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ABSTRACT

Experimental evidence for a correlation betyeen paperboard édgewise compressive
strength and the product of the in-plaqe normal stiffness and out-of-plane shear
stiffness is presented. A mathematical theory, which describes compressive failure
as interlaminae shear failure due to, prebuckling bending of an initially curved
"critical” lamina, is developed. 'The théory is in accord with failure analysis

observations and with the empirical relationship.
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_ LIST OF SYMBOLS

Constant mhitfpiiérs-ihlévd;tefmiﬁéfion'4

Plate thickness .(caliper) |

-2613 + (C11 €33 - C13%)/Cs5

ﬁﬁlkueiasfié'stiffﬁes;eé of the medium . : o
ﬁlanar'égiffﬁeés df:tﬁéucfificai léﬁina

Wave number in the xl—directioﬁ

KllCy * (Cp? - 4Cq3 €;1)1/21/205311/2
Span length ' | o h
Roughness - weakness factor, §A,Cs5/t T¢
Critical lamina thickness

Distance from the critical lamina to the plate surface

Elastic energy stored in the medium - .
Elastic energy stored in the critical lamina

Distance along the span

In-plane distance normal to the span

Distance along the thickness direction

Incremental change in amplitude

L

Initial curvature amplitude

Normal strain in the critical lamina R

Medium strain tensor

Wavelength
Compressive stress

Compressive strength

Stress tensor .

Medium shear strength

Airy stress potential
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BACKGROUND

Compressive strength plays a significant role in determining the mechanical perfor—
mance of many paperboard products. For ekample, the single most important structural
requirement of the corrugated box is. box compressive strength. McKee‘fgijgrl

showed that box compressive strength is primarily dependent on the edgewise compres-
sive stfength.of the corrugated board ‘and, ultimately, on the edgewise compressive

strengths of the component paperboards.

As in the case of most thin sheet materials, there are experimental difficulties

in measuring edgewise compressive strength. Buckling of the test specimen must be

" avoided to determine the intrinsic edgewise compressive strength. Much of the recent

work has been concerned with the development of suitable edgewise compressive

strength test procedures.2”3

 Under edgewise compressive loads, visual examination of micrographs shows that -
the sheet expands and the voids enlarge. Fiber bond disruptions along planes of weak-
ness occur as the sheet fails.- The planes of voids and weak bonding reflect the
la§ered structure of paper and paperboard, i.e., in normal machine-made papers the
fibersblie almost flat, layered on top of each other®. Sachs and Kuster/ ‘suggest
tha# failufevéecurg due to a céﬁbination of the enlargement of voids, &earing'of

fiber cell walls, and separation between fiber layers.

Compressive strength increases with sheet density, which depends on the degree of
fiber-to-fiber bonding. Seth8 and Fellers? indicate that compressive strength may:
be limited by the compressive strength of'the fibers for well-bonded sheets. Work
at The Institute of Paper Chemistry shows that compressive strength is affected by .

the fiber compressive moduli.l0




plane in the middle of the plate does not cﬁange

1. INTRODUCTION

With span length much greater than the thickness, failure under edgewise compression
of paperboard is well represented by buckling of an Euler. plate. Consider a plate
of thickness ¢ grippéd by two clamps -separated by a_distancg,L. Assume the

sample width is infinite and apply a coordinate system with x) axis along the span,
X9 axis along the width, and x3 axis in the thickness direction. If L is.much_.
greater than c, the compressive stress necessary to cause buckling .can: be determined -
from the Euler approximation. Here the following assumptions are made:1ll (1)

defléctions are émall; (2) loads are resisted only by béﬁdiﬁg?momenﬁsg (35 éhe 1-2

11ength dﬁr{ng begdi;g; (45 sections
of the 2-3 plane rotate during bending but réﬁaiﬁ undiétortedland.ﬁdrsél;to‘thé
middle élane; (5) the thickpess-is ﬁuch less than the other aimensi66§; éﬁ& (6) the

material is homogeneous and elastic. With these assumptions, the critical stress,

o, is-'calculated as a function of C'll’ ‘the planar stiffness, and A, the wavelength at ‘

.which buckling occurs. The result is

2 .2
=2 % 6y _ ‘
O—.3 2 Cir . . ] .o o (D

The planar stiffﬁess differs slightly from the bulk stiffneés,'cil, and from the

Young's modulus; it is the ratio of normal stress to normal strain when no strain is

»

allowed normal to the x, axis and there is no stress normal to tﬁe xs axis. 'Fr;m‘eqn
(1), the value of o, decreases with: A; therefore, buckling will first occur.at the
longest wavelength which complies with the boundary conditions.. For a rigidly
clamped plate. the longest possible wavelength is L, the. span, .This means that the

buckling load as function of span is: A ,

) o .. .
e C
Oc =3—§ Cll . ) (2) ‘
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As L becomes smaller, eqn (2) begins to overestimate o., because there are buckl-
ing deformations which do not meet the Euler assumptions and which have lower
energies of deformation than the Eﬁler plate. For plates. with isotropic elastic
properties, significant deviation from eqn (25 occurs when c¢/L 6. Paperboard,
however, is vefy'anisotrOpic,12 the out-of-plane stiffnesses being much smaller than
the in-plane values. Becaﬁse of this, as will be discuésed‘later, the Euler

approximation is invalid at c¢/L £ 100.

If the critical compressive load of paperboard is plotted as a function of L/c,
the resultingfcqrve can be separated into fopr regions.2 For L/c < 100, Euler's
approximation is proper. ‘When 1. L/c 10 a plateau region is found in which o, is
not a function of span. ‘Here the load is limited by the compressive strength of the
papefboard and Euler's equation does not apply. The area in between could be called
the Euler-plateau transition regioﬁ. " At extremely.short spans, critical compressive
1oads‘incfease above the plateau, and failures are attributed to compressive failure
of the fibers.2,8,9 Compressive strength is defined as the critical:load in the
plateau region.{ This is clearly out of the realm of the Euler Model, and some other

explanation is. necessary.

Several models of compressive instabilities in homogeneous elastic plates have

‘been developed. Perhaps the best known and most complete is the one presented

by Biot.l3 This provides a descriétion of failurés in homogeneoué pléteé with.small
span to caliper rafios.‘ Uﬁfqrtunately, much of thé development is di;ect;d toward
iqcompressible maferials, a most inapprépriate éssumption for péperboard; However ,
it is possible to approximafe fhe Biot resﬁlts for comﬁréssiblé piates with out-of-
pi;ne stiffnesses much less thén in-pléne stiffnessés: By dding this, one finds
that thegg is a plate;u region‘in.which coﬁpressivevstreﬁgth is about 90%'o£ the

slide modulus, where the slide nndulusl3 is an incrementél shear modulus under

~
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compression and is closely related to Cgg, the normal shear modulus. in the 1-3

plane. This approach has been applied to paperboard by Perkins and McEvoy.l4 Their ‘
measured values of Cgs5 are much greater than the measured values of .compressive

strength; however, it is the slide modulus at failure (not .the small strain Cgg.

which they measured).that is important., This is presumably smaller than the

measured Cs5, and the possibility of good agreement with the Biot picture is pre-

served.

An investigation of postfailure morphology of paperboard gives, insight into
mechanisims oflcompressive failure. Compressive failure involves delamination and
buckling ‘of fiber level laminae.’ There is a layered structure, existing before..
compression,:that'buckles during failure. From failure analysis photomicrographs,
such as Fig. 1, it appears that the geometry of the compressive instabilities.is
governed by the fiber level structure of the sheet. For homogeneous models, the
geometry of the instabilities is determined by the elastic properties of the media ‘
and the dimensions of the plate. This is not the case here, since fiber level
inhomogeneities- are -of the sane order of size as wavelengths encountered.in failure
of the homogeneous plates. The morphology of the failure is clearly dictated by the
fiber level microstructure in the sheet.

| [F1gure 1 Here]

Another‘reason fot rejecting homogeneous models, sdch as Blot s, can be taken from
an emp1r1ca1 relatlonshlp between—elast1c moduli and compressxve strength Flgure 2
demonstrates a linear relatxonshlp between ¢ and 0111/2C551/2 for handsheets made
from a'varlety of wood species. Douglas-f1r, loblolly plne, and V1rg1n1a plne ch1ps
were separated into earlywood and latewood fibers, and sheets'of different densltles
were made b& varylng the wet pre881ng In 8dd1t10n, a hardwood soec1es; gum, was
pulped and sheets produced at various ,dens1’t1els..' Notiee'ftom 'f’ig.' 2 that ché datva' ‘

all fall on the same curve in sp1te of the wide differences in furnish. When Oc is
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plotted versus other physical properties, such as Cil,-density, or C55, the plots
break down into individual curves for each furnish. The Ci1055 parameter unites
all the results into a single relationship. Another example of this is given in
Fig; 3. Here a‘series ef anisotropic sheetsl3 was fermed-et varying levels of
fiber aliénment, density, and wetrstrsining. They are ail from the ssne Ddugies-fir
furnish’and have the same basis weight.. Again, the compressive strength fer this
wide range of sheet parameters E;A be expressed as a“fnnction of C}lcgg.\ When oé’is
plotted versus other physical properties, a multitude of cnrves’resnlts;. Further
details on this correlation will be published elsewhere. The Biot Model (as well as
the other homogeneous models) is at variance with these empirical results, because
compressive strength’cannot be determined from Css alone. stever, there:is a simnle
relationsh{n betneenhsc and eiastic properties, and this indieates that the vaiue 6£
the critical load can be predicted from a simple model of feilure.

| tFigures 2 and 3 here]

A mere critical test of this correlation is te plot it in:ternsiof paremeters'
normelisedlby the density. This is beeeuse part of the eerreiationvmey be explained:
by the common den31ty dependence of the compressive strength and stlffness The
data from Flg 2 and 3 are replotted in terms of strength d1v1ded by dens1ty and
stlffness divided by den51ty in Fig. 4 and 5, respectlvely The correlatlons are
not as good but they are still impressive.

[Figure 4 and 5 here]

The 011055 term is not the only comblnatlon of elastlc parameters that correlates
nell with o.. | Baum16 has shown that the 1n~p1ane shear modulus Ce6, is propor-
tional to (Cilcéz)LQ for paper sheets; The proportlonallty also holds falrly well
for out-of-plane shear moduli, e.g., Cs5 « (Ci1C33)U2. This empirical relationship
can be used to express Ci1C55 in terms of other combinations of Cil,_C55, and C33

and produce other parameters that predict o.. The end result is that o, depends on
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a combination of elastic parameters (usually a combination of an in-plane stiffness

and an out-of-plane stiffness).’

The above §tatements are taken to mean that there should be‘a simple mathemati-
cal model of compressive strenéth in the pl#teau region. It cannot be a homogeneous
model; it musg accountqur the heferogeneity of paperboard. However, since homoge-
neity assqmptions do simplify éhe calculations, a manégeable model muét retain as

much homogeneity as possible.
2. THEORY

The model described'is-chosen to have a minimal amount of héterogeneity, while still
being consistent with.observations from féiluré analysis. When a failed sheet is
sectioned and exaﬁined,-the.sheet appears to>have divided iéself into ﬁlatelike
"laminaeh ayigned in the plane of the sheet. 1In the région of failure the laminae
have buckled individually and sheared from the adjacent laminae. Theréfore,'the
idea is to consider the sheet to be a composite of laminae with.thicknesses of the
order pf a fibe; tbicgﬂess. One of thése laminae is de#tined to>be the critical
lamina, the lamina in whicﬁ the failure initiates. The.model singles out the criti-
cal lamina and treats the rest of the sheet as a continuous érthotropic medium. Tﬁe
lamiha is thin enough to fail by Eulér buckling in the test span; however, buckling
of the critical lamina is resisted by the stiffness of the media as well as the
stiffness and moment of inertia of the_quer plate. The critical lamina is not
necessarily the weakest 1ink, but father a section that carries a sufficient load so

that its failure can lead to total sheet collapse.

Failure by two different mechanisms is analyzed: (a) buckling of an initialiy

‘flat plate and (b) failure when the maximum shear strength in the medium is exceeded

because of buckling deformations near an initially curved lamina. The first mecha-

nism is actually a homogeneous model in disguise. Since one lamina must deform as an
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Euler beam, only a subset of the deformations possible in a general homogeneous
model is allowed. As expected, the analysis yields a compressive strength greater
than that which a homogeneous model would give. The second case is proposed to .
represent compressive failure of paperboard. It is a truly heterogeneous model,
since shear weakness is placed at the boundary of an Euler plate which deforms but
does not yield. The.plate curvature and medium shear strength can be adjusted to
make the ﬁredié£ed ob'much less than in'the'homogenéous'ﬁodelsu The first case 1is
inciuded, because many of the results from the flat plate aﬁalysié afé‘uéed in the

curved plate development.

The major assumptions used in both the flat and curved lamina models are listed
below. (1) The critical lamina is an Euler plate. (2) The compressive stress is.
uniformly distfibuted. The stress on the critical lamina is equal to the overall
compressive stress; o. (3) The surfaces of the two surrounding media are in rigid
contact with the lamina, and deformations inside theAmedia are found from the
elaétic state equations subject to zéro stress boundary'conditiohs at the sheet‘sur-
face and‘coniinuity of deformation at the medium-lamina interface. To first ofaef,
the def&rﬁations at‘the surface of the lamina are only in the X3-éirection. The
second 6rder effects due to in-plane deformations in the lamina will be ignored in
caléulating deformations in the media. (4) The deformationsnare takeﬁ to be inde-
pendént of the x9-direction. In fact, a conditidn of plane strain in the 1-3
plane is aésuﬁed. This complies with tﬁe clampiﬁg in the actual tester which pre-
veﬂts xz-diréctioﬁ déformation at the clambs.' The Qidtﬁ‘{é iarge compared with the
span, so that PoisQon effects at the edges can be negleéﬁed. (5) Only tﬁe critical
lamina is under compression. This is justified by noting that tﬁe‘éritiéal lamina
has a much greater disposition for buckling than its neighbors. The effect of com-

pression in the homogeneous medium is small compared with the attempted buckling of
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the critical lamina into the medium. This assumption means that the theory is not
valid for large L/c, where failure occurs by overall Euler buckling of the entire .

plate, and the total load must be considered. For small L/c values, the failure is
localized, and the model will give a much lower strength than Euler buckling of the

whole plate.

Compressive failure of sandwich constructions has been treated mgthematically
(see for example the work of Norrig fﬁLfﬂ:l7)‘ The calculations required for>the
critical lamina models &dre similar to those for a sandwich with thin, stiff outer
layers. However, the boundary conditions in the critical lamina models aré dif-~
ferent from the sandwich, since the thin layer' is in the middle. Also, simplifica-
tions, due to the large elastic anisotropy in paperboard, are made in the critical

lamina models.

a) Initially Flat Critical Lamina ' .

'4AFir§§ the critical load necessary to cause Buckling of.an initially flat plate
of thickness t into an orthotréfic medium.will be calculated. For ;n isolated
flat plate, buckling occurs when the compressive load becomes large enough that the
work it does in a virtual disb};cemgﬁt is greater than the energy stored in the |
bendingAbeamAfor the same displacément. The virtugl disp}acement is taken in the
form Gux3 = 6A siqul and the q;itical load is fouﬁd to depend on k. For an isolated .
plate the critical load decréases npnofonically with k, and buckling occurs at the
smallest k compatible with the end conditions. In this case the virtual Qork per
unit'arga must equal the energy stored in the plate and in the medium per unit area.

That is, buckling of the plate occurs when

ot Se = U, + OUp. ' - . (3)

P

deformation in a plate whose middle plane cannot stretch. The values of ot 6c and
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GUp can be taken from any text book analysis of plate bending. They are
ot Se = ot(8A)2k2/4 ‘ | (4)

oy | -8U, = €] (8A)2kAE3/48. L )

Now, ali that is needed is Uy, i.e., the incremental energy of deformation pér
unit area in the media.on both sides of the critical lamina. This can be taken from
the following calculation of the énergy per unit area .in an orthotfopic plate of
thickness T with Gux3 = 6A:sinkx1 and 6uxl =0 on one surface and 133 = 133 = 0 on

the other surface.

Since plane strain is assumed (e} = €9] = €23 = 0), the stress-strain rela-

tionships for the elastic, orthotropic media are

111 = C11€11 + C13€33, (6)

733 = C13€1] + C33€33, and | (N
713 = 2 Cs5e13. | | (8

The equations of static equilibrium are

11,1 + 713,3 =0 (9

[
o

and - . . ‘133,3 + T113,1 = (10).

Equations (9) and (10) are satisfied identically if the Tjj's are taken from an Airy
stress potential18 ¢; that is, if 7} = ¢,33, 133 = 4,11, and T3 = - 9,;3, then

eqns (1) and (2) are automatically fulfilled.

In addition to the equations for elastic equilibrium, the compatibility

equations must -be obeyed. For the plane st;ain case, compatibility is fulfilled if

€11,33 + €33,11 = 2 €13,13- (11)

Expressing €jj in terms of &, eqns (11) becomes
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(12) .

€11€33 - G132
it | e ) - %13

19,1133 + €33 9,3333 = 0.
S6, any ¢ obeying eqn (12) gives an admissible solution to the plane strain elastic

equilibrium equations.

Assuming a solution of the form ¢ = f(x3) sinkx; and inserting iinto eqn (12)

imposes the- following restriction on f(xj3).

C11 kAf(X3) - Gy k2 f(X3)" + C33 f(x3)"" =.0, (13)

A solution of the form f(x3) = er3 is satis-

L E

Where C2 = —2C13 f (C11C33—C132)/055.
factory if '
rbz * (022 - 4C33C11)1/2 1/2
2C33

(14)

Thus an acceptable form for & with four arbitrary constants, B), By, D} and Dy is

® = [Bysinh%4x3 + Bysinh2_x3 + Djcoshf,x3 + Dycoshf_x3] sinkx}. - (15)

The values of By, By, Dj, and Dy can be chosen so .that the four boundary conditions

are met. This is doné when the following linear simultaneous equations are
fulfilled.
.
— . R . v =1 — -1 =
| . U R
sinh 2, T sinh2_T cosh £,T cosh L‘T W
X . By
t 24cosh,T t%_cosh l_'l‘. t 4 8inh {L:,t tﬂ._'su?h. 17'1‘ m ' 0
(16)
o o (Cy3k? + C332.2e2°  (Cy3k? + Cy32.D)e? Dy .
c1 ' Y} Cy]dac
(013!,,2 + Cllkz)tC“ (C13l_2 + Cukz)tcu 0 o Dy L
2,(Cy1C33 - 0132) 2.(Cy1C33 - C132) Cp1dat .
- e -—
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Paperboard is extremely anisotropic, the z-direction stiffness being much
. smaller ‘than the.in-pvlane stiffnesses. Also, failure often occurs at a wavelength
less than Ty therefore, approximate solutions to eqn (16) when Cy)>>C33, C}>>Cy3,
C11>>Cs5, and ekT >> 1.will be of interest later.. A straightforward calculation shows
that in these limits the coefficientsare
(C13; C55)C553/2 SA

- By® -Dp = , and : -Qan
kCy1C331/2

-Bz‘*" =Dy == m . (18)

Now &Uy, can be calculated for the générél case and also in the limit of high
anisotropy and deep embedment. The stored energy, GUm,-is'equal to the work done by

forces acting on the boundary of the medium necessary to cause a 8A deformation. So

® i <330 o
-k 3 .
o Uy = 57 g 1,20 1 - (19)

Using 133 = k28, [8],=g = (D;+Dy) sinkx), and [Gux3]z=0 = 6A-sinkx1, the integration

gives
Uy = kZ8A (Dy+Dy)/4. S (20)
For thellimiting case the expressions in eqns (17) and (18) reduce this to
Uy =~ C331/2c551/2 k(8A)2/4. (21)

Inserting the results of eqns (20). into eqn (3) produces the following expression

for o as a function of k.

_cyik2e2  (Dy+Dy),  -(Dy+Dy),

. o ° 12 " tSA + tsA _ (22)
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The expressions (D;+Dy)) and (D1+D3)9 are found by solving eqn (16) with T equal to

the distance from the critical lamina ‘to the top and bottom surfaces, respectively. ‘
This can be done numerically and o can be plotted versus-A. ‘The results depend on t/c
and to some extent on the location qf the critical lamina to the surface. When the
critical lamina is near the surface, o is less than for interior laminae. Figure 6
presents plots of °/Ci1 versus A/t for different values of c, critical lamina
locations, and stiffness ratios. -Cufve,l is a single lamina with no reinforcing
medium. It is simply the Euler curve for an isolated lémina. Curve 2 is for a

plate two laminae thick. At larger wavelengths it is stronger than the single

Euler plate;-however,Ao still decreases monotonically with A. As c¢/t.increases, a
minimum occurs in the o versus Alcurve. Curve 3 is the lowesé Qalué 6f ¢/t at which
this'happeqs. Here the cfitical lamina is on ghe surfacé ;nd the sheet'is f;ur
laminae tﬁick. As the sheet becomes thicker, the location of the minimum approaches

a limit. 1In fact, once the plate is about eight laminae thick these values are quite .
stable with ch;nging c¢/t. Curves 4 and 5 are respectively eight- and sixteen-laminae-

thick sheets, the critical lamina being one of the two center ones. Curves 1

through 5 are all for media with elastic anisotropy typical oflpaper.12 Curve 6 is

a center lamina of a 16-laminae-thick isotropic ﬁlate. It is presented as a
contrast to the paper case where there is large elastic anisotropy.
[Figure 6 here]
The expression for o is simplifie& in thé limiting case where eqn“(2£)“is valid.

Here

(23)

_cppt?, 2) Cagl/2ccsl/2
1z -t u Kt y
In the above equation the 2 is for a center lamina and the 1 is for a surface lamina;

other lamina locations have intermediate values. The value of A for the minimum

buckling load, o., can be found by setting do/dk to zero. The result is .




t

re

-15=-

, 1/3
: (1 )6c331/2c551/2 5
11

When this is inserted into eqn (23), an approximate value for ¢, is obtained.

1.31 v ; T '
% = (5 g3) [€11€33C551173 | (25)

v

The location of the minima in the numerically generated curves, such as those in’

' Fig. 6, can be compared with the asymptotic values in eqns (24) and (25). For plates

with anisotropy typical of paper the locations of the minima determined by the two
methods differ by less than 5% when the plate is 7 laminae thick or more. The cross

symbols on Fig. 4 mark the location of the asymptotic minima for curves 3-6.

The value of o, from this curve ig more than three times greater. than Css.
(~0.018 C1;), the order of values predicted by the homogeneous theories. This is to
be expected, since as 'yet no real inhomogeneity has been injected into the model.
The generality of the deformation hasvmérely been limited and coméfeésion over much

of the plate has been ignored.

b) Initially Curved Critical Lamina

Now the case of an initially curved critical lamina bending into a reinforcing
orthotropic medium will be studied. In paperboard tﬁere is‘a éone of weakness be-
tween the lgmingg, gnd shear failure can occur due to prebuckling deformations. The
model will not allow buckling éf'the cfitical laginae, but wheﬁ éhe ﬁaximum\shéar
stress in the medium exceedé a limit, the'plate yields. A curved plate under
compression bends before buckling. The initial curvature can be expressed as a

Fourier summation of sinusoidal functions. The Fourier components with wavelengths
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near the critical wavelength lead to large deformations of the lamina. It is cur-
vature near this wavelength that results in the prebuckling, shear failure of the

medium.

First the deformation of a plate with initial curvature, 6A, sinkx;, will be
found as a fuﬁction oflo and k. The anélysis is simila?aéojthé fiéét case, exéept
the work done by o depends on 6A, and a nonzero deformation equilibrium can be
lamina or in the medium. When o is applied, the deformation, U, = (8A + 8A,) sinkxy,

is found by requiring the total energy to be a minimum.

ote = 8U

Ip + 8Up L : - (26);

Now the virtual work term becomes

t

otée = or(6A + GA_)'GA K2/2, S @D

while the other terms are unchanged. Therefore, the equilibrium condition is

4

‘ '
ot k.2(<SA+6A ) ¢ 6Ak4t3. (D,+D,), + .(D,+D, ), e
o’ _ 11 e i2ea L 271 17272 (28)
2 24 t SA i '
Solving for the incremental deformation, 6A, yields
11K2ZE2 | (Dy+D)) +:(D1+Dy)
) 3 Cy1k4t 1 (D1+D + (D1+D [ .
oA = ofAy/ | + 2l - 122 o, (29)

This gives a nonlinear rélationship between SA and o, even tﬁoﬁgh the'éntire'process
could be elastic. Now the maximum shear stress in the medium can be calculated.
113 = -9,13 = -k coskx) [Bjf4coshf4x3 + Byf.coshf_xj3

(30)
.+ D) &4sinh24x3 + Dy Z_sinh2_x3]

B S
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The maximum stress occurs when coskx = 1 and z = 0; therefore,

[B1 2+ + Bae-]y ’
= -k C116At . 31
(113)max CILoAt 1184t GL

In eqn't3i); [B1%+ + B2%-]L is taken as the 1afgest value calculated for two media
attached to the critical lamina. The maximum shear stress expressed as a function

of o is

saok [BIZ+ + 322_]L .
o C. . GAt

L 11
(1,,) = (32)
13 max v2
. Skt [Oy#Dy)y + Dyl 6
C. 12 C, oAt Tt

11 11 T

WheﬂJ(TiS)ﬁa;'équéls‘the shear strength at the interface, 1¢, failure occurs.

Equation (32) is now solved for oc as a function of g

R

vo2.2 -
Skt [ Pr*Py)yr (04#Dy),
c,,12 t SAC
o Jc, = —2l 1 = (33)
% 1 C [(B.L¢t + B.8 t]l.—= \
11 17- 27+ 'L
- Wk £ SAC
55 n |
: : L 885 Css : :
The term RW symbolizes the ''roughness-weakness' factor, - = This is the ratio
, f

of initial curvature near the critical wavelength to. the lamina thickness, a
"roughness" factor, multiplied by the ratio of shear modulus to strength, a

"weakness'" factor.

Equation (16) will give the D and B coefficients in terms of elastic constants,
and then o./Cj] can be plotted vs. A/t for a given set of elastic constants, plate

and lamina dimensions, and value of RW. Figure 7 presénts some such plots for

elastic coefficients typical of. paper. ‘The curves are for a plate 20 laminae thick

at four different RW values. The critical lamina is taken in the sheet center. The

"RW = 0 curve is the same as the flat plate buckling condition discussed earlier.
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Notice that as the RW factor increases, o, (the minimum in critical load) decreases.
Réaiistic values of 6& well below Cgg are realized with reasonable values of RW.

The value of Cg5/71¢ of around 10019520 and the total Fourier component of amplitudes
in the regioq of the minimum.of about 0.01t to 1.0t seems probable. The gtraight
line in Fig. 7 is the Euler curve for a plate 20 laminae thick. Thg model curves
are expected to be valid only in wavelength regimes where the Euler curve is mach

higher than the model curves. Notice that the wavelength of the minimum failure

stabilizes at about 10t for values of RW greater than about 10. Again, these curves
are not much of a function of thickneés, c, once ¢ is greater than about 7t. Also,
as in the fifst case, the critical load is less when the criticai lamina is on the
surface than when it is about 3t or mbre deeper into the plate. Figure 8 is a simi-
lar set of curves for a hypothetiéal isotropic plate. Notice that migimum are not
achieved for )/t greater than 2. Since the assumption of Euler buckling'qf~thg A
lamina is invalid if A/t < 6, this model is appropriate for paperboard only, because

it is highly anisotropic.
- [Figures 7 and 8 here]
As in the flat plate, simplification can be made when C11>>C55, C11>>C33,

C11>>C13, and ekT>>1. In this case eqn (32) becomes

C + C
okC_ _SA 1- __li____ii_
55 o (c. c )1/2
11733

(430 max = 2,2 c 2, 172 - (34)
11 « () 55 33 s
} 2 - " 4 kt .

In eqn (34) the 2 is for a center lamina and the 1 is for a surface lamina.:

Taking the derivative of eqn (34) with respect to k and assuming that (055033)1/2 >
oc(kt)gpy gives the following approximate values of (kt)opt, the value of kt with

the minimum compressive failure load.

Jou 2233 T ss)

Iy
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This value of kt is inserted into eqn (34) to give an approximate o.

0.454y ' 2/3 _ 1/6 _ 1/6
. - (6:360) €11~ 55’ Ca3
c wl . C13 + C55
o 177, 172

11 33
’ 1
To get eqn (36), it was also assumed that oc << (C11C33C55)1/3. The location of the

minima as predicted by eqns (35) and (36) is marked by a cross for the nonzero RW
curves in Fig. 7. Notice that the approximation becomes quite-good for large RW .

values. The c¢ross near the: RW.= 0 curve comes from eqns (24) and (25)..
3. DISCUSSION

The resulté of the curved 1aﬁina model are consistent wifh.many of the known
characteristics of compressive failure in paperboard; First, a four feéién cfitical
stress versus L/c curve is predicted with break points in the right regions. See
Fig. 9. These plots are made from curves such as thoée in Fig. 7, after it is assumed
that faiiure under comp:ession will occur at the available wavelength having the
least:strength. Thg plate has‘riéidly claﬁped edges; theréfére, thelﬁi;te éan fail
w;th instabilities at any waveleggth less thaﬁ the sﬁan.' Faiiure will éccur ;t'the)
wayelength below span léngth tﬁat has the least .strength. For large'spans'fhe Euler
curve is far below the model curve, ;nd the critical stress vs. L/é curQé is the
Euler curve of the total platé. As A decreases, a region-is re;ch;d whefe the Euler
curve is of the'éame order of magnitude as the minimum of the model curve. Here
neither picture is appropriate; some combination of the two processes is-at work.
This i$ the Euler plateau transition region. At lower A values the Euler curve is
much greater than the model curve minimum. In this region the critical stress is
Oc, and the failure wévelength corresponds to that at the minimum of the model
curve. At spans less than the wavelength of o., the critical stress again begins to
increase. The model becomes invalid as L approach t, and: some other process, .such

as compressive failure of the fiber, dominates. Figure 9 is a set of curves plotted

in this way. Each has RW = 10 and anisotropy typical of paper. There are curves
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the plateau region increases with c/t. The height of the plateau stabilizes for c/t
> 6,‘and the only effect of increasing c¢ is to extend the plateau to lower L/c
values. Increasing the values of RW would lower the plateau and move the tran-
sition region to larger L/c values.

[Figure 9 here]

Equation (36) is' an approximate relation of the plateau region compressive
€13 + Gs55° )
. . . c111/2e331/2
1s not very sensitive to elastic property changes caused by process variable opera-

strength to the elastic moduli and the RW factor. The term (1 -

tions. This is because increases in Cj3+Cg55 are generally accompanied by greater
increases in C33. If this part of the function is taken as a constant, a very

simple expression for o. is found:

]
o112/ 3cgs1/6ca51/6

R (37)

G <

:

The RW factor depends on Css/71g, but certainly there is a strong correlation between.

Cgs and T¢ and their ratio should not vary much as process variables change. At any
rate, if RW is assumed to be constant for a given set of process changes and the
empirical correlation, Cs55 <« C331/20111/2, is used, eqn (37) can be transformed to

’ 1
the empirical relation discussed earlier, o, « 0111/20551/2.

Equation (37) is similar to the earlier discovered empirical relationship, o, «
)

0111/20551/2; in that o, depends on a combination of elastic parameters. To test
eqn (37), oo is'plotted versus Ci12/30551/60331/6 for the same samples as in Fig. 2
and 3.: These results are presented in Fig. 10 and 11, respectively. Notice that
for both Fig. 10 and 11 the data fall near a straight line with a slope of one.
Figure 11 shows a good correlation as does Fig. 3; however, Fig. 2 is.better than
Fig. 10. All-of the data for the oriented sheets with constant furnish (Fig. 11) |

form a single line, while the variable furnish sheets (Fig.. 10) seem. to divide into

.



-3

Lo

_21_
separate lines. This is rationalized by noting that RW may not change with wet
straining, wet pressing or fiber oriéntation, but it could depend on furnish; A
major advantage of eﬁn (37) over the empirical correlation is‘that the composite
curves of Fig. 10 and 11 are quite close to each other, whereas the curves in Fig. 2
and 3 are at different levels.

[Figures 10 and 11 here]

VEquation (35) provides an approximate relationship between elastic consténts and
the ratio of the wavelength of fhe compressive failure to lamina thiékness.t This
approximate value is:within a few percent of fhe exact solution fof a material with
paperlike anisotropy and an RW factor greater than 10. For paper anisotropy it
predicts that this ratio'is of the order of ten. Observations of micrographs, -such

as Fig. 1, verify that this prediction is in the correct region.

The load-deformation curve for a sample in a compression strength. tester becomes
nonlinear well below the loads at which yielding occurs in tension. If the

compression load is released before failure, some authors have described the sheet |

.as returning to its original shape with little evidence of plastic,yields.7> This

observation is consistent with the picture of -elastic bending of a curved lamina
into a restraining medium. Equation (29) could be used to calculate the change in
amplitudé; 8A, of'a éinusoidal curvature. This could be inserted into eqn (27) to::
give the xi—difection straiﬁ as>a fuﬁction of comﬁreésive stress. Notice that the
stress-strain relationship could be nonlinear, eveﬁ though linear elastic processes'
are controlling the action. This is simply because bending of a curved plate gives

a nonlinear stress-strain relationship.

The model predicts that o. decreases as initial plate curvature increases, if
the elastic coefficients do not change. This should not be interpreted to mean that

additional lamina curvature necessarily weakens the sheet. This is because




increases in curvature result in greater xj-direction alignment of the fibers, which

in turn results in greater out-of-plane stiffness. This increase in stiffness could
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well overpower the increase in RW.
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Fig.

1.

S.E.M. micrographs of a linerboard sampler before and after edgewise
compression. Common features can be compared if the compressed sample on
the right is shifted upward. The white areas in the compressed sheet are
caused by disruptions in a surface coating. The figure clearly shows sheet
expansion and delamination between fiber layers in the compressed sheet.
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