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SUMMARY 

 

 This research is intended to serve as an in-depth analysis of air pollution patterns 

and monitoring networks in the Atlanta area.  A ten year database of carbon monoxide 

(CO), sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), and particulate matter fine 

and course (PM2.5 and PM10) measurements at 17 monitoring stations across the Atlanta 

area was developed for use in this research.   

 

 Annual, seasonal, weekly, and diurnal profiles of air pollutants are analyzed and 

described.  Several factors are identified that impact these profiles, including changes in 

emissions, meteorology, and photochemistry.  Most sites exhibited decreasing annual 

average concentrations during the study period, with the exception of O3 and NOx, both 

of which initially increased and then decreased.  CO, NOx, and SO2 all have the lowest 

concentrations in the summer months, while O3 and PM2.5 are highest in the summer 

months.  CO, NOx, and SO2 are also slightly lower on the weekends.  CO and NOx have 

peak daily concentrations at rush hour, while O3 and SO2 peak in the afternoon hours. 

 

 Instrument error was evaluated through audit and calibration data and collocated 

data.  Collocated data is assumed to be a more accurate representation of instrument 

error; the percent error calculated using collocated data is much higher than that 

calculated using audit data.  Percent errors were similar for all pollutants using audit and 

calibration data (2-4%) and were similar for all concentration ranges.  Percent errors 

using collocated data were several times larger. 

 viii



 ix

 Semivariogram plots are developed to quantify spatial variation of air pollutants.  

These plots can be interpreted to give the fraction of temporal variation in a pollutant that 

is actually due to spatial variation.  As expected, primary pollutants have higher spatial 

variation than secondary pollutants.  Population weighted averages of the semivariogram 

function are developed to give a level of uncertainty for a pollutant across the study area. 

 Pollution rose plots are developed to qualitatively examine local sources that are 

impacting the monitoring sites used in this research.  As expected, primary pollutants 

have more noticeable local impacts.  Point sources are easily identified in SO2 plots, as 

are mobile sources in CO and NOx plots.  Pollution roses are also corrected for time of 

day and season to eliminate false sources. 



Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction 

 Air pollution in urban areas is often monitored through a network of spatially 

separated samplers.  Most large urban areas with air quality problems have government 

established and regulated monitoring networks for the criteria pollutants: ozone(O3), 

nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and particulate 

matter course and fine (PM10 and PM2.5).  Because of the expense of establishing a 

monitoring network and the availability of data from existing networks, the data collected 

primarily for regulatory use is often also used for various research objectives, including 

estimating exposure to air pollution in epidemiologic time-series studies of the health 

effects of air pollution.  In this type of study, the study population spans a region that 

contains one or more pollutant monitors.  The measurement of a pollutant by a monitor is 

assumed to be the actual pollutant concentration in the atmosphere, and the concentration 

of the pollutant around the monitor is assumed to be homogenous.  Neither of these 

assumptions is necessarily true.  The measurements a sampler gives can be affected by 

several factors, including statistical sampling error (only discrete portions of air are 

monitored and they cannot overlap for different monitors), monitor interferences, and 

reproducibility of methods (APCA, 1995).  The combination of these effects on the value 

a monitor reports is referred to as instrument error.  Instrument error can be thought of as 
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the fact that two identical monitors in the same place may not always report the same 

concentration of a given pollutant.  

In addition to instrument error, many factors influence the observed concentration 

levels of a pollutant throughout a study area, including proximity to sources, local 

topography and meteorology.  It is difficult to determine if one station is “representative” 

of an entire region.  In many cases, only information from one central monitoring station 

is used in a study, which increases the amount of error introduced into the epidemiologic 

study (Goldstein and Landovitz, 1977; Lipfert and Wyzga, 1997; Zeger et al., 2000; 

McNair et al., 1996).  However, in large population-based studies, it has been shown that 

the average population mean exposure is better correlated with a central monitor value 

than individual exposures (Schwartz et al., 1996).  This does not eliminate the error 

associated with using a central monitoring station, however, and this error is important as 

it can reduce the power of an epidemiologic study to determine a relationship between a 

pollutant exposure level and a health outcome (Pinto et al., 2004; Ito et al., 1995).  In one 

study, Ito et al. investigated the difference between using a single site measurement and a 

multisite average to estimate total mortality versus PM10.  They found considerable 

variation in PM10 concentrations across the study areas (Chicago, Ill and Los Angeles, 

Ca).  The authors concluded that some individual sites were as predictive as the multisite 

average, but not every site.  Thus, the selection of which site(s) to use can greatly affect 

the outcome of a health effects study.  Different air pollutants will have dissimilar levels 

of uncertainty based on differing spatial variability and instrument error.   

The combination of instrument error and spatial variability of air pollution is 

referred to as measurement error in this thesis.  In general, measurement error any 
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difference between the value of a pollutant used in a study and the actual concentration of 

the pollutant that the study population is exposed to (Carrothers, 2000; Evans, 2000).  In 

air pollution health effects studies, the health response is often very small and therefore 

measurement error can be an important source of uncertainty.  The focus of this research 

is to describe and quantify the measurement error of criteria air pollutant measurements 

used in epidemiologic health effects studies in Atlanta, GA and to qualitatively 

investigate local sources contributing to the variability.  The statistical methods 

developed can be applied to any urban area. 

 

 

1.2 Literature Review 

 

1.2.1 Instrument Error 

 There are several causes of instrument error, including interferences, blank levels, 

reproducibility of methods, and sampling statistics (APCA, 1995).  If a phenomenon 

interferes with only one sampler, that sampler will not give an accurate measurement.  

Because the samplers are not watched continuously, there is often no way of knowing if 

any interference has occurred.  The amount of “baseline” pollutant a sampler will register 

when relatively pure air is sampled is referred to as the blank level.  For the same model 

samplers, this level is assumed to be constant, although in reality it can vary slightly.  If 

each time a sampler is run the method is not exactly the same as for other samplers and 

sampling events, handler error can be introduced.  This aspect of instrument error is 

minimized by the use of automated, continuous samplers and becomes more important in 
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remote analysis samplers, such as PM2.5.  Finally, the amount of air used by any given 

sampler is statistically a very small fraction of the total amount of air in a sampling area.  

If the pocket of air sampled is compromised, for instance through a faulty intake valve, 

the measurement is less likely to be representative of the entire area (APCA, 1995). 

 In the past, instrument error has largely been dealt with on a purely qualitative 

level in most studies.  It is assumed to be a very small percent of overall concentrations 

and it is assumed not to vary much among different pollutants.  However, in federal 

monitoring networks a quality assurance system has been established to minimize 

instrument error (US EPA, 2004).  Among the specifications of the Code of Federal 

Regulations (CFR), network design, siting criteria, quality control/ quality assurance 

protocol, methodology and data validation are all explicitly outlined to reduce error, 

including instrument error.   

 When assessing instrument error, the quality assurance protocol established by the 

CFR is most important.  Performance audits are specified for each air pollutant to 

examine the accuracy of the monitors and calibrations and collocated monitors are 

specified to examine the precision of the monitors.  Data from these events can then be 

used to assess the overall instrument error.  Several studies directed at the health effects 

have used quality assurance data to show that instrument error can sometimes be larger 

than the actual trends in the pollutant and therefore the measurements will not provide 

meaningful relationships when used in a health effects model (Lipfert and Wyzga, 1997; 

Carrothers and Evans, 2000; Stanley, 1985).  This is particularly relevant in remote 

analysis samplers as the additional handler error can raise instrument error substantially 

(APCA, 1995). 
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1.2.2 Spatial Variability 

 Several methods of assessing spatial variability of air pollutants have been used.  

Some research has simply made comparisons of absolute values of pollutants at different 

locations (Chow et al., 2001; Pinto et al., 2004; Burton et al., 1988).  This approach does 

give a qualitative idea of differences in concentrations over an area, but it gives no 

information regarding the changes in concentration throughout the area.  Other research 

has looked at the use of different statistics that measure spatial variability, such as the 

coefficient of divergence (COD) (Pinto et al., 2004).  The COD provides a relative 

measure of homogeneity across a study area, but also does not provide quantitative 

information regarding spatial variability.  Other approaches to assessing spatial 

variability are described below. 

 

1.2.2.1 Correlation Coefficients 

 Spatial variability of various air pollutants across urban areas has been studied 

extensively (Hansen et al., 2003; Mulholland et al., 1998; Tiles and Zimmerman, 1998).  

In particular, the issue of how representative a monitor is of the surrounding area is of 

interest.  Several studies use correlation coefficients as a measure of variability (Monn et 

al., 1997; Buzorious et al., 1999; Morowska et al., 2002; Lin et al., 2001; Rao et al., 

1995).  The correlation coefficient is a simple statistic that measures the interdependence 

or covariance of two variables, ranging from 0 (no correlation) to +/- 1 (perfect 

correlation).  In an air quality monitoring network, correlation coefficients can be 

calculated between sites that are measuring the same pollutant simultaneously.  A 
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correlation coefficient of close to 1 between two or more sites indicates less spatial 

variation in a given pollutant.   

For example, Morowska, et al. used Pearson correlation coefficients to 

characterize spatial variability of O3, NOx, and PM10 is Brisbane, Australia.  In this study, 

sites were used that were specifically sited to have few local source impacts.  Three 

stations in the network were chosen for the study and correlation coefficients were 

calculated for the same pollutant at the same point in time at the different stations, each 

of which consisted of at least 100 observations.  The authors further analyzed the data 

three ways: first, considering all of the data, then considering only the low concentration 

levels, and finally considering only the high concentration levels.  In this way, it is 

possible to infer if the extreme values of a pollutant are local sources or regional.  The 

authors found that O3 concentrations had the least variability, followed by NOx and then 

PM10.  The authors also suggested reducing the number of O3 monitors in the area, but 

not the NOx and PM 10 monitors. 

Correlation coefficients can also be used in the development of interpolation 

models.  For instance, Duc et al. (2000) developed “correlation fields”, which are used to 

determine how far away from a known observation unknown concentrations can be 

derived.  The correlation field can also be used to form regions within a study area by 

which to group monitoring stations.  Other studies have looked at correlation coefficients 

at various distances from a given source, most often a road (Vardoulakis et al., 2003).   

 The correlation coefficient gives limited, qualitative information regarding spatial 

variability.  The general assumption is that less correlation implies greater variability.  A 

lack of correlation among monitoring sites indicates that no one site is representative of 
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the entire study area.  The correlation coefficient does not, however, give information on 

uniformity of concentration throughout a region or how quickly correlation is lost 

between sites or on the spatial distribution of a given pollutant. 

 

1.2.2.2 Coefficient of Variation 

 Another metric used to examine spatial variability is the coefficient of variation, 

which is the standard deviation of a pollutant divided by the mean.  This value is useful if 

one assumes the standard deviation of a set of observations is proportional to the mean.  

This is useful in air pollution data analysis if two monitoring sites have very different 

mean concentrations. 

Monn et al. (1997) studied PM10 and NO2 near roadsides in Zurich to examine 

small-scale concentration gradients using a spatial coefficient of variation.    They found 

the larges concentration gradient of PM10 was between the site closest to the street and 

one 15 meters away.  Beyond 15 meters, no significant gradients were observed.  NO2 

showed a similar, but not as dramatic gradient.  PM10 showed no significant seasonal or 

meteorogical patterns and had a spatial coefficient of variation of around 11-13%.  NO2, 

however, showed a strong seasonal dependence.  For the entire study period, the spatial 

coefficient of variation as 15.4%.  For the winter season the value dropped to 2.7% and 

for the summer it rose to 33.5%.  The authors suggested using less NO2 monitors during 

the winter months. 

 Hoek et al. (2002) also used variance to examine spatial variability in air 

pollution.  They conducted an analysis of variance between PM2.5 monitoring sites in 

three different urban areas and found that the differences between sites were significantly 
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larger than the variance within one site.  The focus of this study was traffic related air 

pollution, but the authors found significant differences when using sites that were farther 

away from roads as well.  Several other studies have used the same approach assess 

spatial variation in other pollutants (Lebret et al., 2000; Roosli et al., 2001). 

 

1.2.2.3 Semivariograms 

 The methods described above to estimate the spatial variability of air are limited 

by the idea that data are only available at spatially fixed locations.  It can be interpreted 

that a large variance indicates greater spatial variability but this generality does not have 

much other useful information, particularly about locations between monitoring sites. A 

common method of describing spatial data in geostatistics that addresses the uniformity 

of data over a study area is the semivariogram (see Figure 1.1).  The semivariogram is 

based on the concept of spatial autocorrelation; that is, observations made closer together 

will be more similar than those made further away.  The semivariogram is a function of 

the spatial distance between two observations, but it is not dependent on the actual 

locations at which the observations were made.  The semivariogram function is often 

plotted against distance between observations in order to give information about the 

continuity and variation of observations and has several common attributes.  There is 

usually a distance at which the value of the semivariogram no longer changes.  This 

distance is the range and the value at which the semivariogram remains constant is the 

sill.  The semivariogram is expected to increase from 0 to the sill. At distances outside of 

the range, observations are assumed to be completely uncorrelated.    The shape of the 

semivariogram near the origin is often of the most interest.  A smooth curve implies the 
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variable being observed is continuous and differentiable.  Often one observes a 

discontinuity at the origin, which is known as the nugget effect.  The nugget effect can be 

interpreted as instrument error usually.  The semivariogram is considered a more reliable 

method of estimating variability than the covariance function in geostatistics.  The 

estimation of the semivariogram is based on the variogram, which is defined as follows: 

 

22 ))]()(([]))()([())()(()(2 sZhsZESZhsZEsZhsZVarh −+−−+=−+=γ  

 

Where h is the distance between observation locations, si and sj and Z is the observation 

at each location. 

Because the expected value of Z(si) = µ the second term is 0.  The semivariogram 

is half of the variogram, defined as follows: 
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This equation is known as the classic semivariogram estimator, where N is the 

number of distinct pairs separated by a distance h.   

The semivariogram is also theoretically equivalent to the difference in the 

covariances at distance 0 and at distance h. 
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Figure 1.1: Graph of the semivariogram function
 

The semivariogram can be visually interpreted to provide qualitative information 

bout pollutant measurements.  The nugget effect described above corresponds to 

nstrument error.  The initial slope of the curve indicates local source effects.  The range 

f the curve is the distance at which two observations are not expected to have any 

orrelation, similar to the radius of influence described above.   

The semivariogram has been used previously for environmental pollutants 

Grondona and Cressie, 1991; Casado et al., 1994).  A common method of displaying 

patial variability is through a contour map, which involves interpolating values of the 

ollutant of interest between observations.   Kriging is a popular geostatistical method of 

nteropolating data which requires the development of a semivariogram.  The 
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semivariogram is used to define the spatial relationship between data points.  The concept 

behind kriging is to take a weighted average of known concentrations to determine an 

unknown concentration at a different location.  This method has been applied 

successfully to air pollution data in several cases (Iaco et al., 2002; Ferreira et al., 2000).  

Iaco et al. (2002) developed space-time semivariograms for use in kriging air pollution 

data in Milan, Italy.  They were able to use the resulting contour graphs to distinguish 

patterns in air pollutants attributed to traffic.  The authors showed that the interpolation 

model based on the semivariograms was able to correctly predict air pollution related to 

traffic emissions with r-values above .6 for all days tested.  Ferreira et al.(2000) used 

similar methods to study air pollution in Lisbon, also focusing on traffic emissions, and 

had similar success.  However, in neither case was the semivariogram directly interpreted 

to give meaningful information on the spatial variability of the pollutant of interest.  

Because of the focus of this research, the use of semivariograms in interpolation 

techniques will not be addressed. 

 

One variation of the semivariogram that has been used previously in air pollution 

studies is the cumulative semivariogram (CSV)(Sen, 1989).  The CSV is a graph of 

successive semivariograms: 

 

∑=
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The CSV is capable of showing even small dependencies in pairs of data that may 

not be evident in a classical semivariogram.  At large distances, the CSV is essentially a 
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straight line, which agrees with the idea of a sill in the classical semivariogram.  The area 

of the CSV closest to the origin is a curve and the distance for which the CSV curves is 

equivalent to the range in the classical semivariogram.  The slope of the CSV at any 

distance has been shown to be equal to the value of the classical semivariogram at that 

distance (Sen, 1992).   

The cumulative semivariogram has been used in several air pollution studies (Sen 

1989 and 1992, Anh et.al., 1997).  Sen, who originally developed the CSV, used it as a 

method of qualitatively evaluating air pollution in Istanbul.  Pollutants considered were 

smoke, PM and SO2.  Each CSV developed for SO2 showed initial curvature followed by 

a straight line at large distances.  This can be interpreted to mean that at small distances 

there is greater “dependency” or correlation between observations and at larger distances 

the observations are independent.  The CSV’s developed for PM did not show any 

curvature, indicative of the regional concentration of PM being fairly uniform.  Sen also 

shows that the slope of the long-distance straight line is a function of the standard 

deviation of the pollutant concentration.  As in classical semivariograms, intercepts not at 

the origin indicate discontinuities in the data.  

Anh et al. (1997) also used the cumulative semivariogram to describe spatial 

variability of air pollution.  In this case, the pollutant of interest was ozone and the region 

was Sydney, Australia.  The authors developed a CSV model based on the K-theory of 

atmospheric diffusion and use it to determine a “radius of influence”.  They conclude that 

for ozone, sub-regions of 17km exist in which concentrations are well correlated.  The 

authors also conclude that primary pollutants would have much smaller sub-regions. 
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Sen (1998) has also applied the cumulative semivariogram to kriging techniques, 

similar to the classical semivariogram.  The CSV is used to determine the weighting of 

various observations when determining an unknown concentration at a different location.  

The weightings are inversely proportional to the distance between sites. 

There is some speculation that the use of the semivariogram to characterize spatial 

variation in air pollutants is inappropriate because of a lack of well distributed monitors 

(Diem, 2003).  Specifically, Diem argues that to create a stable semivariogram of ozone 

concentrations in the Atlanta MSA, 100 monitors would be needed.  Obviously this is 

unreasonable.  Diem also suggests that spatial modeling can be used to overcome this 

obstacle, but that is not the focus of this research.   

 

1.2.3 Sources  of variability 

 Once the issue of spatial variability is addressed and quantified, it is useful to 

determine the causes of this variability.  One cause, which can be quantified relatively 

easily through the use of the semivariograms, is instrument error.  This is error that is 

based on the fact that different samplers are used at different monitoring sites and no two 

samplers can be exactly the same.  Co-located data, in which two samplers are run 

simultaneously at the same site, along with audit data, in which an independent person 

runs standard pollutant levels through a monitor, are used to quantify the amount of 

instrument error. 

 A second source of error is due to the impact of local sources.  Depending on the 

size of a source of a given pollutant, it may impact only one or very few monitors within 

the area.  There are already well known sources of air pollutants that can impact sites 
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differently.  Several studies have examined the spatial variability in air pollution due to 

proximity to roadways (Lebret et al., 2000).  For the most part, these studies have been 

conducted by comparing observations at sites located at varying distances from major 

roadways.   In the Atlanta area, mobile sources are the largest contributor to CO and NOx 

concentrations in ambient air.  There are several coal fired power plants in the Atlanta 

area and these are believed to be the most significant sources of SO2.   CO, NOx and SO2 

are all primary pollutants, meaning they are directly emitted.  Secondary pollutants, such 

as ozone and particulate matter, are formed in the atmosphere through chemical reactions 

and therefore do not have any “sources”.  In this research, one would not expect to see as 

much spatial variability in secondary pollutants because of the lack of sources. 

 Currently, source apportionment modeling is used to identify sources of PM2.5 

through analysis of the component fractions (Marmur et al., 2005; Zheng et al., 2002).  

However, this approach requires detailed measurements that are often not available and is 

computationally intensive. 

 One method of qualitatively examining local sources of air pollution is to develop 

plots of pollution concentrations versus wind direction.  If large concentrations are 

indicated from one direction, that area should be inspected for sources of the pollutant.  

For example, a large SO2 spike on a pollution rose plot in a given direction could confirm 

that SO2 is coming from a power plant in that direction.   Aneja et al. (1999) use wind 

roses to examine peak ozone concentrations in North Carolina in order to support the 

hypothesis of regional transport of ozone into the study areas.  Ma et al. (2004) conduct 

similar analyses to determine if long-range transport from China is a source of elevated 

PM2.5 concentrations in Japan.  Wind roses have also been used to locate emissions on a 
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smaller scale. Navazo (2003) used wind roses to indicate traffic and industrial sources of 

various air pollutants in Bilbao, Spain. 

 Finally, regional sources and meteorology can also affect the spatial variability of 

air pollution across a region.  If a source of an air pollutant is large enough, its impact on 

concentrations in a given area could be observed at all monitoring locations.  Regional 

sources could be, for example, very large power plants that have a noticeable affect on 

SO2 concentrations in a region of interest.  Regional meteorology can also impact local 

concentrations of an air pollutant.  If wind measurements in a region show a strong 

overall directionality, this could result in a transfer of air pollutants.  In this way, another 

region that has severely elevated levels of a pollutant could serve as a “source” of that 

pollutant to another region. 

 

1.3 Atlanta Area Epidemiologic Studies 

 A number of studies have attempted to establish a relationship between ambient 

air pollution concentrations and cardiovascular health or respiratory health (Schwartz et 

al., 1996).  Recently, analyses have been refined to investigate health outcomes related to 

specific pollutants in urban environments.  In the Atlanta area, the Aerosol Research 

Inhalation Epidemiology Study (ARIES) has examined emergency department visits for 

cardiovascular and respiratory diseases relative to ambient pollutant concentrations of 

particulate matter, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide 

(Metzger et al., 2004; Peel et al., 2005).  These studies used air pollution data collected 

from 1993-2000, including central monitoring site data.  The monitoring site used in both 

studies was the Jefferson Street site, with data collected from 1998-2000. 
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 Peel et al. (2005) found that standard deviation increases in NO2, O3, CO and 

PM10 were associated with increases in emergency room visits due to upper respiratory 

infection, a 2 µg/m3 increase in PM2.5 was associated with increased pneumonia visits, 

and standard deviation increases in NO2 and CO were associated with chronic obstructive 

pulmonary disease visits.  Further, associations remained beyond 3 days for several 

outcomes and over a week for asthma. 

 Metzger et al. (2004) examined the same data for associations between 

cardiovascular conditions.  Cardiovascular disease related emergency room visits were 

found to be associated with NO2, CO, PM2.5 and several PM2.5 components.  Risk ratios 

ranged from 1.04 to 1.02, with the strongest associations seen on the day of elevated 

concentration. 

 In both of these studies, one concentration of a given pollutant was used to 

estimate exposure for the entire study population.  Several assumptions are inherent when 

using data from only one site.  If it is assumed that this site is representative of the entire 

study area, then it is also assumed that there are no sources locally affecting air quality 

only in the immediate vicinity of the monitor and not throughout the study area.  It is also 

assumed that the concentration of a pollutant is homogenous throughout the study area 

and fluctuations are uniform throughout the study area.  For some pollutants, especially 

secondary pollutants that are not affected by local sources, these assumptions may be 

true.  However, for primary pollutants it is not evident that the concentration observed at 

one monitoring station is representative of an entire study area.  If this is the case, 

substantial uncertainty due to errors in the exposure estimate and thus the outcome of a 

 16



 17

health effects study is introduced.  In this research, this error is a major component of 

measurement error, as described previously. 

 The suitability of one monitoring site to estimate exposure to a pollutant over a 

study area should be carefully evaluated for health effects studies.  If a central monitoring 

site is to be used, the size of the area it is representative of should be first established.  

Different pollutants, with different atmospheric lifetimes, are expected to be 

representative of different size areas.  The amount of error introduced by using spatially-

limited data should also be evaluated. 

 

 The intent of this research is to develop a metric that can be used in epidemiologic 

studies to assess the error introduced into a study by using only one, or a limited number 

or, monitoring site(s).  This error is termed “measurement error” and is separated into two 

components: instrument error and local source impacts. 



Chapter 2 

OBJECTIVES 

 

 

 The overarching focus of this research is to provide a metric that can be used in 

epidemiologic studies to quantify the contribution of measurement error, the combination 

of instrument error and local source impacts, to overall exposure error.  This is done 

through the accomplishment of several secondary objectives. 

 The first objective of this research was to develop a comprehensive database of 

air pollution and meteorology data in the Atlanta area.  The time frame for this data base 

was 1993-2003, for use in an epidemiologic study of the same time frame.  This database 

was first used to give descriptive information about air quality in the region.  Various 

temporal averages, yearly, monthly, weekly, and daily, as well as correlation coefficients, 

were computed for descriptive information. This database is also the origin of the more 

detailed statistical analysis performed in this research. 

 The next objective was to quantify instrument error, which is the result of 

differences in individual monitors, and local source impacts.  These are the two 

components of measurement error.  Several questions about measurement error were 

addressed.  First, instrument error was quantified for each pollutant to determine if it is a 

large component of measurement error and if it is similar in magnitude across pollutants.  

Next, local source impacts were considered.  The impact of local sources was addressed 

for each pollutant.  Similar to instrument error, it was important to establish differences in 

the magnitude of local source impact across pollutants. 
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 Once the contribution of local source impacts to measurement error was 

calculated, the final objective of this research was to assess the individual sources 

impacting the monitoring sites used.  This is done to highlight the importance of various 

sources to different pollutants as well as to illustrate the representativeness of the 

different stations.  Individual monitoring stations were studied to determine if one station 

has fewer local source impacts and is therefore representative of a larger area than other 

sites. 



Chapter 3 

METHODS 

 

 

 This research involved the assembly of a database of air pollution measurements 

for the metropolitan Atlanta area.  The initial database timeframe was 1993-2004, and has 

now been expanded to include 1968-1992.  Data from two monitoring networks, 

described below, was assembled into a comprehensive database for use by Georgia Tech 

and Emory researchers.  All criteria pollutant data was used, which includes carbon 

monoxide, oxides of nitrogen, sulfur dioxide, ozone, and particulate matter.  

Meteorological data was also collected.   

 

3.1 Monitoring Networks 

3.1.1 Georgia Department of Natural Resources 

 The Georgia Department of Natural Resources Environmental Protection Division 

(EPD) manages a large network of air quality monitoring stations in the metro Atlanta 

area.  The majority of the data used came from this network of monitors.  Data was 

retrieved through the Air Quality System (AQS) database, maintained by the U.S. 

Environmental Protection Agency (EPA).  Sampling methodology is specified in the 

Code of Federal Regulations (CFR) and all methods described below are the federal 

reference method or equivalent. 
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3.1.1.1 Site descriptions 

 Fifteen EPD managed monitoring sites were used in this study (see Figure 3.1).  

Most sites only sample for a few pollutants, as described below. 

 Roswell Road is designed to be a microscale measurement site.  The purpose of 

this monitoring at this location is to monitor peak pollution levels from traffic.  A 

microscale site is only intended to be representative of several meters (up to 100 m) in 

area.  Roswell Road is surrounded by several large roadways, including 3 major 

highways. The Roswell Road site was established in 1994. 

 The South Dekalb site is considered to measure an urban scale level of air 

pollution. These sites are intended to measure pollution coming out of Atlanta as an area 

source.  Located just southeast of downtown Atlanta, the site is immediately surrounded 

by trees and the area beyond that is mostly residential.  South Dekalb is expected to see 

the worst conditions as it is just downwind of Atlanta.  Interstate 285 is just over 1 km to 

the north of the site.   

Most of the sites used in this research are neighborhood scale.  This siting is used 

to estimate pollutant exposure in large populations and is considered representative of an 

area from 0.5 to 4 km, including Dekalb Tech, Tucker, Georgia Tech, and Confederate 

Avenue.  The Dekalb Tech site is located on a community college campus in a well 

populated area.  Samplers are situated at the southern end of a large campus parking lot.  

This site was established in 1981. The Tucker site is located in the parking lot of an 

abandoned building in a mainly commercial area.  One large roadway, Lawrenceville 

Highway, is located approximately 1000 m to the north.  This site was established in 

1995.  The Georgia Tech site is in an urban area and is situated to give average 
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measurements at the city center.  The surrounding area is a mostly a college campus, with 

some commercial areas.  Interstate 75/85 is located directly to the east of the site.  The 

Georgia Tech site was originally established in 1973 but was moved to its present 

location in 1993.  The Confederate Avenue site is in an abandoned parking lot on a 

National Guard Reservation.  The surround area is mostly residential.  Interstate 20 is 

located just over 1 km to the north of the site and I-75/85 is located several kilometers to 

the west of the site.  This site was established in 1991.  The site at Fire Station 8 was 

established in 1973 in a suburban, commercial area.  There are several large roads in the 

vicinity, but no major interstates.  E. Rivers School is a suburban site established in 1971.  

The surrounding area is largely residential.  The Fulton County Health Department site is 

located in the heart of downtown Atlanta.  It was the first air quality monitoring site in 

Georgia, established in 1957.  The surrounding area is commercial.  Similar to South 

Dekalb, this site is expected to have the highest levels of air pollution due to its 

downtown location.  Doraville Health Center is located to the north of downtown Atlanta.  

The surrounding area is mixed commercial, residential and industrial.  One large 

roadway, Buford Highway, is located to the southeast of the site and a major interstate, I-

285, is located to the northeast.  The Doraville Health Center site was established in 

1970.  The site in Douglasville is approximately 30 km west of downtown Atlanta.  

Interstate 20 is several kilometers south of the site and a rail road track runs less than 1 

km northwest of the site.  The Douglasville site was established in 1995. 

Four rural/agricultural sites were also used in this research: Conyers, Yorkville, 

and Stilesboro.  The purpose of these sites is to measure background concentrations.  The 

Conyers site was established in 1976 on a monastery about 40 km east of downtown 
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Atlanta.  The surrounding land is forest and pasture.  The Stilesboro site is located on 

agricultural land about 80 km northwest of downtown Atlanta.  Bowen Power Plant is 

located 3 km directly to the north.  This site was established in 1982.  Yorkville is a rural 

site established in 1996 and located on a private farm about 55 km northwest of Atlanta.  

The site is on a pasture and the surrounding area is covered mainly with hardwoods.  The 

Griffin site is located on University of Georgia Extension Services land.  The site is 

located approximately 60 km south of downtown Atlanta.  The Griffin site was 

established in 1990. 

 

 

 

Figure 3.1:  Monitoring stations. 
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3.1.1.2 Measurement Techniques 

As specified by the Clean Air Act (CAA), the Atlanta area has two CO monitors.  

These are located at the Roswell Road monitoring site and the Dekalb Tech monitoring 

site (see Figure 3.2). 

 CO is measured continuously at both sites using non-dispersive infrared 

photometry and gas filter correlation methods.  The monitors are just above ground level 

(3-9 feet above the ground) and intended to sample air at the level most people are 

inhaling it. 

 

Figure 3.2: CO monitoring stations. 
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 EPD manages five NO2 and NOx monitors in metro Atlanta (see Figure 3.3).  

There are two urban sites, Georgia Tech and South Dekalb, one suburban, Tucker, and 

two rural or background sites, Conyers and Yorkville.   

 NOx and NO2 are measured continuously using ozone phase chemiluminecence.  

As with CO, monitors are sited at ground level to sample air from the breathing zone. 

 

 

 

Figure 3.3: NO2/NOx monitoring stations. 

 

 

 There are 13 SO2 monitoring stations in Georgia, three of which are located in the 

area of interest for this research (see figure 3.4).  The sites used were Stilesboro, located 
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northwest of downtown Atlanta, and Confederate Avenue and Georgia Tech, located in 

downtown Atlanta. 

 SO2 is measured continuously using a potassium tetrachloromercurate bubbler.  

The detection limit for SO2 measured in this way is 0.01ppm.  There is no height 

specification for SO2 monitors. 
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Figure 3.4: SO2 monitoring stations; a: urban, b: rural. 
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 Ozone monitoring occurs at 22 sites in Georgia from March through October.  

Three metro Atlanta sites were used in this research: Confederate Avenue, South Dekalb, 

and Conyers (see Figure 3.5).  Confederate Avenue is a downtown site, South Dekalb is 

suburban, and Conyers is rural.   

 Ozone is monitored continuously using the U.V. photometric method.  Samplers 

are placed at ground level to sample at the breathing zone. 

 

 

 

Figure 3.5: O3 monitoring stations. 
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 PM10 is measured at 26 sites throughout Georgia.  Seven of these sites are within 

in the Atlanta metro area and are included in this research.  These include Georgia Tech, 

Fire Station 8, E. Rivers School, Fulton County Health Department, Doraville Health 

Center, Griffin, and Douglas County (see Figure 3.6).  

 There are two methods of sampling PM10 in Georgia.  The first is by filter 

sampling and gravimetric analysis.  Twenty-four hour samples are collected on 

microquartz filters every six days.  This is the method used by all of the sites except 

Georgia Tech.  At Georgia Tech, a continuous tapered element oscillating microbalance 

(TEOM) sampler is used to report continuous concentrations of PM10. 

 

 PM2.5 is measured at the same sites as PM10, although the PM2.5 monitoring 

network was not established until 1999.  The sites used in this research are Yorkville, 

East Point Health Center, Fire Station 8, E Rivers School, Doraville Health Center, South 

Dekalb, Kennesaw, and Forest Park (see Figure 3.7).  All of these sites are considered 

urban except Yorkville, which is a rural site, and Kennesaw, which is suburban. 

 PM2.5 samples are collected on Teflon filters and undergo gravimetric analysis.  

Daily, 24 hour samples are collected at E Rivers School, Doraville Health Center, and 

South Dekalb.  Samples are collected every third day at all other sites. 
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Figure 3.6: PM10 monitoring stations; a: urban b: suburban/rural. 
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Figure 3.7: PM2.5 monitoring stations; a: urban, b: suburban/rural. 
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 Wind speed and direction data was collected for use in the development of 

pollution rose plots.  Whenever possible, meteorological data was used from the same 

site as that at which pollutant measurements were made.  If there was no meteorological 

data available, the next nearest or most representative site was used.  Wind speed and 

direction data was used from the following sites: Conyers, South Dekalb, Tucker, 

Yorkville, and Confederate Avenue. 

  

 

3.1.2 Southeastern Research and Characterization Study 

The Southeastern Research and Characterization (SEARCH) study is a 

collaborative effort between the Electric Power Research Institute and Southern 

Company to characterize air pollution in the southeast.  SEARCH is unique in its use of 

“supersites”- air quality monitoring sites that contain a large array of pollutant and 

meteorological measurements.  There are eight SEARCH monitoring sites two each in 

Mississippi, Alabama, Florida, and Georgia.  The two Georgia sites are Yorkville and 

Jefferson Street.  Yorkville is also the location of a DNR managed monitoring site as 

described above.  Jefferson Street is on Georgia Power Company property about 4.2 km 

northwest of the intersection of I-75/85 and I-20.  The surrounding area is mixed 

industrial and residential use.  A bus maintenance facility is located 250 m south of the 

site. All SEARCH stations were established in 1998, although several were located at 

existing O3 monitoring stations, including Yorkville. 
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Measurements used from the Search sites include NO2, NOx, SO2, CO, O3, PM10, 

PM2.5 and PM2.5 components.  Meteorological data, including wind speed and direction, 

was used as well.  

At SEARCH sites, all gaseous data is collected every minute.  For this research, 

hourly averages of minute data were used.  For most pollutants, the same methods 

described above were used at SEARCH sites.  Ozone is sampled through UV absorption.  

The minimum detection limit (MDL) for O3 is 1 part per billion (ppb). NO is sampled via 

chemiluminescence (CL), with a MDL of 0.5 ppb.  NO2 is measured through photolysis 

and CL with a 0.1 ppb MDL.  This method is believed to be a “truer” means of measuring 

NO species in the atmosphere and is expected to report lower concentrations that the 

method used by EPD. CO is sampled using NDIR and has a 5 ppb MDL.  SO2 is not 

measured via the same method as is used at EPD maintained sites.  Instead, SO2 is 

measured through UV pulse fluorescence with a 0.2 ppb MDL.  This is believed to be a 

more accurate measurement.  

Particle measurements are collected several different ways.  Daily, 24 hour 

filter/gravimetry samples are collected for both PM2.5 and PM10.  PM2.5 filter samples 

are also collected using a particle composition monitor (PCM), which provides speciation 

information (Hansen et al.).  They are both also measured using a TEOM sampler.  

 

3.2 Database Design 

 For this research, a database of air pollutant and meteorological measurements in 

the Atlanta area was developed.  The data used was collected from several public 

databases, Air Quality System, the SouthEastern Research and Characterization Study 
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public archive and the National Climatic Data Center archives, and compiled into a 

hierarchical format. 

The Air Quality System (AQS) is a public database maintained by the US 

Environmental Protection Agency (EPA).  Hourly measurements of all gaseous pollutants 

and PM2.5 were requested for the time frame 1993-2003.  Daily measurements of PM2.5 

and PM10 were also requested. 

The SouthEastern Research and Characterization (SEARCH) study public archive 

is available online.  Hourly measurements were downloaded for all gaseous pollutants, 

PM2.5 and PM10 measurements as well as meteorological data. 

Meteorological data was requested from the National Climatic Data Center 

(NCDC) for the Hartsfield Airport monitoring station. 

Once the data was collected, AQS data was sorted by pollutant and year and 

SEARCH data was sorted by site and year into Excel spreadsheet files.  Interpolation was 

then performed if 8 hours of data or less were missing.  After interpolation, if a day had 

24 observations, the average of these observations was taken.  These averages were then 

transferred into a separate file, the daily file.  Each pollutant had a daily file with 24 hour 

averages for each day from 1993 to 2003 for each site.  If there were not 24 observations 

for a given day at a given site, no value was recorded.  Finally, a master file containing 

24 hour averages for the entire study period for all pollutants was compiled. 

For PM2.5 and PM10 sites that only recorded 24 hour filter samples, this 

observation was used in the daily and master files with no alteration. 

The entire database is stored in an on-line server to allow access for all 

researchers on this project. 



Chapter 4 

DESCRIPTIVE ANALYSIS OF TEMPORAL TRENDS IN ATLANTA AIR 

QUALITY 

 

 

The Atlanta Metropolitan Statistical Area is an urban area that has received 

attention recently for its dramatic growth and poor air quality.  The area contains several 

major interstates with heavy use, large power plants, and various types of industrial 

plants, all of which contribute to the air pollution problem.  Atlanta has been designated 

by EPA as being out of attainment for both ozone regulatory standards and particulate 

matter (PM2.5) regulatory standards.  The Atlanta area was chosen for this research 

because of the history of elevated pollution levels and because there is a well established 

air monitoring network for the region. 

 

4.1 Dataset overview 

This data used for these analyses consists of hourly measures carbon monoxide, 

nitrogen oxides, sulfur oxides, ozone, and particulate matter for the years 1993-2003 

collected from 17 monitoring sites.  If a day was missing less than 8 hours of 

measurements, these hours were linearly interpolated and used in the analyses.  Data 

completeness was high (average 90% completeness) and around 2% of data was 

interpolated (see Table 4.1). 
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Table 4.1: Summary of dataset. 

Site Pollutant Freq Network Time Frame 
Completeness- 
Raw Data Interpolated 

Dekalb Tech CO Hourly EPD 01/1993-06/2003 90.19% 1.74% 

Roswell Road CO Hourly EPD 08/ 1994-12/ 2003 97.83% 1.25% 

Jefferson Street CO Hourly SEARCH 08/ 1998-12/2002 89.84% 4.02% 

Yorkville CO Hourly SEARCH 01/ 1993-12/2002 85.51% 1.92% 

Georgia Tech NOx/NO2 Hourly EPD 01/ 1993-12/2003 89.87% 3.07% 

South Dekalb NOx/NO2 Hourly EPD 01/ 1993-12/2003 87.23% 1.57% 

Tucker NOx/NO2 Hourly EPD 04/1995-12/2003 85.42% 1.94% 

Conyers NOx/NO2 Hourly EPD 04/ 1994-12/2003 94.32% 2.05% 

Yorkville NOx/NO2 Hourly EPD 01/ 1996-12/2003 88.69% 2.13% 

Jefferson Street NOx/NO2 Hourly SEARCH 08/1998-12/2002 84.20% 2.38% 

Georgia Tech SO2 Hourly EPD 01/ 1993-12/2003 92.12% 1.26% 

Stilesboro SO2 Hourly EPD 01/ 1993-12/2003 96.19% 1.22% 
Confederate 
Avenue SO2 Hourly EPD 01/ 1993-12/2003 95.03% 1.49% 

Jefferson Street SO2 Hourly SEARCH 08/ 1998-12/2002 90.15% 3.96% 

Yorkville SO2 Hourly SEARCH 01/ 1993-12/2002 88.81% 1.52% 

South Dekalb O3* Hourly EPD 01/ 1993-12/2003 93.90% 1.48% 
Confederate 
Avenue O3* Hourly EPD 01/ 1993-12/2003 97.59% 1.70% 

Conyers O3* Hourly EPD 01/ 1993-12/2003 97.47% 1.51% 

Jefferson Street O3 Hourly SEARCH 08/1998-12/2002 94.20% 2.32% 

Yorkville O3 Hourly SEARCH 01/ 1993-12/2002 88.97% 1.97% 
Doraville Health 
Center PM2.5 Daily EPD 01/ 1999-12/2003 85.93%  

E Rivers School PM2.5 Daily EPD 01/ 1999-12/2003 84.07%  

South Dekalb PM2.5 Daily EPD 01/ 1999-12/2003 83.68%  

Fire Station 8 PM2.5 3rd day EPD 01/ 1999-12/2003 89.84%  
East Point 
Health Center PM2.5 3rd day EPD 01/ 1999-12/2001 83.61%  

Forest Park PM2.5 3rd day EPD 01/ 1999-12/2003 88.36%  

Kennesaw PM2.5 3rd day EPD 01/ 1999-12/2003 88.20%  

Yorkville PM2.5 3rd day EPD 01/ 1999-12/2003 88.69%  

Jefferson Street PM2.5 Daily SEARCH 01/ 1998-12/2002 78.64%  

Jefferson Street PM2.5 Hourly SEARCH 08/ 1998-12/2002 84.78%  

Yorkville PM10 6th day EPD 05/ 1998-12/2002 76.70%  

Fire Station 8 PM10 6th day EPD 01/ 1993-12/2003 91.80%  
Doraville Health 
Center PM10 6th day EPD 01/ 1993-12/2003 88.77%  

Griffin PM10 6th day EPD 01/ 1993-12/2003 86.74%  
Fulton Co Health 
Department PM10 6th day EPD 01/ 1993-12/2003 88.97%  

Douglasville PM10 6th day EPD 01/ 2000-12/2003 94.26%  

E Rivers School PM10 6th day EPD 01/ 2000-12/2003 77.87%  

Georgia Tech PM10 Hourly EPD 01/ 1998-12/2003 97.52%  
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4.2 Annual Trends 

For several pollutants, CO, SO2, O3, PM10, and PM2.5, annual average 

concentrations have been decreasing over the past few years.  This is particularly evident 

for CO, where 1 hour maximum, 8 hour maximum, and 24 hour average concentrations 

have appreciably decreased at all monitoring sites except Yorkville (see Figure 4.1), 

which is considered a background site as it regularly measures concentrations much 

lower than the more urban stations.  Nitrogen oxides and ozone exhibit a slight increase 

in concentrations from 1994-1998 and then a decrease from 1998-2003 (see Figure 4.3 

and 4.4).  The similarity in profiles is not unusual as NOx is an ozone precursor.  

Although NOx monitoring sites have a large range in concentrations, O3 monitoring sites 

are relatively uniform throughout the years.  PM10 and PM2.5 are also relatively uniform 

and exhibit similar magnitudes of decreasing concentration (see Figure 4.5). 

Mobile sources are large contributors to CO, NOx, and PM in Atlanta.  Increases 

in both population and vehicle miles traveled in Atlanta have led to increased mobile 

emissions over the course of this study period.  For the metropolitan Atlanta area, 

population increased from 2,557,800 in 1990 to 3,429,379 in 2000 (US Census, 1990 & 

2000).  The Atlanta Regional Commission estimates a further increase to 3,669,300 in 

2003.  Most of this growth has been in the northern area of the region.  At the same time, 

vehicle miles traveled have increased from 26 miles/person/day to 32 miles/person/day 

(ARC, 2005). 

In 1996, the Georgia Environmental Protection Division (EPD), through the 

establishment of the Clean Air Force, implemented a mandatory, annual emissions test 

for all cars older than 3 years.  This test checks tailpipe emissions levels, catalytic 
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converters, and fuel cap seals.  This program specifically targets reductions in ozone 

precursors and PM.  Although it is not possible to estimate exact levels of reduction, it is 

estimated that this program has lowered mobile NOx and PM emissions (Georgia’s Clean 

Air Force). 

Sulfur dioxide concentrations decreased most noticeable between 1993 and 1995.  

Levels between 1995 and 2000 remained steady or slightly decreased at most sites.  After 

2000, another slight decrease in concentrations is seen.  A noticeable exception is 

Jefferson Street, which exhibited a large spike in SO2 concentrations, both 1 hour 

maximum and 24 hour average, in 2000.  This is not seen at any other monitoring sites. 

(See Figure 4.2)  Average monthly concentrations were slightly higher in 2000 than in 

2001 and 2002 for most of the year and two to three times as high from October through 

December.   

Title IV of the Clean Air Act Amendments of 1990 specifically addresses SO2 

and NOx from fossil-fuel fired power plants.  Phase one of this program called for 263 

power plants to reduce SO2 emissions through a cap-and-trade program.  All of the power 

plants in or near the metropolitan Atlanta area were included in the initial listing; 

however several plant substitutions (i.e. decreased emissions at power plants not in the 

Atlanta area were considered in the overall reductions) were made in Georgia to help 

achieve the lower emissions.  Overall SO2 emissions for the plants were decreased by 

over 50% by 1995.  Phase two of this program included almost all power plants in 

Georgia.  This phase requires all power plants to emit no more than 1.2 pounds of SO2 

per million Btu heat input by 2000.  Title IV also calls for a 2 million ton reduction in 
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NOx from the power plants identified, however no formal cap-and-trade program or 

emissions monitoring program was used. 
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Figure 4.1: CO annual averages. 
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Figure 4.2: SO2 annual averages. 
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Figure 4.3: NOx annual averages.
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Figure 4.4: O3 annual averages.  
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Figure 4.5: PM10 and PM2.5 annual averages.
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4.3 Monthly Profiles 

 Many air pollutants vary by season due to the effects of meteorology and 

photochemistry.  The Atlanta area receives a large quantity of solar radiation between 

May and August, increasing photochemistry.  Temperatures are lowest, and vertical 

mixing most limited, during the winter months, November through February. 

 

 Carbon monoxide’s seasonal profile is based largely on temperature.  In the 

cooler winter months, there is less vertical mixing in the atmosphere.  However, 

emissions of CO do not change.  The emissions that are well mixed vertically in the 

summer are trapped at the lower levels of the troposphere in the winter, leading to higher 

concentrations (see Figure 4.6). 
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Figure 4.6: Seasonal profiles of CO.  Data from 1993-2003 except Jefferson Street 

(1998-2002) and Yorkville (1996-2002). 
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 Nitrogen oxides exhibit a similar seasonal pattern as CO (see Figure 4.7).  This is 

in part because of the vertical mixing discussed above.  There is also less photochemistry 

in the winter due to less solar radiation.  Photochemical reactions to form ozone lower 

NOx concentrations in the summer, as do reactions leading to the formation of peroxy 

acetic nitric anhydride (PAN), which is a reservoir for NO species. The lack of these 

reactions in the winter leads to elevated NOx concentrations. 
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Figure 4.7:  Seasonal profiles of NOx. Data from 1993-2003 except Jefferson Street 
(1998-2002) and Yorkville (1996-2002). 
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 The variation in SO2 by season is largely due to changes in emissions. The major 

sources of SO2 are coal-fired power plants, and electricity demand peaks in summer due 

to air conditioning.  In the peak summer months, oil and natural gas are used to 

supplement coal fuel in the power plants affecting the Atlanta area.  This compensates for 

the increase in power generation for air conditioning. Nonetheless, there appears to be a 

July peak (see Figure 4.8). 

SO2

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1-
hr

 S
O

2 (
pp

b)

Jefferson St
Georgia Tech
Confederate Ave.
Stilesboro
Yorkville

 

Figure 4.8:  Seasonal profiles of SO2. Data from 1993-2003 except Jefferson Street 
(1998-2002) and Yorkville (1996-2002). 
 

 

 

 Because there are an abundance of ozone precursors (reactive organic compounds 

(ROGs) and NOx) in the Atlanta area during all months, seasonal ozone patterns are 

driven by photochemistry.  ROGs have a large biogenic source in the Atlanta area and do 
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not limit O3 formation. The summer months have the largest amount on incoming solar 

radiation, as well as high levels of NOx and ROGs, and therefore the largest amount of 

ozone production (see Figure 4.9). 
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Figure 4.9: Seasonal profiles of ozone. Data from 1993-2003 except Jefferson Street 
(1998-2002) and Yorkville (1996-2002). 
 

 

 Particulate matter displays two peak concentrations annually- first in July/August 

and then in November (see Figure 4.10).  The July/August peak is largely due to 

increased solar radiation leading to increased formation of secondary components of 

PM2.5. 
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Figure 4.10: Seasonal profiles of PM2.5. Data from 1998-2003 except Jefferson Street 
(1998-2002). 
 

 

4.4 Weekly Profiles 

 

 Air pollution concentrations also exhibit weekly patterns.  These patterns are 

dependent only on patterns in emissions as meteorology and photochemistry are not 

affected by day of week.  Several major sources of air pollution, however, do exhibit 

weekly emissions profiles. 

 

 As mentioned above, carbon monoxide is mainly emitted through mobile sources.  

There is not a strong weekly profile in mobile emissions, but there is a slight tendency 
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towards less miles traveled on the weekends.  This is evident in the urban CO monitoring 

sites, particularly the Roswell Road site (see Figure 4.11).  This site is situated to monitor 

emissions from mobile sources on several major interstates (GA 400 and I-75/85) that are 

used largely for commuting during the week.  It is expected that on the weekends there is 

less traffic and therefore fewer emissions.  Dekalb Tech and Jefferson Street exhibit only 

a slight decrease in concentrations on the weekend. 
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Figure 4.11: Day of week profiles of CO. Data from 1993-2003 except Jefferson 
Street (1998-2002) and Yorkville (1996-2002). 
 

 

 Nitrogen oxides are also largely emitted by mobile sources and so reflect the same 

weekly profile as CO.  Weekly patterns are more dramatic for NOx than CO, with all of 

sites except the most rural (Yorkville) displaying a decrease in concentrations on the 

weeknd (see Figure 4.12).  Photochemical reactions of NOx to ozone are not affected by 
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day of week and exaggerate the decrease in NOx concentrations.  At the most urban sites, 

Jefferson Street, Georgia Tech, and South Dekalb, there is also a one day build-up in 

concentrations from Monday to Tuesdays.   
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Figure 4.12: Day of week profiles of NOx. 

 

 

 In the urban sites, Jefferson Street, Georgia Tech, and Confederate Avenue, there 

is a slight downward trend in SO2 concentrations towards the end of the week (see Figure 

4.13).  This is possible due to less diesel traffic on the weekends. 
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Figure 4.13: Day of week profiles of SO2. Data from 1993-2003 except Jefferson 
Street (1998-2002) and Yorkville (1996-2002). 
 

 

 

 Because ozone is a secondary pollutant and not directly emitted into the 

atmosphere, it has little variation by day of week.  What is seen at urban sites is a gradual 

build up of ozone concentrations throughout the week due to the increase in ozone 

precursors (see Figure 4.14).  This is most dramatic at Jefferson Street and does not occur 

at all at the rural sites, Conyers and Yorkville.  The Jefferson Street and Yorkville sites 

include winter data (November-February) which could affect the patterns observed. 
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Figure 4.14: Day of week profiles of O3. Data from 1993-2003 (March-October) 
except Jefferson Street (1998-2002, all months) and Yorkville (1996-2002, all 
months). 
 

 

 Particulate matter is a combination of primary emissions and secondary 

formation.  There are several components of PM2.5, each with unique emissions sources.  

This leads to little day of week variation in PM2.5 concentrations (see Figure 4.15).  In 

Atlanta, mobile sources, both gasoline and diesel, are a significant fraction of PM2.5, 

possible explaining the slight drop in concentrations at most sites on the weekends. 
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Figure 4.15:  Day of week profiles of PM2.5. Data from 1998-2003 except Jefferson 
Street (1998-2002) and SEARCH Yorkville (1998-2002). 
 

 

 

4.5 Diurnal Profiles 

 Photochemistry, meteorology, and emissions of air pollutants all have distinctive 

diurnal patterns.  As a result, air pollution concentrations conform to unique diurnal 

profiles.  Solar radiation peaks between 10 am and 2 pm and two major rush hours are 

observed between 6 am and 8 am and between 5 pm and 7 pm. 

 

 Carbon Monoxide (CO) is a primary pollutant, i.e. it is directly emitted into the 

atmosphere.  It is a relatively inert gas in the atmosphere.  In Atlanta, CO concentrations 
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are mainly impacted by mobile emissions.  Peak CO concentrations corresponding with 

rush hour events (hours 6-9 and 17-20) are evident when one examines graphs of the 

diurnal profiles of CO (see Figure 4.16).  For urban sites near large roadways, Jefferson 

Street, Roswell Road and Dekalb Tech, the peak concentration corresponding to morning 

rush hour is most prominent.  In the evenings and overnight, CO concentrations remain 

elevated due to a stable boundary layer that does not allow much vertical mixing.  At the 

background site, Yorkville, there are only a few small roadways nearby and so no diurnal 

pattern in observed. 

 It is also evident when examining the yearly diurnal profiles that although overall 

CO concentrations are decreasing in the Atlanta area, the diurnal profiles are not 

changing. 
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Figure 4.16: Diurnal profiles of CO. 

 

 Similar to CO, nitrogen oxides (NOx

NOx profiles show the same morning rush hour 

C
O

 (p

Yorkville

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
O

 (p
pb

)

 

 

 

 

 

 

 

) are also emitted by mobile sources.  Diurnal 

peak as CO (see Figure 4.17).  However, 

NOx is also affected by photochemistry.  NOx is a precursor to ozone, which is produced 

at times of high photochemical energy, in the middle of the afternoon.  The afternoon 

decrease in NOx concentrations (hours 12-15) is much more dramatic than that observed 

in the CO profiles.  This is because NOx emissions are decreasing at the same time as an 

increase in photochemistry and therefore scavenging of NOx to form ozone.  Urban sites 

show the strongest diurnal NOx concentrations while rural sites exhibit relatively constant 

levels throughout the day. 
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Figure 4.17: Diurnal profiles of NOx. 
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Figure 4.18: Diurnal profiles of SO2. 
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Figure 4.19: Diurnal profiles of O3. 
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 Hourly PM2.5 data was only available for Jefferson Street for this study perio

The diurnal profiles observed are very similar to those seen for CO and NOx at this site,

implying that mobile sources are contributing largely to the diurnal variability

4.20).  This site is near a diesel bus facility which could be impacting the PM2.5 level

this site and not others. 
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Figure 4.20: Diurnal profiles of PM2.5. 
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4.6 Conclusions 

sites, i.e. urban sites shared similar temporal profiles.  This can give an indication of 

source categories that are affecting monitoring sites. 
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in emissions, meteorology, and photochemistry
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poral patterns in air pollutants: variations 

.  Each pollutant has a unique temporal 

is when performing data analysis on air 

t; that is, all sites have similar diurnal 

easonal profiles are also evident for most 

search, temporal profiles were similar at like 
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Chapter 5 

INSTRUMENT ERROR 

 

 

5.1 Introduction 

   

In a health effects study, one measure of a given pollutant may be used in an 

epidemiologic model to analyze the health outcome.  The measurement given by the 

sampler is assumed to be the actual concentration of the pollutant and this concentration 

is often assumed to be constant throughout the study area.  One criticism of this type of 

study is that when the health outcome response is very small, exposure error can have a 

large impact.  Exposure error is the difference in the pollutant concentration measured 

and used in a model and the actual pollutant concentration the population is exposed to.  

The effect of exposure error is a bias to the null, or a lack of power in the model to 

determine the true relationship (Lipfert and Wyzga, 1997).  There are many sources of 

exposure error, including instrument error, spatial variability, temporal variability, and 

variability in human behavior (Carrothers and Evans, 2000).  Instrument error and spatial 

variability are collectively referred to here as measurement error.  This section of 

research addresses instrument error. 

This research uses data from 13 different monitoring stations in the Atlanta area.  

Several different networks are used; however the majority of the data is from federally 

mandated ambient air monitoring stations.  The data collected by these stations is 

mandated by the Clean Air Act (CAA) and the Code of Federal Regulations, and has 
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multiple uses:  to establish attainment/nonattainment designations for the National 

Ambient Air Quality Standards (NAAQS), to evaluate the effectiveness of control 

programs, to assess the impact of air pollution on public health, to track the progress of 

State Implementation Plans (SIPs), to aid in the development of control strategies, to 

verify emissions inventories and dispersion modeling, and to monitor developing 

temporal trends (Sleva et al.).   Determining the impact of air pollution on public health is 

only one objective, and is often not the primary objective of the agency managing air 

pollution monitoring networks.  This implies that air sampling monitors should not be 

assumed to be located so as to minimize exposure error.  The quantification of exposure 

error, and therefore measurement error, is important in understanding the total 

uncertainty in a health effects study. 

 This research focuses on two ways to assess instrument error: accuracy and 

precision quality assurance data from the Environmental Protection Agency (EPA) and 

collocated sampler data.   

 

5.2 Accuracy and Precision Data 

 

 Any environmental program that is run by or on behalf of the EPA is required to 

have a quality assurance program (Sleva et al.).  Specifically, several aspects of air 

monitoring are established in the Code of Federal Regulations (CFR), part 40, including 

network design, siting criteria, methodology and data validation, and an adequate quality 

assurance program.  The quality assurance program is outlined through data quality 

objectives (DQOs) that establish objectives for precision, accuracy, representativeness, 
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comparability, and comprehensiveness (Sleva, et al.).  DQOs are often used by decision 

makers as the level of uncertainty acceptable in decision making and have been 

developed for the determination of NAAQS compliance.  Each state is required to 

develop a Quality Assurance Program Plan (QAPP) which is then certified by the EPA. 

 

5.2.1 Automated Samplers 

 All of the gaseous pollutant data used in this research are from automated 

samplers.  These are samplers that run continuously and collect and analyze samples 

without user interference.  Accuracy and precision data are collected for these samplers 

through multipoint audits and calibrations. 

 Multipoint audits are required once per year for automated samplers to test 

accuracy.  During the audit, standards of three known concentrations are injected into the 

sampler during normal sampling operation.  The standards must be traceable to the 

National Institute of Standards and Technology (NIST), a NIST-traceable Reference 

Material (NTRM) or a NIST-certified Gas Manufacturer’s Internal Standards (GMIS). 

The three concentrations are usually a factor of ten different and are intended to test the 

entire range of the instrument (see Table 5.1).  The output is compared to the known 

value.  Errors of greater than +/- 20% require the instrument to be re-audited after 

adjustments have been made. 
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Table 5.1: Ranges of standards used for accuracy audits, in ppm. 

  SO2 and 
O3 

NO2 and 
NOx 

CO 

1 0.03-0.08 0.03-0.08 3-8 
2 0.15-0.20 0.15-0.20 15-20 
3 0.35-0.45 0.35-0.45 35-45 
4 0.80-0.90 ------ 80-90 

 

  

 

 

To test precision in automated samplers, calibration data are used.  Calibrations 

are required biweekly.  During the calibration, standards of a known value within the 

range normally monitored by the sampler are injected into the sampler.  For SO2, 

NO2/NOx, and O3 the range is from 0.08 – 0.1 ppm and for CO the range is 8-10 ppm.  

Similar to the accuracy audits, standards must be traceable to the NIST, NTRM or GMIS.  

The output is then compared to the known value.  If the error exceeds +/- 15%, the 

instrument is re-calibrated after adjustments have been made. 

 

 

5.2.2 Remote Analysis Samplers 

 Remote analysis samplers are samplers that collect an air sample at one point, for 

a given amount of time, which is then transferred to a lab for analysis.  Particulate matter 

is sampled in this way.  Because there is human handling of the sample and transfer 

between locations, instrument error is expected to be higher for samples collected in this 

manner.  Accuracy and precision data for these samplers are collected through flow check 

audits and collocated sampler data. 
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 Flow check audits must be performed on PM2.5 samplers once per year.  A 

certified flow rate transfer standard is compared to the instrument’s output.  The recorded 

value must be +/- 10% of the standard value or the sampler should be re-audited. 

 Precision of PM2.5 samplers is verified through the use of collocated samplers.  

Within a PM2.5 monitoring network, 15% of samplers must have a collocated sample.  

Special consideration is given to areas that are likely to exceed the National Ambient Air 

Quality Standard, such as Atlanta.  In this case, 80% of the collocated samplers must be 

in areas where the concentration has exceeded 90% of the NAAQS 24-hour average 

standard.  In each area that has experienced a violation, there should be at least one 

collocated sampler.  The collocated samplers should be between two and four meters 

apart and must use the same collection method.  Calibration, sampling and analysis of 

collocated samplers should occur at the same time.  One sampler must be designated the 

“primary” sampler for the site.  Collocated data are reviewed annually to determine any 

systematic problems.  In the Atlanta area, Doraville Health Center, E Rivers School, and 

Forest Park monitoring stations have collocated samplers.  Limited data were available 

for this study period. 

 

5.2.3 EPD/SEARCH Collocated Samplers 

 Both the Georgia Environmental Protection Division (EPD) and the Southeastern 

Research and Characterization Study (SEARCH) maintain monitoring stations at the 

Yorkville site.  The SEARCH station includes all of the gaseous and PM measurements 

considered in this research.  The EPD station includes ozone, NO2/NOx, and particulate 

matter.  The monitoring methods are identical in both networks for these pollutants.  The 

 68



stations are located approximately 4 meters apart.  This is sufficient to consider the 

continuous gaseous pollutants monitored by each network at Yorkville to be collocated.  

  

5.3 Results  

  

 Instrument error can be caused by several factors, including statistical sampling 

error (only discrete portions of air are monitored and they cannot overlap for different 

monitors), monitor interferences, and reproducibility of methods (APCA, 1995).  

Instrument error can be thought of as the fact that two identical monitors in the same 

place may not always report the same concentration of a given pollutant.  The clearest 

way to assess instrument error for the purposes of this research is to use collocated data.  

When that is not possible, audit and calibration data are used. 

 

5.3.1 Audit and Calibration Data for Continuous Monitoring Samplers 

 Audit and calibration data was used to calculate percent error, which represents 

sampler accuracy, for CO, SO2, O3 and NOx.  Audit and calibration data was collected 

from EPD for all sites used in this research for the time frame of interest (1993-2003).  

The percent error was calculated as the absolute value of the difference between the 

observed value and the standard value divided by the standard value.  This value ranged 

between 2 and 5 percent with standard deviations between 2 and 4 percent.  (See Table 

5.2)   

 Each set of audit and calibration data was composed of data from three distinct 

concentration ranges, as described above. (See Figure 5.1)  To verify that the percent 
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error is similar throughout the whole range of the sampler, each concentration range was 

analyzed individually.  Percent errors were similar at all concentration levels.  (See Table 

5.3) 

 

Table 5.2: Percent error using audit data 
Pollutant % Error St Dev R Regression 
CO 3.88% 3.06% 0.99 Obs = - 0.448 + 1.04 Std 
NOx 4.47% 4.03% 0.98 Obs = 0.00119 + 0.980 Std 
O3 2.15% 2.65% 1.0 Obs = 0.00261 + 0.973 Std 
SO2 3.11% 2.76% 0.99 Obs = - 0.00315 + 1.02 Std 
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Table 5.3: Percent errors for different concentration ranges. 

.3.2 Collocated Data

 

 

 

 

 

 

Range CO SO2 O3 NOx 

1 3.93% 3.10% 2.23% 4.65% 

2 3.23% 3.17% 1.88% 3.52% 

3 3.28% 3.46% 2.83% 3.49% 

 

 

 

5  

For ozone, NO2/NOx, and PM2.5 data from collocated samplers were used to 

ssess instrument precision.  The correlation coefficient between collocated samplers was 

utant, as well as the percent error and standard deviation of the 

igure 

 

a

calculated for each poll

percent error, as above.  The R-values were high for all pollutants (above 0.9) (see F

5.2); however, for pollutants with both audit and calibration data and collocated data, the 

percent error was much higher for the collocated data than for the audit and calibration 

data.  (See Table 5.3 for values.)  This suggests that the accuracy of the instrument, as 

measured by the audit and calibration data, is only a small part of the total instrument 

error, as measured by the collocated samplers. 
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Table 5.4: Percent error using collocated monitors. 
Pollutant Site Years % Error St Dev R Regression 
PM2.5 Jefferson St 

(FRM and PCM) 
98-02 12.13% 11.66% 0.96 PCM = - 0.397 + 

0.954 FRM 
 Jefferson St 

(FRM and 
TEOM) 

98-02 20.12% 19.92% 0.91 TEOM = - 1.20 + 
0.969 FRM 
 

PM10 FS8, DHC, ERS 95-03 5.83% 5.49% 0.98 Prim = 1.73 + 
0.915 Col 
 

NOx Yorkville 02 26.38% 26.42% 0.95 SEARCH = 0.002 
+ 0.949 AQS 

O3 Yorkville 99-02 8.30% 9.46% 0.98 SEARCH = 4.62 
+ 992 AQS 

 

Figure 5.2: Scatterplots of collocated data. 
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5.3.3 Using Audit and Calibration Data and Collocated Data to Assess Instrument Error 

as used to assess instrument. 

as d , PM10 d r S d ata 

as used.  ferent f d di f ti t 

error. The error derived from collocated data is assumed to be a more accurate 

description of instrument error.  Because the collocated samplers are

taneo ry close ther, ep w

ribed a  to instr un  an e ca

udit and calibration data gives information about the accuracy of an instrument, which 

is only one component of instrument error.  Comparing percent error calculated from 

to γ as follows: 

      Eq 2 

 Whenever possible, collocated instrument data w

This w one for PM2.5 , O3, an NOx.  Fo O2 and CO, au it and calibration d

w These two dif  types o ata give fferent in orma on about instrumen

 running 

simul usly and ve toge any discr ancy bet een measurements can be 

desc s errors due ument f ctioning d not du  to lo l source impacts.  

A

audit and calibration data with that calc

shows that using audit and calibration data gives a sm

taken into consideration when work

 In this research, γ is a semi

of the temporal variation in a pollutant that is

ulated from collocated data for PM, O3, and NOx 

aller percent error.  This should be 

ing with audit and calibration data. 

variogram function developed to describe the fraction 

 actually due to the spatial variation of that 

pollutant.  The function is defined as:  

    γ (h) = co + ce

 Where h is the distance between two

partial “sill” of the function and ae is

section 7 for a detailed discussion of this functi

 {1 – exp(–h/ae)}   Eq 4  

 sites, co is the instrument error, ce is the 

 the “range” of the function divided by 3.  (See 

on.)  Air quality data fits this curve when 

the R-value between two stations is converted 

R
R

+
−

=
1
1'γ 
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When h is zero, i.e. there is no distance between measurements, the only term in 

the function is co.  To empirically fit co PM, O3, and NOx, the R-value between colloca

samplers is used in equation 2.  For SO2 and CO, the percent error calculated from audit 

and calibration data is multiplied by the average value of the pollutant concentration 

during the study period and divided by the standard deviation of the concentrati

values are reported in Table 5.5. 

 

Table 5.5: Instrument error. 

0.14 

0.07 

0.24 

0.11 

ted 

on.  These 

Pollutant Instrument error 

SO2 

CO 

NOx 

O3 

PM  2.5 0.10 

10 0.11 PM
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5.4 Con

rstand overall uncertainty in a study using ambient air 

pollutant data.  Two methods of quantifying instrument error were performed in this 

tion data to calculate the percent variation of a sampler 

and using collocated data to calculate the correlation between samplers at the same site.  

Both calculations give an tion of how much of the total variability observed in air 

pollutants is attributable t ations in the samplers used.  As expected, error between 

collocated samplers was m larger than the error derived using audit and calibration 

data, and it is expected to be a more accurate measurement of instrument error.   

clusions 

 

 Measurement error, an important component of exposure error in an 

epidemiologic study, includes instrument error and spatial variability.  While spatial 

variability is often assumed to be much larger than instrument error, it is still important to 

quantify instrument error to unde

analysis: using audit and calibra

 indica

o vari

uch 
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Chapter 6 

SPATIAL VARIATION 

 

 

6.1 Introduction 

 

 Spatial variation of air pollutants is an important part of measurement error.  In an 

epidemiologic study, measurement error is the difference in what an air pollution sampler 

measures and what a population is actually exposed to. Spatial variation refers to the fact 

that air pollution monitors are only measuring concentrations at one, or a few, discrete 

point(s) in space.  Often it is assumed that this concentration is the same throughout the 

study area or that there is a constant concentration gradient throughout the study area.  

Neither of these assumptions is true, however. The distribution of local sources, for 

primary pollutants, can greatly increase the spatial variability of a given pollutant.  At the 

same time, the lack of sources of secondary pollutants and the reliance on atmospheric 

chemistry for their formation can lead to a decrease in spatial variability of a given 

pollutant.  Every pollutant should therefore be considered to have a unique pattern of 

spatial variability.  In order to assess the overall uncertainty of an epidemiologic health –

affects study, it is important to quantify spatial variability of the pollutants used across 

the study area. 

 

6.1.1 Quantifying Spatial Variability of Air Pollutants 
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 There are several common methods of examining variability of air pollutants 

across a study area.  The simplest and most common is through the use of the Pearson 

correlation coefficient (Monn et al., 1997; Buzorious et al., 1999; Morowska et al., 2002; 

Lin et al., 2001; Rao et al., 1995).  This statistic is a measure of the covariance between 

two variables.  In an air monitoring network, the correlation coefficient would be 

calculated between two samplers at different locations monitoring the same pollutant 

simultaneously.  A correlation of 1 is assumed to imply less spatial variability of that 

pollutant. 

 Other methods of evaluating the spatial variability of air pollutants include the 

coefficient of variation (Monn et al., 1997; Hoek et al., 2002; Lebret et al., 2000; Roosli 

et al., 2001), which is the standard deviation between sites divided by the mean, and 

simple comparisons of absolute concentrations of a pollutant at different sites (Chow et 

al., 2001; Pinto et al., 2004; Burton et al., 1988).  While these methods all give a general 

indication of agreement between sites, they do not give any information as to how the 

agreement changes with distance. 

This research utilizes a variation on a common method of describing spatial data 

in geostatistics, the semivariogram (Waller and Gotway, 2004).  The semivariogram 

addresses the uniformity of data over a study area.  It is based on the concept of spatial 

autocorrelation; that is, observations made closer together will be more similar than those 

made further away.  The semivariogram is a function of the spatial distance between two 

observations, but it is not dependent on the actual locations at which the observations 

were made.  The semivariogram function is often plotted against distance between 
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observations in order to give information about the continuity and variation of 

observations and has several common attributes.  

 

6.2 Methods 

 

6.2.1 Semivariogram derivation 

 Specialized semivariograms were developed to measure the amount of temporal 

variability that is explained by spatial variability.  The derivation of the semivariogram 

formula used in this research follows. 
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Where x and y are logarithms of the daily (i.e.24 hour average) observations at two 

stations during the study period. The actual observations are assumed to have lognormal 

distributions. Probability density function plots of the data support this assumption, as 

will be shown. 

 

Values x and y are then normalized: 

x

x

sd
x

x
µ−

≡'  
y

y

sd
y

y
µ−

≡'  

 78



The mean of the normalized values as well as the sum of the normalized values are both 

0.  The standard deviation of the normalized values is 1. The R value can be rewritten 

using the normalized values: 

n
yx

R ∑= )''(
 

A new term, the daily spatial average value, is defined: 

2
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2
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The standard deviation of the spatial variation in z’ is then calculated. 
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This can be rearranged and simplified as follows. 
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Next, the ratio of the standard deviation in the spatial variation ( ) to the standard 

deviation in the value (sd
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In this equation, is referred to as the spatial standard deviation and is the 

temporal standard deviation. 

'zsd∆ 'zsd

It can also be shown that the ratio of the spatial to temporal standard deviation is 

the same for z as it is for z’. 

 

6.2.2 Application to Atlanta Air Quality Data 

 Air quality data was collected from the Georgia Environmental Protection 

Division’s (EPD) ambient monitoring network, the Southeastern Research and 

Characterization Study (SEARCH), and the ASACA network.  The time frame used was 

from 1998-2002 in order to include as many sites as possible (SEARCH data is available 

only during those years).  The distribution of the data was examined and it was 

determined that all pollutants have a lognormal distribution (see Table 6.1, Table 6.2 for 

distribution parameters and Figure 6.1 for distribution fit).  The lognormal of all of the 

data was calculated and used for the semivariogram analysis.  The intercept, or “nugget 

effect”, was calculated using the instrument error.  For pollutants for which collocated 

data was available, PM,  NOx, and O3, the R-value of the collocated samplers was 

calculated and used in equation 3 to determine the intercept.  For pollutants without any 

collocated samplers, audit and calibration data was used.  The average percent difference 

between the standard concentrations used in the audits and calibrations and the measured 

concentration was calculated.  This value was then multiplied by the average 

concentration of the pollutant for the given time frame and divided by the standard 

deviation to give the intercept.   
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Once the intercept is established for a pollutant, equation 3 is then calculated for 

each pair of sites, i.e. for each distance.  The line is then fitted to the following model: 

    γ (h) = co + ce {1 – exp(–h/ae)}   Eq 4   

Here, co is the calculated nugget effect, ce is the partial sill (co + ce is the sill), and the 

effective range (typically defined as the distance at which the autocorrelation is 0.05) is 

3ae (Waller and Gotway, 2004).   
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Figure 6.1: Distribution fitting for Jefferson Street data. The blue line is a standard 
lognormal distribution given the mean and standard deviation of the data.
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Table 6.1: Lognormal distribution parameters, gaseous pollutants and PM2.5 mass. 
pollutant 
measure 

station median value geometric 
standard 
deviation 

SO2 
1-hr max / 
24-hr avg 

JS – SEARCH 
GT 
CA 
St 
Yo 

12.84 / 2.5 ppb 
8 / 2.75 
7 / 2.19  
6 / 1.73 
6.42 / 2.05 

2.61 / 2.47  
3.0 / 2.13 
3.0 / 2.06 
3.11 / 1.89 
2.42 / 2.32 

CO 
1-hr max / 
24-hr avg 

JS – SEARCH 
RR 
DT 
Yo 

0.87 / 0.39 ppm 
1.5 / 0.74 
1.2 / 0.55 
0.24 / 0.18 

2.17 / 1.77 
1.71 / 1.62 
1.92 / 1.80 
1.41 / 1.32 

NOx 
1-hr max / 
24-hr avg 

JS – SEARCH 
GT 
SD 
Tu 
Co 
Yo 

94.7 / 31.6  ppb 
86 / 30.2 
136 / 38.5 
 51 / 19.8 
29 / 10.8 
 9 / 3.9 

2.48 / 2.36 
2.50 / 2.34 
2.84 / 2.94 
2.17 / 2.04 
3.70 / 3.41 
2.57 / 2.29 

O3 
1-hr max / 
8-hr max / 
24-hr avg, 
Apr-Oct 

JS – SEARCH 
CA 
SD 
Co 
Yo 

48.3 / 39.8 / 22.2 ppb 
60.0 / 51.6 / 29.5 
57.0 / 48.3 / 24.7 
57.0 / 49.9 / 28.0 
53.2 / 48.4 / 38.5 

1.8 / 1.9 / 2.0 
1.6 / 1.6 / 1.6 
1.6 / 1.7 / 1.6 
1.5 / 1.5 / 1.5 
1.5 / 1.5 / 1.5 
 

PM2.5 mass 
24-hr avg 

JS – SEARCH 
ERS 
SD 
DHC 
FS8 – 3rd day 
EPHC – 3rd day 
FP – 3rd day 
Ke – 3rd day 
Yo – 3rd day 
JS – TEOM 
FM – TEOM 
SD – TEOM 
Tu – TEOM 
Yo – SEARCH 

16.0  µg/m3 
16.5 
16.0 
16.8 
18.1 
16.7 
16.1 
16.5 
13.5 
17.9 
17.5 
16.6 
18.1 
11.9 

1.6 
1.6 
1.7 
1.6 
1.7 
1.8 
1.7 
1.7 
1.8 
1.6 
1.6 
1.5 
1.7 
1.7 
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Table 6.2: Lognormal distribution parameters, PM2.5 components. 
PM2.5 component station median geometric 

standard 
deviation 

sulfate 
 

JS – SEARCH 
FM – ASACA 
SD – ASACA 
Tu – ASACA 
Yo – SEARCH 

4.6  µg/m3 

4.3 
4.4 
4.3 
4.5 

1.9 
2.1 
2.0 
2.1 
2.1 

nitrate 
 

JS – SEARCH 
FM – ASACA 
SD – ASACA 
Tu – ASACA 
Yo – SEARCH 

0.8 µg/m3 

0.7 
0.3 
0.8 
0.6 

2.1 
2.3 
2.4 
2.6 
2.0 

ammonium JS – SEARCH 
FM – ASACA 
SD – ASACA 
Tu – ASACA 
Yo – SEARCH 

1.8  µg/m3 

1.6 
1.5 
1.7 
2.4 

1.9 
2.1 
2.2 
2.1 
1.9 

elemental carbon JS – SEARCH 
FM – ASACA 
SD – ASACA 
Tu – ASACA 
Yo – SEARCH 

1.4  µg/m3 

1.2 
1.5 
1.2 
0.7 

1.9 
1.8 
1.9 
1.8 
1.7 

organic carbon JS – SEARCH 
FM – ASACA 
SD – ASACA 
Tu – ASACA 
Yo – SEARCH 

4.0  µg/m3 
3.8 
4.2 
3.8 
3.2 

1.7 
2.6 
2.4 
2.5 
1.7 
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Table 6.3: Parameter estimates for semivariogram functions of gaseous pollutants. 
pollutant nugget effective 

range 
sill 

SO2 0.14 45 0.84 
CO 0.07 60 0.77 
NOx 0.24 105 0.84 
O3 0.11 120 0.31 

PM2.5-mass 0.10 30 0.45 
 

 

Table 6.4: Parameter estimates for semivariogram functions of PM2.5 components. 
PM2.5 component nugget effective 

range 
sill 

SO4
2- 0.07 45 0.37 

NO3
- 0.19 36 0.49 

NH4
+ 0.24 75 0.49 

EC 0.34 45 0.84 
OC 0.38 30 0.63 
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6.3 Results 

 

6.3.1 Semivariograms 

 Semivariograms were developed for CO (1 hour maximum), SO2 (1 hour 

maximum),  NOx (1 hour maximum), ozone (8 hour maximum) and PM2.5 (24 hour 

average) (See Figure 6.2 and Tables 6.5-6.9).  These sampling intervals were chosen 

based on current EPA regulations.   The model given in equation 4 was then fitted to the 

points.  The nugget, or c0 was calculated based on an assessment of the instrument error.  

The sill and range were fitted to the data by hand.  See Table 6.3 for fitted parameter 

values.  The sills of the primary pollutants, CO, SO2, and NOx, have sills ranging from 

0.77 to 0.84. The sills of the secondary pollutants, ozone and PM2.5, are much lower, 0.31 

and 0.45 respectively.  The higher sills are indicative of greater spatial variability of the 

primary pollutants, which was expected.  At large distances, 40 to 80 km, the spatial 

variation and instrument error of the primary pollutants are around 80% of the temporal 

variation.  For secondary pollutants, the spatial variation and instrument error are around 

40% of the temporal variation at similar distances.  This is expected, as concentrations of 

ozone and PM2.5 are influenced by meteorology and atmospheric chemistry as opposed to 

local sources. 

 Semivariograms were also developed for PM2.5 components (see Figure 6.3).  

Similar patterns were observed in primary versus secondary components.  Fitted 

parameter values are reported in Table 6.4.  Elemental carbon (EC) is the only purely 

primary component and it has a much higher sill than the other components, which are 

secondary.  This is consistent with the findings above. 
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Figure 6.2:  Normalized semivariograms for ambient air pollutant measures in 
Atlanta, 1999-2002.  Hollow boxes represent JS data.  Red boxes represents audit 
data. 
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Table 6.5: Semivariogram fit for CO. 
    D (km) R γ' 
DT RR 16.497 0.661412 0.451437 
 Yo 76.568 0.187724 0.826978 
RR Yo 61.888 0.40506 0.650712 
DT JS 16.841 0.760948 0.368445 
RR JS 11.504 0.646342 0.46348 
Yo JS 60.575 0.244126 0.779458 

 
 
Table 6.6: Semivariogram fit for NOx. 

    D (km) R γ' 
GT SD 14.154 0.835454 0.299414 
 Co 37.436 0.482177 0.591072 
 Tu 19.085 0.8563 0.27823 
 Yo 62.051 0.24828 0.776019 
SD Co 23.588 0.497105 0.579579 
 Tu 19.092 0.838879 0.296005 
 Yo 74.857 0.235861 0.786323 
Co Tu 32.031 0.515874 0.565129 
 Yo 98.283 0.209572 0.80838 
Tu Yo 77.578 0.222265 0.797688 
GT JS 1.504 0.86239 0.271825 
SD JS 15.356 0.744851 0.3824 
Co JS 38.754 0.503241 0.574856 
Tu JS 20.407 0.792831 0.339932 
Yo JS 60.575 0.262126 0.76461 
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Table 6.7: Semivariogram fit for SO2. 

  D (km) R-1 hr γ' 
CA GT 7.299 0.708195 0.413312 
 St 66.783 0.286747 0.744518 
 Yo 67.722 0.149892 0.859822 
GT St 59.864 0.292499 0.739858 
 Yo 62.05116 0.12187 0.884725 
St Yo 22.79262 0.31688 0.720237 
CA JS 8.31 0.712181 0.410001 
GT JS 1.504 0.779276 0.352211 
St JS 58.598 0.358802 0.686939 
Yo JS 60.575 0.198799 0.817519 

 
 
Table 6.8: Semivariogram fit for O3. 

    D (km) R(1hr) γ' 
Yo Yo 0   0.10941 
CA SD 7.244 0.96850675 0.131743 
 Co 30.83 0.91122688 0.199435 
 Yo 67.722 0.85231151 0.266742 
SD Co 23.588 0.91456729 0.201417 
 Yo 74.857 0.82901746 0.290417 
Co Yo 98.283 0.80191462 0.300542 
CA JS 8.31 0.97158686 0.107833 
SD JS 15.356 0.95715775 0.13718 
Co JS 38.754 0.88257809 0.22214 
Yo JS 60.575 0.85416343 0.287365 
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Table 6.9: Semivariogram fit for PM2.5. 
    D (km) R γ' 
DHC ERS 13.748 0.855424 0.279143 
 SD 23.857 0.81995 0.314533 
 FS8 18.362 0.741054 0.385655 
 EPHC 34.938 0.683506 0.433586 
 FP 34.059 0.829334 0.305441 
 Ke 32.846 0.821537 0.313008 
 Yo 71.071 0.763612 0.366109 
 JS-FRM 18.922 0.880017 0.252627 
 Yo-FRM 71.071 0.840605 0.294278 
ERS SD 16.327 0.803779 0.329823 
 FS8 5.165 0.674696 0.440734 
 EPHC 22.406 0.65613 0.45567 
 FP 22.559 0.771842 0.358844 
 Ke 30.495 0.747065 0.380496 
 Yo 62.762 0.69879 0.42108 
 JS-FRM 5.19 0.869258 0.264468 
 Yo-FRM 62.762 0.81384 0.320364 
SD FS8 18.473 0.648874 0.461464 
 EPHC 15.746 0.666595 0.447271 
 FP 12.699 0.795017 0.337929 
 Ke 46.592 0.720088 0.403399 
 Yo 74.857 0.698071 0.421672 
 JS-FRM 15.356 0.840392 0.294491 
 Yo-FRM 74.857 0.800076 0.333263 
FS8 EPHC 20.486 0.627379 0.478508 
 FP 21.624 0.601903 0.498513 
 Ke 28.399 0.495498 0.580816 
 Yo 58.184 0.519874 0.562048 
 JS-FRM 3.238 0.622693 0.482203 
 Yo-FRM 58.184 0.659883 0.452664 
EPHC FP 4.361 0.657872 0.454275 
 Ke 46.746 0.60507 0.496036 
 Yo 66.041 0.703241 0.417411 
 JS-FRM 17.86 0.652214 0.4588 
 Yo-FRM 66.041 0.72168 0.402065 
FP Ke 49.036 0.686171 0.431416 
 Yo 70.11 0.719642 0.403773 
 JS-FRM 18.65 0.809665 0.32431 
 Yo-FRM 70.11 0.743872 0.383241 
Ke Yo 41.668 0.708312 0.413214 
 JS-FRM 31.636 0.768728 0.361602 
 Yo-FRM 41.668 0.79135 0.341286 
Yo JS-FRM 60.575 0.717728 0.405374 
 Yo-FRM 0 0.857436 0.277044 
JS-FRM Yo-FRM 60.575 0.851903 0.28279 
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Figure 6.3: Normalized semivariograms for PM2.5 components in Atlanta, March 
1999 – August 2000.  Hollow boxes represent JS data. 
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6.3.2 Population Weighted Averages 

 After the semivariogram function was fitted to pollutant data from the Atlanta 

area, the semivariogram values were weighted by population to determine one value for 

use over the entire metropolitan Atlanta area.  The area was divided into nine 

approximately circular regions of varying distances from the city center (See Figure 6.4).  

The population for each of these rings was calculated using 2000 Census Data at a zip-

code level.  The percent of the total population for the area was calculated for each ring 

and then multiplied by the corresponding semivariogram value for each pollutant (See 

Table 6.10).  This value is a population-weighted average value of the semivariogram 

which can be used for the entire study area. 
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Table 6.10: Population weighted averages; a: SO2, NOx, and CO; b: O3, and PM2.5. 
Distance Pop % of 

Pop 
SO2 SO2-

weighted 
NOx NOx- 

weighted 
CO CO-

weighted 
1 21043 0.42% 0.188 0.001 0.258 0.001 0.109 0.000 
5 358994 6.75% 0.341 0.023 0.321 0.022 0.229 0.015 

10 700485 6.82% 0.483 0.033 0.390 0.027 0.350 0.024 
20 1667701 19.31% 0.658 0.127 0.502 0.097 0.517 0.100 
30 2864304 23.89% 0.748 0.179 0.587 0.140 0.618 0.148 
40 3921781 21.12% 0.794 0.168 0.650 0.137 0.680 0.144 
50 4275918 7.07% 0.818 0.058 0.697 0.049 0.717 0.051 
60 4720572 8.88% 0.830 0.074 0.733 0.065 0.740 0.066 
70 5007896 5.74% 0.836 0.048 0.760 0.044 0.753 0.043 

average    0.686  0.559  0.575 

 

Distance Pop % of 
Pop 

O3 O3-
weighted 

PM2.5 PM2.5-
weighted 

1 21043 0.42% 0.114 0.000 0.109 0.000 
5 358994 6.75% 0.133 0.009 0.203 0.014 

10 700485 6.82% 0.154 0.010 0.302 0.021 
20 1667701 19.31% 0.188 0.036 0.402 0.078 
30 2864304 23.89% 0.215 0.051 0.439 0.105 
40 3921781 21.12% 0.236 0.050 0.453 0.096 
50 4275918 7.07% 0.252 0.018 0.458 0.032 
60 4720572 8.88% 0.265 0.024 0.460 0.041 
70 5007896 5.74% 0.275 0.016 0.461 0.026 

average    0.205  0.398 

 

 

 

 

 

 

 

 

 

Figure 6.4: Area within 60 km (purple), 40 km (blue), 20 km (green), and 10 km 
(yellow) of Atlanta’s city center. 
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 95

6.4 Conclusions 

 The results of the semivariogram analysis show significant spatial variability for 

primary pollutants and indicate that this spatial variability is a nontrivial component of 

exposure error.  The semivariograms also show noticeable differences between 

pollutants.  In the Atlanta area, approximately 90% of the population lives within a 30km 

radius of downtown.  If one is considering SO2 in a health effects study in Atlanta, it 

must be noted that at 30km, almost 80% of the temporal variation (which is what is used 

to establish a relationship between pollutant and health effect) is actually spatial 

variation.  Using only one monitoring site for the study area would not be appropriate for 

SO2.  However, for ozone, only 30% of the temporal variation at 30km is actually spatial 

variation and one monitoring site may be sufficient for the needs of the study. 

 For points that include Jefferson Street data, the boxes are hollow to distinguish 

them.  This is because Jefferson Street data is often chosen for epidemiologic studies due 

to the central location of the site and the wide array of measurements there.  The 

semivariograms show that Jefferson Street fits the semivariogram model as well as any 

other station.  The lack of outliers indicates no one station can be termed as being more 

representative than another station. 

 These results suggest that, particularly for primary pollutants, data from multiple 

sites should be used in epidemiologic health effects studies to minimize measurement 

error.  Interpolation methods using population weighting over an entire study area would 

likely give a more accurate description of the population’s exposure to a given pollutant. 

  

 
 



Chapter 7 

LOCAL SOURCE IMPACTS 

 

 

7.1 Introduction 

 In an air quality monitoring network, it is important to examine individual sites 

for impacts from local sources.  If data from a site is being used to estimate population 

exposure to the pollutant, monitoring sites should be situated so as to minimize the 

impact from local sources, which could bias the exposure estimate and lead to error in a 

health effects study. 

 The main source categories of the pollutants used in this research are well 

known for the Atlanta area.  CO, NOx and SO2 are all primary pollutants, meaning they 

are directly emitted.  In the Atlanta area, mobile sources are the largest contributor to 

CO and NOx concentrations in ambient air.  There are several coal fired power plants in 

the Atlanta area and these are believed to be the most significant sources of SO2.   

Secondary pollutants, such as ozone and particulate matter, are formed in the 

atmosphere through chemical reactions and therefore do not have any sources.  In this 

research, one would not expect to see any “local sources” of secondary pollutants. 

The relative location of these sources to monitoring sites should be observed for 

descriptive purposes.  One method of qualitatively examining local sources of air 

pollution is to develop plots of pollution concentrations versus wind direction.  If large 

concentrations are indicated from one direction, that area should be inspected for 

sources of the pollutant.  For example, a large SO2 spike on a pollution rose plot in a 
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given direction could confirm that SO2 is coming from a power plant in that direction.   

Looking at an individual site’s plot will give information on local sources while 

comparing plots for the same pollutant across monitoring sites can give information 

about regional pollution sources. 

 

7.2 Emissions Inventories 

 As part of the US Environmental Protection Agency’s National Emissions 

Inventory (NEI), the state of Georgia Environmental Protection Division (EPD) 

compiles an emissions inventory for all criteria pollutant and volatile organic compound 

(VOC) point source emissions throughout the state on a regular basis.  The 1999 

Georgia emissions inventory was used for this research.  Point sources within the 

Atlanta region were identified and are summarized in Table 7.1 and mobile sources in 

Table 7.2.  Highway vehicle emissions are responsible for over 68% of CO emissions 

and 53% of NOx emissions every year, but only about 2% of PM10 and SO2 and 4% of 

PM2.5.  Off-highway mobile emissions are responsible for an additional 20% of CO and 

13% of NOx, as well as 1% of PM10, 2.5% of PM2.5 and 1.44% of SO2. 

 Power plants in the Atlanta region, including Plants Bowen, Wansley, Yates and 

McDonough, have the largest emissions of all the pollutants considered here.  

Transcontinental Gas Pipeline also has large emissions of CO and NOx, however this 

facility is to the south of the city, not close to any CO monitors and over 10 miles south 

of the nearest NOx monitor (South Dekalb).  Lafarge Building Materials (formerly Blue 

Circle Cement) also has large emissions of NOx, as well as SO2.  This facility is directly 
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northwest of the Jefferson Street monitoring station and could have an impact on 

measurements at several urban monitoring sites. 
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Table 7.1: Point Source emissions inventory for the Atlanta area, 1999, TPY (GA 
EPD, 2000).  

Facility Name Map  Longitude Latitude CO NOx PM10 PM25 SO2 
BJ Sanitary Landfill & 
Recyclihg Center  -84.236 33.932 81.900 31.900    

Boral Bricks, Inc; 
Atlanta Plant A -84.501 33.821 207.400 59.000 55.573  191.820 

Caraustar Mill Group, 
Inc. B -84.649 33.818 16.426 364.107 53.443 30.853 711.628 

Cellofoam North 
America, Inc.  -84.083 33.783  1.450    

CITGO Doraville 
Terminal  -84.275 33.910  4.122    

ConocoPhillips Co. - 
Doraville Products 
Terminal 

 -84.273 33.915 5.081 2.028   0.005 

Dart Container 
Corporation of 
Georgia 

 -84.118 33.724 10.990 23.840    

Delta Air Lines, Inc. 
Atlanta Station  -84.442 33.644 0.395 0.762    

Delta Air Lines, Inc. 
General Office 
Facilities 

 -84.431 33.653 3.289 6.536    

Delta Air Lines, Inc. 
TOC C -84.418 33.644 46.259 101.598    

Earthgrains Baking 
Companies, Inc. - 
Atlanta Bakery 

 -84.275 33.692 3.450 4.352 0.530 0.078 0.027 

Emory University  -84.324 33.795 34.370 35.050 3.180 0.000 0.840 
Engineered Fabrics 
Corporation  -85.037 34.002 2.730 3.874 0.185 0.062 0.042 

Ford Motor Company 
Atlanta Assembly  -84.402 33.656  17.851    

General Motors 
Assembly Plant  -84.281 33.906 26.870 35.500    

GEORGIA 
INSTITUTE OF 
TECHNOLOGY 

 -84.395 33.773 18.686 22.078 1.245 0.418 0.155 

Georgia Power 
Company, Bowen 
Steam-Electric 
Generating Plant 

1 -84.923 34.125 2125.241 36897.367 5214.511 2256.840 160534.656 

Georgia Power 
Company, 
McDonough Steam-
Electric Generating 
Plant 

2 -84.475 33.825 321.983 4886.804 332.497 145.907 27993.310 

Georgia Power 
Company, Wansley 
Steam-Electric 
Generating Plant 

3 -85.038 33.407 1750.524 20492.708 1135.163 523.715 73551.250 

Georgia Power 
Company, Yates 
Steam-Electric 
Generating Plant 

4 -84.905 33.463 566.086 8987.153 647.035 283.360 41546.200 

Lafarge Building 
Materials D -84.470 33.823 36.220 1252.890 32.620 27.480 1617.000 

Live Oak Landfill & 
Recycling Center E -84.339 33.671 185.200 34.000    

Lockheed Martin 
Aeronautics 
Company - Marietta 

 -84.529 33.926 38.960 53.180 3.500 3.260 24.910 

Magellan Terminals 
Holdings, L.P.  -84.253 33.919 9.321 3.728    

Marathon Ashland 
Petroleum LLC  -84.418 33.781 8.610 3.450    
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METAL COATERS 
OF GEORGIA  -84.538 33.979 2.128 4.820 0.144 0.144 0.015 

Owens Corning - 
Atlanta  -84.546 33.763 41.597 3.838 69.296 44.986 67.583 

Owens Corning - 
Fairburn Plant  -84.617 33.539 27.630 602.060 2.510  0.190 

Owens-Brockway 
Glass Container Inc. - 
Atlanta, GA plant 

F -84.421 33.671 45.512 710.451 239.449 239.449 284.821 

Pan Glo Atlanta/Div. 
Of Russell T. Bundy 
Assoc. Inc. 

 -84.388 33.664  0.484    

PPG Architectural 
Finishes, Inc.  -84.434 33.689 1.200 1.400 0.109 0.109 0.001 

Printpack Inc.  -84.960 33.739 2.250 2.990 0.210  0.020 
Rexam Beverage 
Can Company  -84.390 33.630 4.138 4.971 0.195  0.028 

RM Clayton WRC G -84.456 33.822 196.450 41.817   4.130 
Southwire Company  -85.071 33.565 220.947 20.985 38.157 18.518 5.091 
Stevens Graphics  -84.411 33.738 0.510 0.600 0.050  0.010 
The Sherwin-Williams 
Company  -84.339 33.569 1.498 1.846   0.011 

Transcontinental Gas 
Pipe Line - Station 
120 

H -84.255 33.569 700.980 2347.440    

Tuscarora 
Incorporated  -84.048 33.675 2.088 1.813 0.095 0.051 0.579 

Weyerhaeuser Impak 
Center  -84.180 33.858 0.762 0.907   0.005 

WinCup - Stone 
Mountain  -84.194 33.828 0.198 34.057   2.922 

Woodbridge 
Corporation  -84.119 33.738 1.430 1.720   0.008 

Young Refining Corp.  -84.731 33.767 16.221 21.340 1.052 0.351 12.217 
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Figure 7.1: Selected point sources. 
 

Figure 7.2: Power plants in the Atlanta area. 
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Table 7.2: Mobile emissions inventory for the 20-county Atlanta MSA, by County, 
1999, TPY (US EPA, 2000). 

COUNTY  CO   NOx PM10 PM2.5 SO2 
Barrow  Highway Vehicles 13285.14 1755.52 53.49 41.77 66.02
 Off-Highway 1694.97 334.35 18.29 16.08 23.5
Bartow  Highway Vehicles 29792.82 4102.58 123.24 96.98 149.71
 Off-Highway 4490.5 1196.31 58.28 52.92 80.88
Carroll  Highway Vehicles 32344.49 4302.14 129.11 101.04 159.33
 Off-Highway 5240.2 593.8 36.91 33.77 43.95
Cherokee  Highway Vehicles 40970.41 5352.13 158.12 123.24 198.35
 Off-Highway 15342.93 605.35 74.83 68.77 61.8
Clayton  Highway Vehicles 80427.72 8273.56 225.93 167.32 328.05
 Off-Highway 16350.75 7200.45 92 84.5 114.86
Cobb Highway Vehicles 174327 18732.51 543.06 402.13 789.42
 Off-Highway 67162.23 4146.36 416.57 382.44 458.46
Coweta Highway Vehicles 34956.3 4815.13 145.22 114.3 176.38
 Off-Highway 5514.12 722.56 58.76 53.65 79.46
DeKalb  Highway Vehicles 216140.2 23026.69 664.74 491.11 972.3
 Off-Highway 66115.8 2848.2 297.26 272.16 282.6
Douglas  Highway Vehicles 30835.27 3553.47 101.74 77.51 136.83
 Off-Highway 3071.74 313.84 25.35 23.24 35.12
Fayette  Highway Vehicles 27294.16 3439.31 104.32 81.05 131.81
 Off-Highway 7563.19 545.34 49.76 45.38 54
Forsyth  Highway Vehicles 26266.41 3873.36 125.21 99.72 145.9
 Off-Highway 13330.42 628.53 85.1 78.34 70.69
Fulton  Highway Vehicles 260908.5 28205.96 819.65 608.15 1186.34
 Off-Highway 76688.11 8247.2 694.15 631.33 1166.24
Gwinnett  Highway Vehicles 151188.9 17374.14 514.73 387.61 715.46
 Off-Highway 76010.62 4016.82 401.04 368.43 397.98
Henry  Highway Vehicles 38576.04 5378.27 164.81 129.9 198.49
 Off-Highway 6697.31 820.15 82.09 75.09 109.37
Newton  Highway Vehicles 23830.08 3277.02 98.7 77.62 119.86
 Off-Highway 3481.14 430.01 37.6 34.41 43.67
Paulding  Highway Vehicles 21630.31 3189.76 103.05 82.07 120.16
 Off-Highway 2599.96 315.77 33.83 30.89 51.59
Pickens  Highway Vehicles 4809.33 715.33 22.73 18.08 26.5
 Off-Highway 804.4 77.13 7.1 6.5 7.98
Rockdale  Highway Vehicles 21060.62 2683.43 81.88 63.61 103.07
 Off-Highway 5206.41 481.55 38.89 35.74 46.5
Spalding  Highway Vehicles 18455.19 2325.1 69.81 54.18 88.32
 Off-Highway 3145.34 322.29 25.26 23.05 28.37
Walton  Highway Vehicles 15466.59 1960.26 58.73 45.68 74.38
 Off-Highway 3018.86 307.76 24.49 22.5 28.33
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7.3 Methods 

7.3.1 Development of Pollution Roses 

 To assess the impact of local sources on individual monitoring sites, pollution 

roses were developed using hourly pollutant concentrations and simultaneous wind 

direction data for each site and each pollutant.  The observations were divided into 30 

different wind direction bins of 12 degrees each.  The average concentration for each 

bin was then plotted versus the wind direction on a 360° scatter plot.   

 Because of seasonal and diurnal patterns in both pollutant concentrations and 

wind direction, the pollution roses were corrected for season and for time of day.  To 

perform the time of day correction each wind direction bin was further sorted into one 

of twelve time of day bins, each composed of two hours.  A new variable, TOD, was 

calculated as follows. 

( )∑
=

=
12

1i
iijj ABTOD  

Where i is the time of day bin from 1-12 and j is the wind direction bin from 1-30.  A 

and B are further defined as: 
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Where ijx is the average of the ith time of day bin of the jth wind direction bin and  is 

the number of observations in the i

ijn

iA

ijB

th time of day bin of the jth wind direction bin.  is 

the expected concentration for each time of day bin over all wind directions and is 

the ratio of the number of observations for each time of day bin in each wind direction 
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bin to the total number of observations for each wind direction bin.  Therefore, TOD  is 

the expected concentration for each wind direction bin based on the expected 

concentrations for each time of day bin.  The error attributed to the time of day is then 

calculated. 

j

30

30

1
,

∑
=−= j

j

jjerr

TOD
TODTOD  

This is the TOD metric for each wind direction bin minus the average TOD metric.  

This is then subtracted from the original average value for each time of day bin and 

wind direction bin in order to correct for time of day. 

 The same procedure is used to find the seasonal correction.  In that case, each 

wind direction bin is divided into twelve seasonal bins, one for each month.  The 

correction factor is derived the same way as TOD  and is then also subtracted from the 

original average value for each time of day bin within each wind direction bin to correct 

for season. 

err

 

7.3.2 Application to Atlanta Air Quality Data 

 The methods detailed above were applied to hourly air quality data from the 

Atlanta area.  Data was collected from EPA’s Air Quality System (AQS) and the 

Southeastern Research and Characterization study (SEARCH).  Pollution roses were 

developed using the non-normalized concentrations of each pollutant and the wind 

direction measured simultaneously.  Whenever possible, wind direction measurements 

from the same site as the pollutant measurements were used.  For three sites, this was 

not possible and the most representative measurements available were used.  These sites 
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were Stilesboro, where Tucker data was used, Georgia Tech, where Jefferson Street 

data was used, and Roswell Road, where Confederate Avenue data was used.  Corrected 

plots were also calculated. 

 To further examine the possible confounding of diurnal patterns of pollutant 

concentrations and wind direction on the pollution roses, each dataset was examined by 

time of day.  The data for each graph was divided into four hour bins to examine 

possible changes in apparent local sources with time of day.  

 

 

7.4 Results 
 

7.4.1 Pollution rose plots 

 

 Pollution rose plots for CO, SO2, NOx, and O3 are shown in figures 7.3-7.6 

(black line).  Plots for black carbon and PM2.5 mass at Jefferson Street are shown in 

figure 7.7 (black line).  Elevated concentrations in a particular direction indicate a 

potential local source in that direction.  For some pollutants, the wind rose plots allowed 

regional pollutants to be identified as well. 

 CO, NOx and black carbon exhibit peaks for all sites in the direction of major 

roadways.  The largest peak of these pollutants at Jefferson Street , to the northeast, 

aligns with a major interstate (85).  The Georgia Tech NOx pollution rose shows a 

similar alignment.  Smaller peaks at Jefferson Street and Georgia Tech correspond to 

roadways to the south and west, a trucking facility and major railyard to the north, and a 

bus maintenance facility to the south.  The South Dekalb NOx pollution rose is heavily 
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influenced by mobile emissions from interstate 285 directly to the north.  CO at Dekalb 

Tech shows a large peak to the north, which is consistent with the fact that the 

monitoring site is located at the southern end of a large parking lot.  The Roswell Road 

site does not show distinct peaks as the site is surrounded by large interstates.  Point 

sources for CO and NOx listed in Table 7.1 are not observed in the wind rose plots as 

they are most likely overwhelmed by mobile source emissions. 

 Sulfur dioxide pollution rose plots show large peaks in the direction of Plant 

Bowen, the largest power plant in Georgia, for all monitoring sites.  Peaks are also seen 

in the directions of Plants Wansley, Yates, and McDonough as well as for the cement 

facility. 

 Ozone pollution rose plots are relatively circular for most monitoring sites.  

Exceptions are Conyers and South Dekalb, which have depressed concentrations when 

wind direction is from the north.  This could be due to the elevated NOx levels 

inhibiting ozone formation.  
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235 deg, 65 km
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Plant McDonough: 314 deg, 8 km
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Plant Bowen
352 deg, 3 km

Plant McDonough
127 deg, 51 km

Plants Wansley/Yates
185 deg, 74 km

Georgia Tech

Plants Wansley/Yates
236 deg, 66 km

Plant Bowen: 309 deg, 62 km
Plant McDonough: 308 deg, 9 km

Yorkville

Plants Wansley/Yates
175 deg, 54 km

Plant McDonough
102 deg, 54 km

Plant Bowen
28 deg, 25 km

 

 

 

 

Figure 7.3: Sulfur dioxide wind rose 

ed 

Confederate Ave

Plant Bowen: 311 deg, 69 km
Plant McDonough: 317 deg, 16 km

Plants Wansley/Yates
242 deg, 67 km

plots,    1999-2002. Full scale is 10 ppb.  
Dashed circle represents average value. 
Distances and directions of coal-fir
power plants from monitoring stations 
are shown. 
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Figure 7.4: CO wind rose plots for 1999-2002.  Dashed line is average value. Full 
scale is 1.5 ppm. 
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Figure 7.5: NO
1999-2002. Dashed line is average 
value.  Full scale is 150 ppb.  
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Figure 7.6: Ozone wind rose plots for April through October, 1999-2002. Dashed 
line is average value.  Full scale is 50 ppb. 
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Figure 7.7: Pollution rose plots for PM2.5 mass (99-02) and black carbon (00-02) at 
Jefferson Street. 
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7.4.2 Time of day and seasonal corrections 

 Pollution rose plots were also examined by time of day. (See Figures 7.8 – 7.11.) 

Most pollutants had the same pattern at varying concentrations throughout the day, as 

expected.  South Dekalb and Conyers NOx pollution rose plots do show an additional 

source of NOx during the evening hours, around the evening rush hour that does not 

appear on the average plots.  

 Wind direction was then examined by time of day.  (See Figures 7.12 – 7.17.)  

Any correlation between wind direction and time of day, if that time of day had peak 

pollutant concentrations, could lead to false “sources” appearing on the wind rose plots.  

For example, at South Dekalb and Conyers, the percentage of wind coming from the 

south is much higher during the daytime hours (8 am to 3 pm).  Ozone peaks between 1 

pm and 3 pm, which could lead to an apparent “source” of ozone from the south. 

 All pollution rose plots were therefore corrected for time of day and seasonal 

affects.  In most cases the corrections were very small, indicating the sources observed 

are true sources and not due to time of day or seasonal variations in wind direction.  

However, the corrections did eliminate the apparent shift in ozone concentrations at 

South Dekalb and Conyers.  The corrected wind rose plots for all ozone sites are much 

more uniform, as expected  (See Figures 7.3-7.7, red line).
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Figure 7.8: CO pollution rose plots by time of day. 
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Figure 7.9: SO2 pollution rose plots by time of day. 
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Figure 7.10: NOx pollution rose plots 
by time of day.
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Figure 7.11: Pollution rose plots for ozone by time of day. 
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Figure 7.12: Wind direction profile at Confederate Avenue. 

Conyers
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Figure 7.13: Wind direction profile at Conyers. 
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South Dekalb
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Figure 7.14: Wind direction profile for South Dekalb. 
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0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

32
4

33
6

34
8

WDR (degrees)

20-23
16-19
12-15
8-11
4-7
0-3

 

Figure 7.15: Wind direction profile for Jefferson Street. 
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Tucker
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Figure 7.16: Wind direction profile for Tucker. 

Yorkville
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Figure 7.17: Wind direction profile for Yorkville. 
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7.5 Discussion 

7.5.1 Comparison of emission inventory and pollution rose plots 

 Final pollution rose plots give a good indication of mobile source impacts on a 

monitoring site.  For example, both CO and NOx plots have peaks in directions of major 

highways.  However, point sources are not as clearly defined for CO and NOx.  The 

point sources are most likely eclipsed by the much larger mobile contribution to 

emissions. 

However, in the SO2 pollution rose plots, where there is very little mobile source 

contribution, point sources are easy to identify.  The five largest SO2 emitters, Plants 

Bowen, McDonough, Wansley, and Yates and Lafarge Building Materials, are located 

in peak directions for all SO2 monitoring sites. 

 

7.5.2 Polllution rose plots and semivariograms 

 Variations in the windrose plots can help explain the scatter of data points seen 

in the semivariograms developed in Section 6.  Because wind direction is not uniform 

or constant, local source impacts are anisotropic.  Different sites will not register the 

impact from a local source at the same time due to variations in wind direction. 

 If a site has many large local impacts, the initial slope of the semivariogram 

function is expected to be steeper than if a site has no local source impacts.  This is true 

for SO2, CO, and NOx, which have more sources apparent on their respective pollution 

rose plots than PM2.5 and O3 and also have a steeper semivariogram slope. 
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7.5.3 Source apportionment and PM2.5 pollution rose 

 Another, more detailed, method of determining local sources of PM2.5  is source 

apportionment.  This is a much more computationally intensive method that involves 

analyzing the components of PM2.5 to determine potential sources that are contributing 

to the overall concentration.  Source apportionment of PM2.5 at the Jefferson Street 

station has been performed and has determined that while a large fraction of PM2.5 at 

Jefferson Street is secondary, which agrees with the largely circular shape of the 

pollution rose plot, and diesel emissions are the largest source of primary PM2.5 (Zheng, 

2002; Marmur, 2005).  The Jefferson Street PM2.5 pollution rose is slightly elongated to 

the northeast, as is the black carbon pollution rose plot.  Diesel vehicles are one of the 

primary contributors to black carbon concentrations; therefore, the similarities between 

the PM2.5 and black carbon plots could indicate a diesel source to the northeast of the 

Jefferson Street site, which would agree with the source apportionment results. 

 

7.6 Conclusions 

 Local sources influencing pollution concentrations observed at monitoring 

stations in the Atlanta area were investigated through the construction of pollution rose 

plots and comparison to the emissions inventory for the Atlanta area.  This analysis 

supported the hypothesis, based on examination of the emissions inventory, that power 

plants and a cement facility are influencing SO2 observations.  CO and NOx 

concentrations appear to be largely influenced by mobile sources.  Examining the 

pollution rose plots by time of day confirms that similar impacts, at varying 

concentrations, are experienced throughout the day.  Correction of the plots for time of 
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day and season had little affect on the original plots.  South Dekalb and Conyers ozone 

plots were the notable exception as corrections led to an appreciably more uniform 

pollution rose. 

 Variations in the windrose plots can help explain the scatter of data points seen 

in the semivariograms developed in Section 6.  Because wind direction is not uniform 

or constant, local source impacts are anisotropic.  Different sites will not register the 

impact from a local source at the same time due to variations in wind direction. 



 

Chapter 8 

CONCLUSIONS 

 

 

8.1 Conclusions 

 This research attempted to first characterize temporal trends in air pollution in the 

Atlanta area on several different temporal scales and then to quantify and qualitatively 

describe the impacts of instrument error and local sources on the monitoring sites. 

 

 Temporal patterns in air pollutants are important to consider when performing 

analysis on large datasets.  Factors affecting these patterns include emissions rates, 

meteorology and photochemistry.  Each pollutant will be affected differently by 

combinations of these factors and will therefore have unique temporal profiles.  Annual, 

seasonal, weekly, and diurnal profiles were examined for all pollutants.  Sites with 

similar surroundings, i.e. urban or rural, had the most similar profiles. 

 

 It is important to quantify instrument error to understand overall uncertainty in a 

study using ambient air pollutant data.  Audit and calibration data and collocated monitor 

data was used to assess instrument error.  Collocated monitors are expected to give a 

more accurate indication of instrument error.   Percent errors were similar for all 

pollutants using audit and calibration data (2-4%) and were similar for all concentration 

ranges.  Percent errors using collocated data were several times larger. 
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 Semivariograms were developed to assess spatial variation of air pollutants.  The 

semivariograms can be interpreted as the amount of temporal variation of a pollutant that 

is actually spatial variation.  There are noticeable differences in semivariograms among 

pollutants.  For example, at 30km, almost 80% of the temporal variation of SO2 

concentrations is actually spatial variation. However, for ozone, only 30% of the 

temporal variation at 30km is actually spatial variation.  Therefore, using only one 

monitoring site for the study area would not be appropriate for SO2 but could give 

enough information for O3. These results suggest that, particularly for primary pollutants, 

data from multiple sites should be used in epidemiologic health effects studies to 

minimize measurement error.   

 

 Local sources influencing pollution concentrations observed at monitoring 

stations in the Atlanta area were investigated through the construction of pollution rose 

plots and comparison to the emissions inventory for the Atlanta area.  This analysis 

supported the hypothesis, based on examination of the emissions inventory, that power 

plants and a cement facility are influencing SO2 observations.  CO and NOx 

concentrations appear to be largely influenced by mobile sources,  which are most likely 

eclipsing any effects from local sources.  Examining the pollution rose plots by time of 

day confirms that similar impacts, at varying concentrations, are experienced throughout 

the day.  Correction of the plots for time of day and season had little affect on the original 
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plots.  South Dekalb and Conyers ozone plots were the notable exception as corrections 

led to an appreciably more uniform pollution rose. 

 
 
8.2 Suggestions for future work 

 A longer time frame database (1968-2004) has already been completed and will 

be used for more detailed, historical temporal analysis of air quality in the Atlanta area.  

This data can also be used to look for temporal patterns in local source emissions.  For 

example, semivariograms and pollution roses using different time frames can be 

examined.   

 The semivariograms developed by this research should be used to quantify 

exposure error in epidemiologic health-effects studies.  The effects of measurement error 

on the outcomes of these studies are to introduce a bias to the null and to widen the 

confidence interval of the outcome.  Although measurement error cannot be eliminated 

from the study, epidemiologists can use the population-weighted average for the 

semivariogram function to determine how much error is attributed to measurement error. 

 The semivariogram functions can also be used to help establish new monitoring 

networks.  Based on this research, one could determine how many monitors for a given 

pollutant are necessary to achieve a given level of uncertainty.  For example, for the same 

level of uncertainty across a study area, a much smaller number of ozone monitors would 

be needed than sulfur dioxide monitors. 
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