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ABSTRACT

Experimental evidence for a correlation between paperboard edgewise compressive

strength and the product of the in-plane normal stiffness and out-of-plane shear

stiffness is presented. A mathematical theory, which describes compressive failure

as interlaminae shear failure due to prebuckling bending of an initially curved

"critical" lamina, is developed. The theory is in accord with failure analysis

observations and with the empirical relationship.



-2-

LIST OF SYMBOLS

B1, B2, D1, D2

c

C2

Cij

Cj1

k

L

RW

t

T

Um

Up

X1

X2

x3

6A

6Ao

Eij

a

ac

Tij

Tf

4D

Constant multipliers in 0 determination

Plate thickness (caliper)

-2C13 + (Cll C33 - C1 3
2 )/C55

Bulk elastic stiffnesses of the medium

Planar stiffness of the critical lamina

Wave number in the xl-direction

Exponential coefficient in the x3-direction

k[[C 2 + (C2
2 - 4C3 3 C 11 )l/2]/2C3 3]1 / 2

Span length

Roughness - weakness factor, 6Ao C5 5/tTf

Critical lamina thickness

Distance from the critical lamina to the plate surface

Elastic energy stored in the medium

Elastic energy stored in the critical lamina

Distance along the span

In-plane distance normal to the span

Distance along the thickness direction

Incremental change in amplitude

Initial curvature amplitude

Normal strain in the critical lamina

Medium strain tensor

Wavelength

Compressive stress

Compressive strength

Stress tensor

Medium shear strength

Airy stress potential



-3-

BACKGROUND

Compressive strength plays a significant role in determining the mechanical perfor-

mance of many paperboard products. For example, the single most important structural

requirement of the corrugated box is. box compressive strength. McKee et al.l

showed that box compressive strength is primarily dependent on the edgewise compres-

sive strength of the corrugated board and, ultimately, on the edgewise compressive

strengths of the component paperboards.

As in the case of most thin sheet materials, there are experimental difficulties

in measuring edgewise compressive strength. Buckling of the test specimen must be

avoided to determine the intrinsic edgewise compressive strength. Much of the recent

work has been concerned with the development of suitable edgewise compressive

strength test procedures. 2-5

Under edgewise compressive loads, visual examination of micrographs shows that

the sheet expands and the voids enlarge. Fiber bond disruptions along planes of weak-

ness occur as the sheet fails. The planes of voids and weak bonding reflect the

layered structure of paper and paperboard, i.e., in normal machine-made papers the

fibers lie almost flat, layered on top of each other6 . Sachs and Kuster7 suggest

that failure occurs due to a combination of the enlargement of voids, tearing of

fiber cell walls, and separation between fiber layers.

Compressive strength increases with sheet density, which depends on the degree of

fiber-to-fiber bonding. Seth8 and Fellers9 indicate that compressive strength may

be limited by the compressive strength of the fibers for well-bonded sheets. Work

at The Institute of Paper Chemistry shows that compressive strength is affected by

the fiber compressive moduli. 10
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1. INTRODUCTION

With span length much greater than the thickness, failure under edgewise compression

of paperboard is well represented by buckling of. an Euler plate. Consider a plate

of thickness c gripped by two clamps separated by a distance L. Assume the

sample width is infinite and apply a coordinate system with xl axis along the span,

X2 axis along the width, and x3 axis in the thickness direction. If L is much

greater than c, the compressive stress necessary to cause buckling can be determined

from the Euler approximation. Here the following assumptions are made: 1 1 (1)

deflections are small; (2) loads are resisted only by bending moments; (3) the 1-2

plane in the middle of the plate does not change length during bending; (4) sections

of the 2-3 plane rotate during bending but remain undistorted and normal to the

middle plane; (5) the thickness is much less than the other dimensions; and (6) the

material is homogeneous and elastic. With these assumptions, the critical stress,

o, is calculated as a function of C 1l, the planar stiffness, and X, the..wavelength at

which buckling occurs. The result is

o-^ u .. ... .1)-),2 C l I"

The planar stiffness differs slightly from the bulk stiffness, C1l, and from the

Young's modulus; it is the ratio of normal stress to normal strain when no strain is

allowed normal to the x2 axis and there is no stress normal to the x3 axis. From eqn

(1), the value of ac decreases with A; therefore, buckling will. first occur.at the

longest wavelength which complies with the boundary conditions. For a rigidly

clamped plate the longest possible wavelength is L, the span. .This means that the

buckling load as function of span is:
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As L becomes smaller, eqn (2) begins to overestimate ac, because there are buckl-

ing deformations which do not meet the Euler assumptions and which have lower

energies of deformation than the Euler plate. For plates with isotropic elastic

properties, significant deviation from eqn (2) occurs when c/L < 6. Paperboard,

however, is very anisotropic, 1 2 the out-of-plane stiffnesses being much smaller than

the in-plane values. Because of this, as will be discussed later, the Euler

approximation is invalid at c/L < 100.

If the critical compressive load of paperboard is plotted as a function of L/c,

the resulting curve can be separated into four regions.2 For L/c < 100, Euler's

approximation is proper. When 1 < L/c < 10 a plateau region is found in which ac is

not a function of span. Here the load is limited by the compressive strength of the

paperboard and Euler's equation does not apply. The area in between could be called

the Euler-plateau transition region. At extremely short spans, critical compressive

loads increase above the plateau, and failures are attributed to compressive failure

of the fibers. 2 ,8 ,9 Compressive strength is defined as the critical load in the

plateau region. This is clearly out of the realm of the Euler Model, and some other

explanation is necessary.

Several models of compressive instabilities in homogeneous elastic plates have

been developed. Perhaps the best known and most complete is the one presented

by Biot. 13 This provides a description of failures in homogeneous plates with small

span to caliper ratios. Unfortunately, much of the development is directed toward

incompressible materials, a most inappropriate assumption for paperboard. However,

it is possible to approximate the Biot results for compressible plates with out-of-

plane stiffnesses much less than in-plane stiffnesses. By doing this, one finds

that there is a plateau region in which compressive strength is about 90% of the. slide modulus, where the slide modulus13 is an incremental shear modulus under
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compression and is closely related to C55, the normal shear modulus in the 1-3

plane. This approach has been applied to paperboard by Perkins and McEvoyl 4 . Their

measured values of C55 are much greater than the measured values of compressive

strength; however, it is the slide modulus at failure (not the small strain C55

which they measured) that is important. This is presumably smaller than the

measured C55, and the possibility of good agreement with the Biot picture is pre-

served.

An investigation of postfailure morphology of paperboard gives insight into

mechanisms of compressive failure. Compressive failure involves delamination and

buckling of fiber level laminae. 7 There is a layered structure, existing before

compression, that buckles during failure. From failure analysis photomicrographs,

such as Fig. 1, it appears that the geometry of the compressive instabilities is

governed by the fiber level structure of the sheet. For homogeneous models, the

geometry of the instabilities is determined by the elastic properties of the media

and the dimensions of the plate. This is not the case here, since fiber level

inhomogeneities are of the same order of size as wavelengths encountered in failure

of the homogeneous plates. The morphology of the failure is clearly dictated by the

fiber level microstructure in the sheet.

[Figure 1 Here]

Another reason for rejecting homogeneous models, such as Biot's, can be taken from

an empirical relationship between elastic moduli and compressive strength. Figure 2

demonstrates a linear relationship between oc and Clil/2c5 5
1 /2 for handsheets made

from a variety of wood species. Douglas-fir, loblolly pine, and Virginia pine chips

were separated into earlywood and latewood fibers, and sheets of different densities

were made by varying the wet pressing. In addition, a hardwood species, gum, was

pulped and sheets produced at various densities. Notice from Fig. 2 that the data

all fall on the same curve in spite of the wide differences in furnish. When Oc is
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plotted versus other physical properties, such as Cll, density, or C55, the plots

break down into individual curves for each furnish. The C;lC 55 parameter unites

all the results into a single relationship. Another example of this is given in

Fig. 3. Here a series of anisotropic sheets 1 5 was formed at varying levels of

fiber alignment, density, and wet straining. They are all from the same Douglas-fir

furnish and have the same basis weight. Again, the compressive strength for this

wide range of sheet parameters can be expressed as a function of Cl1C55. When oc is

plotted versus other physical properties, a multitude of curves results. Further

details on this correlation will be published elsewhere. The Biot Model (as well as

the other homogeneous models) is at variance with these empirical results, because

compressive strength cannot be determined from C5 5 alone. However, there is a simple

relationship between oc and elastic properties, and this indicates that the value of

the critical load can be predicted from a simple model of failure.

[Figures 2 and 3 here]

A more critical test of this correlation is to plot it in terms of parameters

normalized by the density. This is because part of the correlation may be explained

by the common density dependence of the compressive strength and stiffness. The

data from Fig. 2 and 3 are replotted in terms of strength divided by density and

stiffness divided by density in Fig. 4 and 5, respectively. The correlations are

not as good, but they are still impressive.

[Figure 4 and 5 here]

The ClIC 55 term is not the only combination of elastic parameters that correlates

well with 0c. Baum 16 has shown that the in-plane shear modulus, C6 6 , is propor-

tional to (CjlC 22)
1/2 for paper sheets. The proportionality also holds fairly well

for out-of-plane shear moduli, e.g., C5 5 (CllC 33 )1/2. This empirical relationship

can be used to express CllC 5 5 in terms of other combinations of Cl1, C5 5, and C3 3. and produce other parameters that predict ac . The end result is that 0c depends on
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a combination of elastic parameters (usually a combination of an in-plane stiffness

and an out-of-plane stiffness).

The above statements are taken to mean that there should be a simple mathemati-

cal model of compressive strength in the plateau region. It cannot be a homogeneous

model; it must account for the heterogeneity of paperboard. However, since homoge-

neity assumptions do simplify the calculations, a manageable model must retain as

much homogeneity as possible.

2. THEORY

The model described is chosen to have a minimal amount of heterogeneity, while still

being consistent with observations from failure analysis. When a failed sheet is

sectioned and examined, the sheet appears to have divided itself into platelike

"laminae" aligned in the plane of the sheet. In the region of failure the laminae

have buckled individually and sheared from the adjacent laminae. Therefore, the

idea is to consider the sheet to be a composite of laminae with thicknesses of the

order of a fiber thickness. One of these laminae is destined to be the critical

lamina, the lamina in which the failure initiates. The model singles out the criti-

cal lamina and treats the rest of the sheet as a continuous orthotropic medium. The

lamina is thin enough to fail by Euler buckling in the test span; however, buckling

of the critical lamina is resisted by the stiffness of the media as well as the

stiffness and moment of inertia of the Euler plate. The critical lamina is not

necessarily the weakest link, but rather a section that carries a sufficient load so

that its failure can lead to total sheet collapse.

Failure by two different mechanisms is analyzed: (a) buckling of an initially

flat plate and (b) failure when the maximum shear strength in the medium is exceeded

because of buckling deformations near an initially curved lamina. The first mecha-

nism is actually a homogeneous model in disguise. Since one lamina must deform as an
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Euler beam, only a subset of the deformations possible in a general homogeneous

model is allowed. As expected, the analysis yields a compressive strength greater

than that which a homogeneous model would give. The second case is proposed to

represent compressive failure of paperboard. It is a truly heterogeneous model,

since shear weakness is placed at the boundary of an Euler plate which deforms but

does not yield. The plate curvature and medium shear strength can be adjusted to

make the predicted ac much less than in the homogeneous models. The first case is

included, because many of the results from the flat plate analysis are used in the

curved plate development.

The major assumptions used in both the flat and curved lamina models are listed

below. (1) The critical lamina is an Euler plate. (2) The compressive stress is

uniformly distributed. The stress on the critical lamina is equal to the overall

compressive stress, o. (3) The surfaces of the two surrounding media are in rigid

contact with the lamina, and deformations inside the media are found from the

elastic state equations subject to zero stress boundary conditions at the sheet sur-

face and continuity of deformation at the medium-lamina interface. To first order,

the deformations at the surface of the lamina are only in the x3 -direction. The

second order effects due to in-plane deformations in the lamina will be ignored in

calculating deformations in the media. (4) The deformations are taken to be inde-

pendent of the x 2-direction. In fact, a condition of plane strain in the 1-3

plane is assumed. This complies with the clamping in the actual tester which pre-

vents x2-direction deformation at the clamps. The width is large compared with the

span, so that Poisson effects at the edges can be neglected. (5) Only the critical

lamina is under compression. This is justified by noting that the critical lamina

has a much greater disposition for buckling than its neighbors. The effect of com-

pression in the homogeneous medium is small compared with the attempted buckling of
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the critical lamina into the medium. This assumption means that the theory is not

valid for large L/c, where failure occurs by overall Euler buckling of the entire

plate, and the total load must be considered. For small L/c values, the failure is

localized, and the model will give a much lower strength than Euler buckling of the

whole plate.

Compressive failure of sandwich constructions has been treated mathematically

(see for example the work of Norris et al.1 7 ). The calculations required for the

critical lamina models are similar to those for a sandwich with thin, stiff outer

layers. However, the boundary conditions in the critical lamina models are dif-

ferent from the sandwich, since the thin layer is in the middle. Also, simplifica-

tions, due to the large elastic anisotropy in paperboard, are made in the critical

lamina models.

a) Initially Flat Critical Lamina

First the critical load necessary to cause buckling of an initially flat plate

of thickness t into an orthotropic medium will be calculated. For an isolated

flat plate, buckling occurs when the compressive load becomes large enough that the

work it does in a virtual displacement is greater than the energy stored in the

bending beam for the same displacement. The virtual displacement is taken in the

form 6ux3 6= A sinkxl and the critical load is found to depend on k. For an isolated

plate the critical load decreases monotonically with k, and buckling occurs at the

smallest k compatible with the end conditions. In this case the virtual work per

unit area must equal the energy stored in the plate and in the medium per unit area.

That is, buckling of the plate occurs when

at 6c = 6Up + 6U (3)

Here 6e is the incremental strain in the xl direction resulting from the 6A sinkxt

deformation in a plate whose middle plane cannot stretch. The values of at 6c and
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6Up can be taken from any text book analysis of plate bending. They are

ot 6e = at(A)2k2/4 (4)

and 6Up = C 1(6A)
2k4 t3/48. (5)

Now, all that is needed is 6Um, i.e., the incremental energy of deformation per

unit area in the media on both sides of the critical lamina. This can be taken from

the following calculation of the energy per unit area in an orthotropic plate of

thickness T with dux3 = 6A sinkxl and 6uxl = 0 on one surface and T33 = T31 = 0 on

the other surface.

Since plane strain is assumed (E2 1
= E21 = 23 = 0), the stress-strain rela-

tionships for the elastic, orthotropic media are

The equations of static equilibrium are

Equations (9) and (10) are satisfied identically if the Tij's are taken from an Airy

stress potential 18 $; that is, if T11 ' D,33, T33 - ,11, and T13 -- ~,13, then

eqns (1) and (2) are automatically fulfilled.

In addition to the equations for elastic equilibrium, the compatibility

equations must-be obeyed. For the plane strain case, compatibility is fulfilled if

Expressing eij in terms of $, eqns (11) becomes
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(12) @

So, any $ obeying eqn (12) gives an admissible solution to the plane strain elastic

equilibrium equations.

Assuming a solution of the form $ = f(x 3 ) sinkxl and inserting into eqn (12.)

imposes the following restriction on f(x3).

Cll k4 f(x3) - C2 k2 f(x3)" + C33 f(x 3 )''" = 0, (13)

Where C2 = -2C1 3 + (ClC 3 3-C1 3
2)/C5 5. A solution of the form f(x3) = e is satis-

factory if

Fc2 ± (C2
2 - 4C3 3 Cll)l/ 2 1/2

= +k 2C33. = ± + (14)

Thus an acceptable form for O with four arbitrary constants, B1, B2, D1 and D2 is

4 = [Blsinhl+x 3 + B2 sinhlx 3 + Dlcosha+x3 + D2 coshlx 3 ] sinkxl. (15)

The values of B1,

are met. This is

fulfilled.

B2 , D1, and D2 can be chosen so .that the four boundary conditions

done when the following linear simultaneous equations are
.

sinh _T

t Lcosh L-T

0

cosh +T

t +sinh L+t

cosh l-T

t _s inh l_T
·



-13-

Paperboard is extremely anisotropic, the z-direction stiffness being much

smaller than the in-plane stiffnesses. Also, failure often occurs at a wavelength

less than T; therefore, approximate solutions to eqn (16) when C11>C 3 3 , C1 1>C13,

Cl>>C55,'and ekT >> 1 will be of interest later. A straightforward calculation shows

that in these limits the coefficients are

Now 6Um can be calculated for the general case and also in the limit of high

anisotropy and deep embedment. The stored energy, 6Um, is equal to the work done by

forces acting on the boundary of the medium necessary to cause a 6A deformation. So

For the limiting case the expressions in eqns (17) and (18) reduce this to

Inserting the results of eqns (20) into eqn (3) produces the following expression

for o as a function of k.
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The expressions (Dl+D2) and (D1+D2)2 are found by solving eqn (16) with T equal to

the distance from the critical lamina'to the top and bottom surfaces, respectively.

This can be done numerically and a can be plotted versus X. The results depend on t/c

and to some extent on the location of the critical lamina to the surface. When the

critical lamina is near the surface, Ois less than for interior laminae. Figure 6

presents plots of a/Cll versus X/t for different values of c, critical lamina

locations, and stiffness ratios. Curve 1 is a single lamina with no reinforcing

medium. It is simply the Euler curve for an isolated lamina. Curve 2 is for a

plate two laminae thick. At larger wavelengths it is stronger than the single

Euler plate; however, a still decreases monotonically with X. As c/t increases, a

minimum occurs in the a versus X.curve. Curve 3 is the lowest value of c/t at which

this happens. Here the critical lamina is on the surface and the sheet is four

laminae thick. As the sheet becomes thicker, the location of the minimum approaches

a limit. In fact, once the plate is about eight laminae thick these values are quite

stable with changing c/t. Curves 4 and 5 are respectively eight- and sixteen-laminae-

thick sheets, the critical lamina being one of the two center ones. Curves 1

through 5 are all for media with elastic anisotropy typical of paper.1 2 Curve 6 is

a center lamina of a 16-laminae-thick isotropic plate. It is presented as a

contrast to the paper case where there is large elastic anisotropy.

[Figure 6 here]

The expression for a is simplified in the limiting case where eqn (22) is valid.

Here

In the above equation the 2 is for a center lamina and the 1 is for a surface lamina;

other lamina locations have intermediate values. The value of X for the minimum

buckling load, ac, can be found by setting do/dk to zero. The result is
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kopt (24)

When this is inserted into eqn (23), an approximate value for oc is obtained.

oc = [.83) [C1 1C3 3 C5 5 ] / 3 (25)

The location of the minima in the numerically generated curves, such as those in

Fig. 6, can be compared with the asymptotic values in eqns (24) and (25). For plates

with anisotropy typical of paper the locations of the minima determined by the two

methods differ by less than 5% when the plate is 7 laminae thick or more. The cross

symbols on Fig. 4 mark the location of the asymptotic minima for curves 3-6.

The value of from this curve is more than three times greater than C5 5

(=0.018 C1 1 ), the order of values predicted by the homogeneous theories. This is to

be expected, since as yet no real inhomogeneity has been injected into the model.

The generality of the deformation has merely been limited and compression over much

of the plate has been ignored.

b) Initially Curved Critical Lamina

Now the case of an initially curved critical lamina bending into a reinforcing

orthotropic medium will be studied. In paperboard there is a zone of weakness be-

tween the laminae, and shear failure can occur due to prebuckling deformations. The

model will not allow buckling of the critical laminae, but when the maximum shear

stress in the medium exceeds a limit, the plate yields. A curved plate under

compression bends before buckling. The initial curvature can be expressed as a

Fourier summation of sinusoidal functions. The Fourier components with wavelengths
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near the critical wavelength lead to large deformations of the lamina. It is cur-

vature near this wavelength that results in the prebuckling, shear failure of the

medium.

First the deformation of a plate with initial curvature, 6Ao sinkxl, will be

found as a function of a and k. The analysis is similar to the first case, except

the work done by a depends on 6Ao and a nonzero deformation equilibrium can be

lamina or in the medium. When a is applied, the deformation, Uz
= (6A + 6Ao) sinkxl,

is found by requiring the total energy to be a minimum.

at6e = 6Up + 6UUm (26)

Now the virtual work term becomes

while the other terms are unchanged. Therefore, the equilibrium condition is

Solving for the incremental deformation, 6A, yields

This gives a nonlinear relationship between 6A and a, even though the entire process

could be elastic. Now the maximum shear stress in the medium can be calculated.
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The maximum stress occurs when coskx = 1 and z = 0; therefore,

[B1I+ + B2Z-]L
(T13)max = -k- Cl16At . (31)

C 11 6At

In eqn (31), [B1+'+ B2k-]L is taken as the largest value calculated for two media

attached to the critical lamina. The maximum shear stress expressed as a function

of a is

When (T13)max equals the shear strength at the interface, Tf, failure occurs.

Equation (32) is now solved for Oc as a function of f'.

6Ao C5 5
The term RW symbolizes the "roughness-weakness" factor, t . This is the ratio

Tf

of initial curvature near the critical wavelength to the lamina thickness, a

"roughness" factor, multiplied by the ratio of shear modulus to strength, a

"weakness" factor.

Equation (16) will give the D and B coefficients in terms of elastic constants,

and then ac/Cll can be plotted vs. X/t for a given set of elastic constants, plate

and lamina dimensions, and value of RW. Figure 7 presents some such plots for

elastic coefficients typical of paper. The curves are for a plate 20 laminae thick

at four different RW values. The critical lamina is taken in the sheet center. The

RW = 0 curve is the same as the flat plate buckling condition discussed earlier.
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Notice that as the RW factor increases, ac (the minimum in critical load) decreases.

Realistic values of ac well below C5 5 are realized with reasonable values of RW.

The value of C5 5/Tf of around 10019,20 and the total Fourier component of amplitudes

in the region of the minimum of about 0.0lt to 1.0t seems probable. The straight

line in Fig. 7 is the Euler curve for a plate 20 laminae thick. The model curves

are expected to be valid only in wavelength regimes where the Euler curve is much

higher than the model curves. Notice that the wavelength of the minimum failure

stabilizes at about 10t for values of RW greater than about 10. Again, these curves

are not much of a function of thickness, c, once c is greater than about 7t. Also,

as in the first case, the critical load is less when the critical lamina is on the

surface than when it is about 3t or more deeper into the plate. Figure 8 is a simi-

lar set of curves for a hypothetical isotropic plate. Notice that minimum are not

achieved for X/t greater than 2. Since the assumption of Euler buckling of the

lamina is invalid if X/t < 6, this model is appropriate for paperboard only, because

it is highly anisotropic.

[Figures 7 and 8 here]

As in the flat plate, simplification can be made when C1 >>C 5 5, C 1 »>>C 3 3,

Cl>>C13, and ekT>>l. In this case eqn (32) becomes

In eqn (34) the 2 is for a center lamina and the 1 is for a surface lamina.

Taking the derivative of eqn (34) with respect to k and assuming that (C5 5C3 3 )
1/2 >>

oc(kt)opt gives the following approximate values of (kt)opt, the value of kt with

the minimum compressive failure load.
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This value of kt is inserted into eqn (34) to give an approximate oc .

To get eqn (36), it was also assumed that Oc << (CllC33C55)1/3 . The location of the

minima as predicted by eqns (35) and (36) is marked by a cross for the nonzero RW

curves in Fig. 7. Notice that the approximation becomes quitegood for large RW

values. The cross near the RW = 0 curve comes from eqns (24) and (25).

3. DISCUSSION

The results of the curved lamina model are consistent with many of the known

characteristics of compressive failure in paperboard. First, a four region critical

stress versus L/c curve is predicted with break points in the right regions. See

Fig. 9. These plots are made from curves such as those in Fig. 7, after it is assumed

that failure under compression will occur at the available wavelength having the

least strength. The plate has rigidly clamped edges; therefore, the plate can fail

with instabilities at any wavelength less than the span. Failure will occur at the

wavelength below span length that has the least strength. For large spans the Euler

curve is far below the model curve, and the critical stress vs. L/c curve is the

Euler curve of the total plate. As X decreases, a region is reached where the Euler

curve is of the same order of magnitude as the minimum of the model curve. Here

neither picture is appropriate; some combination of the two processes is-at work.

This is the Euler plateau transition region. At lower X values the Euler curve is

much greater than the model curve minimum. In this region the critical stress is

oc, and the failure wavelength corresponds to that at the minimum of the model

curve. At spans less than the wavelength of Oc, the critical stress again begins to

increase. The model becomes invalid as L approach t, and some other process, such

as compressive failure of the fiber, dominates. Figure 9 is a set of curves plotted

in this way. Each has RW = 10 and anisotropy typical of paper. There are curves
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the plateau region increases with c/t. The height of the plateau stabilizes for c/t

> 6, and the only effect of increasing c is to extend the plateau to lower L/c 0
values. Increasing the values of RW would lower the plateau and move the tran-

sition region to larger L/c values.

[Figure 9 here]

Equation (36) is an approximate relation of the plateau region compressive

strength to the elastic moduli and the RW factor. The term (1 - 13 + 5
C111/2C331/2

is not very sensitive to elastic property changes caused by process variable opera-

tions. This is because increases in C13+C55 are generally accompanied by greater

increases in C33. If this part of the function is taken as a constant, a very

simple expression for ac is found:

The RW factor depends on C55/Tf, but certainly there is a strong correlation between

C55 and Tf and their ratio should not vary much as process variables change. At any

rate, if RW is assumed to be constant for a given set of process changes and the

empirical correlation, C55 - C331/2Cll/2, is used, eqn (37) can be transformed to

the empirical relation discussed earlier, ac C111/2C551/2.

Equation (37) is similar to the earlier discovered empirical relationship, oc

C11/2C55 /2, in that Oc depends on a combination of elastic parameters. To test

eqn (37), ac isplotted versus C112/3C551/6C331/6 for the same samples as in Fig. 2

and 3.: These results are presented in Fig. 10 and 11, respectively. Notice that

for both Fig. 10 and 11 the data fall near a straight line with a slope of one.

Figure 11 shows a good correlation as does Fig. 3; however, Fig. 2 is better than

Fig. 10. All of the data for the oriented sheets with constant furnish (Fig. 11)

form a single line, while the variable furnish sheets (Fig. 10) seem to divide into
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separate lines. This is rationalized by noting that RW may not change with wet

straining, wet pressing or fiber orientation, but it could depend on furnish. A

major advantage of eqn (37) over the empirical correlation is that the composite

curves of Fig. 10 and 11 are quite close to each other, whereas the curves in Fig. 2

and 3 are at different levels.

[Figures 10 and 11 here]

Equation (35) provides an approximate relationship between elastic constants and

the ratio of the wavelength of the compressive failure to lamina thickness. This

approximate value is within a few percent of the exact solution for a material with

paperlike anisotropy and an RW factor greater than 10. For paper anisotropy it

predicts that this ratio is of the order of ten. Observations of micrographs, such

as Fig. 1, verify that this prediction is in the correct region.

The load-deformation curve for a sample in a compression strength tester becomes

nonlinear well below the loads at which yielding occurs in tension. If the

compression load is released before failure, some authors have described the sheet

as returning to its original shape with little evidence of plastic yields.7 This

observation is consistent with the picture of elastic bending of a curved lamina

into a restraining medium. Equation (29) could be used to calculate the change in

amplitude, 6A, of a sinusoidal curvature. This could be inserted into eqn (27) to

give the xl-direction strain as a function of compressive stress. Notice that the

stress-strain relationship could be nonlinear, even though linear elastic processes

are controlling the action. This is simply because bending of a curved plate gives

a nonlinear stress-strain relationship.

The model predicts that oc decreases as initial plate curvature increases, if

the elastic coefficients do not change. This should not be interpreted to mean that

additional lamina curvature necessarily weakens the sheet. This is because
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increases in curvature result in greater x3-direction alignment of the fibers, which

in turn results in greater out-of-plane stiffness. This increase in stiffness could

well overpower the increase in RW.
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Fig. 7. Plots of strength versus'wavelength for middle critical laminae in a sheet
20 laminae thick at varying roughness-weakness factors in anisotropic sheets.
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Fig. 8. Plots of strength versus wavelength for middle critical laminae in a sheet
8 laminae thick at varying roughness-weakness factors in isotropic sheets.
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Fig. 11. Relationship between compressive strength and elastic parameters for
anisotropic sheets.
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Fig. 6. Plots of strength versus wavelength of failure for critical laminae at
varying sheet locations and varying sheet thicknesses.







Fig. 1. S.E.M. micrographs of a linerboard sampler before and after edgewise
compression. Common features can be compared if the compressed sample on
the right is shifted upward. The white areas in the compressed sheet are
caused by disruptions in a surface coating. The figure clearly shows sheet
expansion and delamination between fiber layers in the compressed sheet.41(11
expansion and delamination between fiber layers in the compressed sheet.




