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SUMMARY 

 

The transportation sector is responsible for 27 percent of overall greenhouse gas 

emissions (GHG), and this is due to a heavy reliance on petroleum-based fuels. Therefore, 

electrification of transportation is desired to reduce this reliance. Alternative energy sources, 

mainly solar and horizontal wind, are currently the focus for meeting transportation energy 

needs. Emerging technologies are being developed, which are suitable for off-grid locations, 

making them appropriate for meeting transportation energy needs at remote locations, such as 

many of the National Parks. One such  technology, the Solar Vortex (SoV), which was 

developed at Georgia Tech, relies on concentrated wind to generate power.   

          The National Renewable Energy Lab (NREL) currently has GIS resource models 

representing solar and horizontal wind resources across the 48 conterminous United States. 

However, a concentrated wind GIS resource model does not exist. A primary objective of this 

research was to develop a concentrated wind resource model that is comparable in resolution to 

NREL's existing solar and horizontal wind resource models. This was performed using ArcGIS 

to calculate sensible and latent heat for the 48 conterminous United States, using MODIS surface 

heat flux data, and methods used by Ma et al (2010 and 2013) and Bonan (2002).  

          A digital elevation model (DEM) was developed using contour line data from the 1/3 arc-

second National Elevation Dataset (NED) from USGS. The DEM was then used to create a slope 

model for the 48 conterminous Unites States, which was created in ArcGIS using ArcPy 

programming language. A power output estimation model was then developed using R software, 

which used the calculated sensible heat values to estimate average, monthly power output 

potential based on actual sensible heat data obtained from Ameriflux.  The results from the 



xxi 

 

model were then used in-conjunction with the slope model, and calculated diurnal sensible and 

latent heat values to develop a final model for estimating power output for the SoV.  

          Using NREL's solar and horizontal wind resource models, suitable locations of parks 

within the National Parks Service for solar and/or horizontal wind power generation were 

obtained. Upon completion of the final model, a case study was performed using Zion National 

Park. Zion was chosen for the case study based on its applicability for using the SoV due to its 

concentrated wind resource availability, and due to its remote location. The case study provides 

suggestions for the park based on its potential to use SoV units to power electric park vehicles.
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Global Climate Change 

 

There is substantial evidence that the Earth’s climate is changing, and the changes that 

have taken place, even in recent decades, are striking: rising surface air temperatures and 

subsurface ocean temperatures; rising sea levels; and massive arctic glaciers that are decreasing 

in size (NASA, 2016).  Noticeable changes have taken place since 1950, and these changes have 

been attributed to anthropogenic forces: a massive increase in greenhouse gas emissions, as show 

in Figure 1: U.S. Greenhouse Gas Emissions 2013 (EPA, 2015), namely: carbon dioxide, 

chlorofluorocarbons, methane, and nitrous oxide. It is believed that if society continues to 

function in the same manner, with few changes being made to reduce greenhouse gas (GHG) 

emissions, there will be severe repercussions. “If no mitigating actions are taken, significant 

disruptions in the Earth’s physical and ecological systems, social systems, security and human 

health are likely to occur. We must reduce emissions of greenhouse gases beginning now” (APS, 

2007).  

 
Figure 1: U.S. Greenhouse Gas Emissions 2013 (EPA, 2015) 
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1.2 Transportation Sector’s Impact on Global Climate Change 

 

Currently, the transportation sector alone accounts for 27 percent of overall GHG 

emissions, which is a 16 percent increase since 1990, as shown in Figure 2: Sources of 

Greenhouse Gas Emissions (EPA, 2015) and Figure 3: 2014 Estimated Energy Use (DOE, 

2015). These emissions consist mainly of carbon dioxide (CO2), resulting from combustion of 

gasoline, diesel, and other petroleum-based fuels, with most of the emissions being contributed 

to heavy usage of passenger vehicles and light-duty trucks (EPA, 2015) as shown in Figure 4: 

Greenhouse Gas Emissions from Transportation (EPA, 2015). 

 

 
Figure 2: Sources of Greenhouse Gas Emissions (EPA, 2015) 



3 

 

 
 

Figure 3: 2014 Estimated Energy Use (DOE, 2015) 
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Figure 4: Greenhouse Gas Emissions from Transportation (EPA, 2015) 

 

1.2.1 Reducing the Transportation Sector’s Impact 

 

Changes need to be made to reduce the transportation sector’s impact on overall GHG 

emissions, both on a macro and micro-scale.  The EPA recommends changes that need to be 

made to reduce the impact that the transportation sector has on overall GHG emissions, 

including: reducing the number of passenger vehicle trips, by increasing the availability of 

transit; making improvements to the structure of the built environment so that more places are 

conducive to transit and alternative forms of transportation; using lower impact fuels, both for 

passenger vehicles and transit vehicles; increasing the usage of electric vehicles, and, relevant to 

this study, using electricity from renewable sources to provide power to these electric vehicles 

(EPA, 2015).  
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1.2.2 The Need for Off-Grid Energy Production 

  

 There is a global interest in off-grid energy production. In many remote locations, power 

is needed, and in most cases, generators are used. However, in an effort to become less oil-

dependent, renewable sources of energy production are becoming more common, even in remote 

locations. Solar photovoltaic (PV) arrays, small-scale wind turbines, and even microhydro-

electric systems are sustainable sources of energy production that can be found in remote 

locations. The National Parks Service (NPS) is an example of an organization needing more 

sustainable off-grid energy production, due to the fact that many of the Nation’s parks are 

located in remote locations. 

 

1.2.3 The National Parks: Reducing the Transportation Sector’s Impact at the Micro-

Level 

 

A prime example for understanding broader issues of global climate change, and actions 

that can be taken to reduce emissions, especially with regards to transportation, is the National 

Parks Service. The National Parks Service (NPS) consists of hundreds of parks, all with varying 

energy needs. Because the National parks have millions of visitors each year, they are major 

consumers of electricity, with Yellowstone National Park being the largest consumer (NPS, 

2016). The NPS also has varying transportation needs that must be considered and met in a 

sustainable way, and because many of the National parks are in rural and secluded locations, 

grid-independence is crucial in helping the parks become self-sustaining, while reducing 

financial and environmental costs associated with the transportation of fuels, and reliance on 

electricity produced from the burning of fossil fuels.  

Examining the transportation energy needs of the NPS, which includes large geographical 

areas, and has similar transportation needs of other large organizations, can help in better 
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understanding how to meet overall transportation energy needs in more sustainable ways. One 

goal of this research is to examine the transportation energy needs of the NPS and consider 

current changes that have been made to reduce emissions at the National parks, namely 

increasing park transit and encouraging electric vehicle usage. Major considerations will be 

given to increasing the usage of renewable sources of energy at many of the National parks, and 

methods will be provided regarding locating suitable locations for renewable energy production 

facilities to further promote sustainability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER 2: TRANSPORTATION IN THE NATIONAL PARKS 

 

 2.1 Overview of Transportation Energy Needs at the National Parks 

 

 The National Parks Service (NPS), like many other large organizations, is making efforts 

to reduce overall carbon emissions and incorporate sustainable practices into maintenance and 

daily functions on park property. The NPS consists of 409 parks across the Country, as shown in 

Figure 5: National Parks (NPS, 2011), which includes State and National parks, National 

forests, and National historic sites, and receives approximately 292,000,000 visitors annually 

(NPS, 2015). There are 48 National parks within the lower 48 states, and all of these parks have 

a variety of energy needs, especially transportation energy needs, that require more sustainable 

practices to accommodate the influx of visitors to park property. The NPS, as an organization 

whose goal has always been to preserve and protect the Country’s natural landscape, 

acknowledges the importance of incorporating sustainable practices in order to maintain park 

property and improve park visitors’ experiences, all while reducing their impact on the natural 

environment and on overall GHG emissions.  

As the number of visitors to the National parks increases, and as the need for reducing 

GHG emissions and reducing reliance on petroleum becomes more imminent, accommodations 

will need to be made to ensure that the National parks continue to provide services to visitors in a 

sustainable manner that is characteristic of the goals of the NPS. A goal of this research is to 

assess the varying transportation energy needs of the NPS, including consideration of vehicle 

types for park transit and park maintenance, as well as accommodating increasing electric 

vehicle usage by park visitors. This research will examine these various types of transportation 

needed at the parks, and look at current measures that are being taken to meet these growing 

needs, while reducing emissions and reducing reliance on petroleum.  
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Figure 5: National Parks (NPS, 2011) 
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2.2 Ongoing Efforts at the National Parks 

 

2.2.1 Green Parks Plan 

 

The National Parks Service (NPS) has designed a strategic plan in order to carry out its 

commitment to protecting and preserving valuable lands and promoting sustainable practices. 

The goals of this plan include: meeting objectives to reduce the amount of water used at national 

parks; improving park recycling programs; decreasing energy usage at parks; installing 

renewable energy production facilities on park property; and incorporating the use of energy 

efficient and environmentally sound transportation (NPS, 2012). Ultimately, the NPS aims at 

reducing GHG emissions on park property, and this goal can be achieved by adhering to the 

aforementioned objectives outlined in the Green Parks Plan, with sustainable park transportation 

being a major component. 

 

2.2.2 Clean Cities Program 

Clean Cities, which is a public-private partnership, funded by the Department of Energy, 

has regional coalitions that support programs to reduce reliance on petroleum for transportation 

needs. According to the DOE: “Clean Cities advances the Nation's economic, environmental, and 

energy security by supporting local actions to reduce petroleum consumption in transportation. A 

national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public 

and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel 

economy improvements, and emerging transportation technologies” (DOE, 2015). 

Through combined efforts with Clean Cities and the National Parks Service, 

transportation projects involving 29 National parks have been initiated. Mammoth Cave National 

Park in Kentucky received funding through Clean Cities and Green Parks to purchase propane 
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buses and biodiesel and ethanol fueled maintenance vehicles (Business Fleet, 2014). 

Yellowstone and Grand Teton National Parks have also received grants through Clean Cities to 

install electric vehicle charging stations and purchase electric park maintenance and park security 

vehicles, as well as a hybrid electric transit bus (YTCleanCities, 2014).  

Projects funded through Clean Cities aim to educate park visitors about the ways in 

which petroleum usage can be reduced, and help in supporting major changes in transportation at 

the National parks, such as installing electric vehicle charging stations for park staff and visitors, 

and conversion of park vehicle fleets, both for park transit and maintenance, to run on renewable 

energy sources. Through efforts made by NREL, the DOE, and Clean Cities, education and 

training is provided to NPS employees through the Green Rides Toolkit program, which is used 

to inform employees on ways to educate park visitors on sustainability practices. “These 

outreach materials help parks educate employees, partners, neighboring communities, 

and visitors about reducing vehicle emissions and cutting petroleum usage. The Green Rides 

Toolkit supports the Green Rides Objective under the Green Parks Plan, which defines a 

collective vision and long-term strategic plan for sustainable management of NPS operations” 

(DOE, 2015). 

2.3 Renewable Energy Usage at National Parks 

 

2.3.1 Small Scale 

 

Many of the National parks currently have small-scale renewable energy production 

facilities on-site to provide power to visitor centers, ranger stations, and other buildings on park 

property. Many of these parks have installed solar photovoltaic facilities in-conjunction with 

battery pack power stations to store the energy generated by the solar PV arrays. A prime 

https://cleancities.energy.gov/technical-assistance/green-rides/#visitors
http://www.nps.gov/greenparksplan/
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example of this is Yellowstone National Park, which has incorporated the use of used Toyota 

battery packs from vehicles to store excess power generated by their solar facilities (Toyota, 

2015). 

2.3.2 Utility Scale 

 

Due to the Southwest’s climate, it is a prime location for proposed utility-scale renewable 

energy facilities, including solar, both solar photovoltaic and concentrated solar, and wind 

facilities (National Parks Conservation Association, 2012).  Yosemite National Park, for 

example, currently has the largest, grid-connected solar facilities in the National Parks Service 

(National Parks Service, 2011). Sites for proposed utility-scale facilities are also in Arizona, 

Nevada, New Mexico, and other parts of California, in locations adjacent to National parks and 

National monuments. Although environmental impact analyses have been performed, there is 

still concern regarding the impact that the facilities will have on the adjacent park lands. “Despite 

the environmental reviews required for proposed projects, poorly sited projects have been 

approved that will harm natural and cultural resources shared between BLM [Bureau of Land 

Management] lands and desert National parks” (National Parks Conservation Association, 2012). 

Although the overall benefit of solar facilities is thought to outweigh any negative impacts on the 

physical environment at these sites, there is still concern for vulnerable species and habitats on 

the proposed sites and the adjacent park lands. “The resulting habitat fragmentation and 

destruction, impaired visual resources, and lost wildlife connectivity will affect not only BLM 

lands but adjacent national park lands as well. In short, while there are great benefits to 

harnessing sunlight for electricity generation, these benefits come at a significant cost to desert 

resources” (National Parks Conservation Association, 2012).  
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2.4 Electric Vehicle Charging Stations at National Parks 

 

As a goal of both the Green Parks Plan and the Clean Cities Program, many of the 

National parks have installed electric vehicle charging stations on park property, while other 

parks within the NPS are planning on installing charging stations in the near future. Installation 

of these charging stations in parks allows for the conversion of current park vehicle fleets to 

fleets of electric vehicles to be used for park management and park transit. Installation of 

charging stations also encourages people who own electric vehicles to visit parks within the 

National Parks Service, while reducing emissions during long-distance trips to parks that are 

located in more secluded areas.  

Currently, a major concern regarding electric vehicle use is the lack of charging stations 

in most public areas. An electric vehicle owner may chose not to take a long-distance trip to a 

National park if they are unsure about the location or availability of charging stations at, or near, 

their destination. By installing charging stations at National parks across the Country, more 

people may be able to enjoy the park and park facilities without worrying about the availability 

of electric vehicle charging stations nearby. Park visitors can charge their vehicle while taking 

hikes and other daytime activities. In parks that contain lodging, park visitors can simply charge 

their vehicle at night, which Zion National Park recommends (Zion National Park, 2016). 

Currently, 21 of the National parks have electric park vehicles in-use, either for park 

transit or park maintenance, with charging stations located on park property. Several of these 

parks also have electric vehicle charging stations available for park visitors. 21 additional parks 

within the National Park Service are also being considered for installation of electric vehicle 

charging stations on park property (American Progress, 2015) as shown in Figure 6: National 

Parks with EVs and EV Stations (American Progress, 2015) and Table 1: Proposed EV Station 
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Sites at National Parks (American Progress, 2015). According to the Department of Energy 

(2015), the National parks of: Acadia, Catoctin, Glacier, Grand Canyon, Great Smoky 

Mountains, Petroglyph, Rocky Mountain, Shenandoah, Sleeping Bear Dunes, Yellowstone, and 

Zion have converted some of their fleets of park shuttles or maintenance vehicles to hybrid or 

all-electric vehicles (DOE, 2015), and Gateway National Recreation Area, Cumberland Islands 

National Seashore, and Lyndon B. Johnson National Historic Park currently have electric trams 

or buses in-use (NPS, 2003). All of these parks, excluding Great Smoky Mountains and Zion 

National Park, rely solely on electricity sourced from the grid to provide power to their electric 

vehicle charging stations for both park vehicles and visitors’ personal vehicles. However, Great 

Smoky Mountains and Zion National Park have recently installed solar PV arrays located on 

park property to provide power to their electric vehicle charging stations, furthering their efforts 

to reduce overall emissions (Auto Evolution, 2015).  
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Figure 6: National Parks with EVs and EV Stations (American Progress, 2015) 



15 

 

Table 1: Proposed EV Station Sites at National Parks (American Progress, 2015) 

 
 

 

2.5 Electric Buses 

Many of the National parks have hybrid electric or fully electric park transit shuttles or 

buses, or electric park maintenance or security vehicles. According to the literature, this is a 

growing trend in the NPS, and will likely continue to grow, as fully electric vehicles are a means 

by which the National parks’ goal of reducing emissions on park property can be met. Although 

electric park shuttles and buses and other park vehicles are becoming more commonplace within 

the National parks, the capital costs for purchasing large, fully electric buses, and installing the 

necessary charging facilities on-site, currently prevents the National parks from being able to 

convert all of their existing fleets. However, thanks to programs like Clean Cities, electric 
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vehicles have been purchased for many of the National parks (Navigant, 2014).  Many other 

public entities including several cities, including Seneca, South Carolina, and Chattanooga, 

Tennessee, and even the Kings Canyon Unified School District in California’s San Joaquin 

Valley, have also converted their bus fleets to all electric, while many other cities and municipal 

transportation agencies have converted some of their fleets to all electric and hybrid.  

 Companies such as BYD, Proterra, and Trans Tech design and build fully electric buses, 

with BYD recently aiming at being the manufacturer for the NPS (Navigant, 2014). Fully electric 

buses made by these manufacturers boast zero emissions, approximately 21 miles per gallon 

equivalent, at approximately $0.20 per mile, (using approximately 1.92 kilowatt hours per mile), 

compared with traditional diesel powered buses with approximately 3.86 miles per gallon at 

$0.84 per mile (BYD, 2015 and Proterro, 2015). Proterra also claims that electric buses save the 

owner $700,000 in operations and maintenance costs (based on the expected 12-year life of most 

buses), compared to operation and maintenance costs for typical diesel buses (MacKechnie, 

2015). Fully-electric bus manufacturers such as BYD, Proterra, and Trans Tech also offer models 

with regenerative braking systems, which return power back to the battery during braking, 

allowing the bus to travel farther distances without stopping to be charged. 

2.6 Transit in National Parks 

Although the National parks were originally designed to accommodate personal vehicles, 

now that the National parks attract millions of visitors each year, parks are experiencing many 

negative effects due to the increase in vehicular traffic on park property. Many parks experience 

congestion along park roads, which can negatively impact visitors’ experiences, and more 

importantly, the emissions from visitors’ personal vehicles are detrimental to the air quality in 

and around the parks.  
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It is necessary for the National parks to provide transit systems in order to reduce the 

negative effects brought about by the increase in personal vehicle ridership on park property. 

“ATS [Alternative Transportation Systems] can reduce the potential environmental and 

experiential impacts of conventional automobile-based transportation in parks and related areas” 

(Anderson et al, 2015, p. 127). “[A] reduction in vehicle noise and air pollutants [through the use 

of transit] improves the quality of visitor experience. Most transit system goals aim at reducing 

traffic and parking congestion, improving safety for visitors, and mitigating environmental 

impacts of increasing visitation (Dunning, 2005, pp. 131-132). In a recent study conducted by 

Manning et al (2013), it was found that the use of the shuttle bus system at Acadia National Park 

and Zion National Park helped in significantly reducing emissions and noise pollution (Manning 

et al, 2013). 

In the many National parks that offer transit services to park visitors, these services are 

often available free of charge, and provide park visitors with a more relaxing and enjoyable, park 

experience. Park transit systems provide safe and reliable transportation for park visitors in a 

manner that is better for the environment in several ways: park transit reduces the amount of 

vehicle emissions inside the park by reducing the number of vehicles on the road; it protects 

wildlife and natural habitats by preventing park visitors from parking alongside park roads when 

parking space is limited; it reduces noise and congestion, and aims at providing park visitors with 

an overall better park experience by reducing stress, and in some situations, even enhancing park 

visitors’ experiences by providing additional information through guided tours and informative 

sessions while using transit. 

Many of the Nation’s parks that currently have a transit system rely on the use of buses or 

shuttles, and most of these are powered by fuels other than traditional diesel in an effort to be 
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more environmentally-conscious. Many of the National park transit systems use propane-

powered buses (NPS, 2014). Although propane is a cleaner-burning fuel alternative to traditional 

diesel, fully-electric buses and shuttles are a better option for reducing emissions on park 

property.  

2.6.1 Features of Park Transit 

 

2.6.1.1 Transit Funding 

For the past several years, funding for transit projects at National parks could be obtained 

through the Congestion Mitigation and Air Quality Improvement (CMAQ) program, as 

authorized by MAP-21 (Moving Ahead for Progress in the 21
st
 Century) (Volpe National 

Transportation Systems Center, 2014). Prior to CMAQ, the Paul S. Sarbanes Transit in Parks 

program, which was authorized under SAFETEA-LU (Safe, Accountable, Flexible, Efficient 

Transportation Equity Act: A Legacy for Users), “was established to address the challenge of 

increasing vehicle congestion in and around our National parks and other federal lands. To 

address these concerns, this program provides funding for alternative transportation systems, 

such as shuttle buses, rail connections and even bicycle trails. The program seeks to conserve 

natural, historical, and cultural resources; reduce congestion and pollution; improve visitor 

mobility and accessibility; enhance visitor experience; and ensure access to all, including persons 

with disabilities” (USDOT, 2014). The Paul S. Sarbanes Transit in Parks program provided 

funding from 2006 until it was repealed by Congress under MAP-21 in 2013. 

CMAQ provides funding for up to 80 percent of project costs, with the need for partner 

funding sources to cover the remaining costs (Volpe National Transportation Systems Center, 

2014). Acadia National Park in Maine, and Rocky Mountain National Park in Colorado, both 

received CMAQ funding through their MPOs (Metropolitan Planning Organizations) or State 
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DOTs to improve existing park transit and transportation services in order to mitigate congestion 

and improve air quality at these parks and in the surrounding areas. According to Volpe National 

Transportation Systems Center (2014), there are many other parks within NPS, both with and 

without existing park transit services, that are eligible to obtain CMAQ funding “based on 

population and pollution levels in ozone (O3), particulate matter (PM10 and PM2.5), and carbon 

monoxide (CO) nonattainment or maintenance areas designated by the EPA” (Volpe National 

Transportation Systems Center, 2014). 

2.6.1.2 Parking Problems on Park Property 

Parking is limited on park property, which poses a problem for visitors, and may prevent 

parks from increasing park visitation in certain locations where parking is limited. More 

importantly, visitors attempting to park in undesignated areas on park property can also endanger 

park staff, other visitors, and park wildlife and habitats. “Lack of parking often results in visitors 

parking along the road or in grassy areas, creating a safety concern for park officials and damage 

to potentially sensitive habitats” (Sims et al, 2005, p. 26). Providing park transit that allows 

visitors to park outside of park property and ride a bus or shuttle in and out of a park can help to 

remedy this problem.  

2.6.1.3 Park Visitors’ Perception of Park Transit 

It is important that National parks provide transit that visitors will want to use, thus, park 

visitors’ perception of the transit services provided at National parks has been explored in many 

studies. Researchers have surveyed visitors of National parks in an effort to gage visitors’ 

reactions to different park transit options and features regarding the transit, such as: type of 

transit vehicle; scheduling frequency and routing; whether visitors perceived the park transit to 

benefit the park overall; and whether or not the park transit was perceived to improve visitors’ 
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experience at the park. In one particular study, visitors were surveyed at Acadia National Park 

where it was determined that vehicle crowding, scenery, travel freedom, and travel convenience 

were the most significant factors to influence visitors’ experiences (Hallo and Manning, 2001). 

The results from this study were not atypical. In survey research conducted on visitors’ 

perceptions of park transit at Yosemite National Park and Rocky Mountain National Park, ease 

of use of the transit system, reduction in stress regarding finding parking and navigating park 

roads, lack of perceived congestion and crowding, and the perception that visitors maintain 

freedom to explore park property were all salient factors influencing park transit ridership (Taff 

et al, 2013, p. 45). In research conducted on different demographic groups of visitors to Rocky 

Mountain National Park, it was found that younger groups (age 40 and younger) were more 

likely to use park transit in areas of the park where congestion is common (Pettebone et al, 

2011). Similar research was also conducted at Virginia’s Colonial National Historical Park, 

where it was found that the factors influencing park shuttle ridership included: whether or not a 

fee was charged for driving a personal vehicle on park property; whether or not there was a park 

shuttle fare; the amount of time spent in and out of the vehicle; the shuttle headway; and whether 

or not live interpretation was provided on the shuttle (Shiftan et al, 3006, p. 58). The information 

obtained from this study, and others like it, can be beneficial in transit planning at all of the 

National parks because it provides insight into factors that may influence transit ridership.  

Most of the National parks that provide transit do not make park transit mandatory for all 

visitors. In parks that have mandatory park transit ridership during the peak season, such as Zion 

National Park in Utah, survey research has been conducted to determine whether visitors 

perceived the mandatory park transit to improve their overall experience at the park or whether 

they felt that making park transit ridership mandatory hindered their ability to explore the park 
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and prevented them from having a more enjoyable time during their visit. According to the 

results from survey: “the shuttle will be perceived as successful and a preferred alternative by 

visitors so long as wait times are minimal (no greater than 15 min) and the main attractions in the 

canyon remain accessible from shuttle stops, enhancing visitor freedom” (Mace et al, 2013, p. 

1282). 

Survey research conducted on the Full Circle Trolley, which is a fully electric shuttle that 

provides a transit loop around the town of Woodstock, Vermont surrounding the Marsh-Billings-

Rockefeller National Park found that there are several factors that have been found to influence 

transit ridership. “Alternative transportation systems (ATS) should have frequent scheduling (or 

headways), should include stops at destinations important to riders, should relieve traveler stress 

(e.g., reduce concern over lack of parking), should educate riders on the environmental benefits 

of ATS, and should include a strong element of rider orientation, education, and interpretation 

about the park and surrounding area” (Anderson et al, 2015, p. 127). 

By encouraging transit ridership at the National parks, it is also hoped that if visitors 

perceive park transit to be positive, they may also be inclined to think more positively about 

other forms of transit in other locations besides the National parks. “ATS can reduce many of the 

environmental impacts of private automobiles while maintaining and even enhancing the quality 

of the visitor experience. And many visitors will take these positive experiences with more 

sustainable transportation back home with them, more prepared to support sustainability in all 

forms, and this will be good for National parks and the greater world” (Manning et al, 2014, p. 

13).  
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2.6.1.4 Park Transit’s Influence on Park Visitation 

Studies have been conducted to determine the effects of transit services at National parks 

on levels of park visitation. Park rules regarding park transit vary by park, and therefore affect 

visitor ridership. “Factors such as perception of transit service quality, perception of private 

vehicle congestion, and private vehicle restrictions will affect trip-making for both visitors and 

local residents” (Dunning, p. 131, 2005). It has been noted that transit ridership at several 

National parks has increased in recent years, and has been observed to be a result of park visitors 

and residents of the nearby area’s familiarity with the transit services at parks. “Increasing 

ridership on these systems suggests that communities and visitors must grow accustomed over a 

few years to the systems before transit activity becomes a regular part of local transportation. 

Continuing efforts to improve and disseminate information about the systems should also affect 

patronage” (Dunning, p. 132, 2005).  

 

2.6.1.5 Park Transit’s Influence on Surrounding Communities 

In some areas surrounding National parks, nearby residents will rely on park transit for 

daily commutes and leisurely trips. Although many of these residents may be seasonal 

employees of the park, residents who reside year-round in communities adjacent to park 

properties may also rely on park transit. “Although the shuttles were intended for tourists, local 

residents use the buses for all types of trips, including commute trips. This travel behavior should 

be encouraged because it helps reach identified goals of transit: it reduces traffic congestion and 

its associated safety hazards, frees parking spaces that would otherwise remain full all day, and 

reduces noise pollution and local emissions that are harmful to air quality” (Dunning, p. 133, 

2005). However, in some locations, such as with Marsh-Billings-Rockefeller National Park in 

Woodstock, Vermont, survey research suggests that there needs to be more of a focus on 
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improving park transit in terms of scheduling and routing of park transit to accommodate 

residents living near National parks, including seniors and residents with disabilities. “For 

residents, it was noted that the trolley could also serve as a fun outing; however, the trolley’s 

route (limited to within town) and schedule (operating within working hours) were identified as 

limitations for residents’ transportation needs”  (Anderson et al, 2015, p. 119).  

Transit services inside National parks encourages visitors to remain in the park for the 

day, rather than making trips in and out of the park using personal vehicles, which reduces 

emissions and congestion in and around parks. However, because this prevents visitors from 

making trips in and out of the park during a visit, this can reduce the number of trips made by 

visitors to businesses outside of the parks. Studies have found that there are possible negative 

effects on the local economies of gateway communities: communities outside of National parks 

that rely on park visitors as their source of income. “Local businesses have observed that people 

riding transit prefer to spend the whole day in the park, rather than exiting at lunchtime and 

reentering” (Dunning, p. 131, 2005). However, ATS can help to promote tourism in surrounding 

communities around National parks through scheduling and routing decisions that incorporate 

local businesses into routes and stops. “Many communities near parks benefit from the jobs and 

economic opportunities generated by park tourism. By taking visitors to local restaurants, hotels, 

campgrounds, and shops, ATS can promote tourism. ATS can also generate jobs as staff is hired 

to operate and maintain new systems” (NPS, 2003).  
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CHAPTER 3: SHORT-TERM SOLUTIONS AT THE NATIONAL PARKS 

AND OTHER OFF-GRID LOCATIONS: LOWER IMPACT FUELS 

As is evident in the literature, park transit services can help the National parks reach their 

goal of reducing emissions on park property, simply due to the fact that it reduces the number of 

personal vehicles in-use on park property. However, incorporating the use of buses and shuttles 

fueled by traditional fuels, such as diesel, is not the best solution. The National parks recognizes 

this, as is evident in the use of electric buses, shuttles, and maintenance vehicles at many of the 

parks, and many of the vehicles that are not fully-electric are fueled by lower impact fuels, 

mainly propane or compressed natural gas (NPS, 2015). Although these are short-term solutions, 

using lower impact, renewable sources to provide power to park vehicles is a better option than 

petroleum based fuels, as shown in Table 2: Emissions for Different Bus Types (results from 

GREET software) (CCW, 2015). 

3.1 Green Bus Fleets 

  

The NPS, along with several cities, counties, and school districts across the Country with 

existing bus fleets have converted their fleets to accommodate the usage of lower impact fuels, or 

have invested in new technology. Whereas most bus fleets are powered by diesel, many fleets 

now consist of buses powered by propane, liquefied natural gas (LNG), compressed natural gas 

(CNG), biodiesel, hydrogen, and fully-electric and hybrid vehicles. These entities that have 

chosen to make these changes to their bus fleets have done so in efforts to reduce emissions, 

improve the air quality on buses, and cut down on operations and maintenance costs, especially 

in school districts (USA Today, 2013). While most buses are powered by diesel fuel; biodiesel, 

compressed natural gas, and propane are becoming popular alternatives to diesel (USA Today, 

2013). School districts and other public and private entities have been able to make these 
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changes to their existing fleets through federal funding and grants, such as the LoNo (low or no 

emission vehicle deployment) program (FTA, 2014). Other programs such as the Alternative 

Fuels Excise Tax Credit provided alternative fuel users with tax credits, such as providing 

propane users with a $0.50 per gallon tax credit (DOE, 2014). 

 

Table 2: Emissions for Different Bus Types (results from GREET software) (CCW, 2015) 

 

 

3.2 Propane 

 

 Propane motor fuel, which consists of liquefied petroleum gas, is a cleaner-burning fuel 

alternative to diesel and gasoline because it has a lower carbon content. Liquefied petroleum gas 

(LPG), occurs during the processing of natural gas. Overall, it has a relatively lower impact on 

the environment and a reduction in vehicle emissions compared with traditional fuels such as 

diesel or gasoline. However, it still produces particulate matter, sulfur dioxide, nitrogen oxide, 

nitrous oxide, carbon monoxide, and methane. 

 Most of the propane consumed in the U.S. is produced locally and distributed using 

pipeline infrastructure.  Although propane costs less per gallon compared with diesel or gasoline, 

an added cost can be in transporting it to areas that are not near infrastructure, although private 
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infrastructure can be established (DOE, 2015). Mammoth Cave National Park in Kentucky, for 

example, has an on-site propane fueling station on park property (Business Fleet, 2014). 

Propane buses are the most widely-used type of lower impact fueled vehicles within the 

NPS, and this is mainly due to the fact that capital costs are lower versus other vehicle options 

(Navigant, 2014). Propane-powered buses are suitable for shorter routes, which makes them 

appropriate for park transit. Propane-powered buses typically get 10 percent fewer miles per 

gallon than traditional diesel-powered buses because of propane’s lower BTU rating, and they 

cost about $3,000-4,000 more than traditional diesel buses (USA Today, 2013). However, the 

cost per gallon of propane is significantly less than the cost per gallon of diesel, and propane has 

a higher octane rating than gasoline. Propane also has the potential to extend the life of the 

engine. “Propane’s high octane combined with its low-carbon and low oil-contamination 

characteristics have resulted in improved engine life compared to conventional gasoline engines. 

Because the fuel’s mixture of propane and air is completely gaseous, cold start problems 

associated with liquid fuel can be reduced” (DOE, 2015). Overall, there is a substantial savings 

in the amount of emissions and in operations and maintenance costs for propane-powered buses 

versus diesel-powered buses (USA Today, 2013). “Burning propane reduces greenhouse gas 

emissions by 22 percent compared to gasoline-powered buses or 6 percent compared to diesel” 

(New York Times, 2015). 

3.3 Compressed Natural Gas 

 

 Compressed natural gas (CNG) is natural gas that is kept under pressure, usually around 

3,100 pounds per square inch (psi) for vehicle fuel usage (California.gov, 2015). CNG dissipates 

quickly and is flammable when it mixes with air, but only when the mixture contains 5-15 

percent natural gas (California.gov, 2015). Currently, around 99 percent of natural gas consumed 
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in the United States is sourced domestically. CNG is a cleaner-burning fuel alternative to 

gasoline and diesel, with an 80 percent reduction in vehicle emissions compared to traditional 

gasoline (California.gov, 2015). CNG costs about 15-40 cents less per gallon than gasoline, and 

like propane, CNG has a higher octane rating, leading to better engine performance. However, 

vehicles that run on CNG typically cost about $3,500 more than gasoline-powered vehicles due 

to the higher cost of CNG fuel cylinders (All About CNG Vehicles, 2016).  In the 1990s, many 

parks and historic sites within the NPS in and around the Washington, D.C. area began using 

CNG refuse haulers (NREL, 1998). Also, since 1998, Grand Canyon National Park has been 

using six CNG maintenance vehicles and 29 CNG shuttles (NPS, 2010). The CNG shuttles were 

purchased to replace the diesel and liquefied natural gas (LNG) shuttles that had previously been 

used at the park (NPS, 2008). 

3.4 Liquefied Natural Gas 

 

 Liquefied natural gas (LNG) is produced through liquefaction by cooling natural gas to 

minus 259 degrees Fahrenheit, which cools the natural gas, consisting mainly of methane, to 

below its boiling point (California.gov, 2015). Like CNG, LNG is only flammable when mixed 

with air and when this mixture contains 5-15 percent LNG, and it is only explosive in enclosed 

spaces containing this mixture (California.gov, 2015). When used as a vehicle fuel, it is 

relatively less expensive and cleaner-burning than diesel, and it has a higher storage density than 

CNG (California.gov, 2015). Most of the world’s LNG sources are in the countries of: Algeria, 

Australia, Brunei, Indonesia, Libya, Malaysia, Nigeria, Oman, Qatar, and Trinidad and Tobago 

(California Energy Commission, 2015). LNG is transported to the United States by large ships 

that can maintain the required low handling temperature of LNG. Currently, LNG terminals in 

the U.S. are located in Georgia, Louisiana, Maryland, Massachusetts, Mississippi, Texas, and 
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Puerto Rico. However, the NPS has opposed the installation of an LNG terminal and pipeline 

extension from Warrenton, Oregon due to concerns regarding damage to natural habitats in the 

surrounding area (Oregonian, 2012).  

Although LNG is a lower impact fuel, LNG vehicles are not currently in-use at any of the 

National Parks. Grand Canyon National Park used LNG shuttle buses for years to transport 

visitors along the south rim of the Canyon, but these shuttles, along with diesel shuttles, were 

recently phased out and replaced with CNG shuttles (NPS, 2008). LNG has a short shelf life, 

requires extreme conditions to keep cool, and in the case of the location of many of the National 

parks, requires long distance trips to reach its destination where it will be used. It is also more 

suitable for long-haul vehicles, and vehicles that require constant fueling (Westport, 2013). 

Therefore, LNG typically isn’t a good choice for transit shuttles and buses at the National parks. 

 

3.5 Biofuels 

 

3.5.1 Ethanol 

 

 Ethanol is ethyl alcohol, and is produced mainly by the fermentation and distillation of 

corn, sugar cane, and feedstock. Brazil is the largest producer of ethanol, which is produced 

using sugar cane, but the Midwestern states of Iowa, Illinois, Minnesota, and Nebraska are the 

largest producers of ethanol for the U.S. due to the large production of corn in these states. The 

costs of ethanol production are higher than production of petroleum fuels, but the government 

has tried to offset the costs of production of ethanol to increase competition with production of 

petroleum fuels (California.gov, 2015).  

Ethanol is combined with gasoline to produce Ethanol 85 vehicle fuel, which is a mixture 

consisting of 85 percent ethanol and 15 percent gasoline, and can be used in vehicles that are 
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designed to run on higher concentrations of ethanol, which are called flexible fuel vehicles 

(FFVs). Ethanol 85 has a lower energy content than traditional gasoline, but it has a higher 

octane rating, resulting in improved engine performance (California.gov, 2015). Most vehicles 

can use fuel that is a mixture containing 10 percent or less ethanol with gasoline, which results is 

slightly lower vehicle emissions compared with gasoline only. The reduction in emissions is 

considered to be significant in vehicles that can use fuel like Ethanol 85, with higher 

concentrations of ethanol, because of the net reduction in carbon emissions, which considers the 

occurrence of an offset of emissions due to the production of crops (DOE, 2015).  

Since the late 1990s, Yellowstone National Park has used E10 fuel to power its 

snowmobiles on park property (NPS, 2003). Mammoth Cave National Park also has E10 

maintenance vehicles in-use (Business Fleet, 2014). Using FFVs or vehicles that are fueled by 

E10 and other mixtures of gasoline and ethanol are better choices for the National parks than 

traditional diesel fueled vehicles. 

 

3.5.2 Biodiesel 

 

 Biodiesel is produced using soybeans, vegetables, animal fats, and used restaurant grease, 

and it is biodegradable and is a cleaner-burning fuel than traditional petroleum fuels. Biodiesel 

can be used in most diesel engines, but is not recommended to be used in vehicles running in 

colder climates, which many of the National parks are located in, because it can crystallize, 

leading to engine failure (DOE, 2015). B100, also called neat biodiesel, is pure biodiesel, but 

biodiesel can also be mixed with petroleum diesel in different concentrations to create different 

fuels, such as B20, B2, and B5, which are commonly used, and are more suitable to be used in 

colder climates where biodiesel with higher concentrations is not recommended. The use of 
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biodiesel in diesel engines also results in significantly lower emissions, and the resulting 

emissions are 45-90 percent lower in toxins compared to traditional diesel. Biodiesel vehicles, 

including some watercraft, are currently being used at Channel Islands National Park and 

Yosemite National Park (California.gov, 2015). 

 

3.6 Long-Term Solutions for the National Parks and Other Off-Grid Locations: Power 

from Renewable Sources 

 

 Due to the fact that fully-electric vehicles produce the least amount of emissions 

compared with traditional fuels and lower impact fuels, the National parks can benefit the most 

from, and be able to reach their goal of lowering overall emissions on park property, by 

incorporating electric park vehicles and installing electric vehicle charging stations on park 

property. Most of the National parks that currently have electric park vehicles and electric 

vehicle charging stations located on park property obtain power from the grid (excluding Zion 

and Smoky Mountains National Parks which have solar PV arrays located on park property). 

Many parks are located in remote areas, where there are additional costs associated with power 

provisions and transport of fuels. Also, the majority of power produced in the U.S. is produced 

from nonrenewable sources, as shown in Figure 7: 2014: U.S. Energy Consumption by Source 

(EIA, 2015), which is thought to ultimately negate efforts at reducing emissions. Therefore, in 

order for the National parks to meet their goal of reducing overall emissions (not only on park 

property), they need long-term energy solutions; therefore, renewable energy sources should be 

considered. 
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Figure 7: 2014: U.S. Energy Consumption by Source (EIA, 2015) 

 

3.6.1 Cogeneration 

 

 Cogeneration, or combined heat and power (CHP), is the generation of electricity by the 

burning of different types of biogas or natural gas fuel, and the usage of the waste heat from the 

electricity generation to provide heat for hot water, or cold water for cooling purposes. 

Cogeneration facilities are typically useful in areas that require constant power or consistent 

access to hot or cold water, such as hospitals, data centers, industrial facilities, and large 

residential facilities. Cogeneration facilities can produce electricity and hot water efficiently and 

cost-effectively, but capital costs for the facilities and operation and maintenance costs are 

extremely high (around $45 million for construction costs only) (C2ES, 2014). Therefore, 

cogeneration facilities on park property would not be feasible for several reasons: the amount of 
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available land to build the facilities on park property will be limited; the capital costs of building 

the facilities is likely to be too high; and there isn’t a need to provide constant heat or cooling to 

a large number of buildings on most park properties. 

3.6.2 Bio-waste 

 

 Bio-waste is a product of farming, animal husbandry, and paper and wood products’ 

processing and manufacturing. Bio-waste can take the form of tree limbs, crops, animal waste, 

paper and pulp, and grass, among other things. Bio-waste can be harvested and then used in 

special combustion furnaces containing generators to produce energy. Using bio-waste on-site to 

produce energy results in lower emissions, and the product of the burning process results in ash 

that can then be used as fertilizer (Natures Furnace, 2014). Energy production facilities using 

bio-waste are suitable for farms and large scale agriculture because capital costs are relatively 

low, and the bio-waste is on-site, does not require transportation from off-site locations, and is 

typically in constant supply. Therefore, such facilities would likely not be a viable option for 

many park locations because space for the facilities may not be available, and a sufficient supply 

of bio-waste would not be generated on-site and would need to be transported to the location, 

thus increasing costs. 

 

3.7 Wind and Solar Technologies 

 

For the purposes of this study, solar and wind technologies will be considered appropriate 

for providing power to meet the long-term, transportation energy needs of off-grid locations, 

mainly the National parks. Wind and solar technologies are typically more practical sources of 

energy production.  



33 

 

3.7.1 Wind Technologies 

 

 Wind power is the generation of electricity through the use of wind turbines. Wind 

turbines turn due to naturally-occurring moving air. There are two types of wind turbines: 

vertical axis turbines, and horizontal axis turbines; the second type being the most common. 

Wind moves the blades of a turbine, which is connected to a shaft that is connected to a 

generator, which produces electricity. Small scale wind turbines can be found in rural locations 

and can be used to provide power to homes and agricultural equipment, while large, utility-scale 

wind turbines (wind farms) can be found in many different locations and provide power to many 

homes and businesses, as shown in Figure 8: Wind Turbine Diagram (Clean Technica, 2014). 

 

 
Figure 8: Wind Turbine Diagram (Clean Technica, 2014) 
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Although wind power is a renewable and a “free” source of energy, the capital costs and 

operation and maintenance costs of wind energy production facilities are high. Wind turbines are 

also very large and require large areas of land dedicated to them. Typical wind turbines have a 

blade span of 116 feet and a unit height of 328 feet (National Wind Watch, 2014).  Even small 

scale wind turbines are expensive, and they typically only produce 100-300 kwh of energy per 

month (CleanTechnica, 2014), which would not be enough to provide power to fleets of electric 

vehicles on National park property. There are environmental concerns regarding the impact of 

wind farms on habitats, and the impact on bird and bat populations. Also, there are concerns 

regarding the aesthetics of wind farms and the impact of noise pollution (BLM, 2014). Currently, 

Channel Islands National Park in California has three wind turbines on Navy-owned San 

Clemente Island. These turbines were installed by the Department of Defense, DOE, and EPA, 

and have been in operation since 1998 (DOE, 2015). 

3.7.2 Solar Technologies 

 

3.7.2.1 Solar PV arrays 

 

 Solar photovoltaic (PV) devices generate energy through the use of semiconductors 

contained in panels, as shown in Figure 9: Solar PV Diagram (GreenSunRising, 2015). Solar 

energy frees electrons within the material in the panels, and these electrons travel through a 

circuit: powering devices (vehicles, calculators, road signs, appliances in homes, etc.) or sending 

power to the grid. The most common type of solar PV uses crystalline silicon solar cells. This 

type of solar PV is very efficient and reliable, installation costs are low, they are capable of 

lasting a very long time (sometimes decades), and they can withstand extreme heat. Another type 

of solar PV uses thin film solar cells, which are less efficient, but are also less expensive to 
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manufacture (Dirjish, 2012). Currently, the Great Smoky Mountains National Park in Tennessee 

and North Carolina has both fleets of electric vehicles and electric vehicle charging stations 

available to visitors, and it relies on solar PV to provide power to its charging stations (National 

Parks Service, 2015). Yosemite, Canyonlands, Death Valley, and Zion National Parks also have 

solar PV facilities on park property. 

 

 
Figure 9: Solar PV Diagram (GreenSunRising, 2015) 
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3.7.2.2 Concentrated Solar Power 

 

 There are several types and configurations of concentrated solar power, as shown in 

Figure 10: Diagram of Concentrated Solar Configurations (Solar Tower UK, 2016) and Figure 

11: Concentrated Solar Configurations (Solar Tower UK, 2016). All of the configurations 

contain series of mirrors arranged in such a way that the sunlight that is reflected off of them is 

concentrated, and this concentrated energy is collected and used to heat water to create steam to 

generate energy by moving a turbine. One type is a parabolic trough, where curved mirrors are 

arranged, and focus the sun’s rays onto a receiver, which contains oil that is heated to 750 

degrees Fahrenheit, that is used to heat water to create steam. Another type is a compact linear 

Fresnel reflector, which contains rows of mirrors that reflect sunlight to receivers, which contain 

tubes of water, which boil and create steam. A third type is a power tower, which is similar to a 

parabolic trough in that the mirrors reflect sunlight to a receiver which contains oil that is heated 

to 1,000 degrees Fahrenheit. The difference between a power tower and a parabolic trough is in 

the mirror configuration: a power tower contains rows of mirrors which are programmed to track 

the sun. Lastly, the fourth type is a dish engine, which consists of large dishes of parabolic 

mirrors that concentrate sunlight on a receiver at the center of the dish. This receiver contains 

hydrogen, which is heated to 1,200 degrees Fahrenheit, and this heated hydrogen powers an 

engine (SEIA, 2015). 

 Concentrated solar power plants are very expensive to build (approximately $600 million 

in capital costs, depending on the type). Concentrated solar power plants currently exist in 

California, Arizona, Nevada, and Colorado. These areas have high direct normal solar radiation, 

which is required for concentrated solar power plants to function, and these areas also have 

access to water resources, which is needed for steam production. Besides access to naturally-
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occurring resources, these locations also have access to high voltage transmissions lines that is 

adjacent to large parcels of land suitable for accommodating rows of mirrors (SEIA, 2015).  

 

 

 

 

 

 
 

Figure 10: Diagram of Concentrated Solar Configurations (Solar Tower UK, 2016) 
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Figure 11: Concentrated Solar Configurations (Solar Tower UK, 2016) 
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CHAPTER 4: WIND AND SOLAR RESOURCE MODELS 

 

4.1 Solar Resource Model 

 

 The National Renewable Energy Laboratory (NREL) has a U.S. solar resource model, 

representing data obtained from SUNY Albany’s solar radiation model. The data displayed in the 

resource model was collected from 1985 to 2009, depending on type, and contains average 

annual and monthly averages, measured in kilowatts per square meter, for the conterminous U.S. 

The resolution, depending on type, varies from approximately 10 to 40 square kilometers. Direct 

normal irradiance, global horizontal irradiance, and photovoltaic measurement types are 

provided (NREL, 2015). 

 For the purposes of this research, direct normal irradiance (in kilowatts per square meter) 

data were obtained for 2009. The data is in raster format, and was loaded into ArcGIS software, 

as shown in Figure 12: NREL’s Solar Resource Model in ArcGIS (NREL, 2015). The resolution 

for this dataset is in 10 square kilometers. A Bird Clear Sky model was used to calculate the 

clear sky Direct Normal Irradiance (DNI). The sources for the data used in the model include: 

radiance satellite imagery, snow coverage data, monthly average water vapor data, trace gases 

and aerosols data, and, where necessary, ground truth data. Due to variations in terrain and the 

existence of microclimates, the results of the model are accurate up to 15 percent of the 

measured values for each grid cell (NREL, 2012).  
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Figure 12: NREL’s Solar Resource Model in ArcGIS (NREL, 2015) 
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4.2 Wind Resource Model 

 

 NREL’s wind resource model displays estimated wind class values, as shown in Table 3: 

NREL Wind Resource Model Wind Classes (NREL, 2014), for the conterminous U.S. using data 

obtained from the Pacific Northwest National Laboratory’s (PNNL) wind resource model, 

developed in October 1986. The data used in the model is at a resolution of 200 meters to one 

kilometer, with state-level measured data (excluding Alabama, Florida, Louisiana, and 

Mississippi) at 50-meter height hubs, and national-level data measured at 25-kilometer height 

hubs. The data were used in-conjunction with a model produced by a consulting firm, AWS 

TruePower, along with the DOE, to enhance the model and estimate wind class values for areas 

that were excluded in PNNL’s model (NREL, 2015). 

 

The data accessed from the PPNL model excluded areas with low surface roughness, 

such as flat areas with low-lying vegetation, and it excluded areas with slopes greater than 20 

percent. In areas with higher surface roughness, such as areas with forests and a thick vegetation 

canopy, the model assumes higher than actual wind potential. The model developed by AWS 

TruePower, and the DOE, estimates wind class values based on varying surface roughness and 

slopes. In areas with adequate data, surface wind, coastal marine, and upper-air data 

measurements were obtained. In areas where the data were unavailable, wind speeds were 

estimated based on topographic features, amount of vegetation affected by wind, and in coastal 

regions, the existence of sand dunes and other wind-influenced features.  

Wind class values one to seven were assigned, based on measured or estimated wind 

speed or wind speed potential, and these values were dependent upon the amount of data 

available in the model, topography, and wind variability (NREL, 2015). Areas with an assigned 
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wind class of three to seven are considered suitable for large scale wind facilities, while areas 

with an assigned wind class of two are considered appropriate for small-scale and rural facilities. 

Areas with an assigned wind class of one are considered unsuitable for wind facilities (NREL, 

2015). 

For the purpose of this research, national-level data from August 2015 was obtained. The 

dataset created in-conjunction with AWS TruePower and the DOE was chosen because it did not 

contain any exceptions based on various topographic attributes. Because the data is at the 

national-level, it is measured at a height of 25 kilometers, and the resolution is at one square 

kilometer. ArcGIS software was also used to access the data, as shown in Figure 13: NREL’s 

Wind Resource Model in ArcGIS (NREL, 2015). 

 

 

 

 
 

Table 3: NREL Wind Resource Model Wind Classes (NREL, 2014) 
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Figure 13: NREL’s Wind Resource Model in ArcGIS (NREL, 2015) 
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4.3 Concentrated Wind Resource Model 

 

 The current wind and solar resource models are sufficient for determining feasible 

locations for concentrated and distributed solar, and for utility-scale, horizontal wind turbines. 

However, there is currently no resource model for concentrated wind. A concentrated wind 

resource model is necessary for locating areas of the Country that have convective potential, 

rather than advective potential, which is suitable for functional utility-scale wind turbines. 

Because convection is a small-scale resource, it is necessary that a concentrated wind resource 

model have a large resolution; one which is comparable to NREL’s existing wind resource model 

(approximately one kilometer). Thus, an objective of this study is to create a resource model for 

a concentrated wind system. Such a resource model could be used to determine suitable locations 

for immerging technologies in concentrated wind. 
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CHAPTER 5: EMERGING TECHNOLOGY 

 

5.1 The Solar Vortex (SoV) 

Due to increasing concerns regarding the amount of GHG emitted into the atmosphere on 

a daily basis from the burning of fossil fuels, the need to find viable sources of alternative energy 

is becoming more pressing. Although improvements to renewable energy sources, including 

wind and solar photovoltaic technologies, have increased their prevalence, these technologies are 

still facing pressure, as the number of facilities in-use, the amount of power produced, and the 

efficiency and cost comparison with fossil fuels is such that only 14 percent of U.S. energy 

generation is produced by renewable sources (U.S. Energy Information Agency, 2014). This 

staggering figure is attributed to many issues faced by renewable energy technology, especially 

concerns with operation and maintenance costs. This desire to increase the percentage of overall 

power generation by renewable sources has prompted the development of new technologies, 

some of which are based on current technologies, and some are completely innovative.  

The Solar Vortex (SoV) is an innovative means of energy production developed by a 

team of researchers, whose goal was to develop an entirely new source of harnessing alternative 

energy, based on simple principles of atmospheric physics, and to take advantage of naturally 

occurring physical conditions. The basic design concept behind the development of the Solar 

Vortex (SoV) is an anchored unit consisting of angled vanes that channel warm rising air from 

the ground’s surface, where it meets slightly cooler air directly above it, causing a funnel to form 

inside the unit due to the existence of convection: the natural phenomenon where warm air tends 

to rise, while cooler air, which is denser, tends to sink. The funnel is then maintained inside the 

unit, as shown in Figure 14: Dust Devil and Initial SoV Prototype (Georgia Tech, 2012), and 

after gaining momentum, has the potential to move a turbine inside the unit, which generates 



46 

 

energy. This basic design harnesses the potential to create and sustain movement of a vortex due 

to the existence of a temperature differential between the ground air and the air directly above it. 

This occurrence is similar to vortices found in nature, such as dust devils, which are commonly 

found in the Midwest and the Southwest United States. 

The SoV is a new technology that the NPS, and other remote locations, can consider to 

generate on-site electricity to provide power to electric vehicles. The SoV units are small in 

comparison to wind turbines and other solar technologies. The expected capital costs, and 

operation and maintenance costs are also lower than wind and other solar technologies.  

 

 
Figure 14: Dust Devil and Initial SoV Prototype (Georgia Tech, 2012) 

  

5.1.1 Design Concept 

 

The SoV design was based on the occurrence of naturally-occurring vortices that are 

found in nature: hurricanes (large scale); tornadoes (meso-scale), and dust devils (micro-scale), 
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These vortices form by the rising, warmer air next to the surface, which is heated by the sun, and 

the sinking, slightly cooler air located directly above this warm layer of sun-heated air. The 

funnels are an example of concentrated wind energy. Although these types of vortices, especially 

hurricanes and tornados, draw in energy from a large area, the energy is concentrated at the eye 

of the storm, as shown in Figure 15: Dust Devil and Initial SoV Prototype (Georgia Tech, 2012).  

Thus, even a small dust devil, which has a diameter of approximately one meter, has the 

potential to draw energy from an area the size of a football field.  

Based on the concept of vortex formation, the SoV design was based on the theory that a 

sustained vortex funnel could then be used to move a turbine in order to generate power. 

However, naturally-occurring dust devils typically cannot withstand a cross breeze and therefore, 

are incapable of being sustained for long periods of time. Therefore, a crucial part of the SoV 

design needed to be in sustainment of the vortex by anchoring the unit to the ground. “Unlike 

naturally occurring dust devil vortices that are free to wander laterally, and are hence susceptible 

to cross wind, each anchored columnar vortex is rendered stationary by an azimuthal array of 

tangential flow vanes” (Simpson et al, 2013). 

The original concept for the SoV was designed by Dr. Ari Glezer, a mechanical 

engineering professor at the Georgia Institute of Technology. Dr. Glezer, along with a team of 

researchers from other universities and research institutions, collaborated to design, construct, 

and run the prototype and determine if the SoV is a viable means of alternative energy 

production, whether the unit would be marketable, and where units could theoretically be used to 

generate power. Currently, the study to determine if the SoV is a viable means of alternative 

energy production is in its early stages and it is being funded by the Advanced Research Projects 

Agency-Energy (ARPA-E).  
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Figure 15: Dust Devil and Initial SoV Prototype (Georgia Tech, 2012) 

 

As with other types of technology that harness alternative energy sources, the SoV was to 

be designed as a source of alternative energy production that can be constructed to take 

advantage of existing conditions, both naturally-occurring and man-made. A major consideration 

in the initial concept design was the existence of an abundance of solar heat that can be 

harnessed across the Earth’s landscape. One-third of the Earth’s land mass is desert, which 

allows for the capturing of solar heat, (on average 200 watts per square meter in a 24-hour 

period) that can then be used as a source of clean energy (Simpson et al, 2013). “Clean, 

renewable, electric power can be generated in hot climate or humid environments through 

exploitation of the thermal instability of the ground-heated air by deliberately triggering, 
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anchoring, and sustaining arrays of stationary solar-driven vortices, each of which is coupled to a 

vertical-axis turbine. This power generation approach is simple, scalable, and low-cost” 

(Simpson et al, 2013). These existing conditions were the basis for the concept of the SoV. 

 

 
Figure 16: Diagram of SOV Vanes (Georgia Tech, 2012) 

 

 

 

 

 

 
 

Figure 17: Diagram of SOV (Georgia Tech, 2012) 
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5.1.2 Initial SoV Prototype 

 

An initial SoV prototype with a diameter of two meters was constructed in an area 

outside of Mesa, Arizona, which was the former General Motors proving grounds, and tested in 

July 2014 to determine if the unit could produce and sustain a vortex. A second prototype 

consisting of a unit six meters in diameter was also constructed in the same location in Mesa, 

Arizona in August 2015. Both units were stand-alone and did not contain a turbine. After initial 

testing of the prototypes, it was found that the units were able to successfully form and maintain 

a funnel inside the unit.  

 Testing of the initial prototype was crucial in determining the viability of the unit. Initial 

testing of the prototype provided information on the average time in which the unit shut down 

due to a lack of temperature differential after, but not immediately following, sundown. Testing 

provided information regarding the appropriate structure and angel of the vanes with which 

warm air was channeled into the unit in order to sustain formation and maintenance of the funnel 

inside the unit, as shown in Figure 16: Diagram of SOV Vanes (Georgia Tech, 2012), Figure 17: 

Diagram of SOV (Georgia Tech, 2012), Figure 19: Diagram of SoV Prototype (Georgia Tech, 

2016) and Figure 20: Diagram of SoV Prototype (Georgia Tech, 2016). Lastly, testing also 

provided information regarding the factors that may inhibit the sustainment of the vortex inside 

the unit, such as cross breezes, which were remedied by construction of a shroud over the unit, as 

shown in Figure 18: SoV Prototype (Georgia Tech, 2016). 
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Figure 18: SoV Prototype (Georgia Tech, 2016) 

 

 A third prototype was tested July 2016. This unit was slightly larger than the previous 

prototypes, and contained a turbine. The prototype initially contained a total of eight, flat blades. 

Unfortunately, it was found that the turbine would not move. The research team decided that the 

number of blades needed to be reduced to half, and that the remaining blades needed to be 

angled. The turbine was also moved from the top of the structure to the bottom. After moving the 

turbine, it was found that very little airflow was able to enter the structure, and power could not 

be generated by the turbine.  

 During testing, frequent periods of rain delayed startup of the structure. Due to the 

prototype being located in the desert, the rain caused the sandy ground to become soaked, which 

required several dry days in order for the ground to dry sufficiently and the structure to function 
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properly. Unfortunately, while the research team was away from the testing site, a severe storm 

occurred in Mesa and destroyed a large portion of the structure. Thus, final testing and power 

generation results were never obtained. Further simulations are necessary to obtain power 

generation potential. 

 

 

 

 

 
Figure 19: Diagram of SoV Prototype (Georgia Tech, 2016) 
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Figure 20: Diagram of SoV Prototype (Georgia Tech, 2016) 

5.1.3 Renewable Power from SoVs 

 

The SoV is an example of a source of concentrated wind energy production that the NPS, 

and other remote locations looking for off-grid sources of energy production can use for 

numerous reasons. Operation and maintenance costs are relatively low compared with horizontal 

wind and concentrated and distributed solar technologies (Simpson et al, 2013). The amount of 

energy theoretically produced by a unit is comparable to wind and solar PV, in terms of energy 

production. Unlike with horizontal wind and solar PV, which require particular environmental 

characteristics present at the location, SoV units can be constructed in a variety of locations, 

depending on the existence of a temperature differential; possibly making SoV units a suitable 

choice in areas that cannot support horizontal wind and distributed or concentrated solar  

facilities. Also, the fact that the units are smaller in size compared to the size of wind facilities, 

and the footprint of solar PV arrays, is such that they can be located close to buildings and in 

parking lots, possibly making them more suitable for providing power in locations where space 

is limited. 
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5.1.4 Comparison of SoV with Wind and Solar 

 

Another important consideration given during the design phase of the SoV was in 

ensuring that the SoV would be comparable to other alternative sources of energy production, 

mainly horizontal wind and distributed and concentrated solar technologies. According to 

Simpson et al, (2013) with regards to an array of approximately 320 SoV units on a square 

kilometer: “such an array of vortices has an estimated output of 16 Mwe/km2, comparing 

favorably to conventional wind turbines (3-6 Mwe/km2) and solar photovoltaic/concentrated 

solar power (15-25 Mwe/km2)” (Simpson et al, 2013).  

Not only are SoV units comparable to horizontal wind and distributed and concentrated 

solar systems in terms of power output potential, but they are estimated to be less expensive to 

operative and maintain for a number of reasons, as shown in Figure 21: Levelized Cost of Energy 

(Georgia Tech, 2012). When comparing SoV units to horizontal wind facilities, Simpson et al 

(2013) found that: “Because the vortex harvests energy from the thin thermal layer nearest to the 

ground, the vertical-axis turbines are relatively close to the ground level, reducing operational 

and maintenance costs. [Also,] in addition to the collection of the available gravitational 

potential energy in the solar-heated ground air layer, the azimuthal flow vanes can entrain 

considerable kinetic energy from ambient horizontal wind, independent of wind direction, 

thereby increasing the electric power generated” (Simpson et al, 2013). When comparing SoV 

units to solar facilities: “the system requires no electromechanical control system to track the 

sun, rendering the system mechanically simpler and reducing initial capital and maintenance 

costs. The vortex and turbine collect energy at a central location from a wide, unimproved area, 

so that the surface need not be tiled with expensive elements, again reducing the overall cost of 

the system. [Lastly,] the thermal ground storage capability renders the electric power produced 
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by buoyancy-induced vortices much less susceptible to cloud passage, and gives it much better 

diurnal predictable, [in that] the energy output of the vortex does not vanish immediately after 

sunset, and will, under some conditions, continue well into the evening” (Simpson et al, 2013). 

Finally, according to Simpson el al (2013): SoV units compare favorably in terms of costs of 

energy production, such that a 10-meter diameter unit, producing 50 Kwe, would cost 

$0.066/kwh, compared with solar PV ($0.18/kwh), and a horizontal wind turbine ($0.084/kwh) 

(Simpson et al, 2013). 

 

 
 

Figure 21: Levelized Cost of Energy (Georgia Tech, 2012) 

 
 

5.1.5 Renewable Power from SoVs at National Parks 

 

National parks can benefit from off-grid power generation systems, like the SoV, in many 

ways. One such way is in the SoV providing power to park lodges, office buildings, ranger 

stations, and other buildings located on the park property. If a park is located in an area that is 

suitable for SoV installation, the units can be installed on, or near, the park property and provide 
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power to park buildings. Due to the SoV being smaller in size compared with large-scale 

horizontal wind and solar facilities, the units can be installed in parking lots, or other locations 

on the property, without the concern of losing valuable space. Depending on the location, units 

can also theoretically be installed on rooftops of buildings to take advantage of heat radiating 

from buildings in colder climates. 

Using renewable energy to charge electric vehicles, especially energy harnessed at the 

source, rather than accessed from the power grid, is an extremely sustainable practice for 

business or personal use, especially at National parks. If a park is in a location where SoV units 

can feasibly be installed, the units can provide power to electric vehicle charging stations on the 

park property, which can power electric park maintenance and service vehicles, park visitors’ 

personal electric vehicles, which may prove to be an incentive for some electric vehicle owners 

to visit parks, and, most importantly for the focus of this study, provide renewable energy to 

charge electric park transit buses and shuttles. 

 

5.1.6 SoV Resource Model 

The SoV relies on the existence of a difference in temperature between the layer of warm 

air directly above the ground surface and the cooler air above the warmer layer. This temperature 

differential theoretically exists in nature in varying locations. Theoretically, it can also occur in 

locations where the temperature differential is not naturally-occurring, such as in man-made 

environments where there is a heat source located in a cooler environment. The SoV units rely 

on this temperature differential in order to create and sustain vortex formation within the unit. 

Therefore, it is necessary to locate areas where units could feasibly be constructed, such as in 

locations that are conducive to naturally-occurring convection. Currently, because the SoV is in 
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its early stages of research and development, a concentrated wind resource model is not 

available, and therefore, must be developed.  
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CHAPTER 6: CONCENTRATED WIND RESOURCE MODEL 

 

Figure 22: Model Development Flow Chart 
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6.1 The GIS Model 

The GIS resource model developed for this study was crucial in locating potential areas 

where concentrated wind energy production systems, such as the SoV, could potentially be 

installed based on existing natural resources. This GIS resource model was an important 

component for determining the viability of the SoV in varying locations based on potential 

power output. More importantly, it was necessary for resource evaluation to determine 

appropriate locations that may be suitable for future installation of concentrated wind energy 

production systems based on naturally-occurring environmental attributes. The SoV relies on 

buoyancy. Many factors affect the SoV including: the density of air (based on the moisture 

content), ambient temperature, sensible heat flux at the surface, latent heat (also related to 

moisture content), and physical attributes (albedo and slope). The GIS resource model was used 

to calculate and pinpoint locations that contain the aforementioned resources necessary for 

potential funnel formation and sustainment within SoV units due to convection. By developing a 

GIS resource model that determines resource availability with regards to temperature and heat 

exchange for the entire United States, National park locations can potentially be considered for 

off-grid application of concentrated wind energy production facilities, like the SoV. 

The GIS resource model in this study was created to: estimate heat flux values at one 

kilometer resolution, which is comparable to NREL’s current horizontal wind resource model; 

estimate temporal distributions of heat flux, based on the methods used by Ma et al (2010); 

estimate theoretical daily, monthly, and annual average power output in watts per meter square 

and kilowatt-hours; develop a slope model of the entire U.S.; and refine the power output 

estimates based on the slope map. To achieve these tasks, the GIS resource model developed for 
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this study calculated sensible and latent heat for the 48 conterminous United States. The power 

output estimate models were developed based on the distribution of varying sensible and latent 

heat fluxes found at different geographical locations at different times, both morning and night, 

and at different times of year. Refer to Figure 22: Model Development Flow Chart for steps 

involved in development of the resource model. 

Determination of power output estimates is crucial in locating areas where the power 

output potential is such that a concentrated wind energy production system, like the SoV, could 

be constructed and run successfully. The slope model was created to be used after obtaining the 

results from the power output estimates to determine geographical areas where systems could 

potentially be installed. The slope map is necessary in finding potential areas where the ground 

surface is level, with a very low gradient, or areas with low slope surrounded by adjacent areas 

with a higher slope to encourage upward or downward moving air to flow into a unit, influencing 

start-up time. 

6.2 MODIS 

The methods used by Ma et al (2010) were used in creating the GIS resource model, 

mainly the methods used to calculate sensible heat, as shown in Figure 26: Sensible Heat Flux of 

Tibetan Plateau (Ma et al, 2010). Ma et al (2010) calculated sensible for the Tibetan Plateau 

using MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature 

(LST) and emissivity satellite imagery data. MODIS, which is aboard the Terra satellite, as 

shown in Figure 23: EOS System (NASA, 2015), Figure 24: MODIS Location on Terra Satellite 

(NASA, 2015), and Figure 25: MODIS (NASA, 2015), which is part of the EOS (Earth Observing 

Satellites) system, views the entire earth in approximately two days. MODIS obtains data with 

36 spectral bands. However, for the purposes of this study, only bands 31 and 32 are needed 
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because those contain the surface and cloud coverage data and surface temperature data, as 

shown in Table 4: MODIS Spectral Bands 1-19 (NASA, 2015). 

 

 

Figure 23: EOS System (NASA, 2015) 
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Figure 24: MODIS Location on Terra Satellite (NASA, 2015) 

 

 

  

Figure 25: MODIS (NASA, 2015) 
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Table 4: MODIS Spectral Bands 1-19 (NASA, 2015) 

 



64 

 

 

Figure 26: Sensible Heat Flux of Tibetan Plateau (Ma et al, 2010) 
 

6.2.1 MODIS Data 

The MODIS data were obtained from the MOLT database from USGS. The files were 

downloaded manually, although a Python script could have been written to automate the process. 

The files, which were an average temperature (in degrees Kelvin) of the first eight days of each 

month, were corrected for cloud coverage, and in raster format at one kilometer resolution, were 

downloaded directly from the database in hierarchical data format (HDF).  The MODIS 

Reprojection Tool 4.1 (2011) was downloaded from USGS’s Land Processes Distributed Active 

Archive Center Website, and each HDF file was loaded into the software and converted to a 

geotiff format file, as shown in Figure 27: MODIS Reprojection Tool (USGS, 2011). There was a 

total of 13 MODIS raster files, covering the entire U.S., for four months (January, April, July, 

and October) for 2011 and 2013, at approximately 10:30 am and 10:30 pm (104 files total). The 
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MODIS data were obtained using the version MOD11A2 due to this version having the least 

amount of missing data compared with previous versions: MOD11A1.004 and MOD11A1.005. 

 

 
Figure 27: MODIS Reprojection Tool (USGS, 2011) 

 

After the files were converted from hdf to geotiff format using the MODIS Reprojection 

Tool, the raster files were then loaded into ArcGIS, using the Sinusoidal projection. Because the 

files were in geotiff form, they loaded easily into ArcGIS as raster layers. However, although 

version MOD11A2 data were used, there were still large areas where there were missing raster 

cell values (the surface temperature for those cells was zero in the attribute table). This posed a 
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problem during calculations. To remedy this problem, a simple code was written in Python in the 

Raster Calculator tool in ArcGIS, as shown in Figure 28: Raster Calculator with MODIS Null 

Cell Exclusion Formula. This code, when run in Raster Calculator on all 104 raster layers, 

created new raster layers where the empty cells were excluded. The layers were then added to the 

Table of Contents in ArcGIS, and would then be used during sensible and latent heat 

calculations. The processed and reprojected MODIS images can be found in: Figure 29: MODIS 

Land Surface Temperature (LST) and Emissivity, January, 2011 (10:30 am) through Figure 44: 

MODIS Land Surface Temperature (LST) and Emissivity, October, 2013 (10:30 pm). 
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Figure 28: Raster Calculator with MODIS Null Cell Exclusion Formula 
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Figure 29: MODIS Land Surface Temperature (LST) and Emissivity, January, 2011 (10:30 am) 
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Figure 30: MODIS Land Surface Temperature (LST) and Emissivity, January, 2011 (10:30 pm) 
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Figure 31: MODIS Land Surface Temperature (LST) and Emissivity, January, 2013 (10:30 am) 
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Figure 32: MODIS Land Surface Temperature (LST) and Emissivity, January, 2013 (10:30 pm) 
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Figure 33: MODIS Land Surface Temperature (LST) and Emissivity, April, 2011 (10:30 am) 
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Figure 34: MODIS Land Surface Temperature (LST) and Emissivity, April, 2011 (10:30 pm) 
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Figure 35: MODIS Land Surface Temperature (LST) and Emissivity, April, 2013 (10:30 am) 
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Figure 36: MODIS Land Surface Temperature (LST) and Emissivity, April, 2013 (10:30 pm) 
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Figure 37: MODIS Land Surface Temperature (LST) and Emissivity, July, 2011 (10:30 am) 
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Figure 38: MODIS Land Surface Temperature (LST) and Emissivity, July, 2011 (10:30 pm) 
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Figure 39: MODIS Land Surface Temperature (LST) and Emissivity, July, 2013 (10:30 am) 
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Figure 40: MODIS Land Surface Temperature (LST) and Emissivity, July, 2013 (10:30 pm) 
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Figure 41: MODIS Land Surface Temperature (LST) and Emissivity, October, 2011 (10:30 am) 
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Figure 42: MODIS Land Surface Temperature (LST) and Emissivity, October, 2011 (10:30 pm) 
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Figure 43: MODIS Land Surface Temperature (LST) and Emissivity, October, 2013 (10:30 am) 
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Figure 44: MODIS Land Surface Temperature (LST) and Emissivity, October, 2013 (10:30 pm) 
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6.3 Weather Station Variables 

 

6.3.1 Obtaining Data from NOAA’s NCDC Weather Stations 

In order to calculate sensible heat for the conterminous U.S. using the methods outlined 

in Ma et al (2010), several weather variables were needed: air temperature (drybulb), wetbulb 

temperature, dewpoint temperature (all in degrees Celsius), relative humidity, and air pressure. 

Initially, using the state of Arizona as a trial area, weather data were obtained from Weather 

Underground (Wunderground.com, 2014) for the first days of the month for  January, April, 

July, and October, of 2011 and 2013, and the data were then applied to physiographic areas, 

obtained from Ameriflux (2002), and loaded into ArcGIS. However, this created unrealistic cut-

offs along the physiographic regions’ boundary lines. It was then decided that data needed to be 

obtained from NOAA’s National Climate Data Center’s weather stations, and these data would 

be used to estimate the aforementioned weather variables for the conterminous U.S. 

NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS), as 

part of NCDC, manages current and historical weather data for the entire U.S. that can easily be 

downloaded from the Website. For the purpose of this study, published climatological data were 

accessed for each state. Using the Website, each state was selected from a dropdown menu, for 

each state there were, on average, 12 different station locations to choose from in the dropdown 

menu. After choosing a station location, the appropriate month and year were then selected 

(January, April, July, and October, for 2011 and 2013). However, many stations did not have 

data for the years 2011 and 2013, so on average, each state only had about four station locations 

that had the necessary data. After selecting a station location with data for 2011 and 2013 from 

the dropdown menu, a link was provided which contained a tabular  file to be downloaded. 



85 

 

After manually downloading all of the files for all 216 weather stations that had weather 

data for 2011 and 2013, the necessary weather variable data needed to be obtained. The files 

contained the necessary weather variable data at different times throughout the day for each day 

in the month. For the purpose of this study, only weather variable data at approximately 10:30 

am and 10:30 pm were obtained (this varied depending on data availability). For each month, the 

first day of the month was considered, at approximately 10:30 am and 10:30 pm, and data were 

manually obtained from the files and entered into an Excel spreadsheet. Eight spreadsheets were 

created for four months, for both years, and included data for all 216 weather stations at 10:30 

am and 10:30 pm, with data in degrees Fahrenheit, which simply needed to be converted to 

degrees Celsius.  

After the Excel files were completed, a point layer needed to be created in ArcGIS. This 

was done by using the latitude and longitude of each weather station location, which was 

manually entered into the Excel spreadsheets, and the latitude and longitude were then geocoded 

in the GIS. Eight point layers were created in the GIS using the eight Excel spreadsheets, as 

shown in Figure 45:  Locations of 216 NCDC Weather Stations. 
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6.4.2 Weather Station Variable Data in ArcGIS 

 

 
Figure 45:  Locations of 216 NCDC Weather Stations 

 

 

 

After the point layers were created using the spreadsheets with the data obtained from 

NCDC, the data associated with each of the 216 points needed to be used to estimate values for 

the entire U.S. This was done simply by using the Kriging function in ArcToolbox in ArcGIS. 

Before performing the interpolation, the weather station point layers needed to be reprojected to 

the Sinusoidal projection so that the layers were in-line with the projection used in the MODIS 

satellite imagery representing surface temperature values, and the state boundary layer 

representing the boundaries for all 48 conterminous states (obtained from USGS).  

After the point layers were reprojected, the Kriging method of interpolation could then be 

performed. To do this, the weather station point layer was selected, along with the particular 

weather station variable from the attribute table (to represent the z value). The cell size was 

specified to match the resolution of the MODIS satellite imagery (926.6254331), and under the 
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“environments” tab, the processing extent (which was the state boundary layer) was then selected 

to limit the processing area. This was done for all five variables (air temperature, wetbulb 

temperature, dewpoint temperature, relative humidity, and station pressure), for both 2011 and 

2013, for four months, both 10:30 am and 10:30 pm. After performing the Kriging method of 

interpolation, 80 raster layers were created that would then be used to calculate sensible and 

latent heat; four of which can be found in Figure 46: Air Temperature Interpolation though 

Figure 50: Relative Humidity Interpolation. 



88 

 

 

 

Figure 46: Air Temperature Interpolation 
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Figure 47: Dewpoint Temperature Interpolation 
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Figure 48: Wetbulb Temperature Interpolation 
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Figure 49: Weather Station Pressure Interpolation 
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Figure 50: Relative Humidity Interpolation 
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6.4 Calculation of Sensible and Latent Heat Flux 

 

Due to the fact that concentrated wind systems, like the SoV, rely on the existence of 

convection, which occurs naturally when solar-heated air at the ground level is warmer than the 

air directly above it, it was necessary to calculate sensible and latent heat to find potential 

locations for future systems. The methods used for calculating sensible and latent heat were 

obtained from two studies by Ma et al (2010 and 2013). Both studies used similar methods for 

calculating heat flux in the Tibetan Plateau. Both studies also incorporated the use of in-situ data 

and MODIS satellite imagery in order to calculate sensible and latent heat.  

For this study, as was the case in both Ma et al studies, it was necessary to calculate 

sensible and latent heat values over a heterogeneous landscape. The methods used in Ma et al 

(2010) were such that calculated sensible and latent heat values when using MODIS data along 

with surface layer data in areas with vast differences in landscape attributes were compared with 

sensible and latent heat values calculated from lower resolution MODIS and atmospheric 

boundary layer data in areas with similar landscape attributes to determine whether these 

methods resulted in values that were closer to those obtained in in-situ data. The formulas used 

to calculate sensible and latent heat using surface layer data and MODIS data in this study were 

obtained from Ma et al (2010). 

For this study, as was the case with Ma et al (2013), in-situ values for sensible and latent 

heat flux in a heterogeneous landscape were compared with MODIS satellite imagery data. The 

methods used in this study for obtaining and comparing temporal distributions in heat flux for a 

variety of landscapes were obtained from Ma et al (2013). As in this study, Ma et al (2013) used 

MODIS data from January, April, July, and October to represent the four seasons. Sensible and 

latent heat values were then calculated using a specified set of equations. These results were then 
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compared with results from using in-situ data to derive sensible heat values at morning and 

evening, which was also performed in this study. 

The methods used to calculate sensible heat were based off of methods used in Ma et al 

(2010), and required the use of the MODIS surface temperature data, and the weather station 

variable data in order to calculate sensible heat values at one kilometer resolution. It was 

determined that the calculations could be done solely using ArcGIS using the Raster Calculator 

tool. In order to perform the necessary calculations, the following variables as show in Table 5: 

Variables Needed for Sensible and Latent Heat Calculation, were needed:  
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Table 5: Variables Needed for Sensible and Latent Heat Calculation 

 
 

6.4.1 Gamma Calculation 

The initial variable needed for the calculation was Gamma, or the Psychrometric 

constant, which was calculated using the following equation: 

𝛾 = 0.00066(1 + 0.00115𝑇∗) 

Where T* represents wetbulb temperature in degrees Celsius, obtained from the weather station 

data. 

 

Variable Variable Meaning

α unit-less constant, with value of 1.28

air specific heat at constant pressure, approximately 1005 Jkg
-1

K
-1

 (Jia et al. 2003)

D drying power of air

Δ slope of the saturation vapor pressure deficit at the air temperature

vapor pressure in the surface layer nearby the surface

vapor pressure at the reference height

actual evapotranspiration

equilibrium evapotranspiration

: potential evapotranspiration

φ relative humidity

G soil heat flux

Psychrometric constant

H sensible heat flux

λ latent heat of vaporization

M d molar mass of dry air

M v molar mass of vapor

p actual air pressure

p d partial pressure of dry air

p sat saturation pressure of water vapor at air temperature

saturation pressure of water vapor at wet-bulb temperature

p v partial pressure of water vapor

air density

R universal gas constant, 8.31447 J/(mol∙K)

aerodynamic resistance for vapor transfer between the land surface and the reference height

aerodynamic resistance for heat transfer between the land surface and the reference height

R n net radiation flux

land surface temperature, in ℃ (from MODIS data)

air temperature at the reference height (dry bulb temperature), in ℃ (from weather station data)

wet-bulb temperature, in ℃ (from weather station data)

dewpoint temperature, in ℃ (from weather station data)
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6.4.2 Delta Calculation 

Delta, or the slope of the saturation vapor pressure deficit at air temperature, was 

calculated with the following formula: 

∆=
𝑑𝑝𝑠𝑎𝑡

𝑑𝑇𝑎
=

𝑑(6.11 × 10
(

7.5×𝑇𝑎
273.3+𝑇𝑎

)
)

𝑑𝑇𝑎

⁄ = 25032.575295 × 10
7.5𝑇𝑎

273.3+𝑇𝑎 ×
1

(273.3 + 𝑇𝑎)2
 

Where 𝑇𝑎 represents the air temperature at the reference height in degrees Celsius, which was 

obtained from the weather station data. 

 

6.4.3  𝐩𝐬𝐚𝐭
∗  and VPD Calculation 

The following two formulas were obtained from Principles of Environmental Physics, (J. 

L. Monteith & M. H. Unsworth. Edward Arnold, Sevenoaks. 2
nd

 edition, 1990): 

 

𝑝𝑠𝑎𝑡
∗ , or the saturation pressure of water vapor at wet-bulb temperature was calculated using the 

following formula: 

𝑝𝑠𝑎𝑡
∗ = 6.11 × 10

(
7.5×𝑇𝑎

273.3+𝑇𝑎
)
 

 

Where 𝑇𝑎, is air temperature, which was obtained from weather station data, and measured in 

degrees Celsius. The result was calculated in millibars and converted to kilopascals.  

 

VPD, or vapor pressure deficit, was calculated using the following formula: 

 

VPD = (1 – (φ /100))* 𝑝𝑠𝑎𝑡
∗ ) 

 

Where φ, or relative humidity, is obtained from weather station data, and 𝑝𝑠𝑎𝑡
∗  was calculated in 

the previous equation. The result is measured in millibars and converted to kilopascals.  
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6.4.4  𝐩𝐯 Calculation 

𝑝𝑣, or the partial pressure of water vapor, was calculated using the following formula: 

𝑝𝑣 = 6.11 × 10
(

7.5×𝑇𝑑
273.3+𝑇𝑑

)
 

Where 𝑇𝑑 represents the dewpoint temperature in degrees Celsius, which was obtained from 

weather station data, and the result was measured in millibars. 

 

6.4.5 𝐩𝐝 Calculation 

 𝑝𝑑, or the partial pressure of dry air, was calculated using the following formula: 

𝑝𝑑 = 𝑝 − 𝑝𝑣 

Where 𝑝 is actual pressure recorded at a measuring station, which was obtained from the station 

pressure interpolation layer, and 𝑝𝑣was calculated previously. 

 

6.4.6 𝛒 Calculation 

𝜌, or air density, was calculated using the following formula: 

 

𝜌 =
𝑝𝑑𝑀𝑑 + 𝑝𝑣𝑀𝑣

𝑅𝑇𝑎
 

𝑀𝑑 = 28.964 gm/mol 

𝑀𝑣 = 18.016 gm/mol 

𝑅 = 8.31447 J/mol*k 

Where 𝑝𝑑 and 𝑝𝑣 were calculated previously; 𝑇𝑎 is air temperature, in degrees Celsius, obtained 

from weather station data; the constant, 𝑀𝑑, is the molar mass of dry air, measured in grams per 

mole; the second constant, 𝑀𝑣, is the molar mass of vapor, measured in grams per mole; and the 

third constant, 𝑅, is the universal gas constant, which is measured in Joules per mole kilogram. 
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6.4.7 Sensible Heat Calculation 

Using the previous formulas, along with two additional variables, sensible heat was 

calculated using the following formula: 

𝐻 = 𝜌𝑐𝑝

𝑇0 − 𝑇𝑎

𝑟𝑎ℎ
 

𝑐𝑝 = 1005 Joules per kilogram Kelvin 

𝑟𝑎ℎ = 80 for a.m. / 200 for p.m. 

Where 𝜌, or air density, was calculated previously; the constant 𝑐𝑝 is the air specific heat at 

constant pressure; 𝑇0 is surface temperature, in degrees Celsius, obtained from MODIS; 𝑇𝑎 is air 

temperature, obtained from weather station data; and the constant 𝑟𝑎ℎ is the aerodynamic 

resistance for heat transfer between land and surface at the reference height, which varies 

depending on the time considered for the calculation (morning or night). The result is measured 

in watts per meter square. 

𝑟𝑎ℎ was determined by analysis of Ameriflux sites for differing land cover type classes, and 

represents how easily heat can leave a surface, with lower resistance resulting in heat leaving a 

surface faster. It is a function of atmospheric stability, wind speed, and surface roughness. It 

decreases with an increase in wind speed and an increase in surface roughness, and conversely, it 

increases with an increase in stability (Powell, 2003). 

The completed sensible heat models can be found in Figure 51: Sensible Heat Flux, January, 

2011 (10:30 am) through Figure 66: Sensible Heat Flux, October, 2013 (10:30 pm). 
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Figure 51: Sensible Heat Flux, January, 2011 (10:30 am) 
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Figure 52: Sensible Heat Flux, January, 2011 (10:30 pm) 
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Figure 53: Sensible Heat Flux, January, 2013 (10:30 am) 
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Figure 54: Sensible Heat Flux, January, 2013 (10:30 pm) 
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Figure 55: Sensible Heat Flux, April, 2011 (10:30 am) 
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Figure 56: Sensible Heat Flux, April, 2011 (10:30 pm) 
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Figure 57: Sensible Heat Flux, April, 2013 (10:30 am) 
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Figure 58: Sensible Heat Flux, April, 2013 (10:30 pm) 
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Figure 59: Sensible Heat Flux, July, 2011 (10:30 am) 
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Figure 60: Sensible Heat Flux, July, 2011 (10:30 pm) 
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Figure 61: Sensible Heat Flux, July, 2013 (10:30 am) 
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Figure 62: Sensible Heat Flux, July, 2013 (10:30 pm) 
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Figure 63: Sensible Heat Flux, October, 2011 (10:30 am) 
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Figure 64: Sensible Heat Flux, October, 2011 (10:30 pm) 
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Figure 65: Sensible Heat Flux, October, 2013 (10:30 am) 
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Figure 66: Sensible Heat Flux, October, 2013 (10:30 pm) 
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6.4.8 Latent Heat Calculation 

The methods for calculating latent heat were obtained from Bonan (2002). Using the 

results obtained from the previous calculations and the interpolation layers, latent heat was 

calculated using the following formula: 

 

𝜆𝐸 = (
−𝜌𝐶𝑝

𝛾 
) (

𝑉𝑃𝐷

 𝑟𝑎ℎ
) 

 

Where 𝜌, 𝐶𝑝, 𝑉𝑃𝐷, 𝑟𝑎ℎ, and  𝛾 were all calculated previously. The results are measured in watts 

per meter square.  

 

The raster calculator tool in ArcToolbox was used to perform the latent heat calculations 

based on the ASCE Standardized Reference Evapotranspiration Equations (Allen, 2005) for 

saturated vapor pressure, actual vapor pressure, and the vapor pressure deficit, and using the 

weather station variable interpolation layers:   

 

6.4.9 Saturation Vapor Pressure 

𝑒𝑠 = 0.6108 × e
(

17.27×𝑇𝑎
237.3+𝑇𝑎

)
 

 

𝑇𝑎 represents air temperature, which was obtained from the interpolation layer. 

6.4.10 Actual Vapor Pressure 

 

𝑒𝑎 =  (
𝜑

 100
) × 𝑒𝑠 

 



116 

 

Where 𝜑 represents relative humidity, which was obtained from the interpolation layer, and 𝑒𝑠 

represents saturation vapor pressure, which was calculated in the previous equation. 

 

6.4.11 Saturation and Actual Vapor Pressure Deficit 

 

PD =  𝑒𝑎 − 𝑒𝑠 

Where the pressure deficit is the difference between the actual vapor pressure and the saturation 

vapor pressure. 

6.5 Raster Calculator 

Each variable, excluding constants, was calculated using the Raster Calculator tool in 

ArcGIS, as shown in Figure 67: Raster Calculator Tool in ArcGIS. The formula was entered into 

Raster Calculator, and a raster layer was created at the resolution of one kilometer. Each time 

that a new raster layer was created to represent a variable, the raster layer was referenced in 

Raster Calculator to perform the calculation and create a new raster layer. The variables that 

were constant were simply entered numerically into Raster Calculator, rather than referencing a 

raster layer.  
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Figure 67: Raster Calculator Tool in ArcGIS 
 

6.6 Contour Elevation Files 

A digital representation of variations in elevation was needed for the purpose of 

examining the landscape in areas that might be suitable for installation of SoV facilities. After 

contacting USGS and performing a search for a digital elevation model (DEM), it was 

determined that one needed to be created. After contacting USGS, and learning that contour 

elevation files were available for the 48 conterminous states, it was determined that the files 

simply needed to be downloaded and then loaded into ArcGIS.  
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 USGS’s National Map Viewer contains data of various themes related to landscape 

attributes (i.e. contours, boundaries, orthoimagery, and transportation, among others). In the 

National Map Viewer a state can be selected and the user can simply chose the themes that need 

to be downloaded. For the purpose of this study, only the contour elevation files were 

downloaded for each state, and these files were constructed using the 1/3 arc-second National 

Elevation Dataset (NED) from USGS at 30 meters square resolution. 

 Downloading the files for each state was performed manually. Each state has an average 

of 20 sets of files to be downloaded (for metropolitan and micropolitan areas). For each state, all 

files that were in the format suitable for ArcGIS 10.1 were selected to be downloaded. These 

files were in geodatabase format and there were approximately 2,000 files to be downloaded (at a 

total of approximately 95 GBs). 

6.6.1 Creation of Digital Elevation Model 

After all of the contour elevation files were downloaded from USGS’s National Map 

Viewer, the files needed to be loaded into an ArcMap document. This task absolutely could not 

be attempted to be done manually. A Python script needed to be written to load all of the files 

into ArcGIS as layers. Because the files were downloaded as geodatabases, the structure of the 

data, and the means by which the data could be accessed, was tedious. Each state, with its 

varying number of files, was located in a folder. Inside each folder was a folder for each 

geodatabase and in many of those folders was another folder which contained all of the 

necessary files to create the contour elevation feature class. Thus, the way in which the data were 

arranged, made it complicated to access each file, and the fact that the files were feature classes 

instead of layers, also made it complicated. 
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A Python script was then written in order to access the files from within the layers of 

folders. The script, which was written in ArcPy, which is a variation of Python used specifically 

in ESRI software, was written in IDLE and run in the Python window in ArcGIS. The script was 

constructed in a way such that each individual file would be accessed, converted from a feature 

class to a feature layer, and then loaded into the Table of Contents in the ArcMap document. The 

script also had to handle the problem that each individual file, for each location, in each state had 

the same name: “elevation contour,” which posed a problem because the script would initially 

only run once in order to avoid repeatedly loading files with the same name. A simple means by 

which to remedy this problem was to add a counter to the file name, which would increment each 

time a file was added, thus giving each file a unique name, as shown in Figure 68: ArcPy 

Window in ArcGIS with DEM Script. 

Due to the fact that the amount of data being loaded into the ArcMap document was so 

large, the software had difficulty running the script through all 2,000 folders. The script would 

run for nearly 12 hours, and then crash. To remedy this problem, the script was altered slightly so 

that only one state could be loaded at a time. This solved the problem of the program crashing, 

but it also made it more tedious because now the script had to be run 48 separate times instead of 

only once, and each state had to be loaded into a separate dataframe in the ArcMap document, 

which then had to be copied and pasted into one dataframe in order for the entire U.S. to render 

at once after all of the files had been loaded. 
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Figure 68: ArcPy Window in ArcGIS with DEM Script 

 

 

After all of the 2,000 files were loaded into the Table of Contents in the ArcMap 

document, it was necessary to apply a uniform symbology to all of the layers so that a range of 

colors could be used to show variations in elevation that would be the same across the entire U.S. 

Again, because there were 2,000 files, a script was absolutely necessary. An ArcPy script was 

written, using the file for the Death Valley area of Nevada as the template, because there is a 

wide range in elevations. The ArcPy script used the range and intervals of elevation and the color 

scheme used in the Death Valley, Nevada file and applied it to all of the feature layers in the 

Table of Contents, which created a unified theme across the entire U.S., as shown in Figure 69: 

ArcPy Window in ArcGIS with Symbology Script. 
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Figure 69: ArcPy Window in ArcGIS with Symbology Script 

 

 

Upon completion, it was discovered that several areas, including half of South Dakota, a 

portion of central North Carolina, an area around Eureka, California, and most of Nye County, 

Nevada failed to render, as shown in the completed image in Figure 70: Completed Digital 

Elevation Model in ArcGIS. USGS was contacted and the files for South Dakota and North 

Carolina were re-downloaded and successfully rendered. However, the area around Eureka and 

most of Nye County never rendered. 
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Figure 70: Completed Digital Elevation Model in ArcGIS 
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6.7 Creation of the Slope Model 

 

A slope map was necessary for evaluating potential areas for installation of SoVs. 

Because a slope map for the entire U.S. was not readily available, one needed to be created using 

the contour elevation files used in the creation of the Digital Elevation Model. As with the DEM, 

creating the slope map would require the loading and manipulation of 2,000 files, therefore, 

Python scripting was absolutely necessary. 

6.7.1 ArcPy Scripts Involved in the Creation of the Slope Model 

 

Initially, a copy of the DEM was needed to form the basis of the slope map. An ArcPy 

script was then written to convert all of the feature layers from the DEM to raster layers, as 

shown in Figure 71: ArcPy Window in ArcGIS with Feature to Raster Conversion Script. The 

ArcPy script was to be run on all 2,000 files. The same problem that was encountered during the 

creation of the DEM, in which ArcGIS had difficulty handling the data load, occurred again but 

was remedied by running the script on each state, individually, by placing each state in a separate 

dataframe, and changing the dataframe for each run, depending on which state was being 

considered. Again, this made the task much more tedious, but it ensured that the ArcPy 

rasterization script would run successfully each time.  
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Figure 71: ArcPy Window in ArcGIS with Feature to Raster Conversion Script 
 

After the 2,000 contour elevation feature layers were converted to raster layers, the raster 

layers needed to be reprojected. Initially, the DEM was in an unspecified projection, with 

measurements in decimal degrees. When slope was initially calculated, the units were in the 

millions. It was necessary that the raster files be reprojected. A projection using U.S. feet was 

needed, therefore, the State Plane projection was chosen. For each state, which was in a separate 

dataframe in the Table of Contents, the appropriate State Plane projection was chosen manually, 

and applied to one layer using the project raster tool in ArcToolbox. The layer was then exported 

to a tiff, and loaded into the Table of Contents. An ArcPy script was then written to reproject the 

remaining raster files within the dataframe to the State Plane projection specified by the example 

raster layer. It was also necessary to exclude raster cells with null values, so a line was written to 

account for the cells without data, by setting it to “minimum,” the lowest value within the dataset 

was applied to the cell. A bilinear interpolation was performed to estimate the values. Bilinear 
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was chosen instead of the default nearest neighbor or cubic interpolation because bilinear is 

recommended for contour interval interpolation, as shown in Figure 72: ArcPy Window in 

ArcGIS with Raster Reprojection Script. 

 

 

 

 

Figure 72: ArcPy Window in ArcGIS with Raster Reprojection Script 
 

 

After all of the raster layers had been reprojected to the State Plane projection based on 

the state for each dataframe, an ArcPy script was written in order to apply the slope function 

from ArcToolbox to all 2,000 raster layers in the Table of Contents in the ArcMap document, as 

shown in Figure 73: ArcPy Window in ArcGIS with Script that Applies the Slope Function. 

Again, this script was run on each state, individually, to avoid the occurrence of the script failing 
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due to the size of the data load. The slope function calculated the degree of slope, rather than the 

percent rise. Because the units of the State Plane projection were in U.S. feet, which were the 

same units used in the contour interval files, a z factor was not necessary to convert the units 

from meters to feet. 

 

 

Figure 73: ArcPy Window in ArcGIS with Script that Applies the Slope Function 
 

 

After the ArcPy slope script was run on all 2,000 files, with each state in a separate 

dataframe, a third ArcPy script was needed to in order to apply a unified symbology to all of the 

raster slope layers. Using the original ArcPy symbology script written for the DEM, changes 

were made to apply the symbology of the Death Valley, Nevada file (as with the DEM ArcPy 

symbology script) and apply it to all raster layers in the Table of Contents in order to create a 
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unified color scheme to show variations in slope across the entire U.S., as shown in Figure 74: 

ArcPy Window in ArcGIS with Script that Applies a Unified Symbology and Figure 75: 

Completed Slope Model in ArcGIS. 

 

Figure 74: ArcPy Window in ArcGIS with Script that Applies a Unified Symbology 
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Figure 75: Completed Slope Model in ArcGIS 
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6.8 Threshold Model 

 Estimated potential power output for the conterminous U.S. was performed using the 

sensible heat flux raster layers created in ArcGIS, in-conjunction with in-situ data of temporal 

distributions at varying physiographic regions across the U.S. The statistical computing and 

graphics software, R, was used to calculate power output based on the matrices in each sensible 

heat flux raster layer created in the GIS. Raster layers were created in R, and imported back into 

the GIS. As with the resolution of the sensible heat flux raster layers, the results from the model 

are in one kilometer resolution. Currently, the initial model used to estimate power output 

potential is lacking latent heat flux, and relies on sensible heat and temporal distributions of 

sensible heat across varying landscapes across the U.S. Later models will incorporate latent heat 

flux. 

6.8.1 Representative Distributions  

 In-situ data were necessary to compare with heat flux values calculated in the GIS. 

Obviously, in-situ heat flux values at the resolution used in the GIS (one kilometer), were not 

available for the conterminous U.S., so locations were chosen to represent varying physiographic 

region types, and temporal distributions were obtained from these locations, as shown in Figure 

76: Physiographic Region Types Across U.S. with Ameriflux Sites. 

 The conterminous U.S. is divided into approximately 500 physiographic areas, which are 

divided into eight regions. 14 Ameriflux sites were chosen to represent these varying types of 

physiographic regions, as shown in Figure 77: Representative Distributions from Ameriflux 

Sites. Ameriflux, which is managed by the DOE and Lawrence Berkeley National Lab, maintains 

monitoring sites across North and South America. Weather data, CO2, and heat flux, among 

other data, are measured at these different locations. Data is available on their Website, in the 
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form of text and Excel files. Olga Kemenova, at the Georgia Tech Research Institute, was 

responsible for obtaining and analyzing the Ameriflux data used in this study. 
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Figure 76: Physiographic Region Types Across U.S. with Ameriflux Sites 
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Figure 77: Representative Distributions from Ameriflux Sites 
 

6.8.2 Analysis of In-Situ Data 

 Olga Kemenova was responsible for performing various statistical analyses on the 

Ameriflux data. She used the statistical software JMP. After obtaining the text and Excel files 

from Ameriflux, she cleaned the data by recoding some of the variables. The data obtained from 

Ameriflux consisted of heat flux, both sensible and latent, for the 14 sites, measured hourly, 

every day, for several years (typically from 2006 to 2012). Missing data was an issue; ANOVA 

tests were performed across the datasets for each site to determine statistical significance. For 

each site, the dataset with the least amount of data was chosen to represent the site. After the 

ANOVA was performed, data from previous years were used as substitutes for the missing data.   
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 After handling the problem of missing data, Olga created probability distributions of the 

heat flux data for each site, as shown in Figure 78: Bimodal Distribution of Heat Flux at Santa 

Rita Creosote Site, and applied an outlier box plot to each distribution. She obtained mean values 

for 10:30 am and 10:30 pm. She then fit the distributions with a mixture of three normal 

distributions because many of the distributions had three peaks in the data. She then obtained a 

mean µ, standard deviation σ, and percentage of the overall distribution which fell into each of 

the three distributions π, for each of the three normal distributions for each site (some sites, such 

as the Santa Rita Creosote site, were bimodal, and only two normal distributions were needed). 

After these parameters were obtained, she performed regression analyses to determine how well 

the parameters for each of the distributions could be used to predict the overall means for the 

distributions at 10:30 am and 10:30 pm, as shown in Figure 79: Measured vs. Predicted (Santa 

Rita Creosote site) 
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Figure 78: Bimodal Distribution of Heat Flux at Santa Rita Creosote Site 
 

 

 

 

Figure 79: Measured vs. Predicted (Santa Rita Creosote site) 
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Figure 80: R Code Used in Estimation of Power Output 

 

6.8.3 Threshold Model Steps 

 Using the sensible heat layers created previously in ArcGIS, raster layers were created to 

represent the 14 physiographic regions. Using the physiographic layers as boundaries, the 

sensible heat layers for AM and PM were “clipped” using the raster clip function in ArcToolbox. 

After layers were created for all 14 physiographic regions, for AM and PM, for all four seasons, 

for both 2011 and 2013, these 224 files were exported to tiff files, which would be necessary to 

run the R script.  

 Using an Excel spreadsheet (Appendix) created by Olga Kemenova, which contained the 

regression coefficients for all 14 Ameriflux sites’ sensible heat distributions, and the 224 sensible 
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heat physiographic regions’ geotiff files, power output was estimated using R. The variables 

names were assigned based on the physiographic region and the season. The script used the cell 

matrix in the AM sensible heat layer to perform the necessary calculations using the normal 

distributions created by the values found in the Excel spreadsheet. An arbitrary alpha value of 50 

was used based on the assumption that the SoV would not be able to “startup” until sensible heat 

measurements were at least 50 w/m2. Using the integrate function in R, the power output 

estimation was generated by simply integrating below the curve of the normally-distributed 

sensible values provided by the Ameriflux sites in the Excel spreadsheet. A beta value was 

applied using the completed power output raster layers in Raster Calculator. The beta value of 

24.73 was obtained from results of the prototype. This beta value represents the amount of 

sensible heat that the SoV unit will convert to vortex energy. The assumption is that, at 50 watts 

per meter square sensible heat, the relationship between sensible heat and vortex energy is linear. 

Refer to Figure 81: Threshold Model Assumptions. 
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Figure 81: Threshold Model Assumptions 

 

The R script, shown in Figure 80: R Code Used in Estimation of Power Output, then 

generated a geotiff raster file, shown in Figure 82: Power Output Estimation for California and 

Baja California, using the dimensions previously specified in the script based on the dimensions 

of the AM sensible heat raster layer. The images generated using the R script representing each 

month for 2011 and 2013 can be found in the Appendix. The completed model representing 

annual power output for 2011 and 2013 are shown in Figure 83: 2011 Annual Power Output 

(from Threshold Model) and Figure 84: 2013 Annual Power Output (from Threshold 

Model). 
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Figure 82: Power Output Estimation for California and Baja California 
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Figure 83: 2011 Annual Power Output (from Threshold Model) 
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Figure 84: 2013 Annual Power Output (from Threshold Model) 



141 

 

 

6.9 Linear Model 

 

The final model incorporates the sensible and latent heat calculations, and the slope 

model to calculate potential energy generated by the SoV. For the purposes of this research, the 

completed model will be used to calculate vortex energy for both the Mesa, Arizona (location of 

SoV prototype) and Zion National Park, Utah (location of case study) areas.  

6.9.1 Final Model Assumptions 

6.9.1.1. Vortex Power Assumption 

 

 Based on the results from the six-meter diameter SoV prototype located in Mesa, 

Arizona, it is assumed that: 

 

𝑉𝑜𝑟𝑡𝑒𝑥 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑉𝐸) = (𝐻) x (𝐶𝑎) x (𝐶𝐸) 

 

Where SoV power is a function of sensible heat 𝐻, the footprint of the SoV where sensible heat 

is obtained and utilized by the unit (the collection area, 𝐶𝑎, and measure of conversion efficiency 

𝐶𝐸, by which the SoV converts sensible heat to power.  

 

 Using the six-meter diameter prototype located in Mesa, Arizona, it was found that: 

 

 (𝑉𝐸)6  = (1,500 kw) = (237.4 w/m2) × (𝐶𝑎) × (𝐶𝐸) =  

(𝐶𝑎) x (𝐶𝐸) = (
1500 

 237.4
) = 6.32 

 

The collection area (𝐶𝑎) represents the area around the SoV unit in which energy will be drawn 

into the unit. Both collection area (𝐶𝑎) and the conversion efficiency factor (𝐶𝐸) are unknown, 

but the assumption from this model is that the product of the two is equal to 6.32. 
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Thus, for the final prototype model, which had a diameter of 10 meters, it is assumed that r
4
, 

such that: 

(𝑉𝐸)10 = 6.32 × (
10 

 6
)4

 × 𝐻 = 6.32 × 7.71 × 𝐻  

= 48.75 × 𝐻 

 

Only sensible heat is considered in this model, due to the prototype being located in a desert, 

which lacks latent heat. Slope was also not considered for this model due to the flat location. 

6.9.1.2 Daytime Electrical Power Produced by SoV 

 

Using the value obtained from the Vortex Power equation at a 10-meter diameter, it is then 

assumed that the daytime production power for the SoV (at approximately 10:30 AM) can be 

found using: 

Daytime Electrical Power 𝑉𝐸𝐷= (𝑉𝐸)10 × (𝐺𝐸) 

 

Where the generation efficiency factor, 𝐺𝐸 , is either .3, .4, or .5, representing a 30 to 50 percent 

efficiency in the unit converting sensible heat to electrical power. 

6.9.1.3 Average Daytime Electrical Power Produced by SoV 

 

The average daytime electrical power produced (𝑉𝐸𝐴𝐷) by the unit can then be 

determined by multiplying the daytime electrical power produced by a conversion factor 

obtained from the Ameriflux data. The conversion factor is based on the ratio of the measured 

sensible heat flux at the Ameriflux site located in the same physiographic region as the location 

used in the model, and the sensible heat flux obtained from the GIS results. For Mesa, Arizona, 

the Santa Rita Creosote site was used, resulting in: 

 

(𝑉𝐸𝐴𝐷) = (𝑅𝐹) × (𝑉𝐸)10  ×  (𝐺𝐸) 

 

For the Santa Rita Creosote site:  
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(𝑅𝐹) = (
154 

148
) 

 

6.9.1.4 Average Monthly Daytime Electrical Power Produced by SoV 

 

Lastly, to find average monthly daytime electrical power production, 𝑉𝐸𝐴𝑀, the average 

daytime electrical power is used to calculate the following:  

 

𝑉𝐸𝐴𝑀 = (
𝑉𝐸𝐴𝐷)  ×12 ×30

1000
)   

 

The result is measured in kilowatt-hours. 

 

 

 

6.9.1.5 Average Daytime Electrical Power Produced by SoV for All Locations 

 

For all other locations where latent heat and slope are factors, the final model is: 

 

 (𝑉𝐸) = (𝑅𝐹 ) × 48.75 × (𝐻 + .1𝜆𝐸)× (1 + (2 × ((
δ 

100
))) × (𝐺𝐸) 

 

Where sensible heat 𝐻  and latent heat 𝜆𝐸 and slope δ were calculated in the GIS, and the result 

is measured in kilowatt-hours. 

6.9.1.6 Relationship between Sensible and Latent Heat and Slope 

 

 It was assumed that both latent heat and slope extend operational time of the SoV. Latent 

heat, which is assumed to be approximately 10 percent as effective as sensible heat, was 

considered in the model, as the sum of sensible heat and 10 percent of the latent heat:  

 

(𝐻 +  .1𝜆𝐸) 
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 It was also assumed that two percent of each percent of slope will extend the operational 

time of the SoV. As mentioned previously, it was assumed that, although an SoV facility will 

need to be installed on level ground, upward or downward swept winds from sloping ground 

adjacent to the facility may influence the start-up time.   

 

(1 + (2 × ((
δ 

100
))) 

6.9.1.7 Potential Withdrawal of Power  

  

 Final vortex energy is assumed to fall within a range of 30 to 50 percent of the energy 

calculated by the model. This estimate is based on the UTRC estimate of potential withdrawal of 

power. It is assumed that 30 to 50 percent of the energy will be converted to electricity by the 

SoV unit, with 30 being the lower estimate, 40 being an intermediate estimate, and 50 being the 

upper estimate. The final values were obtained using the raster calculator tool. 

6.9.1.8 Mesa, Arizona Calculation Methods 

 

 As with previous calculations, the raster calculator tool in ArcGIS was used to perform 

the calculations for the final model. The sensible and latent heat layers (AM values only), the 

power output estimation layer and table containing the average, monthly sensible heat values 

from Ameriflux, and the slope model were needed to perform the calculations. A Mesa, Arizona 

boundary polygon layer was obtained from the City of Mesa’s Website, and was used to perform 

the “extract by mask” function in ArcToolbox to clip the area within the Mesa boundary from the 

aforementioned raster layers. The completed July 2013 monthly average daytime vortex energy 

estimations can be found in Figure 85: Mesa, Arizona Summer 2013 Vortex Energy (Low 

Estimate) though Figure 87: Mesa, Arizona Summer 2013 Vortex Energy (High Estimate). 
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Figure 85: Mesa, Arizona Summer 2013 Vortex Energy (Low Estimate) 
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Figure 86: Mesa, Arizona Summer 2013 Vortex Energy (Medium Estimate) 
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Figure 87: Mesa, Arizona Summer 2013 Vortex Energy (High Estimate) 
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CHAPTER 7: THE NATIONAL PARKS 

 

7.1 Locating National Parks Using NREL’s Wind and Solar Models 

   

7.1.1 Parks Suitable for Wind Facilities 

  

 NREL’s wind resource data, which consists of vectors, or polygons, displays varying 

wind classes for the lower 48 States, was loaded into ArcGIS. An ArcPy script was written, as 

shown in Figure 88: ArcPy Script for Selecting Areas with Assigned Wind Classes Greater than, 

or Equal to Three, to perform the task of selecting areas from the model that have an assigned 

wind class of three or higher. The value of three was chosen based on NREL’s specifications for 

locations suitable for large-scale wind facilities. Although the documentation states that areas 

with assigned wind classes of two can accommodate small-scale wind turbines (NREL, 2015), 

these locations were excluded due to the assumption that the National parks’ transportation 

energy needs, and overall energy needs, would require larger facilities than a small-scale turbine. 
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Figure 88: ArcPy Script for Selecting Areas with Assigned Wind Classes Greater than, or Equal 

to Three 

 

 After the areas with assigned wind classes of three or higher were selected using the 

ArcPy script, it was necessary to write an additional ArcPy script that would then select the 

National parks that are located within these areas, as shown in Figure 89: ArcPy Script for 

Selecting National Parks within Areas with Wind Classes Greater than, or Equal to Three. 
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Figure 89: ArcPy Script for Selecting National Parks within Areas with Wind Classes Greater 

than, or Equal to Three 

  

 The results from the model included the following 12 National parks:  

 

Table 6: Suitable National Parks for Wind Facilities 
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As shown in Table 6: Suitable National Parks for Wind Facilities and Figure 90: 

National Parks in Areas with Assigned Wind Class of 3 to 7 (NREL, 2015), 12 parks were chosen 

using the model. The only National park selected in the model that currently has existing wind 

facilities is Channel Islands National Park in California. Mount Rainier National Park in 

Washington does not have wind facilities that provide power to the park, although wind farms 

are currently in-operation adjacent to park property, and are managed privately. Further 

examination will be required to determine the suitability of the remaining 10 National parks 

selected in the model. 
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Figure 90: National Parks in Areas with Assigned Wind Class of 3 to 7 (NREL, 2015) 
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7.1.2 Parks Suitable for Solar PV Facilities 

  Similar methods were used to locate National parks that are located in areas suitable for 

solar pv facilities. NREL’s solar resource model was loaded into ArcGIS. The solar resource 

data, which also consists of vectors, or polygons, displays the average, annual, and monthly, 

energy potential for solar pv facilities in kilowatts per square meter day for the lower 48 States. 

An ArcPy script was written to perform the task of selecting areas from the model that have solar 

pv energy potential of five kw/m2d or higher, as shown in Figure 91: ArcPy Script for Selecting 

Areas with Kilowatts per Square Meter per Day (kw/m2d) Greater than, or Equal to Five. The 

value of five was chosen arbitrarily.  

 

 
Figure 91: ArcPy Script for Selecting Areas with Kilowatts per Square Meter per Day (kw/m2d) 

Greater than, or Equal to Five 
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After the areas with solar pv energy potential of five or greater were selected using the 

ArcPy script, it was necessary to write an additional ArcPy script that would then select the 

National parks that are located within these areas, as shown in Figure 92: ArcPy Script for 

Selecting National Parks within Areas with Kilowatts per Square Meter per Day (kw/m2d) 

Greater than, or Equal to Five. 

 
Figure 92: ArcPy Script for Selecting National Parks within Areas with Kilowatts per Square 

Meter per Day (kw/m2d) Greater than, or Equal to Five 
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The results from the model included the following 30 National parks: 

 

Table 7: Suitable National Parks for Solar PV Facilities 

 
 

 

 As shown in Table 7: Suitable National Parks for Solar PV Facilities and Figure 93: 

National Parks in Areas with kw/m2d >= 5, 32 parks were chosen using the model. Several of 

the National Parks selected in the model currently have solar pv facilities on park property, 

including: Canyonlands, Death Valley, Yosemite, and Zion. Although several of the National 

parks were excluded from this list, this is simply because the value of five was chosen arbitrarily. 

It is possible that several of the other National parks not selected in the model may be suitable 
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for small-scale solar pv facilities. An example of this is the Great Smoky Mountains National 

Park, which has small-scale solar pv facilities, but was excluded from the model results. 
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Figure 93: National Parks in Areas with kw/m2d >= 5 
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CHAPTER 8: ANALYSIS, RESULTS, AND DISCUSSION OF CASE 

STUDY IN ZION NATIONAL PARK 

 

 Zion National Park near Springdale, Utah, as shown in Figure 94: Zion National Park 

Boundary (Google Earth), was chosen for the case study in this research due to its remote 

location and its assumed suitability for installation of SoV facilities. The following section 

contains a brief overview of Zion National Park, and its current park transportation. The results 

from both the linear model and the threshold model will then be provided. Lastly, suggestions 

will be provided regarding suitable locations for SoV units and ways to incorporate SoV usage 

into the Park’s transportation system. This case study is to be used as an example of how both 

the linear and threshold models can be applied to varying locations to determine site suitability 

for SoV installation. Installation of SoV units in the specified location in the case study, or 

another location in Zion also depends on other considerations other than power output potential. 

The following table shown in Table 8: Additional SoV Site Selection Criteria contains additional 

considerations for park managers. SoV power output potential should not be the only 

consideration, and park management may find that small scale wind or additional solar pv 

systems may be a more suitable solution for providing renewable power to Zion. 

 

Table 8: Additional SoV Site Selection Criteria 
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8.1 Overview of Zion National Park 

 

 
Figure 94: Zion National Park Boundary (Google Earth) 

 

 Frank Austin, the general manager at Parks Transportation Incorporated, provided 

information regarding the park shuttle fleet size for Zion. According to Mr. Austin, the current 

fleet size consists of 39 Eldorado National propane-powered buses. Each bus is 30 feet long, and 

seats 31 passengers. The park also has a fleet of 23 Eldorado National passenger trailers that are 

30 feet long and seat 37 passengers. These trailers are run in-tandem with the buses, similar to an 

articulated bus. Also according to Mr. Austin, although the tandem bus and trailers seat 68 

passengers total, typically there are 100 passengers on the combined units due to standing 

passengers, and there are often 45 to 50 passengers on the buses alone, also due to standing 

passengers. 
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 The shuttles and trailers are typically housed in a parking lot, which also contains a 

garage, located adjacent to the Zion National Park Visitor Center, as shown in Figure 95: Zion 

Shuttle Parking and Garage (Google Earth). This parking lot, and the area located to the north of 

the shuttle garage and parking lot would likely be a suitable location for SoV units. The area 

north of the parking lot is approximately 22,000 square meters (approximately 5.4 acres), and 

would accommodate an array of approximately six SoVs, as shown in Figure 96: Area North of 

Shuttle Parking Considered for SoV Installation. This number is based on the assumption that, 

based on the size of the unit (with a ten-meter diameter vortex), and the size of the collection 

area, 320 units can fit within a square kilometer. These units could then provide power to 

charging stations located near the shuttle parking lot. Although initial capital costs would be 

high, it is suggested that part of Zion’s current fleet could then be converted to electric. Power 

from the SoVs could also be used to provide power to the garage facilities. 

 

 
 

Figure 95: Zion Shuttle Parking and Garage (Google Earth) 
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Figure 96: Area North of Shuttle Parking Considered for SoV Installation 

 

 A polygon of the area north of the shuttle parking lot was created in Google Earth. After 

the polygon was created, the measuring tool in Google Earth was used to measure the lengths, 

and the area was then calculated. The polygon was saved as a kml file and converted to a layer in 

ArcGIS using the conversion tool in ArcToolbox.  

8.2 Calculation of Vortex Energy Potential Using Models 

 The calculation of vortex energy using both the threshold model and the full linear model 

needed to be performed in order to determine if the area adjacent to the shuttle parking lot and 

garage would be suitable for installation of SoV units. The Zion park boundary was used to 

“clip” the necessary model layers to be used in the calculation, including the slope model, as 

shown in Figure 97: Zion National Park Slope Model. The output from the two models, 

including close-up images, can be found in Figure 98: Zion Monthly Average Daytime Vortex 
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Energy (Low Estimate – Linear Model) through Figure 109: Zion Shuttle Parking, Visitor 

Center, and Potential SoV Facility Locaiton (High Estimate – Threshold Model). 

 
 

Figure 97: Zion National Park Slope Model 
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8.3 Results from the Linear Model 

 

 
Figure 98: Zion Monthly Average Daytime Vortex Energy (Low Estimate – Linear Model) 
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Figure 99: Zion Monthly Average Daytime Vortex Energy (Medium Estimate– Linear Model) 
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Figure 100: Zion Monthly Average Daytime Vortex Energy (High Estimate– Linear Model) 
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Figure 101: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (Low 

Estimate – Linear Model) 
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Figure 102: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (Medium 

Estimate – Linear Model) 
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Figure 103: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (High 

Estimate – Linear Model) 

 

 Further analysis will be needed to determine the number and exact locations for SoV 

installation based on collection area. However, based on the results from the linear model, it 

appears that the area located to the north of the shuttle parking lot would be suitable for the 

installation of six SoV units. According to the model, the monthly average daytime power 

production range is between 1,000 and 2,000 kilowatt-hours, per 10-meter diameter unit. Thus, 

the monthly average daytime power production ranges from 6,000 to 12,000 kilowatt-hours for 

six units. 
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8.4 Results from the Threshold Model 

 

 
 

 

Figure 104: Zion Monthly Average Daytime Vortex Energy (Low Estimate – Threshold Model) 
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Figure 105: Zion Monthly Average Daytime Vortex Energy (Medium Estimate – Threshold 

Model) 
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Figure 106: Zion Monthly Average Daytime Vortex Energy (High Estimate – Threshold Model) 
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Figure 107: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (Low 

Estimate – Threshold Model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

 

 

 
Figure 108: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (Medium 

Estimate – Threshold Model) 
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Figure 109: Zion Shuttle Parking, Visitor Center, and Potential SoV Facility Locaiton (High 

Estimate – Threshold Model) 

 

 

 Although the results from the threshold model were lower than the estimated values from 

the linear model, the range of values for monthly average daytime power production for the area 

near the shuttle parking lot and area north of the parking lot are still between 600 to 1,000 

kilowatt-hours, per 10-meter diameter SoV unit. Thus, for six SoV units, the monthly average 

power production ranges from 3,600 to 6,000 kilowatt-hours.  
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8.5 Discussion 

 

 The estimated SoV average monthly power production for summer (July) for the 

approximately 22,000 square meters (approximately 5.4 acres) area near the Zion shuttle parking 

lot and garage ranges from 6,000 to 12,000 kilowatt-hours for the full linear model, and 3,600 to 

6,000 kilowatt-hours for the threshold model. The summer season (July) was considered for the 

case study because that is Zion’s peak season, and the shuttles are not run throughout the year 

when park visitation is not as high.  

 The estimated power needed to provide a full charge to a fully-electric shuttle 

comparable in size to the Eldorado National shuttles used by Zion is approximately 324 kilowatt-

hours (Hill, 2015). This full charge would allow a fully-electric bus, comparable in size to 

Zion’s, to cover the approximate 162 miles needed each day to cover the shuttle loop around the 

park. With a fleet of 39 shuttles, 12,636 kilowatt-hours of power would be needed each day to 

fully charge the batteries for all 39 shuttles. Based on the estimates from the full linear model 

and threshold model, the highest estimate for the monthly average would not be enough to cover 

fully charging the entire fleet. Based on the higher end of the estimates, there would be enough 

power to fully charge one fully-electric shuttle for the month (9,720 kilowatt-hours per 30 days), 

which likely would not be suitable. However, using the six SoV units to provide power to 

charging stations for electric golf carts and ranger vehicles, which require much less power to 

fully charge: approximately five kilowatt-hours (ziparoundcarts, 2015), may be an alternative. 
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CHAPTER 9: CONTRIBUTIONS, LIMITATIONS, AND FUTURE WORK 

 

9.1 Contributions 

 

A major goal of this study was to develop a concentrated wind resource model. This GIS 

model was used for resource evaluation, to determine off-grid locations where a concentrated 

wind system, like the SoV, could be used in an effort to reduce GHG emissions, specifically in 

the National Parks, although the application can also be used in other locations. The methods and 

results of this study will be useful in a variety of other applications related to GIS and spatial 

modeling, alternative energy distribution, natural resource evaluation, site selection based on 

weather or landscape dependency, increasing electric vehicle usage, and furthering green efforts, 

including, but not limited to, the National Parks. 

The GIS models created to represent heat flux, slope, and power output estimation using 

both the linear and threshold models, as well as the proposed methods used and scripts 

generated, can be used in other applications in engineering and planning, such as in land 

development and large-scale agricultural applications. The results from the GIS model, and the 

recommendations comparisons made for Zion National Park in the case study can be useful for 

planning purposes, and in future installation of green technologies in other National Parks and in 

other locations, such as in the conversion to all-electric fleets of vehicles at businesses in regions 

that are suitable for SoV facilities, or other concentrated wind energy production facility 

installation.  

 

9.2 Limitations 

 

 A major limitation of this study is obviously the lack of data from the SoV prototype. 

Further testing will be needed to improve the power output estimation models based on results 
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from future prototypes and simulation. Additional estimation models will likely be developed to 

further improve estimation of power production from the SoV. 

 Another limitation of the study is the lack of a more detailed evaluation of Zion National 

Park’s transportation. Although suggestions were provided and an approximation of the area 

suitable for SoV installation was also provided, a further, in-depth evaluation is needed. In the 

case of Zion National Park, a detailed cost comparison of the current transportation system and 

the conversion to electric shuttles is needed to provide Park officials with the information needed 

to make future decisions regarding the Park’s transportation needs. Capital costs involved in 

purchasing vehicles, converting current vehicles, installing charging stations, and installing SoV 

facilities, and cost comparisons of maintaining and operating electric vehicles versus the current 

propane-powered fleet, should all be considered in future research. Lastly, and most importantly 

to this research, environmental costs should be determined.  

 

9.3 Future Work 

 

 A goal of this research is to use the models developed to estimate SoV power production 

for the entire U.S. Although in this research, the models were only applied to small areas (Mesa, 

Arizona and Zion National Park, Utah), the models were developed to be applied to the 48 

conterminous U.S. Upon further testing of the SoV prototype, and further improvement of the 

linear and threshold models developed in this research, SoV power production can then be 

estimated for the entire U.S. 
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APPENDIX A 

 

RESULTS FROM THRESHOLD MODEL 

 

 The following eight images shown in Figure 110: January 2011: Average Monthly 

Daytime Power Output (using Threshold Model) through Figure 117: October 2013: Average 

Monthly Daytime Power Output (using Threshold Model), were produced using the threshold 

model. These images represent SoV power output for the 48 conterminous U.S. These values 

represent daytime averages, and are based off of the daytime (approximately 10:30 AM) sensible 

heat flux values generated in the GIS. 
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Figure 110: January 2011: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 111: January 2013: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 112: April 2011: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 113: April 2013: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 114: July 2011: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 115: July 2013: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 116: October 2011: Average Monthly Daytime Power Output (using Threshold Model) 
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Figure 117: October 2013: Average Monthly Daytime Power Output (using Threshold Model) 
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APPENDIX B 

 

RESULTS FROM LATENT HEAT MODEL 

 

 The following 16 images, shown in Figure 118: January 2011 Latent Heat (10:30 AM) 

through Figure 133: October 2013 Latent Heat (10:30 PM), were generated using the Bonan 

(2002) method of calculating latent heat for the 48 conterminous U.S. using the interpolation 

layers generated in the GIS. The following images represent daytime (approximately 10:30 AM) 

and nighttime (approximately 10:30 PM) values, for four seasons, for both 2011 and 2013. The 

color scale used (low to high) is relative to the range of latent heat values in the images. 
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Figure 118: January 2011 Latent Heat (10:30 AM) 
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Figure 119: January 2011 Latent Heat (10:30 PM) 
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Figure 120: January 2013 Latent Heat (10:30 AM) 
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Figure 121: January 2013 Latent Heat (10:30 PM) 
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Figure 122: April 2011 Latent Heat (10:30 AM) 
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Figure 123: April 2011 Latent Heat (10:30 PM) 
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Figure 124: April 2013 Latent Heat (10:30 AM) 
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Figure 125: April 2013 Latent Heat (10:30 PM) 
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Figure 126: July 2011 Latent Heat (10:30 AM) 
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Figure 127: July 2011 Latent Heat (10:30 PM) 
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Figure 128: July 2013 Latent Heat (10:30 AM) 
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Figure 129: July 2013 Latent Heat (10:30 PM) 
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Figure 130: October 2011 Latent Heat (10:30 AM) 
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Figure 131: October 2011 Latent Heat (10:30 PM) 
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Figure 132: October 2013 Latent Heat (10:30 AM) 

 



203 

 

 
 

Figure 133: October 2013 Latent Heat (10:30 PM) 
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APPENDIX C 

 

 

RESULTS FROM LINEAR MODEL APPLIED TO ENTIRE U.S. 

 

 The following four images, shown in Figure 134: January 2013 Power Output (10:30 

AM - Using Linear Model) through Figure 137: October 2013 Power Output (10:30 AM - Using 

Linear Model), represent the SoV power output in kilowatts based on the 10:30 AM sensible and 

latent heat flux values using the linear model. The regional factor and slope were excluded from 

this model. The images shown represent the four seasons for 2013. 
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Figure 134: January 2013 Power Output (10:30 AM - Using Linear Model) 
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Figure 135: April 2013 Power Output (10:30 AM - Using Linear Model) 
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Figure 136: July 2013 Power Output (10:30 AM - Using Linear Model) 
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Figure 137: October 2013 Power Output (10:30 AM - Using Linear Model) 
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APPENDIX D 

 

RESULTS FROM LINEAR MODEL APPLIED TO CITY OF ATLANTA 

 

 The following four images, shown in Figure 138: January 2013: City of Atlanta 10:30 

AM Power Production (Full Linear Model) through Figure 141: October 2013: City of Atlanta 

10:30 AM Power Production (Full Linear Model), represent the SoV power production at 10:30 

AM for the City of Atlanta, Georgia. The full linear model was used, which incorporated the 

regional factor and slope model. The images represent the four seasons for 2013. 

 

 
 

Figure 138: January 2013: City of Atlanta 10:30 AM Power Production (Full Linear Model) 
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Figure 139: April 2013: City of Atlanta 10:30 AM Power Production (Full Linear Model) 
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Figure 140: July 2013: City of Atlanta 10:30 AM Power Production (Full Linear Model) 
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Figure 141: October 2013: City of Atlanta 10:30 AM Power Production (Full Linear Model) 
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