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SUMMARY

The Internet is composed of thousands of diverse networks that exchange routing infor-

mation using the Border Gateway Protocol (BGP). BGP is one of the most critical protocols

of the Internet, since it connects these diverse networks to enable communication between

remote domains. Despite its critical nature, BGP suffers from a variety of serious prob-

lems, which have triggered substantial research on developing improved versions of BGP

and new routing architectures.

In this dissertation, we introduce necessary tools and data-mining techniques for ana-

lyzing the present routing architecture and for evaluating new routing protocols. We focus

on the problem of performing realistic BGP simulations and we first develop a BGP simu-

lator enabling detailed and large-scale BGP simulations. Then, we introduce techniques to

collect vital Internet routing data, which are essential in conducting realistic BGP simula-

tions. Finally, we introduce models of the collected data.

Realistic simulations are necessary for analyzing large and complex systems like the

inter-domain routing infrastructure. For this reason, we develop BGP++, a BGP simula-

tion module optimized for performing detailed and large-scale BGP simulations. BGP++

is the outcome of integrating an open-source BGP router into a popular packet-level sim-

ulator. In particular, we integrate the Zebra BGP implementation into the popular ns-2

simulator, yielding a detailed BGP implementation. Then, to improve BGP++’s scalabil-

ity, we introduce a compact routing table data structure, which enables us to simulate up to

a few thousand BGP routers on a single workstation. In addition, we implement support for

parallel and distributed BGP simulations, making possible the use of distributed clusters or

supercomputer centers to realize larger experiments. Finally, we implement a user-friendly

interface that uses a Cisco-like configuration language to configure simulated routers.

Having built our simulator, we focus on the problem of performing realistic BGP sim-

ulations that reflect actual trends and patterns present in Internet routing. To capture such

xii



trends we introduce measurement and inference techniques and extract relevant Internet

data. In particular, we introduce 1) a technique to measure the AS topology of the Internet,

2) a set of heuristics to infer business relationships between ASs, and 3) an algorithm to

classify ASs into classes reflecting their network properties. For mapping the AS topol-

ogy, we evaluate the utility of using BGP updates over the commonly used BGP tables. We

find that because of short-lived BGP instabilities, BGP updates can reveal more topological

data than BGP tables can. Our inference heuristics infer customer-to-provider (c2p), peer-

to-peer (p2p), and sibling-to-sibling (s2s) AS relationships from publicly available BGP

data. We validate our inferred AS relationships by conducting a survey with ASs’ network

administrators and demonstrate that they are highly accurate. Finally, we propose an AS

taxonomy reflecting ASs with different network characteristics and introduce an algorithm

for classifying ASs into appropriate classes based on a set of AS data. We validate the clas-

sifications of our algorithm and demonstrate that they are highly accurate. We also make

publicly available a set of Internet data, which are essential in conducting realistic BGP

simulations.

Finally, we introduce a topology generation framework. In contrast to previous ap-

proaches, our framework besides modeling a network topology it also models different link

types. Link types reflect different link characteristics like bandwidth or latency that can

be of interest in modeling network topologies. Though our framework is generic, we fo-

cus on modeling measured AS topologies with links of inferred c2p or p2p type. Thus,

we derive an AS topology generator that besides generating realistic AS topologies it also

assigns realistic c2p and p2p annotations. We analyze synthetic AS topologies produced

with our generator and demonstrate that they effectively reproduce a series of topological

characteristics found in measured AS topologies. In addition, we show that the c2p and p2p

annotations in synthetic topologies are consistent with c2p and p2p patterns in the Internet.

Overall, this dissertation makes available novel tools, measurement and inference tech-

niques, and vital Internet data that are tailored for conducting realistic BGP simulations.
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We believe that these contributions will provide significant aid in the challenging problem

of fixing the routing architecture of the Internet.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the Internet Routing

The Internet is a vast, distributed system composed of thousands of autonomous networks.

These networks are called Autonomous Systems (ASs) and are spread in diverse geopolit-

ical locations. An AS is typically an Internet Service Provider (ISP), an Internet eXchange

Point (IXP), a company, or a university network. These networks interconnect in one or

more peering points at which they exchange traffic. Packets traveling the Internet typi-

cally pass through multiple ASs. For this reason, ASs exchange routing information to

effectively route packets to remote destinations. Routing information is exchanged using

routing protocols, which are employed in a hierarchical architecture. The routing hierarchy

has two layers, an intra-domain and an inter-domain layer.

The intra-domain layer refers to the network within an AS, in which an Interior Gate-

way Protocol (IGP) ensures that the routing tables of the internal routers are up-to-date

and in sync. ASs have the flexibility to select any IGP protocol from a variety of different

flavors like Open Shortest Path First (OSPF), Enhanced Interior Gateway Routing Protocol

(EIGRP), or Intermediate System-to-Intermediate System (IS-IS). Intra-domain networks

range in size from a few routers up to hundreds or even thousands of routers in large back-

bone providers. Though an IGP protocol keeps routing information for intra-domain des-

tinations, it can not directly retrieve information for external destinations. The latter is

accomplished via an External Gateway Protocol (EGP) that runs on the inter-domain layer.

The inter-domain layer reflects the global network of ASs that is used to spread routing

information for remote destinations. In this layer all the ASs run a single EGP protocol,

BGP [3]. BGP is deployed on the border routers of an AS, which exchange routing in-

formation with other BGP routers in neighboring ASs or in the same AS. The BGP and

IGP routers of an AS communicate to exchange information about internal and external

1



AS 100
180.10.0.0/16

AS 400
150.10.0.0/16

AS 300

AS 500

AS 200
170.10.0.0/16

180.10.0.0/16 300 200 100
170.10.0.0/16 300 200
150.10.0.0/16 300 400

180.10.0.0/16 300 200 100
170.10.0.0/16 300 200

Figure 1. Simple AS topology demonstrating route announcements and AS paths received by ASs 400
and 500.

destinations.

BGP belongs to the class of path-vector routing protocols, which means that each route

announcement carries a path that is used to reach the announced destination. In partic-

ular, BGP announcements, which are called BGP updates, carry an AS path, which is a

list of ASs in the order that they will be transversed to reach the destination. For ex-

ample, in Figure 1 we illustrate the route announcements and the included AS paths that

ASs 400 and 500 would receive for the destination IP prefixes 180.10.0.0/16, 170.10.0.0/16,

and 150.10.0.0/16. These prefixes are originated from ASs 100, 200, and 400, respectively.

The AS 400 will receive route announcements with the AS paths 300 200 100 and 300 200

for the prefixes 180.10.0.0/16 and 170.10.0.0/16, respectively. On the other hand, AS 500

will receive route announcements with the AS paths 300 200 100, 300 200, and 300 400

for the prefixes 180.10.0.0/16, 170.10.0.0/16, and 150.10.0.0/16, respectively.

Besides being a regular routing protocol, BGP also helps in realizing an economy of

ASs. AS links are the result of business agreements, thus they reflect not only traffic flows

2



but also money “flows”. For example, small ASs pay larger ASs to connect to the Internet,

whereas large ASs seek to attract customer ASs to increase their revenues. These business

relationships influence how packets are routed between ASs. For example, ASs may wish

to send packet via a certain upstream provider that is less expensive; small ASs typically

avoid to transit traffic between their providers, since this would overwhelm their small ca-

pacity links. Thus, business relationships, or AS relationships as they are also known, have

a direct impact on how BGP routers are configured and translate in technical specifications.

AS relationships can be classified in three categories. In the customer-to-provider (c2p) cat-

egory, a customer AS pays a provider AS for carrying traffic originated from the customer

as well as for delivering traffic destined to the customer. In the peer-to-peer (p2p) cate-

gory, two ASs exchange traffic between their customers but do not exchange traffic from

or to their providers or peers1. p2p relationships are typically established between ASs of

similar size and do not involve money exchange. Instead, two p2p ASs have mutual incen-

tives to reduce their transit costs by establishing a p2p relationship. In a sibling-to-sibling

(s2s) relationship, two ASs exchange traffic between their providers, customers, peers, or

other siblings. Sibling ASs usually belong to the same organization or to strongly affiliated

organizations. For example, the relationship between the European and North American

divisions of a global ISP would be s2s. AS relationships result in restrictions on what AS

paths can be used to route traffic between a source AS and a destination AS. In particular,

a valid AS path must have the following hierarchical structure: an uphill segment of zero

or more c2p or s2s links, followed by zero or one p2p link, followed by a downhill seg-

ment of zero or more provider-to-customer (p2c) or s2s links. The paths that follow this

hierarchical structure are called valley-free or valid [4].

The inter-domain infrastructure of the Internet, its overlay AS topology, and AS rela-

tionships are of central interest in this dissertation.

1The meaning of the word “peer” is overloaded in the terminology used for BGP. In this dissertation
we refer as peers ASs that have a p2p relationship. Moreover, we use the term “peering point” or “peering
location” to refer to locations in which ASs exchange traffic, regardless of their AS relationship.
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1.2 Inter-domain Routing Problems and Motivation

The inter-domain infrastructure suffers from a variety of problems. The spectrum of these

problems is very wide. It starts from the prevalence of BGP misconfigurations [5] and

expands to the lack of automatic problem diagnosis mechanisms, the absence of well-

designed traffic engineering techniques, and the instability of the control plane [6, 7]. These

inefficiencies require significant administration resources, which result in overwhelming

economical overhead for the ISPs. Moreover BGP suffers from security problems [8], pol-

icy conflicts [9, 10], routing table growth [11], and path inflation [12, 13, 14].

These limitations are pronounced by the central role of BGP in the Internet architecture.

BGP is the “glue” that connects the otherwise independent networks to yield a unified com-

munication infrastructure. Thus, BGP problems can and have caused global connectivity

disruptions. For example, in the AS 7007 incident [15], an AS accidentally generated BGP

advertisements for most parts of the Internet, mis-leading several ASs to sending packets

into a black hole. Moreover, in 2002, a BGP problem in Worldcom’s network caused an

9-hour outage affecting a large fraction of the Internet’s traffic [16].

For these reasons, BGP is often deemed insufficient, requiring major upgrades or even

replacement. As a result, a number of fixes [17, 18, 19, 20, 21] and new routing archi-

tectures [22, 23, 24, 25, 26, 27] have been proposed. However, thus far none of these has

gained enough recognition to be adopted. At the same time, the fast growth of the Internet

and its evolution into a critical infrastructure press for comprehensive studies on how the

protocol will meet the increased future demands.

The main reason the future of the routing architecture is not clear, is the lack of nec-

essary tools 1) to comprehensively understand the current routing infrastructure and 2) to

evaluate new alternatives.

First, given the currently available data, it is hard to develop a comprehensive under-

standing of the BGP infrastructure. Most ASs are commercial, self-managed domains that

usually do not release to the public internal information about their networks. As a result,
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access to BGP data is limited and vital information for monitoring, modeling, and evalu-

ating BGP are not generally available. This limitation is further reinforced by the lack of

provisioning for sufficient measurement and accounting protocols in the early days of the

Internet. Thus, collecting representative data from the Internet is challenging yet essential

for identifying BGP limitations and for modeling Internet routing.

Second, reliable performance evaluation tools are necessary for testing new routing

protocols and modifications. Proposed fixes and architectures often cannot convince that if

deployed they will attain the expected benefits and they will not trigger other unforeseen

problems. Performance evaluation techniques range from purely mathematical analysis

to laboratory testbeds, Internet-based testbeds, and simulation experiments. Mathematical

analysis techniques suffer from the limitation that they typically rely on abstract, simplified

formulations that cannot capture the complexity of BGP, which is an complex protocol doc-

umented in more than 30 Requests For Comments (RFCs). Laboratory testbeds are vital

for small-scale testing but their results cannot pinpoint limitations that may arise in a real

Internet-scale environment. As such, they can only be used as a first step in the performance

evaluation process. Recently emerging Internet-based testbeds, like the Global Environ-

ment for Network Investigations (GENI) [28] initiative, provide the benefit of on-the-field

testing for new clean slate architectures. However, they require extensive economical re-

sources and need to meet the challenges of developing a truly representative environment

that reflects the commercial nature of the Internet and of delivering a large-scale testbed

unbiased from geopolitical restrictions. Simulation experiments have a low-cost barrier

and enable large-scale experiments of thousands or even millions of Internet routers. On

the other hand, they are conditioned to the availability of representative data and accurate

models. Although these performance evaluation techniques are complementary and com-

bined provide the means for better analysis of Internet protocols, in this dissertation we

focus on simulation techniques since they have three key benefits: 1) flexibility, 2) low

cost, and 3) ability to perform large-scale experiments.
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In Figure 3, we illustrate the methodological requirements that we consider necessary

for fixing the present routing infrastructure and for developing new routing architectures.

At the root of the flow chart are the areas of collecting Internet data and of developing per-

formance evaluation tools. Internet data make possible the development of better models

and also enable us to identify problems and limitations of the routing architecture. Thus,

they promote research on analyzing these problems, on identifying their root causes, and

on redesigning routing so that it addresses these problems. New designs are then evaluated

using realistic models and appropriate performance evaluation tools. High quality evalua-

tion tools and models are required to assess the sustainability of new routing protocols and

to detect unforeseen problems. Then, we can reject insufficient designs and find solutions

that will truly lead to evolving and improving Internet routing.

In this dissertation, we first develop a BGP simulator tailored for performing detailed

and large-scale BGP simulations (cf. Chapter 2). Then, we introduce measurement and

inference techniques to mine vital BGP data (cf. Chapters 3, 4, and 5). Finally, we develop a

framework for modeling the acquired data and for producing synthetic BGP data necessary

for evaluation studies (cf. Chapter 6). In our road-map on Figure 3, our study focuses on

the three highlighted problems on the left: collecting Internet data, modeling the collected

data, and developing high quality evaluation tools.

1.3 Contributions

In this section, we summarize the contributions of this dissertation.

1.3.1 BGP Simulation

In Chapter 2 we introduce BGP++, a BGP simulation module capable of realizing de-

tailed and large-scale experiments. We address the need for detail by incorporating Zebra

bgpd [29], a popular UNIX-based BGP router, into the ns-2 packet-level simulator. Zebra

bgpd provides a full-versed BGP implementation, which we combine with the packet-level
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1. AS topology

We first focus on mapping the AS topology of the Internet, i.e., the graph in which

nodes represent ASs and links represent interconnections between ASs. In Chapter 3,

we evaluate the utility of AS paths that appear in BGP update messages as a source

of AS-level topological data. We find that, because of short-lived BGP instabilities,

update messages capture much more AS links than BGP tables, which are the typical

source of AS topologies.

2. AS relationships

In Chapter 4, we introduce heuristics to infer c2p, p2p, and s2s relationships. Our

heuristics are based on a novel multiobjective optimization formulation of the in-

ference problem. In contrast to previous heuristics, our method does not make the

assumption that all or a maximal number of paths in the Internet follow the valley-

free model. In contrast, we accept that in reality AS paths may deviate from the

valley-free model because of misconfigurations and more complex AS relationships.

We demonstrate that our formulation avoids shortcomings of the above assumption.

In addition, we tackle the challenging problem of validating inferred AS relation-

ships by conducting a survey with ASs’ network administrators. We collect valuable

data on actual relationships configured in the surveyed ASs and use this data to val-

idate our inferences. We find that our heuristics accurately infer c2p, p2p, and s2s

relationships.

3. AS types

In Chapter 5, we introduce an AS taxonomy composed of the following classes:

large ISPs, small ISPs, customer ASs, IXPs, Network Information Centers (NICs),

and universities. Then, for each AS we collect the following attributes: advertised

IP prefixes, AS adjacencies, and IRR description records. We build a training set of

ASs, for which we manually identify their true class, and apply AdaBoost, a novel
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machine-learning algorithm, on the attributes of the training ASs to find patterns

associated with different AS classes. We express these patterns into a set of classi-

fication rules, which we apply to the full set of ASs to derive macroscopic statistics

on the different types of ASs in the Internet. Finally, we validate our results, demon-

strate that they are reasonably accurate, and develop a website [30] in which we make

our AS classifications and AS attributes publicly available.

These three central components of the inter-domain infrastructure are directly related to

conducting realistic BGP simulations. Knowing the AS topology of the Internet is neces-

sary for using appropriate topologies in simulation experiments. Measured AS topologies

can be incorporated in simulations directly or can form the basis for generating synthetic

topologies.

Knowing AS relationships is necessary for simulating realistic routing over AS topolo-

gies. Routing in the Internet is subject to AS relationships and typically follows the valley-

free model. Without knowledge of AS relationships, simulations must assume shortest-path

routing, which is unrealistic.

AS types are mandatory for augmenting AS topologies with realistic intra-AS and inter-

AS router-level topologies. For example, we expect the network of a dual-homed university

to be drastically different from that of a dual-homed small company. The university will

likely contain dozens of internal routers, thousands of hosts, and many other network el-

ements (switches, servers, firewalls). On the other hand, the small company will most

probably have a single router and a simple network topology. Since there is such a diver-

sity among different network types, we cannot accurately augment the AS-level topology

with appropriate router-level topologies if we cannot characterize the composing ASs.
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Chapter 6

Topology Generation
Chapter 2

Develop BGP Simulator

Chapter 3

Measure AS topology

Chapter 4

Infer AS relationships

Chapter 5

Infer AS types

Simulator Input

P(d1,d2,d3) = n(d1,d2,d3)/n

Figure 3. Structural and conceptual flow of the dissertation. In Chapter 2 we build a BGP simulator.
In Chapter 3 we introduce a technique to measure the AS topology of the Internet. In Chapter 4 we
augment measured topologies with inferred AS relationships, which we depict with link colors in this
figure. In Chapter 5, we further augment measured topologies with inferred AS types, which we depict
with node colors in this figure. Finally, in Chapter 6 we introduce a topology generator that generates
synthetic AS topologies with realistic AS relationship assignments. The arrows on the top illustrate
that the techniques we develop in Chapters 3 to 6 serve to provide realistic input data for our BGP
simulator.

1.3.3 Topology Generation

In Chapter 6 we introduce a topology generation framework for generating annotated graphs.

Annotated graphs are graphs with link annotations representing links with different char-

acteristics. For example, one annotation may represent low-capacity links, while a second

annotation may represent high-capacity links. Generally, link annotations provide the flex-

ibility of encoding link characteristics of interest into graphs. We use our framework to

generate AS topologies annotated with synthetic c2p and p2p relationships. We compare

generated AS topologies with measured AS topologies annotated with inferred c2p and p2p

annotations. Our comparison demonstrates that our framework effectively captures impor-

tant properties of measured AS topologies. In addition, our synthetic annotations reproduce

c2p and p2p patterns observed in the Internet.

1.4 Dissertation Organization

In Figure 3 we illustrate the structural and conceptual flow of this dissertation. First, in

Chapter 2, we introduce BGP++, outline its development approach, and describe its fea-

tures. In Chapters 3, 4, and 5 we focus on measurement and inference techniques. In

10



particular, in Chapter 3 we introduce a technique to measure the AS topology of the In-

ternet. Then, in Chapter 4 we introduce an inference technique to augment measured AS

topologies with inferred AS relationships. We conceptualize AS relationships and illustrate

them in Figure 3 as link colors. In Chapter 5 we further augment AS topologies with in-

ferred AS types, which we depict in Figure 3 with node colors. In Chapter 6 we introduce

an topology generation framework for generating synthetic AS topologies annotated with

synthetic AS relationship. Finally, in Chapter 7 we conclude this dissertation.

11



CHAPTER 2

BGP SIMULATION

2.1 Introduction

Modeling and simulation analysis has played a key role in the field of computer networks.

Typically, vendors and researchers evaluate prospective architectures and perform compre-

hensive “what if” analysis using simulation. Simulation is also used for parameter-tuning,

problem diagnosis and performance optimizations. It is immensely important in research

on large, complex, and heterogeneous systems, like the Internet, where analytical models

and laboratory testbeds do not capture the detail or the sheer volume of the system. One of

these systems is the BGP infrastructure of the Internet.

BGP simulations and especially large-scale simulations are vital in analyzing reliabil-

ity, scalability, performance and security problems that depend on the interactions of many

routers. For example, large-scale BGP simulations are important in analyzing BGP con-

vergence, since it is not clear how to extrapolate results, like the optimal value and setting

of the MRAI timer [31], from small-scale experiments to an Internet-scale infrastructure.

Large-scale BGP simulations are also important in analyzing large ISPs’ networks. For

example, ISPs often need to evaluate network design alternatives or the impact of sched-

uled internal or external connectivity or configuration changes, without having to actually

change their networks. These tasks are possible using large-scale BGP simulations. Other

possible applications include analyzing traffic engineering, sink-holes placement, evaluat-

ing reliability to failures or to flash crowds, evaluating attack mitigation techniques [32],

optimizing iBGP design, analyzing interactions between underlay and overlay routing [33]

or interactions between intelligent route controllers [34].

In this chapter we are concerned with building a simulation tool that will help re-

searchers shed light on the design flaws of the current BGP infrastructure and evaluate

the performance of new architectures. BGP++ is designed along the scalability-realism
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tradeoff, enabling large-scale as well as detailed BGP simulations. BGP++ is not a new

bottom-up implementation of BGP, but it capitalizes on existing high quality software on

network simulation, routing, and parallel and distributed simulation. The following soft-

ware are the basic components on which we build BGP++:

1. ns-2 [35] is a discrete-event network simulator that serves as a common platform

on which researchers can test and compare their proposals. ns-2 has evolved into

the most widely used simulator in the networking literature. It includes numerous

implementations of protocols with a special emphasis on TCP variants.

2. GNU Zebra [29] is a detailed open-source implementation of BGP. It is used by a

large community of providers, vendors and researchers for testing and experimenting

with BGP. It is also used for routing by small ASs that cannot afford to buy expensive

routers.

3. pdns [36] is the parallel and distributed version of the ns-2 simulator. It enables

large-scale simulations by distributing the simulation model on multiple worksta-

tions, thereby granting more physical resources. pdns supports both shared-memory

multiprocessors and distributed-memory clusters of workstations. Support of dis-

tributed architectures offers more physical resources, overwhelming the limits inher-

ent in parallel architectures. Remarkably, the recent work by Fujimoto et al. [37] used

pdns to claim the largest network simulations ever, of more than 5 million network

nodes.

Our contributions can be summarized as follows:

1. We develop and make publicly available [38] a packet-level BGP simulation module

for the widely-used ns-2 simulation platform.

2. We integrate the BGP implementation of Zebra into ns-2, making the minimum pos-

sible changes to the original software. We realize an accurate BGP simulator that
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supports most of the details of Zebra’s BGP implementation, including a Cisco-like

configuration language.

3. We use and extend pdns to support parallel and distributed BGP simulations. Then,

we evaluate the performance of alternative model partitioning algorithms for parallel

and distributed BGP simulations.

4. We identify the representation of BGP routing tables as the main source of memory

consumption in BGP simulations. To mitigate this problem, we introduce a compact

routing table data structure that exploits the redundancy of information in BGP rout-

ing tables and results in up to 62% memory savings in our evaluation experiments.

5. We propose and develop a simple generic technique to speed up simulation trials

using process checkpointing.

6. We develop a seamless partitioning and configuration engine for parallel and dis-

tributed BGP simulations that hides the complexity of pdns configuration and brings

parallel and distributed simulation closer to the general ns-2 user. We also develop

an automatic generator of Cisco-like configuration for setting common BGP poli-

cies on simulated routers. We combine these tools into a toolset that expedites BGP

simulation practices.

The remainder of this chapter is organized as follows. Section 2.2 elaborates on previ-

ous efforts on BGP simulation. Section 2.3 describes in detail the development of BGP++.

Section 2.4 introduces three techniques that we use to improve the scalability of the simula-

tor. Section 2.5 introduces our toolset to expedite configuration, partitioning, and schedul-

ing of BGP simulations. Finally, section 2.6 we conclude this chapter.

2.2 Related Work

The last few years there has been a considerable work on BGP simulation research. The

BGP model by Premore in the SSFnet [39] simulator was the first detailed simulation model
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of BGP and is currently the most widely-used BGP simulator. It supports most important

BGP features and extensions. The main limitation of SSFnet is that it exhibits considerable

memory demand, thereby preventing simulations larger than a few hundred of BGP routers.

Independently and in parallel with this work a number of other efforts have developed

BGP simulators. Among these effors, the C-BGP [40] simulator and the work by Hao

and Koppol [41] focus on large-scale BGP simulations. C-BGP is a BGP decision pro-

cess simulator that, like BGP++, can read Cisco-like configuration files and can simulate

large-scale topologies. Nevertheless, it only implements the BGP route selection process,

ignoring several details of the protocol, namely timers and BGP messages.

The recent work by Hao and Koppol [41] addresses the challenge of large-scale BGP

simulations by ignoring the protocol stack bellow the application layer. Their simulator

can perform large-scale experiments. Nevertheless, the simulator is not available in the

public domain and the relevant paper [41] does not discuss sufficiently the features of the

simulator to develop a comprehensive picture of its capabilities.

Other efforts parallel or after BGP++ are [42, 43, 44] that ported the SSFnet BGP im-

plementation in ns-2, JavaSim [45] and Genesis [46], respectively. In contrast to discussed

works, BGP++ is optimized for performing detailed as well as scalable simulations.

2.3 BGP++: A BGP simulation module

In this section, we first outline challenges of integrating Zebra’s software in the ns-2 net-

work simulator and the techniques we used to address these challenges. Next, we discuss

our experiments to validate that BGP++ provides an accurate implementation of BGP. Fi-

nally, we highlight features of BGP++’s configuration language, which enables the user to

write configuration files using Cisco’s well-known configuration language.

2.3.1 BGP++ development

The process of modeling a system is subject to the abstraction-scalability tradeoff. Higher

abstraction results in simpler models, which therefore are more scalable. On the other hand,
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detail is required to thoroughly capture the characteristics of a system. To create detailed

simulation models we chose to incorporate the Zebra open-source BGP implementation

into the ns-2 simulation environment. The main advantage of our approach is that the sim-

ulator inherits the detail, functionality, and maturity of the original open-source software.

Zebra is written in C and implements three routing protocols: BGP, RIP and OSPF (see

Figure 4). Each of the protocols is a separate daemon that can be run as a stand-alone

process. An additional daemon, called the Zebra daemon, takes care of communication

between routing daemons and the kernel routing table or other routing daemons. This

scheme provides a modular architecture with independent, well-separated implementations

for each daemon. We use the BGP daemon (bgpd) and Zebra’s library methods to build

BGP++.

Throughout the integration process we take extra care to leave intact the fundamental

logic of the code that implements BGP. However, Zebra and ns-2 are two intrinsically

different software. The high level differences between the two software are the following:

1. ns-2 is written in C++ and makes extensive use of the object-oriented programming

paradigm. Each network element is a C++ class, which enables the user to instantiate

multiple objects of an element during a simulation. In contrast, Zebra is written in C

and a single process instantiates a unique bgpd.

2. ns-2 uses discrete event scheduling algorithms, while Zebra uses UNIX process-

based scheduling algorithms.

3. ns-2 has multiple TCP implementations, while Zebra uses the Berkeley Software

Distribution (BSD) sockets TCP implementation.

4. ns-2 does not use blocking routines, while Zebra employs blocking routines.

These are the main differences we deal with during the integration process. In the

following four steps we describe in detail how we merge Zebra bgpd and ns-2 to realize a

unified, coherent system.
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Step 1: The first difference between Zebra and ns-2 is that the former is designed to

run one bgpd per process, while the latter needs to instantiate multiple BGP routers in the

same process. To satisfy this requirement, we create a BGP class in ns-2 that incorporates

all the original C code of Zebra bgpd. We convert Zebra’s C functions into C++ member

functions and Zebra’s global variables into member variables of the BGP class. Thus, we

can instantiate multiple bgpd in the simulator process as multiple objects of the BGP class.

bgpd ripd ospfd zebra 
daemon

UNIX kernel routing table

Figure 4. GNU Zebra modular architecture. This figure is a recreation of the prototype in [1].

Step 2: The most challenging aspect of the integration is interleaving Zebra bgpd

scheduler with ns-2 scheduler. Discrete event simulators use queue-based schedulers. The

entries of the queue are events that are sorted according to their time-stamp. On the other

hand, system software has no standard scheduling architecture. Scheduling depends on the

selected design and varies from simple to arbitrarily complex. Typical networking software

has one or more blocking routines that blocks until an event triggers a response. To incor-

porate Zebra bgpd in the simulator, we modify the Zebra scheduler to communicate with

the queue scheduler. At a high-level the interleaved scheduling works as follows: whenever

there is an event for Zebra bgpd, e.g., the start event, the simulator gives control to the bgpd

to execute the associated response. The bgpd continues until the first blocking routine is

reached; then, instead of blocking, it returns control to the scheduler. Note, that the bgpd

should not block since the simulation does not run on wall-clock time. The bgpd is given

control again when the blocking routine would unblock. Events that could unblock the

bgpd are read events, e.g., a packet arrival; write events, e.g., a buffer becomes writable;

17



timer expiration events, and user triggered events.

Zebra scheduling is based on the select() system call. select() takes as arguments a list

of file descriptors and a timeout value. It blocks until a file descriptor changes status or

until the timeout expires. The file descriptors indicate I/O streams, while the timeout value

is set to the next timer expiration time. When select() unblocks, execution continues by

handling the event or events that caused the interrupt. select() is reached again through an

infinite loop.

Our interleaved scheduling works as follows: at the start event ns-2 calls the simulated

bgpd to make the required initializations, i.e., to initialize BGP data structures and to start

the BGP Finite State Machine (FSM). The simulated bgpd proceeds with executing code

associated with the FSM until the blocking routine select() is reached. Then, instead of

blocking, it enters an event for the calculated timeout value into the ns-2 queue scheduler

and returns control to the simulator. If we disregard events that unblock the simulated

bgpd, the latter will take control as soon as the timeout expires. However, select() could

unblock before the timeout expires. For instance, Zebra bgpd select() unblocks when there

is a read or write event 1. For this reason, the simulator has to invoke the simulated bgpd

upon a read or write event. In operating systems, read events occur when the TCP stream

has new bytes available. In the simulator, upon a packet arrival, we modify ns-2 to cancel

the future timeout event for the appropriate bgpd and give control to it. Data packets are

handed to the bgpd by the simulator’s underlying TCP implementation. In Zebra, write

events result from the fact that non-blocking output routines, namely write() and writev(),

do not copy the application buffer to the kernel output buffer immediately. If the kernel

output buffer is full, the copy operation is postponed until the buffer becomes writable, i.e.,

write event. This time interval is typically very small and for this reason we ignore it and

do not simulate write blocks.

A common simplification in network protocols modeling is the omission of the CPU

1User interrupts are treated as read events, since user communication is done through a telnet interface.
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processing time, which is a valid assumption if the processing time is very small. BGP

routers can exhibit long processing time, especially when their routing tables are large.

For this reason, we implement a workload model that adds delay, representing the finite

execution time of the CPU. We model the workload as follows: when a simulated bgpd

completes an operation, such as parsing a packet that just arrived, it selects a busy-period

time value. This time value represents the finite execution time of the operation that just

completed. Then, it returns control to the simulator and for the next busy-period time it

does not respond to any events, e.g., packet arrivals. Instead, all events are buffered and

executed in FIFO order as soon as the bgpd resumes. Note that each of the buffered events

will result in new busy-period intervals. We implement two workload models that differ in

the way they choose the busy-period value. In the uniform workload model, the busy-period

is a uniform random variable within a user specified range. In the time-sample model, the

busy-period is the CPU time that was allocated for the operation that just completed by the

workstation the simulation is running on. Using a kernel patch [47], BGP++ monitors the

number of cycles its operations consume. Then, it calculates the busy-period as the product

of the CPU clock frequency and the count of consumed cycles. This scheme can easily be

extended to let the user specify the CPU clock frequency, enabling simulation of routers of

different processing capacity.

Step 3: The third step is to substitute the BSD socket API with the corresponding TCP

implementation of ns-2. We choose to use the ns-2 FullTcp implementation and modify

FullTcp to simulate the socket API. Our modifications notify the application that started

the FullTcp instance as soon as the connection moves from SYN RCVD or SYN SENT to

ESTABLISHED and from ESTABLISHED to CLOSE WAIT. The first two transitions corre-

spond to the BSD sockets non-blocking connect() and accept(), respectively. In both cases

they notify the application that the three way hand shake has completed successfully. The

third transition notifies the application upon a passive connection termination.
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Step 4: The last step to introduce Zebra routing software in ns-2 simulation environ-

ment is to replace system calls with corresponding simulator functions, replace wall-clock

time functions with simulation time functions, and remove unnecessary code. Zebra sup-

ports a telnet interface that is used to configure or query the routing daemons at run-time.

We remove the telnet interface since it is not useful in a simulation environment. Moreover,

we replace the functionality of the telnet interface with a new interface that enables us to

query and reconfigure the simulated routers at run-time. We describe in more detailed our

new interface in Section 2.3.3.

2.3.2 BGP++ validation and verification

According to [48], validation is the process to evaluate how accurate a model reflects a real-

world phenomenon. In our case, instead of a real-world phenomenon we model BGP. How-

ever, we do not develop our BGP simulator from scratch, but we use pre-existing software.

Thus, the validity of BGP++ is determined by the validity of Zebra’s BGP implementa-

tion, the validity of ns-2 simulator and the validity of our integration methodology. Both

Zebra and ns-2 open-source software have been used for a long time by the networking

community. Also, our integration methodology replaces Zebra OS-related functions with

corresponding ns-2 functions. Since both ns-2 and Zebra software have been widely-used,

we argue that BGP++ provides an accurate implementation of BGP.

Furthermore, verification of BGP++ is required. Verification is the process of evaluat-

ing how faithfully the implementation of a model matches the developer’s intent [48]. For

BGP++, this definition translates to how accurately we implement our integration method-

ology. To verify BGP++, we develop several scenarios, ranging from simple to more com-

plicated and perform simulations testing the behavior of BGP++. For each scenario we

examine the results and make sure that the observed behavior agrees with the expected be-

havior. We develop test scenarios of the following types: basic behavior tests, policy related

tests, logging facilities tests and advanced features tests. The following list enumerates the

tested features:
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• Basic behavior tests: connection establishment, session termination, connection re-

set, route distribution, route selection algorithm.

• Policy related tests: route-maps, match and set commands, ip access-lists, ip community-

lists, ip as-path access-lists, ip prefix lists.

• Logging facilities tests: show command variants, binary dumps, debugging facilities.

• Advanced features tests: confederations, route-reflection, capability negotiation, soft

reconfiguration, refresh capability.

We also perform additional tests to compare the behavior of BGP++ with the original

unmodified Zebra software. For this purpose, we set up small testbeds of Zebra routers

and compare the observed behavior with corresponding simulations of the same topology

and configuration. The results confirm that BGP++ effectively and accurately models the

behavior observed in the testbed environment.

2.3.3 BGP++ configuration

The development approach adapted for BGP++ preserves most of the features of the origi-

nal software, among which the configuration language. Each simulated BGP router parses

a configuration file, written in the configuration language used by Zebra routers. The Ze-

bra configuration language is very similar to the well-known configuration language used

by Cisco routers. For example, configuration structures like route-maps, access-lists, and

prefix-lists are parsed by the simulated routers. The configuration of BGP++ is a two step

process. First, the simulated topology has to be configured with an ns-2 tcl script. Then,

each simulated router is configured using a distinct configuration file. The tcl script spec-

ifies a topology and associates BGP bgpd with nodes. A sample tcl configuration script

is shown in Figure 5. To create a BGP router, it is necessary to instantiate a bgpd, attach

it to a node, assign a configuration file, register the daemon, and set the finish time of the

simulation. Registration is the process of inserting an entry in a global table that maps BGP

21



set n1 [$ns node]
set n2 [$ns node]

$ns duplex−link $n1 $n2 1.5Mb 1ms DropTail

set r [new BgpRegistry]
set fin 400

set BGP1 [new Application/Route/Bgp]
$BGP1 register  $r
$BGP1 finish−time  $fin
$BGP1 config−file /sth/bgpd1.conf
$BGP1 attach−node $n1

set BGP2 [new Application/Route/Bgp]
$BGP2 register  $r
$BGP2 finish−time  $fin
$BGP2 config−file /sth/bgpd2.conf
$BGP2 attach−node $n2

$ns at $fin  halt

$ns run

set ns [new Simulator]

Figure 5. Sample tcl script that creates two BGP daemons

instances to IP addresses. This table is called BGP registry and is required because BGP++

uses a dual addressing scheme, i.e., BGP routers are identified by both actual IP addresses

and ns-2 addresses. Nevertheless, ns-2 addressing is invisible to the user. The second step

of the configuration is to set up the simulated routers. Each router setup is done in a sepa-

rate file using the same syntax used to configure Zebra bgpd. The configuration commands,

such as those in the sample configuration in Figure 6, or slight variations thereof, are also

used by many commercial BGP implementations. The following list identifies supported

RFCs:

• RFC 1771, A Border Gateway Protocol 4

• RFC 1965, Autonomous System Confederations for BGP

• RFC 1997, BGP Communities Attribute

• RFC 2796, BGP Route Reflection

22



!Local AS and local IP address
router bgp 1
bgp router−id 192.38.14.1

!Neighbors
neighbor 192.38.14.2    remote−as 2

!Local networks
network  190.0.0.0   mask 255.0.0.0
network  189.0.0.0   mask 255.0.0.0

!Enable debugging
debug bgp 
debug bgp fsm
debug bgp keepalives
debug bgp filters
debug bgp events
debug bgp updates

dump bgp all dump1.log
log file bgpd1.log

Figure 6. Sample BGP++ router configuration file

• RFC 2918, Route Refresh Capability for BGP-4

Finally, BGP++ provides support for run-time commands. Run time commands re-

place the functionality available in Zebra software through the telnet interface. The user

can instruct a simulated router at a given point during a simulation to execute a specific

command, like show ip bgp, which would otherwise be entered through the telnet inter-

face. This is performed using a new tcl command. The tcl command takes as arguments

the BGP configuration command to be called, the calling time, and the bgpd by which the

command should be executed. Several BGP++ configuration examples as well as the full

set of supported Cisco-like commands are available in BGP++ home page [38].

2.4 Scaling BGP++

Large-scale BGP simulations are one of the main concerns in BGP++ design. In this sec-

tion we first show that the memory demand for BGP simulations is driven by the memory
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required to represent routing tables. To address this problem we introduce a routing table

representation data structure, which exploits the redundancy of routing table information

across BGP instances. Our experiments indicate that our compact routing table data struc-

ture results in up to 62% memory reduction in the total memory required for the simulation.

Using the compact routing table data structure we make proof-of-concept simulations of up

to 4,000 simulated bgpd in a single workstation with 2GB of memory.

Next, we integrate BGP++ with pdns to make parallel and distributed BGP simula-

tions possible and evaluate the performance of different model partitioning algorithms for

parallel and distributed BGP simulations.

In Section 2.4.3 we introduce a simple and efficient technique to speed up execution

time in simulation trials using process checkpointing. Although we implement our tech-

nique on BGP++ and evaluate it using BGP simulations, it is generally applicable to dis-

crete event simulations.

our technique is generic, however we implement it on BGP++ and evaluate it using

BGP simulations.

2.4.1 Efficient Routing Table Representation

The memory consumption of large-scale BGP simulations depends mainly on the following

parameters: the size of the topology, the size of the routing tables, the number of neighbors

per router, the simulation dynamics, and the simulator memory footprint. A BGP router

maintains three Routing Information Bases (RIB): the Adj-RIB-in, the Loc-RIB, and the

Adj-RIB-out [3]. The Adj-RIB-in stores routes received by neighboring BGP routers, the

Loc-RIB stores routes selected by the decision process, and the Adj-RIB-out stores routes

advertised to other BGP routers. Let N denote the number of BGP routers in a simulation; p

the average number of prefixes originated per router; r the average number of neighbors per

router; and α, β, γ, and δ proportionality constants. Then, the following formula denotes

the total memory demand for a BGP simulation:
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Figure 7. Memory usage versus topology size (N) and originated prefixes per router (p).
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Figure 8. Projection of Figure 7 for 10 originated prefixes per router

Memory ≈ αN + βpN2 + γpN2r + δ (1)

The term αN represents the memory cost to initialize BGP routers or, in other words, the

memory cost for routers with empty routing tables. The term βpN2 accounts for the Loc-

RIBs memory consumption, assuming that each router after convergence has pN entries

in the routing table. The term γpN2r is the worst possible memory consumption for the

Adj-RIB-ins and Adj-RIB-outs, assuming that each router receives pN routes from each of

its r neighbors. The term δ represents the simulator footprint. It follows that for r = N, i.e.,

in a full-mesh topology, the memory demand is O(N3) and is driven by the routing table

term γpN2r.

Our compact routing table data structure relies on the observation that BGP routing

25



0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200 250 300

m
em

or
y 

us
ag

e 
(M

B
)

topology size

BGP optimizations
no optimizations

Figure 9. Projection of Figure 7 for 60 originated prefixes per router

tables contain a lot of redundant information. Redundant information lie across the fol-

lowing three dimensions: 1) within a routing table, across different entries; 2) within a

router, across different routing tables (Adj-RIB-in, Loc-RIB, Adj-RIB-out); and 3) within

a simulation, across different routers. For each routing table entry a BGP router stores

several BGP attributes. For example, a routing table entry in BGP++ stores the follow-

ing attributes: AS path, origin, next hop, local preference, multi-exit discriminator (MED),

communities, extended communities, and unknown attributes2. These attributes account for

most of the memory required for a table entry. For this reason, we create a data structure

that shares common attributes among different routing tables.

We associate each route with a structure struct attr that has one entry for each of the

possible attributes. For attributes with size less or equal to 32 bits the entry is the value

of the attribute, otherwise a pointer to another data structure specific to the attribute in

question. For example, struct attr contains the value of the MED attribute, which is a 32-

bit unsigned integer. In contrast, it contains a pointer to an AS path data structure, which

can be of arbitrary size. The AS path data structure is associated with a reference counter

and stored in a global hash table. There is one global hash table for each type of attribute

with size greater than 32 bits. A router, after allocating and initializing memory for a new

attribute, it searches the relevant hash table for the newly allocated attribute. In case of a

2BGP specifications require to transit unknown attributes.
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match, the allocated memory is deallocated and a reference to the attribute in the hash table

is used. In addition, it increments the reference counter, which is used to track the number

of pointers to the attribute. If the attribute is not found in the hash table, then the router

creates a new entry for the attribute, so that subsequent searches will succeed. If a router

wishes to remove an attribute, it decrements its reference counter. When the reference

counter becomes zero the attribute is removed from the hash table and deallocated. This

structure handles redundancy by creating a centralized pool of attributes, which are shared

among different routers, tables and table entries. Similarly, a second level hash table is used

to store and share struct attr structures.

We evaluate the effectiveness of our compact table data structure using simulation. For

the simulation topology, we use a random connected subgraph of an Internet AS topology

constructed from RouteViews data [49] of size N; each AS has a single BGP router that

originates p prefixes. We infer c2p and p2p relationships between the simulated ASs and

use BGP communities to configure them as follows: a provider advertises to a customer

all the routes it knows; a customer advertises to a provider routes that are either locally

originated or learned by its customers; likewise a peer advertises to a peer routes that are

either locally originated or learned by its customers. These configurations are consistent

with typical operator practices [50]. We set the delay and the data rate of all links to 10ms

and 10Mbps, respectively and we ignore the processing workload of the routers. Finally,

we run each simulation until the system reaches steady state, i.e., no updates are exchanged.

For the remainder of this chapter we refer to this setup as Internet(N, p).

Figure 7 illustrates the total memory consumption with and without routing table opti-

mizations versus N and p in an Internet(N, p) setup. Projections of this figure are shown

in Figures 8 and 9 for 10 and 60 originated prefixes per router, respectively. We observe

that our compact table data structure yields a consistent and significant reduction in the

total memory consumption. The highest memory reduction achieved is 62% with a mean

of 47% with respect to the total memory. Note that these numbers are conservative since
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the total memory consumption is the result of several sources of memory demand besides

the routing tables. The memory reduction with respect to the memory required for the

unmodified routing tables is even larger.

To further improve the memory demand of BGP++, we employ an existing memory re-

duction scheme by Riley et al. [51], called Nix-Vector routing. Nix-Vector routing reduces

the required memory to represent the Forwarding Information Bases (FIB) in a simulation

by computing routes on demand, as needed, rather than pre-computing all possible routes.

We integrate Nix-Vector routing with BGP++ and evaluate the memory we save by using

Nix-Vector routing as compared to ns-2 default static routing. In Figure 10 we illustrate

that in Internet(N, 1) setups Nix-Vector routing can further reduce the memory consump-

tion. The peak total memory reduction is 36% and the mean 22%. For p > 1 we find that

the memory savings of Nix-Vector routing are overshadowed by the memory required to

represent BGP routing tables.

Using our compact routing table data structures and Nix-Vector routing we conduct

proof-of-concept large-scale BGP simulations. We effectively simulate up to 4,000 Zebra

bgpds in a single workstation with 2GB of physical memory. The simulation setup is an

Internet(4000, 1). To our knowledge, the size of these simulations is an order of magni-

tude larger than the size of any other detailed simulation reported in previous works using

simulation tools prior to BGP++.
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Figure 10. Memory savings by using Nix Vector routing
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2.4.2 Parallel Distributed BGP Simulations

In this section we discuss the parallel and distributed version of BGP++ and evaluate dif-

ferent approaches to automatic partitioning of simulation models into multiple computing

platform. Parallel and distributed computing is a promising venue to faster and larger net-

work simulations. The ns-2 simulator has been extended by Riley et al. [36] to support

parallel and distributed simulations. The parallel and distributed version of ns-2 is called

pdns and enables substantially larger simulations than the original sequential version.

We extend pdns and ns-2 to support parallel and distributed BGP simulations. Our

extensions use the RTIKIT [52] synchronization library to enable BGP routers residing

on different simulator instances to establish BGP sessions and exchange BGP messages.

Different simulator instances simulate different parts of the network topology. For this rea-

son pdns belongs to the class of space-parallel simulators. A critical decision with space-

parallel simulators is the distribution of the network topology model. This is because the

distribution of the model has a direct impact on the performance of the sychronization pro-

tocol. To illustrate this consider how a distributed simulation works. First, the simulation

is divided into epochs, which are separated by synchronization intervals. During a syn-

chronization interval cross-simulator events are delivered. Let ETi j and CTi j denote the

execution and communication time of the i-th simulator instance (or federate in pdns ter-

minology) at epoch j, respectively. Also, let S T j be the synchronization time at epoch j.

Then, the execution time of the event processing phase of a simulation is:

ET =
N−1∑

0

(max
i
{ETi j +CTi j} + S T j) (2)

where N is the number of epochs 3. Partitioning of the model has a direct impact on the

terms ETi j, CTi j, S T j, and N of equation 2. In particular, partitioning should:

• Balance the processing workload to minimize the maximum ETi j over i.

3A similar formalization can be found at [53].
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• Minimize the maximum communication load between any two federates. This has a

direct impact on both CTi j and S T j since cross-simulator events are delivered during

synchronization.

• Maximize the length of the epochs to increase parallelism and reduce N.

To automatically and efficiently partition a simulated topology we can use a graph G to

represent it and associate weights with the nodes and the edges of the graph that reflect their

expected computational and communication load, respectively. Then, we can formulate the

topology partition problem as the following graph partitioning problem [54, 55]:

Given an undirected graph G = (V, E), where V the set of vertices and E the set of

edges, find a partition of G in k parts that minimizes the edge-cut under the constraint that

the sum of the vertices’ weights in each part is balanced.

In this formulation the edge-cut between two partitions reflects the communication load

between two simulator instances. Moreover, the sum of the vertices’ weights reflects the

total computational load of a particular simulator instance. Thus, by mapping the topology

distribution into this problem we can automatically partition the simulated topology so as

to optimize equation 2. Nevertheless, this approach suffer from two limitations. First, the

above graph partitioning problem is NP-complete. To overcome this difficulty we evalu-

ate different polynomial time approximations that ship with the popular Chaco [56] and

Metis [57] graph partitioning packages. Secondly, a method is necessary for assigning

edge and vertex weights that reflect the expected communication and computation load,

respectively. In general this problem is hard since its difficult to predict in advance of

a simulation what will happen during the simulation. We address this problem by imple-

menting two weight assignment heuristics that capture deterministic aspects of a simulation

Both of our heuristics deem all the links of the topology as equal, and differ in how they

model node weights. In the degree-weight approach the weight of node is set to its degree

in the graph. This approach is based on the intuition that the computational load of a node
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is proportional to the number of its neighbors. Our second heuristic assumes that all the

partitions should have the same number of routers. For this reasons, it assigns the same

weight to all the vertices of the graph. We call this heuristic equal-weight partitioning.

We first compare the performance of the following polynomial time approximations

for the graph partitioning problem: Chaco multilevel Kernighan-Lin (KL), Chaco spectral,

Chaco linear, METIS multilevel KL and Chaco random. In the last one, vertices are as-

signed randomly in partitions subject to the balance constraint, thus we use it as a worse

case reference. To evaluate the partitioning algorithms we use a variant of the Internet(N, 1)

setup denoted as Internet(N, 1, 200), in which the simulation time is fixed to 200 seconds4.

We assign weights with the degree-weight and equal-weight approaches and partition the

graph into two federates (k = 2). Figure 11 shows the execution time for the equal-weight

case. We observe that the examined algorithms yield similar performance, while the sav-

ings with respect to the Chaco random algorithm increase with the model size. Though,

the partitioning algorithms exhibit similar performance, we find that the METIS multilevel

KL algorithm consistently outperforms the other algorithms both with degree-weight and

equal-weight partitioning. Thus, we adapt the METIS multilevel KL algorithm for the re-

maining of our experiments and recommend it for future use in parallel and distributed

BGP simulations.

Next, we compare the degree-weight to the equal-weight partitioning approaches. In

Figures 12 and 13 we show our results for topologies partitioned in two federates. Figure

12 illustrates that the degree-weight approach results in worse performance than the equal-

weight approach in an Internet(N, 1, 200) setup. The same is also illustrated in Figure 13

for an Internet(N, 0, 200) setup. We find that the degree-weight approach exhibits a worse

performance because it results in a significant increase in the cross-federate communication

volume. In Table 1 we show the edge-cut of the computed partitions for the degree-weight

4We choose to fix the simulation time, instead of using an Internet(N, 1) setup, which runs for as many
seconds as required for the routers to convergence. This is because in distributed simulations it requires
substantial effort to automatically detect when the routers converge.
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Figure 11. Total execution time using different partitioning algorithms.
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Figure 12. Total execution time of degree-weight versus equal-weight partitioning in an
Internet(N, 1, 200) setup.

and the equal-weight approaches. Clearly, the equal-weight approach results in much better

partitions than the degree-weight approach. For this reason, we make the equal-weight

heuristic the default choice for partitioning parallel and distributed BGP simulations.

Table 1. Edge-cut found by METIS multilevel KL algorithm for degree-weighted and equal-weighted
graphs, split into two parts

Topology size
partition edge-cut

equal-weight degree-weight

1000 33 119
1300 62 451
1600 90 442
1900 113 484
2200 175 719
2500 218 832
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Figure 13. Total execution time of degree-weight versus equal-weight partitioning in an
Internet(N, 0, 200) setup.

2.4.3 Execution Time Optimizations

In this section we describe a simple and efficient technique to reduce simulation time in the

presence of repeated simulation trials. Simulation trials are required to make simulation

based results statistically significant. For example, assume a simulation in which we want

to measure BGP convergence time after a BGP withdrawal. To make a reliable claim, it is

necessary to repeat the same simulation many times and calculate the average over all runs.

Our execution time optimization exploits the fact that simulation trials repeat the same

initial phase of a simulation, which in many cases is identical and can be avoided. In the

most conservative scenario simulation trials repeat the same initialization process, which

often can take significant time, before seeding their random number generator and entering

the event processing phase. To avoid repeating the initialization, we can save an image

of the simulation process just before the random number generator is used for the first

time and start all subsequent trials from the saved image. In general this method can be

used more aggressively. For example, in many cases we want to bring a simulation at a

particular deterministic state, e.g., converged state, and then trigger an event and measure

its impact. In this scenario, we can save an image of the simulation once it has reached

the required state. Then we can start subsequent trials from the saved image, instead of

running the full simulation from the beginning, reseed the random number generator and

trigger the required event to measure its impact. If r is the ratio of the deterministic period
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of a simulation to the total execution time and t the number of trials we want to perform,

the speedup is5:

S peedup =
ETnormal

EToptimized
=

1
1 − r + r

t

The process of saving an image of a process is called checkpointing. We extend BGP++

to support process checkpointing using Condor [58], a workload management system that

supports checkpointing and restarting a process. We implement a command to request

a checkpoint of the simulator process as soon as the initialization has completed. The

initialization phase includes construction of network objects, calculation of static routes

(if needed), initialization of BGP data structures and parsing of BGP configuration files.

We also implement a second command that enables the user to checkpoint the simulator

process at any point during the simulation. In this case, the user has the option to change the

configuration of the simulation just after the simulation process restarts. This way, multiple

scenarios can be forked from the same image.

We examine the execution time savings of this approach in the conservative scenario of

checkpointing an Internet(N, 1) setup as soon as initialization has completed. In Figure 14

we depict the total execution time and the initialization time for different N. The mean r

is 0.17. The total execution time depends on the dynamics of the BGP system, which in

turn depend on the seed of the simulation. This variation explains why the total execution

time curve is not smooth. In a second run, where the second optimization of section 2.4.1

is deployed, we find that r drops to 0.08, since the calculation of static routes during ini-

tialization is bypassed. Thus, we conclude that our checkpointing method can result in

non-trivial savings even in the conservative scenario of checkpointing a simulation right

after the end of the initialization phase. This method is expected to result in substantially

higher executions time saving when used more aggressively, for example, in checkpointing

a BGP simulation after the BGP routers have converged.

5It is assumed that the overhead to restart a simulation from a saved image is negligible.
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Figure 14. Total execution time and initialization time versus topology size.

2.5 BGP++ Configuration Toolset

We develop a toolset to expedite typical simulation configuration tasks. The simulation

toolset can read simple user input files, generate Cisco-like configuration files, partition

parallel and distributed simulations, generate configuration for pdns, and schedule multiple

simulation runs. Figure 15 illustrates a block diagram of the software architecture of the

toolset. There are three main components: a configuration generator, a partitioner and a

scheduler.

The configuration component takes as input an AS topology that has been annotated

with AS relationships. BGP communities and filters are used to configure typical BGP

policies, like c2p and p2p relationships, employed between ASs. The user has the option

to specify a variety of parameters like the topology size, the number of announced routes,

the desired policy setup, and other.

The partitioner handles partitioning for parallel and distributed simulations. The user

can choose among different partitioning algorithms supported through METIS and Chaco

graph partitioning packages. Given a sequential configuration file for ns-2, it generates

configuration for pdns and its BGP extensions. Thus, the partitioner provides a seamless

interface to the parallel and distributed simulator, hiding from the user the complicated

configuration of pdns.

Finally, the scheduler handles scheduling of multiple simulation runs. We implement a
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master slave architecture, in which a master process schedules and distributes simulations

to slave machines, taking into account available memory, existing CPU workload, and other

user specified criteria.

2.6 Conclusion

In this chapter we introduced BGP++, a BGP simulation module aiming to help in sim-

ulation studies of the Internet routing architecture. BGP++ is built on top of high qual-

ity and popular software in network simulation (ns-2), routing (Zebra), and parallel and

distributed simulation (pdns). The design goals of the simulator were to yield a detailed

implementation of BGP that can also afford large-scale experiments. We met the first goal

by incorporating the software of an open-source BGP router in a simulation environment.

For the second goal, we introduced efficient memory management techniques and adapted

BGP++ to support parallel and distributed simulations. We made several other contribu-

tions: 1) we introduced a generic framework to speed up simulation trials; 2) we developed

an automatic topology partitioning and configuration toolset; and 3) we shared the lessons
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we learned by integrating an open-source software in a network simulator.

We have recently ported BGP++ into the GTNetS [59] network simulator [60]. GT-

NetS is an emerging network simulator with a number of attractive features, which make

it a more suitable platform for conducting BGP++ simulations than ns-2. In particular,

GTNetS uses actual IP addresses for identifying simulated routers and hosts, as opposed to

ns-2’s use of scalar identifies. Thus, GTNetS reflects more accurately the Internet address-

ing reality and it integrates better with Zebra bgpd, which inherently employs IP addresses

for routing and addressing. Moreover, GTNetS is built with scalability in mind and thus

can deliver more scalable simulations than ns-2.
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CHAPTER 3

AS TOPOLOGY

3.1 Introduction

In this chapter, we switch our attention to retrieving vital Internet topology data for conduct-

ing realistic BGP simulations. Measuring the Internet topology is important for evaluating

and optimizing routing functions that depend on the structure of the underlying topology.

For example, it is well known that the performance of BGP’s convergence process depends

strongly on the underlying topology [61, 31]. For this reason, BGP convergence opti-

mizations need to be tested using topologies that reflect the true interconnections between

Internet ASs.

We focus on the AS-level topology of the Internet, i.e., the graph in which nodes reflect

ASs and links reflect interconnections between ASs. Presently, BGP tables are the main

source of AS-level topological data, since they provide a large set of AS paths that are used

for routing. Thus, one can construct an AS topology by merging AS paths from multiple

BGP tables. Publicly available BGP tables are currently available from RouteViews [49],

RIPE [62], CERNET [63], and from looking glass servers [64]. An alternative technique to

map the AS topology of the Internet is to convert measured IP-level topologies to their AS-

level counterparts. This mapping requires an accurate IP address to AS number translation,

which is a topic of active research [65, 66]. AS topologies derived using this technique

are available from CAIDA [67]. Another method to map the AS topology of the Internet

is to exploit information in Internet Routing Registries (IRRs) [68]. The IRRs constitute a

distributed database containing records of ASs’ routing policies, assigned IP prefixes, adja-

cencies, contact information, etc. One can build an AS topology by finding AS adjacencies

registered in the database. Nevertheless, IRRs are maintained in a volunteer basis and con-

tain significant portions of incomplete or obsolete records. For this reason, this technique

is not widely-used.
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BGP tables bear a set of limitations in providing accurate and complete AS topologies.

First, a BGP table reflects a single vantage point from which we can only capture a limited

set of topological data. To illustrate this inefficiency, consider the extreme scenario of using

shortest paths from a single vantage point to map a full mesh topology of size n. It is evident

that shortest paths to every destination would only reveal n− 1 of the total n(n− 1)/2 links.

Moreover, BGP policies limit the export and import of routes between ASs. In particular,

prefixes learned over p2p links are not re-advertised to any providers, which means that a

p2p link is not by default seen (as part of an AS path) from any upstream ASs. Thus, BGP

policies further limit the topological information that can be extracted from BGP tables. A

third limitation is that BGP table collectors, like the ones used by RouteViews and RIPE,

use BGP sessions to collect routing tables. These BGP sessions filter out a large number of

AS paths, since routers are restricted to sending their best paths to the collectors and cannot

share their back-up paths.

In this work we explore an alternative method to construct representative AS topologies

of the Internet. We evaluate the utility of using AS paths in BGP update messages over

the traditional method of using AS paths in BGP tables. Our experiments demonstrate

that BGP update messages reveal many AS links that are not seen in BGP tables. Using

BGP updates, we build an AS topology that has 61.5% more AS links than the largest

AS topology we constructed from BGP tables, collected from the same source as the BGP

updates. Thus, we demonstrate that BGP updates are a viable alternative or additional

source for measuring the AS topology of the Internet. Then, we analyze the temporal

properties of the AS links seen in BGP updates and we find that a significant number of AS

links can only be seen for short time intervals during BGP turbulence. Thus, it is practically

hard to capture these links in BGP tables, which are archived at coarse time intervals.

Finally, we compare the topological properties of the AS topology we constructed from

BGP updates with an AS topology constructed from BGP tables. We find that the new

AS links lie between small and medium degree ASs and that they have small betweenness,
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pointing to links at the “periphery” of the AS topology.

3.2 Related Work

Zhang [69] et al. independently and in parallel with this work [70] evaluated BGP up-

dates as a source of AS-level topological data and discovered that BGP updates reveal new

AS links with respect to BGP tables. Their work differs in that they also used other data

sources, i.e., the IRRs and the looking glass servers, in an attempt to construct the largest

possible AS topology. In contrast, our goal is to evaluate the utility of using BGP update

messages alone over the commonly used BGP tables. In addition, we also evaluate the

temporal and topological properties of the newly discovered AS links. The work by Chang

et al. [71] explored several diverse data sources, i.e., BGP tables, looking glass servers,

and the IRRs, to create a more complete AS topology that had 40% more connections than

a corresponding table-derived topology, however they did not examine BGP updates. An-

dersen et al. explored temporal properties of BGP updates to create a correlation graph

of IP prefixes and identify clusters [72] . The clusters imply some topological proximity,

however their study is not concerned with the AS-level topology, but rather with clustering

prefixes using temporal correlations of updates.

3.3 BGP instabilities as a source of topological data

BGP is known to have a slow converge that is coupled with significant routing churn. In the

event of a routing change the so-called path exploration problem [7] results in superfluous

BGP updates, which advertise distinct backup AS paths of increasing length. Labovitz et

al. [7] showed that in theory there can be up to O(n!) superfluous updates during BGP

convergence, where n is the number of ASs in the system. In this work we first seek to

answer if these superfluous updates reveal new AS links that are not seen in AS paths

extracted from BGP tables.

For example, observe the simple update sequence in Table 2 that we found in our
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Table 2. Example of a simple sequence of BGP updates that unveils a backup AS link. The AS link
2828-14815 is not observed in BGP routing tables, but it is observed in BGP updates.

Time AS-path Prefix

2003-09-20 12:13:25 (withdrawal) 205.162.1/24
2003-09-20 12:13:55 10876-1239-2828-14815-14815-14815-14815-14815 205.162.1/24
2003-09-20 12:21:50 10876-1239-14815 205.162.1/24

dataset. The updates are received from a RouteViews neighbor in AS10876 and pertain

to the same prefix. The neighbor initially sends a withdrawal for the prefix 205.162.1/24

and shortly after an update, in which the AS number 14815 has been prepended multiple

times. AS path prepending is a technique used by ASs to artificially increase the length of

an AS path. Using this technique they make a particular path less preferable to upstream

ASs, since the AS path length is one of the main criteria used in BGP route selection. Thus,

the long AS path prepending reveals thats the path 10876-1239-2828-14815-14815-14815-

14815-14815 is a back-up path. More importantly, we find that the AS link 2828-14815 in

this path is not observed in any other AS path in BGP tables taken from the same Route-

Views router. Shortly after, the router receives a third update with a shorter AS path, in

which it converges. Thus, this process illustrates that during BGP convergence, BGP up-

date messages expose short-lived AS path that reveal new topological information. The

short-lived nature of these AS paths is the reason that they cannot be captured in BGP

tables snapshots, which are taken at coarse time intervals.

To measure the extent to which BGP instability can be useful for topology mapping,

we collect BGP updates between September 2003 and August 2004 from the RouteViews

router route-views2.oregon-ix.net. This router has multihop BGP sessions with 44

other routers and saves all received updates in the Multi-threaded Routing Toolkit (MRT)

format [49]. After converting the updates to ASCII format, we parse the set of AS paths

and mark the time each AS link was first observed, ignoring AS sets and private AS num-

bers. There are more than 875 million announcements and withdrawals, which yield an
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AS topology of 61,134 AS links and 19,836 ASs. We denote this topology as Gu, where

the subscript u marks that it was constructed from BGP updates. To quantify the extent

of additional information gathered from updates, we collect BGP routing tables from the

same router on the 1st and 15th of each month between September 2003 and August 2004.

For each routing table dump we count the number of unique AS links, ignoring AS sets and

private AS numbers for consistency. Figure 16 illustrates the comparison. The solid line

plots the cumulative number of unique AS links over time seen in BGP updates. After an

initial super-linear increase, the number of additional links grows linearly, much faster than

the corresponding increase observed from BGP routing tables. At the end of the observa-

tion window, BGP updates have accumulated an AS topology that has 61.5% more links

and 10.2% more nodes than the largest table-derived AS topology. The notable disparity

suggests that the real Internet AS topology is different from what the widely-used table-

derived AS topologies suggest. To evaluate the differences we conduct a detailed analysis

of the temporal and topological properties of the observed connectivity.

3.4 Temporal Analysis

Identifying temporal properties of the AS connectivity observed from BGP updates is nec-

essary to understand the interplay between the observation of AS links and BGP dynamics.
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In addition, we want to compare the temporal properties of AS links present in BGP tables

with AS links observed in BGP updates. To do so, we first introduce the concept of visi-

bility of a link from a collector. We say that at any given point in time a link is visible if

the collector has received at least one update announcing the link, and the link has not been

withdrawn or replaced in a later update for the same prefix. A link stops being visible if

all the prefix announcements carrying the link have been withdrawn or reannounced with

new paths that do not use the link. We then define the following two metrics that capture

temporal properties of AS links:

1. Normalized Persistence (NP) of a link is the cumulative time for which a link was

visible in RouteViews, over the time period from the first time the link was seen to

the end of the measurement period.

2. Normalized Lifetime (NL) of a link is the time period from the first time to the last

time a link was seen, over the time period from the first time the link was seen to the

end of the measurement period.

The NP statistic represents the cumulative time for which a link was visible in the

collector, while the NL represents the span between the first and the last time a link was

observed. Both are normalized over the time period from the first time a link was seen to

the end of the measurement period to eliminate bias against links that were not seen from

the beginning.

To calculate the NP and NL statistics, we replicate the dynamics of RouteViews routing

table using the BGP updates dataset. We implement a simple BGP routing daemon that

parses BGP updates and reconstructs the BGP routing table keeping per-peer and per-prefix

state as needed. Then, for each link we create an array of time intervals for which the link

was visible and calculate the NP and NL statistics. A limitation of the RouteViews data is

that it does not include notification messages. As a results, we cannot explicitly pinpoint

the event of a session reset between the RouteViews collector and one of its immediate
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neighbors. Detecting such sessions resets is necessary for removing from the virtual table

of our BGP daemon AS paths learned from the router with which the session was lost. To

address this limitation we implement a heuristic to infer session resets.

The problem of detection of BGP session resets has been examined in previous re-

search. Maennel et al. propose a heuristic to detect session resets between ASs in arbitrary

Internet locations by monitoring BGP updates in RouteViews [73]. For our experiments,

we are concerned with a less daunting task: we seek to detect session resets between a

RouteViews collector and one of its immediate neighbors. Our inference heuristic is com-

posed of two components. The first detects surges in the BGP updates received from a

certain neighbor over a short time window of s seconds. In particular, if the number of

prefixes updated from a neighbor in s is more than a significant portion of p percent of the

previously known prefixes from the same neighbor, then a session reset is inferred.

The second component detects periods of significant inactivity when a threshold t is

passed from otherwise active peers. We combine both approaches and set low thresholds

(t = 4mins, p = 80%, s = 4secs) to yield an aggressive session reset detection algorithm.

Then, for testing we calculate NP and NL over a period of a month with and without

aggressive session reset detection enabled. We find that the calculated statistics are virtually

the same with less then 0.1% variation. This is because the short lifetime of session resets

does not affect the span of the NP and NL statistics, which are calculated over a much longer

period. For this reason, we omit the detection of session resets in further experiments since

it barely affects the computed metrics.

We compute the NP and NL statistics over a 5-month period1, from September 2003

to January 2004, and plot their distributions in Figures 17 and 18. Figure 17 demonstrates

that NP identifies two strong modes in the visibility of AS links. At the lower end of the x

axis, more than 5,000 thousand links have NP � 0.2, while at the upper end of the x axis,

1For the calculation of the NP and NL statistics we use a partial 5-month dataset instead of the 12-month
dataset we used in Section 3.3. This is becasue it requires extensive time to parse the 12-month dataset of
875 million announcements.
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almost 35,000 links have an NP close to one. These two modes demonstrate that while

most links are visible for most of the time, a significant number of links appear only appear

for short time intervals, i.e., during BGP convergence, and are typically not visible. The

distribution in Figure 18 of the NL statistic is even more modal. Approximately 2,000 links

have NL very close to zero, while all the remaining links have NL close to one. Since by

definition the NL statistic of a particular link is greater than the NP statistic, we conclude

that out of the 5,000 links with small NP, approximately 3,000 have NL close to one. This

illustrates that more than half of the links that appear only during BGP convergence have a

long lifetime. In other words, these links are consistently part of the AS topology even if

we can rarely observe them.
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Table 3. Normalized Persistence in G1 and G2.

G1 G2

NP � 0.2 65 (0.2%) 6891 (57.5%)

0.2 <NP< 0.8 1096 (3.2%) 1975 (16.5%)

NP � 0.8 33141 (96.6%) 3119 (26.0%)

At the end of the 5-month period, BGP updates have accumulated a graph that we

decompose into two parts. One subgraph, G1, is the links in common with a topology

extracted from a BGP table collected from RouteViews at the end of the 5-month period.

The second subgraph G2 is the graph remaining by removing the links in G1. Table 3 shows

the number of links with NP � 0.2, 0.2 <NP< 0.8, and NP � 0.8 in G1 and G2. Indeed, only

0.2% of the links in G1 have NP � 0.2, confirming that BGP tables capture only the AS

connectivity seen at steady state. In contrast, most links in G2 have NP � 0.2, exhibiting

that most additional links found in BGP updates appear only during BGP turbulence.

3.5 Topological Analysis

Ultimately, we want to know what new information we learn from BGP updates about the

AS topology of the Internet, e.g., where the new links are located and how the properties of

the graph change. A handful of graph-theoretic metrics have been used in the literature to

evaluate the topological properties of the Internet. We choose to evaluate two representative

metrics of important properties of the Internet topology:

1. Joint Degree Distribution (JDD). The JDD M(k1, k2) of a graph is another structural

metric that gives the total number of links between k1-and k2-degree nodes. In other

words, JDD describes the placement of links in a graph with respect to the degrees

of their adjacent nodes.
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2. Betweenness Distribution of AS links. Given a graph G(V, E), the betweenness B(e)

of link e ∈ E is defined as:

B(e) =
∑

i j∈V

σi j(e)

σi j
,

where σi j(e) is the number of shortest paths between nodes i and j going through

link e and σi j is the total number of shortest paths between i and j. With this defi-

nition, link betweenness is proportional to the traffic load on a given link under the

assumptions of uniform traffic distribution and shortest-path routing.

We first examine the JDD distribution of the two graphs. Figure 19, compares the JDD

of the links in Gu with the JDD of the links that are present in Gu but not in Gt. The overall

structure of the two contourplots is similar, except for the differences in the areas of links

connecting low-degree nodes to low-degree nodes and links connecting medium-degree

nodes to medium-degree nodes (the bottom-left corner and the center of the contourplots).

The absolute number of such links in Gu − Gt is smaller than in Gu, since Gu − Gt is a

subgraph of Gu. However, the contours illustrate that the ratio of such links in Gu −Gt to

the total number of links in Gu − Gt is higher than the corresponding ratio of links in Gu.

Figure 20 depicts the contourplot of the ratio of the number of links in Gt over the number

of links in Gu connecting ASs of corresponding degrees. The dark region between the 0.5

and 1.5 exponents, which correspond to AS degrees of 3 and 32 respectively, on the x and y

axes highlights that BGP updates find more links between low and medium-degree ASs.

Such ASs are typically small and reside in the “periphery” of the Internet AS topology.

Thus, we find that the additional AS links we capture from BGP updates reside between

small and medium size ASs.

Then we examine the link betweenness of the AS links. Figure 21 illustrates the be-

tweenness distribution of Gu and Gt and reveals that our updates-constructed graph has

more links with small betweenness. Links with small betweenness are links that do not

carry substantial traffic in a uniform traffic communication model. These links are ex-

pected to have a low traffic load, which points to backup AS links and links used for local
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communication in the periphery of the Internet.

Overall, our topological analysis shows that our more complete graph constructed from

BGP updates has more links between low- and medium-degree nodes and more back-up

links with respect to table-derived topologies.

3.6 Conclusion

In this work we exploited the previously unharnessed topological information that can be

extracted from a well-known and easily accessible source of Internet routing data. We

found that BGP updates reveal a significant portion of new topological data, which are

not captured from the typically used BGP tables. We compared the temporal properties of

AS links that appear in BGP tables with AS links that appear in BGP updates. We found

that a large part of the AS links captured from BGP updates appear only for short time

intervals during BGP convergence and that they are usually not captured from BGP tables.

By accumulating BGP updates over a long time period we constructed an AS topology that

is substantially larger than topologies constructed from BGP tables alone. We analyzed

the more complete AS topology and showed that most of the new links discovered from

BGP updates connect low- and medium-degree ASs, suggesting AS links used for backup

purposes and local communication in the periphery of the Internet.
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CHAPTER 4

AS RELATIONSHIPS

4.1 Introduction

The Internet is composed of thousands of ISPs that operate individual parts of the Inter-

net infrastructure. ISPs engage in both formal and informal relationships to collectively

and ubiquitously route traffic in the Internet. These relationships are usually realized in

the form of business agreements that translate into engineering constraints on traffic flows

within and across individual networks participating in the global Internet routing system.

Accurate data on the structure of actual relationships among ASs is required for many

research efforts concerned with performance, robustness, and evolution of the global Inter-

net. Examples of both research and operational tasks that cannot neglect AS relationships

include: 1) realistic simulations trying to model path inflation effects caused by routing

policies; 2) understanding how packets are routed in the Internet and how to optimize Inter-

net paths by analyzing existing deficiencies; 3) development of more scalable interdomain

routing protocols and architectures, like HLP [74], that take into account the structure of

AS relationships to optimize their performance; 4) evaluating how AS relationships affect

the evolution of the Internet infrastructure and constructing economy-based models of the

global Internet growth [75, 76]; 5) analysis of the spectrum of BGP configuration scenarios

in order to develop more expressive routing protocols and configuration languages; 6) in-

ference of AS paths in the Internet [77]; 7) modeling the structure of routing tables and

developing synthetic routing tables needed for simulations of routing table lookup algo-

rithms [78]; 8) development of better topology generators that account for the topological

idiosyncrasies associated with AS relationships [79]; 9) selection of data centers for server

replicas by measuring the origin of traffic to existing servers and evaluating connectivity

and AS relationships of candidate data centers [80]; 10) selection of peers or upstream

providers based on connectivity and AS relationships of candidate ISPs.
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The first contribution of this work is development of new heuristics to infer AS relation-

ships in the Internet using data from: 1) Border Gateway Protocol (BGP) routing tables,

and 2) the Internet Routing Registries (IRRs) [68]. Our heuristics stem from identification

and resolution of limitations in previous AS relationship inference efforts. The problem

of inferring AS relationships was first introduced by Gao [4], who proposed an inference

heuristic (LG) that identified top providers and p2p links based on AS degrees; and c2p and

s2s links by assuming that every BGP path must comply with the valley-free model. This

work was followed by Subramanian et al. (SARK)1 [81], Di Battista et al. (DPP) [82], and

Erlebach et al. (EHS) [83], who developed a consistent and elegant mathematical formu-

lation of the inference problem (SARK) and found rigorous solutions (DPP, EHS) to the

problem formulated by SARK. The latter solutions (DPP, EHS) both retreated to inferring

only c2p relationships after demonstrating that it was in fact impossible to rigorously in-

fer p2p relationships within the SARK problem formulation framework. In our work, we

show that the DPP and EHS solutions frequently infer obviously incorrect relationships,

e.g., ones with well-known tier-1 ISPs identified as customers of small ASs. We analyze

and discuss the root causes of these limitations. Based on our findings, we propose new,

improved heuristics that mitigate these problems and infer not only c2p relationships, but

also p2p and s2s.

The second contribution of this work is a survey with organizations operating ASs and

retrieval of valuable information on the types of AS relationships they have with other

networks. We use this information to validate the AS relationships we infer. We find that

our heuristics are accurate in inferring c2p (96.5% accuracy), p2p (82.8% accuracy), and

s2s (90.3% accuracy) relationships. We also analyze the actual AS relationships that we

learned from our survey and find that AS topologies constructed from BGP tables miss up

to 86.2% of the adjacencies of the surveyed ASs. Moreover, BGP tables contain only 38.7%

of the p2p adjacencies from the survey, while they capture 86.7% of the c2p adjacencies. To

1The acronyms indicated in parathesis are used to refer to the heuristic introduced in the corresponding
study.
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the best of our knowledge, our study is so far the most exhaustive AS relationship validation

effort, and it is the first to use company-verified data to measure the completeness of AS

topologies. Our findings should induce caution in the popular treatment of BGP-derived AS

topologies as substantially complete or representative of the inter-AS connectivity structure

of the Internet.

Finally, in pursuit of deeper understanding of real-world dynamics of the macroscopic

Internet topology, we automate our heuristics and introduce an AS relationship repository

where we archive inferred AS relationships on a weekly basis. We utilize our inferences to

compute ranking of ASs based on inferred AS relationship hierarchies. We develop a web

site [84] where we make our AS ranking and relationships publicly available.

In the next section, we introduce our heuristics. In section 4.3 we apply them to Internet

data and compute the types of relationships in a snapshot of the AS topology. In section 4.4,

we describe the results of our survey, validate our heuristics, and analyze the true AS re-

lationships that we learned from the participating ASs. In section 4.5, we briefly discuss

our ranking of ASs based on inferred AS relationship hierarchies, and introduce the web

site where we make our ranking and relationship data publicly available. In section 4.6, we

discuss previous approaches to inferring AS relationships and highlight our improvements.

We conclude in section 4.7.

4.2 Inference Heuristics
4.2.1 [Mis-]inferring c2p relationships

SARK [81] cast the inference of AS relationships into the Type-of-Relationships (ToR)

combinatorial optimization problem: given an undirected graph G(V, E) derived from a set

of BGP paths P, assign the edge type (c2p or p2p; s2s relationships are ignored) to every

edge in G such that the total number of valid paths in P is maximized. The ToR objective

of maximizing the number of valid paths implies that not all the paths in P are necessarily

valid. Invalid paths may result from BGP misconfigurations or from BGP policies that

are more complex and do not fall into the c2p/p2p/s2s classification. We call these paths
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701:2334

4926:4 6461:415

2914:525

174:839

14318:14270:34387:1

11334:2

1755:1915056:11 3216:105

13099:21:31239:1703

7660:308151:60

P1: 5056 701 6461 4926 4270 4387
P2: 5056 701 4926 6461 2914 174 14318
P3: 7660 1 5056 701 11334
P4: 5056 1239 1 1755 3216 13099
P5: 5056 1 1239 8151
P6: 1239 5056 701 11334

Figure 22. Instance of ToR problem that does not admit a solution. For each AS, we also note its AS
degree as seen in our AS topology described in section 4.3.

anomalous. SARK speculated that ToR is NP-complete and developed a heuristic solution,

later improved by DPP [82] and independently by EHS [83]. DPP and EHS proved that

ToR is NP-complete, developed rigorous approximate solutions to the problem and proved

that it is not possible to infer p2p relationships in the ToR formulation. For this reason,

their solutions annotate all the edges in G as c2p, ignoring p2p and s2s relationships.

Although the ToR problem has been studied substantially, we find that it is subject to

erroneous inferences. We demonstrate these limitations in the following three examples.

Example 1. In cases when there are multiple solutions with the same number of valid

paths, ToR has no means to deterministically select the most realistic solution. Instead, it

randomly selects one of the available solutions. Consider the real-world instance of the

ToR problem in Figure 22, which was used in [82] to introduce ToR. We represent a possi-

ble solution to the ToR problem by introducing orientation to every edge from the customer

AS to the provider AS. We can check that in the considered example, there are four distinct

orientations of all edges, each maximizing the number of valid paths, but rendering one of
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P1, P2, P4, or P5 as invalid. ToR has thus to arbitrarily select one of four possible solu-

tions. Consider another example of the same type. Let path p ∈ P be a sequence of edges

i1, i2, . . . , i|p|−1, j ∈ E, i.e., p = {i1i2 . . . i|p|−1 j}. Suppose that the last edge j appears only in

this one path p and that it is from a large provider (such as UUNET) to a small customer.

Suppose that other edges i1, i2, . . . , i|p|−1 appear in several other paths and that they are

correctly inferred as c2p. In this scenario both orientations of edge j (i.e. correct and incor-

rect: p2c and c2p) render path p valid. Edge j cannot thus receive a deterministic direction

from ToR. We find many incorrect inferences of this type in our experiments. Similarly,

in [85], several well-known large providers such as UUNET, AT&T, Sprint, Level3, are

inferred as customers of smaller ASs such as AS1 (degree 3), AS2685 (2), AS8043 (1) and

AS13649 (7), respectively.

Example 2. The AS degree sequences in the paths shown in Figure 22 reveal that path

P6 is anomalous, since there is a small degree AS that appears to transit traffic between

two large degree ASs. (AS 5056 with degree 11 appears to transit traffic between ASs 701,

UUNET, and 1239, Sprint.) The ToR solution, however, will only have a single invalid

path, one of P1, P2, P4, or P5, treating path P6 as valid. To make P6 valid, AS 5056 must

be inferred as a provider of either UUNET or Sprint, or a provider of both, all of which

is known to be incorrect. The key point is that while it is reasonable to assume that most

AS paths in the Internet have a hierarchical structure, and that non-hierarchical AS paths

are uncommon (and often due to misconfiguration), it is quite erroneous to believe that a

solution maximizing the number of valid paths is correct.

Example 3. Another problem with SARK/DPP/EHS is that they ignore s2s relation-

ships, a simplification that results in proliferation of erroneous inferences. Consider a

path p ∈ P, p = {i j}, i, j ∈ E, and suppose that in reality i is a sibling edge that appears

in multiple paths and that j is a c2p edge that appears only in path p. ToR solutions can

classify edge i either as c2p or p2c depending on the structure of other paths containing

it. If this structure results in directing i as p2c, then to make path p valid, the algorithm
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erroneously directs edge j as p2c, too.

The above examples illustrate that: 1) trying to simply maximize the number of valid

AS paths results in incorrect AS relationship inferences; 2) one should not treat all paths

equally, regardless of the AS degree sequence in a path; 3) it is necessary to account for s2s

relationships.

4.2.2 Improving the integrity of c2p inferences

In this subsection we show how we address these limitations and identify c2p relationships

more accurately. Instead of solely relying on the valley-free model, we develop a heuristic

that also exploits the structure of AS paths reflected by the degrees of the ASs.

More specifically, for every edge i in G we introduce a weight f (d−i , d
+
i ) that is a function

of the degrees d−i and d+i (d−i � d+i ) of the ASs adjacent to the edge i. The weight f is large

when there is a significant degree difference (d−i � d+i ) between these neighboring ASs,

and small otherwise. In directing the edges of the graph, we use f in the following way:

when an edge i is directed from a small degree AS to a large degree AS, it earns a bonus

bi equal to f (d−i , d
+
i ), otherwise bi = 0. We then formulate the inference problem as the

following multiobjective optimization problem:

O1 Maximize the number of valid paths in P;

O2 Maximize the sum
∑

i∈E bi.

This formulation has two features that build upon the strengths of previous work: 1) it

respects the valley-free model and tries to maximize the number of valid paths in the input

path set P, similar to SARK, DPP and EHS; 2) it uses the implicit knowledge embedded

in AS degree information, similar to LG, to assign directions to edges along the node de-

gree gradient, meaning that edge orientations collinear with this gradient are given certain

weighted preference. In other words, the main idea behind our formulation is that while we

still try to maximize the number of valid paths, we also use the AS degree information to

detect paths that are anomalous and that we should not try to make valid. In contrast, the
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ToR formulation solely tries to maximize the number of valid paths, treating all AS paths

as equivalent, regardless of the AS degree sequences in the paths.

These two methodological objectives can be conflicting. The reason is that it is erro-

neous to assume that all or a maximal number of AS paths follow the valley-free model.

To illustrate, consider the example in Figure 22. According to objective O1, at least one

of the edges 1239-5056 or 5056-701 in path P6 is erroneously directed against the node

degree gradient in order to render P6 valid. By introducing O2, we relax the first objec-

tive’s requirement for a maximal number of valid paths. We can thus accept an invalid

orientation for P6 based on the strong degree-gradient indication (O2) that neither 1239 nor

701 are customers of 5056. In simpler words, comparing to the original ToR formulation,

we relax the requirement to have a maximal number of valid paths and invoke additional

information implicitly present in observed AS degrees in order to infer AS relationships

more realistically.

To explore the tradeoff between the objectives O1 and O2, we introduce a parameter α

and we weight O1 by α and O2 by 1−α. Then, by varying α in the region between 0 and 1,

we control the relative preference of the two objectives.2

To solve the newly formulated problem, we map the c2p or p2c relationship of edge i

to boolean variable xi as follows: assuming an arbitrary initial direction of i, assignment of

true to xi means that edge i keeps its original direction, while assignment of false to xi re-

verses the direction of i. We find assignments to variables xi by reducing the multiobjective

optimization problem to the MAX2SAT problem.

MAX2SAT is a boolean algebra problem: given a set of clauses with two boolean

variables per clause li ∨ l j, find an assignment of values to variables maximizing the num-

ber of simultaneously satisfied clauses [87]. If the clauses are weighted, the problem is

to maximize the sum of weights of the simultaneously satisfied clauses. MAX2SAT is

2In the terminology of multiobjective optimization [86], we consider the simplest scalar method of
weighted sums.

56



NP-complete, however there exists a good approximation [88] that uses semidefinite pro-

gramming (SDP) to deliver an approximation ratio of 0.94.

If we are concerned only with O1, then we can use DPP or EHS’es reduction of ToR to

MAX2SAT.3 Using this reduction, we get a set of xi ∨ x j clauses, where i, j ∈ E.

To reduce O2 to MAX2SAT, we introduce clause xi ∨ xi for every edge i ∈ E that has an

initial direction along the node degree gradient, and a clause x̄i ∨ x̄i for every edge with an

initial direction against the node degree gradient. We thus ensure that if an edge is directed

along the node degree gradient, then the corresponding clause is satisfied. To make our

MAX2SAT instance equivalent to O2, we weight every clause by bi = f (d−i , d
+
i ).

We then reduce the resulting multiobjective optimization problem to MAX2SAT by

refining the weights of the clauses. We weight the O1 clauses by wi j(α) = c1α. The normal-

ization coefficient c1 is determined from the condition
∑

i� j wi j(α) = α ⇒ c1 = 1/m1,

where m1 is the number of O1 clauses. For the O2 clauses, we use wii(α) = c2(1 −
α) f (d−i , d

+
i ), where the normalization coefficient c2 is determined from the condition

∑
i wii(α) =

1 − α. In our notation, we fix the following weights:

wi j(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1α for O1 clauses,

c2(1 − α) f (d+i , d
−
i ) for O2 clauses.

(3)

With this selection of wi j, we can vary α to explore the tradeoff between the two objectives

and adjust it to the region or the point that results in the most accurate AS relationship

inferences. We discuss the optimal value of α in section 4.3.3.

Function f injects dependence on AS degrees into our inference process. This func-

tion should take large values when its two degree arguments differ significantly, otherwise

its values should be small. We note that a given difference in AS degrees is of different

importance for small ASs and for large ASs. For example, a degree difference of 50 says

more about the relative size of two ASs of degrees 1 and 51, than of 3000 and 3050. For

3For brevity, we do not discuss reduction of O1 to MAX2SAT. See [82, 83] for details.
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this reason, we normalize the degree difference in f to the relative node degree gradi-

ent (d+i − d−i )/(d+i + d−i ). In addition, topology graphs derived from BGP data provide only

approximations of the true AS degrees and tend to underestimate degrees of small ASs. In

contrast, they yield more accurate degree approximations for larger ASs [89]. To model

this effect, we multiply the relative node degree gradient by a logarithmic factor reflecting

our stronger confidence in accuracy of large AS degrees, compared to small ones. We thus

fix f to:

f (d+i , d
−
i ) =

d+i − d−i
d+i + d−i

log(d+i + d−i ). (4)

In summary, our formulation of the c2p relationship inference problem exploits the

structure of the AS paths to address the limitations that we illustrated in Examples 1 and 2

of section 4.2.1. We resolve the limitation of Example 3 by independently inferring s2s

relationships, as we explain in section 4.2.4. We then remove s2s edges from both graph G

and path set P to avoid proliferation of incorrect c2p inferences. We solve the multiobjec-

tive optimization problem and provide a comprehensive evaluation of our c2p solution in

section 4.3.3.

4.2.3 Inferring p2p relationships

The inference of p2p relationships is more challenging than the inference of c2p relation-

ships. We first need to emphasize that as both DPP and EHS show, it is impossible to infer

p2p relationships within the ToR problem formulation. Indeed, a valid path can have only

one p2p link adjacent to the top provider in the path. If we replace this p2p link with a

c2p or p2c link, the path remains valid, as it still has a valley-free, hierarchical structure. It

follows, that by solving ToR, i.e., maximizing the number of valid paths, we cannot deter-

ministically infer any p2p relationships at all. Xia and Gao [90] confirm this finding that

LG and SARK’s p2p inference heuristics yield low accuracy of, respectively, 49.08% and

24.63% of correct p2p inferences.

For the inference of p2p relationships in this work, we partially rely on LG and DPP
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to develop an improved heuristic that combines LG and DPP’s strengths. We start from a

set of BGP paths P and extract graph G from it. Initially, we preprocess P to identify links

that are not of p2p type (non-p2p). According to the valley-free model, any path can have

at most one p2p link and this link must be adjacent to the top provider of the path. We thus

parse all paths in P and deem all links that are not adjacent to the top provider in a path as

non-p2p. We determine the top provider in a path as the highest degree AS in the path.

LG uses a similar but not identical approach. LG assumes that a p2p link can lie only

between the highest degree AS and its highest degree neighbor. LG deems such links as

p2p if the degree ratio between the two ASs is smaller than an external parameter, taken to

have values of 60 or∞. This method is aggressive in excluding non-p2p links. To illustrate,

we consider an AS path A-B-C-D, where AS degrees are dA = 10, dB = 500, dC = 1000,

and dD = 501. LG allows only link C-D to be a p2p link and deems the others as non-

p2p. However, the degree difference between B and D is too small to make this judgment

reliably. Our heuristic addresses this shortcoming by considering both B-C and C-D as

candidate p2p links.

We denote by R the set of possible p2p edges constructed this way. We then introduce

a weight g(d−i , d
+
i ) for every edge i ∈ R. Weight g is large when the ASs adjacent to edge i

have similar degrees, and small otherwise. We thus encode our higher (lower) confidence

that a couple of neighboring ASs are peers when their degrees are similar (dissimilar). We

select weight g to complement weight f we used for the inference of c2p links:

g(d−i , d
+
i ) = 1 − c3 f (d−i , d

+
i ), (5)

where c3 = 1/maxi∈E f (d−i , d
+
i ) is a normalization coefficient.

Next, we remove from R any links left from the previous step that connect ASs with

too large degree differences d−i � d+i . More specifically, we introduce threshold we ∈ [0, 1]

and remove every edge i with g(d−i , d
+
i ) < we. The LG heuristic uses a similar threshold and

empirically selects its value of 60 or ∞. Instead, to choose a proper value for we, we use

information we learn from our survey. For each true p2p and c2p link present both in our
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survey results and in R, we examine what selection of we leads to: 1) erroneously excluding

a true p2p link from the set of possible p2p links R, meaning that g(d−i , d
+
i ) < we for a true

p2p link; and 2) erroneously including a true c2p link in the set of possible p2p links R,

meaning that g(d−i , d
+
i ) > we for a true c2p link. We find that the value of we that minimizes

errors is g(3, 545). The need for external threshold we is unfortunate, but the large degree

difference between d− = 3 and d+ = 545 indicates that this threshold simply cleans R of

links that are unlikely to be of p2p type.

At the last step of our p2p inference process, we examine paths in P with more than one

edge from R. Such paths violate the valley-free model, and we select as the final set of p2p

links a subset of R that does not contain links violating the valley-free model. DPP showed

that the problem of finding a maximal set of p2p links that do not introduce invalid paths

in P is equivalent to the Maximum Independent Set (MIS) problem. In the MIS problem,

we are given a graph with nodes in N and arcs in A and we need to find the maximum

subset of N such that no two nodes of the subset are joined by an arc in A. To make a

more informed selection of p2p links, we utilize our weights g and turn the MIS problem

into the Maximum Weight Independent Set (MWIS) problem. By solving MWIS, we find

a maximal weight subset of R that does not introduce invalid paths into P. Selecting a

maximal weight subset of R, we give preference to edges with large weights g because

these edges are more likely to be of p2p type. We solve the NP-complete MWIS problem

by means of a polynomial time approximation from [91]. Using the described approach,

we remove from set R links that introduce invalid paths and obtain our final set F of p2p

links.

4.2.4 Inferring s2s relationships

Sibling links connect ASs belonging to the same organization. Communication between

s2s ASs is not subject to the export restrictions found in c2p and p2p relationships, e.g.,

rules such as “prefixes learned from a peer cannot be announced to other peers” do not

apply for s2s ASs. The affiliated nature of such ASs enables them to implement much
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more flexible and diverse policies. For this reason, it is difficult to infer s2s relationships

from BGP data. Instead, we utilize the IRR databases to infer s2s links. Specifically, we

track the organization to which each AS is registered in the databases and create groups of

sibling ASs registered to the same organization. In several cases sibling ASs are registered

to syntactically different organization names which still represent the same organization

by other measures. For example, ASs 7018 and 3339 are registered to “AT&T WorldNet

Services” and “AT&T Israel”, respectively. To find such cases, we examine the organization

names and create a dictionary of organization name synonyms. Then, we infer as s2s

the ASs that are registered to the same organization name or to synonymous organization

names. The strength of this approach is that it takes advantage of explicit information

contained in the IRR databases. Although we realize the information of these databases is

not always up-to-date or perfectly accurate, the organization names change less frequently

than BGP policies and other more dynamic attributes. We can therefore treat the IRR

databases as a source of publicly available information, which is reasonably accurate for

the inference of s2s relationships.

4.2.5 Summary of inference heuristics

In summary, our inference heuristics take as input a set of BGP paths P and a corresponding

graph G(V, E) and proceed with the following three consecutive steps:

1. Use IRRs to infer s2s relationships and create set S ⊂ E of s2s links;

2. Feed P, G, and S into the c2p heuristic assigning c2p/p2c relationships to the links

in E \ S ;

3. Use P and G to infer p2p relationships and to create set F ⊂ E of p2p links.

The final answer is set S of s2s links, set F \ S of p2p links, and set E \ F \ S of c2p links.
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Figure 23. Persistency distribution of paths in ∪k=1...15Pk.

Table 4. Number of paths, links and ASs in the stable path set versus averages of corresponding num-
bers over Pk, k = 1 . . . 15

Stable paths P (decrease) Average over Pk

Paths 733,931(-12.49%) 838,734
Links 38,282(-4.34%) 40,023
ASs 18,943(-1.87%) 19,305

4.3 Applying Heuristics to the Data
4.3.1 Collecting and sanitizing the data

We first construct the input BGP path set P and the corresponding graph G(V, E). Anoma-

lous paths caused by BGP misconfigurations occur quite often and affect 200-1200 BGP

table entries daily [5]. For this reason, we first sanitize the input data to mitigate the impact

of misconfigurations.

We collected BGP tables from RouteViews [49], at 8-hour intervals, over the period

from 03/01/2005 to 03/05/2005, for a total of 15 BGP table instances. After cleaning out

AS prepending and AS sets, each BGP table yields a path set Pk. We define the persistency

of a path p ∈ ∪15
k=1Pk as the number of sets Pk containing p. Figure 23 illustrates the

persistency distribution of the the paths in ∪15
k=1Pk. The distribution (note the log scale

on y-axis) shows that although the majority of the paths appear in most of the 15 sets, a

significant number of paths appear only in a few of the sets. Since BGP misconfigurations

are temporal events, we select as input P to our algorithm the paths that appear in all of the

15 sets Pk. We call P the stable path set and the paths that are not selected the unstable

path set.

In Figure 4 we compare the number of paths, links and ASs in the stable paths set with

62



Table 5. Number of unique degree-valleys and total number of degree-valleys found in stable and un-
stable path sets.

window w
Unique degree-valleys Total degree-valleys

Stable paths Unstable paths Stable paths Unstable paths

5 206 241 (+17%) 1290 2368 (+83.6%)
10 167 208 (+24.6%) 1178 2290 (+94.4%)
15 150 190 (+26.6%) 1135 2135 (+88.1%)
20 141 171 (+21.2%) 1119 1609 (+43.8%)

the corresponding averages over Pk. Even though P is 12.49% smaller than the average size

of Pk, our filtering of unstable paths does not entail significant information loss in terms

of number of links (4.34% reduction) and ASs (1.87% reduction). Next, we verify that

unstable paths include more misconfigurations than stable paths. We call as degree-valley

any AS sequence A-B-C with degrees dA, dB, and dC, such that both dA and dC are larger

than dB summed with a small window constant w (dA, dC > dB + w). The small window

constant w helps to filter out trivial differences between dB and dA, dC. Then, for both

the stable and unstable path sets, we randomly select 10,000 paths and count the number

of degree-valleys for different w. We repeat the random selection 100 times and show in

Table 5 the average number of unique degree-valleys and the average of the total number of

degree-valleys in the selected paths. The table illustrates that the number of degree-valleys

in the unstable paths is up to 94.4% larger than the number of degree-valleys in the stable

paths. This sharp increase of degree-valleys in the unstable paths indicates that unstable

paths contain significantly more misconfigurations.

4.3.2 Inferring s2s relationships

For the inference of s2s relationships we use the RIPE, ARIN, and APNIC whois databases,

collected on 06/10/2004.4 We analyze the databases according to the methodology outlined

in section 4.2.4 and find 1,943 organizations that own multiple AS numbers. We then

examine the input graph G and discover 177 edges between ASs that belong to the same

4Since we extract from these databases the information that changes slowly with time, the date of the
database dump is not critically important.
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organization (|S | = 177).

4.3.3 Inferring c2p relationships

We implement our technique detailed in section 4.2.1, reusing parts of the code from [83],

utilizing the LEDA v4.5 software library [92], and a publicly available SDP solver DSDP [93].

We remove edges inferred as s2s from E and compute orientations of the remaining edges

in E for different values of α. We vary α, sampling densely the interval of its values be-

tween 0 and 1.

To evaluate the computed orientations, we introduce a metric called reachability. We

define reachability of AS X as the number of ASs one can reach from AS X traversing

only p2c edges. We then sort all ASs by their reachability, and group ASs with the same

reachability into levels. ASs at the highest level have the largest trees of customer ASs.

ASs at the lowest level have the smallest reachability. We then define the position depth of

AS X as the number of ASs at levels above the level of AS X. We call the position width

of AS X the number of ASs at the same level as AS X. The reachability of an AS has the

following two properties: 1) it is determined entirely from the inferred c2p relationships;

and 2) it induces a natural hierarchy of ASs based on the size of their customer trees. These

two properties enable us to perform initial validation of the inferred c2p relationships by

matching the top ASs in the hierarchy against the empirically known largest ISPs in the

Internet.

In Table 6 we examine the top five ASs in the hierarchies calculated for α = 0 and α = 1.

When α = 0, the top five positions in the hierarchy are occupied by the well-known ISPs:

UUNET, AT&T, Sprint, Level 3, and Qwest. On the other hand, when α = 1, these posi-

tions are taken by ASs of very small degrees, e.g., AS13987 of degree 3. The columns in

the table track the position of these ASs in the hierarchies induced for α equal to 0, 0.01,

0.05, 0.1, 0.5, and 1. We observe that as α gets closer to 1, the well-known ASs get away

from the top of the hierarchies, highlighting an increasingly stronger deviation from reality.

This deviation is maximized when α = 1. Recall that when α = 1, our problem formulation
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is equivalent to the original ToR formulation, signifying the limitations of AS relationship

inference based solely on maximization of the number of valid paths.

The induced hierarchies suggest that solutions with values of α close to 1 are incorrect

since they propel small ASs to the top of the hierarchy, while well-known ISPs sink to lower

positions. On the other hand, the percentage of invalid paths, listed at the top of Table 6,

attains its maximum of 12.75% when α = 0. The latter observation suggests that the solu-

tion with α = 0 is also incorrect since it conflicts with the valley-free routing model. Taken

together, these two observations indicate that correct solutions to our multiobjective opti-

mization correspond to intermediate values of α that result both in realistic hierarchies and

in small numbers of invalid paths. We have to emphasize that there is no oracle, intrinsic to

the multiobjective optimization problem formulation, that would reveal to us the value of α

reflecting the “right” balance between the two objectives. As always with multiobjective

optimization [86], we have to exercise our external expert knowledge of data specifics to

sift out the most realistic relative weight of the objectives. For our problem, we formalize

this expert insight as follows: we search for the value of α corresponding to the smallest

percentage of invalid paths among all the solutions that have only well-known ISPs at the

top of the hierarchy. In our experiments, this most realistic value of α is 0.01, cf. Table 6.

4.3.4 Inferring p2p relationships

We implement our p2p heuristic detailed in section 4.2.3, using the QUALEX [91] solver

to approximate the MWIS problem. We then infer p2p relationships in the AS topology G

and construct the set F of p2p links. After removing from F the set S of s2s links, we

obtain our final answer that contains 3, 553 p2p links (|F \ S | = 3, 553).

4.3.5 Summary of experiments

In Table 7, we show the summary statistics of our experiments. Out of 38, 282 links in the

original AS topology G(V, E), we infer a majority of 34, 552 (90.26%) links as c2p, 3, 553

(9.28%) links as p2p, and only 177 (0.46%) links as s2s.
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Table 7. Summary statistics of the inferred relationships.
Total c2p links p2p links s2s links
|E| |E \ F \ S | |F \ S | |S |

number of links 38, 282 34, 552 3, 553 177
percentage 100% 90.26% 9.28% 0.46%

4.4 Survey and Validation

Measuring, understanding, and modeling AS relationships in the Internet are challenging

tasks hampered by the fact that these relationships are sensitive business information and

generally considered private by ISPs. Nevertheless, without validation against truth, we

have no way of evaluating the integrity of a model. For this reason, we validated our

inferences via private communications with engineers from the ASs under observation.

We contacted several ASs ranging from large continental or national ISPs, to content

providers, and university networks. We sent the list of AS relationships that we inferred

for a given AS to this AS’s network administrator, peering negotiator, informed engineer,

or researcher. We included three questions in our email inquiry:5

Q1: For the listed inferred AS relationships, specify how many are incorrect, and what are

the correct types of the relationships that we mis-inferred?

Q2: What fraction of the total number of your AS neighbors is included in our list?

Q3: Can you describe any AS relationships, more complex than c2p, p2p, or s2s, that are

used in your networks?

We performed the survey in the period between 06/07/05 and 06/30/05. We received

answers from 38 out of the 78 ASs we contacted. Among these, 5 were tier-1 ISPs, 13

were smaller ISPs, 19 were universities, and 1 was a content provider. Based on the replies

we collected from the surveyed ASs, we learned the true relationship types for 3,724 of

5We also offered to sign a non-disclosure agreement (NDA) that protected peering information from
being released to the public and regulated our data analysis to anonymizing the participating ASs. Only
one organization (a government agency) required an NDA and two commercial ISPs did not have a policy in
place (or the policy was not) to deal with such requests. They still helpfully provided us with general answers
regarding what percent of relationships were mis-inferred.
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Table 8. Validation of the inference results using the survey data. Each row shows the total number,
number of correct, and percentage of correct inferred AS relationships.

links
inferred inferred inferred
c2p links p2p links s2s links

total number of 3,724 3,070 623 31
number of correct 3,508 2,964 516 28

percentage of correct 94.2% 96.5% 82.8% 90.3%

our inferred AS relationships, which corresponded to 9.7% of the total number of links

in our graph. We learned only 54 true relationships from the universities, whereas all the

remaining relationships came from the ISPs and the content provider. Among the 3,724

verified AS relationships, 82.6% were c2p, 16.1% were p2p, and 1.2% were s2s.

4.4.1 Validation of inferred AS relationships

We validate our heuristics by counting the number of correctly inferred AS relationships.

Our validation results in Table 8 highlight that our model correctly infers 96.5% of c2p,

82.8% of p2p, and 90.3% of s2s relationships. The total percentage of correctly inferred

AS relationships is 94.2%. This accuracy level substantiates that our heuristics produce

reliable and veracious inferences of the true types of AS relationships in the Internet.

4.4.2 Missing AS links

In this section we leap forward to analyze the relationships of the full set of adjacencies

of the participating ASs, including the links that we do not see in BGP tables and, con-

sequently, in our graph. The second question in our survey asks ASs for the ratio of the

number of their neighbors in our AS topology data to the total number of AS neighbors

they actually have. Out of the 38 ASs, 27 (3 of which were tier-1 ISPs) provided us not

only with this ratio, but also with the types of relationships their ASs have with the missing

neighbors. We analyze the 1,114 true adjacencies of these ASs and compared them with

the BGP table data.

In Figure 24 we plot the per-relationship breakdown of the true and observed adjacen-

cies of the ASs. Out of a total of 1,114 adjacencies, BGP tables contain only 552. The p2p,
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c2p, and s2s bars in Figure 24 lead us to the following observations.

1) We only see 38.7% out of the 865 p2p links, whereas we see 86.7% out of the 218

c2p links, and 93.3% of the 30 s2s links. This gap demonstrates that BGP-derived AS

topologies miss a notable percentage of p2p links. The reasons these links are missed stem

from the intrinsic nature of p2p relationships. In a p2p relationship, prefixes learned from

a peer AS are not advertised to any providers. Consequently, a link between two p2p ASs

is not by default seen (as a part of some AS path) at any upstream ASs. It follows that we

can only observe a p2p link in the BGP tables of the customers or siblings of the p2p ASs.

The periphery of the Internet has many small interconnecting customer and sibling ASs.

Thus, in order to observe a significant portion of true p2p links in the periphery, we should

have great numbers and variety of BGP tables from these small ASs. Therefore, it becomes

evident that it is practically hard to capture p2p links, or even some representative statistics

of p2p links, using solely BGP tables with small number of data feeds.

2) The majority of the 1,114 true adjacencies are in reality p2p: 865 (77.6%) are p2p,

while only 218 (19.6%) and 30 (2.7%) are c2p and s2s, respectively. We thus face a surpris-

ingly large number of p2p relationships. These relationships appear to be popular among

small and medium size ASs. More surprisingly, we find that p2p links are also very com-

mon for tier-1 ISPs. Some tier-1 ISPs have several dozens or even hundreds of p2p rela-

tionships, frequently with ASs of smaller size. This finding contradicts with the common

belief that tier-1 ASs form a rich club and have p2p relationships only with other tier-1 ASs

in the rich club. In a sharp contrast with this belief, we observe that tier-1 ISPs can have

more open policies and more sophisticated incentives to establish peering relationships

with smaller ISPs.

Next, we seek to evaluate how representative the BGP-derived AS degrees are of the

true AS degrees. In Figure 25 we plot the number of true AS adjacencies of the surveyed

ASs versus the number of AS adjacencies we observe in our BGP data. For few selected

ASs that exhibit the highest percentage of missed adjacencies, we mark this percentage in
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the figure. We make the following observations.

1) At the bottom-left corner of Figure 25, 20 ASs6 that are mainly university networks,

have their true numbers of adjacencies close or identical to the measured numbers of adja-

cencies. We find that most of the adjacencies of these small ASs are c2p links. As we have

seen above, our AS topology captures c2p links relatively well.

2) Examining the rest of the diagram, we first observe that the percentage of missed

adjacencies can be as large as 86.2%. Degrees of a majority of the highly connected ASs

are under-sampled, half of them missing more than 70.5% links. Further examination of

the missed AS links reveals that most of them are of p2p type, which is consistent with Fig-

ure 24, and with our understanding that extensive peering not amenable to capture from few

BGP feeds can render BGP table-derived AS degrees a poor estimate of true AS degrees.

4.4.3 Complex AS relationships

The last question of our survey asks about more complex configuration scenarios the AS

may be using. From the responses we learn that although the majority of AS relation-

ships are simply c2p or p2p, in some cases their configurations are either more specialized

versions of the basic c2p or p2p types, or a hybrid of c2p and p2p (c2p/p2p).

For example, the backup provider relationship is a specialized variant of the basic c2p

relationship. In this relationship, a customer AS has a c2p relationship with a provider AS,

6Note that points (1,1) and (2,2) in the figure correspond to more than one AS.
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but this relationship is active, i.e., allows traffic to flow, only during an emergency situation

such as a disruption of connectivity to the main upstream provider of the customer AS. In

other words, the backup provider relationship is a temporally conditioned version of the

c2p relationship.

An example of a hybrid c2p/p2p relationship is when two ISPs interconnect at multiple

peering points and have different types of relationships at these points. For instance, two

ISPs can have a p2p relationship at a peering point in Europe and a c2p relationship at a

peering point in the U.S. Another flavor of a hybrid c2p/p2p relationship is when two ASs

have different types of relationships for different IP prefixes. In this case the ISPs may

have a p2p relationship for one set of IP prefixes and a c2p relationship for another set of

IP prefixes. The last two hybrid c2p/p2p relationships illustrate that there also exist spatial

and prefix-based aspects to AS relationships, conditional on either geographic location or

on a specific segment (IP prefix) of the address space.

In other words, based on the configuration descriptions we collected in our survey, we

conclude that AS relationships vary across the following three dimensions: space, time,
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and prefix. Therefore, to fully characterize a relationship between a pair of ASs, one has

to gain access to information identifying the ASs’ policy configurations per peering lo-

cation(s), per time, and per prefix. Such details would enable one to infer more complex

relationships, e.g., the hybrid c2p/p2p or specialized c2p relationships discussed above. Al-

though collecting macroscopic statistics on complex AS relationships is a daunting task, the

increasing availability of Internet routing data might make this task feasible in the future.

4.4.4 Lessons learned

Overall, analyzing the valuable data we collected in our survey, we make the following

observations:

1. Our inference heuristics perform exceptionally well in inferring AS relationships of

AS links observed from BGP tables. The overall accuracy is 94.2%.

2. p2p is the dominant type of AS relationships in the examined ASs, 77.6% of their

actual adjacencies being p2p.

3. AS topologies extracted from BGP tables substantially under-sample the number of

p2p links. In our data we see only 38.7% of the true p2p links present in the survey

data. The percentage of missing links per AS, i.e., the AS degree underestimate,

reaches 86.2%.

4. AS relationships vary across the following three dimensions: space, time, and prefix.

To completely characterize a relationship between two ASs, one needs to know their

per peering point, per time, and per prefix policy configuration details.

4.4.5 Limitations

We note that the data in our survey bears certain limitations and that our results should be

interpreted accordingly.

First, the self-selection aspect of the sampling of ASs may induce biases into the val-

idation, and the 3,724 links we used for validation corresponds only to 9.7% of the total
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number of links in our data. Although we acknowledge these limitations, we note that

providing rigorous validation of inferred AS relationships is an extremely challenging task

because of the difficulty in obtaining ground-truth data against which we can match our

inferences. In comparison with previous studies that mostly did implicit validation, we go

a step further: besides implicit validation in section 4.3.3, we also make an effort to collect

samples of the ground truth to perform explicit validation.

Second, our findings suggesting dominance of p2p links and high inaccuracy of BGP-

derived AS degrees are based on a limited set of data. For this reason, our results cannot be

interpreted as accurately representing the AS structure of the whole Internet. Indeed, our

research yields cases that contradict the common belief that BGP-derived topologies are

reasonably accurate and that the number of p2p links is much smaller than the number of

c2p links. We hope our findings will inspire further pursuit of representative statistics on

the number of p2p links in the Internet.

4.5 Repository of AS Relationships and AS Rank

To make our results easily accessible and practically useful for the community, we develop

an AS relationship repository where we archive the inferred AS relationships on a weekly

basis and make them publicly available. We also apply our inferences to rank ASs based

on ASs’ prominence in the hierarchy induced by the inferred relationships. We seek to

measure this prominence by the relative size of the Internet that a given AS can reach “for

free”, that is, following only p2c links. The prominence of an AS is then the cumulative sum

of prominence of the ASs in its customer tree, cf. Table 6. Users of our AS ranking service

have many options to tune their settings including options to: 1) measure prominence of

an individual AS by: a) the total size of the IP address space advertised by the AS, b) the

total number of the advertised prefixes, or c) just 1, meaning that all ASs are treated equal;

and 2) to group multiple sibling ASs into sibling groups defined by: a) the data in the

IRRs, or b) user-provided sibling lists. AS ranking is valuable not only for conceptual
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understanding of relative importance of Internet players, but also for network vendors and

operators in prioritizing their customer lists and in solving other practical tasks. We develop

a website [84] where we make both the AS ranking and the raw AS relationship data freely

available to the public.

4.6 Comparing with Previous Works

Gao’s seminal work [4] (LG) was the first to formulate and systematically study the AS

relationships inference problem. Gao proposed to infer c2p and s2s relationships using

a heuristic that treated every AS path as a hint of true types of links in the path. More

specifically, this approach takes a set of AS paths as input, directs every link toward the

highest degree AS in the path, and after parsing all paths, counts the directions each link

has accumulated. If a link has received consistent directions throughout the process, it

is marked as c2p with the provider being at the top of the directed link. Otherwise, the

link is marked as s2s. This approach is sensitive to path anomalies. In the presence of

anomalies, c2p edges may receive inconsistent directions leading to mis-inference of true

c2p relationships as s2s. Our c2p heuristic is resilient to anomalous paths since we employ

the node degree-gradient to detect, accept, and intelligently process invalid orientations.

Moreover, our s2s heuristic exploits explicit information in the IRR databases and does not

rely on BGP tables. We believe it is quite hard to reliably infer s2s relationships using

solely BGP tables.

In inferring p2p links LG constructs the candidate lists consisting of links located only

between the top provider in a path and its highest degree neighbor. The algorithm then

marks the candidate links as p2p if the degree ratio of their adjacent ASs is smaller than 60

or ∞. Our p2p heuristic borrows several ideas from this approach and improves it in the

following ways: 1) we do not force candidates to lie just between the top provider and its

highest degree neighbor; 2) we use a more flexible weighting strategy than just a degree ra-

tio cut-off; 3) we exercise our MWIS-based cleaning process to filter out from the candidate

74



lists those links violating the valley-free model.

The SARK [81] work translates the AS relationship inference task into an elegant com-

binatorial optimization problem, ToR, and proposes a heuristic to solve it. This heuristic

takes as input the BGP tables collected at different vantage points and computes a rank

for every AS. This rank is a measure of how close to the graph core an AS lies and it is

equivalent to node coreness [94]. The heuristic then infers AS relationships by comparing

ranks of adjacent ASs. If the ranks are similar, the algorithm classifies the link as p2p, oth-

erwise it is c2p. We believe that node coreness is not an appropriate metric for inferring AS

relationships, since it is unclear how ASs’ topological positions in AS graphs are related to

AS relationships. Instead of measuring how close to the graph core ASs are positioned, we

exploit the policy encodings in the AS paths to infer AS relationships.

The DPP [82] and EHS [83] studies provide a mathematically rigorous solution to the

ToR problem. They first demonstrate that the ToR framework does not have any mechanism

allowing one to rigorously infer p2p relationships. Both DPP and EHS retreat therefore to

inferring c2p relationships only. Although DPP and EHS deliver a formally best solution

to ToR, the purpose of our exhaustive discussion in Section 4.2.1 is to show that ToR is not

an appropriate problem formulation since it quickly leads to too many incorrect inferences.

The work by Xia et al. [90] utilizes the IRR databases to extract relationships among

a subset of ASs. They also propose a variation of the LG heuristic that takes this subset

as an input to infer other AS relationships. Their major contribution is dealing with ac-

curate and current IRR databases providing explicit information on AS relationships. On

the other hand, using IRR data has its own methodological problems: 1) it is much harder

to automate: in particular, extracted data requires deciphering non-standardized represen-

tations and manual searching ASs’ websites to determine their use of BGP communities;

2) the data is not always accurate and its accuracy level is hard to estimate; 3) not all ASs

are registered. We also use the IRR data in our work but only for s2s relationship infer-

ence. Instead of policy records, we process only the organization description records that
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are relatively stable over time.

Mao et al. [77] propose an AS relationship inference technique based on the assumption

that ASs prefer shorter AS paths over longer AS paths. In reality, ASs often use routing

policies selecting next-hop ASs based solely on next-hop AS rankings, meaning that they

make their route selections regardless of the AS path lengths. It is thus unclear if an AS

path length formulation of the problem can lead to correct inferences.

Most of the previous works resorted to implicit validation. However, such methodology

does not always yields reliable results. For example, the techniques in [81, 82, 83, 77] all

used the number of valid paths as an indicator of the accuracy of the inferred relationships.

As we discussed in section 4.2.1, a large number of valid paths does not necessarily corre-

spond to a large number of correctly inferred AS relationships. In contrast with previous

works, we base our validation both on implicit metrics, e.g., reachability from section 4.3.3,

and on the explicit data we collected in our survey.

4.7 Conclusion

The relationships among ASs in the Internet represent the outcome of policy decisions gov-

erned by technical and business factors of the global Internet economy. Precise knowledge

of these relationships is therefore an essential building block needed for any reliable and

effective analysis of technical and economic aspects of the global Internet, its structure, and

its growth.

In this work we introduced novel heuristics that accurately infer c2p, p2p, and s2s rela-

tionships and that effectively resolve the limitations we identified with previous approaches.

Our heuristics significantly improve the state-of-the-art in inferring c2p relationships and

carefully address the particularly difficult problems of inferring p2p and s2s relationships

from currently available data.

Another significant contribution of our work is that we tackled the challenging task of
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validating inferred AS relationships. We conducted a survey with AS network administra-

tors to gather information on the actual relationships they have with their neighbors. Using

the data in our survey, we validated our heuristics and demonstrated that they achieve high

accuracy of 96.5% (c2p), 82.8% (p2p), and 90.3% (s2s) of correctly inferred relationships.

The data we collected in our survey allowed us to gain insight into the complete struc-

ture of the actual relationships of the surveyed ASs. To our great surprise, we discovered

that p2p relationships are much more dominant than we could expect: 77.6% of the vali-

dated adjacencies were p2p. We also found that the currently available BGP data underes-

timates substantially the number of the p2p relationships existing in reality. In particular,

the AS topologies extracted from the BGP data miss up to 86.2% of the true links adjacent

to an AS.

Easy access to accurate AS relationship data is essential to a variety of studies deal-

ing with aspects of Internet architecture and policy. To support the research community

with as objective data as possible, we have automated our heuristics in order to calculate

and archive AS relationships on a weekly basis. We also use the inferred relationships to

provide a ranking of ASs; we post both the data and the ranking on the web [84]. We be-

lieve our work will significantly benefit Internet research that strives to build more realistic

models validated against reliable and accurate AS topology data.
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CHAPTER 5

AS TAXONOMY

5.1 Introduction

In this chapter we turn our attention to the ASs, the individual entities that operate the

Internet. The AS topology of the Internet is an intermix of networks owned and oper-

ated by many different organizations, e.g., backbone providers, regional providers, access

providers, universities, and private companies. Although the AS topology of the Internet

has been studied extensively, statistics on the different types of ASs in the Internet are not

presently available. Statistical information that faithfully characterizes different ASs is on

the critical path toward understanding the structure of the Internet, as well as for modeling

its topology and growth. In this work, we propose an AS taxonomy, i.e., a set of AS types

that characterize ASs, and we seek to derive macroscopic statistics on the different types of

ASs in the Internet.

In topology modeling, knowledge of AS types is mandatory for augmenting syntheti-

cally constructed or measured AS topologies with realistic intra-AS and inter-AS router-

level topologies. For example, we expect the network of a dual-homed university to be

drastically different from that of a dual-homed small company. The university will likely

contain dozens of internal routers, thousands of hosts, and many other network elements

(switches, servers, firewalls). On the other hand, the small company will most probably

have a single router and a simple network topology. Since there is such a diversity among

different network types, we cannot accurately augment the AS-level topology with appro-

priate router-level topologies if we cannot characterize the composing ASs.

Moreover, annotating the ASs in the AS topology with their types is a prerequisite for

modeling the evolution of the Internet, since different types of ASs exhibit different growth

patterns. For example, Internet Service Providers (ISP) grow by attracting new customers
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and by engaging in business agreements with other ISPs. On the other hand, small com-

panies that connect to the Internet through one or few ISPs do not grow significantly over

time. Thus, categorizing different types of ASs in the Internet is necessary to identify

network evolution patterns and develop accurate evolution models.

An AS taxonomy is also necessary for mapping IP addresses to different types of users.

For example, in traffic analysis studies its often required to distinguish between packets

that come from home and business users. Given an AS taxonomy, its possible to realize

this goal by checking the type of the AS that originates the prefix in which an IP address

lies.

In this chapter, we first propose a set of classes representing Internet ASs: large ISPs,

small ISPs, customer ASs, IXPs, NICs, and universities. Then, for each AS we collect

the following AS attributes: organization description name; number of inferred customers,

providers, and peers; number of advertised IP prefixes; and total advertised IP space. We

construct a training set of ASs, for which we manually determine their true AS type. Then

we apply a machine-learning algorithm to the attributes of the training ASs and extract pat-

terns associated with different AS types. We express this patterns into a set of classification

rules, which we apply to the full set of Internet ASs and derive macroscopic statistics of

the different types of ASs in the Internet. Next, we validate our inferences and find that our

classification algorithm achieves a high accuracy: 78.1% of the examined classifications

were correct. To promote further research and understanding of the Internet’s structure, we

develop a website [30] in which we make the collected AS attributes and the inferred AS

types publicly available.

In Section 5.2 we start with a brief discussion of related work. Section 5.3 describes

the data we used, and in Section 5.4 we specify the set of AS classes we use in our experi-

ments. Section 5.5 introduces our classification approach and results. We validate them in

Section 5.6 and conclude in Section 5.7.
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5.2 Related Work

Several works have developed techniques decomposing the AS topology into different lev-

els or tiers based on connectivity properties of BGP-derived AS graphs. Govindan and

Reddy [95] propose a classification of ASs into four levels based on their AS degree. Ge et

al. [96] classify ASs into seven tiers based on inferred customer-to-provider relationships.

Their classification exploits the idea that provider ASs should be in higher tiers than their

customers. Subramanian et al. [81] classify ASs into five tiers based on inferred customer-

to-provider as well as peer-to-peer relationships.

Our work differs from previous approaches in the following ways:

1. We use a novel machine learning algorithm to identify intrinsic features distinguish-

ing different AS types. In contrast to the discussed previous approaches, we do not

employ heuristics or ad-hoc thresholds to classify ASs. Our classifier uses rules and

associated thresholds, which are derived rigorously so as to maximize the expected

accuracy of the classification.

2. We use an extensive set of diverse data including IRR records, inferred AS relation-

ships, IP prefixes, and AS graphs, to classify ASs. In contrast to previous approaches,

we do not rely exclusively on AS graphs, which often miss a substantial fraction of

the true AS links in the Internet, resulting in incomplete AS topologies.

3. We propose a representative set of AS classes that reflect ASs with different network

properties. Previous approaches, classify ASs into hierarchies of levels or tiers ex-

tracted from AS graphs; these methods tend to mix ASs with substantially different

network properties into a single AS group. According to our analysis, small regional

providers often have small AS degrees, as low as 1 or 2. The previous heuristics thus

tend to assign these ASs to the lowest levels, where small companies and multihomed

customers naturally reside.
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5.3 Data Sources and AS Attributes

To construct the set of AS attributes that we use in our AS classification, we collect data

from the following databases and measurement projects:

1) IRRs [68]. The IRRs constitute a distributed database containing records on ASs’

routing policies, assigned IP prefixes, contact information, etc. A natural approach to iden-

tifying the type of an AS, given its AS number, is to lookup the AS number in the IRRs and

examine its organization description record. In the RPSL [97] terminology, this record is

the descr attribute of the RPSL class aut-num. It contains the name or a short description

of the organization that owns the AS number. For example, the following are entries for

the descr attribute found in the IRRs: “Intervivo Networks, a broadband Internet access

provider” and “Auckland Peering Exchange”. The descr attribute does not have a stan-

dard representation. It usually consists of a short description as in the examples above, but

in some cases it only contains an acronym, e.g., “KPMG LLP”, “LTI”. For the purposes

of this work, the descr record is our first AS attribute. We use text classification tech-

niques (outlined in section 5.5) to analyze the descr records and to find keywords, like

“university” or “ISP”, that reflect different AS types.

We downloaded the mapping of AS numbers to organization description records on

04/08/2005 from the CIDR Report [98], which provides on a daily basis mappings of AS

numbers to organization description records extracted from ARIN, RIPE NCC, LAPNIC,

APNIC, KRNIC, TWNIC, and JPNIC databases. We preprocess the organization records

by removing stop words, i.e., words with little semantic meaning, such as “of” or “the”,

using the stop word list [99]. Then, using the Porter stemming algorithm [100], we replace

words with their stem.

We note that IRRs contain significant portions of incomplete or obsolete records, which

is not a serious problem for this study since we are only concerned with the descr attribute,

which changes relatively rarely.
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2) RouteViews [49]. We download all 12 BGP table snapshots archived from the col-

lector route-views2.oregon-ix.net on 07/18/2005. For each table snapshot we ex-

tract AS paths and remove AS sets and private AS numbers. Then, we merge the extracted

AS paths into an AS topology and use the AS relationship inference heuristics described in

chapter 4 to annotate the AS links with customer-to-provider and peer-to-peer relationships.

We ignore sibling-to-sibling relationships, since they only account for 0.46% of the total

number of links in the graph. After inferring AS relationships, we calculate the following

three attributes for every AS: the number of providers, the number of customers, and the

number of peers a given AS is connected to. Large ISPs typically have a large number of

customers, zero providers, and a small number of peers, while small ISPs typically have

few providers, a small number of customers and a large number of peers. Stub university

or company networks typically have zero customers, zero or few peers and a small number

of providers.

From the RouteViews data, we also extract information on IP prefixes. We use the

chronologically first table snapshot from the same snapshot set to construct a mapping of

AS numbers to the IP prefixes they advertise. Then, for each AS we count the number of

advertised prefixes and use this number as another AS attribute. Small ASs, with tiny por-

tions of IP address space allocated to them, as well as older ASs with large IP blocks, tend

to advertise few prefixes. On the contrary, large ASs with relatively high IP address utiliza-

tion and diversified routing policies tend to advertise many prefixes of various lengths.

One problem with this attribute is that IP prefixes are of drastically different sizes. Ad-

vertised IPv4 prefixes range in size from a /8, covering 224 IP addresses, down to a /32,

covering just one address. The prefix length of 24 bits is generally the smallest IPv4 pre-

fix size that is globally routed, which suggests our last AS attribute to be the number of

unique /24 prefixes found within the union of address space advertised by the AS. This at-

tribute is likely to have small values for smaller ASs that use and advertise smaller portions

of IP address space, while it is likely to be at its maximum for large or old ASs (those that
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appeared in the Internet early, e.g., some military and academic networks) since they often

have huge chunks of assigned IP address space that they utilize scarcely.

In summary, we collect data from the IRRs and RouteViews. We find 19,537 ASs. Us-

ing the collected data, we annotate every AS with the following six attributes: 1) the orga-

nization description record (the description attribute), 2) the number of inferred customers

(the customer attribute), 3) the number of inferred providers (the provider attribute), 4) the

number of inferred peers (the peer attribute), 5) the number of advertised IP prefixes (the

prefix attribute), and 6) the equivalent number of /24 prefixes covering all the advertised IP

space (the space attribute).

5.4 The AS Class Set

In this work, we focus on network properties of an AS as the main criterion determining the

set of AS classes. In other words, to construct the AS class set, we use the rule that ASs in

the same class should have similar network properties, while ASs in different classes should

have different network properties. ASs in the same class may still have significant network

differences, however these differences should be small compared with differences between

networks of different classes. For example, a small university and a large university may

have quite different networks, however these differences are less significant compared to

the differences between a typical university network and a typical ISP network.

Besides employing our de facto empirical knowledge, we perform the following ex-

periment to specify the set of AS classes. We randomly select 1200 ASs and then, for

each AS, we examine its attributes, visit its website (if possible), search for references to

its organization name and determine its business profile. After examining the spectrum of

these 1200 ASs, we construct our AS class set:

1. Large ISPs: Large backbone providers, tier-1 ISPs, with intercontinental networks.

2. Small ISPs: Regional and access providers with small metropolitan or larger regional

networks.
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3. Customer ASs: Companies or organizations that run their own networks but as op-

posed to members of the previous two classes do not provide Internet connectivity

services. We find a wide range of ASs in this class, like web hosting companies,

technology companies, consulting companies, hospitals, banks, military networks,

government networks, etc.

4. Universities: University or college networks. We distinguish these networks from

members of the Customer AS class, since they typically have substantially larger

networks that serve hundreds or thousands of end hosts.

5. IXPs: Small networks serving as interconnection points for the members of the first

two classes.

6. NICs: Networks that host important network infrastructure, such as root or TLD

servers.

5.5 AS Classification: Algorithms and Results

We build our classification algorithm using AdaBoost [101], a powerful machine learning

technique. The main idea behind AdaBoost is to combine multiple simple classification

rules into a efficient composite classifier. These simple classification rules are called weak

hypotheses and by definition are only required to perform slightly better than random guess-

ing. Intuitively, weak hypotheses reflect simple “rules of thumb” that are usually much eas-

ier to construct than a complex classifier. AdaBoost works iteratively over a set of training

examples; at each iteration it finds a weak hypothesis that performs well on the examples

which the weak hypotheses of previous iterations erroneously classified. One constructs

a weak hypothesis by means of a weak learning algorithm or simply weak learner. The

power of AdaBoost lies in a well-developed theoretical framework that intelligently com-

bines the weak hypotheses into a composite classifier.

Let X denote the set of ASs that we want to classify and Y be the set of possible classes,
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Algorithm 1: AdaBoost.MH pseudocode
Input: S = {(x1, y1), . . . , (xm, ym)}
Initialize: D1(x, y) = 1/mk; // k is the total number of classes
for t = 1 to T do

Pass distribution Dt and examples S to weak learner
Get weak hypothesis ht : X × Y → R
Update distribution

Dt+1(x, y) =
Dt(x, y)exp(−P(x, y)ht(x, y))

Zt

// where Zt is a normalization coefficient

// chosen so that Dt+1 will be a distribution

end
Output: f (x, y) =

∑T
t=1 ht(x, y)

such that each AS x ∈ X belongs to a unique class in Y . If y ∈ Y is the correct class for

AS x, than let P(x, y) = 1, otherwise P(x, y) = −1. The goal is to find a classifier that for

each AS produces a ranking of all the possible classes. More formally, we will compute

a ranking function f : X × Y → R: for each AS x ∈ X, the classes in Y will be ordered

according to f (x, ·)—the higher the value of f (x, y), the more likely x belongs to y.

In Algorithm 1, we illustrate the AdaBoost.MH algorithm [102], a special member of

the AdaBoost algorithm family that is suited for solving multiclass problems. Let S =

{(x1, y1), . . . , (xm, ym)} be the set of training examples. In our case, we construct S by man-

ually determining the correct class of 1220 ASs: 1200 are randomly selected; and 20 are

well-known large ISPs and IXPs, which we use to increase the number of these two types

of ASs in the initial random sample. Let T be the total number of iterations. For each

iteration t = 1 . . . T , we maintain a distribution Dt of weights over the set of examples and

classes Dt : X × Y → R. At the first iteration, we initialize Dt to the uniform distribu-

tion, i.e., D1 is constant for all (xi, yi), 1 � i � m . At each subsequent iteration, we pass

the distribution Dt and the training examples S to a weak learner that computes a weak

hypothesis ht : X × Y → R. A positive (negative) sign of the weak hypothesis ht(x, y)

corresponds to the prediction that AS x is (is not) a member of class y. The value |ht(x, y)|
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of the weak hypothesis reflects the confidence level of the prediction. Then, we update the

distribution Dt so that the x, y pairs that were erroneously predicted, i.e., the signs of h(x, y)

and P(x, y) differ, receive a exponentially higher weight. By assigning higher weight to in-

correct predictions, we force the algorithm to focus on these difficult examples in the next

round. The final classifier f is the sum of votes of the weak hypotheses in all rounds ht,

t = 1 . . . T .

A weak hypothesis is equivalent to a one-level decision tree that checks a single AS

attribute. For the description AS attribute, a weak hypothesis searches for the presence of a

term or a sequence of terms in a given record, and if a match occurs, it outputs a confidence

value for each of the classes. For example, upon finding the term “university” in the record

“Seoul National University of Education” the weak hypothesis will likely output a high

positive confidence value for the University AS class and a negative confidence value for

the other AS classes. For scalar attributes, a weak hypothesis asks if a given attribute value

is above or below a certain threshold. Depending on the outcome, the hypothesis outputs

different confidence values.

The weak learner builds a weak hypothesis by exhaustively evaluating the attributes in

the given weighted training examples. For a text attribute, it builds a candidate weak hy-

pothesis by evaluating all possible terms and sequences of terms. For each term or sequence

of terms, it calculates the appropriate confidence values by minimizing the Hamming loss,

which is the fraction of examples x and classes y, for which the sign of the final classi-

fier f (x, y) differs from P(x, y). Similarly, for each scalar attribute, the weak learner builds

a candidate weak hypothesis by exhaustively searching the threshold and confidence val-

ues minimizing the Hamming loss. On its output, the learner returns the weak hypothesis

attaining the minimum Hamming loss.1

To realize our classification algorithm, we use BoosTexter [102], a publicly available

implementation of AdaBoost. In Table 9 we depict the weak hypotheses that our algorithm

1See [102] for the analytic expression of the Hamming loss.
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Table 9. The list of weak hypotheses computed by AdaBoost.MH in the first six iterations. The first
column is the iteration number; the second is the AS attribute that the weak hypothesis is checking; the
third is the term or threshold of the weak hypothesis; and the remaining columns depict the computed
negative or positive confidence values for each of the AS classes.

Round Attribute Term/Threshold L.ISP S.ISP Cusmr Uni IXP NIC

1 space
< 8.5
> 8.5

2 description “network inform”

3 customer
< 1.5
> 1.5

4 description “exchang”
5 description “univers”

6 customer
< 97
> 97

discovered during its first six iterations. For each weak hypothesis, we illustrate the selected

AS attribute, the term or threshold that is looked for, and the computed confidence values.

The first weak hypothesis deals with the space attribute. If the IP address space advertised

by an AS is less than 8.5 (equivalent) /24 prefixes then, the hypothesis assigns a positive

confidence value to the Customer AS class and negative confidence values to the other

classes. If the value of the space attribute is above 8.5, the hypothesis assigns negative

or very close to zero confidence values to all the classes, which means that in this case

it cannot make a confident positive prediction. The second weak hypothesis checks the

description AS attribute for the presence of term “network inform”.2 If it finds one, it

assigns a high positive confidence to the NIC AS class and negative confidence values to

the other classes. Note, that in some cases the weak hypothesis assigns zero confidence

values, meaning that it abstains from making any prediction.

We experimentally fix the number of rounds T to 28, since subsequent iterations lead

to overfitting. Overfitting is a common problem in machine learning. It is a consequence

of too extensive training of an algorithm on one dataset. The undesired effect is that the

algorithm is memorizing the training examples instead of extracting concepts from them.

Fortunately, we can easily detect if the algorithm tends to overfit by examining the produced

2Recall that words have been stemmed.
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Table 10. Numbers of ASs in each AS class.
Large ISPs Small ISPs Customer ASs Universities IXPs NICs

ASs 44 5,599 11,729 877 33 332
% 0.2 30.1 63.0 4.7 0.2 1.8

classification rules.

Having the number of iterations fixed, we finally apply our classifier to the set of 19,537

ASs and calculate the ranking of the AS classes for them. For each AS we consider the

highest ranked class as its predicted class. If the class with the highest rank value for an

AS has the confidence value less than or equal to zero, then the classifier abstains from

making a prediction since the given information is not sufficient to produce a reliable as-

signment. Overall, the classifier abstains from making a prediction for 923 ASs, which

accounts for 4.7% of the total number of ASs in our dataset. In Table 10 we show the per

category classification statistics. Among the classified ASs, 63.0% are Customers, 30.1%

are small ISPs, 4.7% are Universities, 1.8% are NICs, 0.2% are ISPs, and 0.2% are large

IXPs.

5.6 Validation

To validate our results, we employ a standard machine learning technique called cross-

validation. Cross-validation is the process of splitting the training examples into two sub-

sets. One then uses the first subset to train a new classifier and the second subset to validate

the results of this new classifier.

From our main set of 1200 training examples, we randomly extract 1100 ASs and use

varying size subsets of these 1100 ASs to train new classifiers. We validate the predictions

of the new classifiers against the remaining 100 examples. We repeat the random selection

process 400 times and for each iteration we compute the following evaluation metrics:

1) accuracy, which we define as the percentage of ASs for which the AS class with the

highest rank value is their correct class. The disadvantage of this metric is that it checks

only the top of the ranking, ignoring the remaining positions. To address this problem, we
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use 2) coverage, which we define as the average position number of the correct class of an

AS. For each AS, we number AS class positions incrementally starting from zero for the

class with the highest positive confidence value. Thus, if all the predictions are correct the

coverage is zero.

In Figures 5.6 and 5.6 we plot the average accuracy and coverage versus the size of

the training set. As the size of the training set increases, the accuracy increases and the

coverage decreases. For |S | = 1100 the accuracy reaches 0.781, e.g., 78.1%, and the

coverage 0.251. The increasing accuracy trend suggests that for the training size of 1200

that we use in our final classification, the expected accuracy must be even higher. The low

value of the coverage indicates that when the correct class is not of the top rank value, it

is close to the top. More specifically, we find that for 97.7% of the predictions the correct

class is in the top two positions of the ranking.

We next analyze the per class percentage of correct predictions. We find that for |S | =
1100 the percentage of correct predictions is on average: 100% for large ISPs, 100% for

NICs, 100% for IXPs, 92.8% for Universities, 79.2% for Customer ASs and 72.1% for

small ISPs. The actual distribution of ASs among the classes in our training set is: 684

Customer ASs, 401 small ISPs, 66 Universities, 36 NICs, 11 IXPs, and 2 large ISPs. The

lower accuracy for customer ASs and small ISPs illustrates that these are the hardest classes

to identify. We explain this effect by similarities between the characteristics of these two AS

classes: 1) more than a half of the small ISPs appear to have the AS degree of 1 or 2, which

is also typical for customer ASs; 2) some customer ASs, especially web hosting companies,

advertise large numbers of different IP prefixes or large chunks of address space, which is

also typical for ISPs.

In summary, we find that in the examined examples our classifier almost perfectly iden-

tifies large ISPs, NICs, IXPs and universities, while it also produces accurate predictions

for customer ASs and small ISPs, which are the hardest to classify.
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Figure 26. Accuracy of computed predictions versus the size of the training set.
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Figure 27. Coverage of computed predictions versus the size of the training set.
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5.7 Conclusion

In this chapter, we established a classificfation of ASs required for expanding our under-

standing of the Internet infrastructure and for creating realistic models of its topology and

evolution. We developed a novel classification methodology that we apply to an exhaustive

set of AS data to obtain statistics on the different AS classes in the Internet. We validated

our results and demonstrate that our classifier achieves accuracy of 78.1% in the examined

data. Finally, to promote further analysis and to inspire development of better topology

models, we built a website [30], where we make publicly available the AS attributes we

used for our classification along with the AS class predictions.

91



CHAPTER 6

TOPOLOGY GENERATION

6.1 Introduction

Besides measured topologies, synthetically generated graphs are also important in conduct-

ing realistic simulations. Synthetic topologies are complementary to measured topologies

and may be preferred when measured topologies are not 1) available, 2) of the desired size,

or 3) complete enough. For example, a researcher may want to evaluate how the perfor-

mance of a new routing protocol will scale with the size of the AS topology. In this case, it

will use a topology generator to construct synthetic topologies of the desired size and will

evaluate the performance of the new routing protocol on the synthetic topologies.

There are two main approaches to topology generation: the macroscopic and micro-

scopic approaches. Macroscopic approaches identify important properties of measured

topologies and try to reproduce these properties in synthetic graphs. For example, Power-

Law Random Graphs (PLRG) [103] reproduce the power-law degree distribution observed

in Internet topologies [104]. Microscopic approaches model the growth of a topology by

accounting for local optimization criteria that shape the connectivity choices of individual

nodes. For example, in the model by Fabrikant et al. [105], nodes optimize their connec-

tions to minimize the “last mile” connection cost and the transmission delays measured

in hops. Both of these approaches have advantages and disadvantages. Macroscopic ap-

proaches overlook network design principles and thus they are not explanatory, i.e., they

do not provide insight on why a topology has a particular structure. On the other hand,

microscopic approaches try to model network design decisions, which is a challenging task

since there do not always exist well-defined network design principles [106].

In this work, we introduce a macroscopic topology construction technique that models

network topologies as annotated graphs, i.e., graphs with different link annotations. Differ-

ent link annotations or equivalently link types are an inherent characteristic of many real
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networks. For example, links in AS topologies represent different types of business rela-

tionships, like c2p, p2p, and s2s relationships. Links in router topologies have different

transmission speed, e.g., as OC12, OC48, etc. Our topology generation approach identi-

fies important properties of annotated graphs and reproduces these properties in synthetic

annotated graphs. In contrast to previous macroscopic approaches, our technique 1) mod-

els annotation-aware graph properties1, and 2) generates synthetic annotated graphs, i.e.,

synthetic graphs with realistic link annotations.

The main application that motivates this work is determining routing AS paths in syn-

thetic AS topologies. Routing paths between ASs are determined by AS relationships. AS

relationships result in the valley-free routing model, which states that every AS path has a

hierarchical structure [4]. Given an AS topology annotated with inferred AS relationships,

we can compute the policy-compliant AS path between any two ASs using a modified ver-

sion of Dijkstra’s algorithm [77]. On the other hand, without knowing AS relationships we

are forced to assume shortest path routing, which is likely to lead to unrealistic results. It is

well known that actual AS paths in the Internet are substantially longer [107, 108, 109, 110]

than the shortest path. Unfortunately, the shortest path routing assumption is made by de-

fault in many simulation studies without further investigation. The reason is that existing

topology generators do not model AS relationships, which makes it impossible to simulate

path inflation effects.

The second reason for which modeling of link types is important is that it enables us

to produce more accurate synthetic topologies. Different types of links are likely to exhibit

different topological properties. For example, borrowing the terminology of [111], c2p

links are more radial, in that they connect small degree to large degree ASs. However,

p2p links are more tangential in that they connect ASs of similar degree. To capture this

diversity of properties, it is necessary to build a topology generator that takes into account

1Annotation-aware graph properties are properties that take into account that a graph is composed of
different types of links and that depend on the link-type diversity of the graph. In contrast, annotation-
oblivious graph properties, like the degree distribution of a graph, treat all the links of a graph as equivalent,
ignoring different types of links.
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the existence of different types of links that may have different topological characteristics.

Then, we can effectively model a wider range of topological properties than can currently

available generators.

In this chapter, we first focus on the importance of modeling AS relationships in con-

ducting accurate and realistic network simulations. We discuss the following three short-

comings of ignoring AS relationships: 1) AS paths are substantially shorter than in reality,

2) the traffic load on AS links and on individual ASs is substantially lower than in reality,

and 3) the number of alternative AS paths available to an AS is substantially larger than in

reality. We use simulation experiments to demonstrate these shortcoming and to show how

they can effect commonly used performance evaluation metrics.

Next, we introduce our framework for modeling topologies with link annotations and

for generating realistic topologies with realistic link annotations. We use our framework

to develop an AS topology generator that besides producing realistic AS topologies it also

assigns realistic c2p and p2p relationships. We compare generated AS topologies with

measured AS topologies annotated with inferred c2p and p2p relationships. We find that

our generator produces realistic AS topologies with c2p and p2p annotations that effectively

reproduce c2p and p2p patterns observed in the Internet.

The rest of this chapter is organized as follows. In the next section we briefly review re-

lated work in the area of topology modeling and topology generation. Then, in section 6.3

we discuss and demonstrate shortcomings of ignoring AS relationships in conducting real-

istic network simulations. In section 6.4 we introduce the topological properties that enable

us to model AS relationships. In section 6.5 we outline our framework for modeling these

properties and for generating synthetic AS graphs. In section 6.6 we present our evaluation

results. Finally, in section 6.7 we discuss future research directions.
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6.2 Related Work

A large number of published works have focused on modeling Internet topologies and on

developing realistic topology generators. The first topology generator that became widely

known was introduced by Waxman [112]. Waxman generator is a variation of the classical

Erdos-Renyi random graphs. Later, after it became evident that networks do not have a

random structure, new generators like GT-ITM [113] and Tiers [114] emphasized the hier-

archical structure of networks. Consequently, these topology generators were characterized

as structural. In 1999, Faloutsos et al. discovered that the degree distributions of router-

and AS-level topologies of the Internet follow a power-law. Structural generators failed to

reproduce this power-law, which triggered a number of new topology generators that tried

to achieve this goal. These newer topology generators can be classified into causality-aware

and causality-oblivious. The first class includes the Barabasi-Albert (BA) [115] preferen-

tial attachment model and the model by Chang et al. [116] based on the idea of highly

optimized tolerance [117]. These models grow a network by incrementally adding nodes

and links into a graph based on some evolution process so that the resulting graph follows

a power-law degree distribution. In the same family belongs the BRITE [118] topology

generator, which employs the BA model to generate synthetic Internet topologies. On the

other hand, causality-oblivious generators like PLRG [103], Inet [119] and the model by

Gkantsidis et al. [120] try to match the power-law degree distribution of the Internet with-

out accounting for different rules that might drive the evolution of the topology.

6.3 On simulation artifacts due to the shortest-path routing assump-
tion

Routing policies reflect business agreements and economic incentives, and for this reason

they are deemed more important than quality of service criteria and thus they take prece-

dence in the route selection process. Consequently, suboptimal routing and inflated AS

paths often occur. The study by Gao and Wang [109] used BGP data to measure the extent
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Table 11. Total number of paths for each AS with AS relationships enabled and AS relationships dis-
abled.

AS number 1 2 3 4 5 6 7 8

Number of paths
AS relationships disabled 12 13 16 15 13 15 15 13
AS relationships enabled 12 9 10 8 8 7 9 6

others. To demonstrate this we simulated the topology in Figure 28 using BGP++. We used

a single router for each AS and configured appropriate export rules between ASs according

the guidelines discussed above. We set the delay of each link to 10 milliseconds and the

bandwidth to 400kbps. Then, we configured exponential on/off traffic sources at ASs 4, 6

and 8 that send traffic to AS 2 at a rate of 500kbps. We run the simulation for 120 seconds;

for the first 100 seconds we wait for routers to converge2 and at the 100th second we start

the traffic sources. We first measure the e2e delay between the sources and the destination

under the following two configuration scenarios: 1) AS relationships disabled, and 2) AS

relationships enabled.

In Figure 29 we depict the cumulative distribution function (CDF) of the e2e delays for

the two scenarios. First, notice that the CDF corresponding to simulating AS relationships

is skewed to the right, which means that there is a significant increase in the e2e delay. In

particular, the average e2e delay with AS relationships enabled is 0.853 seconds, whereas

without AS relationships it drops to 0.389 seconds. Besides this decrease in the e2e de-

lay, note that in Figure 29 the CDF corresponding to simulating AS relationships is much

smoother than the second CDF, which exhibits a step-wise increase. This difference shows

that the e2e delay with AS relationships enabled exhibits a much higher variability com-

pared to ignoring AS relationships. This variability is likely to affect other performance

metrics like jitter and buffer occupancy.

A second implication of policy routing is that ASs have fewer alternative AS paths. For

example, in Figure 28 when ignoring AS relationships AS 7 has three (one through each

neighbor) disjoint paths to reach destination 2. One the other hand, with AS relationships

2Typically routers take much less than 100 seconds to converge, but to be conservative we used a longer
period.
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Figure 29. CDF of e2e delay between traffic sources and destination.

enabled, AS 7 has only one possible path through AS 5, since the other two paths are not

valley-free. In Table 11, we show the total number of paths we find in the BGP tables of the

8 simulated ASs. The consistent decrease in the number of paths when AS relationships are

enabled highlights that ignoring AS relationships increases the path diversity of the ASs

in a simulation. Path diversity is a property that can play an important role in simulations

measuring such properties as network resilience, vulnerability to attacks, links and router

failures, load balancing, multi-path routing, convergence of routing protocols, and others.

An additional implication of policy routing is that due to the smaller number of available

AS paths as compared to shortest path routing, some ASs or AS links are likely to receive

greater load than when assuming shortest path routing. For example, in Figure 28 the

dashed paths share the links from AS 7 to AS 5. On the other hand, when assuming shortest

path routing the three paths are mostly disjoint, with only the link between AS 3 and AS

2 being shared by two flows. Thus, AS links and ASs will receive greater load than when

ignoring AS relationships, which is likely to produce more packet drops, increased delay,

congestion, router failures, and other important events. In Table 12 we list the average

bandwidth in our simulations for each of the three flows with and without AS relationships

enabled. We find that because of the increased load on the links between AS 7 and AS 5

the average bandwidth of the three flows decreases substantially.
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Table 12. Average bandwidth per flow with AS relationships enabled or disabled.
Flow 4→ 2 6→ 2 8→ 2

Bandwidth (Kbps)
AS relationships disabled 202 196 397
AS relationships enabled 113 164 121

In summary, we highlight that ignoring AS relationships produces the following impor-

tant artifacts:

• AS paths are substantially shorter than in reality.

• The number of alternative AS paths available to an AS is substantially larger than in

reality.

• The traffic load on AS links and on individual ASs is substantially lower than in

reality.

6.4 AS Relationships-aware topological properties

To represent AS topologies annotated with AS relationships, we use a graph G with edges

annotated as c2p or p2p. We ignore s2s relationships, since they typically account for a

very small fraction of the total number of edges3. c2p edges are directed from the customer

AS to the provider AS, while p2p edges are undirected. We call such graphs G annotated

graphs. Annotated graphs can be used to represent other link characteristics of interest

like link bandwidths or latencies. Here, we describe our modeling framework with respect

to AS relationship annotations, however the same methodology is directly applicable for

modeling other types of annotations.

The topological property that most state-of-the-art topology generators reproduce is the

degree distribution of a network. For our topology generator we choose to reproduce the

following three properties.

1. Degree distribution. Along the lines of existing topology generators, we reproduce

3In our experiments in Chapter 4 the inferred s2s relationships accounted for only 0.46% of the total
number of edges in the AS topology.
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the degree distribution of the AS topology of the Internet. The degree distribution

tells us how many nodes of each degree are in the network.

2. Annotation-degree distributions. The degree distribution of an AS topology does

not convey any information about the different types of AS relationships in a topol-

ogy. To take into account AS relationships we look at the number of customers,

providers, and peers each AS has. We define the customer-degree dp2c of an AS as

the number of its customers, the provider-degree dc2p as the number of its providers,

and the peer-degree dp2p as the number of its peers. We collectively refer to dp2c, dc2p

and dp2p as annotation degrees. The second property we select to reproduce is the

annotation-degree distributions of an AS topology. These distributions are a natural

generalization of the degree distribution of a network that take into account the pres-

ence of different types of AS relationships. The customer-degree distribution tells us

how many nodes with a specific number of customers are in the network. Similarly,

the provider- and peer-degree distributions tell us how many nodes with a specific

number of providers, and peers, respectively, are in the network.

3. Annotation-degree correlations. The annotation-degree distributions do not tell us

anything about the correlations between these degrees, i.e, how many customers,

providers and peers a specific AS has. Correlations between different annotation de-

grees appear often in the Internet. For example, large tier-1 ASs typically have a large

number of customers, i.e., large dp2c, no providers, i.e., zero dc2p, and a small number

of peers, i.e., small dp2p. On the other hand, medium size ISPs have a small set of

customers, several peers, and few providers. Note, that simply ignoring these corre-

lations can lead to graphs that follow the previous two properties, but have artifacts,

like high degree nodes with many providers.

The exact correlations between the annotation degrees of an AS are captured in the joint

distribution P(dp2c, dc2p, dp2p), which is defined as the number n(dp2c, dc2p, dp2p) of nodes in
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the network with dp2c customers, dc2p providers, and dp2p peers over the total number of

nodes n:

P(dp2c, dc2p, dp2p) = n(dp2c, dc2p, dp2p)/n.

We call this distribution the joint annotation-degree distribution (JADD). JADD is a mul-

tivariate distribution and its marginals4 are the annotation-degree distributions, i.e., our

second property. From JADD we can also derive the AS-degree distribution simply by

summing the annotation degrees of a node. Consequently, JADD is a union of the three

properties we have discussed thus far.

We construct a synthetic annotated graph, starting with the JADD of a measured AS

topology annotated with inferred AS relationships. Then, we rescale JADD to the desired

size, reflecting the size of the target, synthetic AS topology. Given the rescaled JADD,

we can introduce p2p and c2p edges independently using existing techniques tailored for

annotation-oblivious topologies. In section 6.5.2 we describe two techniques for introduc-

ing c2p and p2p edges. In general, when introducing c2p and p2p edges it is possible to im-

pose additional topological properties, which the c2p and p2p edges must follow. Our first

technique in section 6.5.2 does not impose any additional properties, it simply reproduces

the JADD of real AS topologies. Our second construction technique imposes the additional

property that the introduced c2p and p2p links must reproduce correlations between AS

degrees of neighboring nodes. To illustrate this, consider that the three properties we have

discussed thus far do not provide any information on how nodes of different degrees con-

nect. For example, tier-1 ASs have typically p2p relationships with other tier-1 ASs, while

they do not have p2p relationships with smaller ASs. This means that large degree nodes

connect with other large degree nodes using p2p links. On the other hand, smaller degree

nodes have p2p links with other nodes of similar size but not with large degree nodes. To

capture how nodes of different degrees connect, we use the joint distribution of the degrees

4Given three jointly distributed random variables X, Y and Z, the marginal distribution of X is the prob-
ability distribution of X ignoring information about Y and Z, typically calculated by summing or integrating
the joint probability distribution over Y and Z.
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of connected nodes. The joint degree distribution (JDD) Pp2p(d1, d2) of p2p edges is equal

to the number np2p(d1, d2) of p2p edges between nodes of degrees d1 and d2 over the total

number of p2p edges in the graph. Thus, the JDD of p2p edges describes the degrees of

the nodes that are connected with p2p edges. Similarly, the JDD of c2p edges Pc2p gives us

the degrees of the nodes that are connected with c2p edges. Thus, the JDDs of p2p and c2p

edges is the last property that our framework reproduces. to JADD. Note that similarly to

JADD the JDDs of p2p and c2p edges are multivariate distributions.

6.5 AS Topology Generator

In this section we outline our framework for modeling and reproducing the JADD of real

AS topologies. We first describe how to model the JADD of a real AS topology annotated

with inferred AS relationships. Our topology generation scheme proceeds in two phases.

In the first phase, given the number of nodes N in the target graph we produce N degree

triplets di
p2c, di

c2p and di
p2p, 1 � i � N, such that the JADD of these triplets follows the

JADD of real AS topologies. In the second phase given the N degree triplets we contract

an annotated graph.

6.5.1 Modeling JADD

We model JADD using copulas [121], an powerful statistical tool that fully quantifies the

dependence among multiple random variables. In contrast to other well-known correlation

metrics, like Pearson’s coefficient, Kendall’s tau or Spearman’s rho, copulas do not provide

a single scalar value but a function that captures complex correlations and fine-grained

details of the dependence structure.

According to Sklar’s theorem [122], any continuous5 3-dimensional multivariate cumu-

lative distribution function (CDF) F can be written in the form:

F(x1, x2, x3) = C(F1(x1), F2(x2), F2(x3)), (6)

5Degree distributions are inherently discrete distributions. Nevertheless, they can be turned into continu-
ous by adding a random uniform noise U(−0.5, 0.5) to each degree sample.
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where F1, F2 and F3 denote the marginal CDFs. The function C is called a copula and

has uniform distributed marginals in [0, 1]3. Given the copula function and the marginal

CDFs F1, F2 and F3, we can determine the joint distribution F using equation 6. Thus,

copulas have two important properties: 1) given the marginals they fully describe the joint

distribution F, and most importantly, 2) they enable the practitioner to model the depen-

dence structure independently of the marginal distributions.

Modeling marginal distributions is a fairly easy task, since there exists a wealth of

statistical methods and distributions for matching univariate samples. To find the ap-

propriate marginal distributions, we constructed an AS topology from RouteViews [49]

data. We downloaded a BGP table from the collector route-views2.oregon-ix.net on

07/18/2005 and extracted AS links, ignoring private AS numbers and AS sets. We inferred

c2p and p2p relationships using the heuristics we developed in Chapter 4. Thus, we de-

rived a real AS topology annotated with c2p and p2p relationships. From this topology,

we extracted the customer-, provider-, and peer-degree distributions and evaluated alterna-

tive fitting approaches. We model these three distributions using spline smoothing. Spline

smoothing is a nonparametric estimator of a function that produces a curve that passes

through or near the points of a distribution keeping the curve as smooth as possible. We fit

splines to our data using the estimation technique outlined in [123], which is implemented

in the generalized smoothing splines (gss) module [124] of the R project6. Using the fit-

ted models we can then generate random numbers that follow the customer-, provider- and

peer-degree distributions of the AS topology of the Internet. Thus, the first step to construct

a graph with N nodes is to generate N customer, N provider, and N peer degrees from the

corresponding fitted models.

Next, we model the copula by resampling historical correlation data. We first construct

a set with all the degree triplets of the collected AS topology. Then, we sample N degree

triplets from this set. These N triplets include information on both the actual annotation

6R is a language and environment for statistical computing.
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degrees and the correlations between them. We extract the correlation information by map-

ping each triplet into the [0, 1]3 space. To do so, we replace each annotation degree with its

rank normalized by 1/N. The resulting triplets (ui
p2c, u

i
c2p, u

i
p2p) reflect the correlations be-

tween the annotation degrees in the original AS topology and are independent of the actual

annotation degrees. Each of the ui
p2c, ui

c2p and ui
p2p is uniformly distributed in [0, 1].

Finally, we combine the (ui
p2c, u

i
c2p, u

i
p2p) triplets with the generated annotation de-

grees to derive the final degree triplets that follow the JADD of the original topology.

Each (ui
p2c, u

i
c2p, u

i
p2p) triplet is resolved into a degree triplet (di

p2c, d
i
c2p, d

i
p2p) by mapping

each of ui
p2c, ui

c2p, and ui
p2c into the inverse CDF of the corresponding annotation degrees.

For example, we map ui
p2c into di

p2c, where di
p2c is the value of the inverse CDF of the gen-

erated customer-degrees at the point ui
p2c. Thus, we derive the N annotation-degree triplets

(di
p2c, d

i
c2p, d

i
p2p), 1 � i � N, that follow the JADD of the original topology.

6.5.2 Generating Annotated AS topologies

Given the N annotation-degree triplets, there are several methods that can be used to con-

struct a random annotated graph. This is because we can focus on the p2p and c2p links

independently and use existing annotation-oblivious techniques to construct p2p and c2p

links. In this section we describe two such construction techniques. The first is a general-

ization of the random matching method used in the PLRG topology generator [103]. Using

our generalization we construct a graph that follows the JADD of real AS topologies. The

second method is a generalization of the pseudograph approach [125], which enables to

construct random graphs that reproduce the JDD of the links in a topology. We generalize

this method to reproduce the JDD of p2p and c2p links as well as the JADD of real AS

topologies.

Our first method works as follows:

1. For each of the generated triplets, we introduce a node with di
p2c customer stubs, di

c2p
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provider stubs, and di
p2p peer stubs7.

2. We connect stubs by performing one random matching between p2p stubs and a

second random matching between c2p and p2c stubs. If the number of p2p stubs is

odd or if the number of c2p stubs is not equal to the number of p2c stubs, then some

stubs will remain unmatched. We ignore such stubs.

3. Random matching can lead to disconnected components, self-loops, and multi-edges.

We extract the final graph by extracting the largest connected component and by

removing self-loops and multi-edges.

The ordinary random matching method used in the PLRG topology generator creates

an undirected graph ignoring AS relationships, i.e., all the stubs are of the same type. We

extend this algorithm by using different types of stubs to account for customer, provider,

and peer edges. Then, we perform two random matchings8 between stubs of the same

type and of compatible directions. A limitation of the PLRG topology generator is that

it produces graphs that contain self-loops and multi-edges. Self-loops and multi-edges

usually appear on or between large degree ASs. This is because large degree ASs have

many stubs and thus it is quite likely that the random matching will match two stubs that

belong to the same AS or more then two stubs between two ASs. In our generalization

this two problems are diminished. This is because edges of high degree ASs are mainly

customer edges that can only connect to customer ASs, which usually are of small degree

and not to other high degree ASs.

The pseudograph approach described in [125] ignores AS relationships and produces

an undirected graphs that follows the JDD of the edges in the modeled topology. The

algorithm works as follows. Given the number m(d1, d2) of edges between d1- and d2-

degree nodes first prepare a list of m(d1, d2) disconnected edges with edge-ends labeled

7A stub is a half edge that is adjacent to a single node. By connecting two stubs we get a regular edge.
8More generally, we need to perform as many random matchings as the number of different link annota-

tions. Thus, if we also want to model s2s links, then we can add s2s stubs and perform a random matching
between them.
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by d1 and d2. Next, from the list of edge-ends that are labeled with d, randomly select d

edge-ends to construct a node of degree d. We can easily adapt this method to reproduce the

JDD of c2p and p2p edges. Given the N degree triplets generated from the JADD model, we

first estimate the number of c2p and p2p edges between d1- and d2-degree nodes. To do so

we model the c2p and p2p JDD distributions using the same methodology we outlined for

JADD and produce c2p and p2p degree pairs. Then, for each degree pair we introduce c2p

or p2p disconnected edges with their edge-ends labeled with their expected degree. Finally,

for each degree triplet (di
p2c, d

i
c2p, d

i
p2p) of total degree di = di

p2c + di
c2p + di

p2p, we randomly

select di
p2c provider edge-ends, di

c2p customer edge-ends, and di
p2p peer edge-ends from the

list of edge-ends labeled with di. Thus, we construct a node of degree di that has di
p2c

customers, di
c2p providers, and di

p2p peers. Similarly to the PLRG method, the pseudograph

method can also lead to self-loops, multi-edges, or disconnected components. We get the

final graph by removing self-loops, multi-edges, and by extracting the largest connected

component.

6.6 Evaluation

In this section we describe a set of graph metrics, which we use to evaluate the similarity

between generated topologies and measured topologies.

1. AS-degree distribution The AS-degree distribution is one of the properties our

framework models. Thus, the generated graphs should follow the degree-distribution

of real AS topologies.

2. Annotation-degree distributions The customer-, provider-, and peer-degree dis-

tributions are also taken into account in our modeling framework, thus their shape

should be reproduced in synthetic AS topologies.

3. Annotation-degree correlations This is the last property that our framework cap-

tures. To compare the JADD of two topologies we plot scatterplot matrices of the
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customer-, provider- and peer-degrees of the two topologies. A scatterplot matrix of

three variables is a matrix of scatterplots with one scatterplot for each combination

of two variables. Thus, there are six scatterplots in total that illustrate correlations

between the three variables.

6.6.1 Evaluation Results

Among the two approaches we described in section 6.5.2, we provide evaluation results

only for the pseudograph approach. We find that the matching approach though it success-

fully recreates the JADD of measured AS topologies, it suffers from the limitation that it

does not reproduce p2p relationships between large degree ASs, which is known to happen

in reality. The reason is that medium degree ASs have more p2p links than large degree

ASs. Thus, by performing random matching between p2p stubs it is more likely to get

a p2p edge between a medium degree AS and a large degree AS than to get a p2p edge

between two large degree ASs. Thus, random matching results in more p2p links between

large degree ASs and medium degree AS than between large degree ASs, which is unre-

alistic. This problem does not appear with the pseudograph approach, since this approach

takes into account the JDD of p2p and c2p edges. Thus, it forces p2p edges to lie between

ASs of large degree as it happens in reality.

We use the pseudograph approach to generate a topology of similar size with the mea-

sured AS topology we extracted from RouteViews. In Table 13 we list the number of

nodes, edges, p2p edges, and c2p edges in the two graphs. We observe that the values of

these metrics are very similar in the two graphs. These metrics do not give us any insight

on the structure of the two graphs, but they are only rough indicators of how similar the

two graphs are.

In Figure 30 we plot the total-degree distribution of the two graphs and in Figure 31

the customer-, provider-, and peer-degree distributions. The empty points show the distri-

butions observed in the measured AS topology, whereas the solid points depict the distri-

butions in the synthetic topology. We observe that in the two figures the distributions for
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Table 13. Number of nodes, edges, c2p edges and p2p edges in the measured and in the synthetic AS
topology.

Number of nodes edges c2p edges p2p edges
Measured Topology 19,036 40,115 36,188 3,927
Synthetic Topology 19,141 40,727 37,350 3,377
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Figure 30. Degree distribution of measured graph and of synthetic graph of similar size.

the synthetic graph follow closely the corresponding distributions for the measured graph.

This highlights that we can effectively reproduce the customer-, provider-, peer-, and total

degree distributions using our modeling framework. In the second figure we also observe

that the customer-degree distribution has the longest tail, followed by the peer-degree dis-

tribution, followed by the provider-degree distribution. Thus, there is a large variability

in the number of customers. On the other end, there is much smaller variability on the

number of providers with most ASs having one or two providers. The maximum number

of customers in the measured topology is 2,384, the maximum number of peers is 434, and

the maximum number of providers is 17. These distributions confirm that different types

of relationships can have radically different properties as we argued in the introduction.

In Figure 32 we plot the matrix scatterplot of the provider-, peer-, and customer-degrees

of the real AS topology. The x-axis of the subplots in the first, second, third column cor-

respond to the provider-, peer-, and customer-degrees, respectively. Similarly, the y-axis

of the subplots in the first, second, and third row correspond to the provider-, peer-, and
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Figure 31. Customer-, provider-, peer-degree distributions of measured graph and of synthetic graph
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customer-degrees, respectively. Thus, for each combination of annotation degrees there are

two scatterplots at the transposed positions of the matrix. The subplots on the left of the

first two rows show the dependence between the peer-degree and the provider-degree. Both

of the subplots are noisy without a clear indication of a dependence pattern. The two plots

in the top right and in the bottom left positions of the matrix illustrate the dependence be-

tween the provider-degree and the customer-degree. We first note the pattern that ASs with

many customers have very few or no providers9. This pattern confirm the empirical knowl-

edge that large tier-1 ISPs have many customers and no providers. The last two subplots

on the right of the bottom two rows illustrate the dependence between the customer-degree

and the peer-degree. These two plots exhibit the following patterns. First, we see that ASs

with many customers have very few peers. This indicates that the largest ISPs in the In-

ternet have p2p relationships with very few other ISPs. Secondly, as we move to smaller

customer-degrees we see that ASs start having larger peer-degrees. This observation is

consistent with the intuition that medium size ISPs have more open peering policies than

large tier-1 ISPs. Finally, ASs with very few customers have very few peers. These ASs

are likely small or leaf ASs in the periphery of the AS topology, e.g., company networks,

9Observe that the subplot in the right of the first row has very few points for large customer-degrees. This
is because most ASs with large customer-degrees have zero provider-degree.
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Figure 32. Matrix scatterplot of the provider-, peer-, and customer-degrees of the ASs in the measured
AS topology.

which do not typically engage in p2p relationships with other ASs. In Figure 33 we il-

lustrate the same matrix scatterplot for the customer-, provider-, and peer-degrees of the

synthetic topology. We observe that the patterns that appear in the measured topology are

also reproduced in the synthetic topology. The corresponding subplots in Figures 33 and 32

are very similar, which highlights that our framework effectively reproduces correlations

between the annotations-degrees. We note that the subplots are not identical, but exhibit

small differences, which is a natural consequence of the random construction method.

Overall, we find that the synthetic topology effectively reproduces the examined evalu-

ation metrics. Thus, we verify that our framework captures the classical degree distribution

of the AS topology and in addition it assigns realistic AS relationship annotations, which

closely reproduce AS relationships patterns observed in the Internet.
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AS topology.

6.7 Conclusion

We highlighted the problems that the Internet community is facing because of the lack of

AS relationship models and discussed its implications on conducting realistic and reliable

simulations studies. We used simulation experiments to demonstrate that ignoring AS rela-

tionships can change a wide range of performance metrics, which are typically used by re-

searchers in performance evaluation studies. We draw motivation from our findings first to

note that shortest path routing is a questionable assumption that should be used with great

care in simulation studies and secondly to introduce a novel topology generation frame-

work. Our framework improves the state-of-the-art by producing AS graphs that follow the

degree distribution of the Internet as well as two new properties: 1) the annotation-degree

distributions, and 2) the joint annotation-degree distribution (JADD). These two properties

extract information about the number of customers, providers, and peers of ASs in the In-

ternet and enable us to create synthetic AS graphs with realistic customer, provider, and
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peer assignments. We use powerful statistical tools to model these properties on real AS

topologies and we introduce an algorithm to reproduce these properties in synthetic AS

topologies. Our evaluation results demonstrate that our framework effectively reproduces

these properties and that the resulting synthetic topologies exhibit the same annotation pat-

terns we observe in the Internet.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

This dissertation derived necessary tools and data for conducting realistic BGP simula-

tions. We first developed a BGP simulator, then we introduced measurement and inference

methodologies, and finally developed a novel topology modeling framework. Our contri-

butions can be summarized as follows:

1. In Chapter 2 we introduced BGP++, a BGP simulator designed to realize detailed

and large-scale simulations. BGP++ design approach was to incorporate a popular

open-source BGP router into a packet-level network simulator. Thus, we effectively

addressed the need for detail. Moreover, we extended BGP++ to support parallel

and distributed simulation techniques and we developed a compact routing table data

structure to reduce the memory consumption. Using BGP++ we demonstrated large-

scale simulations of thousands of BGP routers. Our work on BGP simulation has

resulted in the following publications [126, 127, 128].

2. In Chapters 3, 4, and 5, we introduced techniques to mine vital data of the inter-

domain infrastructure necessary for conducting realistic simulations. In particular,

we derived methodologies for measuring AS topologies, for inferring AS relation-

ships, and for inferring AS types. These studies have resulted in the following publi-

cations [70, 2, 129, 130, 131].

3. In Chapter 6, we introduced a framework for modeling networks and link charac-

teristics as annotated graphs. We identified important annotation-aware properties

and developed an algorithm to generate synthetic graphs with realistic annotations.

Though, our framework is generic, we used it to model AS topologies annotated with
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AS relationships and to derive an AS topology generator. This work has resulted in

the following publications [79, 132].

The main motivation for our research was to enhance the integrity of BGP performance

evaluation methods, however our results are not only of simulation interest. Rich Internet

data are also important for identifying limitations of the routing architecture, for mapping

the requirements for future routing architectures, and for many other practical and theoret-

ical applications. For example, the inferred AS relationships and the derived AS classes

have been used by network economists to analyze the Internet economy. Moreover, our

modeling framework is generic and can be used for modeling arbitrary networks, like bio-

logical or social networks.

7.2 New Directions

Our work opens new directions in the areas of routing, simulation, measurements, and

modeling.

7.2.1 Routing

BGP++, the acquired data, and our topology generator can and have been helpful in BGP

simulation studies. BGP++ enables the practitioner to perform detailed simulations of

thousands of BGP routers, which are necessary for studying BGP, BGP modifications, and

new routing protocols. For example, we are presently using BGP++ to evaluate the impact

of BGP’s slow converge on DNS anycast servers. Moreover, BGP++ has been used to

study the interplay between overlay routing and BGP routing [33] and the performance of

BGP over satellite links [133]. In the future, we intend to use BGP++ to evaluate BGP-

based Distributed Denial of Service (DDoS) attack mitigation techniques. The measured

or inferred data are useful for improving our understanding of the BGP infrastructure, for

analyzing Internet routing, and for configuring realistic BGP simulations. For example, the

inferred AS relationships and AS types have been used for creating synthetic BGP routing

tables and for mapping IP addresses in traffic traces to different types of users, respectively.
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In general, there is wide range of routing applications in which BGP++, the retrieved data,

and our topology generator, can and we hope will be useful.

7.2.2 Simulation

The BGP++ development methodology can set a example in developing simulation soft-

ware. In particular, using UNIX protocol implementations to derive corresponding simu-

lation software is a minimally explored method to developing detailed network simulators.

This direction has two key benefits: 1) it allows us to introduce detailed protocol imple-

mentations in simulators without the extensive effort of developing a protocol from scratch

and 2) it enables us to develop further protocol modifications once and immediately apply

them to both the simulator and the UNIX version of the software. A promising path is the

development of interfaces with which we can seamlessly or with minimal effort use net-

working software on top of simulated hosts or routers. This requires the development of

kernel-like interfaces on the simulated nodes that would for example simulate system calls

or the BSD sockets interface.

7.2.3 Measurements

In the Internet measurements area, our AS taxonomy methodology can be extended to

compute more interesting classifications. Methodologically there is a wide spectrum of

machine-learning and information retrieval algorithms that can be used to analyze Inter-

net data. Our classification approach sits on the one end of the spectrum, in which the

classification rules are derived automatically without any expert knowledge. One the other

end of the spectrum, expert systems rely entirely on experts embedding their knowledge

into the classification rules. Both of these approaches have a number of advantages and

disadvantages, which rises the question of how we can combine these techniques to derive

more accurate classification methodologies. An additional direction is to derive more fine-

grained taxonomies that would identify for example web-hosting ASs or other AS types of

interest. For this purpose, we need richer and more relevant data, from which we extract
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patterns associated with different types of ASs.

7.2.4 Modeling

The generic nature of our topology modeling framework opens new paths to modeling

topologies annotated with interesting link attributes. For example, we could use our frame-

work to model router-level topologies annotated with link bandwidths and then generate

synthetic router-level topologies with realistic bandwidth annotations. A natural extension

of our framework is to adapt it so that we can also model node annotations. Node anno-

tations, could represent other interesting network characteristics, like router locations, AS

types, or router vendor models.

7.3 Concluding Remarks

Concluding we highlight that to support future research effors we have made publicly avail-

able the following open-source software and data repositories:

1. In Chatper 2 we introduced BGP++. BGP++ and its supporting tools can be down-

loaded from [38].

2. For our work in Chapter 3 on mapping AS topologies using BGP updates, we did

not develop a data repository. The reason is that the same methodology was inde-

pendently explored by Zhang et al. [69], who provided an open repository of AS

topologies constructed from BGP updates. These AS topologies can be downloaded

from [134].

3. In collaboration with CAIDA we have automated the c2p, p2p, and s2s inference

heuristics we described in Chapter 4. We compute and archive AS relationships on a

weekly basis and make our data publicly available on the web [84].

4. The AS data we used to classify ASs in Chapter 5 and the inferred AS types can be

found in [30].
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5. Currently, we are implementing a public release of the topology generator outlined

in Chapter 6 and in the future we will make it publicly available.
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