α × α square area, and α is a system pa-

rameter that defines the cell size of the grid G. Formally, a grid corresponding to the

universe of discourse U can be defined as G(U, α) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N ,

Ai,j = Rect(X+i∗α, Y +j∗α, α, α), M = �H/α�, N = �W/α�}. Ai,j is an α×α square area

representing the grid cell that is located on the ith row and jth column of the grid G.

Position to Grid Cell Mapping: Let pos = (x, y) be the position of a mobile object in

the universe of discourse U = Rect(X, Y, W, H). Let Ai,j denote a cell in the grid G(U, α).

Pmap(pos) is a position to grid cell mapping, defined as Pmap(pos) = A� pos.x−X
α

�,� pos.y−Y
α

�.

Current Grid Cell of an Object: Current grid cell of a mobile object is the grid cell

which contains the current position of the mobile object. If o ∈ O is an object whose

current position, denoted as o.pos, is in the Universe of Discourse U , then the current grid

cell of the object is formally defined by curr cell(o) = Pmap(o.pos).

62

Base Stations: Let U = Rect(X, Y, W, H) be the universe of discourse and B be the

set of base stations overlapping with U . Assume that each base station b ∈ B is defined

by a circle region Circle(bsx, bsy, bsr) with (bsx, bsy) being the center of the circle and bsr

being the radius of the circle. We say that the set B of base stations covers the universe of

discourse U , i.e.
⋃

b∈B b ⊇ U .

Grid Cell to Base Station Mapping: Let Bmap : N× N → 2B define a mapping, which

maps a grid cell index to a non-empty set of base stations. We define Bmap(i, j) = {b : b ∈
B ∧ b ∩Ai,j �= ∅}. Bmap(i, j) is the set of base stations that cover the grid cell Ai,j .

See Figure 21(a) and Figure 21(b) for example illustrations.

3.2.3 Moving Query Model

Let Q be the set of moving queries. Formally we can describe a moving query q ∈ Q by

a quadruple: 〈qid, oid, region, filter〉. qid is the unique query identifier. oid is the object

identifier of the focal object of the query. region defines the shape of the spatial query

region bound to the focal object of the query. region can be described by a closed shape

description such as a rectangle, or a circle, or any other closed shape description which

has a computationally cheap point containment check. This closed shape description also

specifies a binding point, through which it is bound to the focal object of the query. Without

loss of generality we use a circle, with its center serving as the binding point to represent

the shape of the region of a moving query in the rest of the chapter. filter is a Boolean

predicate defined over the properties {props} of the target objects of a moving query q.

Example properties include characteristics of the target objects, or specific spatial regions.

A moving query “give me the list of AAA vehicles on highway 85 north and within 20 miles

of my current location” can be posed by a driver of a car on the road. This query has used

the filter “AAA vehicles on highway 85 north” to define the target objects of interest. For

presentation convenience, in the rest of the chapter we consider the result of a MQ as the

set of object identifiers of the mobile objects that locate within the area covered by the

spatial region of the query and satisfy the filter condition.

Formal definition of basic notations regarding MQs is given below (see Figure 21(c) for

63

illustrations):

Bounding Box of a Moving Query: Let q ∈ Q be a query with focal object fo ∈ O and

spatial region region, let rc denote the current grid cell of fo, i.e. rc = curr cell(fo). Let

lx and ly denote the x-coordinate and the y-coordinate of the lower left corner point of the

current grid cell rc. The Bounding Box of a query q is a rectangle shaped region, which

covers all possible areas that the spatial region of the query q may move into when the

focal object fo of the query travels within its current grid cell. For circle shaped spatial

query region with radius r, the bounding box can be formally defined as bound box(q) =

Rect(rc.lx− r, rc.ly − r, α + 2r, α + 2r).

Monitoring Region of a Moving Query: The grid region defined by the union of all

grid cells that intersect with the bounding box of a query forms the monitoring region of

the query. It is formally defined as, mon region(q) =
⋃

(i,j)∈S Ai,j , where S = {(i, j) :

Ai,j ∩ bound box(q) �= ∅}. The monitoring region of a moving query covers all the objects

that are subject to be included in the result of the moving query when the focal object stays

in its current grid cell.

Nearby Queries of an Object: Given a mobile object o, we refer to all MQs whose

monitoring regions intersect with the current grid cell of the mobile object o the nearby

queries of the object o, i.e. nearby queries(o) = {q : mon region(q)∩curr cell(o) �= ∅∧q ∈
Q}. Every mobile object is either a target object of or is of potential interest to its nearby

MQs.

MobiEyes handles the dynamics of mobile object side query installation at the granu-

larity of grid cells, which entails that the bounding boxes should be extended to cover an

integral number of grid cells. Such extended bounding boxes are called monitoring regions.

This is the main intuition behind defining monitoring regions.

We make two important observations. First, at any given time we have a set O of

mobile objects and a set Q of moving queries in the MobiEyes system. When the size of the

set O is relatively large compared to the size of Q, it is more likely that there are mobile

objects in O, which do not have any nearby moving queries in Q. The larger the size of

set O, the higher the number of mobile objects whose current grid cells do not intersect

64

with the monitoring region of any MQs currently installed in the system. Second, each

moving query in MobiEyes is associated with a stop condition specifying when the moving

query will be terminated. This warrants that every moving query will be terminated at

some point in time. We can view a moving query MQ as a continual query [78] of the

form 〈query, trigger, stop〉. The query component is defined in terms of the focal object, the

query region, and the filter. The trigger condition is the location update reporting interval

of the focal object, and the stop condition is the termination time of the MQ. We say a MQ

is active if its stop condition is not yet met. In the rest of the chapter we model a MQ in

terms of its query component.

3.3 Distributed Architecture

Motivated by the fact that mobile users are typically interested in other mobile objects

nearby regardless of the total network size, the main idea underlying the MobiEyes’ dis-

tributed architecture is to have each mobile object determine by itself whether or not

it should be included in the result of a location query nearby, without requiring global

knowledge regarding the moving location queries and the object positions of interest. An

immediate advantage of the MobiEyes approach is the significant saving in terms of server

load and communication bandwidth. Concretely, in MobiEyes, mobile objects that are not

focal objects of any moving location queries do not need to report their position or velocity

changes to the location server if they do not have any nearby queries. The focal objects only

report to the location server when their velocity vectors change above certain threshold or

when they move out of their current grid cells.

A main challenge in the design of the MobiEyes distributed architecture is two fold.

First, we need to develop algorithms to carefully partition the processing cost of MQs into

the mediation processing at the server side and the local processing at the mobile object

side. Second, we need methods to identify the most appropriate subset of mobile objects

that can contribute to the answer of a given MQ in a given period of time.

We first introduce the concept of monitoring region for each moving query to model

the part of the grid area to which the spatial query region is confined when the focal

65

object of the query changes its position within its current grid cell. Second, we design

the concrete data structures and the distributed coordination mechanisms that are location

query aware for managing the communication and collaboration between the server and

the chosen subset of mobile objects, focusing on reducing the server load as well as the

messaging cost and thus the network bandwidth and power consumption at mobile objects.

This architecture design is especially effective when the number of mobile objects in the

geographical region considered is large and the number of MQs is relatively small and skewed

in terms of query distribution over the mobile objects considered. We also develop a set

of optimizations for efficient processing of MQs. We employ the lazy query propagation

technique to reduce the messaging cost of the communication between the mobile objects

and the server. We introduce the MQ grouping techniques to allow MobiEyes to handle hot

spot queries efficiently. We utilize the concept of safe period to allow further reduction on

the amount of local query processing at the mobile object side. We use the dead-reckoning

technique, popular in many centralized proposals for processing spatial queries on mobile

objects, to predict the position changes of mobile objects of interest.

In the subsequent sections, we first describe the main data structures used in MobiEyes

and then provide a detailed discussion on server side processing and mobile object side

processing. We defer the discussion on the set of optimization techniques to Section 3.4.

3.3.1 Data Structures

Server Side Data Structures

The server side stores four types of data structures: the focal object table FOT , the server

side moving query table SQT , the reverse query index matrix RQI, and the static grid cell

to base station mapping Bmap.

Focal Object Table, FOT = (oid, pos, vel, tm), is used to store information about mobile

objects that are the focal objects of MQs. The table is indexed on the oid attribute, which

is the unique object identifier. tm is the time at which the position, pos, and the velocity

vector, vel, of the focal object with identifier oid were recorded on the mobile object side.

When the focal object reports to the server its position and velocity change, it also includes

66

this timestamp in the report.

Server Side Moving Query Table, SQT = (qid, oid, region, curr cell, mon region,

filter, {result}), is used to store information about all spatial queries hosted by the system.

The table is indexed on the qid attribute, which represents the query identifier. oid is the

identifier of the focal object of the query. region is the query’s spatial region. curr cell is

the grid cell in which the focal object of the query locates. mon region is the monitoring

region of the query. {result} is the set of object identifiers representing the set of target

objects of the query. These objects are located within the query’s spatial region and satisfy

the query filter.

Reverse Query Index, RQI, is an M×N matrix whose cells are a set of query identifiers.

M and N denote the number of rows and the number of columns of the Grid corresponding

to the Universe of Discourse of a MobiEyes system. RQI(i, j) stores the identifiers of the

queries whose monitoring regions intersect with the grid cell Ai,j . RQI(i, j) represents the

nearby queries of an object whose current grid cell is Ai,j , i.e. ∀o ∈ O, nearby queries(o) =

RQI(i, j), where curr cell(o) = Ai,j . Formally it is defined as follows: RQI(i, j) = {qid :

∃e ∈ SQT s.t. e.qid = qid ∧ e.mon region ∩Ai,j �= ∅}.
Mobile Object Side Data Structures

Each mobile object o stores a local query table LQT and a Boolean variable hasMQ.

Local Query Table, LQT = (qid, pos, vel, tm, region, mon region, isTarget) is used to

store information about moving queries whose monitoring regions intersect with the current

grid cell in which the mobile object o currently locates in. qid is the unique query identifier

assigned at the time when the query is installed at the server. pos is the last known position,

and vel is the last known velocity vector of the focal object of the query. tm is the time

at which the position and the velocity vector of the focal object was recorded (by the focal

object of the query itself, not by the object on which LQT resides). isTarget is a Boolean

variable describing whether the object was found to be inside the query’s spatial region at

the last evaluation of this query by the mobile object o.

The Boolean variable hasMQ provides a flag showing whether the mobile object o

storing the LQT is a focal object of some query or not.

67

3.3.2 Server Side Processing

The location server side processing consists of two main tasks. First, it handles moving

location query installation requests from end-users of the location service application, in-

cluding mobile users. Second, it performs the mediation of location query processing at the

server side and mobile object side, including receiving and responding to (i) the significant

changes in velocity vector information of the mobile objects that are focal objects of some

location queries and (ii) the grid cell change events resulting from movement of focal or

non-focal objects out of their current grid cells. We leave the details of the second task to

Section 3.4.

To enable efficient processing at mobile object side, we introduce the monitoring region

of a moving location query to identify all mobile objects that may get included in the query’s

result when the focal object of the query moves within its current cell. The main idea is

to have those mobile objects that reside in a moving query’s monitoring region to be aware

of the query and to be responsible for calculating if they should be included in the query

result. Thus, the mobile objects that are not in the neighborhood of a moving query do not

need to be aware of the existence of the moving query, and the query result can be efficiently

maintained by the objects in the query’s monitoring region in a differential manner.

Installing MQs at the Location Server: Installation of a moving location query to

the MobiEyes system consists of two phases. First, the MQ is installed at the server side

and the server state is updated to reflect this. Second, the query is registered at the set of

mobile objects that are located inside the monitoring region of this MQ.

When the server receives a new MQ in the form (oid, region, filter), it performs the

following installation actions. (1) It first checks whether the focal object with identifier oid

is already contained in the FOT table. (2) If the focal object of the query already exists, it

means that either someone else has installed the same query earlier or there exist multiple

queries with different filters but the same focal object. Since the FOT table already contains

velocity and position information regarding the focal object of this query, the installation

simply creates a new entry for this new MQ and adds this entry to the sever-side query

table SQT and then modifies the RQI entry that corresponds to the current grid cell of the

68

(A) Server: Received Query(oid, region, filter)
(1) Let e = (oid, ∗, ∗, ∗) in FOT
(2) if e �= ∅
(3) pos← e.pos
(4) else
(5) Locate the position, pos, and velocity vector, vel, of the mobile object with identifier oid

together with the time, tm, this information was recorded. In case the query is received
from the object with identifier oid itself, then this information is also assumed to be received
with the query. Otherwise request this information from the object.

(6) Insert the entry (oid, pos, vel, tm) into FOT
(7) Assign a unique identifier, qid, to the query
(8) curr cell← Pmap(pos)
(9) Set mon region using curr cell and region
(10) Insert the entry (qid, oid, region, curr cell, mon region, filter, ∅) into SQT
(11) foreach Ai,j ⊂ mon region
(12) RQI(i, j)← RQI(i, j) ∪ {qid}
(13) Send(oid, [Query installed])
(14) B′ ← ⋃Ai,j∈mon region Bmap(i, j)
(15) foreach b ∈ B′

(16) Broadcast(b, [Install query (qid, pos, vel, tm, region, filter)])

(B) Mobile Object: Received Message [Query installed]()
(1) hasMQ← true

(C) Mobile Object: Received Message [Install query](qid, pos, vel, tm, region, filter)
(1) Use Pmap(pos) and region to calculate the mon region
(2) if current position is in mon region and filter(this) = true
(3) Insert entry (qid, pos, vel, tm, region,mon region, false) into LQT

Figure 22: Algorithm: New moving query posted to server

focal object to include this new MQ in the reverse query index (detailed in step (4)). At

this point the query is installed on the server side. (3) However, if the focal object of the

query is not present in the FOT table, then the server-side installation manager needs to

contact the focal object of this new query and request the position and velocity information.

Then the server can directly insert the entry (oid, pos, vel, tm) into FOT , where tm is the

timestamp when the object with identifier oid has recorded its pos and vel information. (4)

The server then assigns a unique identifier qid to the query and calculates the current grid

cell (curr cell) of the focal object and the monitoring region (mon region) of the query. A

new moving query entry (qid, oid, region, curr cell, mon region, filter) will be created

and added into the SQT table. The server also updates the RQI index by adding this query

with identifier qid to RQI(i, j) if Ai,j ∩mon region(qid) �= ∅. At this point the query is

installed on the server side.

69

There is a small complication involved in the installation of new MQs (see action (3)). If

the focal object of the new MQ is not present in the FOT table, and the MQ is not posted

by the focal object itself, then the server needs to first locate the focal object of the query

in order to obtain its current position and velocity vector information. A simple solution

is to use an additional table stored on the location server side, which stores base station

level [3, 21, 13, 89], or higher level location information regarding mobile objects. For

instance, in case we store base station level location information regarding mobile objects,

given an object identifier it is possible to locate the base station which covers its current

location. During query installation, this will enable us to communicate with the focal object

to receive its position and velocity vector information. The granularity of the information

maintained about object positions characterizes the tradeoff between the cost of locating

an object (in which base station’s coverage area it resides in) and the cost of maintaining

this information.

After installing queries on the server side, the server needs to complete the installation by

triggering query installation on the mobile object side. This job is done by performing two

tasks. First, the server sends an installation notification to the focal object with identifier

oid, which upon receiving the notification sets its hasMQ variable to true. This makes sure

that the mobile object knows that it is now a focal object and is supposed to report velocity

vector changes to the server. The second task is for the server to forward this query to

all objects that reside in the query’s monitoring region, so that they can install the query

and monitor their position changes to determine if they become the target objects of this

query. To perform this task, the server uses the mapping Bmap to determine the minimal

set of base stations that covers the monitoring region. Then the query is sent to all objects

that are covered by the base stations in this set through broadcast messages. The detailed

procedures for location query installation are given in Figure 22.

3.3.3 Mobile Object Side Processing

In MobiEyes, a mobile user can issue a location query or choose to enter a sleep mode at

anytime. Whenever mobile objects are awake and active, we assume that they are willing

70

(A) Mobile Object: Periodical Query Processing()
(1) Let pos be the current position of the object and ctm be the current time
(2) foreach e in LQT
(3) fpos← e.pos + (ctm− e.tm) ∗ e.vel {predict the position of the focal object}
(4) if (pos− fpos) ∈ e.region
(5) if e.isTarget = false
(6) Send(server, [Query result change (e.qid, oid, true)])
(7) e.isTarget← true
(8) else if e.isTarget = true
(9) Send(server, [Query result change (e.qid, oid, false)])
(10) e.isTarget← false

(B) Server: Received message [Query result change](qid, oid, isTarget)
(1) Let e = (qid, ∗, ∗, ∗, ∗, ∗, ∗, ∗) in SQT
(2) if isTarget = true
(3) e.result← e.result ∪ {oid}
(4) else
(5) e.result← e.result \ {oid}

Figure 23: Algorithm: Mobile object query processing logic

to participate in the corporative processing of nearby location queries. The task of making

sure that the mobile objects in the monitoring region of a moving location query are aware

of this MQ, is accomplished through server broadcasts, which are triggered by (i) server

side installations of new moving location queries or (ii) significant velocity vector changes

of the focal objects or (iii) current grid cell changes of focal or non-focal objects.

Installing MQs at the Mobile Object Side: The mobile object side processing for

location query installation is performed as follows: Upon receiving a broadcast message,

a mobile object examines each MQ in the broadcast message using its local state and

determines whether this MQ is nearby and whether it should be registered locally. The

decision is primarily based on whether the mobile object itself is within the monitoring

region of the MQ and whether the query’s filter is also satisfied by the mobile object. If the

answer to both of these questions is yes, the mobile object registers the query into its local

query table LQT . Otherwise the object discards the MQ. The details of these procedures

are given in Figure 22 (C).

Query Processing at the Mobile Objects: A mobile object periodically processes all

location queries registered in its LQT table. For each locally registered MQ, the mobile

object predicts the position of the focal object of the MQ using the velocity, time, and

71

position information available in the LQT entry of the MQ (line 3 under (A) in Figure 23).

Then the object compares its current position and the predicted position of the focal object

of this MQ through a simple containment check based on the spatial region of this MQ,

and determines whether itself is covered by the query’s spatial region or not. If the result

is not different than the last result computed in the previous time step, no reporting to the

server is performed. Otherwise, we have one of two situations: the mobile object has just

moved into the spatial region of the MQ or it has just moved out of the spatial region of

this MQ. In both cases, the change is relayed to the location server. The server, in turn,

differentially updates the query result to keep the answer to this MQ up to date. Figure 23

describes mobile object side query processing in detail.

3.4 Optimizations: Efficient and Reliable Processing of MQs

3.4.1 Efficient Processing of MQs

We have presented the basic algorithms for distributed processing of moving location queries.

In this section we describe four optimization mechanisms used in MobiEyes to efficiently

handle system dynamics with the aim of minimizing the server load and the amount of

local processing at the mobile object side, and reducing the communication cost between

the mobile objects and the location server.

3.4.1.1 Handling Mobility of Queries and Objects

Once a moving location query (MQ) is installed in the MobiEyes system, the focal object of

the MQ needs to report to the server only when there is a significant change to its location

information. We consider two types of changes to be significant: (1) when a focal object

moves out of its current grid cell, or (2) when the focal object of a MQ changes its velocity

vector beyond a pre-defined threshold. On the other hand, a non-focal object may 1 need to

report to the server only when it changes its current grid cell. We describe the mechanisms

for handling velocity vector changes first and then discuss the mechanisms for handling

objects that change their current grid cells.

1Depends on whether Eager Query Processing (EQP) or Lazy Query Processing (LQP) is used

72

Handling Velocity Vector Changes with Dead Reckoning

The velocity vector of a mobile object will almost always change at each time step in a

real world setup, although the change might be insignificant compared to the previous time

step. One way to control the amount of location updates from mobile objects to the location

server is to notify the server of the new velocity vector information of the focal object of

a MQ and have the server to relay such update to the objects located in the monitoring

region of the MQ, only if the change in the velocity vector is significant. In MobiEyes, we

use a variation of dead reckoning to decide what constitutes a (significant) velocity vector

change.

v

v

v+ε
1

v-ε
2

v+ε
3

d
1
<Δ

d
2
<Δ

d
3
>Δ

Path of the focal object as predicted by a different object
Real path of the focal object
Sampling Points

v Velocity vector of the focal object

! notify server !

! received velocity update !

! perform update !

Figure 24: Dead reckoning in MQ evaluation

Concretely, at each time step the focal object of a query samples its current position

and calculates the difference between its current position and the position predicted using

the last velocity vector information it reported to the location server. In case this difference

is larger than a threshold, say Δ, the new velocity vector information is relayed to the

location server 2. Figure 24 provides an illustration. The path of a focal object is depicted

with a solid line, where its path predicted by objects in its monitoring region (based on its

last velocity information relayed to the objects) is depicted with a dashed line. At each

time step, the focal object first samples its position, which is depicted by small squares in

the figure. Then it calculates the position that other objects predict it to be at, which is

depicted with small circles in the figure. In case the distance between these two positions

is larger than Δ, the focal object notifies the server with its new velocity vector and the

2We do not consider inaccuracies due to motion modeling. See [131] for a discussion of motion update
policies and tradeoffs.

73

(A) Mobile Object: Periodic Velocity Change Processing()
(1) if hasMQ = true
(2) Let pvel be the last velocity and ppos be the last position information relayed to the server

where ptm is the time this information was relayed
(3) Record the new position, pos, new velocity vector, vel, and the current time, tm
(4) opos← ppos + (tm− ptm) ∗ pvel {perform dead-reckoning}
(5) if |opos− pos| > Δ
(6) Send(server, [New velocity data (oid, pos, vel, tm)])

(B) Server: Received Message [New velocity data](oid, pos, vel, tm)
(1) Let e = (oid, ∗, ∗, ∗) in FOT
(2) e← (oid, pos, vel, tm) {update the entry e}
(3) foreach e = (∗, oid, ∗, ∗, ∗, ∗, ∗, ∗) in SQT
(4) B′ ← ⋃Ai,j⊂e.mon region Bmap(i, j)
(5) foreach b ∈ B′

(6) Broadcast(b, [Query velocity change (e.qid, pos, vel, tm)])

(C) Mobile Object: Received Message[Query velocity change](qid, pos, vel, tm)
(1) Let e = (qid, ∗, ∗, ∗, ∗, ∗, ∗) in LQT
(2) if e �= ∅
(3) e.pos← pos; e.vel← vel; e.tm← tm

Figure 25: Algorithm: Mobile object changed velocity vector

server relays the new velocity information of the focal object to all objects in its monitoring

region through broadcast (see the fifth time step in Figure 24).

Figure 26: Conveying velocity vector changes

Concretely, when the focal object of a MQ reports a significant velocity vector change,

it sends its new velocity vector, its position and the timestamp at which this information

was recorded, to the server. The server first updates the FOT table with the information

received from the focal object. Then for each query associated with the focal object, the

server communicates the newly received information to objects located in the monitoring

region of the query by using an optimized broadcast schedule, which generates the minimum

74

number of broadcasts using the grid cell to base station mapping Bmap. An illustration

of this process is given in Figure 26, where a focal object together with its monitoring

region is shown. The focal object sends its new velocity information to the server (shown

with double headed arrows in the figure), which in turn broadcasts this information using

two base stations that cover the monitoring region of the query (shown with single headed

arrows in Figure 26). The algorithm given in Figure 25 describes velocity vector change

handling in detail.

One way to optimize the broadcast frequency of propagating velocity updates to mobile

objects of interest is to let the server batch several velocity vector updates from mobile objects

and broadcast them during agreed upon time intervals so that the mobile objects can activate

their radio only during scheduled intervals, thus leading to considerable saving in terms of

power consumption.

Handling Objects that Change Grid Cells: Eager or Lazy Query Propagation

Based on the grid structure and the monitoring region of MQs in MobiEyes, as long as all

mobile object move within their current cells, the list of nearby MQs responsible by the

mobile objects will remain the same. However, when a mobile object changes its current

grid cell, such location update may cause a change to the set of moving location queries

this object is responsible for monitoring. In case the object that has changed its current

grid cell is a focal object, the location update may also cause a change to the set of mobile

objects responsible for monitoring the MQs bounded to this focal object.

With Eager Query Propagation (EQP), when an object changes its current grid cell, it

immediately notifies the server of this change by sending its object identifier, its previous

grid cell and its new current grid cell to the server. The object also removes those queries

whose monitoring regions no longer cover its new current grid cell from its local query table

LQT . Upon receipt of the notification, if the object is a non-focal object, the server only

needs to find what new queries should be installed on this object and then perform the

query installation on this mobile object.

The server uses the reverse query index RQI together with the previous and the new

current grid cell of the object to determine the set of new queries that has to be installed

75

(A) Mobile Object: Changed Current Grid Cell()
(1) Let pos be the new position of the mobile object
(2) Remove all entries e in LQT satisfying pos �⊂ e.mon region
(3) Let Aip,jp

be the previous and Aic,jc
be the current grid cell in which pos lies

(4) Send(server, [Object changed grid cell (oid, (ip, jp), (ic, jc))])

(B) Server: Received Message [Object changed grid cell](oid, (ip, jp), (ic, jc))
(1) Qdiff ← RQI(ic, jc) \RQI(ip, jp)
(2) foreach qid ∈ Qdiff

(3) Let e = (qid, ∗, ∗, ∗, ∗, ∗, ∗, ∗) in SQT
(4) Send(oid, [Install query (e.qid, e.pos, e.vel, e.tm, e.region, e.filter)])
(5) Let e = (oid, ∗, ∗, ∗) in FOT
(6) foreach es = (∗, oid, ∗, ∗, ∗, ∗, ∗, ∗) in SQT
(7) es.curr cell← Aic,jc

(8) old mon region← es.mon region
(9) Set es.mon region using es.region and es.curr cell
(10) foreach Ai,j ⊂ (old mon region \ es.mon region)
(11) RQI(i, j)← RQI(i, j) \ {es.qid}
(12) foreach Ai,j ⊂ (es.mon region \ old mon region)
(13) RQI(i, j)← RQI(i, j) ∪ {es.qid}
(14) combined area← es.mon region ∪ old mon region
(15) B′ ← ⋃Ai,j⊂combined area Bmap(i, j)
(16) foreach b ∈ B′

(17) Broadcast(b, [Update query (es.qid, e.pos, e.vel, e.tm, es.region, es.filter)])

(C) Mobile Object: Received Message [Update.query](qid, pos, vel, tm, region, filter)
(1) Use pos and region to calculate the mon region
(2) Let e = (qid, ∗, ∗, ∗, ∗, ∗, ∗) in LQT
(3) if current position is in mon region
(4) if e �= ∅
(5) e.mon region← mon region
(6) else if filter(this) = true
(7) Insert (qid, pos, vel, tm, region,mon region, false) into LQT
(8) else
(9) Remove entry e (if exists) from LQT

Figure 27: Algorithm: Mobile object changed its current grid cell

on this mobile object. Then the server sends the set of new queries to the mobile object

for installation. The focal object table FOT and the server query table SQT are used to

create the required installation information for the queries to be installed on the object.

However, if the object that changes its current grid cell is also a focal object of some query,

then for each query with this object as its focal object, the server performs the following

operations: (1) It updates the query’s SQT table entry by resetting the current grid cell

and the monitoring region to their new values. (2) It also updates the RQI index to reflect

the change. (3) Then the server computes the union of the query’s previous monitoring

76

region and its new monitoring region, and (4) sends a broadcast message to all objects that

reside in this combined area. This message includes information about the new state of the

query. Upon receipt of this message from the server, a mobile object performs the following

operations for installing or removing a moving location query. It checks whether its current

grid cell is covered by the query’s monitoring region. If not, the object removes the query

from its LQT table (if the entry already exists), since the object’s position is no longer

covered by the query’s monitoring region. Otherwise, it installs the query if the query is

not already installed and the query filter is satisfied, by adding a new query entry in the

LQT table. In case that the query is already installed in LQT , it updates the monitoring

region of the query’s entry in LQT . The detailed procedure is given by Figure 27.

When using an eager query propagation scheme, we require each mobile object (focal

or non-focal) that changes its current grid cell to report this change to its location server

immediately. The only reason for a non-focal object to communicate with the server is to

immediately obtain the list of new location queries that it needs to register in response

to the change of its current grid cell. One way to reduce the amount of communication

between mobile objects and the location server is to use a lazy query propagation scheme.

This allows us to eliminate the need for non-focal objects to contact the server to obtain the

list of new MQs. Concretely, instead of obtaining the new location queries from the server

and installing them immediately on the object upon a change of grid cell, the mobile object

can wait until the location server broadcasts the next velocity vector changes regarding the

focal objects of the MQs to the area in which the object locates. In this case the velocity

vector change notifications are expanded to include the spatial region and the filter of the

moving location queries, so that the object can install the new queries upon receiving the

broadcast message on the velocity vector changes of the focal objects of the MQs. Using lazy

propagation, a mobile object upon changing its current grid cell will be unaware of the new

set of location queries nearby until the focal objects of these location queries change their

velocity vectors or move out of their current grid cells. Obviously lazy propagation works

well when the gird cell size α is large and the focal objects change their velocity vectors

frequently. The lazy query propagation may not prevail over the eager query propagation,

77

when: (1) most of the focal objects do not change their velocity vectors to cause inaccurate

predictions beyond the specified threshold frequently, (2) the grid cell size α is too small,

and (3) the non-focal objects change their current grid cells at a much faster rate than the

focal objects. In such situations, non-focal objects may end up not being included in some

of nearby moving location queries. We experimentally evaluate the Lazy Query Propagation

(LQP) approach and study its performance advantages as well as its impact on query result

accuracy in Section 3.5.

3.4.1.2 Location Query Grouping

In MobiEyes, a mobile user can pose many different queries and a query can be posed multi-

ple times by different users. Thus, many moving location queries may share the same focal

object. Effective optimizations can be applied to handle multiple location queries bound

to the same mobile object. These optimizations help decreasing both the computational

load on the mobile objects and the messaging cost of the MobiEyes approach, in situations

where the query distribution over focal objects is skewed. We define a set of moving location

queries as groupable MQs if they are bounded to the same focal object. We refer to those

groupable MQs that have the same monitoring region as MQs with matching monitoring

regions, and refer to the groupable MQs that have different monitoring regions as MQs

with non-matching monitoring regions (See Figure 28). Based on these different sharing

patterns, different grouping techniques can be applied to groupable MQs.

Grouping MQs with Matching Monitoring Regions

MQs with matching monitoring regions can be grouped most efficiently to reduce the com-

munication and processing costs of such queries. We illustrate this with an example.

r

Figure 28: Minimizing duplicate processing by grouping moving location queries

78

Consider three MQs: q1 = (qid1, oidi, r1, filter1), q2 = (qid2, oidi, r2, filter2), and

q3 = (qid3, oidi, r3, filter3) that share the same monitoring region. Note that these queries

share their focal object, which is the object with identifier oidi. Instead of shipping three

separate queries to the mobile objects, the server can combine these queries into a single

query as follows: q3 = (qid3, oidi, (r1, r2, r3), (filter1, filter2, filter3)). To facilitate the

local processing of groupable MQs, we introduce the concept of query bitmap, which is a

bitmap containing one bit for each location query in a query group, each bit can be set

to 1 or 0 indicating whether the corresponding query should include the mobile object

in its result or not. When a mobile object is processing a set of groupable MQs with

matching monitoring regions, it first checks if its current position is inside the spatial region

of a location query with a larger radius. Only when its current position is inside the spatial

region of a location query with a larger radius, it needs to consider the location queries with

smaller radiuses. When a mobile object reports to the server whether it is included in the

results of queries that form the grouped query or not, it will attach the query bitmap to the

notification report. With the query bitmap the location server can easily determine whether

the reporting mobile object should be included in the query results of which groupable MQs.

Grouping MQs with Non-Matching Monitoring Regions

For groupable MQs with non-matching monitoring regions, we propose to perform the

location query grouping at the mobile object side only. We illustrate this claim with an

example. Consider an object oj inside region B in Figure 28. Since there is no global server

side grouping performed for queries q4 and q5, oj has both of them installed in its LQT

table. oj can save some processing by linking these two queries inside its LQT table. This

way it only needs to consider the query with smaller radius only if it finds out that its

current position is inside the spatial region of the one with the larger radius.

3.4.1.3 Reducing Local Processing Cost with Safe Period Optimization

In MobiEyes, each mobile object that resides in the monitoring region of a query needs to

evaluate the queries registered in its local query table LQT periodically. For each query

79

the candidate object needs to determine if it should be included in the answer of the query.

The interval for such periodic evaluation can be set either by the server or by the mobile

object itself. A safe-period optimization can be applied to reduce the computation load

on the mobile object side, which computes a safe period for each object in the monitoring

region of a query, if an upper bound (maxV el) exists on the maximum velocities of the

mobile objects.

oi

oj

qk

dist(o i,o j)

 o j.m
axVel * s

p

q k.r

o i.m
axVel * s

p

Figure 29: Safe period optimization

The safe periods for queries are calculated by an object o as follows: For each query q

in its LQT table, the object o calculates a worst case lower bound on the amount of time

that has to pass for it to locate inside the area covered by the query q’s spatial region. We

call this time, the safe period (sp) of the object o with respect to the query q, denoted

as sp(o, q). The safe period can be formally defined as follows. Let oi be the object that

has the query qk with focal object oj in its LQT table, and let dist(oi, oj) denote the

distance between these two objects, and let qk.region denote the circle shaped region with

radius r. In the worst case, the two objects approach to each other with their maximum

velocities in the direction of the shortest path between them, as shown in Figure 29. Then

sp(oi, qk) = dist(oi,oj)−r
oi.maxV el+oj .maxV el .

Once the safe period sp of a mobile object is calculated for a query, it is safe for the

object to start the periodic evaluation of this query after the safe period has passed. In

order to integrate this optimization with the base algorithm, we include a processing time

(ptm) field into the LQT table, which is initialized to 0. When a query in LQT is to be

processed, ptm is checked first. In case ptm is ahead of the current time ctm, the query is

80

skipped. Otherwise, it is processed as usual. After processing of the query, if the object

is found to be outside the area covered by the query’s spatial region, the safe period sp is

calculated for the query and processing time ptm of the query is set to current time plus

the safe period, ctm+sp. When the query evaluation period is short, or the object speeds

are low or the cell size α of the grid is large, this optimization can be very effective.

3.4.2 Reliable Processing of MQs

Another important issue in distributed processing of moving queries is the level of reliabil-

ity guarantee that the system can provide. In MobiEyes, the reliability of the system is

defined by the reliability of the mobile objects and the reliability of the server (including

the reliability of the communication between mobile objects and the server) with respect to

distributed processing of moving queries.

3.4.2.1 Reliability of the Mobile Objects

In MobiEyes, each mobile object whose current grid cell intersects with the monitoring

region of a moving query will maintain an entry associated with that query in its local MQ

table (LQT) (recall Section 3.3.1). The LQT table is the most important state information

maintained at the mobile object. It keeps all the MQs that this mobile object needs to

process. In the event of failure, such as the computational unit on a mobile object crashes,

the LQT state is either lost (when the previous state information was not stored persistently

and made available) or less current (when the recovery can only restart the system at the

previous checkpoint of the state). One way to recover this state is to obtain the new state

through re-initialization with the server upon restart. However several problems (such as

stale LQT state, incorrect query results) may occur when the mobile object continues to

move in the presence of crashes on its computing unit or the focal objects of some MQs in

its LQT table continue to move during the failure period. The degree of damages caused

by such problems depends upon whether the mobile object experiencing the failure is a

non-focal or focal object.

Failure at a Non-focal Mobile Object

When failure happens at a mobile object that is a non-focal object, we may have the mobile

81

object incorrectly included in some of the query results for an arbitrarily long time. This

is primarily caused by the following two possible errors due to the failure at the non-focal

object: First, the non-focal object may continue to move in the presence of crashes on its

computing unit. Such location changes will not be reported to the server due to the failure

at the non-focal object. Second, the focal objects of some MQs in the LQT table of this

non-focal object may continue to move during the failure period and report their locations

to the server whenever a significant change occurs. The location updates of these focal

objects will be disseminated to this non-focal object by the server through broadcast, but

this broadcast will not be received and processed at the non-focal object due to failure.

In both cases, the location changes of the non-focal object or the location changes of the

focal objects in its LQT table, during the period of failure, may cause following events to

happen: (1) The spatial regions of some MQs in the LQT table of the non-focal object no

longer contain its position; and (2) The current grid cell of the non-focal object no longer

intersects with the monitoring regions of some MQs listed in its LQT table before the crash.

In an ordinary situation, when the non-focal object detects that the spatial region of a

MQ in its LQT table no longer contains its position, the non-focal object will be removed

from the result set of this MQ and this change will be reported to the server through a query

result change update. Similarly, when the non-focal object detects that the monitoring

region of a MQ in its LQT table does not intersect with its current grid cell anymore, it

will remove the MQ from its LQT table. Furthermore, the reverse query index maintained

at the server (which corresponds to the entries in LQT table) will no longer list this MQ in

the moving query list corresponding to the current grid cell of the non-focal object.

However, due to the failure happened at the non-focal object, its LQT table can only be

recovered to the new state through re-initialization with the server upon the restart of the

computing unit, based on the reverse query index of the non-focal object’s current grid cell.

The new LQT table may not contain the MQs whose results, before the crash, included the

non-focal object (due to events (1) and (2) described above). As a consequence, the results

of these MQs at the server side will falsely include this non-focal object, for two reasons:

(i) The non-focal object did not send the query result changes to the server due to failure;

82

and (ii) It could not send these changes to the server upon the restart, as its new LQT

table does not include these MQs anymore.

In short, it is the mobile object’s responsibility to report to the server when it changes

its state with regard to being included in or excluded from a query’s result. When the

mobile object experiences failure such as crashes of the computing unit, it loses not only

its LQT table but also the local processing and reporting capability. Since the recovered

LQT table through re-initialization with the server upon restart may not include some of

the MQs whose query results should have been updated during the failure period to exclude

the mobile object from their query result sets, the failure leads to incorrect query results

maintained at the server side for an arbitrary long time.

Failure at a Focal Mobile Object

When failure happens at a mobile object that is a focal object, in addition to the problems

stated above, a new problem arises: We may have stale moving query entries, corresponding

to the focal object experiencing failure, residing in the LQT tables of other mobile objects.

This is because, location changes of the focal object that has experienced failure will be

lost during the failure period. In an ordinary situation, such location changes may result in

MQs associated with the focal object to be removed from the LQT tables of other objects

when the current cells of these objects do not intersect with the new monitoring region of

the MQs associated with the focal object.

However, due to the failure happened at the focal object, such monitoring region changes

are lost at the focal object and in turn LQT state updates are not performed at the mobile

objects whose LQT tables contain MQs associated with the focal object. As a result,

the mobile objects that were residing in the monitoring region just before the focal object

crashed, but are not residing in the monitoring region upon the restart of the focal object,

may still have an entry in their LQT tables corresponding to the failed focal object, which

should have been removed in an ordinary situation. Furthermore, these entries may contain

stale information about focal objects and may result in sending wrong query result updates.

In the worst case, these entries may stay in the LQT tables for an arbitrarily long time.

The above-mentioned problems can be aggravated when the computational unit on

83

a mobile object fails and stops for an arbitrarily long time. When this happens, we need

efficient mechanisms such that queries corresponding to such failed and stopped focal objects

and query result entries corresponding to such failed and stopped focal or non-focal objects

can be detected in time and removed from the system.

In MobiEyes, we introduce a simple and yet effective mechanism, called forced updates,

to solve the problems described above.

Error Handling Through Forced Updates

MobiEyes provides two kinds of forced updates to ensure the reliability of the system against

failures:

Forced Result Updates: In the basic model of MobiEyes without reliability guarantee,

each mobile object sends query result updates to the server only when it is included into

or excluded from the result of a MQ in its LQT table. With forced result updates, we

additionally require that each mobile object reports its state on whether it is included in

or excluded from the result of a MQ in its LQT table to the server periodically (every Tr

time unit), regardless of whether or not a change has occurred in the inclusion status of the

object with respect to the results of queries in LQT .

Forced Velocity Vector Updates: Similarly, in the basic model of MobiEyes, each fo-

cal object sends location updates to the server whenever its velocity vector has changed

significantly. With forced velocity vector updates, we additionally require that each focal

object reports its location update to the server periodically (every Tr time unit) even if no

significant change occurred in the velocity vector.

With the forced result updates, a query result entry is considered invalid if it is not

updated during the last c ∗ Tr time units. Similarly, with forced velocity vector updates,

a moving query entry in a LQT table is considered invalid if the velocity vector field of

the entry is not updated during the last c ∗ Tr time units. The time interval parameter Tr

adjusts the tradeoff between performance and accuracy. With smaller values of Tr errors

are resolved faster (increased accuracy) but more messages need to be exchanged between

mobile objects and the server. Accuracy is obtained with the price of performance. On the

other hand, with larger values of Tr we require less messages to be exchanged between mobile

84

objects and the server (increased performance), but errors are resolved slower (decreased

accuracy). The parameter c is used to control the tolerance to delays and errors in the

communication.

3.4.2.2 Reliability of the Server

The distributed approach taken by MobiEyes significantly decreases the load on the server

side, making a server crash less probable. However, a crash on the server side is a serious

issue for the system. Handling a server crash requires more than recovering the server state,

because the state maintained persistently on the server side may not reflect the most recent

updates at the server before the crash occurred. Thus the server state upon recovery may

contain stale information. Since the algorithms for updating the server state during the

normal operation of the system are mostly incremental, an effective way to handle a server

failure is to use a failover solution through replicated servers [109]. In the absence of failover

servers, a straight forward approach to handle a server crash is to re-initialize the whole

system.

3.5 Experiments

In this section we describe three sets of simulation based experiments, which are used

to evaluate our solution. The first set of experiments illustrates the scalability of the

MobiEyes approach with respect to server load. The second set of experiments focuses on

the messaging cost and studies the effects of several parameters on the messaging cost. We

also give an analytical estimate of the messaging cost and compare it with the results from

simulations. The third set of experiments investigates the amount of computation a mobile

object has to perform, by measuring on average the number of queries a mobile object needs

to process during each local evaluation period.

3.5.1 Simulation Setup

We list the set of parameters used in the simulation in Table 2. In all of the experiments

presented in the rest of the chapter, the parameters take their default values if not specified

otherwise. The area of interest considered in the simulation is a square shaped region of 300

85

Table 2: Simulation parameters
Parameter Description Value range Default value
ts Time step 30 seconds
α Grid cell side length 0.5-16 miles 5 miles
no Number of objects 1,000-100,000 10,000
nmq Number of moving queries 100-1,000 1,000

nmo
Number of objects changing 100-10,000 1,000velocity vector per time step

area Area of consideration 300 x 300 square miles
alen Base station side length 5-80 miles 10 miles
qradius Query radius {3, 2, 1, 4, 5} miles
qselect Query selectivity 0.75
mospeed Max. object speed {100, 50, 150, 200, 250} miles/hour

x 300 square miles. The number of objects we consider ranges from 1,000 to 100,000 where

the number of queries range from 100 to 1,000. These numbers can be scaled up without

effecting the conclusions we draw from our experiments, as long as the object density is

kept constant. The ratio of these parameters to one another closely follows the values used

in [94].

We randomly select focal objects of the queries using a uniform distribution. The spatial

region of a query is taken as a circular region whose radius is a random variable following

a normal distribution. For a given query, the mean of the query radius is selected from

the list {3, 2, 1, 4, 5}(miles) following a zipf distribution with parameter 0.8 and the std.

deviation of the query radius is taken as 1/5th of its mean. The selectivity of the queries is

taken as 0.75. This means that 75% of the objects satisfy the filter of a given query.

We model the movement of the objects as follows. We assign a maximum velocity to

each object from the list {100, 50, 150, 200, 250}(miles/hour), using a zipf distribution

with parameter 0.8. The default object speeds are set high in our experimental setup in

order to stress test the algorithms. We also experiment with lower object speeds (that are

more favorable against MobiEyes) by scaling the values in the default object speed list by

a velocity factor smaller than 1. The simulation has a time step parameter of 30 seconds.

In every time step we pick a number of objects at random and set their normalized velocity

vectors to a random direction, while setting their velocity to a random value between zero

and their maximum velocity. All other objects are assumed to continue their motion with

86

their unchanged velocity vectors. The number of objects that change velocity vectors during

each time step is a parameter whose value ranges from 100 to 10,000.

3.5.2 Server Load

In this section we compare our MobiEyes distributed query processing approach with two

popular central query processing approaches, with regard to server load. The two centralized

approaches we consider are indexing objects and indexing queries. Both are based on a

central server on which the object locations are explicitly manipulated by the server logic

as they arrive, for the purpose of answering queries. We can either assume that the objects

are reporting their positions periodically or we can assume that periodically object locations

are extracted from velocity vector and time information associated with mobile objects, on

the server side. We first describe these two approaches and later compare them with the

distributed MobiEyes distributed approach with regard to server load.

Indexing Objects: The first centralized approach to processing spatial continuous queries

on mobile objects is by indexing objects. In this approach a spatial index is built over object

locations. We use an R∗-tree [16] for this purpose. As new object positions are received,

the spatial index (the R∗-tree) on object locations is updated with the new information.

Periodically all queries are evaluated against the object index and the new results of the

queries are determined. This is a straightforward approach and it is costly due to the

frequent updates required on the spatial index over object locations. A better way to

evaluate MQs is to use an index on queries instead of objects, as the number of queries is

expected to be smaller than the number of objects.

Indexing Queries: The second centralized approach to processing spatial continuous

queries on mobile objects is by indexing queries. In this approach a spatial index, again

an R∗-tree indeed, is built on moving queries. As the new positions of the focal objects of

the queries are received, the spatial index is updated. This approach has the advantage of

being able to perform differential evaluation of query results. When a new object position is

received, it is run through the query index to determine to which queries this object actually

contributes. Then the object is added to the results of these queries, and is removed from

87

the results of other queries that have included it as a target object before.

We have implemented both the object index and the query index approaches for cen-

tralized processing of MQs. As a measure of server load, we took the time spent by the

simulation for executing the server side logic per time step. Figure 30 and Figure 32 de-

pict the results obtained. Note that the y-axises, which represent the sever load, are in

log-scale. The x-axis represents the number of queries considered in Figure 30, and the

different settings of α parameter in Figure 32.

It is observed from Figure 30 that the MobiEyes approach provides up to two orders

of magnitude improvement on server load. In contrast, the object index approach has an

almost constant cost, which slightly increases with the number of queries. This is due to

the fact that the main cost of this approach is to update the spatial index when object

positions change. Although the query index approach clearly outperforms the object index

approach for small number of queries, its performance worsens as the number of queries

increase. This is due to the fact that the main cost of this approach is to update the spatial

index when focal objects of the queries change their positions. Our distributed approach

also shows an increase in server load as the number of queries increase, but it preserves the

relative gain against the query index.

100 200 300 400 500 600 700 800 900 1000
10

-1

10
0

10
1

10
2

number of queries

se
rv

er
 lo

ad

query index
object index
MobiEyes LQP
MobiEyes EQP

Figure 30: Impact of distributed query processing on server load

Figure 30 also shows the improvement in server load using lazy query propagation (LQP)

compared to the default eager query propagation (EQP). However as described in Sec-

tion 3.4, lazy query propagation may have some inaccuracy associated with it. Figure 31

88

100 200 300 400 500 600 700 800 900 1000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

number of objects changing velocity vector per interval
av

er
ag

e
er

ro
r

in
 q

u
er

y
re

su
lt

s

alpha=2
alpha=4
alpha=8

Figure 31: Error associated with lazy query propagation

studies this inaccuracy and the parameters that influence it. For a given query, we define

the error in the query result at a given time, as the number of missing object identifiers in

the result (compared to the correct result) divided by the size of the correct query result.

Figure 31 plots the average error in the query results when lazy query propagation is used as

a function of number of objects changing velocity vectors per time step for different values

of α. Frequent velocity vector changes are expected to increase the accuracy of the query

results. This is observed from Figure 31 as it shows that the error in query results decreases

with increasing number of objects changing velocity vectors per time step. Frequent grid

cell crossings are expected to decrease the accuracy of the query results. This is observed

from Figure 31 as it shows that the error in query results increases with decreasing α.

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

alpha

se
rv

er
 lo

ad

query index
object index
MobiEyes EQP

Figure 32: Effect of α on server load

Figure 32 shows that the performance of the MobiEyes approach in terms of server load

89

worsens for too small and too large values of the α parameter. However it still outperforms

the object index and query index approaches. For small values of α, the frequent grid

cell changes increase the server load. On the other hand, for large values of α, the large

monitoring areas increase the server’s job of mediating between focal objects and the objects

that are lying in the monitoring regions of the focal objects’ queries. Several factors may

affect the selection of an appropriate α value. We further investigate the problem of selecting

a good value for α, through the use of an analytical model, in the next section.

3.5.3 Messaging Cost

In this section we discuss the effects of several parameters on the messaging cost of our

solution. In most of the experiments presented in this section, we report the total number

of messages sent on the wireless medium per second. The number of messages reported

includes two types of messages. The first type of messages are the ones that are sent from a

mobile object to the server (uplink messages), and the second type of messages are the ones

broadcasted by a base station to a certain area or sent to a mobile object as a one-to-one

message from the server (downlink messages). We evaluate and compare our results using

two different scenarios. In the first scenario each object reports its position directly to the

server at each time step, if its position has changed. We name this as the näıve approach. In

the second scenario each object reports its velocity vector at each time step, if the velocity

vector has changed (significantly) since the last time. We name this as the central velocity

approach. This is the minimum amount of information required for a centralized approach

to evaluate queries unless there is an assumption about object trajectories. Both of the

scenarios assume a central processing scheme.

One crucial concern is defining an optimal value for the parameter α, which is the length

of a grid cell. The graph in Figure 33 plots the number of messages per second as a function

of α for different number of queries. As seen from the figure, both too small and too large

values of α have a negative effect on the messaging cost. For smaller values of α this is

because objects change their current grid cell quite frequently. For larger values of α this

is mainly because the monitoring regions of the queries become larger. As a result, more

90

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

alpha
n

u
m

b
er

 o
f

m
es

sa
g

es
 p

er
 s

ec
o

n
d MobiEyes EQP 100 mq

MobiEyes EQP 200 mq
MobiEyes EQP 400 mq
MobiEyes EQP 600 mq
MobiEyes EQP 800 mq
MobiEyes EQP 1000 mq

Figure 33: Effect of α on messaging cost

broadcasts are needed to notify objects in a larger area, of the changes related to focal

objects of the queries they are subject to be considered against. Figure 33 shows that

values in the range [4,6] are ideal for α with respect to the number of queries ranging from

100 to 1000. The optimal value of the α parameter can be derived analytically using a

simple model (see Appendix B).

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

number of objects

nu
m

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

MobiEyes EQP − 100 mq
MobiEyes EQP − 1000 mq
MobiEyes LQP − 100 mq
MobiEyes LQP − 1000 mq
centr. velocity
naive

Figure 34: Effect of number of objects on messaging cost

Figure 34 studies the effect of number of objects on the messaging cost. It plots the

number of messages per second (in logarithmic scale) as a function of number of objects

for different numbers of queries. While the number of objects is altered, the ratio of the

number of objects changing their velocity vectors per time step to the total number of

objects is kept constant and equal to its default value as obtained from Table 2. It is

observed that, when the number of queries is large and the number of objects is small, all

91

approaches come close to one another, except the central velocity approach which provides

lower messaging cost. When both the number of queries and the number of objects are

small, again all approaches come close to one another, this time except the nav̈e approach

which incurs higher messaging cost. However, all approaches other than MobiEyes with

LQP, have a high messaging cost when the ratio of the number of objects to the number

of queries is high. On the other hand, MobiEyes with EQP shows similar scalability with

the central velocity approach. MobiEyes with LQP scales better than all other approaches

with increasing number of objects is because, it does not require non-focal objects to report

their positions to the server.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200

velocity factor

n
u

m
b

er
 o

f
m

es
sa

g
es

 p
er

 s
ec

o
n

d

MobiEyes EQP − 10000 objects
MobiEyes EQP − 100000 objects
MobiEyes LQP − 10000 objects
MobiEyes LQP − 100000 objects

Figure 35: Effect of objects speeds on messaging cost

Figure 35 shows the messaging cost as a function of velocity factor for different numbers

of objects. Note that the default object speeds are set high in our experimental setup in

order to stress test the algorithms. In this experiment, velocity factor is used to scale down

the object speeds. Figure 35 shows that the relatively high messaging cost of MobiEyes with

EQP is mainly due to high object speeds, where the impact of object speeds on messaging

cost is similar for MobiEyes with LQP although on a smaller scale. The main reason for

MobiEyes with EQP to perform better with lower speeds is the decreased number of cell

crossings for non-focal objects, which results in less communication with the server. We

also observe from Figure 35 that the improvement in messaging cost with decreasing object

speeds is more prominent for large number of objects.

Figure 36 studies the effect of number of objects changing velocity vector per time step

92

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

number of objects changing velocity vector per time step

nu
m

be
r o

f m
es

sa
ge

s
pe

r t
im

e
st

ep

MobiEyes EQP − 100 mq
MobiEyes EQP − 1000 mq
MobiEyes LQP − 100 mq
MobiEyes LQP − 1000 mq
centr. velocity
naive

Figure 36: Effect of number of objects changing velocity vector on messaging cost

on the messaging cost. It plots the number of messages per second as a function of the

number of objects changing velocity vector per time step for different numbers of queries.

An important observation from Figure 36 is that the messaging cost of MobiEyes with LQP

scales well when compared to the central velocity approach, since the gap between the two

increases as the number of objects changing velocity vector per time step increases. Note

that the central velocity approach degrades to the näıve approach when all objects change

their velocity vectors at each time step. MobiEyes with EQP performs better than the

central velocity approach only for small number of queries and large number of objects

changing velocity vector per time step.

0 1000 2000 3000 4000 5000 6000 7000
10

0

10
1

10
2

10
3

base station coverage area

nu
m

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

MobiEyes EQP − 100 mq
MobiEyes EQP − 1000 mq
MobiEyes LQP − 100 mq
MobiEyes LQP − 1000 mq

centr. velocity
naive

Figure 37: Effect of base station coverage area on messaging cost

Figure 37 studies the effect of base station coverage area on the messaging cost. It

plots the number of messages per second as a function of the base station coverage area for

93

different numbers of queries. It is observed from Figure 37 that increasing the base station

coverage decreases the messaging cost up to some point after which the effect disappears.

The reason for this is that, after the coverage areas of the base stations reach to a certain size,

the monitoring regions associated with queries always lie in only one base station’s coverage

area. Although increasing base station size decreases the total number of messages sent on

the wireless medium, it will increase the average number of messages received by a mobile

object due to the size difference between monitoring regions and base station coverage areas.

In a hypothetical case where the universe of disclosure is covered by a single base station,

any server broadcast will be received by any mobile object. In such environments, indexing

on the air [63] can be used as an effective mechanism to deal with this problem. We do not

consider extreme scenarios like satellite broadcast and focus on cellular networks.

In MobiEyes, a large base station coverage area gives less effective results only when

the total number of mobile objects in the region of coverage is large. Because, there will

be large number of focal objects in the region of coverage and many of the broadcasted

updates originating from these focal objects will be discarded by a large number of mobile

objects due to the mismatch between the monitoring region sizes and the base station

coverage area sizes (the latter being much larger). However, large base station coverage

areas make very poor use of the frequency spectrum and are not suitable for hot spot

regions. Such large coverage areas are more common in sparsely populated regions where

the total number of mobile nodes is relatively small. This nature of base station coverage

area sizes in cellular networks is very favorable for the MobiEyes system. For recent 3G

cellular network technologies such as CDMA200 1xEV-DO [98], base station coverage areas

in urban settlements are small, in general not larger than 3 miles radius.

We have evaluated the scalability of the MobiEyes in terms of the total number of mes-

sages exchanged in the system and the reduction of the server load of MobiEyes approach.

Now we study the per object power consumption due to communication between mobile ob-

jects and the server. We measure the average communication related to power consumption

using a simple radio model where the transmission path consists of transmitter electronics

94

and transmit amplifier where the receiver path consists of receiver electronics. Consider-

ing a GSM/GPRS device [66], we take the power consumption of transmitter and receiver

electronics as 150mW and 120mW respectively and we assume a 300mW transmit ampli-

fier with 30% efficiency [66]. We consider 14kbps uplink and 28kbps downlink bandwidth

(typical for current GPRS technology). Note that sending data is more power consuming

than receiving data. 3

100 200 300 400 500 600 700 800 900 1000
10

−6

10
−5

10
−4

10
−3

number of queries

po
w

er
 c

on
su

m
pt

io
n

(W
)

MobiEyes EQP − 10000 objects
MobiEyes EQP − 100000 objects
MobiEyes LQP − 10000 objects
MobiEyes LQP − 100000 objects
centr. velocity − 10000 objects
centr. velocity − 100000 objects

Figure 38: Effect of # of queries on object power consumption due to communication

We simulated the MobiEyes approach using message sizes instead of message counts

for messages exchanged and compared its power consumption due to communication with

the naive and central velocity approaches. The graph in Figure 38 plots the per object

power consumption due to communication (on logarithmic y-axis) as a function of number

of queries for different numbers of mobile objects. Since the naive approach requires every

object to send its new position to the server, its per object power consumption is the worst,

thus it is not included in the comparison. In MobiEyes, however, a non-focal object does

not send its position or velocity vector to the server, but it receives query updates from

the server. Since the cost of receiving data in terms of energy consumption is lower than

transmitting, MobiEyes is expected to be effective in terms of per object power consumption.

It is observed from Figure 38 that, except for the case when the number of objects is

small and the number of queries is large, the central velocity approach is outperformed by

MobiEyes with LQP. MobiEyes with LQP performs especially well when the number of

3In this setting transmitting costs ∼ 80µjules/bit and receiving costs ∼ 5µjules/bit

95

objects is large. On the other hand, MobiEyes with EQP performs worse than the central

velocity approach, with the exception of cases where the number of queries is small. An

important factor that increases the per object power consumption in MobiEyes is the fact

that an object also receives updates regarding queries that are irrelevant. This is mainly

due to the difference between the size of a broadcast area and the monitoring region of a

query.

3.5.4 Amount of Computation on Mobile Object Side

In this section we study the amount of computation placed on the mobile object side by the

MobiEyes approach to processing of MQs. One measure of this is the number of queries a

mobile object has to evaluate at each time step, which is the size of the LQT table (Recall

Section 3.3.1).

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

alpha

n
u

m
b

er
 o

f
q

u
er

ie
s

p
er

 m
o

vi
n

g
 o

b
je

ct MobiEyes 100 mq
MobiEyes 400 mq
MobiEyes 700 mq
MobiEyes 1000 mq

Figure 39: Effect of α on the avg. # of queries evaluated per step on a mobile object

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

number of moving queries

n
u

m
b

er
 o

f
q

u
er

ie
s

p
er

 m
o

vi
n

g
 o

b
je

ct MobiEyes alpha = 2
MobiEyes alpha = 4
MobiEyes alpha = 6
MobiEyes alpha = 8

Figure 40: Effect of the total # of queries on the # of queries evaluated on a mobile object

96

Figure 39 and Figure 40 study the effect of α and the effect of the total number of

queries on the average number of queries a mobile object has to evaluate at each time step

(average LQT table size). The graph in Figure 39 plots the average LQT table size as

a function of α for different number of queries. The graph in Figure 40 plots the same

measure, but this time as a function of number of queries for different values of α. The first

observation from these two figures is that the size of the LQT table does not exceeds 10

for the simulation setup. The second observation is that the average size of the LQT table

increases exponentially with α where it increases linearly with the number of queries.

1 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

alpha

q
u

er
y

p
ro

ce
ss

in
g

 lo
ad

Query processing load on moving objects

without safe period optimization
with safe period optimization

Figure 41: Effect of the safe period opt. on the query processing load of a mobile object

Figure 41 studies the effect of the safe period optimization on the average query pro-

cessing load of a mobile object. The x-axis of the graph in Figure 41 represents the α

parameter, and the y-axis represents the average query processing load of a mobile object.

As a measure of query processing load, we took the average time spent by a mobile object

for processing its LQT table in the simulation. Figure 41 shows that for large values of α,

the safe period optimization is very effective. This is because, as α gets larger, monitoring

regions get larger, which increases the average distance between the focal object of a query

and the objects in its monitoring region. This results in non-zero safe periods and decreases

the cost of processing the LQT table. On the other hand, for very small values of α, like

α = 1 in Figure 41, the safe period optimization incurs a small overhead. This is because

the safe period is almost always less than the query evaluation period for very small α values

and as a result the extra processing done for safe period calculations does not pay off.

97

3.6 Related Work

Real-time evaluation of static spatial queries on mobile objects, at a centralized location,

is a well studied topic. Most of the work done so far has focused on efficient indexing

structures [94, 105, 118] for efficient evaluation of static continual range queries at a central

location, or indexing schemes and algorithms for handling mobile object positions [25, 74,

119, 72, 1, 17, 120]. Very few have considered the benefits of a careful tradeoff between

computation and communication. To our knowledge, only the SQM system introduced

in [25, 24] has proposed a distributed solution for evaluation of static spatial queries on

mobile objects, that makes use of the computational capabilities present at the mobile

objects.

Several existing research efforts on mobile object databases [131, 105, 132, 72] model

mobile object trajectories as piecewise linear functions of time, and process these less fre-

quently changing functions instead of more frequently changing object positions. This is

commonly viewed as an important strategy for efficiently processing queries on mobile ob-

ject positions. The design of the MobiEyes system also uses such a linear model to ease

analytical derivations and engineering issues of the system. Concretely, in MobiEyes the use

of velocities for predicting the positions of objects that are of interest to a mobile object,

on the mobile object side, is more similar to the use of dead reckoning in on-line games

and PDES [43] systems for building distributed virtual environments. There are very few

attempts to use non-linear motion modeling in mobile object databases [2]. A discussion

on whether linear modeling assumptions can easily carry out in practice and its possible

implications can be found in [131].

Safe period optimization described in Section 3.4 is inspired by the safe region opti-

mization introduced in [94]. However, there are some major differences: A safe region is

calculated for an object considering all queries, so that the object is guaranteed to stay

outside of all query regions as long as it resides in the safe region. Also safe regions are

introduced for static range query evaluation at a centralized server. In contrast, a safe pe-

riod is calculated for an object considering a single query, so that the object is guaranteed

to reside outside the query region during the safe period. Compared to safe region, the safe

98

period optimization is a more focused local optimization technique, which is computed at

each mobile object that belong to a restricted subset, namely the mobile objects that reside

within the monitoring region of a MQ.

The work presented in [61] deals with the problem of monitoring changes in sensor

readings and detecting mobile phenomena in sensor networks. Since the sensed phenomena

may move in the environment, the set of nodes that detect this phenomena also change or

“move”. The queries employed in [61] are similar to queries used in our work, in the sense

that the nodes in the result set may change continuously. However, we must emphasize that

in MobiEyes, queries (as well as target objects in the query results) can have the property

of being mobile. This is closely related with the concept of focal objects, which is missing

in [61].

Recently there has been works that explicitly support efficient evaluation of moving

queries over moving objects. The most notable are SINA [87] and MAI (see Chapter 4).

SINA [87] is a spatial query evaluation engine that makes use of the “incremental query

processing” concept. The periodic re-evaluations are achieved through a three phase process

that refreshes the previous query results based on the current position changes using positive

and negative updates, as opposed to re-computing all of the possibly invalidated results

from scratch. The three phases of the query re-evaluation are hashing, invalidation, and

joining. The hashing phase uses a grid for indexing purposes, which is a server side data

structure. This is very different than the use of grid and grid cells in our system. MobiEyes

utilizes grid cells to facilitate the partitioning of moving query evaluation into a distributed

coordination of server side processing and mobile object side processing. The concept of

monitoring region relies on grid cells to define the set of nodes that should register a query

as a nearby query and process it locally. The dynamics of the system, such as updating the

set of nearby queries registered at mobile nodes, are handled with the help of the grid.

MAI is a motion adaptive indexing scheme for time and IO efficient evaluation of moving

queries over moving objects. MAI uses the concept of motion-sensitive bounding boxes to

model moving objects and moving queries. These bounding boxes automatically adapt their

sizes to the dynamic motion behaviors of individual objects. Instead of indexing frequently

99

changing object positions, MAI indexes less frequently changing object and query motion-

sensitive bounding boxes, where updates to the bounding boxes are needed only when

objects and queries move across the boundaries of their boxes. MAI also uses predictive

query results to optimistically pre-calculate query results. Motion-sensitive bounding boxes

are used to incrementally update the predictive query results.

Both SINA and MAI are centralized processing based approaches, and require to receive

position updates (raw positions in SINA and velocity vector changes in MAI) from all mobile

nodes. This means that communication cost does not change significantly with the specific

type of centralized processing engine employed. Second, since MobiEyes distributes the job

of processing queries to mobile nodes of the system, the scalability in terms of server load

will be drastically better than any centralized processing based solution.

100

CHAPTER IV

MAI - CENTRALIZED LOCATION MONITORING IN

MOBILE SYSTEMS USING CQS

This chapter describes a motion adaptive indexing scheme for efficient evaluation of moving

continual queries (MCQs) over moving objects. It uses the concept of motion-sensitive

bounding boxes (MSBs) to model moving objects and moving queries. These bounding

boxes automatically adapt their sizes to the dynamic motion behaviors of individual objects.

Instead of indexing frequently changing object positions, we index less frequently changing

object and query MSBs, where updates to the bounding boxes are needed only when objects

and queries move across the boundaries of their boxes. This helps decrease the number of

updates to the indexes. More importantly, we use predictive query results to optimistically

pre-calculate query results, decreasing the number of searches on the indexes. Motion-

sensitive bounding boxes are used to incrementally update the predictive query results.

Furthermore, we introduce the concepts of guaranteed safe radius and optimistic safe radius

to extend our motion adaptive indexing scheme to evaluating moving continual k-nearest

neighbor (kNN) queries. Our experiments show that the proposed motion adaptive indexing

scheme is efficient for the evaluation of both moving continual range queries and moving

continual kNN queries.

4.1 Introduction

With the continued advances in mobile computing and positioning technologies, such as

GPS [127], location management has become an active area of research. Several research

efforts have been made to address the problem of indexing moving objects or moving object

trajectories to support efficient evaluation of continual spatial queries. Our focus in this

chapter is on moving continual queries over moving objects (MCQs for short). There are

two major types of MCQs − moving continual range queries and moving continual k-Nearest

101

Neighbor queries.

Efficient evaluation of MCQs is an important issue in both mobile systems and moving

object tracking systems. Research on evaluating range queries over moving object positions

has so far focused on static continual range queries [94, 67, 25]. A static continual range

query specifies a spatial range together with a time interval and tracks the set of objects

that locate within this spatial region over the given time period. The result of the query

changes as the objects being queried move over time. Although similar, a moving continual

range query exhibits some fundamental differences when compared to a static continual

range query. A moving continual range query has an associated moving object, called the

focal object of the query; the spatial region of the query moves continuously as the query’s

focal object moves. Moving continual queries introduce a new challenge in indexing, mainly

due to the highly dynamic nature of both queries and objects.

MCQs have different applications, such as environmental awareness, object tracking and

monitoring, location-based services, virtual environments and computer games, to name a

few. Here is an example of a moving continual query MCQ1: “Give me the positions of

those customers who are looking for taxi and are within 5 miles (of my location at each

instant of time or at an interval of every minute) during the next 20 minutes,” posted by

a taxi driver on the road. The focal object of MCQ1 is the taxi on the road. Another

example is MCQ2: “Give me the number of friendly units within 5 miles radius around me

during the next 2 hours,” posted by a soldier equipped with mobile devices marching in

the field, or a moving tank in a military setting. The focal object of MCQ2 is the soldier

marching in the field or the moving tank.

Different specializations of MCQs can result in interesting classes of MCQs. One is

called moving continual queries over static objects, where the target objects are stationary

objects in the query region. An example of such a query is MCQ3: “Give me the locations

and names of the gas stations offering gasoline for less than $1.2 per gallon within 10 miles,

during the next half an hour,” posted by a driver of a moving car, where the focal object

of the query is the car on the move and the target objects are the gas stations within 10

miles with respect to the location of the car. Another interesting specialization is the so

102

called static continual queries over moving objects, where the queries are posed with static

focal objects or without focal objects. An example query is MCQ4: “Give me the list

of AAA vehicles that are currently on service call in downtown Atlanta (or 5 miles from

my office location), during the next hour.” Note that these specializations of MCQs are

computationally easier to evaluate. Our focus in this chapter is the evaluation of MCQs in

their most general form, such as MCQ1 and MCQ2.

Due to frequent updates to the index structures, traditional indexing approaches built

on moving object positions generally do not work well for MCQs [94, 67]. In order to tackle

this problem, several researchers have introduced alternative approaches based on the idea

of indexing the parameters of the motion functions of the moving objects [72, 105, 118, 2].

They effectively alleviate the problem of frequent updates to the indexes, as the indexes

need to be updated only when the parameters change. These approaches are mostly based

on R-tree-like structures and produce time parameterized minimum bounding rectangles

that enlarge continuously [105, 118, 94]. As a consequence of enlarged bounding rectangles,

the search performance can deteriorate over time and the index structures may need to be

reconstructed periodically [94, 105]. As far as update costs are concerned, approaches based

on time parameterized rectangles [105, 118] can provide excellent performance. However,

they are not sufficient for processing MCQs. This is because they do not support incremental

re-evaluation of queries and the continual nature of these queries dictates that the same

queries must be re-evaluated at frequent intervals. Thus, there is a need for new methods

that can evaluate these MCQs incrementally.

In this chapter, we describe a motion-adaptive indexing (MAI) scheme for efficient

processing of moving continual queries over moving objects. It uses the concept of motion-

sensitive bounding boxes (MSBs) to model both moving objects and moving queries. Instead

of indexing frequently changing object positions, we index less frequently changing object

and query MSBs, where updates to the bounding boxes are needed only when objects and

queries move across the boundaries of their boxes. This helps decrease the number of up-

dates performed on the indexes. However, the main use of MSBs is to facilitate incremental

processing of MCQs. We provide two techniques to reduce the costs of query re-evaluation

103

and search on the MSB indexes. First, we optimistically pre-calculate query results and

incrementally maintain such predictive query results under the presence of object motion

changes. MSBs are used to control the amount of pre-computation to be performed for

calculating the predictive query results and to decide when the results need to be updated.

Second, we support motion adaptive indexing. We automatically adapt the sizes of MSBs

to the changing moving behaviors of the corresponding individual objects. By adapting to

moving object behavior at the granularity of individual objects, the moving queries can be

evaluated faster by performing fewer IOs. Furthermore, we extend the MAI approach to

the evaluation of moving continual k-nearest neighbor queries, by introducing the concepts

of guaranteed safe radius and optimistic safe radius that are used to leverage the moving

continual range queries for answering kNN queries.

Another interesting contribution of this chapter is the development of an analytical

model for estimating the cost of moving query evaluation, and the use of analytical models

to guide the setting and the adaptation of several system parameters for our proposed

indexing scheme. The proposed motion-adaptive indexing scheme is independent of the

underlying spatial index structures by design. In the experiments reported in this chapter,

we use both R∗-trees and statically partitioned grids for measuring the performance of our

indexing scheme. Our experimental results show that the motion adaptive indexing scheme

is efficient for the evaluation of both moving continual range queries and moving continual

k-nearest neighbor queries. We report a series of experimental performance results for

different workloads including scenarios based on skewed object and query distribution, and

demonstrate the effectiveness of our motion adaptive indexing scheme through comparisons

with other alternative indexing approaches.

4.2 The System Model

The basic elements of our system model are a set of moving or stationary objects and a set

of moving or static continual (range or kNN) queries. A fundamental challenge we address

in this chapter is to study what kind of indexing scheme can efficiently answer the moving

queries. Fast evaluation is critical for processing moving queries, as it not only improves the

104

freshness of the query results by enabling more frequent re-evaluation, but also increases

the scalability of the system by enabling timely evaluation of a large number of moving

queries over a large number of moving objects.

4.2.1 Basic Concepts and Problem Statement

We denote the set of moving or stationary objects as O, where O = Om∪Os and Om∩Os = ∅.
Om denotes the set of moving objects and Os denotes the set of stationary objects. We

denote the set of moving or static queries as Q, where Q = Qm ∪Qs and Qm ∩Qs = ∅. Qm

denotes the set of moving continual range queries and Qs denotes the set of static continual

range queries. Since we focus on moving continual queries in this chapter, from now on we

use moving queries and moving continual queries interchangeably.

Moving Objects. We describe a moving object om ∈ Om by a quadruple: 〈io, �p,�v, ap〉.
Here, io is the unique object identifier, �p = (px, py) is the current position of the moving

object where px is its position in the x-dimension and py is its position in the y-dimension,

�v = (vx, vy) is the current velocity vector of the object, and ap is a set of properties about

the object. A stationary object can be modeled as a special case of moving object where

the velocity vector is set to zero, ∀os ∈ Os, os.�v = (0, 0).

Moving Queries. We describe a moving query qm ∈ Qm by a quadruple: 〈iq, io, r, f〉.
Here, iq is the unique query identifier, io is the object identifier of the focal object of the

query, r defines the shape of the spatial query region bound to the focal object of the query,

and f is a Boolean predicate, called filter, defined over the properties (ap) of the target

objects of the query. Note that, r can be described by a closed shape description such as a

rectangle or a circle. This closed shape description also specifies a binding point, through

which it is bound to the focal object of the query. In the rest of the chapter we assume

that a moving continual query specifies a circle as its range with its center serving as the

binding point and we use r to denote the radius of the circle. A static spatial continual

range query can be described as a special case where the query either has no focal object

or the focal object is a stationary object. Namely, ∀qs ∈ Qs, qs.io = null ∨ qs.io ∈ Os. We

assume that a static continual range query specifies a rectangle or a circle as its range.

105

Before we give an overview of our approach, we first review three basic types of index-

ing techniques for evaluating moving range queries over moving objects and discuss their

advantages and inherent weaknesses.

Object-only Indexing (OI). In the object-only indexing approach, a spatial index is built

on the object positions. Each time a new object position is received, the object index is

updated. At each query evaluation phase, all queries are evaluated against the object index.

An inherent drawback of the basic object-only indexing approach is the re-evaluation of all

queries against the object index regardless of whether or not the object position changes are

of interest to the query. Object-only indexing is open to optimizations that can decrease

the number or cost of the updates on the object index (see velocity constrained indexing

in [94] and TPR-trees in [105]).

Query-only Indexing (QI). In the query-only indexing approach, a spatial index is built

on the spatial regions of the queries. Each time a new query position (the position of

the query’s focal object) is received, the query index is updated. At each query evaluation

phase, each object position is evaluated against the query index and the queries that contain

the object’s position are determined. Note that this has to be done for every object as

opposed to doing it only for objects that have moved since the last query evaluation phase.

This is due to the fact that underlying queries are potentially moving. This significantly

decreases the effectiveness of query-only indexing approach, although in the context of static

continual range queries it has been shown that a query index may improve performance

significantly [94, 133, 134].

Object and Query Indexing (OQI). In the object and query indexing approach, two

spatial indexes are built, one for the object positions and another for the spatial regions of

the queries. Each time an object position is received, the object index is updated. Similarly,

each time a new query position (the position of a query’s focal object) is received, the query

index is updated. At each query evaluation phase, each new object position is evaluated

against the query index and the queries that contain the object’s position are determined.

Then the query results are updated differentially. Similarly at each query evaluation phase,

each new query position is evaluated against the object index and the new result of the

106

query is determined. The OQI approach evaluates object positions against the query index

only for those objects that have changed their positions since the last query evaluation

phase, as opposed to all the objects required by the query-only indexing approach. The

OQI approach also evaluates queries against the object index only for those queries that

have moved since the last query evaluation phase, as opposed to all the queries required

by the object-only indexing approach. Although the OQI approach incurs a higher cost

due to the maintenance of an additional index structure, it is open to a wider range of

optimizations to reduce the cost and it does not have certain restrictions of the object-only

indexing or query-only indexing approach.

4.2.2 Overview of the Proposed Solution

Cognizant of the pros and cons of the above three basic indexing schemes, we propose

a motion-adaptive indexing scheme for efficient processing of moving queries over moving

objects. We use the concept of motion-sensitive bounding boxes to model the dynamic be-

havior of both moving objects and moving queries. Such bounding boxes are not updated

unless the position of a moving object or the spatial region of a moving query exceeds

the borders of its bounding box. Instead of indexing frequently changing object positions

or spatial regions of moving queries, we index less frequently changing motion sensitive

bounding boxes. This significantly decreases the number of update operations performed

on the indexes. Our indexing scheme maintains both an index of object-based motion sen-

sitive bounding boxes (denoted as Indexmsb
o) and an index of query-based motion sensitive

bounding boxes (denoted as Indexmsb
q).

Motion Modeling

Motion Sensitive
Bounding Boxes

Predictive
Query Results

Motion Sensitive Indexing

Motion Adaptive Indexing

Query and Object
Indexing

Adaptive
Parameter Selection

Figure 42: Roadmap of methods applied for moving query evaluation

107

More importantly, to address the problem of increased search cost due to frequent eval-

uation of queries, we employ two optimization techniques: (i) predictive query results and

(ii) motion adaptive indexing. Query results are optimistically precomputed in the presence

of object motion changes, with the amount of pre-computation to be performed controlled

by the motion sensitive bounding boxes. The sizes of the motion sensitive bounding boxes

are dynamically adapted to the changing motion behaviors at the granularity of individual

objects, allowing moving queries to be evaluated faster by performing fewer IOs. Figure 42

gives a roadmap of methods applied for MCQ evaluation.

In the rest of this section we describe the motion modeling and motion update gen-

eration, which provides the foundation for motion sensitive bounding boxes and predictive

query results.

Motion Modeling. Modeling motions of the moving objects for predicting their positions

is a commonly used method in moving object indexing [130, 72]. In reality, a moving object

moves and changes its velocity vector continuously. Motion modeling uses approximation

for prediction. Concretely, instead of reporting their position updates each time they move,

moving objects report their velocity vector and position updates only when their velocity

vectors change and this change is significant enough (This technique is known as dead

reckoning [43]). In order to evaluate moving queries in between the last update reporting

and the next update reporting, the positions of the moving objects are predicted using a

simple linear function of time. Given that the last received velocity vector of an object is

�v, its position is �p and the time its velocity update was recorded is t, the future position of

the object at time t + Δt can be predicted as �p + Δt ∗ �v. We use a linear motion function

in this chapter, since it is the commonly used model in moving object databases [131]. We

refer readers to [2] for a study of non-linear motion modeling for moving object indexing.

Prediction-based motion modeling decreases the amount of information sent to the query

processing engine by reducing the frequency of position reporting from each moving object.

Furthermore, it allows the system to optimistically precompute future query results. We

below briefly describe how the moving objects generate and send their motion updates to

the server where the query evaluation is performed.

108

d
3
> ΔD

d
1
< ΔD

v
d

2
< ΔD

v+ε4

function

update

path of the motion function

path of the object

sampling points

velocity vector of the objectv

v+ε3

v+ε2v+ε1

Figure 43: Motion update generation

Motion Update Generation. In order for the moving objects to decide when to report

their velocity vector and position updates, they need to periodically compute if their velocity

vectors have changed significantly. Concretely, at each time step a moving object samples its

current position and calculates the difference between its current position and the position

predicted by the dead reckoning algorithm based on the last motion update it reported to

the server. In case this difference is larger than a specified threshold, say ΔD, the new

motion function parameters are relayed to the server. Figure 43 provides an illustration.

The path of a moving object is depicted with a solid line, where its path predicted by the

server is depicted with a dashed line. The small squares on the solid line represents the

current positions sampled by the moving object at each time step and the small circles on

the dashed line represent the positions that the server predicts the object to be at in each

of the corresponding time steps.

4.3 Efficient Evaluation of Moving Continual Range Queries

In this section, we describe the motion adaptive indexing scheme for efficient processing of

moving range queries over moving objects. We first describe the concept of motion-sensitive

bounding boxes, and then discuss the mechanisms used for computing predictive query re-

sults, and outline the motion adaptive approach for determining the sizes of motion sensitive

bounding boxes. In addition, we provide an overview of the algorithms used for creating

and maintaining the motion adaptive indexes, an analytical model for IO estimation, and

the concrete mechanism that adaptively determines the bounding box sizes based on the

dynamically changing motion behaviors of moving objects and moving queries.

109

4.3.1 Motion Sensitive Bounding Boxes

Motion sensitive bounding boxes (MSBs) can be defined for both moving queries and

moving objects. Given a moving object om, its associated MSB is calculated by extending

the position of the object along each dimension by α(om) times the velocity of the object in

that direction. Given a moving query qm, the MSB of the moving query is calculated by

extending the minimum bounding box of the query along each dimension by β(qm) times

the velocity of the focal object of the query in that direction (See Figure 44 for illustrations).

q

 of.vy * β(q) + 2 * q.r
o f

.v
x *

 β
(q

)+
 2

 *
 q

.r o

o.vy * α(o)

o.
v x

 *
 α

(o
)of

Figure 44: Motion sensitive bounding boxes, MSBs

Let Rect(l, m) denote a rectangle with l and m as any two end points of the rectangle

that are on the same diagonal. Let sign(�x) denote a function over a vector �x, which replaces

each entry in �x with 1 if it is greater than or equal to 0, with -1 otherwise. Then we define

the MSB for a moving object o and the MSB for a moving query q with focal object of

as follows:

∀o ∈ Om, MSB(o) = Rect(o.pos, o.pos + α(o) ∗ o.vel)

∀q ∈ Qm, MSB(q) = Rect(of .pos− q.radius ∗ ws, of .pos +

β(q) ∗ q.vel + q.radius ∗ ws),

where ws denotes the sign function sign(q.vel)

For each moving query, its MSB is calculated and used in place of the query’s spatial

region in the query-based MSB index, that is Indexmsb
q . Similarly, for each moving object,

its MSB is calculated and used in place of the object’s position in the object-based MSB

index, that is Indexmsb
o .

An important feature of indexing motion sensitive boxes of moving objects and moving

queries is the fact that an MSB is not updated unless the query’s spatial region or the

110

object’s position exceeds the borders of its motion sensitive bounding box. When this

happens, we need to invalidate the MSB. As a result, a new MSB is calculated and

the Indexmsb
q or the Indexmsb

o is updated. This approach reduces the number of update

operations performed on the spatial indexes and thus decreases the overall cost of updating

the spatial indexes (Indexmsb
o and Indexmsb

q). It is also crucial to note that, using MSBs

does not introduce any inaccuracy in the query results, because we store the motion function

of the object or the query together with its MSB inside the spatial index.

Although maintaining MSB indexes increase the cost of searching the index due to

higher overlap of spatial objects being indexed, for appropriate values of the α and β

parameters, the overall gain in the search cost due to the use of MSBs is significant, thanks

to the incremental processing capabilities MSBs provide in conjunction with predictive

query results. Concretely, when a query has not invalidated its MSB and has not changed

its velocity vector, then the predictive results of the query are valid with regard to the

objects for which no MSB invalidations or velocity vector changes has taken place. In

case some of the objects had MSB invalidations or velocity vector changes, queries are not

completely re-evaluated. A query is completely re-evaluated only when it has invalidated its

MSB or it has changed its velocity vector. We will discuss the details of query evaluation

in greater depth in Section 4.3.3. In summary, the incremental processing of queries helps

minimize the overall search cost and compensates for the small increase in the per operation

index search cost due to the use of MSBs. Table 3 summarizes the impact of using MSBs

on the query evaluation in terms of update and search cost.

Table 3: Impact of MSBs and predictive query results on query evaluation cost
technique Overall Update Cost Overall Search Cost

MSBs ↓ (due to less frequent
updates to the indexes)

↑ (due to increased overlap
in indexes)

 Predictive Query
Results (using MSBs)

↓ (due to incremental query
evaluation)

+ ↓Together

−

↓+

Furthermore, MSBs provide the following three advantages: (1) As opposed to ap-

proaches that alter the implementation of traditional spatial indexes for decreasing the

111

update cost (like TPR-tree [105] or VCI index [94]), motion sensitive bounding boxes re-

quire almost no significant change to the underlying spatial index implementation. (2) They

form a basis for deciding for which objects to pre-calculate query results with respect to a

query (see Section 4.3.3). (3) By performing size adaptation at the granularity of individ-

ual objects, they lead to significant reductions in IO cost (see Section 4.3.4). In order to

fully utilize the advantages made possible by MSBs in terms of query evaluation cost, we

need mechanisms for dynamically determining the most appropriate values of the α and β

parameters based on the motion behavior of moving objects and moving queries.

4.3.2 Predictive Query Results on a Per Object Basis

It is well known that one way of reducing IO and improving efficiency of evaluating moving

queries is to pre-calculate future results of the continual queries. This approach has been

successfully used in the context of continual moving kNN queries over static objects [120].

Most of existing approaches to pre-calculating query results associate a time interval to

each query that specifies the valid time for the pre-calculated results. One problem with

per query based prediction in the context of moving queries over moving objects is the

fact that a change on the motion function of any of the moving objects may cause the

invalidation of some of the pre-calculated results. This motivates us to introduce predictive

query results where the prediction is conducted on per-object basis.

case II) static object, moving query

case III) moving object, moving querycase I) static query, moving object

o1

time t0 time t0+a time t0+b

q1

Figure 45: Calculating the valid prediction time intervals

Given a query, its predictive query result differs from a regular query result in the sense

that each object in the predictive query result has an associated time interval indicating the

time period in which the object is expected to be included in the query result. We denote

112

the predictive query result of query q ∈ Q by PQR(q). Each entry in a predictive query

result takes the form 〈o, [ts, te]〉. We call the entry associated with object o ∈ O in PQR(q)

the predictive query result entry of object o with regard to query q, and the interval [ts, te]

associated with object o the valid prediction time interval of the predictive query result

entry.

Calculating the valid prediction time intervals is done as follows. Given a static continual

range query and a moving object with its motion function, it is straightforward to calculate

the intersection points of the query’s spatial region and the ray formed by the moving

object’s trajectory (See case I in Figure 45). Similarly, to calculate the intersection point

of a moving query and a moving or non-moving object (assuming that we only consider

moving queries with circle shaped spatial regions), we need to solve a quadratic function of

time. Formally, let q ∈ Q be a query with focal object of ∈ Om, and o ∈ O be an object,

and let Dist(a, b) denote the Euclidean distance between the two points a and b. We can

calculate the time interval in which the object o is expected to be in the result set of query

q by solving the formula: Dist(of .�p + t ∗ of .�v, o.�p + t ∗ o.�v) ≤ qm.r. Figure 45 illustrates

three different cases that arise in the calculation of the prediction time interval for each

per-object based predictive query result entry.

The predictive query results are pre-calculated on per object basis and the result entries

are correct unless the motion function of the focal object of a query or the motion function

of the moving object associated with the query result entry have changed within the valid

prediction time interval. As a result, there are two key questions to answer in order to

effectively use the predictive query results in evaluating MCQs:

Prediction − For each moving query, should we perform prediction on all moving

objects? If not, how to determine for which objects we should do prediction?

Obviously we should not perform prediction for objects that are far away from the spatial

region of the query within a period of time, as the predicted results are less likely to hold

until those objects reach to the proximity of the query.

Invalidation − When and how to update the predictive results?

This can be referred to as the invalidation policy for per-object based prediction. The

113

predictive query results may be invalid and thus need to be updated when the motion

function of a moving query or the motion function of a moving object changes. In addition,

the predictive results may require to be refreshed when the objects in the predictive query

results have moved away from the proximity of the query or when the objects that did not

participate in the prediction have entered the proximity of the query.

4.3.3 Determining Predictive Query Results Using MSBs

MSBs are used to effectively determine for which objects we should perform result predic-

tion with respect to a query (answering the first question listed in Section 4.3.2). Concretely,

for a given query, objects whose MSBs intersect with the query’s MSB are considered as

potential candidates of the query’s predictive result. Figure 46 gives an illustration of how

predictive query results integrate with motion sensitive bounding boxes. Consider the mov-

ing query q1 with its query MSB and four moving objects o1, o2, o3 and o4 as shown in

Figure 46. In the figure, o1 is the focal object of query q1 and the other three moving

objects o2, o3 and o4 are associated with their object MSBs. At time t0 only objects o2

and o3 are subject to query q1’s PQR, as their MSBs intersect with the query’s MSB.

However the valid prediction time interval of object o3 with regard to query q1 is empty

because there is no such time interval during which o3 is expected to be inside the query

result of q1. Thus object o3 should not be included in the PQR of query q1. At some

later time t1, object o2 and query q1 remain inside their MSBs. However objects o3 and o4

have changed their MSBs. As a result, objects o2 and o4 become potential candidates of

query q1’s PQR at time t1. Since o2 has not changed its MSB, it remains included in q1’s

PQR. By applying the valid prediction time interval test on o4, we obtain a non-empty

time interval with respect to q1, during which o4 is expected to be included in the query

result. Thus o4 is added into the PQR of q1.

In order to achieve an IO efficient solution, the MSB sizes should be adjusted such that

the PQRs are calculated for a sufficiently large set of objects to take advantage of pre-

computation. However, result prediction should not be performed for objects that are far

away from a query and thus are likely to invalidate their PQRs before becoming of interest

114

o2

o3
o4

q1
o1

at time t0
o2 and o3 are subject to Res(q1)

PQR(q1) = {(o2,[t0+a, t0+b])}

o2

o3

o4

q1o1

at time t1
o2 and o4 are subject to Res(q1)

PQR(q1) = {(o2,[t0+a, t0+b]),

 (o4,[t1+c, t1+d])}

Figure 46: An illustration of how PQRs integrate with MSBs

to the query. We use α and β parameters to adjust the MSB sizes on per object/query

basis to optimize this trade-off. The details are given in Section 4.3.5.

4.3.4 Motion Adaptive Indexing

We have described the main ideas and mechanisms used in our motion-adaptive indexing

scheme. In this subsection, we describe motion-adaptive indexing as a query evaluation

technique that integrates the ideas and mechanisms presented so far for efficient processing

of moving queries over moving objects.

4.3.4.1 Processing Moving Queries: An Overview

The evaluation of moving queries is performed through query evaluation phases executed

periodically with regular time intervals of Ps (scan period) seconds. We build two spatial

MSB indexes, Indexmsb
o for the objects and Indexmsb

q for the queries. Indexmsb
o stores

MSBs of the objects accompanied by the associated motion functions as data. Static

objects have point MSBs. Similarly, Indexmsb
q stores the MSBs of the queries accompanied

by the associated motion functions of the focal objects of the queries and their radii as data.

Static queries have MSBs equal to their minimum bounding rectangles and they do not

have associated motion functions.

We create and maintain two tables, a moving object table and a moving query table.

115

They store information regarding the moving objects and moving queries. The static queries

and static objects are included in the spatial MSB indexes but not in the two tables. The

periodic evaluation is performed by scanning these tables at each query evaluation phase and

performing updates and searches on the spatial indexes as needed in order to incrementally

maintain the query results as objects and the spatial regions of the queries move. Detailed

descriptions of the two tables are given below:

Moving Object Table (MOT): A MOT entry is a tuple (io, iq, �p,�v, t, Bmsb, Pcm, Vch) and

stores information regarding a moving object. Here, io is the moving object identifier, iq

is the query identifier of the moving query whose focal object’s identifier is io, iq is null if

no such moving query exists, �p is the last received position, �v is the last received velocity

vector of the moving object, t is the timestamp of the motion updates (�p and �v) received

from the moving object, Bmsb is the MSB of the moving object, Pcm is an estimate on the

period of constant motion of the object and Vch is a Boolean variable indicating whether

the object has changed its motion function since the last query evaluation phase.

Moving Query Table (MQT): A MQT entry is a tuple (iq, �p,�v, r, t, Bmsb, Pcm, Vch) and

stores information regarding a moving query. Here, iq is the moving query identifier, �p and

�v are the last received position and the last received velocity vector of the query’s focal

object respectively, t is the timestamp of the motion updates (�p and �v) received from the

focal object, r is the radius of the moving query’s spatial region, Bmsb is the MSB of the

moving query, Pcm is an estimate on the period of constant motion of the object and Vch is a

Boolean variable indicating whether or not the focal object has changed its motion function

since the last query evaluation phase. Note that the information in MQT is to some extent

redundant with respect to MOT . However the redundant information is required during

the moving query table scan. Without redundancy we will need to look them up from the

moving object table, which can be costly.

The MOT and MQT table entries are updated whenever new motion updates are

received from the moving objects. The Pcm entries are updated using a simple weighted

running average. The details are given in Figure 47. Assuming that moving objects decide

whether or not they should send new motion updates at every Pmu seconds (called the

116

Motion Update Received(u = 〈io, �p,�v, t〉)
(1) eo = 〈io, iq, �p,�v, t, Bmsb, Pcm, Vch〉 ∈MOT , where eo.io = u.io
(2) eo.Pcm ← γ ∗ (u.t− eo.t) + (1− γ) ∗ eo.Pcm

(3) eo.�p← u.�p; eo.�v ← u.�v
(4) eo.t← u.t; eo.Vch ← true
(5) if eo.iq �= null
(6) eq = 〈iq, �p,�v, r, t, Bmsb, Pcm, Vch〉 ∈MQT , where eq.iq = eo.iq
(7) eq.Pcm ← γ ∗ (u.t− eq.t) + (1− γ) ∗ eq.Pcm

(8) eq.�p← u.�p; eq.�v ← u.�v
(9) eq.t← u.t; eq.Vch ← true

Figure 47: Motion update processing

motion update period), one of our aims is to perform a single query evaluation phase in

less than Pmu seconds in order not to miss any motion updates, i.e., having Ps ≤ Pmu.

If under the available resources, a given implementation of MAI is unable to perform the

query evaluation with Ps ≤ Pmu satisfied, then the query evaluation period Ps has to be

increased, i.e., query evaluation has to be performed less frequently. Since the effects of

motion updates are reflected to the query results during the next query evaluation step,

false positives and false negatives arise in-between query re-evaluations more frequently

for larger Ps values. However, this problem is not specific to MAI. In general, when the

available resources are not sufficient to handle all queries and position updates in real-time,

false positives and negatives will temporarily arise in the query results. When we have

Ps ≤ Pmu, then it is at least guaranteed that no motion updates are missed.

Although the moving object and query tables increase the storage requirements of the

proposed solution, for most cases the server already contains tables corresponding to all

objects and all queries. The object table may contain detailed information about various

object attributes and the query table may contain attributes of the queries. In the worst

case, where all of the objects and all of the queries are moving, we can expect the size of

the database to double due to the inclusion of MOT and MQT . However, we feel that such

an increase is acceptable when the improvement in performance is considered.

Figure 48 gives an overall sketch of the query evaluation process. At each query evalua-

tion phase, we need to perform query table scan and object table scan. The scan algorithms

presented in the next subsection describe how these two tasks are performed.

117

Perform Scan Perform Scan

Process Motion Updates

MOT Scan

Io

update search update search

MOT

MQT

update

Object
MSB index

Iq Iq Io

MQT Scan

Query
MSB index

Query
MSB index

Object
MSB index

Figure 48: Query evaluation: General view

4.3.4.2 The Scan Algorithms

At each query evaluation phase, two scans are performed. The first scan is on the moving

object table, MOT , and the second scan is on the moving query table, MQT . The aim of

the MOT scan is to update the Indexmsb
o and to incrementally update some of the query

results by performing searches on the Indexmsb
q . The aim of the MQT scan is to update

the Indexmsb
q and to recalculate some of the query results by performing searches on the

Indexmsb
o .

MOT Scan − During the MOT scan, when processing an entry we first check whether

the associated object of the entry has invalidated its MSB (using �p,�v, t, and Bmsb) or

changed its motion function since the last query evaluation period (based on Vch). If none

of these has happened, we proceed to the next entry without performing any operation on

the spatial MSB indexes. Otherwise we first update the Indexmsb
o . In case there is an

MSB invalidation, a new MSB is calculated for the object and the Indexmsb
o is updated.

The α value used for calculating the new MSB is selected adaptively, using |�v| and Pcm

(See Section 4.3.5.1 for further details). If there has been a motion function change, the

data associated with the entry of the object’s MSB in the Indexmsb
o is also updated. Once

the Indexmsb
o is updated, two searches are performed on the Indexmsb

q . First, using the old

MSB of the object, the Indexmsb
q is searched and all the queries whose MSBs intersect

with the old MSB of the object are retrieved. The object is then removed from the results

of those queries (if it is already in). Then a second search is performed with the newly

118

Periodic MOT Scan()
(1) foreach e = 〈io, iq, �p,�v, t, Bmsb, Pcm, Vch〉 ∈MOT
(2) tc ← current time
(3) {Calculate the new object position}
(4) e.�p← e.�p + (tc − e.t) ∗ e.�v; e.t← tc
(5) {Binv is true iff there is MSB invalidation}
(6) Binv ← e.�p �∈ e.Bmsb

(7) {If no MSB invalidation and
(8) no velocity vector change}
(9) if ¬Binv ∧ ¬e.Vch

(10) continue{ Nothing to be done}
(11) Bold ← e.Bmsb

(12) if e.Vch

(13) e.Vch ← false
(14) if ¬Binv

(15) {Update the data associated with e.io
(16) in Indexmsb

o }
(17) Indexmsb

o .updateData(io, 〈e.�p, e.�v, e.t〉)
(18) if Binv

(19) α← αβTable.lookup(|e.�v|, e.Pcm)
(20) e.Bmsb ← Rect(e.�p, e.�p + α ∗ e.�v)
(21) {Update the entry associated with e.io
(22) in Indexmsb

o }
(23) Indexmsb

o .update(io, e.Bmsb, 〈e.�p, e.�v, e.t〉)
(24) {Search Indexmsb

q using the old MSB}
(25) Qo ← Indexmsb

q .search(Bold)
(26) {Search (with predictive results) Indexmsb

q

(27) using the new MSB}
(28) Qn ← Indexmsb

q .search(e.Bmsb, e.�p, e.�v, e.t)
(29) foreach s = 〈iq, ti = [tis, tie]〉 ∈ Qn

(30) add 〈e.io, ti〉 into PQR(s.iq)
(31) remove s.iq from Qo

(32) foreach iq ∈ Qo

(33) remove e.io from PQR(s.iq)

Figure 49: Moving object table scan

Periodic MQT Scan()
(1) foreach e = 〈iq, �p,�v, r, t, Bmsb, Pcm, Vch〉 ∈MQT
(2) tc ← current time
(3) e.�p← e.�p + (tc − e.t) ∗ e.�v; e.t← tc
(4) {Calculate the new query MBR}
(5) Bqp ← Rect(e.�p− (e.r, e.r), e.�p + (e.r, e.r))
(6) {Binv is true iff there is MSB invalidation}
(7) Binv ← Bqp �∈ e.Bmsb

(8) {If no MSB invalidation and
(9) no velocity vector change}
(10) if ¬Binv ∧ ¬e.Vch

(11) continue{ Nothing to be done}
(12) if e.Vch

(13) e.Vch ← false
(14) if ¬Binv

(15) {Update the data associated with e.iq
(16) in Indexmsb

q }
(17) Indexmsb

q .updateData(iq, 〈e.�p, e.�v, e.r, e.t〉)
(18) if Binv

(19) β ← αβTable.lookup(|e.�v|, e.Pcm)
(20) �pf ← e.�p + β ∗ e.�v
(21) e.Bmsb ← Rect(e.�p − sign(e.�v) ∗ e.r, �pf +

sign(e.�v) ∗ e.r)
(22) {Update the entry associated with e.iq
(23) in Indexmsb

q }
(24) Indexmsb

q .update(iq, e.Bmsb, 〈e.�p, e.�v, e.r, e.t〉)
(25) PQR(e.iq)← ∅
(26) {Search (with predictive results) Indexmsb

o

(27) using the query MSB}
(28) On ← Indexmsb

o .query(e.Bmsb, e.�p, e.�v, e.r, e.t)
(29) foreach s = 〈io, ti = [tis, tie]〉 ∈ On

(30) add 〈s.io, ti〉 into PQR(e.iq)

Figure 50: Moving query table scan

119

calculated MSB of the object and all queries whose MSBs intersect with the new MSB

of the object are retrieved. For all those queries, result prediction is performed against the

object. Lastly, the query result entries obtained from the prediction with non-empty time

intervals are added into their associated query results.

MQT Scan − During the MQT scan, when processing a query entry we first check whether

the associated query of the entry has invalidated its MSB (using �p,�v, r, t, and Bmsb) or its

focal object has changed its motion function since the last query evaluation phase (based on

Vch). If none of these has happened, we proceed to the next entry without performing any

operation on the spatial indexes. Otherwise we first update the Indexmsb
q . In case there is

an MSB invalidation, a new MSB is calculated for the query and the Indexmsb
q is updated.

The β value used for calculating the new MSB is selected adaptively, using |�v| and Pcm (See

Section 4.3.5.1 for details). If there has been a motion function change, the data associated

with the entry of the query’s MSB in the Indexmsb
q is also updated. Once the Indexmsb

q

is updated, a single search is performed on the Indexmsb
o with the newly calculated MSB

of the query. All objects whose MSBs intersect with the new query MSB are retrieved.

For all those objects, result prediction is performed against the query. The predictive query

result entries with non-empty time intervals are added into the query result and all old

query results are removed.

Note that after the MOT scan all results are correct for the queries whose MSBs are not

invalidated and their focal objects have not changed their motion function. For queries that

have invalidated their MSBs or whose focal objects have changed their motion functions,

the query results are recalculated during the MQT scan. Therefore, all of the query results

are up-to-date after the MQT scan, given that MOT scan is performed first. The order of

the scans can be reversed with some minor modifications.

In-between query re-evaluations, false positives and negatives may arise in the query

results. False positives may only arise for objects and queries whose motion functions have

changed since the last query evaluation step. This is because, when no motion updates take

place, PQRs are accurate and can predict the departure of objects from the query regions

correctly. On the other hand, false negatives may take place when some of the objects enter

120

into MSBs of some queries in-between query re-evaluations. This happens more frequently

when Ps is large. Since we encourage to perform query re-evaluations as frequently as

possible, large Ps values are unlikely.

4.3.5 Setting α and β Values

The α and β parameters used for calculating MSBs can be set based on the motion behavior

of the objects, in order to achieve more efficient query evaluation. There are two important

characteristics of object motions: (a) the speed of the object and (b) the period of constant

motion of the object (i.e., the length of the time period it takes for the motion function to

change). For instance, for a query whose focal object changes its motion function frequently,

it may not be a good idea to perform too much prediction, thus β value for this query’s MSB

should be kept smaller. However, for an object with high speed, a small α value may not

be appropriate, as it may cause frequent MSB invalidations. As a result, it is important to

design a motion-adaptive method that can set the values of α and β parameters adaptively.

A common approach to runtime parameter setting is to develop an analytical model and use

it to guide the runtime selection of the best parameter settings. We develop an analytical

model for estimating the IO cost of performing query evaluation. This model, given in

Appendix C, is used as the guide to build an off-line computed αβTable, giving the best α

and β values for different value pairs of speed and period of constant motion of a moving

object.

4.3.5.1 αβTable and Adaptive Parameter Selection

The cost function developed in this section has a global minimum that optimizes the IO cost

of the query evaluation. We build an off-line computed αβTable, which gives the optimal

α and β values for different value pairs of object speed (�v) and period of constant motion

(Pcm), calculated using the cost function we have developed. We implement the αβTable

as a 2D matrix, whose rows correspond to different object speeds and columns correspond

to different periods of constant motion and the entries are optimal (α, β) pairs. Recall

that, as discussed in Section 4.3.4, when we calculate the MSBs of moving objects and

moving queries, we already have the estimates on periods of constant motion and speeds

121

of all moving objects including the focal objects of the moving queries. We can decide the

best α and β values to use during MSB calculation by performing a single lookup from the

off-line computed αβTable.

0
20

40
60

0

20

40

60
0

10

20

30

α (mins)

Emprical scan time measurement

β (mins)

sc
an

 t
im

e
(s

ec
s)

0
20

40
60

0

20

40

60
0

1

2

3

4

5

x 10
4

α (mins)

Analytical IO count estimate

β (mins)

IO
 c

os
t

Figure 51: Analytical node IO estimate and experimental query evaluation time

The graph on the left in Figure 51 plots the average time it takes to perform one

complete query evaluation phase (labeled as total query evaluation time) as a function of α

and β. These values are from the actual implementation of motion adaptive indexing. The

graph on the right in Figure 51 plots the analytical node IO count estimate of performing

one query evaluation phase as a function of α and β. Two important observations can be

obtained by comparing these graphs. First, it shows that the IO cost is dominant on the

time it takes to perform query evaluation, as the node IO count graph highly determines the

shape of the query evaluation time graph. Second, the optimal values of α and β calculated

using the analytical cost function indeed results in faster query evaluation.

10 20 30 40 50 60 70 80 90
0.01 (.98,.75) (.98,.13) (.78,.08) (.63,.07) (.53,.05) (.47,.05) (.42,.05) (.37,.03) (.33,.03)
0.05 (.98,.75) (.98,.18) (.98,.13) (.90,.12) (.73,.10) (.62,.10) (.53,.08) (.47,.08) (.42,.08)
0.10 (.98,.75) (.98,.23) (.98,.18) (.97,.17) (.75,.15) (.62,.13) (.52,.13) (.43,.12) (.38,.12)
0.15 (.98,.75) (.98,.28) (.98,.23) (.93,.22) (.72,.18) (.58,.17) (.50,.17) (.43,.17) (.40,.17)
0.20 (.98,.75) (.98,.33) (.98,.28) (.88,.25) (.70,.22) (.58,.22) (.52,.22) (.47,.22) (.43,.22)
0.25 (.98,.75) (.98,.38) (.98,.32) (.87,.28) (.72,.27) (.62,.27) (.55,.27) (.47,.27) (.40,.27)
0.30 (.98,.75) (.98,.42) (.98,.35) (.88,.32) (.73,.32) (.65,.32) (.53,.32) (.43,.32) (.43,.22)
0.35 (.98,.75) (.98,.45) (.98,.37) (.92,.37) (.77,.37) (.62,.37) (.50,.37) (.50,.23) (.43,.22)
0.40 (.98,.75) (.98,.48) (.98,.42) (.93,.42) (.77,.42) (.58,.42) (.55,.30) (.50,.23) (.45,.20)
0.45 (.98,.75) (.98,.52) (.98,.47) (.98,.47) (.73,.47) (.65,.33) (.55,.30) (.50,.23) (.47,.18)
0.50 (.98,.78) (.98,.55) (.98,.52) (.97,.52) (.70,.52) (.65,.33) (.55,.30) (.52,.22) (.52,.17)

velocity

pe
rio

d
of

 c
on

st
an

t m
ot

io
n

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

10 20 30 40 50 60 70 80 90

Figure 52: A sampled subset of the αβTable from the experiment of Figure 56

In Figure 52, we give a sampled subset of the αβTable that is used in the experiment

reported in Figure 56 of Section 4.5. The actual table covers a larger range and has a

higher resolution. Each entry in the table is in the form (α, β). We make two observations

122

from Figure 52. First, with increasing object speeds the optimal α and β values decrease.

This is because, for high speeds the α and β parameters should be kept small, in order

to avoid large MSBs which will cause high overlap and increase the cost of spatial index

operations. Second, with decreasing period of constant motion, the optimal α and β values

decrease. This is because, large MSBs are undesirable when the predictability is poor

(period of constant motion is small), since they will result in a larger number of invalidated

PQRs and thus increased IO cost. We will provide performance results on the improvement

provided by the adaptive parameter selection in Section 4.5.3.

4.4 Evaluating Moving kNN Queries with Motion Adaptive
Indexing

Moving continual k-nearest neighbor (kNN) queries over moving objects can be evaluated

using the main mechanisms employed for moving range query evaluation. A moving kNN

query is defined similar to a moving range query, except that instead of a range, the pa-

rameter k is specified for retrieving the k nearest neighbors of the focal object of the query.

A unique feature of our motion adaptive indexing scheme is its ability to efficiently

process both continual moving range queries and continual moving kNN queries. Note

that, for a mobile database system which has to manage both range MCQs and kNN MCQs,

solutions that are exclusive to kNN queries will introduce extra overhead, since the indexes

and data structures are not shared with the range query evaluation component, further

exacerbating the problem of high index maintenance cost in moving object databases. In

contrast, our solution uses a common framework to support both range and kNN queries, so

that workloads that are mixtures of kNN queries and range queries are efficiently handled.

In order to extend the motion adaptive indexing developed for evaluating moving range

queries to the evaluation of moving kNN queries, we introduce the concept of safe radius

and two mechanisms − guaranteed safe radius and optimistic safe radius. To evaluate kNN

queries with the use of safe radii, we need to make the following three changes:

a. During the MQT table scan, when a query invalidates its MSB or changes its motion

function, we calculate a safe radius which is guaranteed to contain at least k moving

123

objects until the next time the safe radius is calculated (β is an upper bound for this

time). Then the kNN query is installed as a standard MCQ with its range equal to

the safe radius.

b. Instead of storing time intervals in query result entries, we store the distance of the

objects from the focal object of the query as a function of time.

c. At the end of each query evaluation phase, results are sorted based on their distances

to their associated focal objects by using the distance functions stored within the

query result entries. The top k result entries are then marked as the current results.

The important step here is to calculate a safe radius, that will make sure that at least

k objects will be contained within the safe radius during the next t time units. We propose

two different approaches to tackle this problem: the guaranteed safe radius (GSR) and the

optimistic safe radius (OSR).

The guaranteed safe radius approach retrieves the current k nearest neighbors, and for

each object in the list calculates the maximum possible value the distance between the

object and the focal object of the query can take at the end of the next t time units. This

can be calculated using the focal object’s motion function and the upper bounds on the

maximum speeds of these k nearest neighbor objects. The maximum of these k calculated

distances will give the safe radius. However, there are two problems. First, it requires us to

know the upper bounds on the speeds of moving objects. Second, the calculated safe radius

may become unnecessarily large, negatively affecting the performance.

The optimistic safe radius approach retrieves the current k nearest neighbors, and for

each object in the list calculates the maximum value of the distance between the object and

the focal object of the query can take throughout the next t time units, assuming that the

objects will not change their motion functions during this time. For each of the k objects,

this calculation can be done using the current motion function of the object and the motion

function of the query’s focal object. The maximum of these k calculated distances will

give the safe radius. This approach guarantees that k objects will be contained within

the safe radius during the next t time units under the assumption that the initial set of

124

k nearest neighbors do not change their motion functions during this period. When using

this approach, if the number of objects in the result of a kNN query turns out to be smaller

than k, we fall back to the traditional spatial index kNN search plan for that query until

the next time a new safe radius is calculated.

Optimistic Safe Radius
= MAX(Δd1, Δd2, Δd3, Δd4)

time t0

time t0+β

Δd1
Δd2

Δd4Δd3

o2

o3

o1 o1 o2

o3

ra
diu

s =
 o 3

.m
ax

ve
l*β

ra
diu

s =
 o 2

.m
ax

ve
l*β

Δd5

Δd6

Guaranteed Safe Radius
= MAX(Δd5, Δd6)

Figure 53: Optimistic and guaranteed safe radius calculation for 2NN queries

Figure 53 illustrates how safe radii are calculated with an example 2NN query, where

the focal object is o1 and the two nearest neighbors at time t0 are objects o2 and o3. The

safe radius is calculated to be valid during the next β time units. We will provide the

performance comparison of guaranteed safe radius (GSR) and optimistic safe radius(OSR)

in Section 4.5.

4.5 Experimental Results

This section describes five sets of experiments, which are used to evaluate our solution.

The first set of experiments compares the performance of motion adaptive indexing against

various existing approaches. The second set of experiments illustrates the advantages of

adaptive parameter selection over fixed parameter setting on the sizes of bounding boxes.

The third set of experiments studies the effect of skewed data and query distribution on

query evaluation performance. The fourth set of experiments analyzes the scalability of

the proposed approach with respect to queries with varying sizes of spatial regions, varying

percentages of moving queries, and varying number of objects. Finally the fifth set of

experiments present the effectiveness of the motion adaptive approach to evaluating moving

125

Table 4: System parameters
Parameter Default value / Range

area of the region of interest 500000 sq. miles
number of objects 50000 / [50K,200K]

percentage of moving objects 50
number of queries 5000 / [2.5K,20K]

percentage of moving queries 50 / [0,100]
moving query range distribution {5, 4, 3, 2, 1} miles with Zipf param 0.6

static query side range distribution {8, 7, 5, 4, 2} miles with Zipf param 0.6
period of constant motion mean 5 minutes, geometrically distributed

moving object speed between 0-150 miles/hour uniformly random
scan period 30 seconds

motion update period 30 seconds

continual kNN queries over moving objects.

4.5.1 System Parameters and Setup

In the experiments presented in the rest of the chapter, the parameters take their default

values listed in Table 4, when not specified otherwise. Based on the default values, 50%

of the objects are moving and the remaining 50% are static. Similarly, 50% of the queries

are moving and the remaining 50% are static. Different percentages of moving queries

are studied in Section 4.5.6. Moving queries are assigned with range values from the list

{5, 4, 3, 2, 1}(in miles) using a Zipf distribution with parameter 0.6. Static queries are as-

signed with side range values from the list {8, 7, 5, 4, 2} (in miles) using a Zipf distribution

with parameter 0.6.

The default object density is taken in accordance with previous work [94, 105]. Objects

and queries are randomly distributed in the area of interest, except in Section 4.5.5 where we

consider skewed distributions. Objects that belong to different classes with strictly varying

movement behaviors are considered in Section 4.5.3. The paths followed by the objects are

random, i.e., each time a motion function update occurs, a random direction and a random

speed are chosen. The object speeds are selected from the range (0, 150] (in miles/hour)

uniformly at random. Table 4 gives details of other important system parameters. We vary

the values of many system parameters to study their effects on the performance.

For R∗-trees a 101 node LRU buffer is used with 4KB page size. Branching factor of

the internal tree nodes is 100 and the fill factor is 0.5. Relative merits of our techniques

126

MAI OIBOI QI OQIBF MAI OIBOI QI OQIBF MAI OIBOI QI OQIBF MAI OIBOI QI OQIBF
0

50

100

150

200

250

300

number of queries

sc
an

 t
im

e
(s

)

2.5K 5K 10K 20K

object table scan time
query table scan time

Figure 54: Query evaluation time

shown in the rest of the section are also valid under scenarios with large buffer sizes (which

effectively makes it a main memory algorithm), however we do not report those results. All

experiments are performed using R∗-trees, except that in Section 4.5.5 a static grid based

spatial index implementation is used for comparison purposes.

We compare the performance of motion adaptive indexing against various existing ap-

proaches, in terms of query evaluation time and node IO counts. The approaches used for

comparison are: Brute Force (BF), Object-only Indexing (OI), Query-only Indexing (QI),

Object and Query Indexing (OQI), Motion Adaptive Indexing (MAI), and Object Indexing

with MSBs (OIB). The Brute Force calculation is performed by scanning through the

objects. During the scan, all queries are considered against each object in order to calculate

the results. The OI approach uses an object index which is updated for all objects that

have moved since the last query evaluation phase 1 and searched for all queries in order to

evaluate the query results. The QI approach uses a query index which is updated for all

queries that have moved since the last query evaluation step and searched for all object po-

sitions in order to update the query results incrementally. OQI is a stripped down version

of MAI without MSBs and PQRs. OIBs is similar to pure object-only indexing, except

that the motion sensitive boxes are used instead of object positions in the spatial index

(without the PQRs).

1Although update-efficient object indexes exist [105, 118], we show that their use does not change our
conclusions for large or moderate number of queries, in which case search cost is the dominant factor.

127

MAIOIB OI QIOQI MAIOIB OI QI OQI MAIOIB OI QI OQI MAIOIB OI QI OQI
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5

number of queries

n
o

d
e

IO

2.5K 5K 10K 20K

object index update ios
object index search ios
query index update ios
query index search ios

Figure 55: Query evaluation node IO

4.5.2 Performance Comparison

Figure 54 plots the total query evaluation time for fixed number of objects (50K) with

varying number of queries (2.5K to 20K). The horizontal line in the figure represents the

scan period. We consider a query evaluation scheme as acceptable when the total query

evaluation time is less than the scan period. Note that the scan period, Ps, is set to be

equal to the motion update period Pmu in this set of experiments. Figure 55 plots the query

evaluation node IO count for the same setup. The node IO is divided into four different

components. These are: (a) node IO due to object index update, (b) node IO due to object

index search, (c) node IO due to query index update and (d) node IO due to query index

search. Each component is depicted with a different color in Figure 55. Several observations

can be obtained from Figure 54 and Figure 55.

First, the approaches with an object index that is updated for all moving objects, do not

perform well when the number of queries is small. This is clear from the poor performances

of OI and OQI for 2.5K queries, as shown in Figure 54. The reason is straightforward.

The cost of updating the object index dominates when the number of queries is small.

This can also be observed by the object index update component of the OI in Figure 55.

However, there are also significant costs for searching the object index for the OI approach.

These costs dominate the total IO cost when the number of queries is large (see the case

of 20K queries in Figure 55). This points out an important fact, although it is possible to

128

reduce the cost of updating the object index (for instance by using a TPR-tree based object

index [105, 118]), MAI still performs significantly better than such an object index based

approach.

Second, the approaches with a query index that is searched for a large number of objects,

do not perform well for a large number of queries. This is clear from the poor performances

of QI and OQI for 20K queries, as shown in Figure 54. This is due to the fact that, the

cost of searching the query index dominates when the number of queries is large. This can

also be observed by the query index search component of the QI in Figure 55. Note that,

for a small number of queries, the node IO count for QI appears as 0, because the query

index fits into the LRU buffer.

Third, the brute force approach performs relatively good compared to OQI and slightly

better compared to OI, when the number of queries is small (2.5K), as shown in Figure 54.

Obviously BF does not scale with the increasing number of queries, since the computational

complexity of the brute force approach is O(No∗Nq), where No is the total number of objects

and Nq is the total number of queries. Although OQI seems to be a consistent loser when

compared to other indexing approaches, it is interesting to note that the motion adaptive

indexing is built on top of it and performs better than all other approaches.

Finally, it is worth noting that only MAI manages to provide good enough performance

to satisfy Ps ≤ Pmu under all conditions. MAI provides around 75-80% savings in query

evaluation time under all cases when compared to the best competing approach except OIB.

However, OIB performs reasonably well, but fails to scale well with increasing number of

queries when compared to the proposed MAI approach.

4.5.3 Effect of Adaptive Parameter Selection

In order to illustrate the advantage of adaptive parameter selection, we compare motion

adaptive indexing against itself with static parameter selection. For the purpose of this ex-

periment, we introduce three different classes of moving objects with strictly different move-

ment behaviors. The first class of moving objects change their motion functions frequently

(avg. period of constant motion 1 minute) and move slow (max. speed 20 miles/hour). The

129

second class of moving objects possess the default properties described in Section 4.5.1. The

third class of moving objects seldom change their motion functions (avg. period of constant

motion 30 mins) and move fast (max. speed 300 miles/hour). In order to observe the gain

from adaptive parameter selection, we set the α and β parameters to the optimal values

obtained for moving objects of the second class for the non-adaptive case.

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

n
o

d
e

IO
 c

o
u

n
t

1:0.25:1 1:0.5:1 1:1:1 1:2:1 1:4:1
6

7

8

9

10

11

12

13

14

moving object type distribution

to
ta

l q
u

er
y

ev
al

u
at

io
n

 t
im

e
(s

)

non−adaptive
 adaptive
 node IO

non−adaptive
 adaptive
 query eval. time

Figure 56: Performance gain due to adaptive parameter selection

Figure 56 plots the time and IO cost of query evaluation for MAI and static parameter

setting version of MAI. The x-axis represents the object class distributions. Hence, 1:1:1

represents the case where the number of objects belonging to different classes are the same.

Along the x-axis we change the number of objects belonging to the second class. 1:0.25:1

represents the case where the number of objects belonging to the first class and the number

objects belonging to the third class are both 4 times the number of objects belonging to

the second class. Dually, 1:4:1 represents the case where the second class cardinality is 4

times those of the other two classes. Total query evaluation times are depicted as lines in

the figure and their corresponding values are on the left y-axis. The node IO counts are

depicted as an embedded bar chart and their corresponding values are on the right y-axis.

There are two important observations from Figure 56.

First, we notice that the adaptive parameter selection has a clear performance advantage.

This is clearly observed from Figure 56, which shows significant improvement provided by

motion adaptive indexing over static parameter setting in both query evaluation time and

node IO count.

130

Second, it is important to note that the objects belonging to the first class or the third

class cannot be ignored even if their numbers are small. Even for 1:4:1 distribution, where

the second class of objects is dominant, we see a significant improvement with MAI. Note

that objects belonging to the first and the third class are expensive to handle. The first class

of objects are expensive, as they cause frequent motion updates which in turn causes more

processing during MOT and MQT scans. The third class of objects are also expensive, as

they cause frequent MSB invalidation which instigates more processing during MOT and

MQT scans. The fact that both query evaluation time and node IO count are declining

along the x-axis shows that it is obviously more expensive to handle the first and the third

class of objects.

OI OIB QI QIB
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

alternative approaches

re
la

ti
ve

 s
to

ra
g

e
co

st
 o

f
M

A
I

1:0.01
1:0.1
1:1

|O| : |Q|

Figure 57: Storage cost of MAI relative to other alternatives

4.5.4 Storage Cost

Since MAI uses both an object index and a query index, its storage requirements are

expected to be larger than the storage requirements of the other alternatives considered

in this section. However, given that the processing resources are the limiting factor for

handling continuous queries in the mobile object monitoring context, this increase in the

storage cost is acceptable considering the savings in IO cost and query evaluation time

provided by MAI. In Figure 57, we report the storage cost of the MAI approach, relative

to other alternatives, for three different settings for the |O|:|Q| ratio, that are 1:0.01, 1:0.1,

and 1:1. We observe from the figure that, relative to OI and OIB, MAI has a storage

131

cost of around 2 times and 1.25 times for the case of |O|:|Q| = 0:0.01 and around 2.15

times and 1.35 times for the case of |O|:|Q| = 0:0.1, respectively. For the extreme case of

|O|:|Q|=1:1, where the number of queries is equal to the number of objects, we see that

MAI has a storage cost of around 3 times and 2 times relative to OI and OIB, respectively.

In general, the number of queries is expected to be smaller than the number of objects, thus

it is fair to say that MAI has a storage cost that is around 2 times of a simple object index

based approach. The figure also shows results relative to the QI and QIB approaches. It is

observed that MAI incurs up to 5 times more storage cost compared to QI, the worst case

scenario happening when the number of queries is the smallest, that is |O|:|Q| = 0:0.01.

However, given the poor performance of QI compared to both OI and MAI, the savings

it provides in terms of storage cost are not of much value.

4.5.5 Effect of Data and Query Skewness

Our experiments up to now have assumed uniform object and query distribution. In this

section we conduct experiments with skewed data and query distributions. We model skew-

ness using two parameters, number of hot spots (Nh) and scatter deviation (d). We pick

Nh different positions within the area of interest randomly, which correspond to hot spot

regions. When assigning an initial position to an object, we first pick a random hot spot

position from the Nh different hot spots and then place the object around the hot spot po-

sition using a normally distributed distance function on both x and y dimensions with zero

mean and d standard deviation. Scatter deviation d is set to 25 miles in all experiments

and the number of hot spots is varied to experiment with different skewness conditions.

Queries also follows the same distribution with objects. Figure 58 shows the object and

query distribution for Nh = 5 and Nh = 30.

Figure 58: Query and object distribution for Nh = 5 and Nh = 30

132

We also experiment with different spatial indexing mechanisms. We have implemented a

static grid based spatial index, backed up by a B+-tree with z-ordering [44]. The optimal cell

size of the grid is determined based on the workload. The motivation for using a static grid is

that, with frequently updated data it may be more profitable to use a statically partitioned

spatial index that can be easily updated. Actually, previous work done for static range

queries over moving objects [67] has shown that using a static grid outperforms most other

well known spatial index structures for in-memory databases. With this experiment we also

investigate whether a similar situation exists in secondary storage based indexing in the

context of MCQs.

5 10 15 20 25 30
8

10

12

14

16

18

20

22

24

number of hotspots

to
ta

l q
u

er
y

ev
al

u
at

io
n

 t
im

e
(s

)

R*−tree R*−tree
StaticGrid R*−tree
R*−tree StaticGrid
StaticGrid StaticGrid

 Index
o
msb Index

q
msb

Figure 59: Effect of data and query skewness on performance

Figure 59 plots the total query evaluation time as a function of number of hot spots for

different spatial index structures used for Indexmsb
o and Indexmsb

q . Note that the smaller the

number of hot spots, the more skewed the distribution is. Figure 59 shows that decreasing

the number of hot spots quadratically increases the query evaluation time. But even for

Nh = 5, the query evaluation time does not exceed the query evaluation period. Figure 59

also shows that R∗-tree performs the best under all conditions.

4.5.6 Scalability Study

In this section we study the scalability of the proposed solution with respect to the varying

size of query ranges, the varying percentage of moving queries over the total number of

spatial queries, and the varying total number of objects. We first measure the impact of

133

the query range and the moving query percentage on the query evaluation performance.

We use the range factor (rf) to experiment with different workloads in terms of different

query ranges. The query radius and query side length parameters given in Section 4.5.1

are multiplied by the range factor rf in order to alter the size of query regions. Note that

multiplying the range factor by two in fact increases the area of the query range by four.

0 20 40 60 80 100
5.5

6

6.5

7

7.5

8

8.5

percentage of moving queries (%)

to
ta

l q
u

er
y

ev
al

u
at

io
n

 t
im

e
(s

)

range factor=0.5
range factor=1.0
range factor=1.5
range factor=2.0

Figure 60: Effect of query range and moving query percentage on performance

Figure 60 plots the total query evaluation time as a function of moving query percentage

for different range factors. As shown in Figure 60, the scalability in terms of moving

query percentage is extremely good. The slope of the query evaluation time function shows

good reduction with increasing percentage of moving objects. Increasing the range factor

shows roughly linear increase (with a multiplier that increases with increasing moving query

percentage, ≈0.25 to ≈0.5 for 0% to 100%) on the query evaluation time.

50K 100K 150K 200K
5

10

15

20

25

30

35

40

45

number of objects

to
ta

l q
u

er
y

ev
al

u
at

io
n

 t
im

e
(s

)

R*−tree R*−tree
StaticGrid R*−tree
R*−tree StaticGrid
StaticGrid StaticGrid

Indexmsb
o

 Indexmsb
q

Figure 61: Effect of number of objects on performance

134

In Figure 61 we study the effect of the number of objects on the query evaluation

performance. Figure 61 plots the total query evaluation time as a function of number of

objects for different spatial index structures used for Indexmsb
o and Indexmsb

q . The number

of queries is set to its default value of 5K. From Figure 61 we observe a linear increase in the

query evaluation time with the increasing number of objects. The query evaluation time for

200K objects is around 4 times the query evaluation time for 50K objects for the R∗-tree

implementation of Indexmsb
o and Indexmsb

q , which shows better scalability with increasing

number of objects than the static grid implementation.

500 1000 2000 4000
0

2

4

6

8

10

12

14

16

18

20

number of kNN queries, k range = [5 6 7 8 9 10], dist = zipf=0.6

to
ta

l q
u

er
y

ev
al

u
at

io
n

 t
im

e
(s

)

Object−only Indexing
Object−only Indexing with MSBs
Motion Adaptive Indexing−GSR
Motion Adaptive Indexing−OSR

Figure 62: Total query evaluation time for moving continual kNN queries

500 1000 2000 4000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

number of kNN queries, k range = [5 6 7 8 9 10], dist = zipf=0.6

n
o

d
e

IO
 c

o
u

n
t

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 Object−only Indexing
Object−only Indexing with MSBs
Motion Adaptive Indexing−GSR
Motion Adaptive Indexing−OSR

Figure 63: Node IO count for moving continual kNN queries

4.5.7 Performance Comparison for Continual kNN Queries

We compare the performance of MCQ based moving continual kNN query evaluation against

the object-only indexing approach. In object-only indexing approach, the object index is

135

updated and the kNN queries are evaluated against the updated object index during each

query evaluation phase. In this experiment 10K objects are used with the same object

density (No/A) specified in Section 4.5.1), where 50% of the objects are moving with the

default motion parameters from Section 4.5.1. All queries are moving continual kNN queries

and the number of queries ranges from 0.5K to 4K. The k values of the kNN queries

are selected from the list {5, 6, 7, 8, 9, 10} using a Zipf distribution with parameter 0.6.

Figure 62 plots the total query evaluation time and Figure 63 plots the node IO count for

different number of objects with different approaches. The node IO count is divided into

two components. The lower part shows the node IO due to index searches, where the upper

part shows the node IO due to index updates.

Evaluating moving continual kNN queries with motion adaptive indexing shows signifi-

cant improvement over object-only indexing approach. Between the two variations of safe

radius, OSR (optimistic safe radius based approach) performs better than GSR (guaranteed

safe radius based approach). Object-only indexing with MSBs (OIB) slightly outperforms

GSR. However, OSR provides 20-40% improvement in total query evaluation time over

OIB.

An interesting statistic is the average result accuracy of the range MCQs used to answer

kNN queries, for GSR and OSR techniques. Concretely, the ratio of the k value specified

in the query to the average number of results in the MCQ used to answer the query is an

important measure to assess the effectiveness of using range queries as a filtering step in

answering kNN queries.

In Figure 64, the range MCQ result accuracy for kNN queries is plotted as a function

of k for optimistic and guaranteed safe radius techniques. The k values used in the figure

are in the range [5, 10]. For k = 5 and with OSR, one-fifth of the results of a range MCQ

constitute the result of the associated kNN query. This means that the size of the result

set of the range MCQ is 25 for a 5NN query, on the average. Importantly, the accuracy

of the range MCQs increase with increasing k. For instance, for k = 10 and with OSR,

one-quarter of the results of a range MCQ constitute the result of the associated kNN

query. This increasing trend in accuracy is very useful, since the cost of query evaluation

136

5 6 7 8 9 10
0

5

10

15

20

25

ra
ng

e
qu

er
y

re
su

lt
ac

cu
ra

cy

fo
r k

N
N

 q
ue

rie
s

(%
)

number of nearest neighbors, k

GSR − Guaranteed Safe Radius

OSR − Optimistic Safe Radius

Figure 64: Range MCQ result accuracy for kNN queries

increases with increasing k and it is important that the range MCQs provide good filtering

for such costly kNN queries. Figure 64 also shows that GSR performs poorly compared to

OSR, having a very low accuracy value of 6% to 8% where k ranges from 5 to 10.

4.6 Related Work

Research on moving object indexing can be broadly divided into two categories, based on (1)

the current positions of the moving objects and (2) the trajectories of the moving objects.

Our work belongs to the first category. An essential study dealing with the problem of

indexing and querying moving object trajectories can be found in [92]. Continual queries

are used as a useful tool for monitoring frequently changing information [124, 78]. In the

spatial databases domain, continual queries are employed for continuously querying moving

object positions. Most of the work on continual queries over moving object positions is

either on static continual queries over moving objects [94, 67, 72, 25, 113, 133, 134] or

on moving continual queries over static objects [120, 114]. None of the these works has

addressed the problem of moving continual queries over moving objects.

In [94], velocity constrained indexing and query indexing (Q-index) has been proposed

for efficient evaluation of static continual range queries. The same problem is studied in [67],

however the focus is on in-memory structures and algorithms. In [105], TPR-tree, an R-tree

based indexing structure, is proposed for indexing the motion parameters of moving objects

by using time parameterized rectangles and answering queries using this index. TPR∗-tree,

137

an extension of TPR-tree optimized for queries that look into the future (predictive), is

described in [118]. Note that even though TPR-related indexes [105, 118] support moving

queries, these moving queries are predefined regions in the spatio-temporal domain. They

are not the moving continual queries, such as MCQ1 and MCQ2 discussed in this chapter.

Recently, newer indexing schemes that improve upon the performance of TPR-trees have

been introduced, such as STRIPES [91] and the B+-tree based indexing technique of [65].

Nevertheless, the focus of these works is on developing search and update efficient indexing

structures for managing moving object locations and they do not have special mechanisms

to support continual queries, whereas our focus is on developing a logical indexing scheme

that leverages already existing indexing structures to support efficient processing of MCQs

through incremental evaluation. Advanced indexing structures can be integrated into our

MAI approach by replacing the R∗-tree based object and query indexes we employ.

In [17], efficient query evaluation techniques for nearest neighbor (k = 1) and reverse

nearest neighbor queries are developed for moving queries over moving objects. CNN [120]

gives an algorithm for pre-calculating k-nearest neighbors with a line segment representing

the continuous motion of the query; however the target objects are assumed to be static.

In [141], object-only indexing and query-only indexing based techniques are proposed to

evaluate moving continuous kNN queries over moving objects. However, the solution is

exclusive to kNN queries. In contrary, our approach supports range and kNN queries within

the same framework and uses object and query indexing at the same time to optimize the

performance for a large range of parameters that include cases where object-only indexing

falls short, as well as cases where query-only indexing is ineffective.

The concept of moving continual queries is to some extent similar to Dynamic Queries

(DQ) [74]. A dynamic query is defined as a temporally ordered set of snapshot queries

in [74]. This is a low level definition as opposed to our definition of moving continual

queries which is more declarative and is defined from the users’ perspective. The work

done in [74] indexes the trajectories of the moving objects and describes how to efficiently

evaluate dynamic queries that represent predictable or non-predictable movement of an

observer. They also describe how new trajectories can be added when a dynamic query

138

Table 5: Comparison of motion-adaptive index with existing approaches
Query Types

Moving Query Static Query Moving Query
Static Object Moving Object Moving Object

MAI • • •
SINA [87] • • •
TPR [105] ◦ 2 • ◦2
DQ [74] • • •

CNN [120] •
Q-index [94] •

System Properties
Incremental Predictive Index Motion Motion
Evaluation Query Results Independence Modeling Adaptation

MAI • • • • •
SINA [87] • •
TPR [105] •
DQ [74] • •

CNN [120] ◦ 3 •
Q-index [94] • •

is actively running. Their assumptions are in line with their motivating scenario, which

is to support rendering of objects in virtual tour-like applications. Our work focuses on

real-time evaluation of moving queries in real-world settings, where the trajectories of the

moving objects are unpredictable and the queries can potentially be associated with moving

objects inside the system. An important feature of our approach is its motion adaptiveness,

allowing the query evaluation to be optimized according to the dynamic motion behavior

of the objects. Our experiments have shown that such motion adaptive capability offers

significant performance gain for evaluating moving queries over moving objects.

The most relevant work to ours, in terms of its support for various types of continual spa-

tial queries discussed in Section 4.1 and its ability to perform incremental evaluation, is the

SINA [87] (and its kNN extension SEA-KNN [137]) algorithm that has been developed con-

currently and independently with our work. SINA employs hash-based indexing techniques

for both objects and queries and generates positive and negative updates (incrementally)

through a three-step process consisting of hashing, invalidation and joining. However, there

is an inherent difference between our approach and SINA. Specifically, motion modeling

2TPR tree only supports moving queries with predefined paths
3CNN has per result time intervals, not per object

139

(described in Section 4.2.2) is integrated into our approach, which enables predictive query

results and helps increase the system scalability by reducing the number of location updates

received from the moving objects. It has been shown in [33] that the use of linear functions

for motion modeling, reduces the amount of updates to one third in comparison to constant

functions, for realistic thresholds. However, SINA works on raw location updates in the

form of (x, y) coordinate pairs and is not designed to take advantage of motion modeling.

On the other hand, motion modeling may introduce additional processing requirements on

the moving objects. Fortunately, dead reckoning algorithms for linear motion modeling are

simple and can be implemented easily with cheap hardware or software. Besides these, the

SINA approach is not motion adaptive like our MAI approach, i.e., it does not optimize the

system based on the movement characteristics of the individual objects. In summary, SINA

and MAI are different in their assumptions and requirements with respect to the supports

required by the mobile objects, as well as in terms of the specific techniques they employ

for the purpose of query evaluation. However, both are intended to solve the same high

level problem of evaluating moving continuous queries over moving objects.

In [113], a two-level architecture is proposed, where there exist location preprocessors

between the moving objects and the database. The location updates are propagated to the

database only when the objects cross boundaries of their hash buckets, which are fixed. The

database is aware of only the hash buckets and does not know exact positions of objects

within the buckets. Some queries have to be propagated to location preprocessors that

have the exact information. Going further in this direction, in [25] and [62] distributed

architectures that push the location filtering to mobile units were described. Chapter 3

studies distributed location monitoring in detail.

Table 5 summarizes the comparison of our MAI approach with some of the existing

approaches. Our approach is the most universal in handling various types of continual

queries and has many desirable system properties, such as incremental evaluation of queries

and motion adaptation.

140

CHAPTER V

ENERGY-EFFICIENT DATA COLLECTION FOR

SENSOR CQ SYSTEMS

Data collection is a fundamental functionality through which sensor networks form an en-

abling technology for environmental monitoring applications. Although in-network tech-

niques, such as event detection, aggregation, and query processing, have been studied in

the literature as different ways of data collection, one of the most prominent and comprehen-

sive ways of data collection in sensor networks is to periodically extract raw sensor readings.

This way of data collection enables complex analysis of data, which may not be possible

with in-network aggregation or query processing. However, this flexibility in data analysis

comes at the cost of power consumption. In this chapter, we introduce selective sampling for

energy-efficient periodic data collection in sensor networks. The main idea behind selective

sampling is to use a dynamically changing subset of nodes as samplers such that the sensor

readings of sampler nodes are directly collected, whereas the values of non-sampler nodes

are predicted through the use of probabilistic models that are locally and periodically con-

structed in an in-network manner. Selective sampling can be effectively used to increase the

network lifetime while keeping quality of the collected data high, in scenarios where either

the spatial density of the network deployment is superfluous relative to the required spatial

resolution for data analysis or certain amount of data quality can be traded off in order to

decrease the overall power consumption of the network. Our selective sampling approach

consists of three main mechanisms. First, sensing-driven cluster construction is used to

create clusters within the network such that nodes with close sensor readings are assigned

to the same clusters. Second, correlation-based sampler selection and model derivation is

used to determine the sampler nodes and to calculate the parameters of probabilistic models

that capture the spatial and temporal correlations among sensor readings. Last, selective

data collection and model-based prediction is used to minimize the number of messages used

141

to extract data from the network. A unique feature of our selective sampling mechanisms

is the use of localized schemes, as opposed to the protocols requiring global information,

to select and dynamically refine the subset of sensor nodes serving as samplers and the

model-based value prediction for non-sampler nodes. Such runtime adaptations create a

data collection schedule which is self-optimizing in response to changes in energy levels of

nodes and environmental dynamics.We present analytical and simulation based results and

study the effectiveness of selective sampling under different system settings.

5.1 Introduction

Advances in wireless network technologies, low-power processor and chip design, and micro

electromechanical systems have facilitated the proliferation of small, low cost, low power

sensor devices that enable seamless integration of the physical world with pervasive net-

works [41]. The prominent features of such sensor devices are their ability to perform

computation, wireless communication, and environmental sensing. On the bright side, the

continued price drop in low power sensor devices and their decentralized and unattended na-

ture of operation make sensor networks an attractive tool for extracting and gathering data

by sensing real-world phenomena from the physical environment. Environmental monitor-

ing applications are expected to benefit enormously from these developments, as evidenced

by recent sensor network deployments supporting such applications [84, 15].

On the downside, the large and growing number of networked sensors and their unat-

tended deployment present a number of unique system design challenges, different from

those posed by existing computer networks: (1) Sensors are power-constrained. A major

limitation of sensor devices is their limited battery life. Wireless communication is a major

source of energy consumption, where sensing can also play an important role [39] depend-

ing on the particular type of sensing performed (ex. solar radiation sensors [121]). On

the other hand, computation is relatively less energy consuming. Motes [60] developed at

UC Berkeley and manufactured by Crossbow Inc. [36] are good examples of this type of

sensor nodes. (2) Sensor networks must deal with high system dynamics. Sensor devices

and sensor networks experience a wide range of dynamics, including spatial and temporal

142

change trends in the sensed values that contribute to environmental dynamics, changes in

user demands that contribute to task dynamics as to what is being sensed and what is con-

sidered interesting changes [42], and changes in the energy levels of the sensor nodes, their

location or connectivity that contribute to network dynamics. One of the main objectives

in configuring networks of sensors for large scale data collection is to achieve longer lifetimes

for sensor network deployments by keeping energy consumption at minimum, while main-

taining sufficiently high quality and resolution of the collected data to enable meaningful

analysis. These configurations should be periodically re-adjusted to adapt to the various

changes resulting from high system dynamics.

5.1.1 Data Collection in Sensor Networks

We can broadly divide data collection, a major functionality supported by sensor networks,

into two categories. In event based data collection, the sensors are responsible for detecting

and reporting (to a base node) events, such as spotting moving targets [75]. Event based

data collection is less demanding in terms of the amount of wireless communication, since

local filtering is performed at the sensor nodes, and only events are propagated to the

base node. In certain applications, the sensors may need to collaborate in order to detect

events. Detecting complex events may necessitate non-trivial distributed algorithms [77]

that require involvement of multiple sensor nodes. An inherent downside of this kind of data

collection is the impossibility of performing in-depth analysis on the raw sensor readings,

since they are not extracted from the network.

In periodic data collection, periodic updates are sent to the base node from the sensor

network, based on the most recent information sensed from the environment. We further

classify this approach into two. In query based data collection, long standing queries (also

called continuous queries [79]) are used to express user or application specific information

interests and these queries are installed “inside” the network. Most of the schemes following

this approach [82, 83] support aggregate queries, such as minimum, average, and maximum.

These types of queries result in periodically generating an aggregate of the recent samples

of all nodes. Although aggregation lends itself to simple distributed implementations that

143

enable complete in-network processing of queries, it falls short in supporting holistic aggre-

gates [82] over sensor samples, such as quantiles. Similar to the case of event based data

collection, the raw data is not extracted from the network and complex data analysis that

requires integration of samples from various nodes at various times, cannot be performed

with in-network aggregation.

The most comprehensive way of data collection is to extract raw samples from the

network through periodic reporting of each sampled value from every sensor node. This

scheme enables arbitrary data analysis at a sensor stream processing center once the data

is collected. Such increased flexibility in data analysis comes at the cost of high energy

consumption due to excessive communication and consequently decreases the network life-

time. One way of tackling this problem is to use distributed data compression to reduce

the total size of the data transmitted on the wireless channel. However, such approaches

may require to gather samples belonging to different time intervals before performing com-

pression on them [7]. This may introduce delays, undesirable for real-time applications.

As shown in [7], compression techniques that typically trade-off accuracy and delay can

cut down the communication cost, thus reduce the energy consumption rate and increase

the network lifetime. In this chapter, we develop an alternative approach based on selective

sampling. The main idea behind selective sampling is to use a carefully selected dynamically

changing subset of nodes to sample and to predict the values of the rest of the nodes using

probabilistic models. Such models are constructed by exploiting both spatial and temporal

correlations existent in sample readings of sensor nodes. There are two major scenarios

that can highly benefit from this approach. First, in many sensor network applications,

node density of the deployment is selected to result in a spatial resolution higher than the

required, mainly because of the short lifespan of the sensor nodes [106], or due to the lack of

knowledge about the nature of the phenomenon of interest. As a result, selective sampling

can effectively reduce the number of nodes used to sample data, decrease the energy con-

sumption rate of the network, and thus can increase the overall network lifetime. Second

and more importantly, there is an inherent trade-off between the accuracy of the collected

data and the network lifetime. If the application at hand can tolerate certain levels of error,

144

then selective sampling can be effectively used to save energy by decreasing the quality of

received data within acceptable bounds. Such tradeoff is especially useful when the energy

left in the network is low and the energy consumption rate is high. A key challenge is to

design effective mechanisms that can increase the lifetime of the network while keeping the

accuracy of the collected data at satisfactory levels.

quality

energy

 time

start selective sampling

100%

Figure 65: Illustration of energy-quality trade-off

Figure 65 illustrates this trade off graphically. Initially, perfect accuracy is sustained

with high rate of energy consumption. Later, selective sampling is used to decrease the

rate of energy consumption, while introducing some reduction in data quality, to obtain an

increased network lifetime. Note that, it is also possible to use different degrees of selective

sampling, depending on the desired energy/quality trade-off.

Another key challenge in designing an energy efficient selective sampling architecture is

to empower the system with the ability to respond to high network dynamics. Concretely,

the selective sampling approach should support large number of unattended autonomous

nodes and should equip the energy-efficient data collection algorithms with self-configuring

and self-optimizing capabilities by enabling run-time adaptation to re-select the subset of

nodes to sample and to re-construct the correlation-based probabilistic models to enhance

the quality of value prediction of non-sampler nodes.

5.1.2 Contributions and Scope of the Chapter

With the above challenges in mind, we identify a number of concrete design principles

in designing an effective selective sampling architecture that can respond to changes in

energy levels at nodes and network dynamics. First, we need to organize the network into

coordination groups such that good probabilistic models can be locally constructed to closely

145

capture the spatial correlations of sensor readings amongst the nodes within each group.

Second, we need to utilize the constructed models to find and select the sampler nodes

whose sensor readings can provide high accuracy for the prediction to be performed for the

non-sampler nodes. Third, but not the least, we need to perform periodic reassignments in

order to balance power consumption of the nodes and adapt to possibly changing correlations

between sensor readings.

Our selective sampling architecture consists of a three-phase framework and a set of

localized algorithms for generating and executing energy-aware data collection schedules.

First, we develop Sensing-driven Cluster Construction algorithm to group together the

nodes such that the ones that are close to each other in terms of their sensor readings (thus

the name sensing-driven) as well as network hops are put into the same clusters. This is

aimed at building a network organization that facilitates local coordination for performing

selective sampling and is designed to improve the prediction quality via its sensing-driven

nature. Second, we develop Correlation-based Sampler Selection and Model Derivation al-

gorithms to partition the nodes within each cluster into a set of subclusters to assist the

selection of a set of sampler nodes and to construct one probabilistic model for each sub-

cluster. We address the issues of high prediction accuracy and balanced power consumption

by enabling periodic re-configuration of node clusters and periodic re-selection of sampler

nodes and re-construction of correlation-based probabilistic models. This allows our selec-

tive sampling approach to adapt to possibly changing correlations between sensor readings

and balance power consumption of nodes in response to environment and task dynamics. In

the third phase, we generate and execute the data collection schedule to collect data from

the sensor network in an energy-efficient manner by developing the Selective Data Collec-

tion and Model-based Prediction algorithms, aiming at keeping the wireless communication

at minimum. This enables us to strike a good balance between network lifetime and data

quality, and to adjust this balance as needed.

146

Table 6: Notations for network architecture
Notation Meaning

N Total number of nodes in the network
pi ith node in the network

nbr(pi) Neighbors of node pi in the connectivity graph
ei(t) Energy left at node pi at time t
hi Cluster head node of the cluster that node pi belongs to
H Set of cluster head nodes in the network
Ci Set of nodes in the cluster with head node pi

Gi Set of subclusters in cluster Ci, where Gi(j) is
the set of nodes in the jth subcluster in Gi

Ki Number of subclusters in Gi, also denoted as |Gi|
Si Data collection schedule for cluster Ci, where Si[pj] is

the status (sampler/non-sampler) of node pj in Si

5.2 System Model and Overview

We describe the system model and introduce the basic concepts through an overview of the

selective sampling architecture and a brief discussion on the set of algorithms employed.

For reference convenience, we list the set of basic notations used in the chapter in Tables 6,

7, 8, and 70. Each table lists the set of notations introduced in its associated section.

5.2.1 Network Architecture

We design our selective sampling based data collection system using a three-layer network

architecture. The first and basic layer is the wireless network formed by N sensor nodes and

a data collection tree constructed on top of the network. We denote a node in the network

by pi, where i ∈ {1, . . . , N}. Each node is assumed to be able to communicate only with its

neighbors, that is, the nodes within its communication range. The set of neighbor nodes of

node pi is denoted by nbr(pi). The neighbor relationship is assumed to be symmetric. The

nodes that can communicate with each other form a connectivity graph. Figure 66 depicts

a segment from a network of hundred sensor nodes. The edges of the connectivity graph

are shown with light blue lines (light gray in grayscale). Sensor nodes use a data collection

tree for the purpose of propagating their sensed values to a base node. The base node is

also the root of the data collection tree. This tree is formed in response to a data collection

request, which starts the data collection process. In Figure 66, base node is the shaded one

labeled as “56”. Every node in the data collection tree, except the root, has a parent node

147

and every non-leaf node has a set of children nodes. The edges of the data collection tree

are shown in red color (dark gray in grayscale) in Figure 66. The data collection tree can be

easily build in a distributed manner, for instance, by circulating a tree formation message

originated from the base node and making use of a min-hop parent selection policy [7], or

similar algorithms used for in-network aggregation [83, 82].

Figure 66: System architecture

The second layer of the architecture consists of node clusters, which partition the sensor

network into disjoint regions. Each node in the network belongs to a cluster and each cluster

elects a node within the cluster to be the cluster head, and creates a cluster-connection tree

with the cluster head as its root node to establish the communication between nodes and

their cluster head (see Section 3.2 for further detail). We associate each node pi with a

cluster head indicator hi, i ∈ {1, . . . , N}, to denote the cluster head node of the cluster that

node pi belongs to. The set of cluster head nodes are denoted by H, and is defined formally

as H = {pi| hi = pi}. Note that hi = pi implies that pi is a cluster head node (of cluster i).

A cluster with pi as its head node is denoted by Ci and is defined as the set of nodes that

belong to it, including its cluster head node pi. Formally, Ci = {pj | hj = pi}. Given a node

pj has pi as its cluster head (hj = pi), we say pj is in Ci (pj ∈ Ci). A cluster is illustrated

on the upper left corner of Figure 66 with a closed line covering the nodes that belong to

the cluster. The cluster head node is drawn in bold and is labeled as “12”. An example

cluster-connection tree is shown in the figure, where its edges are drawn in dark blue (using

148

dashed lines).

The third layer of our architecture is built on top of the node clusters in the network, by

further partitioning each node cluster into a set of subclusters. Each node in the network

belongs to a subcluster. The set of subclusters in Ci is denoted by Gi, where the number of

subclusters in Ci is denoted by Ki where Ki = |Gi|. A subcluster within Gi is denoted by

Gi(j), j ∈ {1, . . . , Ki}, and is defined as the set of nodes that belong to the jth subcluster in

Gi. Given a node cluster Ci, only the head node pi of this cluster knows all its subclusters

(Gi(j), j ∈ {1, . . . , Ki}). Thus the subcluster information is local to the cluster head node

pi and is transparent to other nodes within the cluster Ci. In Figure 66, we show four

subclusters for the node cluster with node “12” as its cluster head and these subclusters are

circled with closed dashed lines. A key feature of our selective sampling approach is that not

all the nodes in the network need to sample and send the sampled values (sensor readings)

to the base node via the data collection tree. One of the design ideas is to partition the

node cluster in such a way that we can elect a few nodes within each subcluster as the

sampling nodes and create a probabilistic model to predict the values of other nodes within

this subcluster. From now on, we refer to the nodes that do sampling as sampler nodes. In

Figure 66, we show sampler nodes with double circled lines (i.e., nodes labeled “3”, “11”,

“21”, and “32”). For each cluster Ci, there exists a data collection schedule Si, which defines

the nodes that are samplers in this node cluster. We use the Boolean predicate denoted by

Si[pj] as an indicator that defines whether node pj ∈ Ci is a sampler or not. We use the []

notation whenever the indexing is by nodes.

5.2.2 Selective Sampling Overview

We give an overview of the three main mechanisms that form the crux of our selective

sampling approach to data collection. A detailed description of each mechanism is provided

in the subsequent sections.

The first mechanism is to construct clusters within the network. This is achieved by

the sensing-driven cluster construction algorithm, that is executed periodically at every τc

seconds, in order to perform cluster refinement by incorporating changes in the energy level

149

distribution and the sensing behavior changes of the nodes. We call τc the clustering period.

The node clustering algorithm performs two main tasks − cluster head selection and cluster

formation. The cluster head selection component is responsible for defining the guidelines

on how to choose certain number of nodes in the network to serve as cluster heads. An

important design criterion for cluster head selection is to make sure that on the long run

the job of being a cluster head is evenly distributed among all the nodes in the network to

avoid burning out the battery life of certain sensor nodes too earlier. The cluster formation

component is in charge of constructing clusters according to two metrics. First, nodes that

are similar to each other in terms of their sampled values (sensor readings) in the past

should be clustered into one group. Second, nodes that are clustered together should be

close to each other within certain network hops. The first metric is based on value similarity

of sensor readings, which is a distinguishing feature compared to naive minimum-hop based

cluster formation where a node joins the cluster that has the closest cluster head node in

terms of network hops.

The second mechanism is to create the subclusters for each of the node clusters. The goal

of further dividing the node clusters into subclusters is to facilitate the selection of the nodes

to serve as samplers and the generation of the probabilistic models for value predication of

non-sampler nodes. This is achieved by the correlation-based sampler selection and model

derivation algorithm that is executed periodically at every τu seconds. τu is called the

schedule update period. Concretely, given a node cluster, the cluster head node carries out

the sampler selection and model derivation task locally in three steps. In the first step,

the cluster head node uses historical data from nodes in its cluster to capture the spatial

and temporal correlations in sensor readings and calculate the subclusters so that the nodes

whose sample values are highly correlated are put into the same subclusters. In the second

step, these subclusters are used to select a set of sampler nodes such that there is at least one

sampler node selected from each subcluster. This selection of samplers forms the sampling

schedule for the cluster. We introduce a system-wide parameter σ ∈ (0, 1] to define the

average fraction of nodes that should be used as samplers. σ is called the sampling fraction.

Once the sampler nodes are determined, only these nodes collect sample readings and the

150

values of the non-sampler nodes will be predicted at the processing center (or the base

node) using a probabilistic model that is constructed for each subcluster. Thus, the third

step here is to construct and report a probabilistic model for each subcluster within the

network based on the historical readings of all nodes in the subcluster. We introduce a

system-supplied parameter β, which defines the average size of the subclusters. β is called

the subcluster granularity and its setting influences the size and number of the subclusters

used in the network.

The third mechanism, is to collect the sampled values from the network and to perform

the prediction after the samples are received. This is achieved by the selective data collection

and model-based prediction algorithm. The selective data collection component works in

two steps: (1) Each sampler node samples its reading every τd seconds, called the desired

sampling period. τd sets the temporal resolution of the data collection. (2) To empower our

selective sampling architecture with self-adaptation, we also need to periodically sample

sensor readings from all nodes in the network. Concretely, at every τf seconds (τf is a

multiple of τd) all nodes perform sampling. These samples are collected (through the use of

cluster-connection trees) and used by the cluster head nodes, aiming at incorporating newly

established correlations among sensor readings and network dynamics into decision making

process of correlation-based sampler selection and model derivation. τf is a system-supplied

parameter, called the forced sampling period. The model-based predication component is

responsible for estimating values of non-sampler nodes within each subcluster using readings

of the sampler nodes and the parameters of the probabilistic model constructed for that

subcluster.

5.3 Sensing-driven Cluster Construction

The goal of sensing-driven cluster construction is to form a network organization that can

facilitate selective sampling through localized algorithms, while achieving the global ob-

jectives of energy-awareness and high quality data collection. In particular, clusters help

perform operations such as sampler selection and model derivation in a localized manner.

By emphasizing on sensing-driven clustering, it also helps to derive better prediction models

151

Table 7: Notations for sensing-driven clustering
Notation Meaning

si Head selection probability
ri Round counter of node pi used for clustering

TTL Max. number of hops a cluster formation message can travel
μi Mean of the sensor readings node pi has sampled
Ti Smallest hop distances from cluster heads in proximity of pi,

as known to pi during cluster formation
Vi Means of readings from cluster heads in proximity of pi,

as known to pi during cluster formation
Zi Attraction scores for cluster heads in proximity of pi,

where Zi[pj] is the attraction score for node pj ∈ H

fc Cluster count factor
α Data importance factor
τc Clustering period

to increase the prediction quality. The sensing-driven clustering algorithm, executed peri-

odically at every τc seconds, performs two main tasks − cluster head selection and cluster

formation.

5.3.1 Cluster Head Selection

During the cluster head selection phase, nodes decide whether they should take the role of

a cluster head or not. Concretely, every node is initialized not to be a cluster head and does

not have an associated cluster in the beginning of a cluster head selection phase. A node

pi first calculates a value called head selection probability, denoted by si. This probability

is calculated based on two factors. The first one is a system wide parameter called cluster

count factor, denoted by fc. It is a value in the range (0,1] and defines the average fraction

of nodes that will be selected as cluster heads. In other words, fc ∗N number of nodes will

be selected as cluster heads on the average, with an average cluster size of 1/fc. The factors

that can affect the decision on the number of clusters and thus the setting of fc include

the size and density of the network. The second factor involved in the setting of si is the

relative energy level of the node. We denote the amount of energy available at node pi at

time t as ei(t).

The relative energy level is calculated by comparing the energy available at node pi with

the average energy available at the nodes within its one hop neighborhood. The value of the

head selection probability is then calculated by multiplying the cluster count factor with the

152

relative energy level. Formally, si = fc ∗ ei(t)∗(|nbr(pi)|+1)
ei(t)+

P
pj∈nbr(pi)

ej(t)
. This enables us to favor nodes

with higher energy levels for cluster head selection. Once si is calculated, node pi is chosen

as a cluster head with probability si. If selected as a cluster head, pi initializes a number of

states before starting to circulate cluster formation messages to begin the cluster formation

process (described in the next subsection). Concretely, pi sets hi to pi indicating that it now

belongs to the cluster with head pi (itself) and also increments its round counter, denoted

by ri to note that a new cluster has been selected for the new clustering round. If pi is not

selected as a cluster head, it waits for some time to receive cluster formation messages from

other nodes. If no such message is received, it repeats the whole process starting from the si

calculation. Considering most realistic scenarios governing energy values available at nodes

and practical settings of fc (< 0.2), this process results in selecting approximately fc ∗ N

number of nodes as cluster heads. The pseudo code is given in the ClustInit procedure

of Figure 67.

5.3.2 Cluster Formation

The cluster formation phase starts right after the cluster head selection phase. It organizes

the network of sensors into node clusters in two major steps: message circulation and cluster

engagement.

5.3.2.1 Message Circulation

This step involves the circulation of cluster formation messages within the network. These

messages are originated at cluster head nodes. Once a node pi is chosen to be a cluster head,

it prepares a message m to be circulated within a bounded number of hops, and structures

the message m as follows. It sets m.org to its node identifier pi. This field represents the

originator of the cluster formation message. It sets m.ttl to TTL, where TTL is a system-

wide parameter that defines the maximum number of hops this message can travel within

the network. This field indicates the number of remaining hops the message can travel. It

sets m.rnd to its round counter ri. It sets m.src to pi, indicating the sender of the message.

Finally, it sets m.dmu to μi. Here, μi denotes the mean of the sensor readings node pi has

sampled during the time period preceding this round (ri) of cluster formation. The message

153

ClustInit(pi)
(1) hi ← nil
(2) while hi = nil
(3) t← Current time
(4) si ← fc ∗ ei(t)∗(|nbr(pi)|+1)

ei(t)+
P

pj∈nbr(pi)
ej(t)

(5) if rand(0, 1) < si

(6) hi ← pi

(7) ri ← ri + 1 /* ri ← 0 during system init */
(8) m.org ← pi,m.ttl← TTL
(9) m.rnd← ri,msg.src← pi

(10) m.dmu← μi

(11) foreach pj ∈ nbr(pi)
(12) SendMsg(pj ,m)
(13) else if a cluster formation message received
(14) return

ReceiveMsg(pi, m)
(1) if m.rnd > ri

(2) ri ← m.rnd
(3) Ti ← ∅, Vi ← ∅
(4) else if m.rnd < ri

(5) return
(6) a← 1 + TTL−m.ttl
(7) if Ti[m.org] �= ∅ and Ti[m.org] < a
(8) return
(9) Ti[m.org]← a, Vi[m.org]← m.dmu
(10) m.ttl← m.ttl − 1,m.src← pi

(11) foreach pj ∈ nbr(pi)\msg.src
(12) SendMsg(pj ,m)

PickClusters(pi)
(1) y ← 1/N (μi| μi, σi)
(2) foreach j, Ti[pj] �= ∅
(3) a← 1− Ti[pj]/TTL /* hop distance factor */
(4) b← N (Vi[pj]| μi, σi) ∗ y /* data distance factor */
(5) Zi[pj]← a + α ∗ b
(6) hi ← argmaxpj

(Zi[pj])

Figure 67: Sensing-driven cluster construction

154

m is then sent to all neighbors of node pi.

Upon reception of a message m at a node pi, we first compare the rnd field of the message

to pi’s current round counter ri. If m.rnd is smaller than ri, we discard the message, since

it is likely a delayed message in some earlier clustering round and should be disregarded. If

m.rnd is larger than ri, then this is the first cluster formation message pi has received for the

new round. As a result, we increment ri to indicate that node pi is now part of the current

round. Moreover, we initialize two data structures, denoted by Ti and Vi. Both are initially

empty. Ti[pj] stores the shortest known hop count from a cluster head node pj to node pi, if a

cluster formation message is received from pj . Vi[pj] stores dmu field of the cluster formation

messages that originated from node pj and reached node pi. Once the processing of the

rnd field of the message is over, we calculate the number of hops this message traveled, by

investigating the ttl field, which yields the value 1+TTL−m.ttl. If Ti[m.org] is not empty

(meaning this is not the first message we received in this round that originated from node

m.org) and T [m.org] is smaller than or equal to the number of hops the current message

has traveled, we discard the message. Otherwise, we set T [m.org] to 1 + TTL−m.ttl and

Vi[m.org] to m.dmu. Once Ti and Vi are updated with the new information, we modify

and forward the message to all neighbors of pi, except the node specified by src field of the

message. The modification on the message involves decrementing the ttl field and setting

the src field to pi. The pseudo code for the message circulation phase is given within the

ClustInit and ReceiveMsg procedures in Figure 67.

5.3.2.2 Cluster Engagement

This step involves making a decision about which cluster to join, once hop distance and

mean sample value information are collected. Concretely, a node pi that is not a cluster

head, performs the following procedure to determine its cluster. For each cluster head node

from which it has received a cluster formation message in this round (i.e. {pj | Ti[pj] �= ∅}),
it calculates an attraction score, denoted by Zi[pj], for the cluster head pj . Then it joins

the cluster head with the highest attraction score, i.e., it sets hi to argmaxpj (Zi[pj]). The

calculation of the attraction score Zi[pj] involves two factors. The first factor is called

155

the hop distance factor and is calculated as 1 − Ti[pj]/TTL. It takes its minimum value

0 when pi is TTL hops away from pj and its maximum value 1 − 1/TTL when pi is one

hop away from pj . The second factor is called the data distance factor and it is calculated

as N (Vi[pj]| μi, ς
2
i)/N (μi| μi, ς

2
i). Here, N represents the Normal distribution and ς2

i is

a locally estimated variance of the sampled values at node pi. The data distance factor

measures the similarity between the mean of the sensor readings at node pi and the mean

readings at its cluster head node pj . It takes its maximum value of 1 when Vi[pj] is equal

to μi. Its value decreases as the difference between Vi[pj] and μi increases, and approaches

to 0 when the difference approaches to infinity. This is a generic way to calculate the data

distance factor and does not require detailed knowledge about the data being collected.

However, if such knowledge is available, a domain-specific data distance function can be

applied. For instance, if a domain expert can set a system wide parameter Δ to be the

maximum acceptable bound of the difference between the mean sample value of a node and

the mean sample value of its head node, then we can specify a distance function f(d) = d/Δ,

where d is set to |Vi[pj] − μi|. In this case, the data distance factor can be calculated as

max(0, 1 − f(d)). With this definition, the distance factor will take its maximum value of

1 when d is 0, and its value will linearly decrease to 0 as d reaches Δ.

We compute the attraction score as a weighted sum of the hop distance factor and

the data distance factor, where the latter is multiplied by a factor called data importance

factor, denoted by α. α takes a value in the range [0,∞). A value of 0 means only hop

distance is used for the purpose of clustering. Larger values result in a clustering that is

more dependent on the distances between the mean sample values of the nodes. The pseudo

code for cluster engagement step is given by the PickClusters procedure in Figure 67.

5.3.3 Cluster-connection Tree Formation

Each node cluster in the network not only elects a cluster head node but also forms a cluster

connection tree during the cluster construction. Such cluster connection trees are used to

accomplish the communication of nodes with their cluster heads. Concretely, the cluster-

connection trees are formed as follows: When a node pi receives a cluster formation message

156

originated at a cluster head node pj , pi notes down the node from which it has received

this cluster formation message as the candidate for becoming the parent node of pi in the

cluster connection tree anchored at pj . If there are several distinct cluster head nodes that

circulate a cluster formation message to node pi, then for each one of such cluster heads, say

pj , pi stores only one forwarder node, say pu, which is the one that has forwarded the cluster

formation message of pj with the highest TTL value. Now this forwarder node pu becomes

the parent pointer of pi for cluster Cj . After nodes have decided on which of the node

clusters to join at the end of the cluster engagement step, each node sends a confirmation

message to its corresponding cluster head using the parent pointer stored for that cluster.

If a node pi is in cluster Cj or has forwarded a confirmation message destined to the cluster

head node pj , then it keeps its parent pointer associated with Cj and at the same time it

also records the nodes from which it has received a confirmation message destined to the

cluster head node pj as its child pointers in the cluster connection tree rooted at pj . Any

parent pointers that are not used to forward a confirmation message can be dropped to

minimize the state kept for maintaining cluster-connection trees. All nodes that keep their

parent pointers for cluster Cj are part of the cluster-connection tree of Cj . It is important

to note that a node that participates in the cluster-connection tree of a node cluster Cj may

not necessarily be a member of Cj , i.e. it is possible that hi �= pj . This property ensures

that with the cluster-connection tree of a node cluster Cj , its cluster head pj can reach all

nodes in Cj and vice versa.

5.3.4 Effect of α on Clustering

We use an example scenario to illustrate the effect of α on clustering. Figure 68 (a) shows

an arrangement of 100 sensor nodes and the connectivity graph of the sensor network

formed by these nodes. In the background, it also shows a colored image that represents

the environmental values that are sensed by the nodes. The color on the image changes

from tones of red (light gray in grayscale) to tones of blue (dark gray in grayscale) moving

diagonally from the upper right corner to the lower left corner, representing a decrease in

the sensed values. Figures 68 (b), (c), and (d) show three different clusterings of the network

157

for different values of α (0, 10, 20 respectively), using fc = 0.1 and TTL = 5. Each cluster

is shown with a different color. Nodes within the same cluster are labeled with a unique

cluster identifier. The cluster head nodes are marked with a circle. It is clearly observed

that, with increased α, the clusters tend to align diagonally, resulting in a clustering where

nodes sampling similar values are assigned to the same clusters. However, this effect is

limited by the value of TTL, since a node cannot belong to a cluster whose cluster head

is more that TTL hops away. We provide a quantitative study on the effect of α on the

quality of the clustering in Section 5.6.

1

1
1 1 1

1

1
1

1
11 1

2
2

2
2

33
3

4

4
4 4

4 4

44 4

4 4
44

4 4
4

4

4 4 4 4

4 44 4

5

55

5 5 5

5 5
5 5

5 5
5 5

5

6

6

6 6

7

7
7 7

7
7 7

7 7 7
7

7

7
7

7

8

8 8

8

8

8

9

9 9 9
9

9
9
9 9 9

9 9
9 9

9 9

1

1
1 1 1 1

1
1

11 1

2
2

2

33
3 3

3

4

4

4 4 4
4 4

4 4

44 4

4
44

4
4

4

4 4
4

5

55

5 5 5
5 5 5
5 5

5 5 5
5 5

5 5

5

6

6
6 6

6
6 6

6 6
6

6 6

6

6

66

7

7

7

77

8

8 8

8

8

9

9 9 9
9

9
9

9 9

9 9
9 9

9 9

1

1
1 1 1

1
1

11

2’
2

2

2 2

33
3 3

3

3

4

4
4
4

4
4 4 4 4

4 4
4 4

44 4

4
44

4

4

5

5

5
55

5 5 5
5 5 5
5 5

5 5 5
5 5 5

5
5 5 5 5

6

6
6

6
6

6 6
6

6 6

6

6

66

7

7

7

77

8

8 8

8

8

9

9 9
9

9

9 9

9
9 9

9

(a) (b) (c) (d)

Figure 68: Illustration of sensing-driven clustering

From Figures 68(c) and (d), one can observe that combining hop distance factor and

sensor reading similarity captured by data distance factor, some of the resulting clusters may

appear disconnected. As discussed in the previous section, by creating a cluster-connection

tree for each node cluster, we guarantee that a cluster head node can reach all nodes in

its cluster. When the number of connected subcomponents within a cluster is large, the

overhead for a cluster head to communicate with nodes within its cluster will increase.

However, the number of connected subcomponents of a sensing-driven cluster can not be

large in practice due to three major reasons: First, since there is a fixed TTL value used in

cluster creation, the nodes that belong to the same cluster can not be more than a specified

number of hops away, thus it is not possible that two nodes from different parts of the

network are put within the same cluster just because the values they are sensing are very

similar. Second, the decision to join a cluster is not only data dependent. Instead, it is a

combination (adjusted by α) of hop distance factor and data distance factor that defines

a node’s affinity to join a cluster. As a result, unless TTL and α values are both set to

158

impractically large values, there won’t be many connected components belonging to the

same cluster. Finally, since the sensor readings are expected to be spatially correlated, it is

unlikely to have contiguous regions with highly heterogeneous sensor readings (which would

have resulted in clusters with many connected subcomponents).

5.3.5 Setting of Clustering Period τc

The setting of clustering period τc involves two considerations. First, the cluster head nodes

have additional responsibilities when compared to other nodes, due to sampler selection

and model derivation process (see more detail in the next section), which causes them

to consume energy at higher rates. Therefore, large τc values may result in imbalanced

power levels and decrease network connectivity in the long run. Consequently, the value

of τc parameter should be small enough to enable selection of alternate nodes as cluster

heads. However, its value is expected to be much larger than the desired sampling and

forced sampling periods, τd and τf . Second, time dependent changes in sensor readings may

render the current clustering obsolete with respect to data distance factor. For instance,

in environmental monitoring applications, different times of a day may result in different

node clusters. Thus, clustering period should be adjusted accordingly to enable continued

refinement of the clustering structure in response to different sensing patterns resulting from

environmental changes.

5.4 Correlation-based Sampler Selection and Model Deriva-
tion

The goal of sampler selection and model derivation is three folds. First, it needs to further

group nodes within each node cluster into a set of subclusters such that the sensor readings

of the nodes within each subcluster are highly correlated (thus prediction is more effective).

Second, it needs to derive and report (to sampler nodes) a sampling schedule that defines the

sampler nodes. And third, it needs to derive and report (to the base node) parameters of the

probabilistic models associated with each subcluster so that prediction can be performed.

Correlation-based sampler selection and model derivation is performed by each cluster head

node through a three-step process, namely subclustering, sampler selection, and model and

159

Table 8: Notations for correlation-based sampler selection and model derivation
Notation Meaning

Di Forced samples collected at node pi ∈ H, where Di[pj] is
the series of consecutive forced samples from node pj ∈ Ci

Ci Correlation matrix at node pi ∈ H, where Ci[pu, pv] is
the correlation between the series Di[pu] and Di[pv]

Di Subclustering distance matrix at node pi ∈ H, where
Di[pu, pv] is the subclustering distance between pu and pv

β Subcluster granularity
σ Sampling fraction
τu Schedule update period

schedule reporting. We now describe these three steps in detail.

5.4.1 Subclustering

This step is used to create subclusters that form a basis for selecting sampler nodes of the

network, deriving correlations among nodes within subclusters, constructing probabilistic

models accordingly, and performing value predication of non-sampler nodes. Higher cor-

relations among the nodes within each subcluster typically lead to higher quality sampler

selection and higher accuracy of model-based value prediction of non-sampler nodes. Thus,

given a cluster, the first issue involved in developing an effective subclustering algorithm is

to obtain samples from nodes within this cluster. The second issue is to compute correla-

tions between every pair of nodes within the cluster and define a correlation distance metric

that can be used as the distance function for subclustering.

5.4.1.1 Forced Sampling

Recall from Section 5.2.2, we introduce the concept of forced sampling period. By periodi-

cally collecting sample readings from all nodes in the network (forced sampling), the cluster

head nodes can refine the subclustering structure by invoking a new run of the subclustering

process, which utilizes the forced samples collected during the most recent clustering period

to generate a new set of subclusters, each associated with a newly derived correlation-based

probabilistic model. We denote the forced samples collected at cluster head node pi by Di.

Di[pj] denotes the series of consecutive forced samples from node pj , where pj is in the node

cluster with pi as the head (i.e. pj ∈ Ci).

160

5.4.1.2 Correlation Matrix and Distance Metric

During subclustering, a cluster head node pi takes the following concrete actions. It first

creates a correlation matrix Ci such that for any two nodes in the cluster Ci, say pu and

pv, Ci[pu, pv] is equal to the correlation between the series Di[pu] and Di[pv], formally

(Di[pu]−E[Di[pu]])∗(Di[pv]−E[Di[pv]])T

L∗
√

Var(Di[pu])∗
√

Var(Di[pv])
, where L is the length of the series and T represents matrix

transpose. This is a textbook definition [26] of correlation between two series, expressed

using the notations introduced within the context of this work. Correlation values are always

in the range [−1, 1], -1 and 1 representing strongest negative and positive correlation. A

value of 0 implies two series are not correlated. As a result, the absolute correlation can

be used as a metric to define how good two nodes are, in terms of predicting one’s sample

from another’s. For each node cluster, we first compute its correlation matrix using forced

samples. Then we calculate the correlation distance metric between nodes, denoted by Di.

Di[pu, pv] is defined as 1−|Ci[pu, pv]|. Once we get the distance metric, we use agglomerative

clustering [55] to subcluster the nodes within cluster Ci into Ki number of subclusters, where

Gi(j) denotes the set of nodes in the jth subcluster. We use a system-wide parameter called

subcluster granularity, denoted by β, to define average subcluster size. Thus, Ki is calculated

by �|Ci|/β�. We’ll discuss the effects of β on performance later in this section. The pseudo

code for the subclustering step is given within the SubclusterAndDerive procedure in

Figure 69.

5.4.2 Sampler Selection

This step is performed to create or update a data collection schedule Si for each cluster Ci,

in order to select the subset of nodes that are best qualified to serve as samplers throughout

the next schedule update period τu. After a cluster head node pi forms the subclusters,

it initializes the data collection schedule Si to zero for all nodes within its cluster, i.e.

Si[pj] = 0,∀pj ∈ Ci. Then for each subcluster Gi(j), it determines the number of sampler

nodes to be selected from that subcluster based on the size of the subcluster Gi(j) and

the sampling fraction parameter σ defined in Section 5.2. At least one node should be

selected as a sampler node from each subcluster. Thus we can calculate the number of

161

DeriveSchedule(pi ∈ H)
(1) Periodically, every τu seconds
(2) Di: data collected since last schedule derivation, Di[pj](k) is the kth forced sample

from node pj collected at node pi

(3) (Si, Ci, Gi)← SubclusterAndDerive(pi, Di)
(4) for j = 1 to |Gi|
(5) Xi,j : Xi,j [pu] = E[Di[pu]]; pu ∈ Gi(j)
(6) Yi,j : Yi,j [pu, pv] = Ci[pu, pv] ∗√Var(Di[pu]) ∗√Var(Di[pv]); pu, pv ∈ Gi(j)
(7) SendMsg(base,Xi,j ,Yi,j)
(8) foreach pj ∈ Ci

(9) Di[pj]← ∅
(10) SendMsg(pj , Si[pj])

SubclusterAndDerive(pi ∈ H)
(1) ∀pu, pv ∈ Ci, Ci[pu, pv]← Correlation between Di[pu],Di[pv]
(2) ∀pu, pv ∈ Ci, Di[pu, pv]← 1− |Ci[pu, pv]|
(3) Ki ← �|Ci|/β� /* number of subclusters */
(4) Cluster the nodes in Ci, using Di as distance metric, into Ki subclusters
(5) Gi(j) : nodes in the jth subcluster within Ci, j ∈ {1, . . . , Ki}
(6) t← Current time
(7) ∀pu ∈ Ci, Si[pu]← 0
(8) foreach j ∈ {1, . . . , Ki}
(9) a← �σ ∗ |Gi(j)|�
(10) foreach pu ∈ Gi(j), in decreasing order of eu(t)
(11) Si[pu]← 1
(12) if a = |{pv| Si[pu] = 1}| then break
(13) return (Si, Ci, Gi)

Figure 69: Correlation-based sampler selection and model derivation

162

sampler nodes for a given subcluster Gi(j) by �σ ∗ |Gi(j)|�. Based on the above formula,

we can calculate the actual fraction of nodes selected as the sampler nodes of the network

at any given instance of time. This actual fraction may deviate from the system-supplied

sampling fraction parameter σ. We refer to the actual fraction of sampler nodes as the

effective σ to distinguish it from the system-supplied σ. The effective σ can be estimated

as fc ∗ �1/(fc ∗ β)� ∗ �β ∗ σ�. The pseudo code for the derivation step is given within the

SubclusterAndDerive procedure in Figure 69.

5.4.3 Model and Schedule Reporting

This step is performed by a cluster head node in two steps, after generating the data col-

lection schedule for each node cluster. First, the cluster head informs the nodes about

their status as samplers or non-samplers. Then the cluster head sends the summary in-

formation to the base node, which will be used to derive the parameters of probabilistic

models used in predicting the values of non-sampler nodes. To implement the first step,

a cluster head node pi notifies each node pj within its cluster about pj ’s new status with

regard to being a sampler node or not by sending Si[pj] to pj . To realize the second step,

for each subcluster Gi(j), pi calculates a data mean vector for nodes within the subclus-

ter, denoted by Xi,j , as follows: Xi,j [pu] = E[Di[pu]], pu ∈ Gi(j). pi also calculates a data

covariance matrix for nodes within the subcluster, denoted by Yi,j and defined as follows:

Yi,j [pu, pv] = Ci[pu, pv] ∗
√

Var(Di[pu]) ∗√Var(Di[pv]), pu, pv ∈ Gi(j). For each subcluster

Gi(j), pi sends Xi,j , Yi,j and the identifiers of the nodes within the subcluster, to the base

node. This information will later be used for deriving the parameters of a Multi-Variate

Normal (MVN) model for each subcluster (see Section 5.5). The pseudo code is given within

the DeriveSchedule procedure of Figure 69.

5.4.4 Effects of β on Performance

The setting of the system supplied parameter β (subcluster granularity) may have effects

on the overall performance of a selective sampling based data collection system, especially

in terms of sampler selection quality, value predication quality, messaging cost, and energy

consumption. Intuitively, large values of β may decrease the prediction quality, because

163

it will result in large subclusters with potentially low overall correlation between its mem-

bers. On the other hand, too small values may also decrease the prediction quality, since

the opportunity to exploit the spatial correlations fully will be missed with very small β.

Regarding the messaging cost of sending sampling summarization and model derivation

information to the base node, one extreme case is where each cluster has one subcluster

(very large β). In this case, the covariance matrix may become very large and sending

it to the base station may increase the messaging cost and have a negative effect on the

energy-efficiency. In contrast, smaller β values will result in a lower messaging cost, since

covariance values of node pairs belonging to different subclusters will not be reported. Al-

though the the second dimension favors a small β value, decreasing beta will increase the

deviation of effective σ from the system specified σ, introducing another dimension. For

instance, having β = 2 will result in a minimum effective σ of around 0.5, even if σ is spec-

ified much smaller. This is because each subcluster must have at least one sampler node.

Consequently, the energy saving expected when σ is set to a certain value is dependent

on the setting of β. In summary, small β values can make it impossible to practice high

energy saving/low prediction quality scenarios. We investigate these issues quantitatively

in Section 5.6.

5.4.5 Setting of Schedule Update Period τu

The schedule update period τu is a system supplied parameter and it defines the time interval

for re-computing the subclusters of a node cluster in the network. Several factors may affect

the setting of τu. First, the nodes that are samplers consume more energy compared to non-

samplers, since they perform sensing and report their sensed values. Consequently, the value

of τu parameter should be small enough to enable selection of alternate nodes as samplers

through the use of energy-aware schedule derivation process, in order to balance power

levels of the nodes. Moreover, such alternate node selections help in evenly distributing

the error of prediction among all the nodes. As a result, τu is provisioned to be smaller

compared to τc, so that we can provide fine-grained sampler re-selection without much

overhead. Second, the correlations among sensor readings of different nodes may change

164

Notation Meaning
Xi,j Data mean vector for nodes in Gi(j), where Xi,j [pu] is

the mean of the forced samples from node pu ∈ Gi(j).
Yi,j Data covariance matrix for nodes in Gi(j), where Yi,j [pu, pv]

is the covariance between the series Di[pu] and Di[pv]
U+

i,j Set of nodes belonging to Gi(j) that are samplers
U−

i,j Set of nodes belonging to Gi(j) that are not samplers
W+

i,j Set of last reported sensor readings of nodes in U+
i,j

W−
i,j Set of predicted sensor readings of nodes in U−

i,j

τd Desired sampling period
τf Forced sampling period

Figure 70: Notations for selective data collection and model-based prediction

with time and deteriorate the prediction quality. As a result, the schedule update period

should be adjusted accordingly, based on dynamics of the specific application at hand.

5.5 Selective Data Collection and Model-based Prediction

Our selective sampling approach achieves energy efficiency of data collection services by

collecting sample readings from only a subset of nodes (sampler nodes) that are carefully

selected and dynamically changing (after every schedule update period). The values of

non-sampler nodes are predicted using probabilistic models whose parameters are derived

from the recent samples of nodes that are spatially and temporally correlated. The energy

saving is a result of smaller number of messages used to extract and collect data from

the network, which is a direct benefit of smaller number of sensing operations performed.

Although all nodes have to sample after every forced sampling period (recall that these

samples are used for predicting the parameters of MVN models for the subclusters), these

forced samples do not propagate up to the base node, and are collected locally at cluster

head nodes. Instead, only a summary of the model parameters are submitted to the base

node after each correlation-based model derivation step.

In effect, one sample value from every node is calculated at the base node (or at the

sensor stream processing center). However, a sample value comes from either a direct sample

or a predicted sample. Direct samples are the ones that originate from actual sensor readings.

If a node pi is a sampler, i.e. Sj [pi] = 1 where hi = pj , it periodically reports its sensor

reading to the base node using the data collection tree, i.e. after every desired sampling

165

period τd, except when forced sampling and desired sampling periods coincide (recall that

τf is a multiple of τd). In the latter case, the sensor reading is sent to the cluster head node

hi using the cluster-connection tree, and is forwarded to base node from there. If a node

pi is a non-sampler node, i.e. Sj [pi] = 0 where hi = pj , then it only samples after every

forced sampling period, and its sensor readings are sent to the cluster head node hi using

the cluster-connection tree and are not forwarded to the base node. A short pseudo code

describing this is given by the SensData procedure in Figure 71.

5.5.1 Calculating predicted sample values

The problem of predicting the sample values of non-sampler nodes can be described as

follows. Given a set of sample values belonging to same sampling step from sampler nodes

within a subcluster Gi(j), how can we predict the set of sample values belonging to non-

sampler nodes within Gi(j), given the mean vector Xi,j and covariance matrix Yi,j for the

subcluster. We denote the set of sampler nodes from subcluster Gi(j) by U+
i,j , defined as

{pu| pu ∈ Gi(j), Si[pu] = 1}. Similarly, we denote the set of non-sampler nodes by U−
i,j ,

defined as {pu| pu ∈ Gi(j), Si[pu] = 0}. Let W+
i,j be the set of sample values from the same

sampling step, received from the sampler nodes U+
i,j . Using a MVN model to capture the

spatial and temporal correlations within a subcluster, we utilize the following theorem that

can be found in texts on statistical inference [26], to predict the values of the non-sampler

nodes:

Theorem 1: Let X be a MVN distributed random variable with mean μ and covariance

matrix Σ. Let μ be partitioned as

⎡
⎢⎣ μ1

μ2

⎤
⎥⎦ and Σ partitioned as

⎡
⎢⎣ Σ11 Σ12

Σ21 Σ22

⎤
⎥⎦. According

to this, X is also partitioned as X1 and X2. Then the distribution of X1 given X2 = A

is also MVN with mean μ∗ = μ1 + Σ12 ∗ Σ−1
22 ∗ (A − μ2) and covariance matrix Σ∗ =

Σ11 − Σ12 ∗ Σ−1
22 ∗ Σ21.

In accordance with the theorem, we construct μ1 and μ2 such that they contain the

mean values in Xi,j that belong to nodes in U−
i,j and U+

i,j , respectively. A similar procedure is

performed to construct Σ11, Σ12, Σ21, and Σ22 from Yi,j . Σ11 contains a subset of Xi,j which

describes the covariance among the nodes in U−
i,j , and Σ22 among the nodes in U+

i,j . Σ12

166

SensData(pi)
(1) if Sj [pi] = 0, where hi = pj

(2) Periodically, every τf seconds
(3) di ← Sense()
(4) SendMsg(hi, di)
(5) else
(6) Periodically, every τd seconds
(7) di ← Sense()
(8) t← Current time
(9) if mod(t, τf) = 0
(10) SendMsg(hi, di)
(11) else
(12) SendMsg(base, di)

PredictData(i, j, U+, U−, W+)
U+ = {pu+

1
, . . . , pu+

k
} : set of nodes from jth subcluster in Ci whose data values are

received
U− = {pu−

1
, . . . , pu−

l
} : set of nodes from jth subcluster in Ci whose data values are

missing
W+ : W+(a), a ∈ {1, . . . , k} is the value reported by node pu+

a

(1) Xi,j : mean vector for jth subcluster in Ci

(2) Yi,j : covariance matrix for jth subcluster in Ci

(3) for a = 1 to l
(4) μ1(a)← Xi,j [pu−

a
]

(5) for b = 1 to l, Σ11(a, b)← Yi,j [pu−
a
, pu−

b
]

(6) for b = 1 to k, Σ12(a, b)← Yi,j [pu−
a
, pu+

b
]

(7) for a = 1 to k
(8) μ2(a)← Xi,j [pu+

a
]

(9) for b = 1 to k, Σ22(a, b)← Yi,j [pu+
a
, pu+

b
]

(10) μ∗ = μ1 + Σ12 ∗ Σ−1
22 ∗ (W+ − μ2)

(11) Σ∗ = Σ11 − Σ12 ∗ Σ−1
22 ∗ ΣT

12

(12) Use N (μ∗,Σ∗) to predict values of nodes in U−

Figure 71: Selective data collection and model-based prediction

167

contains a subset of Xi,j which describes the covariance between the nodes in U−
i,j and U+

i,j ,

and Σ21 is its transpose. Then the theorem can be directly applied to predict the values of

non-sampler nodes U−
i,j , denoted by W−

i,j . W−
i,j can be set to μ∗ = μ1+Σ12∗Σ−1

22 ∗(W+
i,j−μ2),

which is the maximum likelihood estimate, or N (μ∗, Σ∗) can be used to predict the values

with desired confidence intervals. We use the former in the rest of the chapter. The details

of prediction step is given by the PredictData procedure in Figure 71.

5.5.2 Prediction Models

The detailed algorithm governing the prediction step can consider alternative inference

methods and/or statistical models with their associated parameter specifications, in ad-

dition to the prediction method described in this section and the Multi-Variate Normal

model used with data mean vector and data covariance matrix as its parameters. Our data

collection framework is flexible enough to accommodate such alternative prediction method-

ologies. For instance, we can keep the MVN model and change the inference method to

Bayesian inference. This can provide significant improvement in prediction quality if prior

distributions of the samples are available or can be constructed from historical data. This

flexibility allows us to understand how different statistical inference methods may impact

the quality of the model-based prediction. We can go one step further and change the

statistical model used, as long as the model parameters can be easily derived locally at the

cluster heads and are reasonably compact in size.

5.5.3 Setting of Forced and Desired Sampling Periods τf and τd

The setting of forced sampling period τf involves three considerations. First, increased

number of forced samples (thus smaller τf) may be desirable, since it can improve the

ability to capture correlations in sensor readings better. Second, large number of forced

samples can cause the memory constraint on sensor nodes to be a limiting factor, since the

cluster head nodes are used to collect forced samples. Pertaining to this, a lower bound on

τf can be computed based on the number of nodes in a cluster and the schedule update

period τu. For instance, if we want the forced samples to occupy an average memory size of

M units where each sensor reading occupy R units, then we should set τf to a value larger

168

than τu∗R
fc∗M . Third, less frequent forced sampling results in smaller set of forced samples,

which is more favorable in terms of messaging cost and overall energy consumption. In

summary, the value of τf should be set taking into account the memory constraint and the

desired trade-off between prediction quality and network lifetime. The setting of desired

sampling period τd defines the temporal resolution of the collected data and is application

specific.

5.6 Performance Study

We present analytical and simulation based experimental results to study the effectiveness

of our selective sampling approach. We divided the experiments into two sets. The first set

of experiments compares different variations of selective sampling and studies the impact

of various parameters on performance, with regard to messaging cost. These results are

based on analytical derivations given in Appendix D. The second set of experiments study

the effect of various system parameters on the quality of collected data as well as the

quality/lifetime trade-off. These experiments are based on simulations using real-world

data.

5.6.1 Messaging Cost

For the purpose of comparison, we introduce two variations of selective sampling − central

approach and local approach. The central approach presents one extreme of the spectrum,

in which both the model prediction and the value prediction of non-sampling nodes are

carried out at the base node or processing center outside the network. This means that all

forced samples are forwarded to the base node to compute the correlations in a centralized

location. In the local approach, value prediction is performed at the cluster heads instead

of the base nodes or the processing center outside the network, and predicted values are

reported to the base node. Although the local approach results in a large messaging cost

and works against the idea of selective sampling, it can be used to serve as a base case for

comparison. The selective sampling solution falls in between these two extremes. We call it

the hybrid approach due to the fact that the spatial and temporal correlations are captured

and summarized locally within the network, whereas the value prediction is performed

169

centrally at the base node. We calculate the total number of messages spent for data

collection using different approaches, namely hybrid, central, local, and non-selective. We

compare the results for different values of system parameters. The non-selective case refers

to näıve periodic data collection with no support for selective sampling.

In general, the gap between local and non-selective approaches, with the local approach

being more expensive in terms of messaging cost, indicates the overhead of cluster construc-

tion, sampler selection and model derivation, and selective data collection steps when the

savings due to selective sampling are removed (local approach). On the other hand, the gap

between central and hybrid approaches, with the hybrid being less expensive thus better,

indicates the savings obtained by only reporting the summary of correlations among sensor

nodes within each of the subclusters (hybrid approach), instead of forwarding all forced

samples to the base node (central approach). The default parameters used in this set of

experiments are as follows. The total time is set to T = 1000000 units. The total number

of nodes in the network is set to 600 unless specified otherwise. fc is selected to result in

an average cluster size of 30 nodes. Desired and forced sampling periods are set to τd = 1

and τf = 10 time units. Clustering period is set to τc = 5000 time units and the schedule

update period is set to τu = 1000 time units. Sampling fraction σ is set to 0.25 and β is set

to 10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

9

σ (sampling fraction)

o

f
m

es
sa

g
es

hybrid
central
local
non-sel

Figure 72: Total # of messages as a function of the sampling fraction

Figure 72 plots the total number of messages as a function of the sampling fraction σ. We

make several observations from the figure. First, as expected, central and hybrid approaches

provide significant improvement over local and non-selective approaches. This improvement

170

decreases as σ increases, since increasing values of σ imply that larger number of nodes are

becoming samplers. Second, the overhead of schedule and model derivation step can be

observed by comparing non-selective and local approaches. Note that the gap between the

two is very small and implies that this step incurs very small messaging overhead. Third,

the improvement provided by the hybrid approach can be observed by comparing hybrid

and central approaches. We see an improvement ranging from 50% to 12% to around 0%,

while σ increases from 0.1 to 0.5 to 0.9. This shows that the hybrid approach is superior to

the central approach and is effective in terms of messaging cost especially when σ is small.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

9

τ
d
 / τ

f

o

f
m

es
sa

g
es

hybrid

central

local

non-sel

Figure 73: Total # of messages as a function of desired to forced sampling ratio

Figure 73 plots the total number of messages as a function of the desired sampling

period to forced sampling period ratio (τd/τf). In this experiment τd is fixed at 1 and τf

is altered. We make two observations. First, there is an increasing overhead in the total

number of messages with increasing τd/τf , as it is observed from the gap between local and

non-selective approaches. This is mainly due to the increasing number of forced samples,

which results in higher number of values from sampler nodes to first visit the cluster head

node and then reach the base node, causing an overhead compared to forwarding values

directly to the base node. Second, we observe that the hybrid approach prevails over other

alternatives and provides an improvement over central approach, ranging from 10% to 42%

while τd/τf ranges from 0.1 to 0.5. This is because the forced samples are only propagated

up to the cluster head node with the hybrid approach.

Figure 74 plots the total number of messages as a function of the number of nodes.

171

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9
x 10

9

of nodes

o

f
m

es
sa

g
es

hybrid

central

local

non-sel

Figure 74: Total number of messages as a function of the number of nodes

20 40 60 80 100 120 140
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

average cluster size (3 x β)

o

f
m

es
sa

g
es

hybrid

central

local

non-sel

x 10
9

Figure 75: Total number of messages as a function of the average cluster size

The main observation from the figure is that, central and hybrid approaches scale better

with increasing number of nodes, where the hybrid approach keeps its relative advantage

over central approach (around %25 in this case) for different network sizes. Figure 75

plots the total number of messages as a function of the average cluster size (i.e. 1/fc).

β is also increased as the average cluster size is increased, so that the average number of

subclusters per cluster is kept constant (around 3). From the gap between local and non-

selective approaches, we can see a clear overhead that increases with cluster size. On the

other hand, this increase does not cause an overall increase in the messaging cost of the

hybrid approach until the average cluster size increases well over its default value of 30.

It is observed from the figure that the best value for the average cluster size is 50 for this

scenario, where smaller and larger values increase the messaging cost. It is also interesting

to note that in the extreme case, where there is a single cluster in the network, central and

172

hybrid approaches should converge. This can be observed from the right end of the x-axis

in the figure.

5.6.2 Data Collection Quality

We study the data collection quality of our selective sampling approach through a set of

simulation based experiments using real data. In particular, we study the effect of α on the

quality of clustering, the effect of α, β and subclustering methodology on the prediction

error, the trade-off between network lifetime (energy saving) and prediction error, and the

load balance in selective sampling schedule derivation. For the purpose of experiments

presented in this section, 1000 sensor nodes are placed in a square grid with a side length of

1 unit and the connectivity graph of the sensor network is constructed assuming that two

nodes that are at most 0.075 units away from each other are neighbors. Settings of other

relevant system parameters are as follows. TTL is set to 5. The sampling fraction σ is set

to 0.5. β is set to 5 and fc is set to 0.02 resulting in an average cluster size of 50. The data

set used for the simulations is derived from the GPCP One-Degree Daily Precipitation Data

Set (1DD Data Set) [46]. It provides daily, global 1x1-degree gridded fields of precipitation

measurements for the 3-year period starting from January 1997. This data is mapped to

our unit square and a sensor reading of a node at time step i is derived as the average of

the five readings from the ith day of the 1DD data set whose grid locations are closest to

the location of the sensor node (since the dataset has high spatial resolution).

−1 0 1 2 3 4 5 6
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

Co
V

in
 s

iz
es

 o
f d

iff
er

en
t c

lu
st

er
s

−1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

α

A
ve

ra
ge

 C
oV

 in
 s

en
so

r r
ea

di
ng

s
w

ith
in

 s
am

e
cl

us
te

rs

Figure 76: Clustering quality with α

173

5.6.2.1 Effect of α on the Quality of Clustering

Figure 76 plots the average coefficient of variance (CoV) of sensor readings within same

clusters (with a solid line using the left y-axis), for different α values. For each clustering,

we calculate the mean, maximum and minimum of the CoV values of the clusters, where

CoV of a cluster is calculated over the mean data values of sensor nodes within the cluster.

Averages from several clusterings are plotted as an error bar graph in Figure 76, where

the two ends of the error bars correspond to average minimum and average maximum CoV

values. Smaller CoV values in sensor readings imply a better clustering, since our aim is

to gather together sensor nodes whose readings are similar. We observe that increasing α

from 0 to 4 decreases the CoV around %50, where further increase in α do not provide

improvement for this experimental setup. To show the interplay between the shape of the

clusters and sensing-driven clustering, Figure 76 also plots the CoV in the sizes of clusters

(with a dashed line using the right y-axis). With hop based clustering (i.e., α = 0), the

cluster sizes are expected to be more evenly distributed when compared to sensing-driven

clustering. Consequently, the CoV in the sizes of clusters increases with increasing α,

implying that the shape of clusters are being influenced by the similarity of sensor readings.

These results are in line with our visual inspection based results shown in Figure 68 in

Section 5.3.4.

Table 9: Error for different α values
Mean Absolute %90 Confidence

α Deviation (Relative) Interval
0 0.3909 (0.1840) [0.0325, 2.5260]
1 0.3732 (0.1757) [0.0301, 2.0284]
2 0.3688 (0.1736) [0.0296, 1.9040]
3 0.3644 (0.1715) [0.0290, 1.7796]
4 0.3600 (0.1695) [0.0284, 1.6552]

5.6.2.2 Effect of α on the Prediction Error

In order to observe the impact of data-centric clustering on prediction quality, we study the

effect of increasing data importance factor α on the prediction error. The second column

of Table 9 lists the mean absolute deviation (MAD) of the error in predicted sample values

174

for different α values listed in the first column. The value of MAD relative to the mean

of the data values (2.1240) is also given within parenthesis in the first column. Although

we observe a small improvement around 1% in the relative MAD when α is increased from

0 to 4, the improvement is much more prominent when we examine the higher end of the

90% confidence interval of absolute deviation, given in the third column of Table 9. The

improvement is around 0.87, which corresponds to an improvement of 25% relative to the

data mean.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

M
ea

n
A

bs
ol

ut
e

D
ev

ia
tio

n

β

2 4 6 8 10
0.52

0.56

0.6

0.64

0.68

0.7

Ef
fe

ct
iv

e
σ

MAD with fixed σ = 0.5
MAD with fixed effective σ = 0.5

 effective σ

Figure 77: Effect of β on prediction error

5.6.2.3 Effect of β on the Prediction Error

As mentioned in Section 5.4.4, decreasing subcluster granularity parameter β is expected

to increase effective σ. Higher effective σ implies larger number of sampler nodes and thus

improves the error in prediction. Figure 77 illustrates this inference concretely, where the

mean absolute derivation (MAD) of the error in predicted sample values and effective σ

are plotted as a function of β. MAD is plotted with a dashed line and is read from the

left y-axis, whereas effective σ is plotted with a dotted line and is read from the right y-

axis. We see that decreasing β from 10 to 2 decreases MAD around 50% (from 0.44 to

0.22). However, this is mainly due to the fact that the average number of sampler nodes

is increased by 26% (0.54 to 0.68). To understand the impact of β better and to decouple

it from the number of sampler nodes, we fix effective σ to 0.5. Figure 77 plots MAD as a

function of β for fixed effective σ, using a dash-dot line. It is observed that both small and

large β values result in higher MAD whereas moderate values for β achieve smaller MAD.

175

This is very intuitive, since small sized models (small β) are unable to fully exploit the

available correlations between node samples, whereas large sized models (large β) become

ineffective due to decreased amount of correlation among the samples of large and diverse

node groups.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

M
ea

n
A

bs
ol

ut
e

D
ev

ia
tio

n

σ

correlation−based
distance−based
randomized

Figure 78: MAD with different subclusterings

5.6.2.4 Effect of Subclustering on the Prediction Error

This experiment intends to show how different subclustering methods can affect the pre-

diction error. We consider three different methods: correlation-based subclustering (as

described in Section 5.4), distance-based subclustering in which location closeness is used

as the metric for deciding on subclusters, and randomized subclustering which uses purely

random assignment to form subclusters. Figure 78 plots MAD as a function of σ for these

three different methods of subclustering. The results listed in Figure 78 are averages of

large number of subclusterings. We observe that randomized and distance-based subclus-

tering perform up to 15% and 10% worse respectively, when compared correlation-based

subclustering, in terms of mean absolute deviation of the error in value predication. The

differences between these three methods in terms of MAD is largest when σ is smallest and

disappears as σ approaches 1. This is quite intuitive, since smaller σ values imply that the

prediction is performed with smaller number of sampler node values.

176

0 20 40 60 80 100 120 140 160 180 200

0

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Time (in epochs)

M
ea

n
A

bs
ol

ut
e

de
vi

at
io

n
T
T/2
T/4
T/6
T/8
T/10

T/2, 8%

T/4, 16%

T/6, 24%

T/8, 40%

T/10, 90%

Figure 79: Prediction error vs. lifetime trade-off

5.6.2.5 Prediction Error/Lifetime Trade-off

We study the trade-off between prediction error and network lifetime by simulating selective

sampling with dynamic σ adjustment for different σ reduction rates. We assume that the

main source of energy consumption in the network is wireless messaging and sensing. We

set up a scenario such that, without selective sampling the average lifetime of the network

is T = 100 units. This means that, the network enables us to collect data with 100%

accuracy for 100 time units and then dies out. For comparison, we use selective sampling

and experiment with dynamically decreasing σ as time progresses, in order to gradually

decrease the average energy consumption, while introducing an increasing amount of error

in the collected data. Figure 79 plots the mean absolute deviation (MAD) as a function of

time for different σ reduction rates. In the figure T/x, x ∈ {1, 2, 4, 6, 8, 10} denotes different

reduction rates, where σ is decreased by 0.1 every T/x time units. σ is not dropped below

0.1. A negative MAD value in the figure implies that the network has exceeded its lifetime.

Although it is obvious that the longest lifetime is achieved with the highest reduction rate

(easily read from the figure), most of the time it is more meaningful to think of lifetime as

bounded by the prediction error. In other words, we define the ε-bounded network lifetime

as the longest period during which the MAD is always below a user defined threshold ε.

Different thresholds are plotted as horizontal dashed lines in the figure, crossing the y-

axis. In order to find the σ reduction rate with the highest ε-bounded network lifetime,

177

2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

95

100

β

Im
pr

ov
em

en
t i

n
va

ria
nc

e
of

 s
am

pl
in

g

σ = 0.2
σ = 0.4
σ = 0.6
σ = 0.8

Figure 80: Load balance in schedule derivation

we have to find the error line that has the largest x-axis coordinate (lifetime) such that

its corresponding y-axis coordinate (MAD) is below ε and above zero. Following this, the

approach with the highest ε-bounded lifetime is indicated over each ε line together with

the improvement in lifetime. We observe that higher reduction rates do not always result

in a longer ε-bounded network lifetime. For instance, T/4 provides the best improvement

(around 16%) when ε is around 0.4, whereas T/8 provides the best improvement (around

40%) when ε is around 0.8.

5.6.2.6 Load Balance in Sampler Selection

Although saving battery life (energy) and increasing average lifetime of the network through

the use of selective sampling is desirable, it is also important to make sure that the task of

being a sampler node is equally distributed among the nodes. To illustrate the effectiveness

of our sampler selection mechanism in achieving the goal of load balance, we compare the

variation in the amount of time nodes have served as a sampler between our sampler selection

scheme and a scenario where the sampler nodes are selected randomly. The improvement in

the variance (i.e., the percentage of decrease in variance when using our approach compared

to randomized approach) is plotted as a function of β for different σ values in Figure 80.

For all settings, we observe an improvement above 50% provided by our sampler selection

scheme.

178

5.7 Discussions

Setting of Selective Sampling Parameters − There are a number of system parameters

involved in our selective sampling approach to data collection in sensor networks. Most

notable are: α, τd, τc, τu, τf , and β. We have described various trade-offs involved in

setting these parameters. We now give a general and somewhat intuitive guideline for a

base configuration of these parameters. Among these parameters, τd is the one that is

most straightforward to set. τd is the desired sampling period and defines the temporal

resolution of the collected data. A default value of 1 seconds can provide more than enough

temporal resolution for most environmental monitoring applications. When domain-specific

data distance functions are used during the clustering phase, a basic guide for setting α is

to set it to 1. This results in giving equal importance to data distance and hop distance

factors. The clustering period τc and schedule update period τu should be set in terms of the

desired sampling period τd. Other than the cases where the phenomenon of interest is highly

dynamic, it is not necessary to perform clustering and schedule update frequently. However,

re-clustering and re-assigning sampling schedules help achieve better load balancing due to

alternated sampler nodes and cluster heads. As a result, one balanced setting for these

parameters is τc = 1 hour and τu = 15 minutes. From our experimental results, we conclude

that these values result in very little overhead. The forced sampling period τf defines the

number of the sample readings used for calculating the probabilistic model parameters.

For the suggested setting of τu, having τf = 0.1 ∗ τu = 1.5 minutes results in having 90

samples out of 900 readings per schedule update period. This is statistically good enough

for calculating correlations. Finally, β is the subcluster granularity parameter and based

on our experimental results, we suggest a reasonable setting of β ∈ [5, 7]. Note that both

small and large values for beta will degrade the prediction quality.

Messaging Cost and Energy Consumption − One of the most energy consuming

operations in sensor networks is the sending and receiving of messages, although the energy

cost of keeping the radio in the active state also presents non-negligible cost [88]. It is

important to note that our selective sampling approach to data collection operates in a

completely periodic manner. By scheduling the selective sampling based data collection

179

periodically, we ensure that during most of the time there is no messaging activity in the

system. As a result, taking the number of messages exchanged during data collection as

the major indicator of energy consumption is a sound assumption. Considering the fact

that there exist generic protocols for exploiting such timing semantics found in most of the

data collection applications [32], we can easily incorporate an exisiting energy efficient radio

management protocol in order to save energy by reducing or avoiding the need for keeping

the radio active during periods of inactivity.

Reliable Maintenance of Network Structures − There are three important network

structures to be maintained in our selective sampling approach to data collection. These are

the cluster head nodes, the cluster connection trees, and the data collection tree. Note that

the cluster connection trees and the data collection tree are solely used for communicating

with the cluster heads and the base node, respectively. This means that these trees need not

be maintained in case there is a routing mechanism already existent in the network, such

as geographical routing (ex. GPSR [70]) or other well-known ad-hoc routing mechanisms

such as AODV, DSR, and DSDV (see [22]). The use of these trees in selective sampling is

completely different than their use in aggregation schemes in which in-network processing

is performed at each non-leaf node of the tree. In selective sampling, most of the in-network

processing takes place in the cluster head nodes. As a result, there are two important issues

that requires special attention for ensuring reliability. First, the failure of cluster head

nodes should be detected and in case of failures new cluster head nodes should be elected.

This can be achieved by applying classical primary/backup techniques from distributed

computing. Second, it is important that the model parameters sent from the cluster head

nodes are successfully transmitted to the base node. This can be achieved by employing

end-to-end acknowledgment schemes between the cluster heads and the base node. Note

that the loss of a message which includes a sensor reading destined to the base node is

not a serious problem, since the value of such a node can be predicted at the base node

using the probabilistic models and the readings of other nodes, albeit with some error. In

comparison, the loss of a message in an aggregation scheme results in neglecting the values

of all the nodes under a subtree.

180

5.8 Related Work

Energy efficiency plays a fundamental role in localized and distributed algorithms for wire-

less sensor networks in the context of various different services and protocols, such as broad-

casting [64], message routing [110], medium access control [140], time synchronization [40],

and location determination [96]. Data collection is another important service provided by

sensor networks, especially for environmental monitoring applications. We review the liter-

ature related to sensor data collection in three categories: sensor data collection systems,

node clustering in ad-hoc networks, and probabilistic inference in sensor networks.

5.8.1 Sensor Data Collection Systems

In Section 5.1 we have discussed the distinction between our selective sampling approach

and other data collection approaches, such as those based on event detection [5], in-network

aggregation [82], and distributed compression [95]. In summary, selective sampling is de-

signed for energy efficient periodic collection of raw sensor readings from the network for

the purpose of performing detailed data analysis that can not be done using in-network

executed queries or locally detected events. The energy saving is a result of trading-off data

accuracy, which is achieved by using a dynamically changing subset of nodes as samplers.

This is in some ways similar to previously proposed energy saving sensor network topology

formation algorithms, such as PEAS [139], where only a subset of nodes are made active,

while preserving the network connectivity. Selective sampling uses a similar logic, but in

a different context and for a different purpose: only a subset of nodes are used to actively

sample, while the quality of the collected data is kept high.

There are a number of recent works [56, 39, 73] that has considered the trade-off between

energy consumption and data collection quality. In [56] algorithms are proposed to minimize

the sensor node energy consumption in the process of answering a set of user supplied queries

with specified error thresholds. The queries are answered using uncertainty intervals cached

at the server. These cached intervals are updated using an optimized schedule of server-

initiated and sensor-initiated updates. Our selective sampling approach is not bound to

queries and collects data periodically, so that both on-line and archival applications can

181

make use of the collected data.

BBQ [39] is a model-driven data acquisition framework for sensor networks, that uses

global optimizations for generating energy efficient data collection schedules. It is designed

for multi-sensor systems, where nodes have multiple sensors with different energy consump-

tion specifications. The correlations between readings from different sensors within a node

are exploited to build statistical models, which enables prediction of the sensor readings

that are energy-wise expensive to sample, from other sensor readings that are energy-wise

cheap to sample, for instance temperature readings from voltage readings. Our selective

sampling approach uses statistical models in a similar manner, but instead of modeling intra-

node correlations among readings of different-type sensors, we model inter-node correlations

among the readings of same-type sensors from different nodes. Moreover, unlike [39], our

framework is not query bound.

Snapshot Queries [73] is perhaps the most relevant work to ours. In [73], each sensor

node is either represented by one of its neighbors or it is a representative node. Although

this division is similar to sampler and non-sampler nodes of our selective sampling approach,

there is a fundamental difference. The neighboring relationship imposed on representative

nodes imply that the number of representatives is highly dependent on the connectivity

graph of the network. For instance, as the connectivity graph gets sparse, the number of

representative nodes may grow relative to the total network size. This restriction does not

apply to the number of sampler nodes in selective sampling, since the selection process is

supported by a clustering algorithm and is not limited to one-hop neighborhoods. In [73],

representative nodes predict the values of their dependent neighbors for the purpose of

query evaluation. This can cut down the energy consumption dramatically for aggregate

queries, since a single value will be produced as an aggregate from the value of the rep-

resentative node and the predicted values of the dependent neighbors. However this local

prediction will not support such savings when queries have holistic aggregates [82] or require

collection of readings from all nodes. Thus, selective sampling employs a hybrid approach

where prediction is performed outside the network. Moreover, the model based prediction

performed in our selective sampling approach uses correlation based schedule derivation to

182

subcluster nodes into groups based on how good these nodes are in predicting each other’s

value. Any node within the same cluster can be put into the same subcluster, independent

of the neighboring relationship between them. As opposed to this, snapshot queries does not

use a model and instead employs binary linear regression for each representative-dependent

node pair.

5.8.2 Node Clustering in Ad-hoc Networks

With respect to ad-hoc networks, most of the previous work in distributed node clustering

have focused on constructing one-hop clusters [76, 12, 14, 20, 29]. In a one-hop cluster,

each node is at most one-hop away from its cluster head. A few exceptions to this line of

work are [30], [4], and [99]. In [4], a heuristic-based distributed algorithm is introduced

for building clusters in which each node is at most d hops away from its cluster head. d

is a system parameter and the algorithm tends to create clusterings in which clusters have

approximately the same size. In [30], several distributed clustering algorithms are proposed

for constructing k-hop clusters, where each node is at most k-hops away from the cluster

head. In [99], a connectivity-based distributed node clustering algorithm is proposed, where

nodes that are “highly connected” in the connectivity graph are put into the same cluster.

All these algorithms, though distributed, do not attempt to cluster the network based on

sensing structure. Hence the clusters discovered are not necessarily “good” clusters from

a prediction stand-point. In contrast, our clustering algorithm is unique in being sensing-

driven, i.e., the criteria for clustering is data-centric, and results in clusters that improve

prediction quality.

5.8.3 Inference in Sensor Networks

Our selective sampling approach to energy efficient data collection in sensor networks uses

probabilistic models, whose parameters are locally inferred at the cluster head nodes and

are later used at the base node to predict the values of non-sampler sensor nodes. Several

recent works have also proposed to use probabilistic inference techniques to learn unknown

variables within sensor networks [90, 52, 135, 23]. In [52], regression models are employed

to fit a weighted combination of basis functions to the sensor field, so that a small set

183

of regression parameters can be used to approximate the readings from the sensor nodes.

In [23], probabilistic models representing the correlations between the sensor readings at

various locations are used to perform distributed calibration. In [135], a distributed fusion

scheme is described to infer a vector of hidden parameters that linearly relate to each

sensor’s reading with a Gaussian error. Finally, in [90] a generic architecture is presented

to perform distributed inference in sensor networks. The solution employs message passing

on distributed junction-trees, and can be applied to a variety of inference problems, such

as sensor field modeling, sensor fusion, and optimal control.

184

CHAPTER VI

RESOURCE-AWARE JOIN EVALUATION FOR SENSOR

CQ SYSTEMS

Tuple dropping, though commonly used for load shedding in most data stream operations, is

generally inadequate for multi-way, windowed stream joins. The output rate can be unnec-

essarily degraded because it does not exploit time correlations that are likely to exist among

interrelated streams. In this chapter, we introduce GrubJoin: an adaptive, multi-way, win-

dowed stream join that effectively performs time correlation-aware CPU load shedding.

GrubJoin maximizes the output rate by achieving near-optimal window harvesting, which

picks only the most profitable segments of individual windows for the join and ignores the

less valuable ones. Due mainly to the combinatorial explosion of possible multi-way join

sequences involving segments of individual join windows, GrubJoin faces a set of unique

challenges, such as determining the optimal window harvesting configuration and learning

the time correlations among the streams. To tackle these challenges, we formalize window

harvesting as an optimization problem, develop greedy heuristics to determine near-optimal

window harvesting configurations and use approximation techniques to capture the time cor-

relations among the streams. Experimental results show that GrubJoin is vastly superior to

tuple dropping when time correlations exist and is equally effective when time correlations

are nonexistent.

6.1 Introduction

In today’s highly networked and digital world, businesses often rely on time-critical tasks

that require analyzing data from on-line sources and generating responses in real-time. In

many industries, the on-line data to be analyzed comes in the form of data streams, i.e.,

as time-ordered series of events or readings. Examples include stock tickers in financial

services, link statistics in networking, sensor readings in environmental monitoring and

185

emergency response, and surveillance data in Homeland Security. In these examples, rapidly

increasing rates of data streams and stringent response time requirements of applications

force a paradigm shift in how the data are processed, moving away from the traditional

“store and then process” model of database management systems (DBMSs) to “on-the-fly

processing” model of emerging data stream management systems (DSMSs). This shift has

recently created a strong interest in research on DSMS-related topics, in both academia [6,

10, 27] and industry [117].

In DSMSs, CPU load shedding is needed when the available processing resources are not

sufficient to handle the processing demands of the continuous queries installed in the system,

under the current rates of the input streams. Without load shedding, the mismatch between

the available resources and the demands will result in delays that violate the response time

requirements of the queries. It will also cause an unbounded growth in system queues

that overload memory capacity and further bog down the system. As a solution to these

problems, CPU load shedding can be broadly defined as a mechanism to reduce the amount

of processing performed for evaluating stream queries, in an effort to match the service rate

of a DSMS to its input rate, at the cost of producing a degraded output. Depending on

the stream operators, the output degradation may take different forms, such as a lower

resolution in a multimedia encoder operator or a subset result in a join operator.

Joins are key operators in DSMSs and costlier to evaluate when compared with others,

such as selections and projections. They are used by many applications to correlate events

from various streams. For example, let us look at two stream join applications here.

Example 1 - Finding similar news items from different news sources: Assuming that news

items from CNN, Reuters, and BBC are represented by weighted keywords (join attribute)

in their respective streams, we can perform a windowed inner product join to find similar

news items from different sources.

Example 2 [53] - Tracking objects using multiple video (sensor) sources: Assuming that

scenes (readings) from video (sensor) sources are represented by multi-attribute tuples of

numerical values (join attribute), we can perform a distance-based similarity join to detect

objects that appear in all of the video (sensor) sources.

186

Hence, it is important to study load shedding techniques in the context of stream joins,

particularly in the face of bursty and unpredictable stream rates. In this chapter, we focus

on CPU load shedding for multi-way (usually more than two), windowed stream joins. Join

operations are performed on the tuples stored within user-defined, time-based join windows,

which constitute one of the most common join types in the DSMS research [9, 49, 68].

So far, the predominantly used approach to CPU load shedding in stream joins has been

tuple dropping [8, 123]. This can be seen as a stream throttling approach, where the rates of

the input streams are sufficiently reduced via the use of tuple dropping, in order to sustain

a stable system. However, tuple dropping generally is ineffective in shedding CPU load for

multi-way, windowed stream joins. The output rate of a multi-way join can be unnecessarily

degraded because tuple dropping does not recognize, hence fails to exploit, time correlations

that are likely to exist among interrelated streams. Time correlations exist because causal

events manifest themselves in these interrelated streams at different, but correlated, times.

The time-correlation assumption indicates that, for pairs of matching tuples from two

streams, there exists a non-flat match probability distribution which is a function of the

time difference between the timestamps of the tuples. For instance, in Example 1 above, it

is more likely that a news item from one source will match with a temporally close news

item from another source. In this case the streams are almost aligned and the probability

that a tuple from one stream will match with a tuple from another stream decreases as the

difference between their timestamps increases. However, the streams can also be unaligned,

either due to delays in the delivery path, such as network and processing delays, or due to

the inherent effect of time of event generation. As an illustration to the unaligned case,

in Example 2 above, similar tuples appearing in different video streams or similar readings

found in different sensor streams will have a lag between their timestamps, due to the time

it takes for an object to pass through all cameras or all sensors.

In this chapter, we present GrubJoin1: an adaptive, multi-way, windowed stream join

that effectively performs time correlation-aware CPU load shedding. While shedding load,

1As an intransitive verb, grub means “to search laboriously by digging”. It relates to the way that the most
profitable segments of individual join windows are picked and processed with window harvesting in order to maximize
the join output.

187

GrubJoin maximizes the output rate by achieving near-optimal window harvesting within an

operator throttling framework. In contrast to stream throttling, operator throttling performs

load shedding within the stream operator, i.e., regulating the amount of work performed by

the join. This requires altering the processing logic of the multi-way join by parameterizing

it with a throttle fraction. The parameterized join incurs only a throttle fraction of the

processing cost required to perform the full join operation. As a side effect, the quality or

the quantity of the output produced may be decreased when load shedding is performed.

While shedding CPU load, window harvesting maximizes the output rate by picking

only the most profitable segments of individual join windows for the join operations while

ignoring the less valuable ones, similar to farmers harvesting fruits, such as strawberries, by

picking only the ripest while leaving the less ripe untouched. For efficient implementation,

GrubJoin divides each join window into multiple, small-sized segments of basic windows.

Due mainly to the combinatorial explosion of possible, multi-way join sequences involving

segments of different join windows, GrubJoin faces a set of challenges in performing window

harvesting. These challenges are unique for a multi-way, windowed stream join and they

do not exist for a two-way, windowed stream join. In particular, there are three major

challenges:

− First, mechanisms are needed to configure window harvesting parameters so that the

throttle fraction imposed by operator throttling is respected. We should also be able to

assess the optimality of these mechanisms in terms of output rate, with respect to the best

achievable for a given throttle fraction and known time correlations between the streams.

− Second, in order to be able to react and adapt to the possibly changing stream rates in a

timely manner, the reconfiguration of window harvesting parameters must be a lightweight

operation, so that the processing cost of reconfiguration does not consume the processing

resources used to perform the join.

− And third, we should develop low cost mechanisms for learning the time correlations

among the streams, in case they are not known or are changing and should be adapted.

188

We tackle the first challenge by developing a cost model and formulating window har-

vesting as an optimization problem. We handle the latter two challenges by developing

GrubJoin - a multi-way stream join algorithm that employs i) greedy heuristics for mak-

ing near-optimal window harvesting decisions, and ii) approximation techniques to capture

time correlations among the streams.

To the best of our knowledge, this is the first work on time correlation-aware CPU

load shedding for multi-way, windowed stream joins that are adaptive to the input stream

rates. However, we are not the first to recognize and take advantage of the time correlation

effect in join processing. In the context of two-way stream joins with limited memory, the

age-based load shedding framework of [115] pointed out the importance of time correlation

effect and exploited it to make tuple replacement decisions. Furthermore, in the context

of traditional joins, the database literature includes join operators, such as Drag-Join [58],

that capitalized on the time of data creation effect in data warehouses, which is very similar

to the time correlation effect in stream joins.

6.1.1 Summary of Contributions

In summary, this chapter makes three major contributions:

1) We introduce window harvesting as an in-operator load shedding technique for multi-

way, windowed stream joins, that can adjust the amount of shedding performed based on

the throttle fraction defined by our operator throttling framework. We formalize window

harvesting configuration as an optimization problem and show how it can be utilized to

exploit the time correlations among the streams to maximize the output rate of the join.

2) We develop the GrubJoin algorithm, that can adapt to the changes in the input stream

rates, the current system load, and the time correlations among the streams. It performs

near-optimal window harvesting and has very low overhead, thanks to the heuristic methods

it employs for performing reconfiguration of harvesting parameters, and the approximation

techniques it uses to learn the time correlations among the streams.

3) We report results from our experimental studies and show that GrubJoin performs vastly

superior to tuple dropping in terms of output rate when time correlations exist among the

189

streams, and is equally effective as tuple dropping in the absence of correlations.

6.2 Preliminaries

Before going into the details of operator throttling and window harvesting, in this section

we present our window-based stream join model, introduce some notations, and describe

the basics of multi-way, windowed stream join processing.

We denote the ith input stream by Si, where i ∈ [1..m] and m ≥ 2 denotes the number

of input streams of the join operator, i.e., we have an m-way join. Each stream is a sequence

of tuples ordered by an increasing timestamp. We denote a tuple by t and its timestamp by

T (t). Current time is denoted by T . We assume that tuples are assigned timestamps upon

their entrance to the DSMS. We do not enforce any particular schema type for the input

streams. Schemas of the streams can include attributes that are single-valued, set-valued,

user-defined, or binary. The only requirement is to have timestamps and an appropriate

join condition defined over the input streams. We denote the current rate, in terms of tuples

per second, of an input stream Si as λi.

input tuples
poped

input tuples
pushed

S1

S2

S3

input streams
input buffers join windows and join operator

output tuples
pushed

output buffer

multi-way join performed

di
re

ct
io

n
in

de
x

order index
ri,j
i
j 1 2

1

2

3

3 2

3 1

1 2

R1 = {

R2 = {

R3 = {

,

,

,

}

}

}

Figure 81: Multi-way, windowed stream join processing, join directions, and join orders

An m-way stream join operator has m join windows, as shown in the 3-way join example

of Figure 81. The join window for stream Si is denoted by Wi, and has a user-defined size, in

terms of seconds, denoted by wi. A tuple t from Si is kept in Wi only if T ≥ T (t) ≥ T −wi.

The join operator has buffers (queues) attached to its inputs and output. The input stream

tuples are pushed into their respective input buffers either directly from their source or

from output of other operators. The join operator processes tuples by fetching them from

its input buffers, processes the join, and pushes the resulting tuples into the output buffer.

190

The GrubJoin algorithm we develop in this chapter can be seen as a descendant of

MJoin [128]. MJoins have been shown to be very effective for performing fine-grained

adaptation and are very suitable for streaming scenarios, where the rates of the streams

are bursty and may soar during peak times. In an MJoin, there are m different join

directions, one for each stream, and for each join direction there is an associated join order.

The ith direction of the join describes how a tuple t from Si is processed by the join

algorithm, after it is fetched from the input buffer. The join order for direction i, denoted

by Ri = {ri,1, ri,2, . . . , ri,m−1}, defines an ordered set of window indexes that will be used

during the processing of t ∈ Si. In particular, tuple t will first be matched against the

tuples in window Wl, where l = ri,1. Here, ri,j is the jth join window index in Ri. If there

is a match, then the index of the next window to be used for further matching is given by

ri,2, and so on. For any direction, the join order consists of m− 1 distinct window indices,

i.e., Ri is a permutation of {1, . . . , m}−{i}. Although there are (m−1)! possible choices of

orderings for each join direction, this number can be smaller depending on the join graph

of the particular join at hand. We will talk more about join order selection in Section 6.5.

Figure 81 illustrates join directions and orders for an example 3-way join. Once the join

order for each direction is decided, the processing is carried out in an NLJ (nested-loop

join) fashion. Since we do not focus on any particular type of join condition, NLJ is a

natural choice. Section 6.7 will discuss about applying indexed processing to our approach,

for special types of joins.

6.3 Operator Throttling

Operator throttling is a load shedding framework for stream operators. It regulates the

amount of load shedding to be performed by calculating and maintaining a throttle fraction,

and relies on an in-operator load shedding technique to reduce the CPU cost of executing

the operator in accordance with the throttle fraction. We denote the throttle fraction by

z. It has a value in the range (0, 1]. Concretely, z = φ means that the in-operator load

shedding technique should adjust the processing logic of the operator such that the CPU

191

cost of executing it is reduced to φ times the original. As expected, this will have side-

effects on the quality or quantity of the output from the operator. In the case of stream

joins, applying in-operator load shedding will result in a reduced output rate. Note that

the concept of operator throttling is general and applies to operators other than joins.

For instance, an aggregation operator can use the throttle fraction to adjust its aggregate

re-evaluation interval to shed load [122], or a data compression operator can decrease its

compression ratio based on the throttle fraction [97].

6.3.1 Setting of the Throttle Fraction

The correct setting of the throttle fraction depends on the performance of the join operator

under current system load and the incoming stream rates. We capture this as follows.

Let us denote the adaptation interval by Δ. This means that the throttle fraction z is

adjusted every Δ seconds. Let us denote the tuple consumption rate of the join operator

for Si, measured for the last adaptation interval, by αi. In other words, αi is the tuple pop

rate of the join operator for the input buffer attached to Si, during the last Δ seconds. On

the other hand, let λ′
i be the tuple push rate for the same buffer during the last adaptation

interval. Using αi’s and λ′
i’s we capture the performance of the join operator under current

system load and incoming stream rates, denoted by β, as:

β =
m∑

i=1

αi/
m∑

i=1

λ′
i

The β value is used to adjust the throttle fraction as follows. We start with a z value of

1, optimistically assuming that we will be able to fully execute the operator without any

overload. At each adaptation step (Δ seconds), we update z from its old value zold based

on the formula:

z =

⎧⎪⎪⎨
⎪⎪⎩

β · zold β < 1

min(1, γ · zold) otherwise

If β is smaller than 1, z is updated by multiplying its old value with β, with the aim of

adjusting the amount of shedding performed by the in-operator load shedder to match the

tuple consumption rate of the operator to tuple production rate of the streams. Otherwise

192

(β ≥ 1), the join is able to process all the incoming tuples with the current setting of z, in

a timely manner. In this latter case, z is set to minimum of 1 and γ · zold, where γ is called

the boost factor. This is aimed at increasing the throttle fraction, assuming that additional

processing resources are available. If not, the throttle fraction will be readjusted during

the next adaptation step. Note that, higher values of the boost factor result in being more

aggressive at increasing the throttle fraction.

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

time (sec)

in
pu

t r
at

e
(t

up
le

s/
se

c)

input rate

th
ro

tt
le

 fr
ac

tio
n,

 z

0.35

0.4

0.45

0.5

0.55

0.6

0.65
z

Figure 82: z adaptation example

Figure 82 shows an example of throttle fraction adaptation from our implementation of

GrubJoin using operator throttling. In this example Δ is set to 4 seconds and γ is set to 1.2.

Other experimental parameters are not of interest for this example. The input stream rates

are shown as a function of time using the left y-axis, and the throttle fraction z is shown as

a function of time using the right y-axis. Looking at the figure, besides the observation that

the z value adapts to the changing rates by following an inversely proportional trend, we

also see that the reaction in the throttle fraction follows the rate change events with a delay

due to the length of the adaptation interval. Although in this example Δ is sufficiently small

to adapt to the bursty nature of the streams, in general its setting is closely related with

the length of the bursts. Moreover, the time it takes for the in-operator load shedder to

perform reconfiguration in accordance with the throttle fraction is an important limitation

in how frequent the adaptation can be performed, thus how small Δ can be. We discuss

more about this in Section 6.4.2.

193

6.3.2 Buffer Capacity vs. Tuple Dropping

As opposed to stream throttling, operator throttling does not necessarily drop tuples from

the incoming streams. The decision of how the load shedding will be performed is left to

the in-operator load shedder, which may choose to retain all unexpired tuples within its

join windows. However, depending on the size of the input buffers, operator throttling

framework may still result in dropping tuples outside the join operator, albeit only during

times of mismatch between the last set value of the throttle fraction and its ideal value. As

an example, consider the starting time of the join, at which point we have z = 1. If the

stream rates are higher than the operator can handle with z set to 1, then the gap between

the incoming tuple rate and the tuple consumption rate of the operator will result in growing

number of tuples within buffers. This trend will continue until the next adaptation step,

at which time throttle fraction will be adjusted to stabilize the system. However, if during

this interval the buffers fill up, then some tuples will be dropped. The buffer size can be

increased to prevent tuple dropping, at the cost of introducing delay. If buffer sizes are

small, then tuple dropping will be observed only during times of transition, during which

throttle fraction is higher than what it should ideally be.

6.4 Window Harvesting

Window harvesting is an in-operator load shedding technique we develop for multi-way,

windowed stream joins. The basic idea behind window harvesting is to use only the most

profitable segments of the join windows for processing, in an effort to reduce the CPU

demand of the operator, as dictated by the throttle fraction. By making use of the time

correlations among the streams in deciding which segments of the join windows are most

valuable for output tuple generation, window harvesting aims at maximizing the output

rate of the join. In the rest of this section, we first describe the fundamentals of window

harvesting and then formulate window harvesting as an optimization problem.

194

6.4.1 Fundamentals

Window harvesting involves organizing join windows into a set of basic windows and, for each

join direction, selecting the most valuable segments of the windows to use for performing

the join.

6.4.1.1 Basic Windows

Each join window Wi is divided into basic windows of size b seconds. Basic windows are

treated as integral units, thus there is always one extra basic window in each join window

to handle tuple expiration. In other words, Wi consists of 1 + ni basic windows, where

ni = �wi/b�. The first basic window is partially full, and the last basic window contains

some expired tuples (tuples whose timestamps are out of the join window’s time range, i.e.,

T (t) < T − wi). Every b seconds the first basic window fills completely and the last basic

window expires totally. Thus, the last basic window is emptied and it is moved in front of

the basic window list as the new first basic window.

At any time, the unexpired tuples in Wi can be organized into ni logical basic windows,

where the jth logical basic window (j ∈ [1..ni]), denoted by Bi,j , corresponds to the ending ϑ

portion of the jth basic window plus the beginning 1−ϑ portion of the (j+1)th basic window.

We have ϑ = δ/b, where δ is the time elapsed since the last basic window expiration took

place. It is important to note that, a logical basic window always stores tuples belonging

to a fixed time interval relative to the current time. This small distinction between logical

and real basic windows become handy when selecting the most profitable segments of the

join windows to process. Note that, accessing the tuples in a logical basic window does not

require a search operation. A basic window is organized as a timestamp-ordered, doubly-

linked list. As a result, for accessing tuples in Bi,j we can perform iteration over the

(j +1)th basic window and backward iteration over the jth basic window. Concepts related

with basic windows are illustrated in Figure 83.

There are two major advantages of using basic windows. First, basic windows make

expired tuple management more efficient [48]. This is because the expired tuples are removed

from the join windows in batches, i.e., one basic window at a time. Second, without basic

195

windows, accessing tuples in a logical basic window will require a search operation to locate

a tuple within the logical basic window’s time range. In general, small basic windows are

more advantageous in better capturing and exploiting the time correlations. On the other

hand, too small basic window sizes will cause overhead in join processing as well as in

window harvesting configuration. This trade-off is studied in Section 6.6.

6.4.1.2 Configuration Parameters

There are two sets of configuration parameters for window harvesting, which together de-

termine the segments of the windows that will be used for join processing. These are:

• Harvest fractions; zi,j , i ∈ [1..m], j ∈ [1..m − 1]: For the ith direction of the join, the

fraction of the jth window in the join order (i.e., join window Wl, where l = ri,j) that will

be used for join processing is determined by the harvest fraction parameter zi,j ∈ (0, 1].

There are m · (m−1) different harvest fractions. The settings of these fractions are strongly

tied with the throttle fraction and the time correlations among the streams. The details

will be presented in Section 6.4.2.

• Window rankings; sv
i,j , i ∈ [1..m], j ∈ [1..m − 1], v ∈ [1..nri,j]: For the ith direction

of the join, we define an ordering over the logical basic windows of the jth window in the

join order (i.e., join window Wl, where l = ri,j), such that sv
i,j gives the index of the logical

basic window that has rank v in this ordering. Bl,s1
i,j

is the first logical basic window in this

order, i.e., the one with rank 1. The ordering defined by sv
i,j values is strongly influenced

by the time correlations among the streams (see Section 6.4.2 for details).

In summary, the most profitable segments of the join window Wl, where l = ri,j , that

will be processed during the execution of the ith direction of the join is selected as follows.

We first pick Bl,s1
i,j

, then Bl,s2
i,j

, and so on, until the total fraction of Wl processed reaches

zi,j . Other segments of window Wl that are not picked are ignored and not used during the

execution of the join.

Figure 83 shows an example of window harvesting for a 3-way join, for the join direction

R1. In the example, we have ni = 5 for i ∈ [1..3]. This means that we have 5 logical

basic windows within each join window and as a result 6 basic windows per join window in

196

now: beggining
of window

1

2

3

end of
window

12

2 3 4 5 61

n1=n2=n3=5 number of logical basic windows
R1={3,2} join order for direction 1 (stream S1)
z1,1=0.6 corresponds to 3 logical basic windows
z1,2=0.4 corresponds to 2 logical basic windows
s1,1=4, s1,1=3, s1,1=5 logical basic window priorities for r1,1
s1,2=3, s1,2=2 logical basic window priorities for r1,2

1 2 3

1 2

12 3

2 3 4 51

basic
windows

logical basic
windows

Figure 83: Example of window harvesting

practice. The join order for direction 1 is given as R1 = {3, 2}. This means W3 is the first

window in the join order of R1 (i.e., r1,1 = 3) and W2 is the second (i.e., r1,2 = 2). We have

z1,1 = 0.6. This means that nr1,1 · z1,1 = 5 · 0.6 = 3 logical basic windows from Wr1,1 = W3

are to be processed. Noting that we have s1
1,1 = 4, s2

1,1 = 3, and s3
1,1 = 5, the logical basic

windows within W3 that are going to be processed are selected as 3, 4, and 5. They are

marked in the figure with horizontal lines, with their associated rankings written on top.

The corresponding portions of the basic windows are also shaded in the figure. Note that

there is a small shift between the logical basic windows and the actual basic windows (recall

ϑ from Section 6.4.1.1). Along the similar lines, the logical basic windows 2 and 3 from W2

are also marked in the figure, noting that r1,2 = 2, z1,2 = 0.4 corresponds to 2 logical basic

windows, and we have s1
1,2 = 3, s2

1,2 = 2.

In the rest of this section, we describe the setting of window harvesting configuration

parameters.

6.4.2 Configuration of Window Harvesting

Configuration of window harvesting involves setting the window ranking parameters and

the harvest fraction parameters. This configuration is performed at the adaptation step,

every Δ seconds.

197

6.4.2.1 Setting of Window Rankings

We set window ranking parameters sv
i,j ’s in two steps. First step is called score assignment.

Concretely, for the ith direction of the join and the jth window in the join order Ri, that is

Wl where l = ri,j , we assign a score to each logical basic window within Wl. We denote the

score of the kth logical basic window, which is Bl,k, by pk
i,j . We define pk

i,j as the probability

that an output tuple (. . . , t(i), . . . , t(l), . . .) has:

b · (k − 1) ≤ T (t(i))− T (t(l)) ≤ b · k

Here, t(i) denotes a tuple from Si. This way, a logical basic window in Wl is scored based on

the likelihood of having an output tuple whose encompassed tuples from Si and Sl have an

offset between their timestamps such that this offset is within the time range of the logical

basic window.

The score values are calculated using the time correlations among the streams. For

now, we will assume that the time correlations are given in the form of probability den-

sity functions (pdfs) denoted by fi,j , where i, j ∈ [1..m]. Let us define Ai,j as a random

variable representing the difference T (t(i)) − T (t(j)) in the timestamps of tuples t(i) and

t(j) encompassed in an output tuple of the join. Then fi,j : [−wi, wj] → [0,∞) is the

probability density function for the random variable Ai,j . With this definition, we have

pk
i,j =

∫ b·k
b·(k−1) fi,ri,j (x)dx. In practice, we develop a lightweight method for approximating a

subset of these pdfs and calculating pk
i,j ’s from this subset efficiently. The details are given

in Section 6.5 as part of the GrubJoin.

The second step of the setting of window ranking parameters is called score ordering. In

this step, we sort the scores {pk
i,j : k ∈ [1..nri,j]} in descending order and set sv

i,j to k, where

v is the rank of pk
i,j in the sorted set of scores. If the time correlations among the streams

change, then a new set of scores and thus a new assignment for the window rankings is

needed. This is again handled by the reconfiguration performed at every adaptation step.

6.4.2.2 Setting of Harvest Fractions

Harvest fractions are set by taking into account the throttle fraction and the time correla-

tions among the streams. First, we have to make sure that the CPU cost of performing the

198

join agrees with the throttle fraction z. This means that the cost should be at most equal to

z times the cost of performing the full join. Let C({zi,j}) denote the cost of performing the

join for the given setting of the harvest fractions, and C(1) denote the cost of performing

the full join. We say that a particular setting of harvest fractions is feasible if and only if

z · C(1) ≥ C({zi,j}).
Second, among the feasible set of settings of the harvest fractions, we should prefer

the one that results in the maximum output rate. Let O({zi,j}) denote the output rate of

the join operator for the given setting of the harvest fractions. Then our objective is to

maximize O({zi,j}). In short, we have an optimization problem:

Optimal Window Harvesting Problem:

argmax
{zi,j}

O({zi,j})

s.t. z · C(1) ≥ C({zi,j})

The formulations for functions C and O are given in Appendix E. Our formulations

are similar to previous work [68, 8], with the exception that we integrate time correlations

among the streams into the processing cost and output rate computations.

6.4.3 Bruteforce Solution

One way to solve the optimal window harvesting problem is to enumerate all possible har-

vest fraction settings assuming that the harvest fractions are set to result in selecting an

integral number logical basic windows, i.e., ∀ i∈[1..m]
j∈[1..m−1]

, zi,j · nri,j ∈ N. Although straight-

forward to implement, this bruteforce approach results in considering
∏m

i=1 nm−1
i possible

configurations. If we have ∀i ∈ [1..m], ni = n, then we can simplify this as O(nm2
). As

we will show in the experimental section, this is computationally very expensive due to the

long time required to solve the optimization problem with enumeration, and makes it almost

impossible to perform frequent adaptation. In the next section we will discuss an efficient

heuristic that can find near-optimal solutions quickly, with much smaller computational

complexity.

199

1−2 1−3 2−3
0

0.005

0.01

0.015

0.02
selectivities

se
le

ct
iv

ity

pair

f
2,1

f
3,1

1 2 3

1

2

3

4

5

join direction 1

ba
si

c
w

in
do

w
s

join order
2 3 1

1

2

3

4

5

ba
si

c
w

in
do

w
s

join order
3 2 1

1

2

3

4

5

ba
si

c
w

in
do

w
s

join order

m=3, λ = {300, 100, 150}, w={10,10,10}, b=2, z = 0.5

join direction 2 join direction 3

1 1

3

4

2

5

1

1

3

2

−10−8−6−4−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

fr
eq

ue
nc

y

0

0.05

0.1

0.15

0.2

0.25

fr
eq

ue
nc

y

0.3

−10−8−6−4−2 0 2 4 6 8 10
time lagtime lag

4

5

1

2

1

2
denotes a basic window picked for processing
as a result of window harvesting, the number 2
represents the ranking of the basic window

Figure 84: Optimal window harvesting example

6.4.3.1 Example of Optimal Configuration

Figure 84 shows an example scenario illustrating the setting of window harvesting param-

eters optimally. In this scenario we have a 3-way join with λ1 = 300, λ2 = 100, λ3 = 150,

w1 = w2 = w3 = 10, b = 2, and z = 0.5. The topmost graph on the left in Figure 84 shows

the selectivities, whereas the two graphs next to it show the time correlation pdfs, f2,1 and

f3,1. By looking at f2,1, we can see that there is a time lag between the streams S1 and S2,

since most of the matching tuples from these two streams have a timestamp difference of

about 4 seconds, S2 tuple being lagged. Moreover, the probability that two tuples from S1

and S2 match decreases as the difference in their timestamps deviates from the 4 second

time lag. By looking at f3,1, we can say that the streams S1 and S3 are also unaligned, with

S3 lagging behind by around 5 seconds. In other words, most of the S3 tuples match with

S1 tuples that are around 5 seconds older. By comparing f2,1 and f3,1, we can also deduce

that S3 is slightly lagging behind S2, by around 1 seconds. As a result, our intuition tells

us that the third join direction is more valuable than the others, since the tuples from other

streams that are expected to match with an S3 tuple are already within the join windows

200

when an S3 tuple is fetched. In this example, the join orders are configured as follows:

R1 = {2, 3}, R2 = {3, 1}, R3 = {2, 1}. This decision is based on the low selectivity first

heuristic [128], as it will be discussed in the next section. The resulting window harvesting

configuration, obtained by solving the optimal window harvesting problem by using the

bruteforce approach, is shown in the lower row of Figure 84. The logical basic windows

selected for processing are marked with dark circles and the selections are shown for each

join direction. We observe that in the resulting configuration we have z3,1 = z3,2 = 1,

since all the logical basic windows are selected for processing in R3. This is inline with our

intuition that the third direction of the join is more valuable than the others.2

6.5 GrubJoin

GrubJoin is a multi-way, windowed stream join operator with built-in window-harvesting.

It uses two main methods to make window harvesting work in practice. First, it employs a

heuristic method to set the harvest fractions, and second it uses approximation techniques

to learn the time correlations among the streams and to set the logical basic window scores

based on that. In this section we describe the details of these two methods.

6.5.1 Heuristic Setting of Harvest Fractions

The heuristic method we use for setting the harvest fractions is greedy in nature. It starts

by setting zi,j = 0,∀i, j. At each greedy step it considers a set of settings for the harvest

fractions, called the candidate set, and picks the one with the highest evaluation metric as

the new setting of the harvest fractions. Any setting in the candidate set must be a forward

step in increasing the zi,j values, i.e., we must have ∀i, j, zi,j ≥ zold
i,j , where {zold

i,j } is the

setting of the harvest fractions that was picked at the end of the previous greedy step. The

process terminates once a step with an empty candidate set is reached. We introduce three

different evaluation metrics for deciding on the best configuration within the candidate set.

In what follows, we first describe the candidate set generation and then introduce the three

alternative evaluation metrics.

2See a demo at http://disl.cc.gatech.edu/SensorCQ/optimizer.html

201

6.5.1.1 Candidate Set Generation

The candidate set is generated as follows. For the ith direction of the join and the jth

window within the join order Ri, we add a new setting into the candidate set by increasing

zi,j by di,j . In the rest of the chapter we take di,j as 1/nri,j . This corresponds to increasing

the number of logical basic windows selected for processing by one. This results in m·(m−1)

different settings, which is also the maximum size of the candidate set. The candidate set

is then filtered to remove the settings which are infeasible, i.e., do not satisfy the processing

constraint of the optimal window harvesting problem dictated by the throttle fraction z.

Once a setting in which zu,v is incremented is found to be infeasible, then the harvest

fraction zu,v is frozen and no further settings in which zu,v is incremented are considered in

the future steps of the algorithm.

There is one small complication to the above described way of generating candidate sets.

Concretely, when we have ∀j, zi,j = 0 for the ith join direction at the start of a greedy step,

then it makes no sense to create a candidate setting in which only one harvest fraction is

non-zero for the ith join direction. This is because no join output can be produced from

a join direction if there is one or more windows in the join order for which the harvest

fraction is set to zero. As a result, we say that a join direction i is not initialized if and only

if there is a j such that zi,j = 0. If at the start of a greedy step, we have a join direction

that is not initialized, say ith direction, then instead of creating m − 1 candidate settings

for the ith direction, we generate only one setting in which all the harvest fractions for the

ith direction are incremented, i.e., ∀j, zi,j = di,j .

Computational Complexity: In the worst case, the greedy algorithm will have (m− 1) ·
∑m

i=1 ni steps, since at the end of each step at least one harvest fraction is incremented for

a selected join direction and window within that direction. Taking into account that the

candidate set can have a maximum size of m · (m − 1) for each step, the total number of

settings considered during the execution of the greedy heuristic is bounded by m · (m−1)2 ·
∑m

i=1 ni. If we have ∀i ∈ [1..m], ni = n, then we can simplify this as O(n · m4). This is

much better than the O(nm2
) complexity of the exhaustive algorithm, and as we will show

202

in the next section it has satisfactory running time performance.

GreedyPick(z)
(1) cO ← cC ← 0 {current cost and output}
(2) ∀ 1≤i≤m , Ii ← false {initialization indicators}
(3) ∀ 1≤i≤m

1≤j≤m−1 , Fi,j ← false {frozen fraction indicators}
(4) ∀ 1≤i≤m

1≤j≤m−1 , zi,j ← 0 {fraction parameters}
(5) while true
(6) bS ← 0 {best score for this step}
(7) u← v ← −1 {direction and window indices}
(8) for i← 1 to m {for each direction}
(9) if Ii = true {if already initialized}
(10) for j ← 1 to m− 1 {for each window in join order}
(11) if zi,j = 1 or Fi,j = true {zi,j is maxed or frozen}
(12) continue{move to next setting}
(13) z′ ← zi,j {store old value}
(14) zi,j ←Min(1, zi,j + di,j) {increment}
(15) S ← Eval(z, {zi,j}, cO, cC)
(16) zi,j ← z′ {reset to old value}
(17) if S > bS {update best solution}
(18) bS ← S;u← i; v ← j
(19) else if S < 0 {infeasible setting}
(20) Fi,j ← true {froze zi,j}
(21) else {if not initialized}
(22) ∀ 1≤j≤m−1 , zi,j ← di,j {increment all}
(23) S ← Eval(z, {zi,j}, cO, cC)
(24) ∀ 1≤j≤m−1 , zi,j ← 0 {reset all}
(25) if S > bS {update best solution}
(26) bS ← S;u← i
(27) if u = −1 {no feasible configurations found}
(28) break{further increment not possible}
(29) if Iu = false {if not initialized}
(30) Iu ← true {update initialization indicator}
(31) ∀ 1≤j≤m−1 , zu,j ← di,j {increment all}
(32) else zu,v = zu,v + di,j {increment}
(33) cC = C({zi,j}) {update current cost}
(34) cO = O({zi,j}) {update current output}
(35) return {zi,j} {Final result}
Eval(z, {zi,j}, cO, cC)
(1) S ← −1 {metric score of the solution}
(2) if C({zi,j}) > r · C(1) {if not feasible}
(3) return S {return negative metric score}
(4) switch(heuristic type)
(5) case BestOutput:
(6) S ← O({zi,j}); break
(7) case BestOutputPerCost:
(8) S ← O({zi,j})

C({zi,j}) ; break
(9) case BestDeltaOutputPerDeltaCost:
(10) S ← O({zi,j})−cO

C({zi,j})−cC ; break
(11) return S {return the metric score}

Figure 85: Greedy heuristic for setting the harvest fractions

203

6.5.1.2 Evaluation Metrics

The evaluation metric used for picking the best setting among the candidate settings signif-

icantly impacts the optimality of the heuristic. We introduce three alternative evaluation

metrics and experimentally compare their optimality in the next section. These evaluation

metrics are:

• Best Output: The best output metric picks the candidate setting that results in the

highest join output O({zi,j}).

• Best Output Per Cost: The best output per cost metric picks the candidate setting

that results in the highest join output to join cost ratio O({zi,j})/C({zi,j}).

• Best Delta Output Per Delta Cost: Let {zold
i,j } denote the setting of the harvest fractions

from the last step. Then the best delta output per delta cost metric picks the setting that

results in the highest additional output to additional cost ratio
O({zi,j})−O({zold

i,j })
C({zi,j})−C({zold

i,j }) .

Figure 85 gives the pseudo code for the heuristic setting of the harvest fractions. In the

pseudo code the candidate sets are not explicitly maintained. Instead, they are iterated

over on-the-fly and the candidate setting that results in the best evaluation metric is used

as the new setting of the harvest fractions.

6.5.1.3 Illustration of the Greedy Heuristic

Figure 86 depicts an example illustrating the inner workings of the greedy heuristic for

a 3-way join. The example starts with a setting in which zi,j = 0.2,∀i, j and shows the

following greedy steps of the heuristic. The harvest fraction settings are shown as 3-by-2

matrices in the figure. Similarly, 3-by-2 matrices are used (on the right side of the figure)

to show the frozen harvest fractions. Initially none of the harvest fractions are frozen. In

the first step a candidate set with six settings is created. In each setting one of the six

harvest fractions is incremented by 0.1. As shown in the figure, out of these six settings

the last two are found to be infeasible, and are marked with a cross. These two settings

are the ones in which z3,1 and z3,2 were incremented, and thus these two harvest fractions

are frozen at their last values. Among the remaining four settings, the one in which z2,1 is

increased is found to give the highest evaluation metric score. This setting is marked with

204

- -
- -
+ +

- -
- -
- -

.2 .2

.2 .2

.2 .2

.2 .2

.3 .2

.2 .2

.2 .2

.2 .3

.2 .2

.2 .2

.2 .2

.3 .2

.2 .2

.2 .2

.2 .3

.3 .2

.2 .2

.2 .2

.2 .3

.2 .2

.2 .2

.3 .2

.3 .2

.2 .2

.2 .3

.3 .2

.2 .2

.2 .2

.4 .2

.2 .2

.2 .2

.3 .3

.2 .2

- +
+ -
+ +

frozen harvest
fractions

step i

step i+1

step i+2

step i+3
+ +
+ +
+ +

candidate sets

for ease of illustration, the starting
setting is chosen as zi,j = 0.2, ∀i,j

candidate setting with the
highest evaluation metric score
infeasible settings (that do not

satisfy the processing constraint)
candidate setting with evaluation

metric score lower than the highest

.3 .2

.3 .3

.2 .2

.2 .2

.3 .4

.2 .2

Figure 86: Illustration of the greedy heuristic

an arrow in the figure, and forms the base setting for the next greedy step. The remaining

three settings, marked with a line in the figure, are simply discarded. In the second step

only four new settings are created, since two of the harvest fractions were frozen. As shown

in the figure, among these four new settings two are found to be infeasible and thus two

more harvest fractions are frozen. The setting marked with the arrow is found to have the

best evaluation metric score and forms the basis setting for the next step. However, both

of the two settings created for the next step are found to be infeasible and thus the last

setting from the second step is determined as the final setting. It is marked with a frame

in the figure.

6.5.2 Learning Time Correlations

The time correlations among the streams can be learned by monitoring the output of the join

operator. Recall that the time correlations are captured by the pdfs fi,j , where i, j ∈ [1..m].

fi,j is defined as the pdf of the difference T (t(i)) − T (t(j)) in the timestamps of the tuples

t(i) ∈ Si and t(j) ∈ Sj encompassed in an output tuple of the join. We can approximate fi,j

205

by building a histogram on the difference T (t(i)) − T (t(j)) by analyzing the output tuples

produced by the join algorithm.

This straightforward method of approximating the time correlations has two important

shortcomings. First and foremost, since window harvesting uses only certain portions of

the join windows, changing time correlations cannot be captured. Second, for each output

tuple of the join we have to update O(m2) number of histograms to approximate all pdfs,

which hinders the performance. We tackle the first problem by using window shredding, and

the second one through the use of sampling and per stream histograms. We now describe

these two techniques.

6.5.2.1 Window Shredding

For a randomly sampled subset of incoming tuples, we do not perform the join using window

harvesting, but instead we use window shredding. We denote our sampling parameter by

ω. On the average, for only ω fraction of the tuples we perform window shredding. ω is

usually small (< 0.1). Window shredding is performed by executing the join fully, except

that the first window in the join order of a join direction is processed only partially based

on the throttle fraction z. The tuples to be used from such windows are selected so that

they are roughly evenly distributed within the window’s time range. This way, we get rid of

the bias introduced in the output due to window harvesting, and can safely use the output

generated from window shredding for building histograms to capture the time correlations.

Moreover, since window shredding only processes z fraction of the first windows in the join

orders, it respects the processing constraint of the optimal window harvesting problem.

6.5.2.2 Per Stream Histograms

Although the histograms used for approximating the time correlation pdfs are updated only

for the output tuples generated from window shredding, the need for maintaining m·(m−1)

histograms is still excessive and unnecessary. We propose to maintain only m histograms,

one for each stream. The histogram associated with Wi is denoted by Li and it is an

approximation to the pdf fi,1, i.e., the probability distribution for the random variable Ai,1

(introduced in Section 6.4.2.1).

206

Maintaining only m histograms that are updated only for the output tuples generated

from window shredding introduces very little overhead, but necessitates developing a new

method to calculate logical basic window scores (pk
i,j ’s) from these m histograms. Recall

that we had pk
i,j =

∫ b·k
b·(k−1) fi,ri,j (x)dx. Since we do not maintain histograms for all pdfs

(fi,j ’s), this formulation should be updated. We now describe the new method we use for

calculating logical basic window scores.

We start with introducing some notations. We will assume that the histograms are

equi-width histograms, although extension to other types are possible. Li has a valid time

range of [−wi, w1], which is the input domain of fi,1. Let Li(I) denote the frequency for the

time range I, and Li[k] denote the frequency for the kth bucket in Li. Let Li[k∗] and Li[k∗]

denote the higher and lower points of the kth bucket’s time range, respectively. Finally, let

|Li| denote the number of buckets in Li.

From the definition of pk
i,j , we have:

pk
i,j = P{Ai,l ∈ b · [k − 1, k]}, where ri,j = l

For the case of i = 1, nothing that Ai,j = −Aj,i, we have:

pk
1,j = P{Al,1 ∈ b · [−k,−k + 1]}

=
∫ −b·(k−1)

x=−b·k
fl,1(x) dx

We can approximate this using Ll, as follows:

pk
1,j ≈ Ll(b · [−k,−k + 1]) (3)

For the case of i �= 1, we will use the trick Ai,l = Ai,1 −Al,1:

pk
i,j = P{(Ai,1 −Al,1) ∈ b · [k − 1, k]}

= P{Ai,1 ∈ b · [k − 1, k] + Al,1}

Making the simplifying assumption that Al,1 and Ai,1 are independent, we get:

pk
i,j =

∫ w1

x=−wl

fl,1(x) · P{Ai,1 ∈ b · [k − 1, k] + x} dx

=
∫ w1

x=−wl

fl,1(x) ·
∫ b·k+x

y=b·(k−1)+x
fi,1(y) dy dx

207

We can approximate this using Ll and Li, as follows:

pk
i,j ≈

|Ll|∑
v=1

(
Ll[v] · Li(b · [k − 1, k] +

Ll[v∗] + Ll[v∗]
2

)
)

(4)

Equations (3) and (4) are used together to calculate the logical basic window scores by

only using the m histograms we maintain. In summary, we only need to capture the pdfs

fi,1,∀i ∈ [1..m] to calculate pk
i,j values. This is achieved by maintaining Li for approximating

fi,1. Li’s are updated only for output tuples generated from window shredding. Moreover,

window shredding is performed only for a sampled subset of input tuples defined by the

sampling parameter ω. The logical basic window scores are calculated from Li’s during the

adaptation step (every Δ seconds). This whole process results in very little overhead during

majority of the time frame of the join execution. Most of the computations are performed

during the adaptation step.

6.5.3 Join Orders and Selectivities

The GrubJoin algorithm uses the MJoin [128] approach for setting the join orders Ri,∀i ∈
[1..m]. This setting is based on the low selectivity first heuristic. Concretely, let Ui be the

sorted set {σi,j : 1 ≤ j �= i ≤ m}, in ascending order. Then we set ri,j to k, where σi,k is the

jth item in the set Ui. This technique assumes that all possible join orderings are possible,

as it is in a star shaped join graph. In practice, the possible join orders should be pruned

based on the join graph and then the heuristic should be applied.

Although the low selectivity first heuristic has been shown to be effective, there is no

guarantee of optimality. In this work, we choose to exclude join order selection from our

optimal window harvesting configuration problem, and treat it as an independent issue.

We require that the join orders are set before the window harvesting parameters are to be

determined. This helps cutting down the search space of the problem significantly. Using a

well established heuristic for order selection and solving the window harvesting configuration

problem separately is an effective technique that makes it possible to execute adaptation

step much faster. This enables more frequent adaptation.

208

6.6 Experimental Results

The GrubJoin algorithm has been implemented within our operator throttling based load

shedding framework and has been successfully demonstrated as part of a large-scale stream

processing prototype at IBM T.J. Watson. Here, we report two sets of experimental results

to demonstrate the effectiveness of our approach. The first set of experiments evaluate the

optimality and the runtime performance of the proposed heuristic algorithms used to set

the harvest fractions. The second set of experiments use synthetically generated streams

to demonstrate the superiority of window harvesting to tuple dropping, and to show the

scalability of our approach with respect to various parameters, such as the number of join

streams, the incoming stream rates, and the basic window size. All experiments presented

in this chapter are performed on an IBM PC with 512MB main memory and 2.4Ghz Intel

Pentium4 processor, using Java with Sun JDK 1.5.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m=3, λ ~ U(100,500), w={10,10,10}, b=1

z (throttle fraction)

op
tim

al
ity

optimal
greedy − best output
greedy − best output per cost
greedy − best Δ output per Δ cost

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.96

0.98

1

Figure 87: Effect of different evaluation metrics on optimality of greedy heuristic

6.6.1 Setting of Harvest Fractions

An important measure for judging the effectiveness of the three alternative metrics used in

the candidate set evaluation phase of the greedy heuristic, is the optimality of the resulting

setting of the harvest fractions with respect to the output rate of the join, compared to

the best achievable obtained by setting the harvest fractions using the exhaustive search

algorithm. The graphs in Figure 87 show optimality as a function of throttle fraction z for

the three evaluation metrics, namely BestOutput (BO), BestOutputPerCost (BOpC), and

209

BestDeltaOutputPerDeltaCost (BDOpDC). An optimality value of φ ∈ [0, 1] means that

the setting of the harvest fractions obtained from the heuristic yields a join output rate of φ

times the best achievable, i.e., O({zi,j}) = φ ·O({z∗i,j}) where {z∗i,j} is the optimal setting of

the harvest fractions obtained from the exhaustive search algorithm and {zi,j} is the setting

obtained from the heuristic. For this experiment we have m = 3, w1 = w2 = w3 = 10, and

b = 1. All results are averages of 500 runs. For each run, a random stream rate is assigned

to each of the three streams using a uniform distribution with range [100, 500]. Similarly,

selectivities are randomly assigned. We observe from Figure 87 that BOpC performs well

only for very small z values (< 0.2), whereas BO performs well only for large z values

(z ≥ 0.4). BDOpDC is superior to other two alternatives and performs optimally for z ≥ 0.4

and within 0.98 of the optimal elsewhere. We conclude that BDOpDC provides a good

approximation to the optimal setting of harvest fractions. We next study the advantage

of heuristic methods in terms of running time performance, compared to the exhaustive

algorithm.

5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

z (throttle fraction) = 0.25

n (number of basic windows per window)

tim
e

(m
ill

is
ec

on
ds

)

exhaustive (m=3)
greedy (m=3)
greedy (m=4)
greedy (m=5)

Figure 88: Running time performance w.r.t. m and number of basic windows

The graphs in Figure 88 plot the time taken to set the harvest fractions (in milliseconds)

as a function of the number of logical basic windows per join window (n), for exhaustive and

greedy approaches. The results are shown for 3-way, 4-way, and 5-way joins with the greedy

approach and for only 3-way join with the exhaustive approach. The throttle fraction z is

set to 0.25 in this experiment. Note that the y-axis is in logarithmic scale. As expected, the

exhaustive approach takes several orders of magnitude more time than the greedy approach.

210

Moreover, the time taken for the greedy approach increases with increasing n and m, in

compliance with its complexity of O(n ·m4). However, what is important to observe here

is the absolute values. For instance, for a 3-way join the exhaustive algorithm takes around

3 seconds for n = 10 and around 30 seconds for n = 20. Both of these values are simply

unacceptable for performing fine grained adaptation. On the other hand, for n ≤ 20 the

greedy approach performs the setting of harvest fractions within 10 milliseconds for m = 5

and much faster for m ≤ 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

n (number of basic windows per window) = 10

z (throttle fraction)

tim
e

(m
ill

is
ec

on
ds

)

greedy (m=3)
greedy (m=4)
greedy (m=5)

Figure 89: Running time performance with respect to m and throttle fraction

The graphs in Figure 89 plot the time taken to set the harvest fractions as a function

of throttle fraction z, for greedy approach with m = 3, 4, and 5. Note that z affects the

total number of greedy steps, thus the running time. The best case is when we have z ≈ 0

and the search terminates after the first step. The worst case occurs when we have z = 1,

resulting in ≈ n · m · (m − 1) steps. We can see this effect from Figure 89 by observing

that the running time performance worsens as z gets closer to 1. Although the degradation

in performance for large z is expected due to increased number of greedy steps, it can be

avoided by reversing the working logic of the greedy heuristic.

Concretely, instead of starting from zi,j = 0,∀i, j and increasing the harvest fractions

gradually, we can start from zi,j = 1,∀i, j and decrease the harvest fractions gradually. We

call this version of the greedy algorithm greedy reverse. Note that greedy reverse is expected

to run fast when z is large, but its performance will degrade when z is small. The solution

is to switch between the two algorithms based on the value of z. We call this version of the

211

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101

n (number of basic windows per window) = 10

z (throttle fraction)
tim

e
(m

ill
is

ec
on

ds
)

greedy (m=3)
greedy−double sided (m=3)
greedy−reverse (m =3)

z = 0.5(m-1)/2

2

Figure 90: Running time of greedy algorithms with respect to z

algorithm greedy double-sided. It uses the original greedy algorithm when z ≤ 0.5(m−1)/2

and greedy reverse otherwise. The graphs in Figure 90 plot the time taken to set the harvest

fractions as a function of throttle fraction z, for m = 3 with three variations of the greedy

algorithm. It is clear from the figure that greedy double-sided makes the switch from greedy

to greedy reverse when z goes beyond 0.5 and gets best of the both worlds, i.e., performs

good for both small and large values of the throttle fraction.

6.6.2 Results on Join Output Rate

In this section, we report results on the effectiveness of GrubJoin with respect to join

output rate, under heavy system load due to high rates of the incoming input streams. We

compare GrubJoin with a stream throttling based approach called RandomDrop. In the case

of RandomDrop, excessive load is shed by placing drop operators in front of input stream

buffers, where the parameters of the drop operators are set based on the input stream rates

using the static optimization framework of [8]. We report results on 3-way, 4-way, and 5-way

joins. When not explicitly stated, the join refers to a 3-way join. The window size is set

to wi = 20,∀i and b is set to 2, resulting in 10 logical basic windows per join window. The

sampling parameter ω is set to 0.1 for all experiments. The results reported in this section

are from averages of several runs. Unless stated otherwise, each run is 1 minutes, and the

initial 20 seconds are used for warm-up. The default value of the adaptation period Δ is 5

seconds for the GrubJoin algorithm, although we experiment with other Δ values in some

212

of the experiments.

The join type we employ in the experiments reported in this subsection is ε-join. A set

of tuples are considered to be matching iff their values (assuming single-valued numerical

attributes) are within ε distance of each other. ε is taken as 1 in the experiments. We model

stream Si as a stochastic process Xi = {Xi(ϕ)}. Xi(ϕ) is the random variable representing

the value of the tuple t ∈ Si with timestamp T (t) = ϕ. A tuple simply consists of a single

numerical attribute with the domain D = [0, D] and an associated timestamp. We define

Xi(t) as follows:

Xi(ϕ) = (D/η) · (ϕ + τi) + κi · N (0, 1) mod D

In other words, Xi is a linearly increasing process (with wrap-around period η) that has a

random Gaussian component. There are two important parameters that make this model

useful for studying GrubJoin. First, the parameter κi, named as deviation parameter,

enables us to adjust the amount of time correlations among the streams. If we have κi =

0,∀i, then the values for the time-aligned portions of the streams will be exactly the same,

i.e., the streams are identical with possible lags between them based on the setting of τi’s.

If κi values are large, then the streams are mostly random, so we do not have any time

correlation left. Second, the parameter τ (named as lag parameter) enables us to introduce

lags between the streams. We can set τi = 0,∀i to have aligned streams. Alternatively, we

can set τi to any value within the range (0, η] to create non-aligned streams. We set D =

1000, η = 50, and vary the time lag parameters (τi’s) and the deviation parameters (κi’s)

to generate a rich set of scenarios. Note that GrubJoin is expected to provide additional

benefits when the time correlations among the streams are strong and the streams are

non-aligned.

6.6.2.1 Varying λ, Input Rates

The graphs in Figure 91 show the output rate of the join as a function of the input stream

rates, for GrubJoin and RandomDrop. For each approach, we report results for both aligned

and non-aligned scenarios. In the aligned case, we have τi = 0,∀i and in the non-aligned

case we have τ1 = 0, τ2 = 5, and τ3 = 15. The deviation parameters are set as κ1 = κ2 = 2

213

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
5

input rate (tuples/sec)
ou

tp
ut

 ra
te

 (t
up

le
s/

se
c)

Grub Join (non−aligned)
Random Drop (non−aligned)
Grub Join (aligned)
Random Drop (aligned)

Figure 91: Effect of varying the input rates on the output rate w/wo time-lags

and κ3 = 50. As a result, there is strong time correlation between S1 and S2, whereas

S3 is more random. We make three major observation from Figure 91. First, we see that

GrubJoin and Random Drop perform the same for small values of the input rates, since

there is no need for load shedding until the rates reach 100 tuples/seconds. Second, we

see that GrubJoin is vastly superior to RandomDrop when the input stream rates are high.

Moreover, the improvement in the output rate becomes more prominent for increasing input

rates, i.e., when there is a greater need for load shedding. Third, GrubJoin provides up

to 65% better output rate for the aligned case and up to 150% improvement for the non-

aligned case. This is because the lag-awareness nature of GrubJoin gives it an additional

upper hand for sustaining a high output rate when the streams are non-aligned.

10 20 30 40 50 60 70 80 90 100

2

3

4

5

6

7

8

9

x 10
4

κ, deviation parameter

ou
tp

ut
 ra

te
 (t

up
le

s/
se

c)

Grub Join
Random Drop

Figure 92: Effect of varying the amount of time correlations on the output rate

214

6.6.2.2 Varying Time Correlations

The graphs in Figure 92 study the effect of varying the amount of time correlations among

the streams on the output rate of the join, with GrubJoin and RandomDrop for the non-

aligned case. Recall that the deviation parameter κ is used to alter the amount of time

correlations. It can be increased to remove the time correlations. In this experiment κ3 is

altered to study the change in output rate. The other settings are same with the previous

experiment, except that the input rates are fixed at 200 tuples/second. We plot the output

rate as a function of κ3 in Figure 92. We observe that the join output rate for GrubJoin

and Random Drop are very close when the time correlations are almost totally removed.

This is observed by looking at the right end of the x-axis. However, for the majority of

the deviation parameter’s range, GrubJoin outperforms RandomDrop. The improvement

provided by GrubJoin is 250% when κ3 = 25, 150% when κ3 = 50, and 25% when κ3 = 75.

It is also worth describing the behavior of RandomDrop in this experiment. Note that as κ

gets larger, RandomDrop start to suffer less from its inability to exploit time correlations by

using only the usefull segments of the join windows for processing. On the other hand, when

κ gest smaller, the selectivity of the join increases as a side effect and in general the output

rate increases. These two contrasting factors result in a bimodal graph for RandomDrop.

3 4 5
0

2

4

6

8

10

12

14

16

18
x 10

4

m, number of input streams

ou
tp

ut
 ra

te
 (t

up
le

s/
se

c)

im
pr

ov
em

en
t %

0

100

200

300

400

500

600

700

non−aligned
aligned

Grub Join,
 non−aligned
Random Drop,
 non−aligned
Grub Join, aligned
Random Drop, aligned

Figure 93: Effect of the # of input streams on the improvement provided by GrubJoin

215

6.6.2.3 Varying m, # of Input Streams

We study the effect of m (number of input streams) on the improvement provided by

GrubJoin, in Figure 93. The m values are listed on the x-axis, whereas the corresponding

output rates are shown in bars using the left y-axis. The improvement in the output rate (in

terms of percentage) is shown using the right y-axis. Results are shown for both aligned and

non-aligned scenarios. The input rates are set to 100 tuples/second for this experiment. We

observe that, compared to RandomDrop, GrubJoin provides an improvement in output rate

that is linearly increasing with the number of input streams. Moreover, this improvement

is more prominent for non-aligned scenarios and reaches up to 700% when we have a 5-

way join. This shows the importance of performing intelligent load shedding for multi-way,

windowed stream joins. Naturally, joins with more input streams are costlier to evaluate.

For such joins, effective load shedding techniques play an even more crucial role in keeping

the output rate high.

0.5 1 1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x 10
4

basic window size, b (sec)

ou
tp

ut
 ra

te
 (t

up
le

s/
se

c)

grub−join (non−aligned, time
corr. strengthened, κ = 25)3
grub−join (non−aligned, time
corr. default value, κ = 50)3
grub−join (non−aligned, time
corr. weakened, κ = 75)3

Figure 94: Effect of basic window size on output rate

6.6.2.4 Impact of Basic Window Size

As we have mentioned earlier, small basic windows are preferable when the time correlations

are strong, in which cases it is advantageous to precisely locate the profitable sections of

the join windows for processing. However, small basic windows increase the total number

of basic windows within a join window and thus make configuration of window harvesting

costly. In order to study this effect, in Figure 94 we plot the output rate of the join as a

216

function of the basic window size for different levels of time correlations among the streams

for a 3-way join. We can see from the figure that decreasing the basic window size improves

the output rate only to a certain extent and further decreasing the basic window size hurts

the performance. The interesting observation here is that, the basic window value for

which the best output rate is achieved varies based on the strength of the time correlations,

and this optimal value increases with decreasing time correlations. This is intuitive, since

with decreasing time correlations there is not much gain from small basic windows and the

overhead starts to dominate. The good news is that the impact of basic window size on

the output rate of the join is diminishing when the time correlations are weakening (see the

line for κ3 = 75, which is flatter than others). As a result, it is still preferable to pick small

basic window sizes. However, since the cost of setting the harvest fractions is dependent

on the number of basic windows, rather than their size, it is advisable not to exceed 20

basic windows per join window based on our results in Section 6.6.1. The default value of

2 seconds we have used for most of the experiments in this section is a conservative setting

resulting in 10 basic windows.

1 2 3 4 5 6 7 8

1

2

3

4

5

6
x 104

Δ, adaptation interval (seconds)

ou
tp

ut
 ra

te
 (t

up
le

s/
se

c)

m = 3
m = 4
m = 5

Figure 95: Effect of adaptation period on output rate

6.6.2.5 Overhead of Adaptation

In order to adapt to the changes in the input stream rates, the GrubJoin algorithm re-

adjusts the window rankings and harvest fractions every Δ seconds. We now experiment

with a scenario where input stream rates change as a function of time. We study the effect

217

of using different Δ values on the output rate of the join. Recall that the default value for

Δ was 5 seconds. In this scenario the stream rates start from 100 tuples/second, change to

150tuples/second after 8 seconds, and change to 50tuples/second after another 8 seconds.

The graphs in Figure 95 plot the output rate of GrubJoin as a function of Δ, for different m

values. Remember that larger values of m increases the running time of the heuristic used

for setting the harvest fractions, thus is expected to have a profound effect on how frequent

we can perform the adaptation. The Δ range used in this experiment is [0.5, 8].

We observe from Figure 95 that the best output rate is achieved with the smallest Δ

value 0.5 for m = 3. This is because for m = 3, adaptation step is very cheap in terms

of computational cost. We see that the best output rate is achieved for Δ = 1 for m = 4

and for Δ = 3 for m = 5. The O(n · m4) complexity of the adaptation step is a major

factor for this change in the ideal setting of the adaptation period for larger m. In general,

a default value of Δ = 5 seems to be too conservative for stream rates that show frequent

fluctuations. In order to get better performance, the adaptation period can be shortened.

The exact value of Δ to use depends on the number of input streams, m.

Table 10: Impact of the join condition cost on the performance
cost multiplier 1 2 4 6 8 10
improvement 6% 10% 15% 22% 27% 35%

6.6.2.6 Cost of Join Conditions

One of the motivating scenarios for CPU load shedding is the costly join conditions. We

expect that the need for load shedding will become more salient with the increasing cost of

the join conditions and thus GrubJoin will result in more profound improvement over tuple

dropping schemes. To study the effect of join condition cost on the relative performance of

GrubJoin over RandomDrop, we took the highest input stream rate at which the GrubJoin

and RandomDrop perform around the same for the non-aligned scenario depicted in Fig-

ure 91 and used this rate (which is 75 tuples/sec) with different join condition costs to find

out the relative improvement in output rate. We achieve different join condition costs by

using a cost multiplier. A value of x for the cost multiplier means that the join condition is

218

evaluated x times for each comparison made during join processing to emulate the costlier

join condition. The results are presented in Table 10.

As expected, the relative improvement provided by GrubJoin increases with increasing

cost multiplier. An increase of 35% is observed for a cost multiplier of 10. It is interesting

to note that the increase in stream rates, as it can be observed from Figure 91, has a more

pronounced impact compared to the cost of the join condition. This can be attributed to the

fact that increasing stream rates not only increases the number of tuples to be processed per

time unit, but it also increases the number of tuples stored within time based join windows,

further increasing the cost of join processing and the strain on the CPU resources.

50
100

150
200

0.511.52
0

5

10

15

20

dr
op

 ra
te

 (t
up

le
s/

se
c)

buffer size (sec)
input rate

(tuples/sec)

Figure 96: Tuple dropping behavior of operator throttling

6.6.2.7 Tuple Dropping Behavior

In Section 6.3.2, we have mentioned that the operator throttling framework can lead to

dropping tuples during times of transition, when the throttle fraction is not yet set to its

ideal value. This is especially true when the input buffers are small. In the experiments

reported in this section we have used very small buffers with size 10 tuples. However, as

stated before, the tuple drops can be avoided by increasing the buffer size, at the cost of

introducing delay.

The graph in Figure 96 plots the average tuple drop rates of input buffers as a function

of buffer size and input stream rates. The throttle fraction z is set to 1, 20 seconds before

219

the average drop rates are measured. The adaptation interval is set to its default value, i.e.,

Δ = 5. As seen from the figure, 1 second buffers can cut the drop rate around 30% and 2

seconds buffers around 50% for input stream rates of around 200 tuples/second. However,

in the experiments reported in this chapter we chose not to use such large buffers, as they

will introduce delays in the output tuples.

6.7 Discussions

Memory Load Shedding: This chapter focuses on CPU load shedding for multi-way, win-

dowed stream joins. However, memory is also an important resource that may become a

limiting factor when the join windows can not hold all the unexpired tuples due to limited

memory capacity. The only way to handle limited memory scenarios is to develop tuple

admission policies for join windows. Tuple admission policies decide which tuples should

be inserted into join windows and which tuples should be removed from the join windows

when there is no more space left to accommodate a newly admitted tuple. A straightfor-

ward memory conserving tuple admission policy for GrubJoin is to allow every tuple into

join windows and to remove tuples from the logical basic windows that are not selected for

processing such that there are no selected logical basic windows with larger indicies within

the same join windows. More formally, the tuples within the logical basic windows listed in

the following list can be dropped:

{
Bi,j : ¬∃u, v, k s.t.

(
ru,v = i ∧ k ∈ [1..zu,v · ni] ∧ sk

u,v ≥ j
)}

Indexed Join Processing: We have so far assumed that the join is performed in a NLJ

fashion. However, special types of joins can be accelerated by appropriate index structures.

For instance, ε-joins can be accelerated through sorted trees and equi-joins can be accel-

erated through hash tables. As long as the cost of finding matching tuples within a join

window is proportional (not necessarily linearly) to the fraction of the window used, our

solution can be extended to work with indexed joins by pluging in the appropriate cost

model. Note that these indexes are to be built on top of basic windows. Since tuple inser-

tion and deletion costs are significant for indexed joins, it is more advantageous to maintain

indexes on individual basic windows, which are much smaller in size compared with the

220

entire join window. However, there is one case where the benefit of load shedding may be

less compelling: equi-join. In an equi-join, the time taken to find matching tuples within

a join window is constant with hashtables and is independent of the window size. Most of

the execution time is spent on generating output tuples. As a result, the design space for

intelligent CPU load shedding techniques is not as large.

6.8 Related Work

The related work in the literature on load shedding in stream join operators can be classified

along four major dimensions. The first dimension is the metric to be optimized when

shedding load. Our work aims at maximizing the output rate of the join, also known as the

MAX-subset metric [38]. Although output rate has been the predominantly used metric for

join load shedding optimization [8, 38, 115, 136], other metrics have also been introduced

in the literature, such as the Archive-metric proposed in [38], and the sampled output rate

metric introduced in [115].

The second dimension is the constrained resource that necessitates load shedding. CPU

and memory are the two major limiting resources in join processing. Thus, in the context

of stream joins, works on memory load shedding [115, 38, 136] and CPU load shedding [8]

have received significant interest. In the case of user-defined join windows, the memory

is expected to be less of an issue. Our experience shows that for multi-way joins, CPU

becomes a limiting factor before the memory does. As a result, our work focuses on CPU

load shedding. However, as discussed in Section 6.7, our framework can also be used to

save memory.

The third dimension is the stream characteristic that is exploited for optimizing the

load shedding process. Stream rates, window sizes, and selectivities among the streams

are the commonly used characteristics that are used for load shedding optimization [8, 68].

However, these works do not incorporate tuple semantics into the decision process. In

semantic load shedding, the load shedding decisions are influenced by the values of the

tuples. In frequency-based semantic load shedding, tuples whose values frequently appear

in the join windows are considered as more important [38, 136]. However, this approach only

221

works for equi-joins. In time correlation-based semantic load shedding, also called age-based

load shedding [115], a tuple’s profitability in terms of producing join output depends on the

difference between its timestamp and the timestamp of the tuple it is matched against [115].

Our work takes this latter approach.

The fourth dimension is the fundamental technique that is employed for shedding

load. In the limited memory scenarios the problem is a caching one [8] and thus tu-

ple admission/replacement is the most commonly used technique for shedding memory

load [115, 38, 136]. On the other hand, CPU load shedding can be achieved by dropping

tuples from the input streams (i.e., stream throttling) [8]. As we show in this chapter, our

window harvesting technique is superior to tuple dropping and prefers to perform the join

partially, as dictated by our operator throttling framework.

To the best of our knowledge, this is the first work to address the adaptive CPU load

shedding problem for multi-way stream joins. The most relevant work in the literature is

the tuple-dropping-based optimization framework of [8], which supports multiple streams

but is not adaptive. The age-based load shedding framework of [115] is also relevant, as our

work and [115] share the time correlation assumption. However, the memory load shedding

techniques used in [115] are not applicable to the CPU load shedding problem, and moreover

they are designed for two-way joins. Finally, [28] deals with the CPU load shedding problem

in the context of stream joins, however the focus is on the special case in which one of the

relations resides on the disk and the other one is streamed in.

222

CHAPTER VII

CONCLUSION AND FUTURE WORK

With the ever increasing rate of digital information available from on-line sources, fostered

by the proliferation of ubiquitous computing devices and pervasive networks, information

monitoring has become an important application for end users, enabling them to access

relevant changes in their interested information sources in a timely manner. Continuous

query services are traditionally used to support information monitoring applications. How-

ever, due to the large and growing number of users, queries, and information sources, as

well as the high rate of updates in the dynamic information sources, scalability becomes a

key challenge in building CQ services to support information monitoring applications. Fur-

thermore, the unique challenges posed and opportunities provided by ubiquitous computing

platforms call for new techniques for scaling CQ services, different than the ones used in

traditional client/server-based systems with centralized control.

In this thesis we have developed system-level architectures and techniques to support

continuous query services for future computing platforms and applications, focusing on in-

formation monitoring applications in mobile, peer-to-peer, and sensor network computing

domains. More specifically, we have focused on P2P web monitoring in Internet systems,

location monitoring in mobile systems, and environmental monitoring in sensor networks

and systems. In general, we have showed that ubiquitous computing platforms and perva-

sive networks, that exhibit highly decentralized and distributed control, involve resource-

constrained devices and low-bandwidth networks with high error rates, require new tech-

niques and solutions for addressing scalability problems in building CQ services. However,

a common design philosophy employed in this thesis successfully applies to scaling CQ ser-

vices in future computing platforms and applications. Concretely, moving parts of the query

processing load involved in providing CQ services, close to the information sources where

the data is produced, often results in putting less stress on network resources and results

223

in less reliance on powerful centralized computing resources, which together enable scaling

to large number of users, queries, and information sources, as well as to high update rates,

and more frequent query evaluation with little delay in results.

Concretely, this thesis includes the following five major developments, targeted toward

scaling P2P, mobile, and sensor-based CQ services in future computing platforms.

P2P Information Monitoring in Internet Systems using CQs

We have developed PeerCQ, a fully decentralized peer-to-peer architecture for Internet-scale

distributed information monitoring applications. The main contribution of the PeerCQ sys-

tem is the smart service partitioning scheme it employs at the P2P protocol layer, with the

objective of achieving good load balance and good system utilization. This scheme has

three unique properties: First, it introduces a donation based peer-awareness mechanism

for handling the peer heterogeneity. Second, it introduces CQ-awareness mechanism for op-

timizing hot spot CQs. Third, it integrates CQ-awareness and peer-awareness through two

phase matching algorithms into the load balancing scheme, while maintaining decentraliza-

tion and self-configurability. In addition, we have developed a dynamic passive replication

scheme to provide increased CQ durability and uninterrupted CQ processing in PeerCQ.

We have reported a set of simulation-based experiments, demonstrating the effectiveness of

the PeerCQ approach in supporting decentralized information monitoring on the Internet.

Distributed Location Monitoring in Mobile Systems using CQs

We have developed a distributed and scalable solution to processing moving location queries

on mobile objects and described the design of MobiEyes, a distributed real-time location

monitoring system in a mobile environment. The MobiEyes system makes three main

contributions. First, it introduces the concept of moving queries on mobile objects to dis-

tinguish moving queries on mobile objects from a well-studied class of static spatial queries

on mobile objects. Second, it involves the design of a distributed algorithm for real-time

evaluation of continuously moving queries on mobile objects, which utilizes the computa-

tional power at mobile objects, leading to significant savings in terms of server load and

messaging cost, when compared to solutions relying on central processing of location in-

formation at the server. Third, it employs several optimization techniques like lazy query

224

propagation, query grouping and safe periods, to reduce the local processing load on the

mobile object side and decrease the messaging cost of the system. We have demonstrated

the effectiveness of MobiEyes approach through a set of simulation based experiments.

Centralized Location Monitoring in Mobile Systems using CQs

We have developed MAI, a server-side motion-adaptive indexing scheme for efficient pro-

cessing of moving queries over moving objects. Our approach has three unique features.

First, it uses the concept of motion-sensitive bounding boxes (MSBs) to model the dynamic

motion behavior of both moving objects and moving queries, and promotes indexing less

frequently changing MSBs together with the motion functions of the objects, instead of

indexing frequently changing object positions. This significantly decreases the number of

update operations performed on the indexes. Second, it proposes to use motion adaptive

indexing in the sense that the sizes of the MSBs can be dynamically adapted to the moving

object behavior at the granularity of individual objects. Finally, it advocates the use of

predictive query results to reduce the number of search operations to be performed on the

spatial indexes. We have reported a series of experimental performance results to demon-

strate the effectiveness of our motion adaptive indexing scheme, through comparisons with

other alternative indexing mechanisms.

Energy-efficient Data Collection for Sensor CQ Systems

We have developed selective sampling for energy-efficient periodic data collection in sensor

networks. In particular, we have showed that selective sampling can be effectively used to

increase the network lifetime, while still keeping the quality of the collected data high. We

have described three main mechanisms, that together form the crux of our selective sam-

pling approach. First, sensing-driven cluster construction is used to create clusters within

the network such that nodes with close sensor readings are assigned to the same clusters.

Second, correlation-based sampler selection and model derivation is used to determine the

sampler nodes and to calculate the parameters of MVN models that capture the spatial

and temporal correlations among sensor readings within subclusters. Last, selective data

collection and model-based prediction is used to minimize the number of messages used to

collect data from the network, where values of non-sampler nodes are predicted at the base

225

node using the MVN models. We have demonstrated the effectiveness of selective sampling

under different system settings through results derived from analytical and simulation based

experimental studies.

Resource-aware Join Evaluation for Sensor CQ Systems

We have developed GrubJoin, an adaptive, multi-way, windowed stream join which performs

time correlation-aware CPU load shedding. We have introduced the concept of window

harvesting as an in-operator load shedding technique for GrubJoin. Window harvesting

keeps stream tuples within the join windows until they expire and shed excessive CPU

load by processing only the most profitable segments of the join windows while ignoring

the less valuable ones. Window harvesting learns and exploits time correlations among

the streams to maximize the output rate of the join. We have developed several heuristic

and approximation-based techniques to make window harvesting effective in practice for

GrubJoin, which has built-in load shedding capability based on window harvesting that is

integrated with an operator throttling framework. We have conducted several experimental

studies to show that GrubJoin is vastly superior to tuple dropping when time correlations

exist among the input streams, and is equally effective in the absence of such correlations.

7.1 Open Issues and Future Research Directions

While this thesis presented a set of techniques and system level-architectures to scale CQ

services with the aim of supporting information monitoring applications, it has also draw

attention to a number of open issues and left room for future work toward addressing these.

In this section, we start with discussing open issues in the context of this thesis and then

present an outlook of future directions.

7.1.1 Open Issues in the Context of this Thesis

We first discuss open issues for each of the three application domains and platforms con-

sidered in this thesis, and then turn our attention to hybrid platforms and applications.

Web Monitoring in P2P Systems: The PeerCQ system we have developed for web

monitoring provides effective CQ partitioning in a DHT-based P2P network, with good

226

load balance, system utilization, and reliability properties. However, nodes can still get

overloaded in PeerCQ, especially when the resource availability of the system as a whole is

not sufficient to handle the CQ workload under PeerCQ’s service partitioning scheme. As a

result, development of a QoS-aware admission control mechanism for CQs is an important

extension to PeerCQ and is an open research problem.

Security in PeerCQ constitutes another interesting research dimension. The PeerCQ

system needs authentication and access control mechanisms for CQ management, as well as

mechanisms to protect the system from distributed denial of service attacks (e.g. malicious

users injecting large number of bogus CQs into the system). Yet another issue is the

anonymity of the users that submit CQs into the system. To our knowledge these problems

have not been addressed in the context of P2P CQ systems and are still open.

Location Monitoring in Mobile Systems: The MobiEyes and MAI systems we have

developed for location monitoring in mobile systems are very effective in terms of evaluating

mobile CQs quickly by incurring low disk IO and CPU processing as well as low wireless

communication. Continuous range and kNN queries with potentially moving query re-

gions/points have been our primary focus in this work. However, our work will significantly

benefit from extensions aimed at covering a larger and richer set of continuous queries, such

as continuous reverse kNN queries [18] and mobile CQs in the context of road-network-

based mobile object tracking [34]. Even though exclusive techniques exist in the literature

for supporting these extensions, in order to avoid the excessive cost of maintaining separate

data structures for answering different types of queries, it is important to devise a unified

framework that has the ability to efficiently evaluate a large set of different query types.

Environmental Monitoring in Sensor Networks: The selective sampling-based data

collection scheme we have developed for sensor CQ systems provides energy-aware extrac-

tion of data streams from the sensor network and is complemented by the resource-aware

query evaluation techniques we have developed for server-side processing of data streams.

However, there are a number of extensions that can significantly improve the applicabil-

ity of our work. These include devising sleeping schedules to save energy by reducing the

227

amount of time the radio is kept at listen mode, providing mathematical guarantees to sup-

port bounded error in data collection, and probabilistic query processing techniques at the

server-side to handle imprecision in sensor readings. Another research direction is providing

reliability and error handling features for our selective data collection framework.

Hybrid Platforms: This thesis research is focused around providing techniques for scaling

CQ services in three different computing platforms (P2P, mobile, and sensor networks), but

there are emerging platforms that share some characteristics with all of the three base

platforms considered in this thesis. A recent example is inter-vehicle networks. A modern

vehicle can be connected to a traditional mobile network (such as a cell phone network), yet

can have additional local communication capabilities to form P2P networks with other close

by vehicles. There has been several recent research initiatives targeted toward utilizing these

P2P networks for various applications, such as information exchange [138] and coordinated

evacuation [54]. From a different perspective, a vehicle can also be seen as a media-rich

sensor node, even though a vehicle is not power-constrained like the tiny sensor devices found

in sensor networks. Vehicles can encompass a variety of different sensor devices, such as

cameras, GPS, and diagnostic sensors. Data management and CQ services for inter-vehicle

networks are recently being investigated by researchers [11]. We believe that information

monitoring applications and CQ systems designed for inter-vehicular networks can benefit

from solutions borrowing some of the techniques and ideas that we have developed for the

three base application domains and platforms considered in this thesis.

7.1.2 An Outlook of Future Research Directions

The main motivation of this thesis is the existence of large number of on-line data sources

with high update rates, that makes pull-based manual monitoring of such sources difficult

and necessitates the development of information monitoring applications that can provide

easy to use push-based services, and thus the development of CQ systems that are required

to build such information monitoring applications. These information sources are increas-

ingly taking the form of data streams. Examples of data streams include stock tickers

in financial services, link statistics in networking and telecommunications, sensor network

228

readings in environmental monitoring and emergency response, and satellite and live exper-

imental data in scientific computing.

The increasing number of stream-based information sources entails developing event-

based data stream processing middleware that can support a variety of data management

applications, not limited to information monitoring. Even though these systems are ex-

pected to be more generic than CQ systems, most of the techniques developed in this thesis

are applicable in the context of data stream management systems. Here, we list a number

of research directions related with distributed data stream management systems.

Large-scale Stream Processing

Large-scale distributed data stream processing involves executing large number of data pro-

cessing tasks, each composed of a number of interconnected stream processing elements,

on a large and distributed set of processing nodes. Large-scale distributed stream process-

ing poses many research challenges. These include providing self-optimizing behavior with

respect to workload dynamics, resource availability, load balance, and network dynamics,

as well as providing self-healing properties with respect to node failure and network par-

titioning. Large number of data processing tasks and stream sources they use, the highly

dynamic rates of data streams and thus the changing runtime load incurred by data process-

ing tasks, and the distributed and decentralized nature of the processing nodes, create many

challenges in developing scalable and adaptive task partitioning, placement, and scheduling

schemes in distributed data stream management systems.

Distributed Stream Delivery

In distributed data stream management systems, a data stream sourced at one node is usu-

ally of interest to a number of other nodes that are the consumers of the stream. Supply of

data streams to all interested nodes constitutes an interesting research problem, that we call

the distributed stream delivery problem. A consumer node interested in receiving a stream

may define a filter on the source stream so that only the desired portion of the stream is re-

ceived and the bandwidth consumption is minimized. However, building an optimal stream

delivery configuration may not always be possible, mainly due to the insufficient network

bandwidth resources, which is usually a consequence of high stream rates, large number of

229

consumers, or low level of overlap in filter specifications. This tells us that quality of service

(QoS) is a critical factor in designing effective stream delivery paths. Developing scalable

and effective stream delivery paths and adapting such delivery paths in the presence of

workload and network dynamics is a challenging problem.

Persistence Support in Stream Processing

Although the main focus of data stream management systems is on-line processing of stream-

ing data, it is often required to analyze or even combine the streaming data together with

the archived data, while at the same time archiving the streaming data for later use. Since

it is often much slower to access archived data, several challenges exist in archiving stream-

ing data and integrating the archived data with the on-line processing of streaming data.

These include developing summary and index structures for quick processing, update, and

access of archived data, as well as utility-based expiration schemes to manage storage space

in the presence of unbounded streams.

230

APPENDIX A

EFFECTIVE DONATION (ED) CALCULATION IN

PEERCQ

Here we describe the calculation of effective donation (ED) of a peer. ED is an integer

variable in the range [1, c]. ED = 1 means the effective donation of the peer is minimum

and ED = c means it is maximum. ED represents the perceived donation of the peer by

the PeerCQ system. There are some constants and variables that are used to calculate ED.

We describe them first, and then give the algorithm for ED calculation:

R (resources) is a constant vector, denoted as [r1, ..., r4], representing the resource types.

Its value is [“cpu”, “hard disk”, “memory”, “network bandwidth”]. ri, 1 ≤ i ≤ 4, is the

ith resource type. AR (actual resources) is a vector variable, denoted as [ar1, ..., ar4],

representing the amount of actual resources the peer machine possesses. ari, 1 ≤ i ≤ 4,

is the amount of type ri resource possessed by the peer machine. Each element ari is an

integer, where ar1 is the speed of the CPU, ar2 is the capacity of the hard disk, ar3 is the

amount of main memory, and ar4 is the amount of network bandwidth.

RP (resource power) is a vector variable, denoted as [rp1, ..., rp4], representing the

amount of power the peer machine possesses for each resource. rpi is the power of type ri

resource possessed by the peer machine. Each element rpi, 1 ≤ i ≤ 4, of this vector is an

integer in the range [1,5]. rpi = 1 means that the peer is very poor in terms of resource

type ri and rpi = 5 means it is very powerful in terms of resource type ri. RP is calculated

from AR with the use of mapping functions.

MF (mapping functions) is a vector of functions, denoted as [mf1, ..., mf4], where for

1 ≤ i ≤ 4, mfi(ari) = rpi, meaning mfi takes as a parameter amount of actual resources of

type ri and returns the power of that type of resource.

231

PD (peer donation) is a vector variable, denoted as [pd1, ..., pd4], representing the do-

nation of the peer. pdi, 1 ≤ i ≤ 4, is the percentage of type ri resource the peer wants to

donate to the system. Each element pdi of this vector is a real number in the range (0,1].

PD can be defined by the administrator of the peer and also have a preset default value.

A peer may dynamically change the amount of PD according to the load changes on its

machine. One way to implement such load adaptation is to combine workload monitoring

and multi-level workload driven PD policy such that the PD value of a peer will be revised

accordingly as the workload change on the peer machine exceeds certain thresholds.

DP (donated power) is a vector variable, denoted as [dp1, ..., dp4], representing the

amount of power the peer donates. dpi, 1 ≤ i ≤ 4, is the donated power of type ri

resource. Each element dpi of this vector is a real number in the range (0,5] and has similar

interpretation to elements of RP (resource power).

RI (resource importance) is a constant vector [ri1, ..., ri4], representing the importance

of each resource regarding CQ system. The elements rii, 1 ≤ i ≤ 4, of this vector are

positive real numbers and sum up to 1.

rel (reliability) is a variable that denotes the reliability of the peer. It can be calculated

at the initialization time by the equation: rel = MIN(1, average uptime per session /

expected uptime), where average uptime per session is the average time the peer partici-

pates each time it joins to the system. It can be updated on each exit or incrementally while

running. rel is set to 1 if it is the first time for this peer to join the system. expected uptime

is a time considered as ‘reasonable’ to participate in PeerCQ system.

Then the ED (effective donation) is calculated as described in Figure 97, given a peer

p, its PD (peer donation), AR (actual resources), and rel (reliability).

CalculateED(p, PD, AR, rel)
(1) ED ← 0
(2) {i stands for the four types of resources}
(3) for i = 1 to 4
(4) RP [i]← MF [i](AR[i])
(5) DP [i]← PD[i] ∗RP [i]
(6) ED ← ED + RI[i] ∗DP [i]
(7) ED ← �rel ∗ (c/5) ∗ ED�
(8) return ED

Figure 97: Effective donation calculation

232

APPENDIX B

ANALYTICAL MODEL FOR MESSAGING COST

ESTIMATION IN MOBIEYES

Here we give an analytical estimate of the messaging cost of MobiEyes, which can also

be used to set the optimal value of the cell size parameter α of the grid G corresponding

to the universe of discourse (recall Figure 32 and Figure 33 that the effect of α on server

load is analogous). The cost estimation is based on the EQP approach and its extension

to LQP is straightforward. Let mcost(T) be the average number of messages exchanged

(messaging cost) during a given time period of T seconds per one object. Let avgspd be the

average moving speed of an object and let avgr be the average query radius. The messaging

cost can be divided into two components, namely the cost due to an object changing its

current grid cell (denoted as cell change cost) and the cost due to a focal object changing

its velocity vector (denoted as vel change cost). Let nmq, nmo, ts be defined as shown in

Table 2. Then we can estimate mcost(T) as follows:

mcost(T) =
T
α

avgspd

∗ cell change cost +
T

ts
∗ nmo

no
∗ nmq

no
∗ vel change cost

The expression preceding cell change cost is a crude estimate of the number of times a given

object changes its current grid cell during the time interval T . The expression preceding

vel change cost is the probability that a given object is a focal object of some query times

the number of times a given object changes its velocity vector during the interval T .

The vel change cost is composed of a message being sent from a focal object to the

server plus the number of broadcasts performed to convey this velocity change to a set

of objects that reside in the monitoring region of the given focal object, which can be

estimated as: vel change cost = 1 + (1 + mrslen
alen)2. Here mrslen = α ∗ (1 + 2 ∗ �avgr/α�)

is the average length of the side of a monitoring region. (1 + mrslen
alen)2 is an estimate of the

number of broadcast areas required to cover a monitoring region, where alen is the average

base station coverage area side length (listed in Table 2).

233

The cell change cost is composed of a message being sent from the object to the server

plus the cost of sending new queries of interest to the object (new queries cost) plus the

cost of relaying the monitoring region change to a set of other objects (region update cost)

in case the object of interest is a focal object of some query. This can be estimated as:

cell change cost = 1 + new queries cost +
nmq

no
∗ region update cost

new queries cost = nmq ∗ α ∗mrslen

area

region update cost =
(
1 +

mrslen

alen

)
∗
(
1 +

α + mrslen

alen

)

Let A and A′ denote any two adjacent cells, assuming an object moves from cell A to cell

A′. In the new queries cost formula, α ∗mrslen is the size of the region that covers the

possible current grid cells of focal objects whose monitoring regions contain the new cell

A′ but not the old cell A. Multiplying this value with nmq/area gives an estimate on the

number of queries whose monitoring regions intersect the new cell, but not the old cell.

0 2 4 6 8 10 12 14
50

100

150

200

250

300

350

400

450

alpha

nu
m

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

MobiEyes simulation
MobiEyes analitic

Figure 98: Comparison of analytical messaging cost with simulation results

The region update cost formula estimates the number of broadcast areas required to

cover the region which is the union of old and new monitoring regions of a query. mrslen

gives the length of one side of this region, where α + mrslen gives the other.

Figure 98 compares the analytical estimate on the number of messages with the results

obtained from the simulation for different values of α. The y-axis represents the number

of messages exchanged per time step, where x-axis represents different α values. It is

clear that the estimate is quite accurate for most of the values of α. When α is small,

the crude estimate of the number of times an object changes its current grid cell results

234

in overestimating the messaging cost. This problem alleviates as α increases. The small

underestimate when we have larger α values is due to the fact that our analytical estimate

does not include the cost of notifications sent from an object to the server when the object

is added into or removed from the result of a query.

235

APPENDIX C

ANALYTICAL MODEL FOR IO COST ESTIMATION IN

MAI

We develop an analytical model for estimating the IO cost of performing query evaluation,

i.e., the two scans performed at each query evaluation phase. The formulations in this

section are derived based on the average values for the speed and the period of constant

motion of a moving object. For the purpose of off-line αβTable creation, the associated

speed and period of constant motion values are taken from the table cells. Table 11 lists

some of the symbols used in this section and their meanings.

Table 11: Symbols and their meanings
Ps scan period Rmq average moving query radius
Pcm avg. period of constant motion Lsq average static query side length
No number of objects Va average moving object speed
Nmo number of moving objects A area of the region of interest
Nq number of queries α MSB parameter for objects
Nmq number of moving queries β MSB parameter for queries

Let Amo denote the average area of a moving object MSB and Amq denote the average

area of a moving query MSB. Denoting the average object speed as Va, based on the

definition of MSBs we have:

Amo = (α ∗ Va/
√

π)2, and

Amq = (β ∗ Va/
√

π + 2 ∗Rmq)2

The derivation of Amo follows from the fact that the side of a moving object MSB has

average size of α times the average speed of the object on the side’s direction. Averaging over

all possible angles for the velocity vector, we have Amo = (α∗Va)2∗ 1
2∗π
∫ 2∗π
0 | sinx|∗| cosx| dx

= (α ∗ Va/
√

π)2. The derivation for the moving query MSBs follow a similar formulation,

with the exception that the diameter of the query, denoted by 2 ∗ Rmq, is also included in

the equation.

236

Let Ao denote the average size of the object bounding boxes stored in the Indexmsb
o

(static object’s are assumed to have a box with zero area) and Aq denote the average size

of the query bounding boxes stored in the Indexmsb
q . Then, we have:

Ao = Amo ∗ Nmo

No
, and

Aq =
Nmq

Nq
∗Amq + (1− Nmq

Nq
) ∗ L2

sq

The derivation of Ao follows from the fact that Nmo/No fraction of the objects (that are

moving objects) have an average MSB size of Amo and the rest (stationary objects) have

an MSB size of 0. The derivation of Aq follows similarly. Stationary queries, that form

Nmq/Nq fraction of all queries, have an average MSB size of L2
sq, where Lsq is the average

side length of a static range query. On the other hand, moving queries, that form Nmq/Nq

fraction of all queries, have an average MSB size of Amq.

Given this information, the following four quantities can be analytically derived based

on well studied R-tree cost models [126]: node IO cost during the processing of (1) an

object table entry for updating the Indexmsb
o , Cu

o ; (2) an object table entry for searching

the Indexmsb
q , Cs

o ; (3) a query table entry for updating the Indexmsb
q , Cu

q ; (4) a query table

entry for searching the Indexmsb
o , Cs

q .

Let Nvc
o denote the expected value of the number of distinct objects causing velocity

change events during one scan period and Nvc
q denote the expected value of the number of

distinct queries causing velocity change events during one scan period. If Ps/Pcm < 1, only

some of the moving objects will cause velocity change events. Hence, we have:

Nvc
o = Nmo ∗min(1,

Ps

Pcm
), and

Nvc
q = Nmq ∗ Nvc

o

Nmo

The derivation of Nvc
q follows from the fact that a moving query causes a velocity change

event only if its focal object causes a velocity change event and that only Nvc
o /Nmo fraction

of the moving objects cause velocity change events.

Let N bi
o denote the expected value of the number of objects causing box invalidations

during one scan period and N bi
q denote the expected value of the number of queries causing

237

box invalidations during one scan period. If Ps/α < 1, only some of the moving objects will

cause box invalidations. Similarly, if Ps/β < 1, only some of the moving queries will cause

box invalidations. Then, we have:

N bi
o ≈ min(1,

Ps

α
) ∗Nmo, and

N bi
q ≈ min(1,

Ps

β
) ∗Nmq

Let Nmot denote the expected value of the number of entries in the object table that

caused velocity change or box invalidation events and Nmqt denote the expected value of

the number of entries in the query table that caused velocity change or box invalidation

events. Assuming that an object causes a velocity change event independent of whether

it has caused an MSB invalidation and similarly assuming that a query causes a velocity

change event independent of whether it has caused an MSB invalidation, we have:

Nmot = Nvc
o + N bi

o −N bi
o ∗

Nvc
o

Nmo
, and

Nmqt + Nvc
q + N bi

q −N bi
q ∗

N bi
q

Nmq

Finally, the total IO cost for the periodic scan, Cio, can then be calculated, considering

that for an entry of MOT that requires processing due to velocity change or MSB invali-

dation, an update on the Indexmsb
o and two searches on the Indexmsb

q are needed and for

an entry of MQT that requires processing due to velocity change or MSB invalidation, an

update on the Indexmsb
q and a search on the Indexmsb

o are needed:

Cio = Nmot ∗ (Cu
o + 2 ∗ Cs

o) + Nmqt ∗ (Cu
q + Cs

q) (5)

238

APPENDIX D

ANALYTICAL MODEL FOR MESSAGING COST

ESTIMATION IN SELECTIVE SAMPLING

We derive analytical formulas to capture the messaging cost of our selective sampling so-

lution. For the purpose of comparison, we introduce two variations of selective sampling.

We name the way it is described so far, the hybrid approach. The name hybrid comes from

the fact that the spatial and temporal correlations are captured and summarized locally

within the network, while the prediction is performed outside the network. In the central

approach both phases are performed at the base node. This means that, all forced samples

are forwarded to the base node, so that the correlations can be captured from the data. In

the local approach, prediction is performed on the cluster heads and predicted values are

reported to the base node. Although the local approach results in a large messaging cost

and is against the idea of selective sampling, it serves as a base case for comparison.

In the rest of this section, we calculate the total number of messages sent and received

(spent) within the network during a time interval of T seconds, denoted by Mh
t , M c

t , and

M l
t , respectively for hybrid, central, and local approaches. We denote the total number of

clusterings and sub-clusterings (schedule derivation step) performed during the time interval

of length T as Nnc and Nns. We have Nnc = �T/τc� and Nns = �T/τu�. Similarly, the total

number of forced samplings and virtual samplings are denoted by Nfs and Nvs. We have

Nfs = �T/τf� and Nvs = �T/τv�.
The total number of messages can be broken into three components, namely messages

spent during i) clustering, ii), sub-clustering, and iii) data collection. The messages spent

during clustering, denoted by Mtc, is same for all approaches and can be defined as Mtc =

Nnc ∗Mcs, where Mcs denotes the number of messages spent during one clustering step.

Since Nnc is expected to be much smaller than Nns, Nfs, and Nvs, we omit the derivation

239

of Mcs in the interest of space. Now we describe the derivation of the remaining two

components ii) and iii), for three different scenarios. We use the notations Ib
i and Ic

i to

denote the distance of node ni (in terms of hops) to the base node and its cluster head node

hi, respectively. Each message is assumed to have the size of a basic message, where a basic

message includes a node identifier and a sensor reading.

The derivation for the Hybrid Approach is as follows:

Mh
ts = Nns ∗

N∑
i=1

Ic
i + Nns ∗

∑
ni∈H

⎛
⎝Ib

i ∗
|Gi|∑
j=1

(
|Gi(j)| ∗ 3 + |Gi(j)|

4

)⎞⎠

Mh
tm = Nfs ∗

∑
ni∈H

∑
nj∈Ci

(Ic
j + Si[nj] ∗ Ib

i) + (Nvs −Nfs) ∗
∑

ni∈H

∑
nj∈Ci

(Si[nj] ∗ Ib
j)

Mh
t = Mtc + Mh

ts + Mh
tm (6)

Here Mh
ts denotes the sub-clustering component for the hybrid approach. It consists of two

sub-components, messages spent for notifying each node after schedules are derived, and

the messages spent for reporting the covariance matrix and mean vector to the base node

for each sub-cluster. Note that the covariance matrix is symmetric and thus not all the

entries are reported. Mh
tm denotes the data collection component for the hybrid approach.

In summary, it counts the messages from sampler nodes and non-sampler nodes. Messages

from non-sampler nodes are forwarded up to the cluster heads after every forced sampling

period. On the other hand, messages from sampler nodes are forwarded up to the base node

after every virtual sampling period. Finally, the total number of messages for the hybrid

approach, denoted by Mh
t , is calculated in Equation 6 as the sum of three components.

The derivation for the Central Approach is as follows:

M c
ts = Nns ∗

N∑
i=1

Ic
i

M c
tm = Nfs ∗

N∑
i=1

Ib
i + (Nvs −Nfs) ∗

∑
ni∈H

∑
nj∈Ci

(Si[nj] ∗ Ib
j)

M c
t = Mtc + M c

ts + M c
tm (7)

Here M c
ts denotes the sub-clustering component for the central approach. It consists of the

messages used for notifying each node after schedules are derived. As opposed to hybrid

240

scenario, it does not include the reporting of covariance matrices or mean vectors. M c
tm

denotes the data collection component for the central approach. Different from the hybrid

scenario, all forced samples are forwarded up to the base node. Finally, the total number of

messages for the central approach, denoted by M c
t , is calculated in Equation 7 as the sum

of three components.

The derivation for the Local Approach is as follows:

M l
ts = Nns ∗

N∑
i=1

Ic
i

M l
tm = Nfs ∗

∑
ni∈H

∑
nj∈Ci

(Ic
j + Si[nj] ∗ Ib

i)

+ (Nvs −Nfs) ∗
∑

ni∈H

∑
nj∈Ci

(Si[nj] ∗ Ib
j) + Nvs ∗

∑
ni∈H

∑
nj∈Ci

(Ib
i ∗ (1− Si[nj]))

M l
t = Mtc + M l

ts + M l
tm (8)

Here M l
ts denotes the sub-clustering component for the central approach and is identical

to the sub-clustering component of the central approach. M l
tm denotes the data collection

component for the local approach. It can be considered as the data collection component

of the hybrid approach, plus the number of messages spent for forwarding the predicted

samples from the cluster head nodes to the base node. Finally, the total number of messages

for the local approach, denoted by M l
t , is calculated in Equation 8 as the sum of three

components.

241

APPENDIX E

ANALYTIC MODEL FOR COST AND OUTPUT

ESTIMATION IN GRUBJOIN

We describe the analytical formulations of the functions C({zi,j}) and O({zi,j}). For the

formulation of C, we will assume that the processing cost of performing the NLJ join is

proportional to the number of tuple comparisons made per time unit. We do not include

the cost of tuple insertion and removal in the following derivations, although they can be

added with little effort.

The total cost C is equal to the sum of the costs of individual join directions, where the

cost of performing the ith direction is λi times the number of tuple comparisons made for

processing a single tuple from Si. We denote the latter with Ci. Thus, we have:

C =
m∑

i=1

(λi · Ci)

Ci is equal to the sum of the number of tuple comparisons made for processing each

window in the join order Ri. The number of tuple comparisons performed for the jth

window in the join order, that is Wri,j , is equal to the number of times Wri,j is iterated

over, denoted by Ni,j , times the number of tuples used from Wri,j . The latter is calculated

as zi,j · Si,j , where Si,j = λri,j · wri,j gives the number of tuples in Wri,j . We have:

Ci =
m−1∑
j=1

(zi,j · Si,j ·Ni,j)

Ni,j , which is the number of times Wri,j is iterated over for evaluating the ith direction

of the join, is equal to the number of partial join results we get by going through only the

first j − 1 windows in the join order Ri. We have Ni,1 = 1 as a base case. Ni,2, that is the

number of partial join results we get by going through Wri,1 , is equal to Pi,1 · σi,ri,1 · Si,1,

where σi,ri,1 denotes the selectivity between Wi and Wri,1 , and as before Si,1 is the number

of tuples in Wri,1 . Here, Pi,1 is a yield factor that accounts for the fact that we only use zi,j

242

fraction of Wri,j . If the pdfs capturing the time correlations among the streams are flat,

then we have Pi,j = zi,j . We describe how Pi,j is generalized to arbitrary time correlations

shortly. By noting that for j ≥ 2 we have Ni,j = Ni,j−1 · Pi,j−1 · σi,ri,j−1 · Si,j−1 as our

recursion rule, we generalize our formulation as follows:

Ni,j =
j−1∏
k=1

(
Pi,k · σi,ri,k

· Si,k

)

In the formulation of Pi,j , for brevity we will assume that zi,j is a multiple of 1/nri,j , i.e.,

an integral number of logical basic windows are selected from Wri,j for processing. Then

we have:

Pi,j =

zi,j ·nri,j∑
k=1

p
sk
i,j

i,j /

nri,j∑
k=1

pk
i,j

To calculate Pi,j , we use a scaled version of zi,j which is the sum of the scores of the

logical basic windows selected from Wri,j divided by the sum of the scores from all logical

basic windows in Wri,j . Note that pk
i,j ’s (logical basic window scores) are calculated from

the time correlation pdfs as described earlier in Section 6.4.2.1. If fi,j is flat, then we have

pk
i,j = 1/nri,j ,∀k ∈ [1..nri,j] and as a consequence Pi,j = zi,j . Otherwise, we have Pi,j > zi,j .

This means that we are able to obtain Pi,j fraction of the total number of matching tuples

from Wri,j by iterating over only zi,j < Pi,j fraction of Wri,j . This is a result of selecting the

logical basic windows that are more valuable for producing join output. This is accomplished

by utilizing the window rankings during the selection process. Recall that these rankings

(sv
i,j ’s) are calculated from logical basic window scores.

We easily formulate O using Ni,j ’s. Recalling that Ni,j is equal to the number of partial

join results we get by going through only the first j − 1 windows in the join order Ri, we

conclude that Ni,m is the number of output tuples we get by fully executing the ith join

direction. Since O is the total output rate of the join, we have:

O =
m∑

i=1

λi ·Ni,m

243

REFERENCES

[1] Agarwal, P. K., Arge, L., and Erickson, J., “Indexing moving points,” in ACM
Symposium on Principles of Database Systems (PODS), 2000.

[2] Aggarwal, C. C. and Agrawal, D., “On nearest neighbor indexing of nonlinear
trajectories,” in ACM Symposium on Principles of Database Systems (PODS), 2003.

[3] Akyildiz, I. and Wang, W., “A dynamic location management scheme for next
generation multi-tier pcs systems,” IEEE Transactions on Wireless Communications,
vol. 1, no. 1, pp. 178–190, 2002.

[4] Amis, A. D., Prakash, R., Huynh, D., and Vuong, T., “Max-Min D-cluster
formation in wireless ad hoc networks,” in IEEE Conference on Computer Commu-
nications, 2000.

[5] ans Ramesh Govindan, C. I. and Estrin, D., “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” in ACM International
Conference on Mobile Computing and Networking (MobiCom), 2000.

[6] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R.,
Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., and Widom, J.,
“STREAM: The stanford stream data manager,” IEEE Data Engineering Bulletin,
vol. 26, 2003.

[7] Arici, T., Gedik, B., Altunbasak, Y., and Liu, L., “PINCO: A pipelined in-
network compression scheme for data collection in wireless sensor networks,” in IEEE
International Conference on Computer Communications and Networks, 2003.

[8] Ayad, A. M. and Naughton, J. F., “Static optimization of conjunctive queries
with sliding windows over infinite streams,” in ACM International Conference on
Management of Data (SIGMOD), 2004.

[9] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J., “Models
and issues in data stream systems,” in ACM Symposium on Principles of Database
Systems (PODS), 2002.

[10] Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherni-

ack, M., Convey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N.,
Tibbetts, R., and Zdonik, S., “Retrospective on Aurora,” International Journal
on Very Large Data Bases (VLDB Journal), Special Issue on Data Stream Processing,
2004.

[11] Balakrishnan, H., Madden, S., Bychkovsky, V., Chen, K., Daher, W.,
Goraczko, M., Hu, H., Hull, B., Miu, A., and Shih, E., “Cartel: A mobile sen-
sor computing system.” http://cartel.csail.mit.edu/abstracts/cartel oview.html, (Ac-
cessed May 12, 2006).

244

[12] Bandyopadhyay, S. and Coyle, E. J., “An energy efficient hierarchical clustering
algorithm for wireless sensor networks,” in IEEE Conference on Computer Commu-
nications, 2003.

[13] Bar-Noy, A., Kessler, I., and Sidi, M., “Mobile users: To update or not to
update?,” ACM Wireless Networks, vol. 1, no. 2, pp. 175–185, 1995.

[14] Basagni, S., “Distributed clustering for ad hoc networks,” in International Sympo-
sium on Parallel Architectures, Algorithms, and Networks (I-SPAN), 1999.

[15] Batalin, M., Rahimi, M., Yu, Y., Liu, S., Sukhatme, G., and Kaiser, W.,
“Call and response: Experiments in sampling the environment,” in ACM Conference
on Embedded Networks Sensor Systems (SenSys), 2004.

[16] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., “The R*-Tree:
An efficient and robust access method for points and rectangles,” in ACM Interna-
tional Conference on Management of Data (SIGMOD), 1990.

[17] Benetis, R., Jensen, C. S., Karciauskas, G., and Saltenis, S., “Nearest
neighbor and reverse nearest neighbor queries for moving objects,” in International
Database Engineering and Applications Symposium (IDEAS), 2002.

[18] Benetis, R., Jensen, C. S., Kareiauskas, G., and Saltenis, S., “Nearest and
reverse nearest neighbor queries for moving objects,” International Journal on Very
Large Data Bases (VLDB Journal), 2006. DOI 10.1007/s00778-005-0166-4.

[19] Bennett, F., Clarke, D., Evans, J., Hopper, A., Jones, A., and Leask, D.,
“Piconet: Embedded mobile networking,” IEEE Personal Communications, vol. 4,
no. 5, pp. 8–15, 1997.

[20] Bettstetter, C. and Krausser, R., “Scenario-based stability anlysis of the dis-
tributed mobility-adaptive clustering (DMAC) algorithm,” in ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2001.

[21] Bhattacharya, A. and Das, S. K., “Lezi-update: An information-theoretic ap-
proach to track mobile users in PCS networks,” in ACM International Conference on
Mobile Computing and Networking (MobiCom), 1999.

[22] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., and Jetcheva, J., “A
performance comparison of multi-hop wireless ad hoc network routing protocols,” in
ACM International Conference on Mobile Computing and Networking (MobiCom),
1998.

[23] Byckovskiy, V., Megerian, S., Estrin, D., and Potkonjak, M., “A collabora-
tive approach to in-place sensor calibration,” in IEEE International Symposium on
Information Processing in Sensor Networks (ISPN), 2003.

[24] Cai, Y., Hua, K., and Cao, G., “Processing range-monitoring queries on hetero-
geneous mobile objects,” in IEEE International Conference on Mobile Data Manage-
ment (MDM), 2004.

245

[25] Cai, Y. and Hua, K. A., “An adaptive query management technique for efficient real-
time monitoring of spatial regions in mobile database systems,” in IEEE International
Performance Computing and Communications Conference, 2002.

[26] Casella, G. and Berger, R. L., Statistical Inference. Duxbury Press, June 2001.

[27] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Heller-

stein, J. M., Hong, W., Krishnamurthy, S., Madden, S. R., Raman, V.,
Reiss, F., and Shah, M. A., “TelegraphCQ: Continuous dataflow processing for
an uncertain world,” in Biennial Conference on Innovative Data Systems Research
(CIDR), 2003.

[28] Chandrasekaran, S. and Franklin, M. J., “Remembrance of streams past:
Overload-sensitive management of archived streams,” in International Conference on
Very Large Data Bases (VLDB), 2004.

[29] Chatterjee, M., Das, S., and Turgut, D., “WCA: A weighted clustering algo-
rithm for mobile ad hoc networks,” Journal of Cluster Computing, vol. 5, April 2002.

[30] Chen, G. and Stojmenovic, I., “Clustering and routing in mobile wireless net-
works,” tech. rep., SITE, University of Ottawa, 1999.

[31] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y., “NiagaraCQ: A scalable
continuous query system for Internet databases,” in ACM International Conference
on Management of Data (SIGMOD), 2000.

[32] Chipara, O., Lu, C., and Roman, G.-C., “Efficient power management based on
application timing semantics for wireless sensor networks,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2005.

[33] Civilis, A., Jensen, C. S., Nenortaite, J., and Pakalnis, S., “Efficient tracking
of moving objects with precision guarantees,” in IEEE International Conference on
Mobile and Ubiquitous Systems: Networks and Services, (MobiQuitous), 2004.

[34] Civilis, A., Jensen, C. S., and Pakalnis, S., “Techniques for efficient road-
network-based tracking of moving objects,” IEEE Transactions on Knowledge and
Data Engineering (TKDE), vol. 17, no. 5, pp. 698–712, 2005.

[35] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W., “Freenet: A distributed
anonymous information storage and retrieval system,” in ICSI Workshop on Design
Issues in Anonymity and Unobservability, 2000.

[36] “Crossbow technology.” http://www.xbow.com, (Accessed November 24, 2004).

[37] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I., “Wide-
area cooperative storage with CFS,” in ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2001.

[38] Das, A., Gehrke, J., and Riedewald, M., “Approximate join processing over data
streams,” in ACM International Conference on Management of Data (SIGMOD),
2003.

246

[39] Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., and Hong, W.,
“Model-driven data acquisition in sensor networks,” in International Conference on
Very Large Data Bases (VLDB), 2004.

[40] Elson, J. and Estrin, D., “Time synchronization for wireless sensor networks,” in
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2001.

[41] Estrin, D., Culler, D., Pister, K., and Sukhatme, G., “Connecting the physical
world with pervasive networks,” IEEE Pervasive Computing, vol. 1, January 2002.

[42] Estrin, D., Govindan, R., Heidemann, J. S., and Kumar, S., “Next century
challenges: Scalable coordination in sensor networks,” in ACM International Confer-
ence on Mobile Computing and Networking (MobiCom), 1999.

[43] Fujimoto, R. M., Parallel and Distributed Simulation Systems. WileyInterscience,
2000.

[44] Gaede, V. and Gunther, O., “Multidimensional access methods,” ACM Computing
Surveys, vol. 30, no. 2, pp. 170–231, 1998.

[45] Gedik, B. and Liu, L., “PeerCQ: A decentralized and self-configuring peer-to-peer
information monitoring system,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2003.

[46] “Global precipitation climatology project.” http://www.ncdc.noaa.gov/oa/wmo/wdcamet-
ncdc.html, (Accessed November 24, 2004).

[47] Gnutella, “The gnutella home page.” http://gnutella.wego.com/, (Accessed Decem-
ber 24, 2002).

[48] Golab, L., Garg, S., and Ozsu, M. T., “On indexing sliding windows over on-
line data streams,” in International Conference on Extending Database Technology
(EDBT), 2004.

[49] Golab, L. and Ozsu, M. T., “Processing sliding window multi-joins in continuous
queries over data streams,” in International Conference on Very Large Data Bases
(VLDB), 2003.

[50] “Google alerts.” http://www.google.com/alerts, (Accessed February 14, 2006).

[51] “Google ridefinder.” http://labs.google.com/ridefinder, (Accessed February 14, 2006).

[52] Guestrin, C., Thibaux, R., Bodik, P., Paskin, M. A., and Madden, S.,
“Distributed regression: An efficient framework for modeling sensor network data,”
in IEEE International Symposium on Information Processing in Sensor Networks
(ISPN), 2004.

[53] Hammad, M. A. and Aref, W. G., “Stream window join: Tracking moving objects
in sensor-network databases,” in Scientific and Statistical Database Management, SS-
DBM, 2003.

[54] Hamza-Lup, G. L., Hua, K. A., Peng, R., and Ho, A. H., “A maximum flow ap-
proach to dynamic handling of multiple incidents in traffic evacuation management,”
in IEEE Conference on Intelligent Transportation Systems (ITSC), 2005.

247

[55] Han, J. and Kamber, M., Data Mining: Concepts and Techniques. Morgan Kauf-
mann, August 2000.

[56] Han, Q., Mehrotra, S., and Venkatasubramanian, N., “Energy efficient data
collection in distributed sensor environments,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), 2004.

[57] Has, Z. J., “Panel report on ad hoc networks,” Mobile Computing and Communica-
tions Review, vol. 2, no. 1, 1998.

[58] Helmer, S., Westmann, T., and Moerkotte, G., “Diag-Join: An opportunistic
join algorithm for 1:N relationships,” in International Conference on Very Large Data
Bases (VLDB), 1998.

[59] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.,
“System architecture directions for network sensors,” in International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2000.

[60] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.,
“System architecture directions for network sensors,” in International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2000.

[61] Huang, Q., Lu, C., and Roman, G. C., “Spatiotemporal multicast in sensor net-
works,” in ACM Conference on Embedded Networks Sensor Systems (SenSys), 2003.

[62] Ilarri, S., Mena, E., and Illarramendi, A., “A system based on mobile agents
for tracking objects in a location-dependent query processing environment,” in Inter-
national Workshop on Database and Expert Systems Applications (DEXA), 2001.

[63] Imielinski, T., Viswanathan, S., and Badrinath, B., “Energy efficient indexing
on air,” in ACM International Conference on Management of Data (SIGMOD), 1994.

[64] I.Stojmenovic, Seddigh, M., and Zunic, J., “Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 13, no. 1, 2002.

[65] Jensen, C. S., Lin, D., and Ooi, B. C., “Query and update efficient B+-tree based
indexing of moving objects,” in International Conference on Very Large Data Bases
(VLDB), 2004.

[66] J.Kucera and Lott, U., “Single chip 1.9 ghz transceiver frontend mmic including
Rx/Tx local oscillators and 300 mw power amplifier,” MTT Symposium Digest, vol. 4,
pp. 1405–1408, June 1999.

[67] Kalashnikov, D. V., Prabhakar, S., Hambrusch, S., and Aref, W., “Efficient
evaluation of continuous range queries on moving objects,” in International Workshop
on Database and Expert Systems Applications (DEXA), 2002.

[68] Kang, J., Naughton, J., and Viglas, S., “Evaluating window joins over un-
bounded streams,” in IEEE International Conference on Data Engineering (ICDE),
2003.

248

[69] Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., and Pani-

grahy, R., “Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web,” in ACM Symposium on Theory of
Computing (STOC), 1997.

[70] Karp, B. and Kung, H. T., “GPSR: greedy perimeter stateless routing for wireless
networks,” in ACM International Conference on Mobile Computing and Networking
(MobiCom), 2000.

[71] KaZaa, “The kazaa home page.” http://www.kazaa.com/, (Accessed January 04,
2006).

[72] Kollios, G., Gunopulos, D., and Tsotras, V. J., “On indexing mobile objects,”
in ACM Symposium on Principles of Database Systems (PODS), 1999.

[73] Kotidis, Y., “Snapshot queries: Towards data-centric sensor networks,” in IEEE
International Conference on Data Engineering (ICDE), 2005.

[74] Lazaridis, I., Porkaew, K., and Mehrotra, S., “Dynamic queries over mobile
objects,” in International Conference on Extending Database Technology (EDBT),
2002.

[75] Li, D., K.Wong, Hu, Y., and Sayeed, A., “Detection, classification, tracking of
targets in micro-sensor networks,” IEEE Signal Processing Magazine, March 2002.

[76] Lin, C. R. and Gerla, M., “Adaptive clustering for mobile wireless networks,”
IEEE Journal of Selected Areas in Communications, vol. 15, no. 7, 1997.

[77] Liu, J., Reich, J., Cheung, P., and Zhao, F., “Distributed group management for
track initiation and maintenance in target localization applications,” in Workshop on
Information Processing in Sensor Networks, 2003.

[78] Liu, L., Pu, C., and Tang, W., “Continual queries for internet scale event-
driven information delivery,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), pp. 610–628, July/August 1999.

[79] Liu, L., Pu, C., and Tang, W., “Continual queries for internet scale event-
driven information delivery,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 11, July/August 1999.

[80] Liu, L., Pu, C., and Tang, W., “Detecting and delivering information changes on the
web,” in ACM International Conference on Information and Knowledge Management
(CIKM), November 2000.

[81] Liu, L., Tang, W., Buttler, D., and Pu, C., “Information monitoring on the web:
A scalable solution,” Springer World Wide Web, 2002.

[82] Madden, S., Franklin, M., Hellerstein, J., and Hong, W., “Tag: a tiny ag-
gregation service for ad-hoc sensor networks,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[83] Madden, S., Szewczyk, R., Franklin, M., and Culler, D., “Supporting ag-
gregate queries over ad-hoc wireless sensor networks,” in IEEE Workshop on Mobile
Computing Systems and Applications, 2002.

249

[84] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J.,
“Wireless sensor networks for habitat monitoring,” in ACM International Workshop
on Wireless Sensor Networks and Applications, 2002.

[85] Mills, D. L., “Internet time synchronization: The network time protocol,” IEEE
Transactions on Communications, pp. 1482–1493, 1991.

[86] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J.,
Rollins, B. R. S., and Xu, Z., “Peer-to-peer computing,” Tech. Rep. HPL-2002-
57R1, Hewlett Packard Labs, 2002.

[87] Mokbel, M. F., Xiong, X., and Aref, W. G., “SINA: Scalable incremental pro-
cessing of continuous queries in spatio-temporal databases,” in ACM International
Conference on Management of Data (SIGMOD), 2004.

[88] “Moteiv. telos revb datasheet.” http://www.moteiv.com/pr/2004-12-09-telosb.php,
(Accessed December 30, 2004).

[89] Naor, Z. and Levy, H., “Minimizing the wireless cost of tracking mobile users:
An adaptive threshold scheme,” in IEEE Conference on Computer Communications,
1998.

[90] Paskin, M. A. and Guestrin, C. E., “A robust architecture for distributed inference
in sensor networks,” in IEEE International Symposium on Information Processing in
Sensor Networks (ISPN), 2005.

[91] Patel, J. M., Chen, Y., and Chakka, V. P., “STRIPES: An efficient index for
predicted trajectories,” in ACM International Conference on Management of Data
(SIGMOD), 2004.

[92] Pfoser, D., Jensen, C. S., and Theodoridis, Y., “Novel approaches in query
processing for moving object trajectories,” in International Conference on Very Large
Data Bases (VLDB), 2000.

[93] Plaxton, C. G., Rajaraman, R., and Richa, A. W., “Accessing nearby copies
of replicated objects in a distributed environment,” in ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 1997.

[94] Prabhakar, S., Xia, Y., Kalashnikov, D. V., Aref, W. G., and Hambrusch,

S. E., “Query indexing and velocity constrained indexing: Scalable techniques for
continuous queries on moving objects,” IEEE Transactions on Computers, vol. 51,
no. 10, pp. 1124–1140, 2002.

[95] Pradhan, S., Kusuma, J., and Ramchandran, K., “Distributed compression in a
dense sensor network,” IEEE Signal Processing Magazine, March 2002.

[96] Priyantha, N., Balakrishnan, H., Demaine, E., and Teller, S., “Anchor-free
distributed localization in sensor networks,” tech. rep., MIT Laboratory for Computer
Science, 2003.

[97] Pu, C. and Singaravelu, L., “Fine-grain adaptive compression in dynamically vari-
able networks,” in IEEE International Conference on Distributed Computing Systems
(ICDCS), 2005.

250

[98] QualComm, “Wireless access solutions using 1xEV-DO.”
http://www.qualcomm.com/technology/1xev-do/webpapers/wp wirelessaccess.pdf,
(Accessed March 08, 2005).

[99] Ramaswamy, L., Gedik, B., and Liu, L., “Connectivity based node clustering in
decentralized peer-to-peer networks,” in IEEE International Conference on Peer-to-
Peer Computing, 2003.

[100] Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., and Stoica, I., “Load
balancing in structured p2p systems,” in International Workshop on Peer-to-Peer
Systems, 2003.

[101] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., “A
scalable content-addressable network,” in ACM SIGCOMM Conference, 2001.

[102] Ricart, G. and Agrawala, A. K., “An optimal algorithm for mutual exclusion in
computer networks,” Communications of the ACM (CACM), pp. 9–17, 1981.

[103] Rowstron, A. and Druschel, P., “Pastry: Scalable, decentralized object location
and routing for largescale peer-to-peer systems,” in ACM International Conference
on Distributed Systems Platforms (Middleware), 2001.

[104] Rowstron, A., Kermarrec, A., Castro, M., and Druschel, P., “SCRIBE: The
design of a large-scale event notification infrastructure,” in International Workshop
on Networked Group Communication, 2001.

[105] Saltenis, S., Jensen, C. S., Leutenegger, S. T., and Lopez, M. A., “Indexing
the positions of continuously moving objects,” in ACM International Conference on
Management of Data (SIGMOD), 2000.

[106] Sankarasubramaniam, Y., Akan, O. B., and Akylidiz, I. F., “ESRT: Event-to-
sink reliable transport in wireless sensor networks,” in ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003.

[107] Saroiu, S., Gummadi, P. K., and Gribble, S. D., “A measurement study of peer-
to-peer file sharing systems,” Tech. Rep. UW-CSE-01-06-02, University of Washing-
ton, 2001.

[108] Satyanarayanan, M., “Fundamental challenges in mobile computing,” in ACM
Symposium on Principles of Distributed Computing (PODC), November 1996.

[109] Schneider, F. B., “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[110] Schurgers, C. and Srivastava, M. B., “Energy efficient routing in wireless sensor
networks,” in Military Communications Conference (MILCOM), 2001.

[111] Science, C. and Board, T., IT Roadmap to a Geospatial Future. The National
Academics Press, November 2003.

[112] Sistla, A. P., Wolfson, O., Chamberlain, S., and Dao, S., “Modeling and
querying moving objects,” in IEEE International Conference on Data Engineering
(ICDE), 1997.

251

[113] Song, Z. and Roussopoulos, N., “Hashing moving objects,” in IEEE International
Conference on Mobile Data Management (MDM), 2001.

[114] Song, Z. and Roussopoulos, N., “K-nearest neighbor search for moving query
point,” in International Symposium on Spatial and Temporal Databases (SSTD), 2001.

[115] Srivastava, U. and Widom, J., “Memory-limited execution of windowed stream
joins,” in International Conference on Very Large Data Bases (VLDB), 2004.

[116] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H.,
“Chord: A scalable peer-to-peer lookup service for internet applications,” in ACM
SIGCOMM Conference, 2001.

[117] “Streambase systems.” http://www.streambase.com/, (Accessed December 17, 2005).

[118] Tao, Y., Papadias, D., and Sun, J., “The TPR∗-Tree: An optimized spatio-
temporal access method for predictive queries,” in International Conference on Very
Large Data Bases (VLDB), 2003.

[119] Tao, Y. and Papadias, D., “Time-parameterized queries in spatio-temporal
databases,” in ACM International Conference on Management of Data (SIGMOD),
2002.

[120] Tao, Y., Papadias, D., and Shen, Q., “Continuous nearest neighbor search,” in
International Conference on Very Large Data Bases (VLDB), 2002.

[121] “Taos Inc. ambient light sensor (ALS).” http://www.taosinc.com/images/product/-
document/tsl2550-e58.pdf, (Accessed November 24, 2004).

[122] Tatbul, N. and Zdonik, S., “No false positives: Window-aware load shedding for
data streams,” Tech. Rep. CS-05-06, Brown University, 2005.

[123] Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker,

M., “Load shedding in a data stream manager,” in International Conference on Very
Large Data Bases (VLDB), 2003.

[124] Terry, D., Goldberg, D., Nichols, D., and Oki, B., “Continuous queries over
append-only databases,” in ACM International Conference on Management of Data
(SIGMOD), 1992.

[125] “The zooknic internet geography project.” http://www.zooknic.com, (Accessed
February 14, 2006).

[126] Theodoridis, Y., Stefanakis, E., and Sellis, T., “Efficient cost models for spa-
tial queries using R-trees,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 12, no. 1, pp. 19–32, 2000.

[127] “US Naval Observatory GPS Operations.” http://tycho.usno.navy.mil/gps.html, (Ac-
cessed April 22, 2003).

[128] Viglas, S. D., Naughton, J. F., and Burger, J., “Maximizing the output rate
of multi-way join queries over streaming information sources,” in International Con-
ference on Very Large Data Bases (VLDB), 2003.

252

[129] Wolfson, O., “The opportunities and challenges of location information manage-
ment,” in Intersections of Geospatial Information and Information Technology Work-
shop, 2001.

[130] Wolfson, O., “Moving objects information management: The database challenge,”
in Next Generation Information Technologies and Systems (NGITS), 2002.

[131] Wolfson, O., Sistla, P., Chamberlain, S., and Yesha, Y., “Updating and
querying databases that track mobile units,” Springer Distributed and Parallel
Databases, vol. 7, no. 3, pp. 257–387, 1999.

[132] Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L., “Moving objects
databases: Issues and solutions,” in Statistical and Scientific Database Management,
1998.

[133] Wu, K.-L., Chen, S.-K., and Yu, P. S., “Processing continual range queries over
moving objects using VCR-based query indexes,” in IEEE International Conference
on Mobile and Ubiquitous Systems: Networks and Services, (MobiQuitous), 2004.

[134] Wu, K.-L., Chen, S.-K., and Yu, P. S., “On incremental processing of continual
range queries for location-aware services and applications,” in IEEE International
Conference on Mobile and Ubiquitous Systems: Networks and Services, (MobiQui-
tous), 2005.

[135] Xiao, L., Boyd, S., and Lall, S., “A scheme for robust distributed sensor fu-
sion based on average consensus,” in IEEE International Symposium on Information
Processing in Sensor Networks (ISPN), 2005.

[136] Xie, J., Yang, J., and Chen, Y., “On joining and caching stochastic streams,” in
ACM International Conference on Management of Data (SIGMOD), 2005.

[137] Xiong, X., Mokbel, M. F., and Aref, W. G., “SEA-CNN: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases,” in IEEE Inter-
national Conference on Data Engineering (ICDE), 2005.

[138] Xu, B., Ouksel, A., and Wolfson, O., “Opportunistic resource exchange in inter-
vehicle ad hoc networks,” in IEEE International Conference on Mobile Data Man-
agement (MDM), 2004.

[139] Ye, F., Zhong, G., Lu, S., and Zhang, L., “PEAS: A robust energy conserv-
ing protocol for long-lived sensor networks,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), 2003.

[140] Ye, W., Heidemann, J., and Estrin, D., “An energy-efficient mac protocol for
wireless sensor networks,” in IEEE Conference on Computer Communications, 2002.

[141] Yu, X., Pu, K. Q., and Koudas, N., “Monitoring k-nearest neighbor queries over
moving objects,” in IEEE International Conference on Data Engineering (ICDE),
2005.

[142] Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D., “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” Tech. Rep. UCB/CSD-01-1141,
University of California Berkeley, 2001.

253

VITA

Buğra Gedik was born in the capital city Ankara and was raised in the northeastern province

Trabzon, both in Turkey. He obtained a bachelors degree (B.S.) in Computer Science, from

the Computer Engineering and Information Science department of Bilkent University in

2001 (Ankara, Turkey). Subsequently, he joined the Computer Science Ph.D. program at

the College of Computing of Georgia Institute of Technology (Atlanta, GA, USA). As a

member of the DiSL research group at the College of Computing, he conducted research

on various aspects of distributed data intensive systems, including peer-to-peer computing,

mobile data management, and sensor network computing. He led three projects in the

DiSL research group, namely PeerCQ, MobiEyes, and SensorCQ. His research in these

projects has resulted in numerous publications that have appeared in various international

conferences and journals on distributed systems and data management. He has also been a

collaborator with the IBM T.J. Watson Research Center. He holds or applied for a number

of patents on his work at IBM, dealing with data stream processing systems.

254

