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SUMMARY

A flight is delayed when it arrives 15 or more minutes later than scheduled. Delays

attributed to the National Airspace System are one of the most common delays and can

be caused by the initiation of Traffic Management Initiatives (TMI) such as Ground Delay

Programs (GDP). A Ground Delay Program is implemented to control air traffic volume

to an airport over a lengthy period when traffic demand is projected to exceed the airport’s

acceptance rate due to conditions such as inclement weather, volume constraints, closed

runways or equipment failures. Ground Delay Programs cause flight delays which affect

airlines, passengers, and airport operations. Consequently, various efforts have been made

to reduce the impacts of Ground Delay Programs by predicting their occurrence or the

optimal time for initiating Ground Delay Programs. However, a few research gaps exist.

First, most of the previous efforts have focused on only weather-related Ground Delay

Programs, ignoring other causes such as volume constraints and runway-related incidents.

Second, there has been limited benchmarking of Machine Learning techniques to predict

the occurrence of Ground Delay Programs. Finally, little to no work has been conducted to

predict the impact of Ground Delay Programs on flight and airport operations such as their

duration, flight delay times, and taxi-in time delays.

This research addresses these gaps by 1) fusing data from a variety of datasets (Traffic

Flow Management System (TFMS), Aviation System Performance Metrics (ASPM), and

Automated Surface Observing Systems (ASOS)) and 2) leveraging and benchmarking Ma-

chine Learning techniques to develop prediction models aimed at reducing the impacts of

Ground Delay Programs on flight and airport operations. These models predict 1) flight

delay times due to a Ground Delay Program, 2) the duration of a Ground Delay Program,

3) the impact of a Ground Delay Program on taxi-in time delays, and 4) the occurrence of

Ground Delay Programs.

Evaluation metrics such as Mean Absolute Error, Root mean Squared Error, Correla-

xx



tion, and R-square revealed that Random Forests was the optimal Machine Learning tech-

nique for predicting flight delay times due to Ground Delay Programs, the duration of

Ground Delay Programs, and taxi-in time delays during a Ground Delay Program. On the

other hand, the Kappa Statistic revealed that Boosting Ensemble was the optimal Machine

learning technique for predicting the occurrence of Ground Delay Programs.

The aforementioned prediction models may help airlines, passengers, and air traffic

controllers to make more informed decisions which may lead to a reduction in Ground

Delay Program related-delays and their impacts on airport and flight operations.
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CHAPTER 1

INTRODUCTION

1.1 Flight Delays

Delays are an important indicator of the performance of any transportation system [1]. The

number and duration of delays directly and indirectly affect consumers and transportation

service providers one way or another. In the aviation sector, a flight is considered to be

delayed when it arrives 15 or more minutes later than scheduled [2]. Flight delays can be

attributed to [3]:

• Air Carrier: These delays are due to circumstances within the airline’s control such

as maintenance or crew issues

• Security: These delays are caused by the evacuation of a terminal or concourse, re-

boarding of aircraft because of a security breach, an inoperative screening equipment

and long lines in excess of 29 minutes at screening areas

• Late Arriving Aircraft: These delays are due to the previous flight with the same

aircraft arriving late which causes the present flight to depart late

• Cancelled: A “cancelled” flight is a flight that was not operated, but was in the car-

rier’s computer reservation system within 7 days of the flight’s scheduled departure

• Diverted: A “diverted” flight is a flight which is operated from the scheduled origin

point to a point other than the scheduled destination point in the carrier’s published

schedule

• National Airspace System: Delays and cancellations attributable to the National

Airspace System refer to a broad set of conditions – non-extreme weather conditions,

airport operations, heavy traffic volume, air traffic control, etc.
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Figure 1.1: Flight Delay Statistics (2017) [4]

Figure 1.1 shows the proportion of on-time flights compared to the different types of

delays that occurred in 2017. From Figure 1.1, it can be seen that 80% of flights arrived

on time while late arriving aircraft and National Airspace System delays were the highest

causes of flight delays. These delays have a significant impact on airlines, passengers, and

the United States economy. It is thus important to understand the economic cost of flight

delays and to initiate efforts to reduce their impact on airlines, passengers, and the United

States economy.

1.2 Economic Cost of Delays

Table 1.1 shows the overall percentage of flight operations by major US carriers that arrived

in May 2018 at the 30 largest airports and at all airports in the United States. In particular,

it shows that over 20% of flights from major US carriers were delayed for one reason

or another which led to increased operational costs for airlines. These costs include but

are not limited to fuel, maintenance, crew, and aircraft. Flight delays also lead to loss in
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Table 1.1: Overall percentage of reported flight operations arriving on time by carrier (May
2018) [6]

Carrier Arrivals on time at 30 largest airports (%) Arrivals on time at all airports (%)
Delta airlines 85.0 85.0

Alaska Airlines 79.7 81.8
Spirit Airlines 79.8 80.3
United Airlines 78.9 78.9

American Airlines 79.0 78.6
Southwest Airlines 76.0 76.4
Frontier Airlines 70.6 71.8
JetBlue Airways 70.5 71.0

TOTAL 77.4 77.9

productivity and business opportunities for business travelers, as well as an opportunity cost

of time for leisure passengers. The effects of flight delays on airlines and passengers also

have an indirect impact on the economy. Delays may lead to increased fuel costs which lead

to increased airfares. Increased airfares as well as delays in general may lead to changes in

consumer spending on travel, and tourism good and services [5], which eventually impacts

the economy.

Figure 1.2 provides a breakdown of the direct costs of air transportation delays in terms

of passengers, airlines, lost demand, and impact on the Gross Demand Product (GDP)

of the United States in 2007 dollars. The $8.3 billion airline component is comprised of

increased operating costs for crew, fuel, maintenance, etc. The $16.7 billion passenger

component is comprised of the passenger time lost due to schedule buffers, delayed flights,

flight cancellations, and missed connections. The $3.9 billion cost associated with lost

demand represents an estimate of the time or productivity loss incurred by passengers who

avoid air travel as a result of delays. As discussed, in addition to the direct costs of flight

delays on airlines and passengers, flight delays have indirect effects on the U.S. economy.

Indeed, inefficiencies in the aviation industry may lead to increased cost of doing business
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Figure 1.2: Direct cost of air transportation delays (2007 dollars) [7]

for other industries, making the associated businesses less productive [7].

1.3 National Airspace System Delays

As seen in Figure 1.1, late arriving aircraft were the highest causes of flight delays in 2017.

However, it is important to note that late arriving aircraft may have been affected by Na-

tional Airspace System delays or other delays on prior trips leading to that delay. Thus,

the proportion of flights affected by National Airspace System delays may be higher. Con-

sequently, the work covered in this research will focus on delays caused by the National

Airspace System. The National Airspace System is comprised of air navigation facili-

ties, equipment, airports or landing areas, aeronautical charts, information, services, rules,

regulations, procedures, technical information, manpower, and materials [8]. Figure 1.3

shows the causes of National Airspace Delays in 2017. From this figure, it can be seen that

inclement weather caused 53% of delays associated with the National Airspace System,

followed by volume constraints and closed runways. As discussed previously, flight delays

are costly to airlines, passengers, and the United States economy. Thus, efforts have been
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Figure 1.3: Causes of National Airspace System Delays (2017) [9]

made by stakeholders in the aviation industry to reduce the incidence and impacts of flight

delays attributed to the National Airspace System.

1.4 Efforts Towards Reducing National Airspace System Delays

Over the years, efforts have been made to minimize delays attributed to the National

Airspace System while maintaining or improving aviation safety. In 2008, the Depart-

ment of Transportation developed a list of initiatives to improve air travel while reducing

the impacts of lengthy delays on consumers [10]. These initiatives involved instituting

caps on hourly operations at the John F. Kennedy and Newark airports. The Department

of Transportation also instituted other measures such as negotiating an agreement with the

Department of Defense to open up military airspace for commercial use during the holiday

season to reduce the duration and number of flight delays. These actions have proven to be

particularly successful [10].

In August 2000, the United States Department of Transportation formed the Air Car-

rier On-Time Reporting Advisory Committee to consider changes to the on-time reporting
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Figure 1.4: Delay Cause by Year (June 2003 - December 2017) [14]

system and provide the public with clear information about the nature and sources of air-

line delays and cancellations. In 2001, the Bureau of Transportation Statistics conducted

a pilot program with four airlines to test the monthly reporting of causes of delay [11].

In November 2002, the Department of Transportation issued a final rule on reporting the

causes of flight delays which requires carriers to report on domestic operations to and from

U.S. airports, starting June 2003. Currently, air carriers that have 0.5% of total domestic

scheduled-service passenger revenue have to report on-time data and the causes of delay.

In 2018, this represented 18 air carriers. These reports cover nonstop scheduled-service

flights between points within the United States (including territories) [12].

The above mentioned initiatives along with others, such as the Aviation Safety Informa-

tion Analysis and Sharing (ASIAS) initiative have contributed to decreasing NAS-related

delays since 2003 [13], as seen in Figure 1.4. However, much more needs to be done to

further reduce delays attributed to Traffic Management Initiatives such as Ground Delay

Programs implemented in the National Airspace System.
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1.5 Ground Delay Programs (GDP)

Ground Delay Programs (GDP) are Traffic Management Initiatives (TMI) that are initiated

when aircraft demand is projected to exceed airport capacity over a long period of time due

to conditions such as inclement weather, volume constraints, runway closures, equipment

failures etc [15, 16].

Whenever Ground Delay Programs are issued, Traffic Management Personnel use the

Enhanced Traffic Management System (ETMS) to predict, on national and local scales,

traffic surges, gaps, and volume based on current and anticipated airborne aircraft [17].

This is done by evaluating the projected flow of traffic into airports and sectors, then imple-

menting the least restrictive action necessary to ensure that traffic demand does not exceed

system capacity. During Ground Delay Programs, Expected Departure Clearance Times

(EDCT) are issued to affected flights. EDCT is the runway release time (“Wheels Off”)

assigned to aircraft due to Traffic Management Initiatives (TMI) that require holding air-

craft on the ground at the departure airport [18]. EDCT are updated whenever conditions

improve to reduce delay durations. Figure 1.5 shows a breakdown of the different causes

of Ground Delay Programs in 2017.

Figure 1.5: Causes of Ground Delay Programs (2017) [19]
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1.6 Research objectives

As mentioned previously, the issuance of Ground Delay Programs cause delays which af-

fect airlines, passengers, and airport operations. However, the impacts of such delays can

be reduced by:

1.6.1 Predicting flight delay times due to a Ground Delay Program

Currently, the Federal Aviation Administration (FAA) provides the general public with in-

formation regarding Traffic Management Initiatives such as Ground Delay Programs when-

ever they are initiated [20]. This information includes the affected airport, the cause of the

Ground Delay Program, its duration, and the maximum and average delay times during

the entire Ground Delay Program. Even though maximum and average delay times during

the entire duration of a Ground Delay Program provide valuable information to the public,

obtaining the maximum and average delay times for each hour during a Ground Delay Pro-

gram may provide more insight and much more valuable information for passengers and

airlines. Consequently, the first objective of this research involves predicting the max-

imum delay time per hour of a Ground Delay Program, and computing the average

delay time using the number of flights scheduled to arrive during the specified hour.

1.6.2 Predicting the duration of Ground Delay Programs

The duration and scope of Ground Delay Programs is updated whenever conditions change.

Unfortunately, airlines and passengers do not know if the duration or scope of a Ground

Delay Program will occur, which consequently hinders their ability to plan appropriately

and efficiently. The second objective of this research thus focuses on predicting the

duration of Ground Delay Programs. This may help airlines and passengers to make

more informed decisions.
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1.6.3 Predicting the impact of Ground Delay Programs on taxi-in delay times

Ground Delay Programs impact airport operations such as taxi-in times, leading to taxi-in

delay times. Taxi-in delay times are defined as the difference between actual taxi-in times

and unimpeded taxi-in times. This metric is typically recorded when the duration of the

delay is over a minute [21]. The third objective of this research focuses on predicting

taxi-in delay times during Ground Delay Programs.

1.6.4 Predicting the occurrence of Ground Delay Programs

The final objective of this research focuses on predicting the occurrence of weather

and volume-related Ground Delay Programs. This will enable passengers, airlines, and

air traffic controllers to make more informed decisions.

The remainder of this document will highlight the literature review conducted, the prob-

lem formulation process, the methodology used, the analysis of results, and concluding

remarks.
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CHAPTER 2

BACKGROUND

Numerous efforts have been made to predict flight delays and their durations, using various

approaches [22]. However, researchers and analysts have faced a number of challenges

when developing these prediction models. These challenges include, among others, under-

standing which data may be applicable to their work, where to access the data, and how to

efficiently analyze the data.

The aviation industry generates data at record volumes, with most of the data generated

and collected focusing on what happens in and around airplanes [23]. This data, character-

ized by the ‘Four V’s’[24], is commonly referred to as Big Data:

• Volume: Refers to the scale or amount of Big Data (data at rest). Large corporations

typically generate, store and utilize terabytes, exabytes, petabytes and zettabytes of

data

• Veracity: Refers to the accuracy of Big Data

• Velocity:Refers to how quickly streaming data (data in motion) is received and pro-

cessed

• Variety: Refers to the different forms of Big Data. Big Data can be unstructured or

structured. Unstructured data can be in the form of audio, video or text files, while

structured data usually presents itself in databases with all features having a pretty

well defined meaning

Due to the intricate nature of aviation Big Data, data analysts and researchers face a

number of challenges associated with analyzing, understanding and identifying trends in
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aviation Big Data. Particularly, the ingestion, storage, exploration, analysis and visual-

ization of aviation Big Data presents many challenges. Traditional approaches to delay

modeling, in particular cannot analytically analyze the enormous volume of data related

to traffic, impacts of inclement weather or airport-related activities (runway closures, con-

struction etc.) that traditionally cause Ground Delay Programs. After ingesting and pro-

cessing aviation Big Data, analysts and researchers need to be able to rapidly and efficiently

make sense of the data that is critical to their operations. Machine learning is one approach

to help address this problem. New approaches that leverage machine learning techniques

have shown some promising results in their ability to predict delays using information about

traffic volume, inclement weather etc.

2.1 Machine Learning

Machine Learning is a method of data analysis focused on the development of computer

algorithms to transform data into useful actions [25]. Machine Learning has been widely

used in various industries. Examples of machine learning applications include forecasts of

weather behavior and long-term climate changes, reduction of fraudulent credit card trans-

actions, prediction of popular election outcomes, discovery of genetic sequences linked to

diseases, and image recognition.

Machine Learning has also been widely used to augment specialized knowledge of

subject-matter experts, and has contributed to improving data generation and aggregation

processes. However, it is worth noting that as much as society has greatly benefited from it,

machine learning has its limitations. Indeed, it has little flexibility to extrapolate outside of

the strict parameters it learned. Thus, it is important for the model to be trained accurately

and comprehensively to avoid over-fitting or under-fitting.

Machine Learning is also not an intuitive process, with Machine Learning techniques

often acting as black boxes. Machine Learning techniques and their applications also rely

on various assumptions. Having a clear understanding of these assumptions is thus crit-
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ical to the application of any Machine Learning technique/algorithm. Finally, Machine

Learning algorithms are divided into three categories: supervised learning, unsupervised

learning, and meta-learners/ensembles. Understanding these categories is an integral step

towards developing accurate prediction models.

2.1.1 Supervised Learning

The process of training a model that predicts one value using other values in the dataset is

known as supervised learning. Models used in supervised learning are known as predictive

models. In supervised learning, the algorithm attempts to discover and model the relation-

ship between the value being predicted (target) and other values (predictors). Predictive

models can be used to predict not only events in the future, but can also be used to predict

previous and real-time events [26].

It is also important to note that supervised learning does not refer to human interference.

Rather, it refers to the fact that target features enable learners to assess how well they have

learned the desired tasks. Supervised Machine Learning algorithms can be used for two

tasks: classification and numeric prediction [25]. In supervised learning, the data is labeled

and the algorithms learn to predict the output from the input data.

Classification

Classification is often used to predict which class an instance belongs to. This involves

mapping predictors to a target by learning how predictors are related to the target. Examples

of classification tasks include predicting whether an email is spam, if an individual has

cancer, if a football team will win or lose or if a delay will occur [25].

Numeric Prediction

Numeric predictions are used to predict a numeric target from a set of predictors. The

targets are continuous because there are no discontinuities or gaps in the values that they

12



can take. Examples of numeric prediction tasks include predicting income, test scores or

counts of items [25].

2.1.2 Unsupervised Learning

The process of training a model that benefits from the insight gained from summarizing

data in new and interesting ways is known as unsupervised learning. Models used in unsu-

pervised learning are known as descriptive models. As opposed to predictive models that

predict target values, no single feature is more important than the others in a descriptive

model. Unsupervised Machine Learning algorithms can be used for tasks such as pattern

discovery and clustering [25]. In unsupervised learning, the data is unlabeled and the algo-

rithms learn to understand the structure of the the data.

Pattern Discovery

Pattern discovery is used to identify useful associations within data by extracting knowl-

edge from databases without prior knowledge of existing patterns within the data. An

example of a pattern discovery task is identifying goods that are frequently purchased to-

gether [25].

Clustering

Clustering or Segmentation Analysis is often used to divide a dataset into groups. It is

widely used to explore data in order to identify hidden patterns in data. Clusters are typ-

ically modeled using a measure of similarity which is defined by metrics such as proba-

bilistic distance. An example of a clustering task is identifying groups of individuals with

similar behavior for an advertising campaign [25].
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2.1.3 Meta-learning/Ensembles

Meta-learning algorithms use the results of some learning to inform additional learning.

This can be useful for challenging problems or when a predictive algorithm’s performance

needs to be as accurate as possible [25]. Meta-learning algorithms include bagging, boost-

ing and random forests. One of the benefits of using meta-learners or ensembles is that they

may allow a user to spend less time in pursuit of a single best model. Instead, a number of

algorithms can be trained and combined together.

Table 2.1 highlights a breakdown of different Machine Learning algorithms and their

learning tasks. A description of the algorithms presented in Table 2.1 can be found in

Appendix A.

Table 2.1: Machine Learning Algorithms And Their Learning Tasks [25]

Algorithm Learning Task
Nearest neighbor Classification

Naive Bayes Classification
Decision Trees Classification

Classification Rule Learners Classification
Linear Regression Numeric Prediction
Regression Trees Numeric Prediction

Model Trees Numeric Prediction
Neural Networks Dual use

Support Vector Machines Dual use
Association Rules Pattern detection
k-means clustering Clustering

Bagging Dual use
Boosting Dual use

Random forests Dual use

The remainder of this chapter will focus on discussion relevant past studies and identi-

fying limitations in their application of Machine Learning techniques in predicting Ground

Delay Programs.
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2.2 Review of Past Research

2.2.1 Predicting Ground Delay Program At An Airport Based On Meteorological Conditions

This effort involved developing two models to predict the occurrence of a Ground Delay

Program at an airport based on meteorological conditions using Logistic Regression and

Decision Trees. The models were developed with two major U.S. airports as test cases:

Newark Liberty and San Francisco International airports, using meteorological conditions

and traffic demand at that hour. Meteorological conditions were extracted from the Rapid

Update Cycle (RUC) database. Traffic demand data was obtained from FAA’s Aviation

Systems Performance Metrics (ASPM) database. Data on GDP occurrence at an airport

was obtained from FAA’s National Traffic Management Log (NTML) database. Results

from the models indicated that the Logistic Regression model performed better than the

Decision Tree in predicting Ground Delay Programs. Even though both models performed

well, there is a need to expand the scope of Ground Delay Program prediction models to

include other causes such as volume constraints [27].

2.2.2 Decision Support Tool for Predicting Aircraft Arrival Rates, Ground Delay Programs,

and Airport Delays from Weather Forecasts

This effort involved developing a decision support tool to predict future airport capacities

using Support Vector Machines. Terminal Aerodrome Forecast (TAF) was used as an inde-

pendent variable within a Support Vector Machine to predict Aircraft Arrival Rates (AAR)

as a proxy for airport capacity. Within the decision support tool, the Aircraft Arrival Rates

were then used to determine Ground Delay Program (GDP) program rates and duration,

as well as passenger delay. Unfortunately, the data was over-fitted and this impacted the

model’s performance [28].
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2.2.3 Ground Delay Program Planning Under Uncertainty in Airport Capacity

This effort involved developing an optimization algorithm to assign flight departure de-

lays under probabilistic airport capacity. The algorithm dynamically adapted to weather

forecasts by revising, when necessary, departure delays. San Francisco International Air-

port served as a use case. The algorithm was applied to assign departure delays to flights

scheduled to arrive in the presence of uncertainty during the fog clearance time. Weather

forecasts were obtained from an ensemble forecast system for predicting fog burn-off time

developed by the National Weather Service (NWS) and MIT Lincoln Labs. Experimental

results indicated that overall delays at the San Francisco International Airport could be re-

duced by up to 25%. However, the work did not include other weather-related conditions

in the prediction models nor did it include other causes of Ground Delay Programs [29].

2.2.4 Optimizing Key Parameters of Ground Delay Program with Uncertain Airport Capacity

This effort involved developing a framework to optimize key parameters of Ground De-

lay Programs such as file time, end time, and distance using a genetic algorithm. The

model calculated the optimal Ground Delay Program file time, which was estimated to sig-

nificantly reduce the delay times. Results showed that, in comparison with actual Ground

Delay Programs that occurred, the proposed framework reduced the total delay time, unnec-

essary ground delay, and unnecessary ground delay flights by 14.7%, 50.8%, and 48.3%,

respectively. However, while it is important to predict the optimal GDP file time, pre-

dicting the duration of Ground Delay Programs may be much more useful to airlines and

passengers [30].

2.2.5 Predicting the initiation of a Ground Delay Program

This effort involved developing a prediction model to support decision making in initiat-

ing Ground Delay Programs, and quantifying their impact using Logistic Regression. This

research aimed to predict the initiation of a Ground Delay Programs for flight operators.
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Results showed that whatever the time horizon, the model’s predictions were often incor-

rect, either predicting a Ground Delay Program when one was not implemented or vice

versa. Benchmarking of Machine Learning techniques would have helped in identifying a

set of suitable techniques for this model [31].

2.2.6 Ground Delay Program Analytics with Behavioral Cloning and Inverse Reinforcement

Learning

This effort involved developing two models to predict Ground Delay Program implemen-

tation decisions and provide insights into how and why those decisions were made. These

models were developed using behavioral cloning and inverse reinforcement to predict hourly

Ground Delay Program implementation at Newark Liberty International and San Francisco

International airports. Scheduled flight arrival times and the state of airports were extracted

from the FAA’s Aviation System Performance Metrics (ASPM) database. Weather data was

extracted from Terminal Aerodrome Forecasts (TAF) and Meteorological Terminal Avia-

tion Routine (METAR) weather reports. Results showed that the behavioral cloning model

was substantially better than the inverse reinforcement learning models at predicting hourly

Ground Delay Program implementation for these airports. However, the models struggled

to predict the initialization and cancellation of Ground Delay Programs. Benchmarking of

Machine Learning techniques may address these shortcomings [32].

2.2.7 Development of a Data Fusion Framework to support the Analysis of Aviation Big

Data

This effort highlighted how the FAA can utilize a data fusion framework for the analysis of

aviation big data. The framework was tested for the purpose of predicting the occurrence of

weather-related Ground Delay Programs (GDP) at the Newark (EWR), La Guardia (LGA),

and Boston Logan (BOS) International Airports. In particular, this research involved fus-

ing data from the System-Wide Information Management (SWIM) Flight Publication Data
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Service (SFDPS) [33], Traffic Flow Management System (TFMS) [34], and Meteorological

Terminal Aviation Routine (METAR) [35] datasets. The prediction model was developed

using Decision Trees and performed well. However, this model focused on Ground Delay

Programs caused by inclement weather only. Expanding the scope of this research to in-

clude other causes of Ground Delay Programs, and benchmarking different techniques will

provide much more information to aviation stakeholders [15].

2.3 Summary of Prior Research and Research Gaps

The review of prior research highlights a couple of limitations and/or gaps. First, prior

work in predicting delays associated with Ground Delay Programs has mainly focused on

weather-related delays. Other causes such as volume constraints and runways closures

have been largely ignored, primarily due to a lack of access to data. This research aims

to address these limitations by including the other causes of Ground Delay Programs as

predictors in the prediction models.

Second, most efforts have not included details regarding the causes of Ground Delay

Programs, primarily due, again, to a lack of access to data. This research aims to address

this gap by including details of the causes of Ground Delay Programs as predictors in the

prediction models. Examples of details of weather-related Ground Delay Programs include

fog, low ceilings, thunderstorms etc.

Third, the type of data used has influenced the Machine Learning techniques imple-

mented. Previous work, for example, used unsupervised data modeling techniques such

as Principal Component Analysis and Clustering [36][37][38] which produced poorly per-

forming prediction models. A lack of benchmarking to evaluate and compare the perfor-

mances of different Machine Learning techniques in predicting the duration of Ground

Delay Programs is also a limitation of previous and current efforts. Consequently, this re-

search involved identifying appropriate Machine Learning techniques and benchmarking

their performance in the context of the research goals and objectives discussed in section
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1.6.

It is also important to note that little to no work has been conducted to predict the impact

of Ground Delay Programs on flight and airport operations such as flight delay times and

taxi-in delay times. These gaps were filled by this research.

Finally, weather forecasts are not a good indication of the impact that weather has on

flight operations. Ignoring this has led to inaccurate or incorrect causalities being made.

Previous efforts have erroneously attempted to link all flight delays to weather conditions.

This limitation was addressed by using comprehensive datasets which clearly state the

cause of the Traffic Management Initiative (TMI) leading to the delay.
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CHAPTER 3

PROBLEM FORMULATION

Motivated by the gaps in research highlighted in the previous chapter as well as the over-

arching need to reduce the impacts of Ground Delay Programs, the research questions

formulated below served as a guide to the overall research plan.

3.1 Research Questions and Hypotheses Development

As mentioned in Chapter 2, past studies have only focused on weather-related Ground

Delay Programs, primarily due to a lack of access to data. In addition, limited benchmark-

ing of Machine Learning techniques has been performed to identify suitable techniques

for developing prediction models for Ground Delay programs. Both of these gaps will be

addressed through two main research questions.

3.1.1 Research Question 1

In addition to the gaps previously mentioned, little to no work has been conducted to pre-

dict the impact of Ground Delay Programs on flight and airport operations such as their

duration, flight delay times, and taxi-in delay times. Thus, the first research question is

three-fold:

Research Question 1.1: Which Machine Learning techniques would lead to accurate

predictions of flight delay times due to Ground Delay Programs?

Research Question 1.2: Which Machine Learning techniques would lead to accurate

predictions of the duration of Ground Delay Programs?

Research Question 1.3: Which Machine Learning techniques would lead to accurate

predictions of taxi-in delay times during Ground Delay Programs?
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3.1.2 Hypotheses 1

The hypotheses for Research Questions 1.1, 1.2, and 1.3 are:

Hypothesis 1.1: If dataset(s) containing comprehensive Ground Delay Program data

are leveraged, then prediction models can be developed to predict the impact of Ground

Delay Programs on flight and airport operations such as their duration, flight delay times,

and taxi-in delay times.

Hypothesis 1.2: If numerical prediction algorithms are developed and benchmarked,

then prediction models can be developed to predict the impact of Ground Delay Programs

on flight and airport operations such as their duration, flight delay times, and taxi-in delay

times.

3.1.3 Research Question 2

The second research question seeks to identify Machine Learning techniques to be used in

predicting the occurrence of weather and volume-related Ground Delay Programs. It was

not be possible to predict the occurrence of other causes of Ground Delay Programs such

as equipment failures and runway-related incidents since data on their contributing factors

to equipment failures was not readily available.

Research Question 2: Which Machine Learning technique(s) would lead to accurate

predictions of the occurrence of Ground Delay Programs (GDP)?

3.1.4 Hypotheses 2

The hypotheses for Research Question 2 are:

Hypothesis 2.1: If dataset(s) containing comprehensive Ground Delay Program data

are leveraged, then a model can be developed to predict the occurrence of Ground Delay

Programs

Hypothesis 2.2: If classification algorithms are developed and benchmarked, then the

occurrence of Ground Delay Programs can be accurately predicted
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Figure 3.1 shows the mapping of research questions to hypotheses covered in this sec-

tion.

Figure 3.1: Mapping of Research Questions and Hypotheses
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CHAPTER 4

METHODOLOGY

In order to successfully answer the research questions outlined in the previous chapter and

their relevant hypotheses, it was important to identify and implement an efficient approach.

The following steps served as a comprehensive approach:

4.1 Problem Definition

As mentioned in section 1.6, the objectives of this research were to:

1. Predict flight delay times due to Ground Delay Programs

2. Predict the duration of Ground Delay Programs

3. Predict the impact of Ground Delay Programs on taxi-in delay times

4. Predict the occurrence of Ground Delay Programs

In order to achieve the aforementioned objectives, there was a need to analyze Ground

Delay Programs and their incidence across the largest airports in the United States. Figure

4.1 shows that the Newark (EWR), San Francisco (SFO), La Guardia (LGA), and Los

Angeles (LAX) International Airports had the highest incidence of Ground Delay Programs

in 2017. It can also be seen that Los Angeles International Airport had a good distribution

of the different types of Ground Delay Programs compared to the other airports. Thus,

the aforementioned prediction models were developed for the Los Angeles International

Airport.
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Figure 4.1: Breakdown of Ground Delay Programs by airport (2017) [39]

4.2 Dataset Identification & Acquisition

Three datasets were used to achieve the research objectives highlighted in section 1.6. The

data used for this research spanned the duration, January to August 2017. The datasets used

were:

1. Traffic Flow Management System (TFMS)

2. Aviation System Performance Metrics (ASPM)

3. Automated Surface Observing Systems (ASOS)

4.2.1 Traffic Flow Management System (TFMS)

The Traffic Flow Management System (TFMS) is used by air traffic management personnel

to predict, on national and local scales, traffic surges, gaps, and volume based on current

and anticipated airborne aircraft. TFMS provides Aircraft Situation Display (ASDI) data

such as aircraft scheduling, routing and positional information. TFMS helps traffic manage-

ment personnel examine a situation and provide routes and spacing to assist in controlling
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the flow of traffic. TFMS is comprised of two message streams: TFMS Flight and TFMS

Flow [40].

TFMS Flight

The TFMS Flight message stream is comprised of the following messages:

• Flight plan data initial and subsequent amendments

• Departure and arrival time notifications

• Flight cancellations

• Boundary crossings

• Track position reports

TFMS Flow

The TFMS Flow message stream is comprised of the following messages:

• Reroutes: This provides new routes for affected aircraft

• Ground Stop (GS): This Traffic Management Initiative requires aircraft that meet

specific criteria to remain on the ground

• Ground Delay Program (GDP): This Traffic Management Initiative causes aircraft to

be delayed at their departure airport in order to manage demand and capacity at their

arrival airport

• Airspace Flow Program (AFP): This Traffic Management Initiative is issued when

volume in an area in the National Airspace System reaches a point where traffic

management initiatives are not sufficient
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• Collaborative Trajectories Options Program (CTOP): This Traffic Management Ini-

tiative automatically assigns delay and/or reroutes around one or more Flow Con-

strained Area-based airspace constraints in order to balance demand with available

capacity.

• Flow Evaluation Area (FEA)/ Flow Constrained Area (FCA): Flow Evaluation Area

(FEA) is a line in space that is drawn across a specific area. Traffic managers then

monitor the amount of traffic crossing that line to ensure that the amount of traffic

does not exceed what that volume of airspace can handle at that time. Once the

amount of traffic reaches a point where it is considered to be a potential issue, the

FEA becomes a Flow Constrained Area (FCA)

• Air Traffic Control System Command Center (ATCSCC) advisories: Advisories is-

sued by ATCSCC summarize Traffic Management Initiatives such as reroutes, Ground

Stops and Ground Delay Programs

• Restrictions: This provides information on areas in the airspace that may be restricted

for reasons such as extreme weather or aircraft congestion

• Airport Runway Configurations and Rates: This provides updates on the capacity of

airport runways

• Airport Deicing Status: This provides updates on the deicing status of runways of

airports

• Route Availability Planning Tool (RAPT) timeline forecast data: This data is used to

determine which departure routes need to be closed due to weather conditions and

when to reopen those routes as the weather conditions ease

Figure 4.2 shows the distribution of TFMS Flow messages recorded between midnight

and 1AM on April 21, 2017. It is important to note that anytime conditions change, an
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Figure 4.2: Distribution of TFMS Flow messages from midnight to 1AM on April, 21 2017

updated message is generated. Thus, approximately 14,000 restriction messages recorded

within an hour could be the same message being updated whenever conditions changed.

The TFMS datasets were obtained from the FAA’s Computing Analytics and Shared

Services Integrated Environment (CASSIE). CASSIE is a collaborative and flexible en-

vironment for conducting research, bringing all FAA divisions, partners and stakeholders

together in a shared services environment consisting of Big Data, computing power and

analytical tools. CASSIE utilizes Hadoop Hortonworks for data storage and handling.

Hadoop is an open-source software framework for distributed storage and processing of

big data. In particular, the Hadoop Distributed File System (HDFS) allows for computer

clusters to be linked robustly for high performance storage and computation [41]. Another

component of Hadoop is NiFi, which automates the movement of data between disparate

data sources and systems, making data ingestion fast, easy and secured [42].
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4.2.2 Aviation System Performance Metrics (ASPM)

The Aviation System Performance Metrics database provides data from flights operating at

77 airports in the United States referred to as “ASPM airports” [43], flight data from 27 air

carriers referred to as “ASPM carriers” [44], airport weather and runway data, and airport

arrival and departure rates [45]. ASPM data used for this research was obtained from the

online ASPM database in csv format. This database provides a comprehensive overview

of air traffic for these airports and air carriers, and is composed of five modules: Metric,

Efficiency, Enroute, Dashboards, and Other [45].

Metric

1. Airport Analysis: This metric provides a comparison of actual flight departure and

arrival times, and flight plan times at ASPM airports

2. City Pair Analysis: This metric provides a comparison of actual flight departure and

arrival times, and flight plan times between city pairs

3. Taxi Times: This metric provides actual and unimpeded taxi times for “ASPM air-

ports”

4. Individual Flights: This metric provides a comparison of actual flight departure and

arrival times, and flight plan times for individual flights

5. Cancellations: This metric provides data regarding cancelled flights and completion

rates

Efficiency

1. Airport Efficiency: This measure provides Terminal and System Airport Efficiency

data for airports
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2. Throughput: This measure provides actual airport throughput (number of departures

and arrivals) during a specified period of time

Enroute

1. City Pair Enroute: This measure provides average distance and time data for city

pairs of 300 miles or more

2. Arrival Airport Enroute: This measure provides average distance and time data from

all flights 300 miles or more from their arrival airport

Dashboards

1. AERO: This provides limited next day airport information

Other

1. Weather Factors: This provides information on the severity of weather factors with

regards to their impact on flight delays at airport

2. Diversions: This provides information on flight diversions

3. Advisories: This provides a summary of Traffic Management Initiatives and other

aviation-related advisories

4. Data Download: This provides detailed data for airports and individual flights

4.2.3 Automated Surface Observing Systems (ASOS)

The Automated Surface Observing Systems (ASOS) provides forecasted weather condi-

tions that are updated every minute for the meteorological, climatological, hydrological,

and aviation industries [46, 47]. The ASOS dataset provides a summary of airport weather

conditions such as the date and time that the conditions were recorded as well as weather
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attributes such as ambient temperature, sea level pressure, visibility, wind speed, wind di-

rection, wind gusts, dew point temperature, precipitation accumulation, cloud height and

amount, etc. ASOS data used for this research was obtained online and in csv format [48].

4.3 Data Processing

In order to analyze and utilize the data, there was a need to parse the Traffic Flow Manage-

ment System (TFMS) dataset so as to enable data fusion across the relevant data fields. This

section will also highlight steps taken to ensure that all three datasets contained accurate

information prior to Data Fusion.

4.3.1 Traffic Flow Management System (TFMS)

The TFMS datasets were in the Flight Information Exchange Model (FIXM) [49] format,

which is appropriate for transmitting flight data. Consequently, there was a need to parse

the datasets into a much more usable format (csv) for analytical and Data Fusion purposes.

This is because csv is a much more structured and comprehensible format compared to

FIXM. The TFMS datasets are stored by the FAA as hourly files comprised of all messages

generated during that time period. The datasets also have schema or .xsd files which dictate

the structure of the FIXM files and indicate if fields are required or not. The schema is

critical to ensure that all required fields are extracted in their correct formats. The TFMS

parser was developed accordingly using Python and followed the process highlighted in

Figure 4.3 below.

Figure 4.3: TFMS parsing process
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1. Since the datasets are comprised of messages generated within the hour, there is no

way to distinguish between the beginning of the file and the end of the file. Thus,

it was important to enclose each file with a header and footer such as <root > and

<\root > respectively. This ensured that each file had unique starting and end points.

2. Extract the schema location from the .xsd file. The schema location is typically of

the format “xlmns:......”

3. Parse the FIXM file using the ElementTree Application Program Interface (API) [50]

4. Extract “Active” Ground Delay Program messages

5. Store each Ground Delay Program message as a row in a csv file

After successfully parsing the TFMS datasets, the data was analyzed to remove du-

plicate rows, and to ensure that the data was accurate. Parameters extracted for “Active”

Ground Delay Programs at the Los Angeles International Airport from January to August

2017 were:

1. Start and end dates and times of Ground Delay Programs

2. Cause of Ground Delay Programs

3. Details of causes of Ground Delay Programs

4. Maximum delay time of Ground Delay Programs

Table 4.1 provides a summary of the different causes of Ground Delay Programs that

were extracted from the TFMS datasets, as well as their associated details. Finally, the

duration of Ground Delay Programs was computed using their start and end times.
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Table 4.1: Summary of causes of Ground Delay Programs at LAX from January - August
2017, and their associated details

Causes of Ground Delay Program Details of Ground Delay Programs
Weather Fog, Low Ceilings, Thunderstorms, Wind
Volume Compacted Demand, Multi Taxi, Volume
Runway Construction
Other Other

4.3.2 Aviation System Performance Metrics (ASPM)

Data from the Aviation System Performance Metrics database was extracted online in csv

format. The following parameters were extracted for the Los Angeles International Airport

from January to August 2017:

• Scheduled Arrivals: This parameter states the number of arrivals listed in a published

schedule. Cargo flight are typically excluded from this list [21]

• Arrivals For Metric Computation: This includes arrivals to “ASPM airports” as well

as flights by “ASPM carriers”. General aviation and military flights are not included

in this list [21]

• Date and time

• Average taxi-in delay times: This represents the difference between actual taxi-in

time and unimpeded taxi-in time [21]

4.3.3 Automated Surface Observing Systems (ASOS)

Automated Surface Observing Systems data was extracted online in csv format. The fol-

lowing parameters were extracted for the Los Angeles International Airport from January

to August 2017:

• Date and time
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• Air Temperature (Fahrenheit)

• Dew Point Temperature (Fahrenheit)

• Relative Humidity (%)

• Wind Direction (Degrees)

• Wind Speed (Knots)

• Precipitation Accumulation (Inches)

• Pressure Altimeter (Inches)

• Sea level pressure (Millibars)

• Visibility (Miles)

• Wind Gusts (Knots)

• Cloud Coverage Type

• Cloud Altitude (Feet)

Finally, in order to ensure that the ASOS dataset was complete and appropriate for

Machine Learning, the dataset was analyzed for missing values. The cloud coverage and

altitude parameters particularly had a lot of missing values which meant that no clouds

were present. These missing values were replaced with “M” representing missing values.

4.4 Data Fusion

In order to develop a Machine Learning model using the three datasets, it was important to

identify the relationships between the datasets so as to fuse them together. Data Fusion is

a method of data analysis that involves fusing data from different sources to produce more
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consistent and useful information than that obtained from a single data source [51]. Conse-

quently, the datasets were fused by date and time in order to have a comprehensive dataset

containing Ground Delay Programs of different causes. Some Machine Learning tech-

niques require numerical data rather than categorical data. Thus, after fusing the datasets,

there was a need to encode categorical data into numerical data. This can be done in two

ways: Integer Encoding and One-Hot Encoding.

Integer Encoding

Integer Encoding involves converting unique categorical data into unique integers [52, 53,

54], as seen in Figure 4.4 where dates were converted into integers.

Figure 4.4: Integer Encoding Process

One-Hot Encoding

One-Hot Encoding involves converting each unique categorical parameter into a binary

parameter [55, 56, 57]. From Figure 4.5, it can be seen that four binary variables were

created from the four categories (dates).

Figure 4.5: One-Hot Encoding Process

Machine Learning algorithms often require data to be normalized. Thus, One-Hot En-
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coding was a more appropriate approach for encoding categorical variables as the encoded

variables served as discrete variables for the prediction models. Table 4.2 provides a sum-

mary of encoded and non-encoded variables used for this research.

Table 4.2: Summary of encoded and non-encoded variables

Encoded Variables Non-Encoded Variables
Month Number of actual flight arrivals (Arrivals

For Metric Computation)
Hour Number of scheduled arrivals
Causes of Ground Delay Programs Duration of Ground Delay Programs (sec-

onds)
Details of causes of Ground Delay Pro-
grams

Maximum flight delay times (minutes)

Cloud coverage type Cloud coverage height
Other weather conditions

4.4.1 Data Fusion in the context of predicting flight delay times caused by Ground Delay

Programs

The Federal Aviation Administration currently provides the general public with informa-

tion regarding Ground Delay Programs. This information includes the maximum and aver-

age delay times that have been assigned to flights during the entire Ground Delay Program.

However, knowing the maximum and average delay times per hour during a Ground De-

lay Program may help airlines and passengers make more informed decisions. In order to

achieve this, the following variables were used as predictors for this model with maximum

delay time per hour as the target:

• Month

• Hour

• Duration of Ground Delay Programs

• Causes of Ground Delay Programs
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• Details of Ground Delay Programs

• Number of actual arrivals

• Number of scheduled arrivals

• Weather conditions

It is important to note that the causes of Ground Delay Programs extracted and used

for this prediction model were weather, volume, runway, and other. After predicting the

maximum delay time per hour, the number of actual arrivals were used to compute the

average delay time per hour during a Ground Delay Program. Both of these delay times

were expressed in minutes.

4.4.2 Data Fusion in the context of predicting the duration of Ground Delay Programs

In order to predict the duration of Ground Delay Programs, the following predictors were

used:

• Month

• Hour

• Causes of Ground Delay Programs

• Details of Ground Delay Programs

• Number of actual arrivals

• Number of scheduled arrivals

• Weather conditions

The causes of Ground Delay Programs extracted and used for this model were weather,

volume, runway, and other.
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4.4.3 Data Fusion in the context of predicting the impact of Ground Delay Programs on

taxi-in delay times

In order to predict average taxi-in delay times during Ground Delay Programs, the follow-

ing predictors were used:

• Month

• Hour

• Causes of Ground Delay Programs

• Details of Ground Delay Programs

• Number of actual arrivals

• Number of scheduled arrivals

• Duration of Ground Delay Programs

• Maximum delay time during Ground Delay Programs

• Weather conditions

The causes of Ground Delay Programs extracted and used for this model were weather,

volume, runway, and other.

4.4.4 Data Fusion in the context of predicting the occurrence of Ground Delay Programs

In order to predict the occurrence of Ground Delay Programs, the following predictors were

used:

• Month

• Hour
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• Number of actual arrivals

• Number of scheduled arrivals

• Weather conditions

The targets of this model were weather-related Ground Delay Programs, volume-related

Ground Delay Programs, and no Ground Delay Program events. “Normal” was indicated

as the cause whenever Ground Delay Programs did not occur.

4.5 Model Generation, Validation, & Testing Process

One of the main outcomes of this research was the identification of Machine Learning

techniques that allowed for accurate predictions. This involved the following steps:

4.5.1 Identification of Machine Learning Algorithms

In order to ensure that the prediction models were developed correctly with optimal perfor-

mance, it was important to identify and use the appropriate Machine Learning algorithms

based on the tasks at hand. The targets for the aforementioned models can be broken down

into two categories: classification and numerical predictions. Table 4.3 shows which cat-

egory the different prediction models belong to. Table 4.4 shows the Machine Learning

techniques to be used for the classification and numerical prediction tasks.

Table 4.3: Prediction models and their accompanying tasks

Prediction Model Task

Flight delay times caused by GDP Numerical prediction

Duration of GDP Numerical prediction

Average taxi-in delay times during GDP Numerical prediction

Occurrence of GDP Classification
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Table 4.4: Machine Learning algorithms investigated

Numerical Prediction Algorithms Classification Algorithms
Linear Regression Bagging Ensemble
Regression Trees Naive Bayes
Model Trees Decision Trees
Artificial Neural Networks Boosting Ensemble
Support Vector Machines Support Vector Machines
Random Forest Classification Rule Learners

Random Forest

4.5.2 Model Generation, Validation and Testing with R

After successfully fusing the datasets, the data was partitioned into three sets: training,

validation and testing. One process of partitioning data into these three sets is known as

the holdout method [58]. As shown in Figure 4.6, half of the data was assigned to the

training set which was used to generate the model, one-fourth of the data was assigned to

the validation set which is used to iterate and refine the model, and one-fourth of the data

was assigned to the test set which was used to generate predictions for evaluations. To

ensure that the training, validation and test datasets did not have systematic differences,

the fused data was randomly divided between the three sets. The performance of the test

dataset alone should never be allowed to influence the performance of the model. Thus, it

was important to include the validation set to ensure that a truly accurate estimate of future

performances was obtained. During the validation process, the models are also tuned and

refined to ensure optimal model performance.

4.6 Evaluation

The final step of this methodology was the evaluation of model performances. Evaluat-

ing the performance of learners is vital as it indicates how a learner will perform on fu-

ture/unseen data. The type of evaluation metric used depends on whether the task involved

classifications or numeric predictions, as well as on how “balanced” the dataset the models

39



Figure 4.6: Model Generation, Validation and Testing

were being trained on.

4.6.1 Numerical Predictions Evaluation Metrics

Numerical prediction learners are typically evaluated by analyzing how well the model

fits the data. Four evaluation metrics were used to evaluate the numerical predictors: R-

squared, Pearson’s Correlation Coefficient, Mean Absolute Error, and Root Mean Squared

Error.

R-squared

R-squared values or the coefficient of determination indicate how close the relationship be-

tween predictors and targets follows a fitted regression line [25, 59]. Optimal performance

of a prediction model is associated with an R-squared value close to 1.

Pearson’s Correlation Coefficient

The correlation between variables is a measure of how close the relationship between pre-

dictors and targets follows a straight line. This measure has a maximum value of 1 which

corresponds to a perfect linear relationship, while a value of 0 corresponds to a lack of

linear relationship between variables [25, 60].
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Mean Absolute Error

Mean Absolute Error refers to how far a model’s predictions are from the actual values

[25]. It is calculated by taking the mean of the absolute values of the difference between

the predicted and actual values [61]. The lower the Mean Absolute Error, the better the

performance of the model.

Root Mean Squared Error

Root Mean Squared Error refers to the standard deviation of the difference between a

model’s predictions and the actual values [61]. The lower the Root Mean Squared Error,

the better the performance of the model.

4.6.2 Classification Evaluation Metrics

Classification learners are typically evaluated using results obtained from a confusion ma-

trix. A confusion matrix as seen in Table 4.5 is a table that categorizes predictions accord-

ing to whether they match the actual value. For classification tasks, confusion matrices are

used to measure performance using the metrics highlighted in this section.

Table 4.5: Confusion Matrix

Actual: No Actual: Yes
Predicted: No True Negative (TN) False Positive (FP)
Predicted: Yes False Negative (FN) True Positive (TP)

True Positive (TP) refers to the correct classification of the class of interest. True Nega-

tive (TN) refers to the correct classification of the class that is not of interest. False Positive

(FP) refers to the incorrect classification of the class of interest. False Negative (FN) refers

to the incorrect classification of the class that is not of interest [25].
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Accuracy [25]

This refers to the ratio of the number of true positives and negatives, and the total number

of predictions and is specified as:

Accuracy =
TP + TN

TP + TN + FP + FN

Error Rate [25]

This refers to the proportion of incorrectly classified examples and is specified as:

Error Rate =
FP + FN

TP + TN + FP + FN
= 1− Accuracy

Sensitivity [25]

This refers to the proportion of true positives that were correctly classified and is specified

as:

Sensitivity =
TP

TP + FN

Specificity [25]

This refers to the proportion of negative examples that were correctly classified and is

specified as:

Specificity =
TN

FP + TN

Precision [25]

This refers to the proportion of positive examples that were truly positive and is specified

as:

Precision =
TP

FP + TP
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Recall [25]

This refers to the ratio of true positives to total number of positives and is specified as:

Recall =
TP

TP + FN

Kappa Statistic [25]

A model might have high accuracy because it correctly predicts the most frequent class,

particularly when the dataset is unbalanced. Kappa Statistic adjusts accuracy by accounting

for the probability of a correct prediction by chance alone, and is appropriate for unbalanced

datasets.
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CHAPTER 5

ANALYSIS & RESULTS

This chapter highlights the steps taken to develop and evaluate each of the prediction mod-

els using R [62]. This includes highlighting any steps taken to tune the models, as well as

an evaluation of the models using the evaluation metrics mentioned in section 4.6.

5.1 Predicting flight delay times due to Ground Delay Programs

As mentioned previously, the objective of this model is to predict the maximum delay time

per hour, and to compute the average delay time per hour due to Ground Delay Programs.

Six Machine Learning techniques were benchmarked to identify a suitable technique for the

prediction model: Multiple Linear Regression, Regression Trees, Model Trees, Artificial

Neural Networks, Support Vector Machines, and Random Forests. This section highlights

steps taken to develop and tune the models using the aforementioned algorithms and pro-

vides an analysis of their performance with the validation and testing datasets. In order to

ensure that the algorithms were assessed accurately, the data was randomly divided into

three categories: training, validation, and testing datasets. The predictors for this model

were the causes of Ground Delay Programs, details of Ground Delay Programs, the num-

ber of actual arrivals, the number of scheduled arrivals, weather conditions, the duration

of Ground Delay Programs, the month, and the hour. The training, validation, and testing

datasets had 641, 319, and 322 data points respectively.

5.1.1 Multiple Linear Regression

Steps taken in R to develop a prediction model using the Multiple Linear Regression algo-

rithm are as follows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “lm” function [63] and the training dataset

3. Test the performance of the model using the “lm” function and the validation dataset

4. Calculate the Mean Absolute and Root Mean Squared Errors using the “residuals”

function [64]

5. Obtain the R-squared value using the “r.squared” attribute [65] and compute Corre-

lation by taking the square root of the R-squared value

6. Repeat steps 3 to 5 with the testing dataset

The Multiple Linear Regression algorithm provides insights into the importance of the

different predictors. Analysis of the model developed using this technique revealed that the

month of March, the duration of Ground Delay Programs, volume-related Ground Delay

Programs with multitaxi as their detail, other causes of Ground Delay Programs, weather-

related Ground Delay Programs with fog as their detail, and runway related Ground Delay

Programs were the most influential predictors for this model, as seen in Figure 5.1.
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Figure 5.1: Predictor importance for Multiple Linear Regression algorithm for predicting

maximum flight delay time during Ground Delay Programs

5.1.2 Regression Trees

Steps taken in R to develop a prediction model using the Regression Trees algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “rpart” function [66] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation
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6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

The Regression Tree algorithm provides insights into the importance of the different

predictors. Analysis of the model developed using this technique revealed that the duration

of Ground Delay Programs, the month of March, pressure altimeter, the month of January,

and sea level pressure were the most influential predictors for this model, as seen in Figure

5.2.

Figure 5.2: Predictor importance for Regression Tree algorithm for predicting maximum

flight delay time during Ground Delay Programs

5.1.3 Model Trees

Steps taken in R to develop a prediction model using the Model Trees algorithm are as

follows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “M5P” function [69] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Similarly, the Model Tree algorithm provides insights into the importance of the differ-

ent predictors. The duration of Ground Delay Programs, pressure altimeter, and sea level

pressure were found to be the most influential predictors for this model, as seen in Figure

5.3.
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Figure 5.3: Predictor importance for Model Tree algorithm for predicting maximum flight

delay time during Ground Delay Programs

5.1.4 Artificial Neural Networks

Steps taken in R to develop a prediction model using the Artificial Neural Networks algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Normalize continuous variables to a 0 - 1 range since Neural Networks perform op-

timally when predictors are scaled to a narrow range

3. Train the model with using the “neuralnet” function [70] and the training dataset

4. Vary the number of hidden nodes to identify the optimal hidden node setting for the

model. This is achieved by testing the performance of the model using the “compute”

function [71] and the validation dataset

5. Compute Correlation using the “cor” function [68]
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6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 5 to 7 with the testing dataset using the optimal hidden node setting

Varying the number of hidden nodes and evaluating the model’s performance with the

validation dataset revealed that the optimal number of hidden nodes was 3 using a logistic

activation function which maps inputs into the range of 0 to 1 [72]. Figure 5.4 shows

the optimal model’s network with input nodes for each of the predictors, followed by three

hidden nodes and one output node that predicts maximum delay time. Bias terms, indicated

by the blue lines allow the values at the nodes to be updated, like the intercept of a linear

equation.
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Figure 5.4: Visualization of Neural Network topology for predicting maximum flight delay

time during Ground Delay Programs
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5.1.5 Support Vector Machines

Steps taken in R to develop a prediction model using the Support Vector Machines algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. The “svm” function [73] by default sets the maximum allowed error between pre-

dicted and actual values to 0.1, which often causes over-fitting. In order to reduce

the incidence of over-fitting, a cost penalty can be applied to the models. Thus, the

maximum allowed error and cost functions were varied from 0 to 1 in steps of 0.1,

and 2n where n varies from 0.5 to 8 in steps of 0.5, respectively to identify the optimal

settings for the model

3. Train the model using the “e1071” package [74] and the training dataset

4. Test the performance of the model using the “predict” function [67] and the validation

dataset

5. Compute Correlation using the “cor” function [68]

6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 4 to 7 with the testing dataset

Varying the maximum allowed error and cost functions, and evaluating the model’s

performance revealed that the optimal model had a maximum allowed error of 0 and cost

of 64.
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5.1.6 Random Forests

Steps taken in R to develop a prediction model using the Random Forests algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “randomForest” function [75] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Random Forest algorithm revealed that for the duration of Ground Delay

Programs, the months of March and January, other causes of Ground Delay Programs, other

causes of Ground Delay Programs with other details, and altimeter pressure were the most

influential predictors for this model as seen in Figure 5.5.
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Figure 5.5: Predictor importance for Random Forest algorithm for predicting maximum

delay time during Ground Delay Programs

5.1.7 Summary

Table 5.1 provides a summary of the evaluation of the performance of the different Machine

Learning techniques with the validation dataset. It can be seen that Random Forests had

the best performance, with the highest R-squared and Correlation values, and the lowest

Mean Absolute and Root Mean Squared Errors.
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Table 5.1: Evaluation of technique performance for predicting maximum flight delay times

during Ground Delay Programs with the validation dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(minutes)

Correlation Root Mean

Squared

Error

(minutes)

Multiple Linear Regression 0.5 48.7 0.71 76.6

Regression Trees 0.82 17.8 0.91 49.2

Model Trees 0.87 19.4 0.93 40.6

Artificial Neural Networks 0.71 27.3 0.84 58.5

Support Vector Machines 0.68 35.6 0.83 61.5

Random Forests 0.9 14.3 0.95 34.1

Tables 5.2 provides a summary of the evaluation of the performance of the different

Machine Learning techniques with the testing dataset. It can be seen that the Random

Forest had the lowest Mean Absolute Error value. On the other hand, Model Trees had the

highest Correlation and R-squared values, and the lowest Root Mean Squared Error value.

However, the R-squared, Correlation, and Root Mean Squared Errors of the Random Forest

Ensemble were lower than those of the Model Tree by 0.02, 0.01, and 1.2 respectively.

Consequently, Random Forests was identified as the best suited algorithm for predicting

the maximum delay time per hour for Ground Delay Programs.
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Table 5.2: Evaluation of technique performance for predicting maximum flight delay times

during Ground Delay Programs with the testing dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(minutes)

Correlation Root Mean

Squared

Error

(minutes)

Multiple Linear Regression 0.48 37.9 0.69 65.4

Regression Trees 0.76 16.7 0.87 48.8

Model Trees 0.88 16.4 0.94 32.4

Artificial Neural Networks 0.6 26 0.78 57.7

Support Vector Machines 0.66 34.9 0.81 53.6

Random Forests 0.86 13.8 0.93 33.6

The average delay time per hour for Ground Delay Programs was then computed using:

Average delay time per hour =
Maximum delay time per hour

Number of actual arrivals

5.2 Predicting the duration of Ground Delay Program

The objective of this model is to predict the duration of Ground Delay Programs. Six

Machine Learning techniques were benchmarked to identify a suitable technique for the

prediction model: Multiple Linear Regression, Regression Trees, Model Trees, Artificial

Neural Networks, Support Vector Machines, and Random Forests. This section highlights

steps taken to develop and tune the models using the aforementioned algorithms, and pro-

vides an analysis of their performance with the validation and testing datasets. In order to

ensure that the algorithms were assessed accurately, the data was randomly divided into

three categories: training, validation, and testing sets. The predictors for this model were

the causes of Ground Delay Programs, details of Ground Delay Programs, number of actual
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arrivals, number of scheduled arrivals, weather conditions, the month, and the hour. The

training, validation, and testing datasets had 641, 319, and 322 data points respectively.

5.2.1 Multiple Linear Regression

Steps taken in R to develop a prediction model using the Multiple Linear Regression algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “lm” function [63] and the training dataset

3. Test the performance of the model using the “lm” function and the validation dataset

4. Calculate the Mean Absolute and Root Mean Squared Errors using the ”residuals”

function [64]

5. Obtain the R-squared value using the “r.squared” attribute [65] and compute Corre-

lation by taking the square root of the R-squared value

6. Repeat steps 3 to 5 with the testing dataset

The Multiple Linear Regression algorithm provides insights into the importance of the

different predictors. Analysis of the model developed using this technique revealed that

cloud height level 1, overcast clouds at height level 2, overcast, broken, and few clouds at

height level 1 were the most influential predictors for this model, as seen in Figure 5.6.
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Figure 5.6: Predictor importance for Multiple Linear Regression algorithm for predicting

the duration of Ground Delay Programs

5.2.2 Regression Trees

Steps taken in R to develop a prediction model using the Regression Trees algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “rpart” function [66] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation
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6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Regression Tree algorithm revealed that dew point, the month of April,

cloud height at level 1, pressure altimeter, relative humidity, sea level pressure, and the

month of May were the most influential predictors for this model, as seen in Figure 5.7.

Figure 5.7: Predictor importance for Regression Tree algorithm for predicting the duration

of Ground Delay Programs

5.2.3 Model Trees

Steps taken in R to develop a prediction model using the Model Trees algorithm are as

follows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “M5P” function [69] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Model Tree algorithm revealed that runway-related Ground Delay Pro-

grams, sea level pressure, and weather-related Ground Delay Programs caused by winds

were the most influential predictors for this model, as seen in Figure 5.8.

Figure 5.8: Predictor importance for Model Tree algorithm for predicting the duration of

Ground Delay Programs
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5.2.4 Artificial Neural Networks

Steps taken in R to develop a prediction model using the Artificial Neural Networks algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Normalize continuous variables to a 0 - 1 range since Neural Networks perform op-

timally when predictors are scaled to a narrow range

3. Train the model with using the “neuralnet” function [70] and the training dataset

4. Vary the number of hidden nodes to identify the optimal hidden node setting for the

model. This is achieved by testing the performance of the model using the ”compute”

function [71] and the validation dataset

5. Compute Correlation using the “cor” function [68]

6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 4 to 7 with the testing dataset

Varying the number of hidden nodes and evaluating the model’s performance with the

validation dataset revealed that the optimal number of hidden nodes was 4 using a logistic

activation function which maps inputs into the range of 0 to 1 [72]. Figure 5.9 shows the

optimal model’s network with input nodes for each of the predictors, followed by four

hidden nodes and one output node that predicts the duration of Ground Delay Programs.

Bias terms, indicated by the blue lines allow the values at the nodes to be updated, like the

intercept of a linear equation.
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Figure 5.9: Visualization of the Neural Network topology for predicting the duration of

Ground Delay Programs
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5.2.5 Support Vector Machines

Steps taken in R to develop a prediction model using the Support Vector Machines algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. The “svm” function [73] by default sets the maximum allowed error to 0.1, which of-

ten causes over-fitting. In order to reduce the incidence of over-fitting, a cost penalty

can be applied to the models. Thus, the maximum allowed error and cost functions

were varied from 0 to 1 in steps of 0.1, and 2n where n varies from 0.5 to 8 in steps

of 0.5, respectively to identify the optimal settings for the model

3. Train the model using the “e1071” package [74] and the training dataset

4. Test the performance of the model using the “predict” function [67] and the validation

dataset

5. Compute Correlation using the “cor” function [68]

6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 4 to 7 with the testing dataset

Varying the maximum allowed error and cost functions, and evaluating the model’s

performance revealed that the optimal model had a maximum allowed error of 0 and cost

of 2.

5.2.6 Random Forest

Steps taken in R to develop a prediction model using the Random Forest algorithm are as

follows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “randomForest” function [75] and the training dataset

3. Test the performance of the model using the ”predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Random Forest algorithm revealed that pressure altimeter, dew point,

and sea level pressure were the most influential predictors for this model as seen in Figure

5.10.
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Figure 5.10: Predictor importance for Random Forest Ensemble algorithm for predicting

the duration of Ground Delay Programs

5.2.7 Summary

Tables 5.3 provides a summary of the evaluation of the performance of the different Ma-

chine Learning techniques with the validation set. It can be seen that Random Forests had

the best performance, with the highest R-squared and correlation values, and the lowest

Mean Absolute and Root Mean Squared Errors.
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Table 5.3: Evaluation of technique performance for predicting the duration of Ground De-

lay Programs with the validation dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(seconds)

Correlation Root Mean

Squared

Error

(seconds)

Multiple Linear Regression 0.47 3130.6 0.68 3849.2

Regression Trees 0.43 3083.3 0.65 4068.1

Model Trees 0.58 2534.3 0.76 3423.7

Artificial Neural Networks 0.26 4187 0.51 5460.8

Support Vector Machines 0.39 3014.9 0.63 3361.2

Random Forest Ensemble 0.6 2410.2 0.77 3361.2

Tables 5.4 provides a summary of the evaluation of the performance of the different

Machine Learning techniques with the testing set. It can be seen that the Random Forest

Ensemble had the best performance, with the highest R-squared and correlation values, and

the lowest Mean Absolute and Root Mean Squared Errors.
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Table 5.4: Evaluation of technique performance for the duration of Ground Delay Programs

with the testing dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(seconds)

Correlation Root Mean

Squared

Error

(seconds)

Multiple Linear Regression 0.51 3039.4 0.72 3852.5

Regression Trees 0.52 2848.7 0.72 3803.8

Model Trees 0.59 2593.1 0.77 3557.7

Artificial Neural Networks 0.27 4293.9 0.52 5479.7

Support Vector Machines 0.4 3117.8 0.63 4269.5

Random Forest Ensemble 0.68 2282.2 0.82 3200.2

Consequently, the Random Forest Ensemble was identified as the best suited algo-

rithm for predicting the duration of Ground Delay Programs.

5.3 Predicting average taxi-in delay times during Ground Delay Programs

The objective of this model is to predict average taxi-in delay times during Ground De-

lay Programs. Six Machine Learning techniques were benchmarked to identify a suitable

technique for the prediction model: Multiple Linear Regression, Regression Trees, Model

Trees, Artificial Neural Networks, Support Vector Machines, and Random Forests. This

section highlights steps taken to develop and tune the models using the aforementioned al-

gorithms and provides an analysis of their performance with the validation and testing sets.

In order to ensure that the algorithms were assessed accurately, the data was randomly di-

vided into three categories: training, validation, and testing sets. The predictors for this

model were the causes of Ground Delay Programs, details of Ground Delay Programs, the

duration of Ground Delay Programs, number of actual arrivals, number of scheduled ar-
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rivals, maximum delay times, weather conditions, the month, and the hour. The training,

validation, and testing datasets had 641, 319, and 322 data points respectively.

5.3.1 Multiple Linear Regression

Steps taken in R to develop a prediction model using the Multiple Linear Regression algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “lm” function [63] and the training dataset

3. Test the performance of the model using the “lm” function and the validation dataset

4. Calculate the Mean Absolute and Root Mean Squared Errors using the “residuals”

function [64]

5. Obtain the R-squared value using the “r.squared” attribute [65] and compute Corre-

lation by taking the square root of the R-squared value

6. Repeat steps 3 to 5 with the testing dataset

The Multiple Linear Regression algorithm provides insights into the importance of the

different predictors. Analysis of the model developed using this technique revealed that

hours 6, 5, 15, 4, 7, and 3, number of scheduled arrivals, hour 8, and the number of actual

arrivals were the most influential predictors for this model, as seen in Figure 5.11.
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Figure 5.11: Predictor importance for Multiple Linear Regression algorithm for predicting

average taxi-in delay times during Ground Delay Programs

5.3.2 Regression Trees

Steps taken in R to develop a prediction model using the Regression Trees algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “rpart” function [66] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation
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6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Regression Tree algorithm revealed that the actual number of arrivals

and number of scheduled arrivals were the most influential predictors for this model, as

seen in Figure 5.12.

Figure 5.12: Predictor importance for Regression Tree algorithm for predicting average

taxi-in delay times during Ground Delay Programs

5.3.3 Model Trees

Steps taken in R to develop a prediction model using the Model Trees algorithm are as

follows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “M5P” function [69] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Model Tree algorithm revealed that the actual number of arrivals, rela-

tive humidity, sea level pressure, and altimeter pressure were the most influential predictors

for this model, as seen in Figure 5.13.

Figure 5.13: Predictor importance for Model Tree algorithm for predicting average taxi-in

time delays during Ground Delay Programs
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5.3.4 Artificial Neural Networks

Steps taken in R to develop a prediction model using the Artificial Neural Networks algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. normalize continuous variables to a 0 - 1 range since Neural Networks perform opti-

mally when predictors are scaled to a narrow range

3. Train the model with using the “neuralnet” function [70] and the training dataset

4. Vary the number of hidden nodes to identify the optimal hidden node setting for the

model. This is achieved by testing the performance of the model using the “compute”

function [71] and the validation dataset

5. Compute Correlation using the “cor” function [68]

6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 4 to 7 with the testing dataset

Varying the number of hidden nodes and evaluating the model’s performance with the

validation dataset revealed that the optimal number of hidden nodes was 2 using a logistic

activation function which maps inputs into the range of 0 to 1 [72]. Figure 5.14 shows

the optimal model’s network with input nodes for each of the predictors, followed by two

hidden nodes and one output node that predicts average taxi-in delay times during Ground

Delay Programs. Bias terms, indicated by the blue lines allow the values at the nodes to be

updated, like the intercept of a linear equation.
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Figure 5.14: Visualization of Neural Network topology for predicting average taxi-in delay

times during Ground Delay Programs
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5.3.5 Support Vector Machines

Steps taken to develop a prediction model using the Support Vector Machines algorithm

are as follows:

1. Load the data using the “read.csv” function [25]

2. The “svm” function [73] by default sets the maximum allowed error to 0.1, which of-

ten causes over-fitting. In order to reduce the incidence of over-fitting, a cost penalty

can be applied to the models. Thus, the maximum allowed error and cost functions

were varied from 0 to 1 in steps of 0.1, and 2n where n varies from 0.5 to 8 in steps

of 0.5, respectively to identify the optimal settings for the model

3. Train the model using the “e1071” package [74] and the training dataset

4. Test the performance of the model using the “predict” function [67] and the validation

dataset

5. Compute Correlation using the “cor” function [68]

6. Compute the R-squared value by squaring Correlation

7. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

8. Repeat steps 4 to 7 with the testing dataset

Varying the maximum allowed error and cost functions and evaluating the model’s per-

formance revealed that the optimal model had a maximum allowed error of 0 and cost of

2.83.

5.3.6 Random Forests

Steps taken to develop a prediction model using the Random Forests algorithm are as fol-

lows:
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1. Load the data using the “read.csv” function [25]

2. Train the model using the “randomForest” function [75] and the training dataset

3. Test the performance of the model using the ”predict” function [67] and the validation

dataset

4. Compute Correlation using the “cor” function [68]

5. Compute the R-squared value by squaring Correlation

6. Compute the Mean Absolute and Root Mean Squared Errors using the difference

between the predicted and actual values

7. Repeat steps 3 to 6 with the testing dataset

Analysis of the Random Forests algorithm revealed that the actual number of arrivals,

number of scheduled arrivals, altimeter pressure, and sea level pressure were the most

influential predictors for this model as seen in Figure 5.15.
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Figure 5.15: Predictor importance for Random Forest algorithm for predicting average

taxi-in delay times during Ground Delay Programs

5.3.7 Summary

Tables 5.5 provides a summary of the evaluation of the performance of the different Ma-

chine Learning techniques with the validation set. It can be seen that the Multiple Linear

Regression had the best performance, with the highest R-squared and correlation values,

and the lowest Mean Absolute and Root Mean Squared Errors.
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Table 5.5: Evaluation of technique performance for predicting the average taxi-in delay

times during Ground Delay Programs with the validation dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(minutes)

Correlation Root Mean

Squared

Error

(minutes)

Multiple Linear Regression 0.66 1.59 0.81 2.1

Regression Trees 0.37 2.25 0.61 2.91

Model Trees 0.33 2.29 0.57 2.99

Artificial Neural Networks 0.44 2.31 0.66 2.93

Support Vector Machines 0.55 1.79 0.75 2.42

Random Forest Ensemble 0.56 1.86 0.75 2.45

Tables 5.6 provides a summary of the evaluation of the performance of the different

Machine Learning techniques with the testing set. It can be seen that the Multiple Linear

Regression had the best performance, with the highest R-squared and correlation values,

and the lowest Root Mean Squared Error.
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Table 5.6: Evaluation of technique performance for predicting the average taxi-in delay

times during Ground Delay Programs with the testing dataset

Algorithm/Metric R-squared Mean

Absolute

Error

(seconds)

Correlation Root Mean

Squared

Error

(seconds)

Multiple Linear Regression 0.6 1.93 0.77 2.56

Regression Trees 0.39 2.33 0.62 3.18

Model Trees 0.37 2.37 0.61 3.23

Artificial Neural Networks 0.38 2.49 0.62 3.33

Support Vector Machines 0.51 1.95 0.71 2.85

Random Forest Ensemble 0.58 1.86 0.76 2.63

Thus, Multiple Linear Regression was identified as the best suited algorithm for pre-

dicting average taxi-in delay times during Ground Delay Programs.

5.4 Predicting the occurrence of Ground Delay Programs

The objective of this model is to predict the occurrence of weather and volume-related

Ground Delay Programs. Seven Machine Learning techniques were benchmarked to iden-

tify a suitable technique for the prediction model: Decision Trees, Naive Bayes, Classifica-

tion Rule Learners, Support Vector Machines, Bagging Ensemble, Boosting Ensemble, and

Random Forests. This section highlights steps taken to develop and tune the models using

the aforementioned algorithms and provides an analysis of their performance with the vali-

dation and testing sets. In order to ensure that the algorithms were assessed accurately, the

data was randomly divided into three categories: training, validation, and testing sets. The

predictors for this model were the number of actual arrivals, number of scheduled arrivals,

weather conditions, the month, and the hour. The training, validation, and testing datasets
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had 2940, 981, and 980 data points respectively.

5.4.1 Decision Trees

Steps taken in R to develop a prediction model using the Decision Trees algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “C50” function [76, 25] and the training dataset

3. Test the performance of the model using the “predict” function [67] function and the

validation dataset

4. Improve the performance of the model using adaptive boosting, “where multiple de-

cision trees are built and the trees vote for the best class for each example” [25]. This

involves adding a “trials” parameter when using the “C50” function. The optimal

number of “trials” produces the lowest number of incorrect predictions

5. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

6. Repeat steps 3 to 5 with the testing dataset and the optimal number of “trials” ob-

tained from step 4

Analysis of the Decision Tree algorithm revealed that the model had an average tree size

of 72.9. Figure 5.16 shows that the month, altimeter pressure, dew point, sea level pres-

sure, and visibility were the highest weighted predictors for this model, each contributing

6.254% as seen in Figure 5.16.
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Figure 5.16: Predictor importance for Decision Tree algorithm for predicting the occur-

rence of Ground Delay Programs

Validation Dataset

Table 5.7 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.942, kappa statistic of 0.58, and a 95% Confidence Interval between 0.925

and 0.956, which is the range that the probability of a correct prediction lies within.

Table 5.7: Confusion matrix from Decision Tree algorithm for predicting the occurrence of

Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 46 11 57

Predicted No GDP 41 883 924

Actual Total 87 894 981

Since the dataset is unbalanced, there was a need to further expand the evaluation of

the model by analyzing how the model predicted volume-related Ground Delay Programs,

weather-related Ground Delay Programs and no Ground Delay Programs. Table 5.8 shows
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the detailed confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively.

Table 5.8: Detailed confusion matrix from Decision Tree algorithm for predicting the oc-

currence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 11 1 1 13

Predicted Weather GDP 4 30 10 44

Predicted No GDP 11 30 883 924

Actual Total 26 61 894 981

From Table 5.8, it can be seen that the model accurately predicted 11 volume-related

Ground Delay Programs, and incorrectly predicted 1 weather-related Ground Delay Pro-

gram and no Ground Delay Program as volume-related Ground Delay Programs. The

model also accurately predicted 30 weather-related Ground Delay Programs, and incor-

rectly predicted 4 volume-related Ground Delay Programs and 10 no Ground Delay pro-

grams as weather-related Ground Delayed Programs. Finally, the model accurately pre-

dicted 883 no Ground Delay Programs, and incorrectly predicted 11 volume-related Ground

Delay Programs and 30 weather-related Ground Delay Programs as no Ground Delay Pro-

grams.

Table 5.9 summarizes the detailed evaluation of the Decision Tree algorithm’s perfor-

mance with the validation dataset. Low sensitivity and high specificity for volume and

weather-related Ground Delay Program predictions show that the model’s performance is

limited when predicting volume and weather-related Ground Delay Programs. However,

high sensitivity and moderate specificity of no Ground Delay Program predictions show

that the model predicted the majority of no Ground Delay Program events accurately.
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Table 5.9: Detailed evaluation of the Decision Tree algorithm with validation dataset for

predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.423 0.492 0.988

Specificity 0.997 0.985 0.529

Precision 0.846 0.681 0.956

Recall 0.985 0.967 0.807

Testing Dataset

Table 5.10 shows the confusion matrix for the testing dataset, where the last column and

row represent the sum of predicted and actual events respectively. The model had an accu-

racy of 0.922, kappa statistic of 0.531, and a 95% Confidence Interval between 0.903 and

0.938, which is the range that the probability of a correct prediction lies within.

Table 5.10: Confusion matrix from Decision Tree algorithm for predicting the occurrence

of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 51 18 69

Predicted No GDP 54 857 911

Actual Total 105 875 980

Table 5.11 shows the detailed confusion matrix for the testing dataset.
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Table 5.11: Detailed confusion matrix from Decision Tree algorithm for predicting the

occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 9 2 2 13

Predicted Weather GDP 2 38 16 56

Predicted No GDP 22 32 857 911

Actual Total 33 72 875 980

From Table 5.11, it can be seen that the model accurately predicted 9 volume-related

Ground Delay Programs, and incorrectly predicted 2 weather-related Ground Delay Pro-

grams and 2 no Ground Delay Programs as volume-related Ground Delay Programs. The

model also accurately predicted 38 weather-related Ground Delay Programs, and incor-

rectly predicted 2 volume-related Ground Delay Programs and 32 no Ground Delay pro-

grams as weather-related Ground Delayed Programs. Finally, the model accurately pre-

dicted 857 no Ground Delay Programs, and incorrectly predicted 22 volume-related Ground

Delay Programs and 32 weather-related Ground Delay Program as no Ground Delay Pro-

gram.

Table 5.12 summarizes the detailed evaluation of the Decision Tree algorithm’s perfor-

mance with the testing dataset. Low/moderate sensitivity and high specificity for volume

and weather-related Ground Delay Program predictions show that the model’s performance

is limited in predicting volume and weather-related Ground Delay Programs. However,

high sensitivity and moderate specificity of no Ground Delay Program predictions show

that the model predicted the majority of no Ground Delay Program events accurately.
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Table 5.12: Detailed evaluation of the Decision Tree algorithm with testing dataset for

predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.272 0.53 0.979

Specificity 0.996 0.98 0.486

Precision 0.692 0.678 0.941

Recall 0.975 0.963 0.739

Summary

Overall, with kappa statistic values of 0.580 and 0.531 from the validation and testing

datasets respectively, the Decision Tree algorithm had an average performance which can

be attributed to the unbalanced nature of the dataset.

5.4.2 Naive Bayes

Steps taken in R to develop a prediction model using the Naive Bayes algorithm are as

follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “naiveBayes” function [78, 25] and the training dataset

3. Test the performance of the model using the “predict” function [67] function and the

validation dataset

4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset
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Validation Dataset

Table 5.13 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.448, kappa statistic of 0.0709, and a 95% Confidence Interval between 0.416

and 0.479, which is the range that the probability of a correct prediction lies within.

Table 5.13: Confusion matrix from Naive Bayes algorithm for predicting the occurrence of

Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 72 511 583

Predicted No GDP 15 383 398

Actual Total 87 894 981

Table 5.14 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

Table 5.14: Detailed confusion matrix from Naive Bayes algorithm for predicting the oc-

currence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 1 0 35 36

Predicted Weather GDP 16 55 476 547

Predicted No GDP 9 6 383 398

Actual Total 26 61 894 981

From Table 5.14, it can be seen that the model accurately predicted 1 volume-related

Ground Delay Program, and incorrectly predicted 35 no Ground Delay Programs as volume-
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related Ground Delay Programs. The model also accurately predicted 55 weather-related

Ground Delay Programs, and incorrectly predicted 16 volume-related Ground Delay Pro-

grams and 476 no Ground Delay Programs as weather-related Ground Delayed Programs.

Finally, the model accurately predicted 383 no Ground Delay Programs, and inaccurately

predicted 9 volume-related Ground Delay Programs and 6 weather-related Ground Delay

Programs as no Ground Delay Program events.

Table 5.15 summarizes the detailed evaluation of the Naive Bayes algorithm’s perfor-

mance with the validation dataset. Low sensitivity and high specificity for volume-related

Ground Delay Programs and no Ground Delay Program events show that the model’s per-

formance is limited in predicting volume-related Ground Delay Programs and no Ground

Delay Program events. However, high sensitivity and low specificity show that the model

predicted majority of weather-related Ground Delay Program events.

Table 5.15: Detailed evaluation of the Naive Bayes algorithm with the validation dataset

for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.038 0.902 0.428

Specificity 0.963 0.465 0.828

Precision 0.028 0.101 962

Recall 0.974 0.986 0.124

Testing Dataset

Table 5.16 shows the confusion matrix for the testing dataset, where the last column and

row represent the sum of predicted and actual events respectively. The model had an ac-

curacy of 0.449, Kappa Statistic of 0.0708, and a 95% Confidence Interval between 0.418

and 0.481, which is the range that the probability of a correct prediction lies within.
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Table 5.16: Confusion matrix from Naive Bayes algorithm for predicting the occurrence of

Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 80 499 579

Predicted No GDP 25 376 401

Actual Total 105 875 980

Table 5.17 shows the detailed confusion matrix for the testing dataset.

Table 5.17: Detailed confusion matrix from Naive Bayes algorithm for predicting the oc-

currence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 4 0 39 43

Predicted Weather GDP 16 60 460 536

Predicted No GDP 13 12 376 401

Actual Total 33 72 875 980

From Table 5.17, it can be seen that the model accurately predicted 4 volume-related

Ground Delay Programs, and incorrectly predicted 39 no Ground Delay Program events as

volume-related Ground Delay Programs. The model also accurately predicted 60 weather-

related Ground Delay Programs, and incorrectly predicted 16 volume-related Ground Delay

Programs and 460 no Ground Delay Program events as weather-related Ground Delayed

Programs. Finally, the model accurately predicted 376 no Ground Delay Program events,

and incorrectly predicted 13 volume-related Ground Delay Programs and 12 weather-related

Ground Delay Programs as no Ground Delay Program events.
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Table 5.18 summarizes the detailed evaluation of the Naive Bayes algorithm’s perfor-

mance with the testing dataset. Low sensitivity and high specificity for volume-related

Ground Delay Programs and no Ground Delay Program events show that the model’s per-

formance is limited in predicting volume-related Ground Delay Programs and no Ground

Delay Program events. However, high sensitivity and low specificity show that the model

predicted majority of weather-related Ground Delay Program events.

Table 5.18: Detailed evaluation of the Naive Bayes algorithm with testing dataset for pre-

dicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

no GDP

Sensitivity 0.121 0.833 0.429

Specificity 0.959 0.476 0.762

Precision 0.093 0.112 0.938

Recall 0.969 0.973 0.138

Summary

Overall, with kappa statistic values of 0.0709 and 0.0708 from the validation and testing

datasets respectively, the Naive Bayes algorithm performed poorly.

5.4.3 Classification Rule Learners

Steps taken in R to develop a prediction model using the Classification Rule Learners al-

gorithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “JRip” function [79, 25] and the training dataset
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3. Test the performance of the model using the “predict” function [67] function and the

validation dataset

4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset

Validation Dataset

Table 5.19 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.918, kappa statistic of 0.5, and a 95% Confidence Interval between 0.899 and

0.934, which is the range that the probability of a correct prediction lies within.

Table 5.19: Confusion matrix from Classification Rule Learners algorithm for predicting

the occurrence of Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 48 37 85

Predicted No GDP 39 857 896

Actual Total 87 894 981

Table 5.20 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

89



Table 5.20: Detailed confusion matrix from Classification Rule Learners algorithm for

predicting the occurrence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 16 0 9 25

Predicted Weather GDP 4 28 28 60

Predicted No GDP 6 33 857 896

Actual Total 26 61 894 981

From Table 5.20, it can be seen that the model accurately predicted 16 volume-related

Ground Delay Programs, and incorrectly predicted 9 no Ground Delay Program events as

volume-related Ground Delay Programs. The model also accurately predicted 28 weather-

related Ground Delay Programs, and incorrectly predicted 4 volume-related Ground Delay

Programs and 28 no Ground Delay Program events as weather-related Ground Delayed

Programs. Finally, the model accurately predicted 857 no Ground Delay Program events,

and incorrectly predicted 6 volume-related Ground Delay Programs and 33 weather-related

Ground Delay Programs as no Ground Delay Program events.

Table 5.21 summarizes the detailed evaluation of the Classification Rule Learners algo-

rithm’s performance with the validation dataset. Moderate/low sensitivity and high speci-

ficity for volume and weather-related Ground Delay Program predictions show that the

model’s performance is limited in predicting volume and weather-related Ground Delay

Programs. However, high sensitivity and moderate specificity of no Ground Delay Pro-

gram predictions show that the model predicted the majority of no Ground Delay Program

events accurately.
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Table 5.21: Detailed evaluation of the Classification Rule Learners algorithm with the val-

idation dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.615 0.459 0.959

Specificity 0.991 0.965 0.552

Precision 0.64 0.467 0.956

Recall 0.989 0.964 0.565

Testing Dataset

Table 5.22 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.895, kappa statistic of 0.444, and a 95% Confidence Interval between 0.874

and 0.913, which is the range that the probability of a correct prediction lies within.

Table 5.22: Confusion matrix from Classification Rule Learners algorithm for predicting

the occurrence of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 60 56 116

Predicted No GDP 45 819 864

Actual Total 105 875 980

Table 5.23 shows the detailed confusion matrix for the testing dataset.
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Table 5.23: Detailed confusion matrix from Classification Rule Learners algorithm for

predicting the occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 19 0 10 29

Predicted Weather GDP 2 39 46 87

Predicted No GDP 12 33 819 864

Actual Total 33 72 875 980

From Table 5.23, it can be seen that the model accurately predicted 19 volume-related

Ground Delay Programs, and incorrectly predicted 10 no Ground Delay Program events as

volume-related Ground Delay Programs. The model also accurately predicted 39 weather-

related Ground Delay Programs, and incorrectly predicted 2 volume-related Ground Delay

Programs and 46 no Ground Delay Program events as weather-related Ground Delayed Pro-

grams. Finally, the model accurately predicted 819 no Ground Delay Program events, and

incorrectly predicted 12 volume-related Ground Delay Programs and 33 weather-related

Ground Delay Program as no Ground Delay Program events.

Table 5.24 summarizes the detailed evaluation of the Classification Rule Learners al-

gorithm’s performance with the testing dataset. Moderate sensitivity and high specificity

for volume and weather-related Ground Delay Program predictions show that the model’s

performance is limited in predicting volume and weather-related Ground Delay Programs.

However, high sensitivity and moderate specificity of no Ground Delay Program predic-

tions show that the model predicted majority of no Ground Delay Program events accu-

rately.
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Table 5.24: Detailed evaluation of the Classification Rule Learners algorithm with testing

dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.578 0.542 0.936

Specificity 0.989 0.947 0.571

Precision 0.655 0.448 0.948

Recall 0.985 0.963 0.517

Summary

Overall, with kappa statistic values of 0.5 and 0.444 with the validation and testing datasets

respectively, the Classification Rule Learners had an average performance which can also

be attributed to the unbalanced nature of the dataset.

5.4.4 Support Vector Machines

Steps taken in R to develop a prediction model using the Support Vector Machines algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “ksvm” function [80, 25] and the training dataset

3. Test the performance of the model using the “predict” function [67], the “rbfdot”

kernel (radial-based kernel), and the validation dataset

4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset
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Validation Dataset

Table 5.25 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.910, kappa statistic of 0.0173, and a 95% Confidence Interval between 0.891

and 0.927, which is the range that the probability of a correct prediction lies within.

Table 5.25: Confusion matrix from Support Vector Machines algorithm for predicting the

occurrence of Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 1 2 3

Predicted No GDP 86 892 978

Actual Total 87 894 981

Table 5.26 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

Table 5.26: Detailed confusion matrix from Support Vector Machines algorithm for pre-

dicting the occurrence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 0 0 0 0

Predicted Weather GDP 0 1 2 3

Predicted No GDP 26 60 892 978

Actual Total 26 61 894 981

From Table 5.26, it can be seen that the model accurately predicted 1 weather-related

Ground Delay Program event, and incorrectly predicted 2 no Ground Delay Program events
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as weather-related Ground Delay Programs. The model also accurately predicted 892 no

Ground Delay Program events, and incorrectly predicted 26 volume-related Ground Delay

Programs and 60 weather-related Ground Delay Programs as no Ground Delay Program

events.

Table 5.27 summarizes the detailed evaluation of the Support Vector Machine algo-

rithm’s performance with the validation dataset. Extremely low sensitivity and high speci-

ficity for volume and weather-related Ground Delay Program predictions show that the

model’s performance is limited in predicting volume and weather-related Ground Delay

Programs. However, high sensitivity and extremely low specificity of no Ground Delay

Program predictions shows that the model predicted majority of no Ground Delay Program

events accurately.

Table 5.27: Detailed evaluation of the Support Vector Machines algorithm with the valida-

tion dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0 0.016 0.998

Specificity 1 0.998 0.011

Precision N/A 0.33 0.912

Recall 0.974 0.939 0.333

Testing Dataset

Table 5.28 shows the confusion matrix for the testing dataset, where the last column and

row represent the sum of predicted and actual events respectively. The model had an accu-

racy of 0.8969, kappa statistic of 0.081, and a 95% Confidence Interval between 0.876 and

0.915, which is the range that the probability of a correct prediction lies within.
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Table 5.28: Confusion matrix from Support Vector Machines algorithm for predicting the

occurrence of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 5 1 6

Predicted No GDP 100 874 974

Actual Total 105 875 980

Table 5.29 shows the detailed confusion matrix for the testing dataset.

Table 5.29: Detailed confusion matrix from Support Vector Machines algorithm for pre-

dicting the occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 0 0 0 0

Predicted Weather GDP 0 5 1 6

Predicted No GDP 33 67 874 974

Actual Total 33 72 875 980

From Table 5.29, it can be seen that the model accurately predicted 5 weather-related

Ground Delay Programs, and incorrectly predicted 1 no Ground Delay Program event as

a weather-related Ground Delay Program. The model also accurately predicted 874 no

Ground Delay Program events, and incorrectly predicted 33 volume-related Ground Delay

Programs and 67 weather-related Ground Delay Programs as no Ground Delay Program

events.

Table 5.30 summarizes the detailed evaluation of the Support Vector Machines algo-

rithm’s performance with the testing dataset. Low sensitivity and moderate/high specificity
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for volume and weather-related Ground Delay Program predictions show that the model’s

performance is limited in predicting volume and weather-related Ground Delay Programs.

However, moderate sensitivity and low specificity of no Ground Delay Program predictions

show that the model predicted majority of no Ground Delay Program events accurately.

Table 5.30: Detailed evaluation of the Support Vector Machines algorithm with the testing

dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0 0.069 0.999

Specificity 1 0.999 0.048

Precision N/A 0.833 0.897

Recall 0.966 0.931 0.833

Summary

Overall, with poor kappa statistic values of 0.0173 and 0.0811 from the validation and

testing datasets respectively, the Support Vector Machine algorithm performed poorly.

5.4.5 Bagging Ensemble

Steps taken in R to develop a prediction model using the Bagging Ensemble algorithm are

as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “bagging” function [81, 25] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset
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4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset

Analysis of the Bagging Ensemble algorithm revealed that altimeter pressure, dew

point, and sea level pressure were the highest weighted predictors for this model as seen in

Figure 5.17.

Figure 5.17: Predictor importance for Bagging Ensemble algorithm for predicting the oc-

currence of Ground Delay Programs

Validation Dataset

Table 5.31 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.937, kappa statistic of 0.474, and a 95% Confidence Interval between 0.919

and 0.951, which is the range that the probability of a correct prediction lies within.

98



Table 5.31: Confusion matrix from the Bagging Ensemble algorithm for predicting the

occurrence of Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 32 4 36

Predicted No GDP 55 890 945

Actual Total 87 894 981

Table 5.32 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

Table 5.32: Detailed confusion matrix from the Bagging Ensemble algorithm for predicting

the occurrence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 11 0 0 11

Predicted Weather GDP 3 18 4 25

Predicted No GDP 12 43 890 945

Actual Total 26 61 894 981

From Table 5.32, it can be seen that the model accurately predicted 11 volume-related

Ground Delay Programs. The model also accurately predicted 18 weather-related Ground

Delay Programs, and inaccurately predicted 3 volume-related Ground Delay Programs and

4 no Ground Delay Programs events as weather-related Ground Delaye Programs. Finally,

the model accurately predicted 890 no Ground Delay Program events, and incorrectly pre-

dicted 26 volume-related Ground Delay Programs and 61 weather-related Ground Delay

Programs as no Ground Delay Program events.
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Table 5.33 summarizes the detailed evaluation of the Bagging Ensemble algorithm’s

performance with the validation dataset. Low sensitivity and high specificity for volume

and weather-related Ground Delay Program predictions show that the model’s performance

is limited in predicting volume and weather-related Ground Delay Programs. However,

high sensitivity and low specificity of no Ground Delay Program predictions show that the

model predicted majority of no Ground Delay Program events accurately.

Table 5.33: Detailed evaluation of the Bagging Ensemble algorithm with the validation

dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.423 0.295 0.996

Specificity 1 0.992 0.368

Precision 1 0.72 0.942

Recall 0.985 0.955 0.889

Testing Dataset

Table 5.34 shows the confusion matrix for the testing dataset, where the last column and

row represent the sum of predicted and actual events respectively. The model had an accu-

racy of 0.901, kappa statistic of 0.268, and a 95% Confidence Interval between 0.881 and

0.919, which is the range that the probability of a correct prediction lies within.
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Table 5.34: Confusion matrix from the Bagging Ensemble algorithm for predicting the

occurrence of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 21 84 105

Predicted No GDP 12 863 875

Actual Total 33 947 980

Table 5.35 shows the detailed confusion matrix for the testing dataset.

Table 5.35: Detailed confusion matrix from the Bagging Ensemble algorithm for predicting

the occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 10 0 2 12

Predicted Weather GDP 1 10 10 21

Predicted No GDP 22 62 863 947

Actual Total 33 72 875 980

From Table 5.35, it can be seen that the model accurately predicted 10 volume-related

Ground Delay Programs, and incorrectly predicted 2 no Ground Delay Program events as

volume-related Ground Delay Programs. The model also accurately predicted 10 weather-

related Ground Delay Programs, and inaccurately predicted 1 volume-related Ground De-

lay Program and 10 no Ground Delay Program events as weather-related Ground Delayed

Programs. Finally, the model accurately predicted 863 no Ground Delay Programs, and

incorrectly predicted 22 volume-related Ground Delay Programs and 62 weather-related

Ground Delay Program as no Ground Delay Program events.
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Table 5.36 summarizes the detailed evaluation of the Bagging Ensemble algorithm’s

performance with the testing dataset. Moderate sensitivity and high specificity for volume

and weather-related Ground Delay Program predictions show that the model’s performance

is limited in predicting volume and weather-related Ground Delay Programs. However,

high sensitivity and moderate specificity of no Ground Delay Program predictions show

that the model predicted majority of no Ground Delay Program events accurately.

Table 5.36: Detailed evaluation of the Bagging Ensemble algorithm with the testing dataset

for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.303 0.139 0.986

Specificity 0.998 0.988 0.2

Precision 0.833 0.476 0.911

Recall 0.976 0.935 0.634

Summary

Overall, with kappa statistic values of 0.474 and 0.268 from the validation and testing

datasets respectively, the Bagging Ensemble had a moderate performance.

5.4.6 Boosting Ensemble

Steps taken in R to develop a prediction model using the Boosting Ensemble algorithm are

as follows:

1. Load the data using the “read.csv” function [25]

2. Train the model using the “boosting” function [82, 25] and the training dataset
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3. Test the performance of the model using the “predict” function [67], and the valida-

tion dataset

4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset

Analysis of the Boosting Ensemble algorithm revealed that month, dew point, altimeter

pressure, and sea level pressure were the highest weighted predictors for this model as seen

in Figure 5.18.

Figure 5.18: Predictor importance for Boosting Ensemble algorithm for predicting the oc-

currence of Ground Delay Programs

Validation Dataset

Table 5.37 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.948, kappa statistic of 0.629, and a 95% Confidence Interval between 0.932

and 0.961, which is the range that the probability of a correct prediction lies within.
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Table 5.37: Confusion matrix from the Boosting Ensemble algorithm for predicting the

occurrence of Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 50 9 59

Predicted No GDP 37 885 922

Actual Total 87 894 981

Table 5.38 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

Table 5.38: Detailed confusion matrix from the Boosting Ensemble algorithm for predict-

ing the occurrence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 14 1 0 15

Predicted Weather GDP 4 31 9 44

Predicted No GDP 8 29 885 924

Actual Total 26 61 894 981

From Table 5.38, it can be seen that the model accurately predicted 14 volume-related

Ground Delay Programs, and incorrectly predicted 1 weather-related Ground Delay Pro-

gram as a volume-related Ground Delay Program. The model also accurately predicted

31 weather-related Ground Delay Programs, and inaccurately predicted 4 volume-related

Ground Delay Programs and 9 no Ground Delay Program events as weather-related Ground

Delayed Programs. Finally, the model accurately predicted 885 no Ground Delay Program

events, and incorrectly predicted 8 volume-related Ground Delay Program and 29 weather-
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related Ground Delay Program events as no Ground Delay Program events.

Table 5.39 summarizes the detailed evaluation of the Boosting Ensemble algorithm’s

performance with the validation dataset. Moderate sensitivity and high specificity for vol-

ume and weather-related Ground Delay Program predictions show that the model’s perfor-

mance is limited in predicting volume and weather-related Ground Delay Programs. How-

ever, high sensitivity and moderate specificity of no Ground Delay Program predictions

show that the model predicted majority of no Ground Delay Program events accurately.

Table 5.39: Detailed evaluation of the Boosting Ensemble algorithm with the validation

dataset for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.538 0.508 0.989

Specificity 0.999 0.986 0.576

Precision 0.933 0.705 0.959

Recall 0.988 0.968 0.847

Testing Dataset

Table 5.40 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.943, kappa statistic of 0.657, and a 95% Confidence Interval between 0.926

and 0.957, which is the range that the probability of a correct prediction lies within.
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Table 5.40: Confusion matrix from the Boosting Ensemble algorithm for predicting the

occurrence of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 61 9 70

Predicted No GDP 44 866 910

Actual Total 105 875 980

Table 5.41 shows the detailed confusion matrix for the testing dataset.

Table 5.41: Detailed confusion matrix from the Boosting Ensemble algorithm for predict-

ing the occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 16 2 2 20

Predicted Weather GDP 1 42 7 50

Predicted no GDP 16 28 866 910

Actual Total 33 72 875 980

From Table 5.41, it can be seen that the model accurately predicted 16 volume-related

Ground Delay Programs, and incorrectly predicted 2 weather-related Ground Delay Pro-

grams and 2 no Ground Delay Program events as volume-related Ground Delay Programs.

The model also accurately predicted 42 weather-related Ground Delay Programs, and in-

accurately predicted 1 volume-related Ground Delay Program and 7 no Ground Delay Pro-

gram events as weather-related Ground Delayed Programs. Finally, the model accurately

predicted 866 no Ground Delay Program events, and incorrectly predicted 16 volume-

related Ground Delay Program and 28 weather-related Ground Delay Program events as
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no Ground Delay Program events.

Table 5.42 summarizes the detailed evaluation of the Boosting Ensemble algorithm’s

performance with the testing dataset. Low/moderate sensitivity and high specificity for

volume and weather-related Ground Delay Program predictions show that the model’s per-

formance is limited in predicting volume and weather-related Ground Delay Programs.

However, high sensitivity and moderate specificity of no Ground Delay Program predic-

tions show that the model predicted majority of no Ground Delay Program events accu-

rately.

Table 5.42: Detailed evaluation of the Boosting Ensemble algorithm with the testing dataset

for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.485 0.583 0.989

Specificity 0.996 0.991 0.581

Precision 0.8 0.84 0.952

Recall 0.982 0.968 0.871

Summary

Overall, with kappa statistics values of 0.629 and 0.65 from the validation and testing

datasets respectively, the Boosting Ensemble performed well.

5.4.7 Random Forests

Steps taken in R to develop a prediction model using the Random Forest Ensemble algo-

rithm are as follows:

1. Load the data using the “read.csv” function [25]
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2. Train the model using the “randomForest” function [75, 25] and the training dataset

3. Test the performance of the model using the “predict” function [67] and the validation

dataset

4. Create a confusion matrix and obtain evaluation metrics using the “confusionMatrix”

function [77]

5. Repeat steps 3 and 4 with the testing dataset

Analysis of the Random Forests algorithm revealed that altimeter pressure, sea level

pressure, the month, and dew point were the highest weighted predictors for this model as

seen in Figure 5.19.

Figure 5.19: Predictor importance for Random Forests algorithm for predicting the occur-

rence of Ground Delay Programs

Validation Dataset

Table 5.43 shows the confusion matrix for the validation dataset, where the last column

and row represent the sum of predicted and actual events respectively. The model had an

accuracy of 0.944, kappa statistic of 0.559, and a 95% Confidence Interval between 0.928

and 0.957, which is the range that the probability of a correct prediction lies within.
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Table 5.43: Confusion matrix from the Random Forest algorithm for predicting the occur-

rence of Ground Delay Programs using the validation dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 40 4 44

Predicted No GDP 47 890 937

Actual Total 87 894 981

Table 5.44 shows the detailed confusion matrix for the validation dataset, where the last

column and row represent the sum of predicted and actual events respectively.

Table 5.44: Detailed confusion matrix from the Random Forest algorithm for predicting

the occurrence of Ground Delay Programs using the validation dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 10 1 0 11

Predicted Weather GDP 3 26 4 33

Predicted No GDP 13 34 890 937

Actual Total 26 61 894 981

From Table 5.44, it can be seen that the model accurately predicted 10 volume-related

Ground Delay Programs, and incorrectly predicted 1 weather-related Ground Delay Pro-

gram as a volume-related Ground Delay Program. The model also accurately predicted

26 weather-related Ground Delay Programs, and inaccurately predicted 3 volume-related

Ground Delay Programs and 4 no Ground Delay Program events as weather-related Ground

Delayed Programs. Finally, the model accurately predicted 890 no Ground Delay Pro-

gram events, and incorrectly predicted 13 volume-related Ground Delay Programs and 34
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weather-related Ground Delay Programs as no Ground Delay Program events.

Table 5.45 summarizes the detailed evaluation of the Random Forest Ensemble algo-

rithm’s performance with the validation dataset. Low sensitivity and high specificity for

volume and weather-related Ground Delay Program predictions show that the model’s per-

formance is limited in predicting volume and weather-related Ground Delay Programs.

However, high sensitivity and low specificity of no Ground Delay Program predictions

show that the model predicted majority of no Ground Delay Program events accurately.

Table 5.45: Detailed evaluation of the Random Forest algorithm with the validation dataset

for predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.385 0.424 0.996

Specificity 0.999 0.992 0.459

Precision 0.909 0.778 0.949

Recall 0.984 0.963 0.909

Testing Dataset

Table 5.46 shows the confusion matrix for the testing dataset, where the last column and

row represent the sum of predicted and actual events respectively. The model had an accu-

racy of 0.927, kappa statistic of 0.508, and a 95% Confidence Interval between 0.908 and

0.942, which is the range that the probability of a correct prediction lies within.
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Table 5.46: Confusion matrix from the Random Forest algorithm for predicting the occur-

rence of Ground Delay Programs using the testing dataset

Actual

GDP

Actual

No GDP

Predicted

Total

Predicted GDP 43 7 50

Predicted No GDP 62 868 930

Actual Total 105 875 980

Table 5.47 shows the detailed confusion matrix for the testing dataset.

Table 5.47: Detailed confusion matrix from the Random Forest algorithm for predicting

the occurrence of Ground Delay Programs using the testing dataset

Actual

Volume

GDP

Actual

Weather

GDP

Actual

No GDP

Predicted

Total

Predicted Volume GDP 7 2 2 11

Predicted Weather GDP 1 33 5 39

Predicted No GDP 25 37 868 930

Actual Total 33 72 875 980

From Table 5.47, it can be seen that the model accurately predicted 7 volume-related

Ground Delay Programs, and incorrectly predicted 2 weather-related Ground Delay Pro-

grams and 2 no Ground Delay Program events as volume-related Ground Delay Programs.

The model also accurately predicted 33 weather-related Ground Delay Programs, and in-

accurately predicted 1 volume-related Ground Delay Program and 5 no Ground Delay Pro-

gram events as weather-related Ground Delayed Programs. Finally, the model accurately

predicted 868 no Ground Delay Program events, and incorrectly predicted 25 volume-

related Ground Delay Programs and 37 weather-related Ground Delay Programs as no
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Ground Delay Program events.

Table 5.48 summarizes the detailed evaluation of the Random Forests algorithm’s per-

formance with the testing dataset. Low sensitivity and high specificity for volume and

weather-related Ground Delay Program predictions show that the model’s performance is

limited in predicting volume and weather-related Ground Delay Programs. However, high

sensitivity and low specificity of no Ground Delay Program predictions show that the model

predicted majority of no Ground Delay Program events accurately.

Table 5.48: Detailed evaluation of the Random Forest algorithm with the testing dataset for

predicting the occurrence of Ground Delay Programs

Metric Volume-

related

GDP

Weather-

related

GDP

No GDP

Sensitivity 0.212 0.458 0.992

Specificity 0.996 0.993 0.409

Precision 0.636 0.846 0.933

Recall 0.973 0.958 0.86

Summary

Overall, with kappa statistics values of 0.559 and 0.508 from the validation and testing

datasets respectively, the Random Forests algorithm had a moderate performance.

5.4.8 Comparison of techniques

Since the dataset is heavily imbalanced, Accuracy is an inaccurate measure of the perfor-

mance for these techniques. Kappa Statistic on the other hand, is appropriate for evaluating

imbalanced datasets as it adjusts accuracy by accounting for the possibility of a correct

prediction by chance alone [25]. The performance of the seven Machine Learning Tech-

niques was thus compared using the Kappa Statistic. Figure 5.20 shows that the Boosting
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Ensemble had the highest Kappa Statistic for both validation and testing datasets. Thus, it

was the best suited algorithm for predicting the occurrence of Ground Delay Programs.

Figure 5.20: Comparison of Machine Learning techniques for predicting the occurrence of

Ground Delay Programs using Kappa Statistic
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Review of Research Questions & Hypotheses

The review of prior research and research gaps discussed in section 2.3 led to the formula-

tion of research questions and their associated hypotheses. This section focuses on using

the results obtained from the previous chapter to assess the validity of the hypotheses to

address the research gaps associated with each of these research questions:

Research Question 1.1: Which Machine Learning techniques would lead to accurate

predictions of flight delay times due to Ground Delay Programs?

Research Question 1.2: Which Machine Learning techniques would lead to accurate

predictions of the duration of Ground Delay Programs?

Research Question 1.3: Which Machine Learning techniques would lead to accurate

predictions of taxi-in delay times during Ground Delay Programs?

Research Question 2: Which Machine Learning technique(s) would lead to accurate

predictions of the occurrence of Ground Delay Programs (GDP)?

6.1.1 Research Questions 1.1, 1.2 & 1.3

The hypotheses associated with Research Questions 1.1, 1.2, and 1.3 are:

Hypothesis 1.1: If dataset(s) containing comprehensive Ground Delay Program data

are leveraged, then prediction models can be developed to predict the impact of Ground

Delay Programs on flight and airport operations such as their duration, flight delay times,

and taxi-in delay times

Hypothesis 1.2: If numerical prediction algorithms are developed and benchmarked,

then prediction models can be developed to predict the impact of Ground Delay Programs

114



on flight and airport operations such as their duration, flight delay times, and taxi-in time

delays.

Hypothesis 1.1

A major gap in current research is the inability of researchers to access and utilize de-

tailed Ground Delay Program data for prediction models which has led to the development

of mostly weather-related Ground Delay Program prediction models. The Traffic Flow

Management System dataset provides data on Ground Delay Programs due to a variety of

factors (weather, volume etc.) as well as specific details about these causes. It is impor-

tant to note that the Traffic Flow Management System dataset is in FIXM format which is

not suitable for data analytics purposes. FIXM files have “schema” or “.xsd” files, which

dictate the structure of FIXM files. A parser was thus developed in python using the “Ele-

mentTree” API and the “.xsd” files to parse the TFMS datasets. This approach ensured that

all required fields were extracted in their correct formats. It also facilitated the detection of

errors in the datasets.

Leveraging the Traffic Flow Management System dataset thus led to the development

of comprehensive models for predicting the impact of Ground Delay Programs on flight

and airport operations such as their duration, flight delay times, and taxi-in delay times.

Thus, hypothesis 1.1 was validated through the leveraging of the Traffic Flow Management

System dataset.

Hypothesis 1.2

Another gap focuses on the lack of benchmarking of Machine Learning techniques in the

prediction of Ground Delay Programs. The evaluation of prediction models developed and

highlighted in the previous chapter revealed that the Random Forest was the appropriate

model for predicting flight delay times due to Ground Delay Programs and the duration of

Ground Delay Programs. Multiple Linear Regression was also identified as the appropriate
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model for predicting average taxi-in delay times during Ground Delay Programs. Hypoth-

esis 1.2 was validated through the development and benchmarking of different numerical

prediction algorithms for the prediction of the impact of Ground Delay Programs on flight

and airport operations such as their duration, flight delay times, and taxi-in time delays.

6.1.2 Research Question 2

The hypotheses associated with Research Question 2 are:

Hypothesis 2.1: If dataset(s) containing comprehensive Ground Delay Program data

are leveraged, then a model can be developed to predict the occurrence of Ground Delay

Programs

Hypothesis 2.2: If classification algorithms are developed and benchmarked, then the

occurrence of Ground Delay Programs can be accurately predicted

Hypothesis 2.1

As mentioned previously, a major gap associated with Ground Delay Program-related pre-

diction models is the inability of researchers to develop comprehensive prediction models

for Ground Delay Programs. Leveraging the Traffic Flow Management System dataset for

this research ensured that volume-related Ground Delay Program data as well as weather-

related Ground Delay Program data could be used as predictors, to predict the occurrence of

volume and weather-related Ground Delay Programs. Thus, hypothesis 2.1 was validated

through the leveraging of the Traffic Flow Management System dataset.

Hypothesis 2.2

Another research gap focuses on the lack of benchmarking of Machine Learning tech-

niques to predict the occurrence of Ground Delay Programs. Prior work have leveraged

one or two techniques for the prediction models. However, there is a need to assess the

performance of different techniques to identify the appropriate or best suited technique for
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predicting the occurrence of Ground Delay Programs. Benchmarking the performance of

seven classification algorithms revealed that Boosting Ensemble was the best suited tech-

nique for predicting the occurrence of Ground Delay Programs. Thus, hypothesis 2.2 was

validated through the development and benchmarking of different classification algorithms

for accurate predictions of the occurrence of Ground Delay Programs.

6.2 Future Work

6.2.1 Predicting airport capacity during Ground Delay Programs

Whenever Ground Delay Programs are initiated, the capacity of the affected airport is set

as the “program rate” for that airport. This research did not incorporate airport capacity as

a predictor in the prediction models. Future work will thus involve developing models to

predict airport capacity (program rates), and using airport capacity as a predictor for the

prediction models.

6.2.2 Predicting the impact of Ground Stops on flight and airport operations

Ground Stops are Traffic Management Initiatives that are implemented at an airport when-

ever air traffic demand is forecasted to exceed the airport’s capacity for a short period of

time [16]. Ground Stops, like Ground Delay Programs, impact flight and airport opera-

tions. The work carried out for this research can thus be extended to predict the impact of

Ground Stops on flight and airport operations such as their duration, flight delay times, and

taxi-in time delays.

6.2.3 Predicting the coincidence of Ground Delay Programs and Ground Stops

During Ground Delay Programs, flights are issued Expected Departure Clearance Times

(EDCT) [18], which lead to delayed departure times. However, during Ground Stops,

flights are grounded until conditions improve and the Ground Stop is terminated. Occa-

sionally, Ground Stops are initiated while Ground Delay Programs are ongoing and vice-
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versa, whenever conditions change. The coincidence of these Traffic Management Initia-

tives (TMI) leads to prolonged delays, especially for en-route flights. There is thus a need

to predict the coincidence of Ground Delay Programs and Ground Stops, as well as the

duration of the coincidence. Doing so would enable airlines and passengers to plan ap-

propriately and efficiently, leading to savings in fuel costs for airlines in particular, and

reduction in the opportunity costs for passengers.

6.2.4 Predicting updates to the duration of Ground Delay Programs and Ground Stops

Often, the duration of Ground Delay Programs and Ground Stops may be updated, when-

ever conditions change. Thus, there is not only a need to improve the prediction of the du-

ration of delays but also to predict the possibility of an update in the duration of a Ground

Delay Program or Ground Stop. Doing so would go a long way in helping airlines and

passengers in make more informed decisions.
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APPENDIX A

MACHINE LEARNING ALGORITHMS

A.1 Naive Bayes Classification

The Naive Bayes algorithm is based on Bayesian methods that utilize training data to cal-

culate an observed probability of each outcome based on the evidence provided by feature

values. Observed probabilities are then used to predict the most likely class for new features

when the classifier is later applied to unlabeled data. This method has been largely used

in classifying texts, such as email spam filtering, intrusion detection in computer networks

and diagnosing medical conditions given a set of observed symptoms [25].

Bayesian classifiers are optimal for problems in which information from numerous at-

tributes should be considered simultaneously in order to estimate the overall probability of

an outcome [25]. The strengths and weaknesses of the Naive Bayes algorithm are high-

lighted in Table B.1 in Appendix B.

A.2 Decision Trees Classification

Decision Trees are powerful classifiers that utilize a tree structure to model the relation-

ships among the features and the potential outcomes. A major benefit of Decision Tree al-

gorithms is that the flowchart-like tree structure is not necessarily exclusive to the learner’s

internal use. After the model is created, most Decision Tree algorithms output the resulting

structure which provides an insight into how and why the model works or does not work

well for a particular task [25].

Decision Trees have been used for credit scoring models in which criteria that causes

an applicant to be rejected is clearly documented and free from bias, marketing studies

of customer behavior such as satisfaction, and diagnosis of medical conditions based on
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laboratory tests or symptoms. One of the most used Decision Tree algorithms is the C5.0

algorithm which has become an industry standard because it performs well with most types

of problems [25]. The strengths and weaknesses of the C5.0 algorithm are highlighted in

Table B.2 in Appendix B.

A.3 Classification Rule Learners

Classification Rule Learners represent knowledge in the form of logical if-else statements

that assign a class to unlabeled examples. They form a hypothesis of “if this happens, then

that happens.” Classification Rule Learners are used in similarly to Decision Trees and

have been used to identify conditions that led to hardware failure in mechanical devices,

describe the key characteristics of groups of people for customer segmentation, and to find

conditions that precede large drops or increases in the prices of shares on the stock market.

The 1R algorithm has been widely used as a classification rule learner [25]. The strengths

and weaknesses of the 1R algorithm are highlighted in Table B.3 in Appendix B.

A.4 Linear Regression

Linear regression is concerned with specifying the relationship between a single numeric

dependent variable (the value to be predicted or target) and one or more numeric inde-

pendent variables (the predictors). The simplest forms of regression assume that the rela-

tionship between independent and dependent variables follows a straight line. Regression

analysis is typically used for modeling complex relationships among data elements, esti-

mating the impact of a treatment on an outcome, and extrapolating into the future. Linear

regression has been widely used in scenarios focused on examining how populations and

individuals vary by their measured characteristics, quantifying the casual relationship be-

tween an event and its response(s), and identifying patterns that can be used to forecast

future behavior. Regression has also been used for statistical hypothesis testing, which

determines whether a premise is likely to be true or false, given observed data [25].
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Most real-world regression problems have more than one independent variable. Thus,

the Multiple Linear Regression method is typically used for most numeric prediction tasks.

The strengths and weaknesses of Multiple Linear Regression are highlighted in Table B.4

in Appendix B.

A.5 Regression and Model Trees

Trees can also be used for numeric prediction and fall into two categories. The first, known

as Regression Trees, were introduced in the 1980s as part of the Classification and Re-

gression Tree (CART) algorithm. Regression Trees do not use linear regression methods.

Instead, they make predictions based on the average value of instances that reach a tree’s

leaf. Regression Trees typically perform much better than linear models [83]. The sec-

ond type of tree for numeric predictions is known as Model Trees. They are lesser known

but are more powerful than regression trees. Model Trees are similar to Regression Trees,

but at each leaf, a Multiple Linear Regression model is built from examples reaching that

node [25]. The strengths and weaknesses of Regression and Model Trees are highlighted

in Table B.5 in Appendix B.

A.6 Artificial Neural Networks

An Artificial Neural Network (ANN) models the relationship between a set of input signals

and an output signal using a model derived from how a biological brain responds to stimuli

from sensory inputs. Just as a brain uses a network of interconnected cells called neurons

to create a massive parallel processor, Artificial Neural Networks use a network of artificial

neurons or nodes to solve learning problems. Neural networks can be classified based on

their activation function, network topology or training algorithm [25].

A neural network’s activation function combines a neuron’s input signals into a single

output signal which is then distributed throughout the network [25]. A neural network’s

topology refers to the number of neurons and layers in the network, as well as the connec-
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tions between the neurons and layers. An input node (neuron) processes a feature (value)

from the dataset and transforms it into an output signal using the node’s activation function.

Finally, an output node generates predictions by using its own activation function and the

signal received from the input node [25].

Information flow in a neural network is classified in two categories: feedforward and

feedback. Feedforward networks involve feeding an input signal continuously in one direc-

tion from connection to connection until the signal reaches the output layer. These networks

are flexible and permit the simultaneous modeling of multiple outcomes. A neural network

with multiple hidden layers is referred to as a Deep Neural Network (DNN) and the prac-

tice of training a DNN is called deep learning. On the other hand, a feedback or recurrent

network permits signals to travel in both directions, which is useful for learning complex

patterns [25].

Artificial Neural Networks have been widely used to develop speech and handwriting

recognition programs, automation of smart devices like an office building’s environmental

controls and sophisticated models of weather and climate patterns [25]. The strengths and

weaknesses of Artificial Neural Networks are highlighted in Table B.6 in Appendix B.

A.7 Support Vector Machines

A Support Vector Machine can be imagined as a surface that creates a boundary between

points of data plotted in multidimensional that represent examples and their feature values.

The goal of a Support Vector Machine is to create a flat boundary called a hyperplane,

which divides the space to create fairly homogeneous partitions on either side. An example

of a hyperplane can be seen in Figure A.1. The figure shows a hyperplane or boundary that

classifies objects as either triangles or rectangles in two dimensions. In this way, Support

Vector Machines combine aspects of instance-based Nearest Neighbor learning models

and Linear Regression models. Support Vector Machines are used extensively in pattern

recognition tasks such as categorizing texts to identify the language used in a document, and
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the detection of rare yet important events like combustion engine failure [25]. The strengths

and weaknesses of Support Vector Machines are highlighted in Table B.7 in Appendix B.

Figure A.1: Two dimensional hyperplane

A.8 Bagging, Boosting and Random Forests

Bagging is an ensemble-based method that generates a number of training datasets by boot-

strap sampling the original training data. The datasets are then used to generate a set of

models using a single learning algorithm [25].

Boosting is another ensemble-based method that boosts the performance of weak learn-

ers to attain the performance of stronger performers. Boosting involves constructing re-

sampled datasets specifically to generate complementary learners. Then, each learner is

given a vote based on its past performance. Boosting results in a model with performance

that is often quite better than the best of the models in the ensemble [25].

Random Forests are another ensemble-based method that combines the principles of

Bagging with random feature selection to add additional diversity to Decision Tree mod-

els. Random Forests are widely known for combining versatility and power into a single

machine learning approach. As the ensemble only uses a small, random portion of the full

dataset, Random Forests can handle extremely large datasets where dimensionality might

cause other models to fail [25].
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APPENDIX B

ADVANTAGES AND DISADVANTAGES OF THE MACHINE LEARNING

ALGORITHMS CONSIDERED

Table B.1: Strengths and weaknesses of Naive Bayes algorithm [25]

Strengths Weaknesses
Simple, fast, and very effective Relies on an often-faulty assumption of

equally important and independent fea-
tures

Does well with noisy and missing data Not ideal for datasets with many numeric
features

Requires relatively few examples for
training, but also works well with very
large numbers of examples

Estimated probabilities are less reliable
than the predicted classes

Easy to obtain the estimated probability
for a prediction

Table B.2: Strengths and weaknesses of C5.0 algorithm [25]

Strengths Weaknesses
An all-purpose classifier that does well on
most problems

Often biased towards splits on features
having a large number of levels

Highly automatic learning process, which
can handle numeric or nominal features,
as well as missing data

Easy to over-fit or under-fit model

Excludes unimportant features Can have trouble modeling some relation-
ships die to reliance on axis-parallel splits

Can be used on both large and small
datasets

Small changes in the training data can re-
sult in large changes to decision logic

Results in a model that can be interpreted
without a mathematical background

Large trees can be difficult to interpret
and the decisions they make may seem
counterintuitive

More efficient than other complex models
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Table B.3: Strengths and weaknesses of 1R algorithm [25]

Strengths Weaknesses
Generates easy-to-understand, human-
readable rules

Uses only a single feature

Often performs surprisingly well Probably overly simplistic
Can serve as a benchmark for more com-
plex algorithms

Table B.4: Strengths and weaknesses of Multiple Linear Regression [25]

Strengths Weaknesses
The most common approach for modeling
numeric data

Makes strong assumptions about the data

Can be adapted to model almost any mod-
eling task

The model’s form must be specified by
the user in advance

Provides estimates of both the strength
and size of the relationships among fea-
tures and the outcome

Does not handle missing data

Only works with numeric features, so cat-
egorical data requires extra processing

Table B.5: Strengths and weaknesses of Regression and Model Trees [25]

Strengths Weaknesses
Combines the strengths of decision trees
with the ability to model numeric data

Not as well-known as linear regression

Does not require the user to specify the
model in advance

Requires a large amount of training data

Uses automatic feature selection, which
allows the approach to be used with a very
large number of features

Difficult to determine the overall net ef-
fect of individual features on the outcome

May fit some types of data better than lin-
ear regression

Large trees can become more difficult to
interpret than a regression model

Does not require knowledge of statistics
to interpret the model
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Table B.6: Strengths and weaknesses of Artificial Neural Networks [25]

Strengths Weaknesses
Can be adapted to classification or nu-
meric prediction problems

Extremely computationally intensive and
slow to train, particularly if the network’s
topology is complex

Capable of modeling more complex pat-
terns than nearly any algorithm

Very prone to over-fitting training data

Makes few assumptions about the data’s
underlying relationships

Results in a complex black box model that
is difficult, if not impossible, to interpret

Table B.7: Strengths and weaknesses of Support Vector Machines [25]

Strengths Weaknesses
Can be used for classification or numeric
prediction problems

Finding the best model requires testing
of various combinations of kernels and
model parameters

Not overly influenced by noisy data and
not very prone to over-fitting

Can be slow to train, particularly if the in-
put dataset has a large number of features
or examples

May be easier to use than neural net-
works, particularly due to the existence of
several well-supported SVM algorithms

Results in a complex black box model that
is difficult, if not impossible, to interpret

Gaining popularity due to its high accu-
racy and high-profile wins in data mining
competitions
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APPENDIX C

CODES

All of the scripts developed in Python and R can be accessed in GitHub:

https://github.gatech.edu/emangortey3/MS-Thesis
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