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Abstract

The ultimate goal of this research was to establish a method to
effectively adjust the control scheme of a robotic assist device based
on arm stiffness measurements of an operator. This controller was
expected to achieve higher performance in assist devices than other
methods such as fixed gain controllers. The necessary steps for this
were 1) to develop a wearable device for the measurement of biosig-
nals related to muscle activity level such as electromyogram (EMG)
as well as a haptic feedback device to be used in testing, 2) to develop
a method to extract the changes in muscle stiffness from biosignals,
3) to develop a method to adjust the controller gains of a lift device
based on the muscle stiffness information, and 4) to investigate the as-
sociation between human stiffness and system performance limit. The
results could be used to design and control various human-machine in-
terfaces in assembly lines. Investigation of key human characteristics
and their role in machine controls would lead to achieving effective
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human machine interface designs. The design of the EMG measure-
ment and haptic feedback device are discussed, and an experiment
was performed to investigate the relationship between EMG signals
and human arm stiffness. It was determined that EMG signals can
provide an effective prediction of the stiffness of an operator’s arm,
which can then be used to adjust such a control system. A sys-
tem that used a simple threshold classifier to estimate stiffness was
implemented that would adjust the impedance characteristics of an
impedance controller. An experiment was then performed to assess
the change in performance of the new system. It was found that the
new system provided improved stability.

1 Introduction

Human-robotic interaction has become a rapidly expanding field, with many
people researching new and innovative ways for people to control robots.
Haptics is a popular control method, as it has been found that touch is a
very intuitive way for controlling a robotic device. Force feedback and hap-
tic controllers are now common in areas from gaming to industrial machines.
Haptic devices require physical contact between the operator and the ma-
chine, introducing feedback and creating a coupled system. This has been
shown to introduce inherent instabilities due to the typical response of hu-
man operators [1, 2, 3, 4]. To attempt to correct for the negative effects of
feedback, this study will design a control scheme that adjusts to changes in
the way an operator grips a haptic controller.

Adjusting the control scheme of the robot will be accomplished by tuning
the control gains based on the overall stiffness of the operator’s arm. This
gain adjustment is expected to achieve higher performance in robotic devices
than fixed control gains. For the purposes of this study, only industrial lifting
devices will be considered.

There are four ultimate goals of this research. First, it will develop a
wearable device for the measurement of biosignals related to muscle activity
level, such as electromyogram (EMG). Second, it will be necessary to develop
a method to extract the changes in muscle stiffness from these biosignals.
Third, a method to adjust the controller gains of a lift device based on the
calculated muscle stiffness will be developed. Fourth, it will investigate the
association between human stiffness and any system performance limits and
evaluate the effectiveness of the final system. The results could be used in



the design and control of various human-machine interfaces, both in assembly
lines and in other areas of robotics. Investigation of key human characteristics
and their role in machine controls would help to achieve effective human
machine interface designs.

Since the level of stiffness is not directly measurable in typical control
situations, the control scheme must acquire some analogous or correlated
metric. Electromyogram (EMG) signals are expected to be a promising al-
ternative. Unfortunately, the relationship between EMG signals and arm end
point stiffness has not been thoroughly studied, and there is little literature
discussing it. Therefore, this research must determine if EMG signals can be
used to accurately indicate the stiffness level of a human arm, and if such a
control system effectively improves the performance. It is expected that as
a human operator varies the end point stiffness of his or her arm, the EMG
signal will show a correlation such that it can be used as a predictor for arm
stiffness. By then using this, it should be possible to design a control scheme
with increased stability and less oscillation.

2 Background

Numerous studies have explored the stability of haptic controllers that an
operator grips with their hand. Kazerooni and Snyder [1] demonstrated the
inherent instability induced by a human operator in a haptic hand controller.
They developed an impedance controller using the force the operator was
applying to the controller. However, they found that for stability, it was
necessary to have some compliance in either the human arm or the control
device.

Duchaine and Gosselin [2] furthered this study using Lyapunov Theory.
They developed a more detailed model of both the robot and human arm
characteristics, then defined a thorough description of the stability region
of the system. They then performed an experiment with human operators
to validate their theory. By modeling the stiffness in both the robot and
the human, and then finding the control system was critically damped for
the system, they were able to significantly reduce the instability of a haptic
human-robot interface.

Both of these prior studies illustrated how trade-offs must be made to
find a well suited control system. A high performance system must have
some compliance in the system to avoid instability, whereas a stable system



that will operate well under stiff conditions will yield comparatively lower
performance. Unfortunately, the natural human response to an unstable
system is counter to this. If a high performance system begins to oscillate
and become unstable, a human operator will naturally attempt to stiffen
the arm grasping the control device. Based on the results of both of these
previous studies, this would make the system more unstable, worsening the
oscillations. However, by monitoring the stiffness of the operator’s arm, it
would be possible to dynamically vary the tradeoff between performance and
stability by adjusting the control system.

Accomplishing the goals set out for this study requires understanding the
mechanics of human arm muscles and how they relate to muscle stiffness. A
variety of physiological studies have been done relating to muscle stiffness
and methods for measuring it. Hatta, Sugi, and Tamura [5] performed tests
using frog muscles to determine the relationship between contraction and
changes in muscle stiffness. Using ultrasonic waves to measure the stiffness of
a muscle, they induced a contraction and recorded the corresponding change
in stiffness. They found that stiffness increases with contraction, and that
the change in stiffness is larger for larger contractions. They then suggested
some physiological reasoning for this. However, as shown by Monroy, Lappin,
and Nishikawa [6], muscles exhibit a time history that must be considered.

Other studies have extended this work to muscles in the body. Each joint
is moved by at least two muscles that pull in opposite directions, known
as antagonistic muscles. It has been shown that an antagonistic pair con-
tracting together, called cocontraction, is indicative of a higher joint stiffness
(7, 8,9, 10, 11], since the cocontraction of an antagonistic pair would result
in no motion, but more force on the joint. Therefore, by detecting the co-
contraction of a pair of antagonistic muscles, or multiple pairs for accuracy,
it would be possible to estimate the stiffness of an operator’s arm.

Based on these prior studies, the target design would consist of a system
that could first read the EMG signals of various arm muscles and determine
the magnitude of cocontraction, and then convert that into an estimate of
arm stiffness. It would then calculate an appropriate adjustment to the robot
control system to ensure stability.
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Figure 1: One Degree of Freedom Haptic Feedback Device

3 Hardware Design

3.1 One Degree of Freedom Haptic Feedback Device

As a test bed for the control system to be designed and as an instrument for
conducting the experiments necessary to investigate the relationship between
EMG signals and human arm stiffness, a simple one degree of freedom device
was designed that was capable of producing haptic feedback via a force either
impeding or assisting the user’s motion. The design, shown in Figure 1, was
inspired by devices such as Phantom haptic feedback devices and other haptic
paddle designs [12, 13, 14, 15, 16], but with the specific goals of being low
cost and versatile with a higher force capacity. Since it was to be used for
human participant experiments, it was also designed with the safety of the
operator in mind. Using a cable driven system allows for amplification of
the force generated by the motor while remaining compliant to the user’s
applied force. The device has maximum generated force at the handle of
approximately 100 N and a frequency response of up to 10 Hz. The control
of the device was implemented using a CompactRIO real-time controller and
LabView software, and uses an optical encoder and six axis force and torque
sensor for feedback
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Figure 2: Wearable EMG Measurement Device

3.2 Wearable EMG Measurement Device

The wearable device was created to measure EMG signals from the arm.
The device consisted of an elastic sleeve with embedded EMG electrodes,
shown in Figure 2. The sleeve is designed to allow the device to be taken on
and off quickly, as well as fitting a wide range of arm sizes. Electrode pairs
were located on two antagonistic muscle pairs, with the first being the biceps
brachii (BB) and triceps brachii (TB) and the second being the flexor carpi
ulnaris (FCU) and extensor carpi ulnaris (ECU). These muscles were chosen
because they are easily accessible for surface EMG measurements and are the
primary muscle pairs controlling the elbow and wrist motion, respectively.
Electrodes were placed with a center to center spacing of approximately
10 mm, and a ninth electrode was located on the elbow as a ground. For
each muscle the signal was processed by first removing the DC component
and taking the absolute value of the signal. Then each signal was low pass
filtered with a cutoff frequency of 2 Hz. To calculate the percent effort of
each muscle, the signal was compared to the maximum amplitude of a signal
processed as described above when the subject generated their maximum
voluntary force from an isometric contraction of the same muscle. A measure
of the cocontraction for each antagonistic muscle pair was then determined
by taking the minimum percent effort of the pair.
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Measured Force

-5 Device Output

i —

20 40 100

b o

o 8

Voltage (V)  Force (N)

g

60
Time (s)

Figure 4: Demonstration of Increase in Instability with Increase of Stiffness

3.3 Instability Induced by Human Arm End Point Stiff-
ness

Using the one degree of freedom haptic feedback device it was possible to
reproduce the conditions under which the system grows unstable with in-
creased operator arm stiffness. The device was programmed with a force
assisting controller similar to that used in large lifting devices, as shown in
Figure 3. This controller scales the force applied to the device as read by the
force sensor on the handle by a gain, then provides it to the motor as the
input. This causes the motor to generate a force in the same direction as the
operator, thereby assisting the operator. Figure 4 shows a plot of both the
force recorded by the device and the motor output of the device. Increased
operator arm stiffness results in a higher frequency force signal with higher
magnitude. This then created more oscillation in the device, which grew to
a noticeable size, making it difficult or impossible for the operator to hold
the device still and stabilize it.



4 EMG Signals as Indication of Arm Stiffness

4.1 Experimental Procedure
4.1.1 Concept

Human muscles are a complicated system, and it is extremely difficult to
create an analytical model of them. However, prior work [2, 4] has modeled
it as a spring-damper system with a single stiffness and single damping value
(The damping is occasionally omitted). Using such a model, designing an
experiment to test the correlation between EMG signal and stiffness can be
simplified. If the position of the base of a spring is fixed and the position of
the other end and the applied force is known, then the stiffness of the spring
can be calculated. Treating the arm as a spring leads to two values that must
be measured to calculate the stiffness of the arm. If these two values can be
controlled, then the only measured value is the EMG signal.

Based on this analysis, an experiment was designed with a minimum
number of variables. By having a participant hold the handle of the haptic
feedback device shown in Figure 1, it was possible to control the position and
force at the end point of the arm, leading to two independent experimental
variables. The stiffness, which was the actual desired independent variable,
was then directly calculated from these values. This left the EMG signal for
each muscle, which were read using the sleeve shown in Figure 2 as the only
dependent variables. It was expected that the EMG signals and stiffness value
would covary throughout the experiment, so the experiment was designed
attempt to verify this as exhaustively as possible so that the results could
be generalized properly. Therefore, the experiment was run at a variety of
stiffness values, leading to the requirement that both force and position be
set to multiple levels. The force was be tested at twenty different levels up
to approximately 100 N, with three different levels for position: one with the
arm in a neutral position, one with the arm slightly more out stretched, and
one with arm slightly more bent.

The expectation was that it would not matter what the individual com-
binations of force and position were, as stiffness was the main value that is of
interest. However, the human arm is not necessarily a linear system, and it
is possible that human muscles could exhibit other, more difficult to account
for, tendencies, such as hysteresis. Therefore, force and position were con-
sidered as independent variables, with stiffness as a calculated intermediate



Figure 5: A Participant Performing the Experiment

variable. The most exhaustive design that fully crossed the levels of force
and position was used, leading to sixty cases. In addition, each person’s
size and strength varies significantly, introducing extraneous variables that
complicate comparisons between individuals. For this reason, each experi-
ment participant was be asked to perform multiple trials of the experiment,
covering all of the sixty cases. This was feasible, as each case will only took
between 5 and 10 seconds to perform. It was expected that each participant’s
results would follow the same general trend.

4.1.2 Method

Each participant stood aside the one-degree-of-freedom haptic feedback de-
vice such that, when the device’s handle was at its neutral position, the
participant’s arm was comfortably held out with the elbow slightly bent and
the forearm parallel to the floor, as shown in Figure 5. For each case, the
participant was asked to hold the haptic feedback device stationary in the
given position. After some amount of time, the device applied a force against
the user, which required the user to stiffen their arm to continue to hold the
device in place. During this time, an arm band was continuously measuring
the participant’s EMG signals for each of the four muscles. Learning effects
associated with the task were expected to not be significant, as there was
no procedure the participant must become accustomed to or apparatus they
must figure out how to use. The data was then analyzed to look for corre-
lations between stiffness and EMG signal. This experiment was performed
following an approved Institutional Review Board protocol.



4.1.3 Analysis

Once the experiment was completed, a multiple regression/correlation (MRC)
technique was used on the data to look for a relationship between the mea-
sured cocontraction values and the arm stiffness calculated from the mea-
sured position deviation and applied force on the device. This analysis was
done based on the methods described by Cohen [17]. To validate the use of
cocontraction, another MRC was calculated that used all four EMG signals
as predictors instead of the two cocontractions. Finally, to measure the in-
fluence of device position and force strength on the relationship, the nominal
values of device position and generated force were included in the regression.
For each regression performed using the MRC technique, the value of the
multiple correlation coefficient, B2, and of the zero-order correlation coef-
ficients for each predictor, r?’s, were found. R? indicated the quality of the
fit, while each r? shows how much of the variance of the predicted variable
can be attributed to each predictor variable.  The results were expected
to indicate a statistically significant relationship between cocontraction and
stiffness along with a comparable relationship between EMG signals and stiff-
ness, and that neither position nor device force were significant contributors
to the variance of stiffness. The data from all participants was anonymized
and processed using MATLAB software, while SPSS and G*Power 3.1 [18]
were used for statistical analysis.

The number of participants in a human subjects experiment is generally
chosen based on the desired power of the resulting statistical analysis. The
power, an indication of the probability of Type I or Type II errors in the sta-
tistical analysis, should be close to 1, and is often chosen to be 0.95, leaving
a 5% chance of statistical errors. However, this experiment collected a very
large amount of data, and this power value is generally only accepted for up
to about 200 data points. In an effort to simplify the resulting analysis, each
trial was filtered and reduced to 10 points, which was enough to ensure that
the main effects of the signal were preserved with minimal information loss
while also reducing the noise. This resulted in 600 data points per subject,
well in excess of the 200 stated previously. Therefore, a desired power value
much closer to 1 was chosen. Using a desired power of 0.9999 required ap-
proximately 1,500 data points, which resulted in a 1 in approximately 10,000
chance of a Type I or Type II error. This required at least three participants
to obtain the desired power. A total of four trials of the experiment were
completed, resulting in roughly 2,000 data points. All participants were male
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Table 1: Variance Partitioning for Cocontraction

Variable r?
Cocontraction 11.7%
(elbow)

Cocontraction 11.1%
(wrist)

Nom Angle 0.2%
Nom Force 28.7%

Table 2: Variance Partitioning for EMG

Variable r2

EMG (BB) 11.6%
EMG (TB) 16.0%
EMG (ECU) 8.0%
EMG (FCU) 12.9%
Nom Angle 0.2%
Nom Force 28.7%

and ranging in age from 20 to 26. Due to the limits of the force sensor on the
device, trials with very high forces could not be accurately read, reducing the
number of usable data points to approximately 1,200, resulting in an actual
power of 0.9976 and a required critical F of 4.69 for statistical significance of
the regression.

4.2 Results

The MRC method is based on a linear least squares fit of data. The models
calculated from a basic linear fit provided an R? value of 0.173 for the cocon-
traction/stiffness relationship and 0.201 for the EMG/stiffness relationship,
indicating the relationship poorly represented the data. Since the funda-
mental form of the relationship between muscle activity and arm stiffness
is unknown, a variety of data transformations were tested, including expo-
nential and logarithmic transformations. It was found that a logarithmic
transformation of the EMG and cocontraction data provided the best fit.
The cocontraction/stiffness relationship utilizing a logarithmic transfor-
mation of the data achieved an R? value of 0.338. Table 1 lists how the
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Figure 7: Histogram of Measured Stiffness Levels for a Single Force Level

variance of the stiffness was partitioned amongst the various predictor vari-
ables, indicating the degree to which each predictor contributed to the change
in the stiffness. The regression resulted in a statistical F value of 75.8, which
exceeded of the value required for statistical significance. The EMG //stiffness
relationship with a similar transformation resulted in an R? value of 0.377.
The corresponding partitioning of the variance of the stiffness is shown in
Table 2. The second regression resulted in an F value of 59.8, also in excess
of the critical F value for statistical significance.

4.3 Discussion

The results presented above indicate that a statistically significant relation-
ship does exist that allows the use of measured EMG signals as a predictor of
the operator’s arm stiffness. However, the fit using the calculated measure of
cocontraction actually provided a poorer fit than using the raw EMG data.
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While the correlation is still significant and usable, this indicates that the
level of cocontraction may be better represented by something more than just
the level of contraction that both muscles of an antagonistic pair have met or
exceeded. As expected, changing the starting position of the device’s handle
had little effect on the stiffness of the operator’s arm, as indicated by the
0.2% of the variance that this variable accounts for. However, the nominal
force of each trial had a much larger effect on the regression than anticipated.
Based on these results, it should be possible to use EMG readings to design
a control system that can account for the stiffness of the operator’s arm.
However, more research will have to be done to determine the ideal indicator
to use for cocontraction.

Further analysis of the collected data indicates that the operator’s strat-
egy for choosing the appropriate stiffness level for a given situation is not
straightforward. It would be expected for a person to choose a stiffness level
that is just high enough for the applied force, however, the data show that
this is not the case, as the stiffness level for a given applied force is incon-
sistent. Figure 6 shows a histogram of the stiffness of all data points. The
plot shows that points are neither uniformly nor normally distributed, but
instead tend towards the shape of a Poisson distribution. In addition, Figure
7 shows the stiffness level for all trials at the middle force level. While the
strategy that a human uses to choose the appropriate stiffness level is un-
known, it is clearly more complicated than just balancing the applied force
with minimum effort.

4.4 Conclusions

This study intended to investigate the relationship between EMG measure-
ments and human arm stiffness. It is known that muscle cocontraction in-
creases with increased joint stiffness, and it is desired to design a robot control
system that can adjust based on operator arm end point stiffness. Therefore,
using EMG measurements as a gauge of muscle activity and cocontraction
level, it should be possible to obtain an estimate of arm end point stiffness.
However, the validity of this relationship had not previously been demon-
strated. After performing an experiment where a participant was asking to
stiffen their arm in response to a force applied at their hand, a regression
was obtained based on EMG signals as predictors of arm end point stiffness.
The data showed that the correlation is statistically significant, making it
possible to use EMG signals in this way. While the calculated cocontraction
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level was sufficient, the raw EMG signals provided a better indication. It
was also seen that the operator’s chosen stiffness level was not necessarily
the minimum required to perform the task, and that perhaps there are other
factors that effect this choice.

5 Controller Design

After establishing the system for measuring arm stiffness, it was necessary to
design the compensating controller. This consisted of two parts: a method
for classifying operator arm stiffness into discrete levels and a method for
adjusting the robot controller based on these levels.

5.1 Classifying Operator Arm Stiffness

The system first measured the operator’s muscle activity using the reusable
sleeve, and then calculated the cocontraction for both the forearm and upper
arm. It next needed a way to determine how the resulting stiffness level
should be classified. Due to the noise in the EMG readings, it was decided
that a series of discrete levels would be used. Attempting to use a continuous
scale resulted in a controller that was constantly changing, making it very
difficult to use. After some testing, it was found that a simple classification
of the stiffness as high or low gave the best results. More levels may be
possible by using a more accurate and less noisy EMG measurement system.

The next task was to determine the best method to use for classifying the
stiffness into the high and low categories. Multiple methods were considered.
An Artificial Neural Network (ANN) and a Support Vector Machine (SVM)
were both considered, as they are commonly used classifiers. They are both
learning methods that can adapt over time to changing conditions and are
driven by complex systems of nonlinear equations. However, due to time
constraints, these methods could not be thoroughly explored, so a simpler
method was chosen that classified the stiffness as high or low based on an
adjustable threshold for each pair of muscles. These thresholds could be
adjusted to accommodate the variations of muscle activity levels of different
operators.

With a threshold based system, there are a few characteristics that must
be considered. The first is the chance for oscillation across the threshold,
leading to a system that is constantly switching between high and low states.

14
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To compensate for this, the system required that the cocontraction level
crossed the threshold for some finite amount of time before changing the
classification. Another concern was the noise in the EMG measurements.
Due to the extremely small voltages being measured and the large amplifica-
tion required to read them, the signals can be extremely noisy. To make the
signals usable, they had to be filtered, as described in the section regarding
the reusable sleeve. This also helped with the former issue, as the filter added
to the required time that the signal must exceed the threshold before being
classified.

5.2 Adjusting Controller

Many haptic devices use an impedance control scheme, as it allows the robot
to make the system respond as if it had an arbitrary set of dynamic char-
acteristics (mass, damping, and stiffness). This makes control easier on the
operator, because the actual system dynamics are masked by those set in the
controller. A diagram of a simple impedance controller is shown in Figure
8. The input to the system is the force applied to the device handle. The
outer force control loop then calculates the change in position that a system
with the desired impedance characteristics would exhibit under this loading
over a signal controller time step. This change is then added to the device’s
current position and given to the inner position control loop, which attempts
to reach that position. This process is repeated each time step, resulting in
a system that moves in the same manner as an actual system with the same
dynamics as the programmed impedance characteristics.

For the purposes of the system to be designed here, the impedance charac-
teristics were chosen based on how a large lifting robot would move. Stiffness
was set to zero, as a non-zero stiffness would cause the robot to return to the
same position every time the handle was released. For the case where arm
stiffness was low, the mass and damping were set to be small, allowing the
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system to move quickly and easily with little resistance. However, when the
stiffness was high, these values were increased. The higher damping reduced
oscillations in the system, while the higher mass made the system easier to
hold steady, allowing the operator to more precisely control it. A diagram of
the complete system is shown in Figure 9.

5.3 Demonstration

Figures 10 and 11 demonstrate the use of the designed system. In both
figures, the left graph shows the motion of the device using a standard
impedance controller, whereas the right graph shows the same motion with
the new system with the yellow highlight indicating the system has detected
higher operator arm stiffness. In the former figure, the haptic device was
moved through a trajectory and held still at certain points. The graph
showing the compensating controller illustrates the increased stability and
smoother motion without sacrificing the ability to move the handle rapidly
over long distances. The latter figure shows the device being held against a
rigid surface. Without compensation, the device oscillates rapidly under the
stiff conditions. However, with the compensation, the device can be easily
held against the rigid surface. To further demonstrate this improvement,
Figure 12 shows the frequency spectrum of both signals. The range between
10 and 15 Hertz shows a clear decrease in the magnitude of oscillations with
the compensation on.

16



Figure 10: Movement Through a Trajectory with the Compensation Off
(Left) and On (Right)

Figure 11: Contact with a Rigid Surface with the Compensation Off (Left)
and On (Right)

6 Evaluation of System Performance

6.1 Experimental Procedure
6.1.1 Concept

With the final working system completed, it was necessary to perform a series
of tests to evaluate the performance of the new system as compared to some
baseline. For comparison, a standard impedance controller was used as the
baseline. This controller used the same parameters as the low stiffness case
for the compensating controller. For simplicity, tests performed with the
compensating controller will be referred to as tests with the controller on,
while tests with the basic impedance controller will be referred to as tests
with the controller off.

It was desired to design an experiment that could test two aspects of the
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system: 1) the effects on stability in a stiff situation and 2) the effects on
operator performance in a typical usage scenario. For the first case, the best
situation would be one that typically is unstable for impedance controllers.
This way, any increase in stability with the controller on could be measured.
To do this, the case where the handle of the haptic device was held against
a rigid surface was chosen. In a typical impedance controller without a
high damping coefficient, the device would contact the rigid surface, then
bounce back due to the force of impact. With an operator attempting to
hold it against the surface, the device would bounce repeatedly and the
system would be unstable. It was expected that with the controller on, the
operator would stiffen their arm to attempt to hold the device steady against
the rigid surface, thereby causing an increase in the damping coefficient and
making the system more stable. For this experiment, all variables, such as
the position of the rigid wall, were held constant, with the only independent
variable being whether the controller was on or off. The position of the
device was then recorded over time. To measure the stability of the system,
the RMS of the distance of the handle from the rigid wall was calculated for
the duration that the operator was attempting to hold the device against the
surface.

For the second case, a test was designed that could mimic a real-world
usage scenario using the hardware designed and discussed above. The large
lifting robots that this system was designed for are typically used to move
objects from one point to another. Therefore, a computer simulation show-
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ing a lifting arm whose position was controlled with the haptic device was
developed. An operator could then use the device to move the arm, then
press a button to lower the arm and pick up an object. Again using the
device, they could move the arm to a target, and again push the button to
put the object down. Figure 13 shows the simulation. For this task, there
were two independent variables: the state of the controller and the distance
from the object’s initial location to the target. Performance is an inherently
subjective quantity that can be difficult to measure. When operating a ma-
chine in a factory or assembly line, the goal is to produce as many products
of as high a quality as possible. Therefore, operators would be expected to
perform their job both quickly and accurately. To this end, the measures of
performance used in this experiment were placement speed and precision. It
was expected that this experiment would demonstrate an increase in speed
and accuracy with the controller on.

For this experiment, the results were analyzed using the ANOVA method
to look for statistically significant differences between the two controller
states.

6.1.2 Method

Each participant in this study was oriented with the EMG measurement sys-
tem and haptic device before performing the experiment. They then had the
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EMG measurement system connected to their right arm and stood aside the
device in a similar posture to the previous experiment. They were then given
the opportunity to use the device unconstrained, but with the compensating
controller off, few two to three minutes, allowing each participant to become
accustomed to it. This, along with other measures outlined below, minimized
any learning effects that might be present in the experiment.

Once the subject was comfortable with the set up, the first task was pre-
sented and explained. They were asked to place the handle of the device
against a rigid surface and hold it in contact with the surface for five sec-
onds, after which time the experimenter would instruct them to move the
handle away from the surface. They were then asked to repeat this sev-
eral times. This was to be done both with the controller on and off. Since
the controller must be tuned to each individual separately, a series of trials
were first completed in which the experimenter adjusted the cocontraction
threshold accordingly, which also helped to minimize learning effects in the
task. This resulted in each participant performing between 4 and 8 trials of
the task, of which only 2 were used for data collection (The one with the
controller off and the one with the controller on and properly tuned).

After completing the first task, the second task was presented. The sim-
ulation was explained and the goal of picking up the object and placing it
as closely to the center of the target as possible was demonstrated. Partic-
ipants were allowed to pick up the object and place it multiple times until
they were satisfied with its location. The participant was then given a few
minutes of free time to use the device and become accustomed to the sim-
ulation. During this time, no data was recorded. When the participant felt
comfortable with the system, the actual experimental trials were started. A
similar tuning method was used as before to ensure that the thresholds were
appropriate to each participant, as well as to minimize any learning effects.
The participant performed the task several times for each trial, with only
two of the trials used for data analysis. Both tasks of this experiment were
performed following an approved Institutional Review Board protocol.

6.1.3 Analysis

After completing the experiment, the data was analyzed using an ANOVA
analysis to look for statistically significant differences between the case where
the controller was on and the case where the controller was off. This analysis
was performed for both tasks. The data from all participants was anonymized
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and processed using MATLAB software, while SPSS and G*Power 3.1 [18]
were used for statistical analysis.

A power analysis was performed beforehand to again calculate the re-
quired number of participants. However, since each participant would con-
tribute only a small number of data points compared to the previous experi-
ment, it was unlikely that more than 200 points would be collected for either
task. Therefore, a more typical expected power of 0.95 was chosen. This re-
quired a minimum of 16 participants to obtain statistically significant results.
To be conservative, the experiment aimed to gather 20 participants. In total,
21 participants were involved in the experiment. Due to software errors, one
participant’s results were unusable, leaving 20 participants, resulting in an
actual power of 0.965 and a required critical F of 1.29 for statistical signifi-
cance. Of the 20 people involved, 12 were male and 8 were female, with ages
ranging from 19 to 37.

6.2 Results
6.2.1 Stability Task

The first task resulted in 80 data points, 4 per participant (2 with the con-
troller on, 2 with the controller off). Figure 14 shows the distribution of
the RMS data for this task. As demonstrated by Figure 15, the points with
the controller on have a lower average RMS with a smaller variance. The
ANOVA analysis results in an F value of 55.726, exceeding the critical F
value of 1.29, demonstrating that this result is statistically significant.

6.2.2 Performance Task

Unfortunately, the data from the performance task provided no statistically
significant result. However, numerous helpful observations were made during
the experiment, and trends were observed for participants individually, as
illustrated in the Discussion section below.

6.3 Discussion
6.3.1 Stability Task

As the figures in the Results section clearly show, the compensating con-
troller made the device significantly more stable, decreasing the magnitude
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Figure 14: Histogram of the Recorded RMS for All Participants

of oscillations. On average, the magnitude was decreased by more than 50%,
with the best case showing a decrease of 75%. Figure 16 shows the average
RMS of controller off case for each participant, normalized by that partici-
pant’s controller on RMs. Most participants showed oscillation magnitudes
of less than half the controller off case.

6.3.2 Performance Task

The results of the performance task are less straightforward than those of the
stability task. The main reason for this lies in the variation of each person’s
execution of the task. All participants were given the same instructions to
“place the object as close to the center of the target as possible.” However,
each participant interpreted these instructions somewhat differently and exe-
cuted the task to different tolerances. While some participants simply placed
the object quickly as best as they could, others felt the need to more carefully
position the object before placing it down. This difference made comparing
speed and accuracy between subjects very difficult. Therefore, a less rigor-
ous analysis was done looking at each participant individually. This provided

22



1000

0800

0600

rms
=
o

0400

0200

000

T T
off on
controller

Figure 15: Comparison of Mean and Variance of RMS Points for Each Con-
troller State

only 10 data points per analysis, less than the amount required by the power
analysis for statistical significance, but showed helpful trends in the data.

For each trial, the speed and accuracy of object placement were calcu-
lated. Since participants were allowed to re-place the object multiple times,
two measurements of each were determined: for the initial placement and
for the best placement. Speed was calculated from the distance the object
was moved over the time from when the simulated robot gripped the object
to the when it released the object, while accuracy was calculated by taking
the distance from the center of the target to the center of the object. For
the majority of participants, an increase in speed and decrease in distance
from target was observed. Tables 3 and 4 show the results for participant 11,
whose results were typical. While no statistical significance can be proven,
the speed generally increases for the cases with the controller on, while the
distance to the target generally decreases. In one trial, the participant was
able to place the object exactly on the target. Some participants showed
somewhat more noticeable increases in performance, while a few showed lit-
tle to no performance gain. However, the results listed here were the most
common.

Also, some empirical observations were made that support this. Several
participants noted when the compensating controller was turned off how the
device became more difficult to stabilize. One participant observed that the
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experiment “was getting harder” after this occurred. Another participant
commented regarding the case where the controller was on that the device
was “moving more smoothly.” In general, most participants could noticeably
tell the difference between the two cases. Therefore, while statistically the
difference is not significant, the visible trends and operator observations show
that the improvement is evident.

6.4 Conclusions

This study intended to show that the compensating controller provided im-
proved stability and increased performance over a standard impedance con-
troller. It demonstrated with statistical significance the increase in stability
in stiff situations. While the performance increase was not able to be verified
statistically, the collected data did show trends of faster and more accurate
task completion. Ultimately, the system proved to be an improvement over
an impedance controller that did not compensate for operator arm stiffness.
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Table 3: Speed of Simulation Trials (pixels/s) (Participant 11)

Oft On

22.71 | 32.38

27.36 | 40.38

33.46 | 43.78

51.46 | 47.16

60.67 | 100.42

Avg: 39.13 | 52.83

Table 4: Distance to Target for Simulation Trials (pixels) (Participant 11)
Off | On

= O O = W N

W o W — O

Avg:

7 Concluding Remarks

A system was designed that could estimate a robot operator’s arm stiffness
and compensate for situations with higher stiffness by damping out unwanted
oscillations. To accomplish this, a wearable and reusable sleeve was devel-
oped that incorporated EMG sensors to measure muscle activity. This sleeve
measured the activity of two antagonistic pair of muscles that are the domi-
nant pairs for the wrist and elbow. The system then calculated the level of
cocontraction for each pair, and classified it as either high or low by whether
it exceeded a set threshold. An impedance controller was implemented on a
haptic feedback device designed for the purpose. When either joint’s stiff-
ness was determined to be high, the impedance controller’s parameters were
adjusted to increase damping and make the system response smoother.

A series of experiments were performed to support this work. In the first,
the correlation between EMG measurements and arm stiffness was tested. It
was found that a statistically significant correlation did exist, support this
research’s use of EMG signals as indicators of arm stiffness to be classified.
In the second, the performance of the system was tested. Statistically sig-
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nificant results showed that the designed system increased device stability in
stiff situations. While the measures of performance did not demonstrate a
statistically significant result, it did illustrate trends that showed increased
speed and accuracy of operation using the compensating controller.

Some further enhancements to the system could be made in the future. It
may be possible to implement a more advanced classifier, such as an ANN or
SVN, that would more accurately classify arm stiffness. This could allow for
a system that better adapts to variations in operators or a system that can
classify stiffness more accurately than the designed two state classifier. Also,
the system would benefit significantly from the design of a wireless transmit-
ter, making the system more practical to implement in real world scenarios.
A better estimate of the system’s performance improvements could be ob-
tained by testing it on a larger device more analogous to the lifting robots it
was designed for. Finally, with more time, a more rigorous theoretical anal-
ysis can be performed to provide a better indication of the system’s stability
and the range of operating parameters under which it is advantageous to use.
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