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Abstract

In this report we consider the feedback vertex and arc set problems
for tournaments. We first show NP-completeness of feedback vertex set
for tournaments. We then give a simple 3-approximation algorithm for
feedback vertex and arc sets.

1 Introduction

A tournament of size n is a complete graph on n vertices with edges having
directions. In this article we follow the following conventions. An edge will be
denoted by either (x, y) or x → y. If V ⊂ V (Tn), then T (V ) will represent the
tournament induced by the vertices of V . Given a graph G = (V,E) (directed
or undirected), a feedback vertex (respectively arc) set for G is a subset X of
V (G) (respectively E(G)) if G\X is acyclic. For v ∈ V (Tn), let d(v) denote the
out-degree of v, i.e. the number of vertices u such that (v, u) is in E(Tn).

2 Feedback vertex set for tournaments is NP-
Hard

It is well known [1] that the problem of finding a feedback vertex set of size
at-most k is NP-complete for directed graphs. By the next result we show
that the problem is NP-complete even when the digraphs are restricted to be
tournaments.

Problem 1 (TFBVS). Given a tournament Tn and a number k, does there
exist a feedback vertex set of size at most k ?

Theorem 2. TFBVS is NP-complete.

Proof. It is easily seen that TFBVS is in class NP. To show that it is actually NP-
complete, we reduce the problem of vertex cover to it. Given a graph G=(V ,E),
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and a number k, we construct the graph G′ = (V ′, E′) from it in the following
manner. Let V = {v1, v2, . . . , vn}. Define

V ′ = {v11, v12, v13, . . . , vn1, vn2, vn3}.

E1 = ∪n
i=1{(vi1, vi2) ∪ (vi3, vi1) ∪ (vi3, vi2)}.

E2 = ∪i adjacent to j ,i<j{(vj1, vi1) ∪ {∪(k,l) 6=(1,1)(vik, vjl)}}.

E3 = ∪i not adjacent to j ,i<j{∪(k,l)(vik, vjl)}.

E′ = E1 ∪ E2 ∪ E3.

Now we will show that there exist a vertex cover of size at most k in G iff
there exist a feedback vertex set of size at most k in G′. Clearly a vertex cover
of size at most k in G will act as a feedback vertex set of size at most k in G′.
So let W ′ denote a feedback vertex set in G′. Let W = {vi ∈ V : vij ∈ W ′}. If
this set is not a vertex cover in G, then there exist an edge, say (vi, vj) (i < j),
such that neither vik nor vjl is in W ′. Thus there exist a cycle {vi1, vi2, vj3, vj1}
in G′, a contradiction. Hence we have shown that TFBVS is NP-complete.

Remark 3. If we let TFBAS be the same problem for the arc set instead of
the vertex set, we do not know whether it is NP-Hard and leave it as an open
problem.

3 Approximation Algorithms for Feedback Sets
in Tournaments

The best known approximation algorithm for feedback sets in general directed
graphs is O(log n log log n) due to Seymour [3]. In this section we show that if
the problem is restricted to tournaments, the approximation factor drops down
considerably to 3.

Given a tournament Tn, a 3 cycle of it will be denoted by a → b → c → a,
with a, b, c being distinct vertices of Tn. We first need a simple lemma which
will give us the desired approximation factor.

Lemma 4. Let Tn be a tournament and Ck (3 ≤ k ≤ n) be a cycle in Tn. Then
there exists a 3 cycle C3 in Tn such that V (C3) ⊆ V (Ck).

Proof. The proof is by induction on k. If k = 3, there is nothing to prove.
So let Ck have at-least 4 distinct vertices. Let a, b, c be any three vertices in
V (Ck) which occur in Ck in that order. Then if c → a, we have the 3 cycle
a → b → c → a. Otherwise by induction on Ck−1 which is Ck with b removed
and the edge a → c added, we are done.

So by the lemma above, the task of selecting vertices (resp. edges) to remove
all cycles in Tn reduces to selecting vertices (resp. edges) to remove all 3 cycles
in Tn. We formulate the TFBVS problem as the following integer program.
Assign a 0/1 variable xv for each v ∈ V (Tn), the variable being 1 iff v is picked
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in the feedback vertex set. Let C denote the family of 3 cycles in Tn. Each
C ∈ C is a 3 element subset of vertices of Tn. Now the TFBVS problem can be
formulated as follows.

minimize
∑

v∈V (Tn)

xv

subject to
∑

C:v∈C

xv ≥ 1, C ∈ C

xv ∈ {0, 1}, v ∈ V (Tn)

Notice here that given a tournament Tn with out-degrees of vertices denoted
by d(v1), . . . , d(vn), the number of 3 cycles in it are exactly

(
n
3

)
−

∑n
i=1

(
d(vi)

2

)
,

which is at-most O(n3). Hence the LP has size polynomial in n.
Let the optimal to this linear program be denoted by cOPT . The LP relaxation
of this problem is obtained by letting 0 ≤ xv ≤ 1 for all v ∈ V (Tn). Notice here
that the upper bound of 1 is redundant as it is a minimization problem and so
can be dropped while solving the relaxed problem.
Now we find an optimal solution to the LP relaxation. Let X be the set of
vertices whose corresponding variables are at-least 1/3. We set these variables
to 1 and others to 0 to get a feasible solution to the integer program. Moreover
the cost of the solution obtained is at-most 3·c∗ which is at-most 3·cOPT . Hence
we have a 3 approximation to TFBVS. For further details on the technique used
above the reader is referred to [2].

Remark 5. Essentially the same idea gives a 3 approximation to TFBAS.
Moreover if the vertices or edges have weights, still the same approximation
factor works. This is because each constraint in the LP will still have 3 vari-
ables.

Remark 6. If we consider a slightly general problem of finding a feedback set,
which can consist of both the edges and the vertices (possibly having weights),
then the same technique yields a 6 approximation algorithm for it. This is
because each constraint in the LP corresponding to the problem will have 6 vari-
ables.
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