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PREFACE

This thesis is a product (almost a tangent) of a Multidisciplinary University Research

Initiative (MURI), sponsored by the US Army Research Office. The goal of the project

was to explore the physics (and chemistry) governing the spray and combustion of

gelled hypergolic propellants. We started the project by studying a very fundamental

problem of a non-reacting liquid jet in quiescent environment using a traditional

Eulerian-Lagrangian framework but quickly realized that there are no reliable models

for droplet dynamics in the literature which can be used with confidence to study

practical problems of interest. Probing deeper into the literature revealed that even

the physics governing droplet behavior is elusive. We had a choice to use an Eulerian-

Eulerian framework and conduct direct numerical simulations (DNS) to resolve the

full range of length and time scales involved in the problem but decided otherwise

because of its cost prohibitive nature (even without chemical reactions!). A quick

order of magnitude study and a sample numerical calculation suggested that, perhaps

it would be wiser to use the Eulerian-Eulerian framework to explore the underlying

physics and develop models for droplet fragmentation, collision and splashing using

multiphase DNS studies, and then use those correlations in the Eulerian-Lagrangian

framework to attack the large-scale problem. This approach seemed tractable and

not as cost prohibitive as a full scale DNS calculation. I undertook this opportunity

to explore the physics behind single droplet breakup and the result is this thesis. In

this thesis, we have tried to address some of the outstanding issues confronting the

spray community, specifically relevant to single droplet deformation and breakup from

a purely hydrodynamics perspective, without considering vaporization and chemical

reactions.
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SUMMARY

Liquid droplet breakup and dynamics is a phenomena of immense practical impor-

tance in a wide variety of applications in science and engineering. Albeit, researchers

have been studying this problem for over six decades, the fundamental physics gov-

erning droplet deformation and fragmentation is still unknown, not to mention the

formulation and development of generalized correlations to predict droplet dynamics.

The presence of disparate length and time scales, along with the complex unsteady

physics, makes this a formidable problem, theoretically, experimentally and compu-

tationally. One of the important applications of interest and the motivation for the

current research is a liquid fueled propulsion device, such as diesel, gas turbine or

rocket engine. Droplet vaporization and ensuing combustion is accelerated if the

droplet size is smaller, which makes any process leading to a reduction in drop size

of prime importance in the combustion system design. This thesis is an attempt

to address several unanswered questions currently confronting the spray community.

Unanswered questions include identification and prediction of breakup modes at vary-

ing operating conditions, quantitative description of fundamental processes underly-

ing droplet breakup and generalized correlations for child droplet size distributions

and drag coefficient associated with the deformation and fragmentation of Newtonian

and non-Newtonian fluids.

The present work is aimed at answering the above questions by investigating

the detailed flowfield and structure dynamics of liquid droplet breakup process and

extracting essential physics governing this complex multiphase phenomena. High-

fidelity direct numerical simulations are conducted using a volume-of-fluid (VOF)
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interface capturing methodology. To isolate the hydrodynamic mechanisms dictat-

ing droplet breakup phenomena, evaporation and compressibility are neglected, and

numerical studies are performed for incompressible fluids at isothermal conditions.

For Newtonian fluids, four different mechanisms are identified- oscillatory, bag,

multimode and shear breakup modes. Various events during the deformation and

fragmentation process are quantitatively identified and correlations are developed to

predict the breakup mechanisms and droplet size distributions for a broad range of

operating conditions. It was found that for We > 300 and Oh < 0.1 for ρl/ρg = 8.29,

the child droplet size distributions can be modeled by a log-normal distribution. A

correlation to predict the sauter mean diameter, d32, is also developed, given by

d32

D
=

8We−0.72

Cd
.

Temporal evolution of momentum balance and droplet structure are also used to

calculate the drag coefficient at each time step from first principles. Results show

that the drag coefficient first increases to a maximum as the droplet frontal area in-

creases and then decreases at the initiation of breakup. The drag coefficient reaches

a steady value at the end of droplet lifetime, corresponding to the momentum re-

tained by the droplet. A correlation to predict the time-mean drag coefficient given

by,
Cd
Cd,0

= 2We−0.175, is developed, which indicates that the time averaged drag

coefficient decreases with Weber number.

The motivation to study non-Newtonian liquid droplet breakup stems from the

various advantages gelled propellants offer as compared to traditional liquid or solid

propellants in combustion systems, particularly in rocket engines. It was found that

the breakup behavior of pseudoplastic, non-Newtonian liquids is drastically different

as compared to Newtonian droplets. Several flow features commonly exhibited by non-

Newtonian fluids are observed during the breakup process. The breakup initiates with

the formation of beads-in-a-string due to the non-Newtonian nature of the fluid under

consideration. This is followed by rapid rotation of the droplet with the appearance
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of helical instability and liquid budges, which forms the sites for primary and satellite

droplet shedding. Child droplet size distribution are also examined and it is found

that a Gaussian curve universally characterizes the droplets produced during non-

Newtonian droplet breakup process.

To put all things in perspective, the objectives of the thesis were two folds: (1)

elucidate breakup physics for Newtonian and non-Newtonian liquid droplet deforma-

tion and breakup, and (2) develop correlations which can be used in an Eulerian-

Lagrangian framework to study large-scale engineering problems. It is hoped that

this research contributed to droplet breakup and dynamics literature by providing a

more thorough and quantitative understanding of the breakup phenomena of liquid

droplets and furnished models which can be used in future research endeavors.

xxii



CHAPTER I

INTRODUCTION

1.1 Overview and Motivation

Multiphase flows are ubiquitous in nature. Our most common experiences in daily life

revolve around free surface multiphase flows- water jets from the shower heads, sprin-

klers in the garden, water bodies such as lakes, rivers and oceans. Another prevalent

example of multiphase flows, which we all are familiar with, is cloud formation and

subsequent rain/snow fall. This is perhaps one of the most complicated natural phe-

nomenon whose mysteries still eludes us. Recent work by Villermaux & Bossa (2009)

& Villermaux (2007) has emphasized the importance of single droplet fragmentation

and proposed how that information can be used to quantitatively understand the

overall size distribution of raindrops. To add to the complexity, occasional occur-

rence of cloud bursting at different parts of the globe, acts as an anomaly and needs

to be explored. Other naturally occurring multiphase phenomena, which are of sig-

nificant importance are geophysical flows and includes the fluid dynamics of glaciers,

volcanoes and magma oceans. On the industrial scale, multiphase flows and droplet

dynamics, in particular, play an exceedingly important role. Mineral ore such as iron,

aluminium, copper, which are mined in huge quantities every year, are required to

flow at some stage during their extraction. Fluidized beds, bubbly flow in nuclear

reactors, inkjet printing, gas-particle flows in chemical reactors, cavitating pumps

and turbines, electrophotography used in copy machines, laser and LED printers are

a few examples of process technologies where multiphase flows plays a vital role. The

significance of multiphase flows with regards to air pollution has been well recog-

nized, especially during recent times. Of particular practical interest (concern) is the
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Figure 1.1. Snapshots of an 8-mm-diameter, slow (0.6 m/s) water jet destabilized
by a coaxial fast air stream. Development of the axisymmetric shear instability,
digitations at the wave crests, and ligament formation for air velocities increasing from
20 to 60 m/s are shown (Villermaux, 2007). Reproduced with permission. c©Annual
Reviews.

pollution created by liquid-fueled propulsion devices such as automobiles, gas tur-

bine engines in aircraft and power plants, where droplet breakup, vaporization and

ensuing combustion is responsible for creating gases and particulates which are iden-

tified as pollutants. Most of the above mentioned applications revolve around droplet

dynamics which makes it imperative to explore the fundamental aspects of droplet

behavior. Moreover, to control these processes, there is a need to develop generalized

correlations valid over a wide range of operating conditions which can predict the

detailed behavior of such flows and the fluid dynamic phenomena they manifest.

As mentioned briefly in in the previous paragraph, one of the most important

applications where droplet dynamics plays a vital role in practical systems of interest

are liquid fueled propulsion devices. In combustion systems, in general, the evapora-

tion of fuel and combustion is accelerated if the droplet size is smaller, which makes

any process leading to a reduction in drop size of prime importance in combustor de-

sign. To accomplish this task, liquid fuel is atomized via several processes. One such

process which is often used in a wide variety of applications including fuel injectors

is called air-blast atomization. This atomization process works on the principle of

transfer of kinetic energy from a coaxial high speed gaseous jet to the liquid jet at a
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Figure 1.2. F-1 engine. Picture obtained from http://www.nasa.gov/centers/

marshall/images/content/118676main_F-1Engine_955x1360.jpg on 8/26/2013.

high momentum flux ratio. This transfer of energy destabilizes the liquid jet thereby

breaking it into ligaments and droplets. Figure 1.1 shows snapshots of a water jet

destabilized by a coaxial air stream. An example where air blast atomization process

is used, is a liquid rocket engine, where liquid oxygen (LOX) is atomized by a high

speed coaxial hydrogen gas jet.

Another common atomization technique used in rocket engines is atomization via

impinging jets. Figure 1.2 shows a picture of the F-1 rocket engine which was used

in the Apollo program. Figures 1.3 and 1.4 shows examples of liquid sheets formed

by two jets impinging on each other. In general, for a propulsion system employing

impinging jets for spray atomization, the breakup process takes place in two steps,

primary and secondary. This process is schematically shown in Figure 1.5. Primary

atomization takes place as the fuel and oxidizer jets leave the injectors and impinge
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Figure 1.3. A liquid sheet from a fan spray nozzle (Villermaux, 2007). Reproduced
with permission. c©Annual Reviews.

on each other under the action of aerodynamic, viscous, inertial, and tensile forces.

The dynamic head of the injected propellant destabilizes the liquid streams, creating

a liquid sheet, which disintegrates into ligaments and droplets (Taylor, 1960; Dom-

browski & Hooper, 1964; Hasson & Peck, 1964; Huang, 1970; Ibrahim & Przekwas,

1991; Yang & Anderson, 1995; Lin, 2003; Bremond & Villermaux, 2006; Li & Ash-

griz, 2006; Jung et al., 2010). The shape and size of the ligaments and droplets

produced during primary atomization depend on the flow and ambient conditions,

as well as the injector geometry. These fluid structures further disintegrate to form

finer droplets. This process is also called secondary atomization in the literature and

is the focus of the current thesis. The final droplet size distribution is governed by

how the products of primary atomization disintegrate. This makes the study of single

droplet breakup immensely important. The significance of single droplet fragmenta-

tion is also bolstered by the recent work by Villermaux & Bossa (2009). There are
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several parameters which can influence droplet dynamics including physical proper-

ties such as surface tension (for the liquid phase), viscosity & thermal conductivity

of the two phases, relative velocity between the liquid and the gas and the ambient

pressure and temperature conditions. To make matters even more complicated, the

presence of turbulence, vaporization and combustion, in addition to the deforming

and breaking liquid droplet widens the range of length and time scales considerably,

making the whole process almost intractable, specially at higher flow rates. Even af-

ter decades of research, the fundamental physics underlying droplet breakup (even in

a non-evaporating environment) is still elusive, not to mention the formulation and

development of physics based generalized correlations to predict droplet dynamics

and the final droplet size distribution. This thesis is an attempt to address some of

these outstanding issues.

The next few sections describes the various experimental and numerical approaches

which have been used in the literature to decipher the droplet breakup phenomena.

An account of the contributions made to breakup physics using those approaches will

be given in subsequent chapters as a preface to the results obtained during the current

research work.

1.2 Experimental Methods

Extensive experimental investigations have been conducted to study droplet breakup

and dynamics. Most of the experimental setups can be classified into three major

groups - liquid drop exposed to an air stream from a nozzle, flow behind a shock

wave in a shock tube and drop tower experiments. In each of these experiments

the liquid droplet(s) was subjected to external forcing by the surrounding gas (air in

most cases). In the following sections, a brief description of the various experiments

is presented.
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Figure 1.4. Water sheet fragmentation for three collision angles. The jet velocity is
equal to 4 m/s and the jet diameter is 1.05 mm. Elongation of ligaments is clearly
enhanced when the collision angle is decreased (Villermaux, 2007). Reproduced with
permission. c©Annual Reviews.

Figure 1.5. Schematic of impinging jets and droplet dynamics.
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1.2.1 Shock Tube Experiments

Shock tube experiments have been used to study single droplet deformation and

fragmentation for over five decades. In this section, a typical shock tube experimental

arrangement is described as was used by Dabora (1966). The basic philosophy is

simple, a shock wave travels over a droplet which is falling into the driven section of a

shocktube. The passing shock wave creates a uniform flow which causes deformation

and breakup of the droplet. Droplet morphology is recorded using shadowgraphy and

a high speed camera installed in the shocktube viewing window. The testing time

varies from 2 ms to 200 µs corresponding to a shock Mach numbers of 1.5 and 5

respectively. The time lapse between the passage of the shock front and the arrival

of the reflected shock wave is defined as the testing time. To determine the testing

time a thin film heat transfer gauge and a pressure gauge is flush mounted on the test

section walls. The interface is indicated by the change in slope of the heat transfer

trace. The sensitivity of the heat transfer and pressure gauges is typically about 2

mv/cm and 50 psi/cm respectively.

The driven section of the shocktube is generally open to atmosphere, therefore

the pressure ratio and the shock strength is entirely controlled by the pressure gen-

erated in the driver. Gases such as He, H2 and N2 are usually used as the carrier

fluid in experiments exploring single droplet dynamics. Steel diaphragms are placed

between the flanges of the driven and driver sections and are designed to rupture at a

certain pressure depending on the design conditions of shocktube. An example of the

photographs obtained using this experimental configuration is shown in Figure 1.6.

This experimental setup and its variants have been used extensively by researchers

to study single droplet breakup and dynamics (Ranger & Nicholls, 1968; Krauss &

Leadon, 1971; Gel’fand et al., 1974; Boiko et al., 1987; Hsiang & Faeth, 1992, 1993;

Faeth et al., 1995; Hsiang & Faeth, 1995; Chou et al., 1997; Chou & Faeth, 1998;

Joseph et al., 1999; Dai & Faeth, 2001). Contribution of these experiments to the
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droplet physics literature will be presented in Chapter 4.

1.2.2 Droplet in an Air Jet

This is one of the other popular experimental configurations used to study the dy-

namics of liquid droplets. In this setup a droplet (or a series of droplets) is subjected

to an air flow either from a wind tunnel or from a compressed air tank. The con-

tents of this section are primarily based on the work of Arcoumanis et al. (1994,

1996) and Krzeczkowski (1980) but similar experimental apparatus have been used

by other researchers in the past as well (Joseph et al., 1999; Lopez-Rivera & Sojka,

2009; Lopez-Rivera, 2010; Theofanous et al., 2004), to study droplet breakup and

dynamics. Schematic of the setup is shown in Figure 1.7 (Arcoumanis et al., 1994).

Liquid droplets are injected into a near uniform flow exiting a nozzle. The breakup

characteristics are recorded using high speed photography. The camera is positioned

in a direction perpendicular to the direction of the air jet to focus on the initial stages

of droplet breakup. The backdrop is illuminated using a CU10 laser, focused on to

an optical fiber which transports it to the camera through a semi transparent screen

to diffuse the light. A He-Ne laser beam is used to achieve synchronisation of the

camera with the falling droplet as shown in the schematic figure. An example of the

photographs obtained using this experimental configuration is shown in Figure 1.8.

1.2.3 Instrumentation

Droplet deformation and breakup involves a wide range of length and time scales. In

order to capture the small deformations on the droplet surface and elsewhere, several

techniques have been used in the literature. Among them, single- and double-pulsed

shadowgraphy and holography have been extensively used to observe the properties

of the parent drop and size and velocity distributions of the child droplets. The

working principles of these two techniques are described in brief in this section. Most

common droplet delivery method, the vibrating capillary tube drop generator, is also
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Figure 1.6. An example of the photographic sequence of liquid droplet breakup
obtained using a shocktube experimental facility (Dabora, 1966).
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Figure 1.7. Schematic of the experimental setup to study breakup of liquid droplets
exposed to an air jet (Arcoumanis et al., 1994).

Figure 1.8. An example of the photographic sequence of liquid droplet breakup
obtained by exposing a water droplet to an incoming air stream at We = 21 (Ar-
coumanis et al., 1994).
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discussed at the end of the section. There are several other techniques which have

been used for visualization and measurement, the details of which can be referred to

in the literature.

In droplet dynamics literature, in general, holographic techniques are used to

examine the outcome of droplet breakup, while shadowgraphs and images from high-

speed photography are used to observe the overall dynamics. To improve the image

contrast, the illumination source is often pulsed and hence called pulsed- shadowg-

raphy and holography. Before describing double (pulsed) holography, it is useful to

understand the basic principles of holography and perhaps the difference between

photography and holography. When an object is illuminated, light is scattered and

an “object wave” is created, which contains the optical information of the object.

The brightness of the object is encoded in the amplitude of the light wave, while the

phase stores the shape of the object. During photography this object wave darkens

the photographic film but only the light intensity is recorded and the phase infor-

mation in the plane of the screen is lost. Therefore the object wave can never be

completely restored and the result is a 2D image. On the other hand, it is possible to

reconstruct the object wave completely using holography which uses interference and

diffraction properties of light. The basic principle is simple- the object as well as the

film are illuminated with the same laser. The object wave generated from the object

and the reference wave interfere, producing a fringe pattern in the holographic layer.

The optical information of the object is stored in the form of brightness modulations

of the fringes and the distance between the fringes. When the hologram is illumi-

nated with a light resembling the reference wave (called the reconstruction wave), it

is diffracted by the interference pattern of the hologram and the original object wave

is constructed. Thus, it looks like a 3D image of the object to an observer looking at

the hologram.

The advantage of holographic interferometry or double holography is that small
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deformations (< 1 µm) of diffused reflecting objects can be measured. In double

exposure holography, two holographic recordings of the same object are stored on one

photographic layer. The first one is that of an undisturbed object and the other of a

slightly deformed object. While reconstruction, both object waves are illuminated and

they interfere with each other creating visible interference fringes encompassing the

whole object. The density of the fringes then represents the deformation distribution.

For deformations more than 100 µm, the fringes are very closely spaced making data

interpretation very difficult. Ideally, if using a He-Ne laser, the lower threshold of

identifiable deformation is well below 0.1 µm but the lowest resolvable object size

can differ in practice. For example, in experiments conducted by Chou & Faeth

(1998), which employed pulsed holography to study droplet breakup phenomena in

bag breakup regime, allowed objects as small as 3 µm to be observed and as small as 5

µm to be measured with 5% accuracy. The book by Ackermann & Eichler (2007) is an

excellent reference for further reading on holography and its use in various scientific

applications.

As mentioned before, pulsed shadowgraphy is often used to capture the overall

dynamics of the droplet breakup process. It has been extensively used as a visualiza-

tion tool in fluid dynamics and heat transfer experiments. To start with, it should be

clearly noted that a shadowgraph is a shadow of an object and not its optical image.

A basic shadowgraphy setup consists of an expanded and collimated laser beam, the

object and a reasonably flat reflective screen (and perhaps a camera and a computer

to process the images/videos). Without the object in the field of view, the screen is

illuminated uniformly. When the object is present, the light is deflected, refracted

and bent from its original path because of optical inhomogeneities, casting a shadow

on the screen. The gradient of the deflection angle or equivalently the Laplacian of

the refractive index is responsible for producing the shadowgraph. The inherent sim-

plicity of shadowgraphy is by far its major advantage, while its essential ambiguity
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Figure 1.9. Shadowgraph of shear breakup of a 590 µm water droplet in a shocktube
experiment. Operating conditions: We = 250 and Oh = 0.0044 (Chou et al., 1997).

- being a shadow rather than an image, is the cause of most of its limitations. If

the screen is at a large distance from the object, light rays can undergo transforma-

tion forming “caustics”, which is its major drawback. An example of shadowgraph

obtained during a droplet breakup experiment is shown in Figure 1.9 (Chou et al.,

1997).

In most of the experiments on droplet breakup, single stream of liquid droplets

are produced using vibrating capillary devices. Rayleigh’s analysis of capillary jet

instability is the basic working principle of these devices. According to Rayleigh

(1878), the wavelength for maximum instability for a jet with diameter, dj is given

by:

λj = 4.058dj

or equivalently, fj = uj/4.058dj

(1.1)

When a liquid is forced through a capillary tube at relatively low pressures, a drop

is formed at the end which increases in size until the surface tension force can no
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longer balance the force of gravity and the droplet falls. As the head is increased,

at a critical pressure, a jet is formed with a diameter equal to the capillary tube

exit diameter. If this liquid jet is subjected to forced oscillations with a frequency

given by Equation 1.1, uniform liquid droplets are produced. This concept is the

underlying principle in the development of various drop generators for the production

of monosized liquid droplets. One such drop generator was developed by Dabora

(1967), the variants of which have been extensively used in experiments conducted to

study droplet breakup phenomena (Dabora, 1966; Ranger & Nicholls, 1968; Hsiang

& Faeth, 1992, 1993; Faeth et al., 1995; Hsiang & Faeth, 1995; Chou et al., 1997;

Chou & Faeth, 1998; Dai & Faeth, 2001). An electrostatic drop selection system,

originally developed by Sangiovanni & Kesten (1977), is often installed with the

vibrating capillary setup to ensure sufficient spacing between the droplets, hence

minimizing drop-drop interaction.

1.3 Numerical Approaches

Rapid advances in computing technology (both hardware and software) over the last

couple of decades, have led to the development and use of sophisticated numeri-

cal tools to understand the behavior of complex multiphase flow phenomena. Even

though experiments have been conducted to elucidate multiphase flow physics for

a long period of time, the complicated flow physics underlying such fluid dynamics

phenomena is still elusive. This is primarily due to the wide range of scales involved

in the problem, which makes it difficult to take measurements, especially inside the

liquid phase, for example in droplet dynamics studies. In the light of phenomenal

growth in computing power, numerical approaches, especially direct numeral simula-

tions (DNS), have proven to be a viable alternative to resolve these issues. One of

the criteria to classify numerical methods used in multiphase flow literature is based

on the treatment of interface/boundary between the various phases. This is perhaps
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the single most important feature which separates numerical strategies used to study

single phase from multiphase flows. Based on this, various numerical approaches can

be divided into two broad classes, namely, interface tracking and interface capturing

techniques. The next two sub-sections give a brief overview of these two methodolo-

gies. We have used interface capturing, VOF methodology in this research initiative,

the details of which are presented in Chapters 2 and 3.

1.3.1 Interface Tracking

Interface or front tracking methods, requires a moving mesh to “track” the interface

as the flow evolves. These methods provide the interface location and curvature with

high accuracy but suffer when there are large deformations and topology changes.

Examples of such flow dynamic phenomena include breakup and coalescence among

others. In such flow conditions, if mesh topology is not modified by reconnecting the

sharp interfaces, front tracking methodologies have a tendency to break down because

of the presence of singularities in the primitive variables (Cristini & Tan, 2004).

Front/interface tracking techniques include immersed boundary (IB) methods (Mittal

& Iaccarino, 2005; Peskin, 1982, 2002), boundary-integral methods (Zinchenko et al.,

1997, 1999; Pozrikidis, 1992), finite-element methods (Wilkes et al., 1999), and marker

and cell methods (Harlow & Welch, 1965). Usually in front tracking algorithms, the

interface is represented by a discrete set of Lagrangian markers. The interface is then

advected by the local flow velocity, thus tracking the boundary between the different

fluids.

1.3.2 Interface Capturing

Interface capturing techniques are suited for simulating multiphase phenomena involv-

ing extreme deformation and topology change because the interface evolves through

the mesh. Level-set, volume of fluid (VOF), phase-field and lattice Boltzmann method-

ologies fall in this category. To take advantage of the merits of level-set and VOF
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methods, hybrid level-set-VOF methods have also been developed recently (Sussman

& Puckett, 2000) and are also classified under interface capturing techniques. In

interface capturing techniques, the interface evolves through the computing mesh,

generally modeled as a scalar variable. The fluid properties, such as viscosity, density

and thermal conductivity are smooth while the surface tension force is treated as a

volume force in a thin region around the interface. We shall discuss level-set and

VOF methods which are the two most popular interface capturing methods used in

the literature to simulate droplet breakup phenomena, in the following subsections.

Details of phase-field and lattice Boltzmann techniques used in multiphase flow re-

search can be obtained from the reviews of Chen (2002), Chen & Doolen (1998) and

Aidun & Clausen (2010) respectively.

1.3.2.1 Level-Set Method

Level-set methods take the “analysis view” for the representation and tracking of

moving interfaces (Sethian & Smereka, 2003). In level-set techniques a scalar variable

φ : R2 × [0,∞) → R is defined such that φ = 0 represents the interface Γ(t) at any

given time. The equation for the evolution of φ corresponding to the interface motion

is given by:

φt + u.∇φ = 0 (1.2)

φ is a signed function whose sign distinguishes the two phases. Advantage of level-

set methods include, (a) ability to compute geometric quantities, such as normal

vectors and curvature easily by the use of derivative operators applied to the level-set

function, and, (b) the level-set equation 1.2 is unchanged in higher dimensions and

provides an easy way to extend the algorithm from a lower to a higher dimension. One

considerable disadvantage of level-set methods is its poor mass conservation property.

The level-set advection equation has a tendency to accumulate errors, therefore in

order to maintain a proper thickness of the interface, the level-set function has to be
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reinitialized periodically. Conversely, this reinitialization, as pointed by Sethian &

Smereka (2003), is a significant source of error in the front position, and should be

avoided.

1.3.2.2 Volume of Fluid Method

The volume of fluid method is based on the “set theoretic view” where the charac-

teristic function ψ(x, t) is 1 inside the interface and 0 elsewhere. Similar to level-set

function, the advection equation can be written as:

ψt + u.∇ψ = 0 (1.3)

Volume of fluid method proceeds in two steps:

(a) Interface reconstruction using the stored volume fraction data in each com-

putation cell. This is generally accomplished using piecewise linear interface

construction technique.

(b) Propagation is the second step after interface reconstruction in volume of fluid

methodology. The motion of the interface by the fluid, once it has been recon-

structed is modeled using a suitable algorithm.

In the current research, we have adopted VOF methodology, the details of which are

described in Chapter 3. VOF methods have an excellent mass conserving property

because the advection algorithm is based on discrete representation of Equation 1.3

(Scardovelli & Zaleski, 1999). That being said, since the interface information is not

directly stored, care has to be taken during interface propagation and flux calculations

to ensure consistency and avoid non-physical solutions. One of the other drawbacks

of VOF methods is the complexity in the reconstruction step where interface normal

and curvature calculations can introduce errors. Topology changes during extreme

deformation or breakup events are implicit in the formulation and thus the method

is suited for the study of droplet breakup physics. In addition, since volume fraction
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values of only the neighboring cells are needed to update the the volume fraction in a

given computational cell, it is relatively easy to implement VOF method in parallel.

1.4 Research Objectives

This thesis is an attempt to address several unanswered questions currently con-

fronting the spray community. Unanswered questions include identification and pre-

diction of breakup modes at varying operating conditions, quantitative description

of fundamental processes underlying droplet breakup and generalized correlations for

child droplet size distributions and drag coefficient associated with the deformation

and fragmentation process. As mentioned in Section 1.1, current understanding of

droplet breakup phenomena is still primitive and is based on visual interpretation of

experimental images, such as shown in Figures 1.6 and 1.9, which do not reveal much

qualitative information, let alone quantitative description of the phenomena. The

present work is aimed at answering the above questions by investigating the detailed

flowfield and structure dynamics of liquid droplet breakup process and extracting

essential quantitative physics governing this complex multiphase phenomena. High-

fidelity direct numerical simulations are conducted using a volume-of-fluid (VOF)

interface capturing methodology. To isolate the hydrodynamic mechanisms dictat-

ing droplet breakup phenomena, evaporation and compressibility are neglected, and

simulations are performed for incompressible fluids at isothermal (298 K) conditions.

The specific objectives are summarized below:

1. Newtonian fluids

(a) Quantitative understanding of different breakup modes

(b) Development of generalized regime diagram for a broad range of operating

pressure conditions to predict the droplet breakup mechanism

(c) Develop correlations to predict child droplet size distributions
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(d) Determination of drag coefficient of deforming and fragmenting liquid

droplets and development of correlations to predict droplet drag for a wide

range of Weber numbers

2. Non-Newtonian fluids

(a) Identify the underlying physics behind droplet breakup of liquids exhibiting

shear-thinning, power-law behavior

(b) Preliminary study of droplet size distributions

1.5 Thesis Organization

The thesis is organized in seven chapters. Chapter §1 (present chapter) gives a broad

overview of multiphase flow research leading to the motivation. Details of various

experimental and numerical techniques used to study droplet breakup dynamics are

then described followed by the specific research objectives of the current research.

Theoretical and mathematical formulation of this multiphase flow dynamics problem

is described in Chapter §2. Governing equations, boundary conditions and non-

dimensional numbers are detailed in this chapter. The most important physical prop-

erty of interest during droplet breakup phenomena - surface tension, its dependence

on pressure, temperature and surrounding fluids and measurement technique, is also

discussed in detail.

Numerical methods including time integration schemes, spatial discretization of

advection, viscous and surface tension terms are described in the next chapter. Details

of volume of fluid advection scheme, time step constraints and adaptive mesh refine-

ment are followed by validation and verification studies in Chapter §3. Results are

divided under three headings: Newtonian droplet breakup physics, drag coefficient of

deforming and fragmenting Newtonian droplets, and non-Newtonian droplet breakup

and dynamics. Chapter §4 examines the details of oscillatory, bag, multimode and
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shear breakup mechanisms. Generalized regime diagram and correlations for child

droplet size distributions are developed next. The next chapter presents results con-

cerning the drag coefficient of deforming and fragmenting liquid droplets, along with

the development of correlation to predict coefficient of drag at a wide range of Weber

numbers. Chapter §6 explores the breakup of shear-thinning non-Newtonian liquid

droplets. A preliminary study on droplet size distributions obtained for power-law

liquids is also included in this chapter. The thesis ends with a summary of conclusions

and recommendations of future work in Chapter §7.
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CHAPTER II

THEORETICAL FORMULATION

The theoretical and mathematical formulation of this multi-phase, multi-fluid problem

is based on a complete set of incompressible Navier-Stokes equations with surface

tension. Conservation equations for mass and momentum are solved with an interface

capturing, volume of fluid methodology. The basic assumptions made during the

current study are described in brief. The governing equations are then presented

along with appropriate boundary conditions. Spatial discretization and adaptive

mesh refinement (AMR) methodology used in this research is described in detail.

The important non-dimensional parameters along with the physical fluid properties

governing the physics under consideration are also discussed in the last section of the

chapter.

2.1 Governing Equations and Boundary Conditions

The governing equations are based on three basic assumptions: the continuum hy-

pothesis, the hypothesis of sharp interfaces and fluid incompressibility. To shed light

on the validity of the continuum assumption for the current problem, lets consider

the measurement of density inside a box. When the box is small, the density fluctu-

ates. It becomes smoother as the box dimension increases and can be approximated

by a continuous function, ρ (Batchelor, 2000). For liquids at NTP, this happens for

length scales of the order of 10−9m (Tryggvason, 2011). For gases, the important

length scale dictating the validity of the continuum hypothesis is the mean free path,

λ, the average distance that a molecule travels between successive collisions. If the

length scale under investigation, l >> λ, the gas obeys Navier-Stokes equations to a

very good approximation. For the current problem in hand the length scales under
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consideration are much larger than the mean free path and continuum hypothesis,

thus seems to an excellent assumption for studying the droplet breakup phenomena.

One of the other assumptions made during the current study, is the postulate of

sharp interfaces. Interface is the boundary between different fluids. Fluid properties,

such as viscosity, thermal conductivity, density and state generally changes across the

interface. According to the sharp interface hypothesis, it can be assumed that the

interface has a vanishing thickness and the transition from one phase to another takes

place at very small scales (Tryggvason, 2011). The most important intermolecular

force influencing the droplet breakup physics, capillarity, has been modeled using

surface tension. Surface tension is assumed to be concentrated on the sharp interface.

A detailed description of surface tension will be given in the last section of this chapter.

The main objective of the thesis is to understand the physics and dynamics asso-

ciated with droplet breakup phenomena. The liquid can easily be treated as incom-

pressible for obvious reasons. Owing to the operating conditions (M << 1) considered

in the current research, the last major assumption made in this thesis is that of fluid

incompressibility.

Conservation of mass can be written as:

∂ρ

∂t
+∇. (ρu) = 0 (2.1)

where u is the velocity vector and ρ = ρ(−→x , t) is the density. By definition, ∇. (ρu) =

u.∇ρ+ ρ∇.u. For incompressible flows the velocity field is divergence free and equa-

tion 2.1 translates to evolution equation of density as:

∂ρ

∂t
+ u.∇ρ = 0 (2.2)

and mass conservation equation transforms to:

∇.u = 0 (2.3)

At this point, it is useful to note that there is no requirement for the density to be

same everywhere for incompressible flows. To elucidate this more clearly, lets consider
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the Lagrangian description of fluid flow. For incompressible flows, the density of a

fluid packet can vary from one packet to another but it should remain constant for a

particular packet. Since the fluid packets are distributed spatially and the distribution

can change with time because of advection of fluid packets, the density distribution

changes both, spatially and temporally, and can be evaluated using equation 2.2.

An excellent description of incompressibility and solenoidal nature of the velocity

distribution in incompressible flows is given in Batchelor (2000).

The momentum conservation is given by:

∂ρu

∂t
+∇. (ρuu) = −∇p+∇.τ̃ + Fst (2.4)

where Fst is the surface tension force per unit volume and τ̃ is the shear stress tensor

given by:

τ̃ = µ
(
∇u + (∇u)T

)
(2.5)

where µ = µ(−→x , t) is the dynamic viscosity. µ is constant for Newtonian fluids but can

vary with shear strain for non-Newtonian fluids. We shall look at both the fluids while

discussing the droplet breakup phenomena. The governing equations are written in

an Eulerian reference frame and we are interested in capturing the fluid interface. A

volume of fluid scalar variable, f , is introduced to trace the multi-fluid interface. It is

defined as the volume fraction of a given fluid in each computational cell. f is defined

as follows:

f =


0 fluid 1

1 fluid 2

(2.6)

The density and viscosity in each computational cell is defined as a linear function of

the volume fraction variable, f and are given by:

ρ = fρ1 + (1− f)ρ2 (2.7)

µ = fµ1 + (1− f)µ2 (2.8)
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The advection equation for the density can then be replaced with an equivalent ad-

vection equation for the volume fraction

∂f

∂t
+ (u.∇) f = 0 (2.9)

The mathematical formulation described above is often referred to as “one-fluid”

or “whole-domain” approach in the literature. The governing equations are written

for the all the different phases without using the jump condition at the interface.

The jump condition at the fluid interface translates to singularities in the governing

equations. It can easily be shown that this formulation is equivalent to that written for

each phase separately with the pressure jump condition at the interface. As pointed

out by Tryggvason (2011), the one-fluid approach can be interpreted in two ways, in

a weak sense where the governing equations are satisfied only in the integral form or

by admitting solutions using step and delta functions. In the current research, we

have resorted to the latter approach by modeling the surface tension effects using a

delta function (refer Equation 2.10). Surface tension effects on the fluid motion have

been modeled using the continuum surface force (CSF) model developed by Brackbill

et al. (1992).

Fst(
−→x1) = σ

∫
S

κ(−→x2)n̂(−→x2)δ(−→x1 −−→x2)dS (2.10)

where σ is the surface tension force, κ the local curvature and δ the Dirac delta

function. The curvature is evaluated by:

κ =
1

R1

+
1

R2

(2.11)

where R1 and R2 are the principal radii of curvature of the interface. The surface

tension force in each computational cell at the interface is approximated by:

Fst = σκδn̂ (2.12)
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Lets consider the governing equations in the pressure jump condition form. Equa-

tion 2.4 can be written for each phase as:

∂ρu

∂t
+∇. (ρuu) = −∇p+∇.τ̃ (2.13)

Jump condition exists in the neighborhood of the singular surface S. The stress

conditions are given by:

[−pI + τ̃ ]S.n̂ = σκn̂+∇Sσ (2.14)

where I is the identity tensor, ∇S is the surface gradient operator and [.]S represents

the jump of a quantity across the surface S. If surface tension is assumed to be

constant, (∇Sσ = 0), the shear stress condition becomes:

[t̂.τ̃ .n̂]S = 0 (2.15)

The normal stress condition is:

[−p+ n̂.τ̃ .n̂]S = σκ (2.16)

Equation 2.16 reduces to Laplace’s equation, which defines the pressure jump across

the two interfaces because of surface tension, and is given by:

4ps = σκ (2.17)

In incompressible flows, pressure is not a thermodynamic property and is solely a

function of the velocity field. To have a closer look at pressure, lets take the divergence

of Equation 2.4. If the velocity field is solenoidal, this yields the following:

∇2p = −ρ∂
2(uiuj)

∂xi∂xj
(2.18)

In fact, the satisfaction of this Poisson equation is necessary to enforce incompress-

ibility and solenoidal nature of the velocity field. Since the density, ρ, viscosity, µ and

surface tension, σ are not functions of temperature (all the numerical experiments

being conducted at constant temperature conditions) during the current study, the
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continuity and momentum equations are decoupled from the energy equation and it is

not necessary to solve the energy equation to obtain the velocity and pressure fields.

The governing equation described above are subject to certain boundary condi-

tions, namely, the no slip, no penetration and interface pressure jump condition. Lets

define t̂ and n̂ as a family of tangent and normal vectors, then the no slip and no

penetration conditions are given by:

u.t̂⊥ = 0 (2.19)

u.n̂⊥ = 0 (2.20)

Zero pressure gradient condition is imposed on across the liquid/gas interface and is

given by:

∇p.n̂⊥ = 0 (2.21)

2.2 Non-dimensional Numbers

Non-dimensional numbers are useful to characterize dynamically similar flows. Non-

dimensionalizing the Navier-Stokes equations described in the previous section for

incompressible fluids with surface tension yields:

∇∗.u∗ = 0 (2.22)

∂u∗

∂t∗
+∇∗. (u∗u∗) = −∇∗p∗ +

1

Re
∇∗.τ̃ ∗ + F∗st (2.23)

∂f

∂t∗
+ (u∗.∇∗) f = 0 (2.24)

F∗st(
−→x ∗) =

1

We

∫
S∗

κ∗(−→y ∗)n̂(−→y ∗)δ∗(−→x ∗ −−→y ∗)dS∗ (2.25)

Examination of the above non-dimensionalized equations reveal the dominant ef-

fects influencing various multiphase phenomena. Various non-dimensional parameters

dictating the droplet deformation and breakup phenomena are summarized in Table
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Table 2.1. Relevant non-dimensional parameters for Newtonian liquid droplet
breakup process.

Non dimensional number Definition

Weber number, We ρgU
2D/σ

Ohnesorge number, Oh µl/
√
ρlDσ

Reynolds number, Re ρgUD/µg

Density ratio ρl/ρg

Viscosity ratio µl/µg

Mach number, M U/a

2.1. Here, D is the diameter of the droplet; U , the relative velocity of the droplet with

respect to the ambient; ρg and ρl, the density of the liquid and gaseous phases; µg and

µl, the gas and liquid dynamic viscosities; a is the speed of sound and σ is the surface

tension of the liquid phase. Weber (Weber, 1931) and Reynolds numbers are the

ratio of inertial to surface tension and viscous forces, respectively. Ohnesorge number

(Ohnesorge, 1936) on the other hand is the ratio of viscous to surface tension forces.

To understand Oh number in a more physical manner, consider Oh2 = µ2
l /ρlDσ.

This quantity can be viewed as an inverse of a Reynolds number based on capillary

velocity. Capillary velocity, Vcap = σ/µl, is the velocity at which a viscous fluid thins

and eventually breaks (McKinley, 2005).

2.3 Numerical Model and Spatial Discretization

The numerical model used in this thesis is based on Gerris flow solver (Popinet).

In the following section the numerical model and spatial discretization employed in

Gerris will be described in brief. The details of the various numerical schemes will
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be discussed in Chapter 3. The governing equations described in section 2.1 are

solved using a projection method based on variable density fractional step numerical

methodology. The fractional step projection method computes an interim velocity

field in the first step. This is followed by the computation of the pressure field by

solving the Poisson equation and the projection of the interim velocity distribution

onto a divergence free velocity field. A quad/octree spatial discretization is used in

combination with a multilevel Poisson solver to solve for the pressure distribution.

An example of the octree grid architecture and AMR used during the current research

is shown in Figure 2.1. As clearly seen Cartesian grid system is used in the study.

All the primitive variables- momentum components, pressure and volume fraction

are collocated at the cell centers of the discretized volume. The numerical solution

procedure employs finite-volume formulation and the cell centered values are volume

averaged for the corresponding volume of the finite-volume. This collocated definition

of primitive variables is useful for mesh adaptation, as well as, during the implementa-

tion of the Gudunov scheme for the non-linear convective terms. To treat the viscous

terms accurately, an approximate projection method developed by Almgren et al.

(2000) is used. The scalar VOF variable, f , is obtained by solving the advection

equation for the volume fraction. A piecewise-linear geometrical VOF scheme (Scar-

dovelli & Zaleski, 1999) generalized for quad/octree spatial discretization is used to

solve equation 2.9. The value of the volume fraction in each cell then corresponds

to the fraction of each cell filled with the reference phase. Computational cells com-

pletely filled with fluid 1 are characterized by f = 0 and fluid 2 by f = 1, and cells

containing the interface are characterized by 0 < f < 1. Since face-centered velocities

are divergence-free, the function f is then advected using these velocities.
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Figure 2.1. An example of adaptive mesh refinement used to study droplet breakup.
The interface is resolved by adapting the grid near the droplet surface. The blue color
represents the droplet.
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Figure 2.2. An example of quadtree discretization and corresponding hierarchy tree.
The red colored dashed lines show the pointers to cells at the same level and to parent
level cells.

2.3.1 Quad/Octree Data Structure and Adaptive Mesh Refinement

The domain is spatially discretized using cubic (square in 2D) computational cells

organized as octree (quadtree in 2D) (Popinet, 2003; Samet, 1990). Researchers have

used this type of discretization methodology in the past to study incompressible sep-

arated flows (Greaves & Borthwick, 1998), compressible flows, including shock prop-

agation and shock-bubble interactions (Khokhlov, 1998) and fluid flow with moving

boundaries (Greaves, 2004). An example of the quadtree (octree in 3D) is shown in

Figure 2.2. The whole domain is a square (cube in 3D) and it is subdivided into

smaller squares at subsequent levels of refinement. Each finite volume is referred to

as a cell. The base cell is called the root of the tree and a leaf cell is a cell which

cannot have any children. Each parent cell can have up to four children (8 in 3D).

The root cell is designated as level 0 and the level of each subsequent cell is defined

by parent level plus one to a group of four child descendants. Each cell has Nd direct

neighbors in the same level, which can be accessed through the face, Cd. Mixed cells

are defined as the cells which are cut by a solid boundary.

Lets summarize the definitions of the various terms used in this thesis to describe
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the graded quad/octree partitioning (Popinet, 2009).

• Root cell. The base of the cell tree. The root cell does not have a parent cell

and all cells in the tree are descendants of the root cell.

• Children cell. The direct descendants of a cell. Cells other than leaf cells

have four children in two dimensions (quadtree) and eight in three dimensions

(octree).

• Parent cell. The direct ancestor of a given cell.

• Leaf cell. The highest cells in the cell tree. Leaf cells do not have children.

• Cell level. By convention the root cell is at level zero and each successive

generation increases the cell level by one.

• Coarser cell. Cell A is coarser than cell B if level (A) < level (B) and con-

versely for finer cells.

Calculations at the cell boundaries are simplified by the following constraints:

1. direct neighboring cells cannot differ by a level more than one;

2. diagonally neighboring cells cannot differ by a level more than two; and

3. cells directly neighboring a cell containing the fluid/fluid interface should be at

the same level.

These constraints greatly simplify the gradient and flux calculations. The first

two constraints are less restrictive and usually impose gradual refinement. The third

constraint on the other hand forces all the cells cut by the fluid/fluid interface to be

at the same level and therefore is much more restrictive. One of the major issues with

quad/octree grid partitioning is its inability to deal with highly non-isotropic flows

since this sort of data structure imposes locally isotropic refinement. Approaches
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to rectify this issue include using rectangular cells instead of square cells or using

variable quad/octree hierarchy (Berger & Aftosmis, 1998). In general, the desirable

characteristics of a data structure are:

(a) efficiently access adjoining cells;

(b) efficiently access cell levels and spatial coordinate information; and

(c) traverse cells at a given level, leaf cells and mixed cells efficiently.

In this research, a fully threaded tree (FFT) structure (Khokhlov, 1998) is used.

The whole computational domain is level 0 i.e., the root cell (refer Figure 2.2). Cells

on level 1, 2, 3 and 4 are child cells, while level 4 cells are the leaf cells. Cells at level

2 are coarser than that of level 1 and so on and so forth for levels 3 and 4. Using this

approach, neighboring cells as well as different cell levels and spatial coordinates can

be accessed using O(1) as opposed to O(logN) using a conventional linked list. The

cost to perform operation (c) is O(NlogN). Every cell can efficiently access its child,

neighbour, and parent cells. Only one pointer is needed to access these cells since cells

in the tree are organized in groups and kept in contiguous memory locations. Each

group of child cells also has a pointer to a parent cell and six (four in 2D) pointers to

parent cells of neighbouring groups. The primitive state variables are stored at cell

centers.

Often multiphase problems involve length and time scales varying over several

orders of magnitude. Impinging jets, liquid jet in cross flow, droplet breakup, droplet

collision and impact are a few examples. Traditionally, fixed mesh (structured) ap-

proaches have been used in numerical simulations to explore fluid dynamics phe-

nomena. This meshing methodology have either considered uniform grids i.e., same

refinement level throughout the computational domain or non-uniform i.e., finer mesh

in the expected region of high gradients and coarser grid elsewhere. Even though sev-

eral researchers in the past have used fixed mesh successfully for dynamically evolving
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interfacial flows, this approach can be computationally extremely expensive and of-

ten cost prohibitive. Adaptive mesh refinement technique is one of the most efficient

ways to mitigate this problem. The basic concept behind AMR methodology is to

adapt the grid according to the specified criteria so that grid is only refined in regions

where higher resolution is needed, while the rest of the computational domain uses a

coarser mesh. AMR is specially useful for numerical simulation of multiphase flows

where the fluid/fluid interface evolves in time. The AMR implementation in Gerris is

based on structured grids. Structured mesh offers simplification in implementing the

various numerical algorithms and reduces the computational overhead, in addition

to the excellent mass conservation characteristics of this gridding methodology. The

octree discretization further assists in the implementation of the multigrid V-cycle

solver for the solution of the Poisson equation. Structured adaptive mesh refinement

(SAMR) grid methods have been successfully used by researchers to explore a wide

range of physical phenomena, ranging from large scale numerical relativity, cosmol-

ogy and astrophysics simulations (Bryan & Norman, 2000; Bergmans et al., 2005;

Choptuik, 2000) to fluid dynamics and combustion simulations (Bell, 2005; Myers,

2000; Pernice et al., 2000; Jourdren, 2005). The grid adaptation criteria depends on

the physics under consideration. For the problem in hand, gradient and value based

refinements are used at the liquid interface and the droplet interior respectively, to

resolve the droplet shape, interior and the near flowfield. This is achieved by using a

refinement indicator in each cell. The grid is refined or coarsened by comparing the

refinement indicator to a predefined threshold value.

2.4 Surface Tension

The concept of tension in a free liquid surface is a familiar one, and is often given

as an explanation to the tendency of liquid surfaces to take a shape with minimum

potential energy. One of the most common examples of the effect of surface tension
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force is the spherical shape of raindrops falling from the sky. Liquid molecules exert

intermolecular forces on each other inside a liquid body. The directional nature of

these forces, on an average, is random because of their fluctuating nature. As a

result the average force experienced by a given molecule over a finite period of time

is zero. This is analogical to the random motion of a gas in equilibrium which can

be described by a Maxwellian velocity distribution and on an average the molecules

have a zero random velocity. Since the average force experienced by a liquid molecule

is zero, the work done by the molecule to move a given distance is also zero. The

situation is different for the molecules on the interface/surface. These molecules are

not surrounded by other molecules symmetrically and have to do a certain amount

of work against the unbalanced forces in order to reach the free liquid surface. The

direction of the forces is normal to the free surface (Burdon, 1940). In addition,

the presence of different gas/liquid/solid on the other side of the interface play a

major role in defining the nature of unbalanced forces experienced by the interfacial

molecules. The surface molecules possess a potential energy because of the work done

in reaching the surface. This is called the surface energy. The surface tension, σ, is

defined as surface energy per unit area. It is expressed in N/m.

To look at the inter-molecular forces defining the surface tension, lets consider the

molecular dynamics definition of surface tension (Alejandre et al., 1995):

σ =
1

2
< PZZ − (PXX + PY Y ) > (2.26)

where the angular brackets denote time averaging and Pαβ is the αβ component of

the pressure tensor and is given by:

V Pαβ =
N∑
i=1

mi (vi)α (vi)β

+
N−1∑
i=1

N∑
j>i

3∑
a=1

3∑
b=1

(rij)α (φiajb)β

(2.27)

where V is the volume of the system, N the number of molecules, mi and vi are the
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molecular mass and velocity of the center of mass respectively. rij is the distance

vector between the center of mass of molecules i and j. a and b are the sites of

interest on any given molecule. The force between atom a in molecule i and atom b

in molecule j, φiajb is given by:

φiajb = −riajb
riajb

[
dU (riajb)

driajb

]
(2.28)

riajb is the distance between atom a in molecule i and atom b in molecule j. U(rab) is

the interaction between molecules. As an example, consider the extended simple point

charge (SPC/E) model for water, the intermolecular interactions consists of three

point charges located at the oxygen and hydrogen sites. The surface tension can be

decomposed into Lennard-Jones and the Columbic surface tension components, which

takes into account the short- and long-range intermolecular interactions respectively.

U
(
rab
)

=4εOO

[(
σOO
rOO

)12

−
(
σOO
rOO

)6
]

+
1

4πε0

3∑
a=1

3∑
b=1

qaqb
rab

(2.29)

Here, qa is the charge on site a and rab is the distance between sites a and b on

two different molecules. The Lennard-Jones parameter is only evaluated between

the oxygen sites and is given by: σOO = 3.166 Å and εOO = 0.6502 kJ/mol while

qO = −0.8476|e| and qH = −qO/2.

2.4.1 Thermodynamics of Interfaces

Consider a one component liquid-gas equilibrium. Gravity has been neglected because

of its negligible contribution for most applications. The interface is assumed to be

flat so that the principal curvatures are 0. The change in internal energy, dU with

extensive parameters (N, V, T,A) can be expressed as:

dU = TdS − pdV + σdA+ µndN (2.30)

35



where pdV = pαdV α + pβdV β. α and β are the two phases. Integrating this equation

under conditions of equilibrium, and without the loss of generalization, the lower limit

of integration can be chosen such that:

U = TS − pV + σA+ µnN (2.31)

The free energy and its gradient for a process can be written as:

F = U − TS

F = −pV + µnN + σA

dF = −pdV − SdT + µndN + σdA

(2.32)

where F is the free energy, A the area, S the entropy, T is the equilibrium temperature

and µn is the chemical potential of the species, n. If the grand thermodynamic

potential, Ω, is used, Equation 2.32 translates to:

Ω = F − µSN

Ω = −pV + σA

dΩ = −pdV − SdT −Ndµn + σdA

(2.33)

The thermodynamic definition of surface tension, then becomes:

σ =

(
∂F

∂A

)
N,V,T

or equivalently,

σ =

(
∂Ω

∂A

)
µn,V,T

(2.34)

Consider an interface between a liquid and gas. The total volume, V can be

divided into the gas and liquid volumes, Vg and Vl respectively, with V = Vg + Vl.

The densities in the liquid and gas phase are ρl and ρg. The interfacial number of

particles, Ns are defined by:

Ns = N −Ng −Nl

Γ =
Ns

A

(2.35)
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Since the liquid and vapor coexist, p, µn and T are fixed and the interfacial free

energy is given by:

Fs = F − Fl − Fg where

F = −pV + µnN + σA, Fl = −pVl + µnNl, Fg = −pVg + µnNg

∴ Fs = σA+ µnNs

(2.36)

If we use the grand thermodynamic potential, Ω, the interface contribution is:

Ωs = Ω− Ωl − Ωg = −pV + σA− pVl − pVg = σA (2.37)

Using Equation 2.32, we can derive an equation for the surface entropy.

dFs = SsdT + µndNs + σdA (2.38)

Differentiating Equation 2.36 we get:

dFs = σdA+ Adσ + µndNs +Nsdµn → −ssdT = dσ + Γdµn (2.39)

where ss = Ss/A is the surface entropy per unit area. If the adsorption is 0, the

surface entropy per unit area is given by:

ss = − dσ
dT

(2.40)

If a substance adsorbs and its concentration is increased the interfacial tension de-

creases and vice versa.

The definitions of surface tension, free energy and surface entropy for mixtures

can be extrapolated directly from the above equations. For example, if there are

ν = 1, 2, 3, ...,M species, the number of particles in the interface and adsorption can

be defined by:

Nν
s = N −N ν

l −Nν
g and Γν =

N ν
s

A
, ν = 1, 2, 3, ...,M (2.41)
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The interfacial free energy and the surface Gibbs-Duhem equation are:

Fs = σA+
∑
ν

µ(ν)
n N (ν)

s

− ssdT = dσ +
∑
ν

Γ(ν)dµ(ν)
n

(2.42)

The statistical mechanical definition of surface tension in terms of partition functions

is:

σ =

(
∂F

∂A

)
N,V,T

= −kT
(
∂logQ

∂A

)
N,V,T

(2.43)

where Q is the partition function.

2.4.2 Temperature Dependence of Surface Tension

To determine the dependence of surface tension on temperature, lets consider a single

component liquid in contact with a gas which is insoluble and non-adsorbable on the

liquid surface. Under such conditions Equation 2.40 is valid and we have ss = − dσ
dT

.

The entropy in this case is related to the difference in the state of matter at the

surface and the bulk phases. The volume density and entropy decreases much faster

than entropy density when transitioning from liquid to gas and the surface is located

in a region where there is a positive excess of entropy (Rusanov & Prokhorov, 1996).

Then according to Equation 2.40, the surface tension of pure liquids decreases with

increase in temperature.

Several relations have been developed over the years which show the temperature

dependence of surface tension. In general since the surface tension decreases with

temperature for most liquids and vanishes at the critical point, the simplest equation

takes the form (Guggenheim, 1945):

σ = σ0

(
1− T

Tcr

)ζ
(2.44)

where ζ is a constant. This equation can be used to model the surface energy per

unit area and can be written as:

u = σ0 (Tcr − T )ζ−1 [Tcr + (ζ − 1)T ] (2.45)
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Table 2.2. Empirical relations for temperature dependence of surface tension for
pure liquids.

Correlation Reference

d
(
σv2/3

)
dT

= κe Eotvos (1886)

σv2/3 = κe (Tcr − T − 6) Ramsay & Shields (1893)

σ

(
1

vα
− 1

vβ

)−2/3

= κeTcr

(
1− T

Tcr

)
Katayama (1916)

σ = σ0

(
1− T

Tcr

)11/9

Guggenheim (1945)

σ = σ0

(
1− T

Tcr

)0.234

van der Waals (1894)

Most common correlations which describe the temperature dependence of surface

tension are listed in Table 2.2. All these relations are based on empirical data and

most of them take the form of Equation 2.44 with different different values of ζ. Here

Tcr is the critical temperature, v is the molar volume and κe is the Eotvos constant

(=2.1× 10−7Jmol−2/3K−1).

2.4.3 Dependence of Surface Tension on Pressure and Carrier Gases

To understand the behavior of surface tension as a function of pressure, it is neces-

sary to fix temperature and composition. Unfortunately, most of the gases used in

experiments are adsorbed on the liquid substrate and the effect of pressure cannot

be investigated because of the change in composition on the surface. In practice,

such effects are studied by using gases which are almost inert in terms of absorption

and adsorption. Helium is one of the least soluble gases and thus has been almost

exclusively used in experiments designed to investigate the pressure effect on surface
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tension. For a two-phase binary system with a flat interface, it can be shown that

(Rusanov & Prokhorov, 1996):

Am

(
dσ

dp

)
T

= vσ − vα −
(
vβ − vα

)
(xσ − xα)

(xβ − xα)
(2.46)

where Am is the molar surface, i.e., the surface area per unit mole of the surface layer,

v is the molar volume of the particular phase (or the surface layer designated by vσ)

and x is the mole fraction of an extraneous substance. If α represents the liquid and

β the gas phase and the gas is not absorbed or adsorbed on the liquid surface, then

xσ = xα ≈ 0 and 2.46 becomes:

Am

(
dσ

dp

)
T

= vσ − vα > 0 (2.47)

The above equation suggests that surface tension should increase with pressure for

a system where the gas enters the liquid very slightly (through absorption and ad-

sorption). Once adsorption becomes substantial, xσ > xα, and the second term in

Equation 2.46 dominates and suggests a decrease in surface tension with increasing

pressure. As pointed before, unfortunately, no conclusion can be made regarding the

pressure effect once adsorption become appreciable. Figure 2.3 (Massoudi & King Jr.,

1974; Luijten et al., 1997) shows the variation of surface tension of water with pres-

sure in the presence of various carrier gases. The first observation which can be made

from the figure is that, in the presence of He, the surface tension of water slightly

increases with pressure. This observation is consonance with Equation 2.47 because

the adsorptivity of He on water surface is extremely low. To decipher the effect of

pressure on the surface tension of water in the presence of H2, N2, CH4, N2O and

CO2, lets take a look at the adsorption behavior of gases as a function of pressure,

known as adsorption isotherms in the literature.

In general, the adsorptivity of gases increases with pressure. The earliest adsorp-

tion isotherm was developed by Freundlich (1922). It was predominantly empirical
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Figure 2.3. Variation of surface tension of water with pressure at 298 K in the
presence of various ambient gases (Massoudi & King Jr., 1974; Luijten et al., 1997).

in nature and there was no theoretical basis to the correlation. It took a form:

logvad = logχ+
1

n
logp (2.48)

where vad is the volume of gas adsorbed and n is a constant greater than 1. Probably

the most celebrated theory in the field of adsorption is due to Langmuir (1918). The

theory is based on two assumptions; (a) the force of interaction between the adsorbed

molecules is negligible, and (b) the postulate of unimolecular adsorption. According

to Langmuir’s theory:

vad/vmax = θ =
bp

1 + bp

b =
α0e

q/κbT

κ0(2πmκbT )1/2

(2.49)

where κb is the Boltzmann constant, α0 is the condensation coefficient and m is the

mass of the molecule. b is called the adsorption coefficient and is only a function

of temperature. At high adsorbate pressures and thus high coverage, this simple
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isotherm fails to predict experimental results and thus cannot provide a correct ex-

planation of adsorption under these conditions. One plausible reason for this behav-

ior is the possibility of multilayer adsorption. This means that the initial layer of

adsorbate acts as a substrate surface itself, allowing for more adsorption beyond a

saturated (monolayer) coverage. Over the last century or so, there have been several

theories which considered multimolecular adsorption, i.e., adsorption more than one

layer thick. One of the notable theories is called BET theory named after Brunauer,

Emmett & Teller (1938). According to the BET isotherm, since condensation of the

adsorbate is indefinite, the amount of adsorption increases as the pressure is increased.

If adsorption is much stronger than condensation, the BET isotherm reduces to:

θ =
1

1− p

p0

(2.50)

where p0 is the vapor pressure of pure condensed adsorbate. An excellent reference

which describes the various adsorption theories in great detail the book by Brunauer

(1945).

As evident from the discussion in the previous paragraph, gas adsorption generally

increases with increase in pressure. Then according to Equation 2.46, the surface ten-

sion should decease with increasing pressure. In summary, the increase in adsorption

of gases with pressure leads to the decrease in surface tension and explains the trends

in Figure 2.3.

2.5 Closing Remarks

This chapter discussed the theoretical basis of the current research. Governing equa-

tion and boundary conditions were described first, followed by a brief discussion on

the non-dimensional parameters, relevant for droplet dynamics study. Numerical

model used to solve the discretized equations and octree spatial discretization were

discussed next. The chapter ends with a detailed account of surface tension and its

dependence on temperature, pressure and composition.
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CHAPTER III

NUMERICAL METHODS

In this chapter, the numerical method used to solve the governing equations described

in Chapter 2 are presented. The numerical schemes presented in this chapter are based

on Popinet (2003, 2009) and Zakerzadeh (2008). The temporal discretization is intro-

duced first, followed by the details of the numerical schemes used to model convective

and viscous terms. The volume of fraction advection scheme is discussed next, along

with the balanced force algorithm used to model surface tension. The generalized

height function used in the balance force algorithm to estimate the curvature is then

described. Examination of time step constraints is followed by verification and vali-

dation studies conducted, relevant to droplet deformation and breakup. In addition,

results are compared with data from literature (whenever available), in subsequent

chapters while discussing the results obtained during the current research effort.

3.1 Time Integration

A second order accurate, time staggered discretization for volume-fraction/density is

used, given by:

ρn+1/2

[
un+1 − un

4t
+∇. (uu)n+1/2

]
= −∇pn+1/2 +∇.

[
τ̃n + τ̃n+1

]
+ Fst

n+1/2 (3.1)

fn+1/2 − fn−1/2

4t
+∇. (fnun) = 0 (3.2)

∇.un = 0 (3.3)

A classical fractional step projection method is used to simplify the above equations,

where the time discretization of the momentum equation (pressure form) is split into

two steps, a predictor step followed by a corrector step. It can be written as (Popinet,
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2009):

ρn+1/2

[
u∗ − un

4t
+∇. (uu)n+1/2

]
= ∇. [τ̃n + τ̃ ∗] (3.4)

fn+1/2 − fn−1/2

4t
+∇. (fnun) = 0 (3.5)

un+1 = u∗ − 4t
ρn+1/2

∇pn+1/2 + Fst
n+1/2 (3.6)

∇.un+1 = 0 (3.7)

The above method requires the solution of a Poisson equation for pressure:

∇.
[

1

ρn+1/2
∇pn+1/2

]
= ∇.

(
u∗

4t
+

Fst
n+1/2

ρn+1/2

)
(3.8)

Equation 3.8 is solved using an octree based multigrid solver (Popinet, 2003). It

should be noted that the surface tension effects are incorporated with the pressure

correction equation to implement the balanced force algorithm proposed by Francois

et al. (2006). The basic idea is to consider these two terms together in order to cancel

the discretization errors thereby enforcing an exact balance. The next section details

the spatial discretization schemes used in the above equations.

3.2 Spatial Discretization

As described before in Section 2.3, a graded octree partitioning is used in conjunction

with a Cartesian VOF approach to solve the governing equations. The primitive

variables are calculated at the center of each cube, their values being the volume

average of the corresponding cell. A Godunov momentum advection scheme (Bell

et al., 1989) is used for the discretization of the convective terms while the viscous

terms are implemented using a Crank-Nicholson type of discretization. The next

sections discuss the spatial numerical schemes used to discretize the various terms in

Equations 3.4 and 3.6.
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3.2.1 Advection Term

The advection term is evaluated using a conservative formulation. Gauss’s divergence

theorem can be used to convert the volume integral over a control volume, Ω, to a

surface integral over a surface S.∫
Ω

∇. (uu)n+1/2 dΩ =
1

Ω

∫
S

un+1/2
(
un+1/2.n̂S

)
dS (3.9)

where n̂S is the unit outward normal to the surface S. The discretized form of the

advection terms in x-direction for the control volume shown in Figure 3.1 can be

written as:∫
Ω

∇. (uu)n+1/2 dΩ =
1

4
[(
ui+1/2,j,kui+1/2,j,k − ui−1/2,j,kui−1/2,j,k

)
+
(
vi,j+1/2,kui,j+1/2,k − vi,j−1/2,kui,j−1/2,k

)
+
(
wi,j,k+1/2ui,j,k+1/2 − wi,j,k−1/2ui,j,k−1/2

)]n+1/2

(3.10)

The advection terms in the y and z direction can be written in a similar manner. A

Godunov method (Bell et al., 1989) is implemented which requires the face-centered

values of the primitive variables. It is a second order Taylor series expansion in space

and time. The face-centered values can be calculated either using the left (i, j, k) or

the right (i + 1, j, k) side of the face. In general, the Taylor series expansion for the

face-centered values can be written as:

u
L,n+1/2
i+1/2,j,k = uni,j,k +

4
2
∂xu +

4t
2
∂tu +O

(
42,4t2

)
(3.11)

∂x is the cell-centered derivative in x direction extrapolated from the left side of the

face denoted by the superscript L. The time derivative, ∂t can be substituted from

Equation 2.4, leading to:

u
L,n+1/2
i+1/2,j,k =uni,j,k +

(
4
2
− 4t

2
uni,j,k

)
∂xu

n
i,j,k

+
4t
2

[
(−v∂yu− w∂zu)ni,j,k +

1

ρni,j,k

(
µ
(
∇u + (∇u)T

))n
i,j,k

] (3.12)
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Figure 3.1. Computational cell with coordinates (i, j, k). The length of each side is
4. Velocities u, v, and w and pressure p are specified at the cell centers. Advection
velocities are defined at the center of cell faces.

46



Similar equation can be written for extrapolating the face-centered values from cell

center (i + 1, j, k). The y and z components of velocity can be evaluated using cor-

responding derivatives. The pressure and surface tension forces are not included in

Equation 3.12 because they are only required in the projection step. The discretiza-

tion of the viscous stress tensor, τ̃ , will be presented in Section 3.2.2. Using a simple

upwind scheme, the face-centered values can be extrapolated from the left or right of

the face and corresponding to u
L,n+1/2
i+1/2,j,k and u

R,n+1/2
i+1/2,j,k respectively.

u
L,n+1/2
i+1/2,j,k = uni,j,k +

4
2
min

(
1− uni,j,k

4t
4
, 1

)
+
4t
2

(
−v∂yu− w∂zu

)n
i,j,k

(3.13)

where ∂ is the upwind derivative given by:

∂yu
n
i,j,k =


(∇u)ni,j+1/2,k vni,j,k < 0,

(∇u)ni,j−1/2,k vni,j,k > 0.

(3.14)

where ∇ is the face-centered gradient. ∂zu
n
i,j,k can be computed in a similar fashion.

The upwind value is chosen as:

u
n+1/2
i+1/2,j,k =


u
L,n+1/2
i+1/2,j,k uni+1/2,j,k > 0,

u
R,n+1/2
i+1/2,j,k uni+1/2,j,k < 0,

1

2

(
u
R,n+1/2
i+1/2,j,k + u

L,n+1/2
i+1/2,j,k

)
uni+1/2,j,k = 0.

(3.15)

Similarly upwind values can be calculated for the faces perpendicular to y and z

directions, u
n+1/2
i,j+1/2,k and u

n+1/2
i,j,k+1/2 respectively. Face- and time-centered normal ve-

locities, ûn+1/2, are calculated in order to compute the advection term in Equation

3.9. To guarantee the conservative nature of the method, it is imperative for the

normal velocities to be discretely divergence-free. Step 1 is to calculate the normal

velocities as described above. The upwind state û∗ is then selected for each face using

Equation 3.15, where uni+1/2,j,k is obtained by linear interpolation of the cell-centered

velocities sharing the face. To enforce divergence-free nature of the normal velocities,
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a projection step is applied by solving:

∇.

[(
1

ρn+1/2
∇pn+1/2

)
fc

]
cc

= ∇.

( u∗

4t
+

Fst
n+1/2

ρn+1/2

)
fc


cc

(3.16)

where (.)fc and (.)cc denote face- and cell-centered respectively. Face- and time-

centered, divergence-free normal velocities are obtained by correcting û∗ with the

pressure solution. For example for a face (i+ 1/2, j, k):

u
n+1/2
i+1/2,j,k = u∗i+1/2,j,k −

4t
ρni+1/2,j,k

[
(∇p)i+1/2,j,k + (Fst)i+1/2,j,k

]
(3.17)

Similar calculations can be performed for the faces perpendicular to y and z directions.

Cell centered pressure gradient is also computed while correcting the normal velocities

using simple averaging of gradient faces. For example for gradient in x direction for

a cell, (i, j, k):

(∇xp)i,j,k =
(∇xp)i+1/2,j,k + (∇xp)i−1/2,j,k

2
(3.18)

To compute the advection terms, the above process is repeated but this time using

the divergence-free, face- and time-centered normal velocities obtained in Equation

3.17. This makes the approach robust, especially for flow around sharp edges.

3.2.2 Viscous Terms

The second term on RHS of the Equation 2.4 is the viscous term. The shear stress

tensor τ̃ can be written as:

τ̃ = D1 +D2 (3.19)

where D1 = µ∇u and D2 = µ∇uT . Lets consider the expansion of D1:

∇.µ∇u =

[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)]
î

+

[
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z

)]
ĵ

+

[
∂

∂x

(
µ
∂w

∂x

)
+

∂

∂y

(
µ
∂w

∂y

)
+

∂

∂z

(
µ
∂w

∂z

)]
k̂

(3.20)
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Discretization of the x component of the above equation for a control volume (i, j, k)

is given by (Zakerzadeh, 2008):

24
[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)]
i,j,k

=

[(
µ
∂u

∂x

)
i+1/2,j,k

−
(
µ
∂u

∂x

)
i−1/2,j,k

]

+

[(
µ
∂u

∂y

)
i,j+1/2,k

−
(
µ
∂u

∂y

)
i,j−1/2,k

]

+

[(
µ
∂u

∂z

)
i,j,k+1/2

−
(
µ
∂u

∂z

)
i,j,k−1/2

]
(3.21)

Similar equations can be derived for the other two directions. To evaluate the individ-

ual terms in Equation 3.21 face-centered velocity gradients and dynamic viscosities

are used: (
µ
∂u

∂x

)
i+1/2,j,k

= µi+1/2,j,k
ui+1,j,k − ui,j,k

4(
µ
∂u

∂x

)
i−1/2,j,k

= µi−1/2,j,k
ui,j,k − ui−1,j,k

4(
µ
∂u

∂y

)
i,j+1/2,k

= µi,j+1/2,k
ui,j+1,k − ui,j,k

4(
µ
∂u

∂y

)
i,j−1/2,k

= µi,j−1/2,k
ui,j,k − ui,j−1,k

4(
µ
∂u

∂z

)
i,j,k+1/2

= µi,j,k+1/2
ui,j,k+1 − ui,j,k

4(
µ
∂u

∂z

)
i,j,k−1/2

= µi,j,k−1/2
ui,j,k − ui,j,k−1

4

(3.22)

Similar to D1, the expansion of D2 is given by:

∇.µ∇uT =

[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂z

(
µ
∂w

∂x

)]
î

+

[
∂

∂x

(
µ
∂u

∂y

)
+

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

(
µ
∂w

∂y

)]
ĵ

+

[
∂

∂x

(
µ
∂u

∂z

)
+

∂

∂y

(
µ
∂v

∂z

)
+

∂

∂z

(
µ
∂w

∂z

)]
k̂

(3.23)
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D2 is also discretized using a second order accurate central scheme. As an example

let’s consider the y component of the above equation for at (i, j, k):

24
[
∂

∂x

(
µ
∂u

∂y

)
+

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

(
µ
∂w

∂y

)]
=

[(
µ
∂u

∂y

)
i+1/2,j,k

−
(
µ
∂u

∂y

)
i−1/2,j,k

]

+

[(
µ
∂v

∂y

)
i,j+1/2,k

−
(
µ
∂v

∂y

)
i,j−1/2,k

]

+

[(
µ
∂w

∂y

)
i,j,k+1/2

−
(
µ
∂w

∂y

)
i,j,k−1/2

]
(3.24)

The discretization in the other two directions is analogous to the above equation. A

harmonic mean is used to obtain the value of viscosity, µ, at the face-centers. For

example:

µi+1/2,j,k =
2µi+1,j,kµi,j,k
µi+1,j,k + µi,j,k

(3.25)

where the viscosity is calculated according to Equation 2.8 and is a function of the

volume fraction in a given cell. Similar expressions can be obtained for the viscosity

evaluation at other faces.

3.2.3 Surface Tension

Surface tension estimation and its implementation is one of the most difficult aspects

of the application of VOF methods to interfacial flows. In the current research, surface

tension is evaluated using Equation 2.10, approximated by the Continuum Surface

Force (CSF) approach proposed by Brackbill et al. (1992). According to CSF:

σκδSn̂ ≈ σκ∇f (3.26)

This approach has been reported by several researchers (Popinet & Zaleski, 1999;

Harvie et al., 2006; Jamet et al., 2002; Lafaurie et al., 1994; Scardovelli & Zaleski,

1999) to suffer from parasitic currents when applied to the case of stationary droplet

in theoretical equilibrium. The spurious currents scale as the inverse of the Weber
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number Harvie et al. (2006). To resolve this problem we consider a balanced force

algorithm proposed by Francois et al. (2006) where the spurious currents are mitigated

by a consistent coupling of the surface tension force with pressure gradient forces

within the flow algorithm. It should be noted that for the current study (for most

of cases), the Weber numbers are relatively large and even if the original CSF model

was used the magnitude of spurious currents would have been relatively minute. The

surface tension force, Fst, is non-zero only on faces where the face gradient of the

volume fraction is non-zero. To ensure this, discrete approximations of gradient of

pressure and volume fraction should be compatible. In the present collocated scheme,

this is performed by the following:

1. apply the surface tension force to the auxiliary face-centered velocity field u∗fc

as:

u∗fc ←− u∗fc +
4tσκn+1/2

fc

ρf
n+1/2
fc

∇fcf
n+1/2 (3.27)

2. apply the corresponding cell-centered surface tension force to u∗cc as:

u∗cc ←−

[
u∗cc +

4tσκn+1/2
fc

ρ
n+1/2
fc

∇fcf
n+1/2

]
cc

(3.28)

This is exactly how the pressure term is treated in the approximate projection method.

To see an explicit example of the spatial discretization used in the above steps, lets

consider a cube face, (i+ 1/2, j, k). Surface tension can be estimated by:

(Fst)i+1/2,j,k = σκi+1/2,j,k (∇f)i+1/2,j,k (3.29)

where κi+1/2,j,k is the curvature at the cell face interpolated from the cell center values:

κi+1/2,j,k =


1

2
(κi,j,k + κi+1,j,k) if the interface is between (i, j, k) and (i+ 1, j, k)

κi,j,k if the interface is completely inside (i, j, k)

(3.30)

51



Since in Equation 3.18, the cell centered pressure is computed simply by taking the

mean of the adjacent faces, the surface tension force is calculated in a similar manner.

As an example the cell centered surface tension force in x direction can be estimated

by:

(Fst)x =
(σκ∇f)i+1/2,j,k + (σκ∇f)i−1/2,j,k

2
(3.31)

3.2.3.1 Height Function Curvature Calculation

To evaluate the surface tension term (eq. 3.26), estimation of interface curvature is

required. In addition, interface advection and geometrical flux estimation depends

on the accuracy of curvature evaluation as described in Section 3.3.2. The curvature

of the interface in the current numerical methodology is calculated using the height

function (HF) approach. It is a VOF based technique for the calculation of interface

normals and curvatures. The method proceeds in three basic steps beginning with the

determination of interface normal along with the direction of the maximal component.

This is followed by the summation of the volume fractions along the direction of

maximum normal component to evaluate the “height” function. In the last step the

curvature is calculated using second-order central differences. Lets illustrate the above

mentioned procedure for 2D and 3D cases. A 7x3 stencil is constructed around the

interface as shown in Figure 3.2. In this example |nx| < |ny|. The red line represents

the fluid-fluid interface and the normal in the (i, j)th cell is shown by the green arrow.

The heights, gi, is evaluated by summing the volume fractions vertically (in this case).

For example, for gi−1

gi−1 = 4
w=j+3∑
w=j−3

fi−1,w (3.32)
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gi and gi+1 can be calculated similarly. The heights are then used to calculate the

interface normal and the curvature, κ given by:

n = (gx,−1)

κ =
gxx

(1 + g2
x)

3/2

(3.33)

where the derivatives are calculated using second-order central differences, gx =

gi+1 − gi−1

24
and gxx =

gi+1 − 2gi + gi−1

42
.

A similar procedure is followed in 3D with a 7x3x3 stencil as shown in Figure 3.3,

which shows the top view of an octree discretization. In this example the normal has

the maximum component in the z direction (pointing into the paper). The interface

normal and curvature for a cube (i, j, k) is then calculated by:

n = (gx, gy,−1), and

κ =
gxx
(
1 + g2

y

)
+ gyy (1 + g2

x)− 2gxygxgy(
1 + g2

x + g2
y

)3/2

(3.34)

The cross derivative is given by:

gxy =
gi+1,j+1 + gi−1,j−1 − gi−1,j+1 − gi+1,j−1

442
(3.35)

The CSF model (3.27) requires face-centred interface curvature estimates. The face-

centred curvatures are computed either by averaging the cell-centred curvatures of the

neighbouring cells when they both contain the interface, or by taking the value of the

cell-centred curvature in either cell containing the interface. L∞ norms of interface

curvature obtained by the height function approach, as described above, consistently

shows second-order convergence as shown by Tryggvason (2011).

3.3 Volume of Fluid Advection

The volume of fluid advection equation (3.2) is solved using a piecewise-linear geo-

metrical VOF scheme as explained in detail by Scardovelli & Zaleski (1999). There

are two basic steps in our geometrical VOF scheme:
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Figure 3.2. 7x3 stencil used to compute the height function when |nx| < |ny|.
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Figure 3.3. 7x3x3 stencil used to compute the height function in 3D.

1. interface reconstruction; and

2. interface advection and geometrical flux computation.

These two steps are explained in brief below.

3.3.1 Interface Reconstruction

The interface is represented by a plane in our VOF scheme, described by:

m1x1 +m2x2 +m3x3 = β (3.36)

Here m1, m2 and m3 are the components of the normal vector m with position vector

(x1, x2, x3) and sides4x1,4x2 and4x3. β has a unique value determined by ensuring

that the volume of fluid contained in the cell and lying below the plane is f . The

method used to determine the volume fraction given m and β or inversely β given f
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and m is adopted from Scardovelli & Zaleski (2000). For the forward problem:

V =



β3

6m1m2m3

if 0 ≤ β < m1

β(β −m1)

2m2m3

+ V1 if m1 ≤ β < m2

β2(3m12 − β) +m2
1(m1 − 3β) +m2

2(m2 − 3β)

6m1m2m3

if m2 ≤ β < m3

There are two possibilities for the fourth case:

V =


β2(3− 2β) +m2

1(m1 − 3β) +m2
2(m2 − 3β) +m2

3(m3 − 3β)

6m1m2m3

if m3 ≤ β ≤ 1/2

2β −m12

2m3

if m12 ≤ β ≤ 1/2

(3.37)

V1 = m2
1/max(6m2m3, ε) where ε is an arbitrary small number and is used as a

delimiter to ensure that the denominator of V1 does not become zero. m12 = m1 +m2

and m = min(m12,m3). For the inverse problem:

β = 3
√

6m1m2m3V if 0 ≤ V < V1

β =
1

2

(
m1 +

√
m2

1 + 8m2m3(V − V1)

)
if V1 ≤ V < V2

P (β) = a3β
3 + a2β

2 + a1β + a0 = 0 if V2 ≤ V < V3

Again there are two possibilities for the fourth case:

P (β) = b3β
3 + b2β

2 + b1β + b0 = 0 if V31 ≤ V ≤ 1/2

β = m3V +
m12

2
if V32 ≤ V ≤ 1/2

(3.38)

where V2 = V1 + (m2 − m1)/2m3, V3 = V31 = [m2
3(3m12 − m3) + m2

1(m1 − 3m3) +

m2
2(m2 − 3m3)]/(6m1m2m3) when m = m3 or V3 = V32 = m12/2m3 when m = m12.

The coefficients of the two cubic polynomials are given by:

a0 = m3
1 +m3

2 − 6m1m2m3V

a1 = −3(m2
1 +m2

2)

a2 = 3m12
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a3 = −1

b0 = m3
1 +m3

2 +m3
3 − 6m1m2m3V

b1 = −3(m2
1 +m2

2 +m2
3)

b2 = 3, and

b3 = −2

In the third and fourth region, the roots of the cubic polynomial P (β) are found such

that:

1. P (±∞) = ∓∞, and

2. for a given V , the middle root of the three real roots of P (β) is the proper root.

The process of interface reconstruction is accomplished in the following steps:

(a) Traversing from leaf to root, for each non-leaf computational cell, the volume

fraction is set as the average of the children’s volume fraction.

(b) Next, for each cell containing the interface, the stencil volume fraction, fi,j,k

is populated with the volume fraction of a (virtual) cell of size 4, centered at

xi,j,k and entirely contained in the smallest cell of size larger than or equal to 4

containing xi,j,k. Once this is done, m is calculated using fi,j,k and MYC scheme.

This is followed by the the computation of β. β and m are then stored as state

variables. A more detailed description of interface reconstruction technique is

given by Popinet (2009).

3.3.2 Interface Advection and Flux Computation

Once the interface is reconstructed, the next step is to calculate the volume fraction

advection and volume fluxes. The numerical scheme used during the current research
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endeavour is demonstrated for a single 2D computational cell below:

f ∗i,j = f
n−1/2
i,j V

n−1/2
i,j + Φ

n−1/2
i−1/2,j − Φ

n−1/2
i+1/2,jf

n+1/2
i,j V

n+1/2
i,j = f ∗i,jV

∗
i,j + Φ∗i,j−1/2 − Φ∗i,j+1/2

(3.39)

where Vi,j is the effective volume of the cell and Φi+1/2,j is the volume flux of the first

fluid through the right boundary of the computational cell. Vi,j is defined by using the

reduction and increase of the cell volume due to the one-dimensional velocity field,

given by:

V ∗i,j ≡ V
n−1/2
i,j +

(
uni−1/2,j − uni+1/2,j

)
44tV n+1/2

i,j ≡ V ∗i,j +
(
uni,j−1/2 − uni,j+1/2

)
44t

(3.40)

The volume flux, Φ can be calculated using the geometrically reconstructed interface.

Two kinds of situations are encountered for the octree spatial discretization used in

the current research:

1. Flux calculation for cells of the same size: This is illustrated in Figure 3.4. The

total volume fluxed from cell A to cell B is demarcated by the dashed line. The

first fluid is marked by the dark triangle. Basically the area of the triangle is

an estimate of of the volume flux Φi+1/2,j which can be easily calculated. This

method might be more tricky and difficult to adapt for general grid systems but

for the current spatial discretization, it is quite simple to implement.

2. Flux calculation for cells of different sizes: This is shown in Figure 3.5. Here cell

A is a coarse cell while cells B and C are one size finer. The flux is calculated

separately from the top and bottom halves of the coarse cell A shown in the

figure by A and A’ respectively. The equation for the interface is determined

independently for the two halves. Once this is done, a procedure similar to the

above is followed to calculate the volume fluxes.
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Figure 3.4. Geometrical flux estimation for computational cells of the same size.

Figure 3.5. Geometrical flux estimation for computational cells of different sizes.
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3.4 Time Step Constraints

The various numerical schemes used for the spatial discretization of the governing

equations impose restrictions on the maximum allowable time step that can be used

to ensure numerical stability. These constraints are determined by the convective,

viscous and surface tension terms.

1. Convective terms: The constraint imposed by the convective term is probably

the most well known constraint and is defined by the Courant Friedrichs Lewy

(CFL) condition given by:

max

[
|ui,j,k|4tad
4

]
< CFLmax (3.41)

This restriction ensures that the fluid volume convected to the neighboring cell

is not more than the amount of fluid in the cell. We use a conservative value of

0.5 for CFL number during our simulations to ensure consistency and stability.

2. Surface tension terms: The stability condition for the explicit treatment of sur-

face tension is restricted by the appropriate time step resolution of the capillary

waves and is given by (Brackbill et al., 1992):

cφ4tst
4

<
1

2
(3.42)

where cφ is the capillary wave phase velocity:

cφ =

√
σν̃

ρ1 + ρ2

(3.43)

Similar to the restrictions imposed by convective terms, we use a conservative

value of 0.5 in Equation 3.42. This ensures that two opposite moving capillary

waves do not enter the same cell from opposite directions. The phase velocity of

a capillary wave (eq. 3.43) traveling on the interface depends on the density of

the two fluids on either side of the interface, surface tension and wave number.
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The maximum allowable time step can be found by estimating the maximum

phase velocity. The capillary phase velocity in turn depends on the maximum

value of the wave number, ν̃max = π/4, corresponding the minimum grid reso-

lution (24) required to resolve the wavelength. If these values are substituted

in Equation 3.42, we get:

4tst =

√
ρ1 + ρ2

4πσ
43 (3.44)

Equation 3.44 can impose severe time step restrictions when surface tension is

treated explicitly, which was the case in the current research. One of the ways

to mitigate this is to use implicit schemes.

3. Viscous terms: The time step restriction imposed by the viscous terms is given

by:

4tvis = min

[
ρi,j,k
µi,j,k

42

6

]
(3.45)

The time step chosen at a given instant is given by the minimum of the three values:

4t = min (4tad,4tst,4tvis) (3.46)

3.5 Adaptive Mesh Refinement

One of the advantages of using a tree-based discretization, such as the one used for

the current research is that, it is relatively simple to implement a flexible adaptive

mesh refinement strategy. The mesh can be refined or coarsened depending on the

criteria set to explore the particular physics under consideration as explained in Sec-

tion 2.3.1. AMR implemented here is a two step process. In the first step, all the

leaf cells satisfying the refinement criteria are updated (made finer). This is followed

by coarsening of parent cells (of the leaf cells which were just refined) who do not

satisfy the refinement criteria. Once the refinement/coarsening is complete the cell

centered values of state variables have to initialized in the new cells. For the coarse
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cells, it is easy to preserve quantities such as momentum - the cell centered values

are computed by taking the volume average of their child cells. For the fine cells, this

is a little more complicated. The value of state variables are initialized by linearly

interpolating the parent cell values and their gradients. For a given child cell C with

a parent P , the initial value of any state variable, Ψ is given by:

Ψ(C) = Ψ(P) +∇x∇xΨ(P) +∇y∇yΨ(P) +∇z∇zΨ(P) (3.47)

where (∇x,∇y,∇z) are the coordinates of the center of C relative to the center of

P . In general momentum and vorticity needs to be preserved when initializing the

new cells. Equation 3.47 ensures local momentum conservation but some numerical

noise is created in the voriticity. This issue can be resolved by using higher-order

interpolation schemes.

3.6 Validation and Verification

Gerris has been validated by several researchers for a variety of flow conditions. Nu-

merous validation cases were conducted by Popinet (2009) for surface tension driven

interfacial flows. Some of these cases, especially relevant to the present research are:

(1) second order convergence in case of stationary and moving droplet to the exact

solution of Laplace’s problem, (2) small-amplitude damped oscillations of a capillary

wave with fluid of different densities, including high density ratio air-water systems,

showing excellent agreement with theoretical results of Prosperetti (1981), and (3)

three-dimensional capillary breakup of liquid jet showing excellent agreement with the

theoretical analysis of Rayleigh (1892). Figure 3.6 shows the schematic diagram of the

numerical setup for the current research problem. Physically, a single liquid droplet is

impulsively started in a quiescent gaseous atmosphere. The spherical droplet deforms

due to the action of aerodynamic forces and eventually breaks up. The deformation

and fragmentation is resisted by the surface tension and viscous forces. As pointed

out by researchers in the past, the magnitude of the inertial to surface tension force,
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Figure 3.6. Computational setup. (Water droplet is given an initial velocity and
the droplet structure and flowfield is tracked in time.)

i.e., the Weber number dictates the breakup mechanism (Krzeczkowski, 1980; Ar-

coumanis et al., 1994; Faeth et al., 1995; Arcoumanis et al., 1996; Faeth, 1996, 2002).

The dependence of We and Re on diameter and velocity at 1 and 100 atm is shown

in Figures 3.7 and 3.8. Even though numerous experiments have been conducted over

the last two decades to explore the breakup physics, no experimental investigation

has been successful in measuring the local drop and ambient flowfiled that leads to

the deformation and breakup of the droplets (Lopez-Rivera, 2010). This is primarily

because droplet deformation and breakup process is truly a multiscale problem in-

volving a wide range of time and length scales, in addition to the accelerating and

unsteady nature of the problem. In the present work these length and time scales

associated with droplet deformation and breakup phenomena are resolved to explain

the breakup behavior quantitatively.

Before we begin the discussion of detailed flowfield and structure dynamics of

the various breakup mechanisms, let us define our terminology since a lot of different

terms have been used in the literature to describe different breakup modes. Oscillatory

breakup - this has a fairly universal definition in the literature. We define it as a

breakup process where the droplet oscillates, forming different shapes and eventually

breaking up into relatively larger secondary droplets. Bag breakup - we identify this

mode as the one with a bag or dome (inwards or outwards) structure and breakup

initiation at the bag. Multimode breakup - this mechanism is identified with a stem
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Figure 3.7. Dependence of diameter and velocity on Weber and Reynolds number
at 1 atm.

Figure 3.8. Dependence of diameter and velocity on Weber and Reynolds number
at 100 atm.
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Figure 3.9. Figure showing the definitions of bag, lip, rim and stem.

protruding from the bag. Shear breakup - in our definition, sheet thinning and wave

travelling breakup mechanisms fall in this category. The generalized regime diagram

discussed later in Section 4.5 is based on these definitions. Several other terms, such as

bag, lip, stem and rim will be used while discussing the droplet breakup phenomena.

These are defined in Figure 3.9.

As a first step, we compare our simulation results with those of Han & Tryggvason

(2001) owing to the similarity in configuration and comparable Weber number and

density ratio. As shown in Figure 3.10, the current approach shows excellent agree-

ment with results obtained by Han & Tryggvason (2001). We are capable of capturing

the various shapes involved in the breakup process, including the bowl and backward

facing droplet structure. It should be noted that results of Han & Tryggvason (2001)

were obtained from an axisymmetric calculation where breakup of the droplet was

not considered. Current results were obtained from a 3-D calculation with breakup.

Irrespective of the numerical method, challenges accompanying numerical simula-

tion of incompressible two-phase systems increase multiple folds as the density ratio

increases (Gorokhovski & Herrmann, 2008; Desjardins & Moureau, 2010). At this

point, it should also be highlighted that standard V-cycle multigrid methods often

exhibit extremely slow convergence rates in case of elliptic equations with discontin-

uous/stiff coefficients and source terms (Alcouffe et al., 1981; Chan & Wan, 2000),
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Figure 3.10. Comparison of present results (left) for We = 24, ρl/ρg = 8.29 with
results from Han & Tryggvason (2001) (right) for We = 18.7, ρl/ρg = 10.
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which is certainly the case for liquid/gas systems at low pressures. Time integra-

tion scheme used in the current approach involves a classical time-splitting projection

method which requires the solution of the Poisson equation to get the pressure field:

∇.
[
4t

ρn+1/2

∇pn+1/2

]
= ∇.u∗ (3.48)

As mentioned before, equation 3.48 is solved using a standard multigrid V-cycle

methodology and as a result, for large density ratio flows the above equation suffers

from slow convergence rates. Extremely high grid resolution is required to resolve the

large density gradients, surface tension at the interface and to ensure consistencies in

the momentum equation. Even though the current methodology performs very well

for several high density ratio systems, such as travelling capillary wave in an air/water

system as shown by Popinet (2009), in comparison with other methods in the liter-

ature as presented by Gerlach et al. (2006), the convergence for high density ratio

cases (usually due to low pressure conditions) can seriously degrade depending on the

problem and interface topology (Popinet, 2009). Droplet breakup phenomenon at

large density ratios is one such case. Obtaining accurate results for such a configura-

tion requires very high grid resolution which quickly makes the numerical simulations

cost prohibitive. For example, we show results for a water droplet in air environment

which corresponds to shear breakup phenomenology at 1 atm pressure conditions.

The diameter of the water droplet used for this case was 750 µm with an initial ve-

locity of 95 m/s. The corresponding Weber and Reynolds numbers were 112 and 4518

respectively. The density ratio was 829. As seen in Figure 3.11, our numerical results

capture the current understanding of shear breakup in the literature, i.e., the droplet

breaks up via sheet thinning at the surface. Moreover, we also observe a wave mov-

ing on the surface of the droplet which was not observed very clearly in experiments

because of the dense cloud of droplets surrounding the parent drop. This wave is em-

inent in the current setup because of the existence of Rayleigh-Taylor instability due

to sudden acceleration of the droplet. We shall explain the shear breakup phenomena
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Figure 3.11. Shear breakup - We = 112, Re = 4518, ρl/ρg = 829. Temporal
evolutions of 3D droplet structure (bottom view) in non-dimensional time. Droplet
iso-surface in grey at various times. Non-dimensional time, t = T*U/D.

in detail later in the results section. The minimum grid size used for this calculation

to obtain acceptable results was 1/212 D (0.18µm), and it took about 52000 CPU

hours to obtain the results shown in Figure 3.11 on a AMD Opteron 8431, 2.4 GHz,

64 GB, hexa-core, quad processor computing cluster. This computing resource was

just enough to identify the type of breakup for this case. The computing cost be-

comes enormous if child droplet statistics such as final droplet size distribution are

of interest.

In this thesis, we develop a regime diagram valid for a wide range of pressure

conditions to identify the breakup types at a given operating condition. Correlations

for child droplet statistics at lower density ratios are developed. The generalized

regime diagram can then be used in conjunction with these correlations to predict

child droplet statistics at other pressure conditions. We demonstrate this by com-

paring the sauter mean diameter for shear breakup regime predicted by experimental

correlations with our SMD correlation in combination with the generalized regime

diagram in the last section. As will be seen later, our correlation shows excellent

agreement with experimental data for shear breakup regime, which further validates

our approach. In Section 4.3, we also compare our bag breakup results with that of

Sehgal et al. (1999), showing excellent qualitative agreement.
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Figure 3.12. Grid sensitivity analysis using 8, 9, 10 and 11 cell levels at 2.5 µs.

Grid sensitivity analysis was also performed to identify the optimum grid res-

olution to resolve the various length scales involved in the droplet deformation and

breakup process. For example, the grid sensitivity analysis was performed using a 100

µm water droplet with an initial velocity of 22 m/s. The corresponding Weber and

Reynolds numbers were 80 and 13951 respectively. Cell levels of 8, 9 10 and 11 were

used for the analysis. Figure 3.12 shows the AMR grid for the cell levels mentioned

before at 2.5 µs during the temporal evolution of the droplet. It can be clearly seen

that the interface resolution corresponding to the cell level of 10 is identical to that of

11. Cell levels of 8 and 9 cannot resolve the droplet shape properly. Similar studies

were performed for other Weber numbers to identify the optimum grid resolution. For

all the cases conducted during the current research, the maximum grid level ranges

from 10-12 (in general, higher level for higher Weber number).
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3.7 Closing Remarks

This chapter details the numerical schemes used to discretize the various terms in the

equations governing the dynamics of liquid droplets. Time integration and spatial

discretization of advection, viscous and surface tension terms are discussed followed

by the the VOF advection scheme. Time step constraints and AMR are examined

next. Validation and verification of the current approach is presented in the last

section. Results are compared with those presented in the literature, showing excellent

agreement.
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CHAPTER IV

BREAKUP AND DYNAMICS OF NEWTONIAN LIQUID

DROPLETS

4.1 General Overview and Literature Survey

Liquid droplet deformation and breakup resulting from primary atomization, in the

presence of a relative fluid velocity, has been a matter of serious practical concern in

a wide range of applications, including, but not limited to, dense spray combustion

(Faeth, 1996, 2002), industrial and agricultural sprays, gas-liquid separators and two-

phase flows in chemical reactors. In the particular case of liquid-fueled propulsion

systems, such as diesel, gas-turbine and rocket engines, the system performance is

conditioned by the fuel and oxidizer droplet size distribution and is usually the rate-

controlling process (Faeth, 2002; Berthoumieu et al., 1999). Droplet vaporization

and ensuing combustion is accelerated if the droplet size is smaller, which makes any

process leading to a reduction in drop size of prime importance in the combustion

system design. In dense sprays, mixing of fuel and oxidizer is controlled by the droplet

size, which is a direct consequence of the droplet breakup process (Faeth, 1996; Faeth

et al., 1995; Ruff et al., 1992). In this chapter, we focus on exploring the fundamental

processes underlying liquid droplet breakup. We also develop correlations based on

first principles dictating the child droplet diameter distribution, and a generalized

regime diagram to predict droplet breakup mechanism over a broad range of operating

conditions.

Several reviews on droplet deformation and breakup were conducted in the past

(Giffen & Muraszew, 1953; Hinze, 1955; Levich, 1962; Pilch & Erdman, 1987; Lefeb-

vre, 1988; Wierzba & Takayama, 1988; Faeth et al., 1995; Faeth, 2002; Gefland, 1996;

71



Clift et al., 2005; Guildenbecher et al., 2009). Based on the Weber number, droplet

breakup has often been classified into breakup modes by researchers, over the last six

decades (Hinze, 1955; Krzeczkowski, 1980; Pilch & Erdman, 1987; Hsiang & Faeth,

1992, 1995). The various breakup regimes identified by Hsiang & Faeth (1995) at

atmospheric pressure for a variety of fluids are shown in Figure 4.1 for density ratios

greater than 500. The figure shows oscillatory, bag, multimode, shear and piercing

regimes with respective critical Weber numbers at 1 atm. It is quite clear from the

figure that the breakup mechanism is dependent only on We for operating conditions

where Oh < 0.1. Table 4.1 shows the diameters for various fluids corresponding to

Oh = 0.1 along with the fluid properties (Hsiang & Faeth, 1995) used in the calcula-

tion. By definition, for a given fluid, the Ohnesorge number decreases with increasing

droplet diameter. Figure 4.1 also shows the variation of Ohnesorge number (which is

independent of velocity) as the droplet diameter changes, for various fluids. The black

square symbol, with the x-coordinate of Oh = 0.1, corresponds to a water droplet of

diameter 0.86 µm, which is smaller than droplet sizes encountered in most practical

applications of interest. The operating conditions considered in this research in pa-

rameter space are shown by the shaded portion of 4.1, and corresponds to Oh < 0.1.

As a consequence, for the current study, the most important non-dimensional param-

eter dictating the droplet breakup physics is the Weber number. Another research

area which has not been explored in the past is the effect of pressure on droplet dis-

integration. In this chapter we will study the breakup process at a broad range of

pressure conditions and quantify the critical Weber numbers at various pressures in

the form of a generalized regime diagram.

As a droplet moves with a velocity relative to the ambient, it is acted upon by aero-

dynamic drag force. The drag force, in turn, creates differential pressure distribution

around the droplet and causes it to deform. The other forces acting on the droplet are

the surface tension force and the internal and external skin friction force due to the
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Figure 4.1. Breakup regime diagram at 1 atm and 298K. Variation of Oh for a fixed
We = 11 with change in diameter (symbols show the variation of Oh number with
diameter) (Hsiang & Faeth, 1995; Chou et al., 1997).
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Table 4.1. Droplet diameter for various liquids corresponding to Oh = 0.1.

Fluid Density Viscosity ×104 Surface tension ×103 Diameter
(kg/m3) (kg/m− s) (N/m) (µm)

Water 1000 7.89 72.8 0.86

n-Heptane 683 3.94 20.0 1.14

Mercury 13600 15 475.0 0.034

Glycerol 21% 1050 16 67.3 3.62

Glycerol 63% 1162 108 64.8 154.91

droplet and gas viscosity. These forces acting on the droplet can be associated with

multiple time and length scales governing the droplet breakup phenomena. Table 4.2

shows the various time scales of interest. The convective time scale, τc, is dictated

by the parent droplet diameter and velocity, irrespective of the fluid, and represents

the time which the droplet spends in the region of interest. A more non-intuitive

and interesting time scale is the deformation response time, τr, which is dependent

on the physical properties of the droplet. It can be defined as the time required for

the droplet to assemble its “resources” to resist the change in shape due to externally

imposed forces. For example, if the droplet is made of a non-deformable substance,

i.e., σ →∞, then by definition τr → 0, which means that the droplet instantaneously

responds to the external force that it will not undergo deformation. On the other

hand if a liquid droplet is subject to supercritical conditions, where σ → 0 so that

τr → ∞, suggesting that the droplet will never respond to a force trying to deform

it. This makes physical sense because surface tension seizes to exist at supercritical

conditions and there is no physical interface in the conventional sense to deform. The

transport or the viscous time scales, τv,l and τv,g, represents the time required for the
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Table 4.2. Time scales.

Time Scale Definition Remarks

Convective time τc = D/U

Deformation response time τr =

√
ρlD

3

σ
τ 2
r = We

ρl
ρg
τ 2
c

Transport time (gas) τv,g =
D2

νg
τ 2
r,g =

We

Re2

ρl
ρg
τ 2
v,g

Transport time (liquid) τv,l =
D2

νl
τ 2
r,l =

We

Re2

ρl
ρg

ν2
l

ν2
g

τ 2
v,l

viscous forces to come into effect during the whole process. The length scales include

the various curvatures formed during the deformation process, as well as the myriads

of different sized ligaments and child droplets produced during and after the breakup

process. As an example, for a water droplet of 100 µm with an initial velocity of

50 m/s, the time scales vary from 2 µs to 625 µs corresponding to the convective,

τc, and transport (gas), τv,g, times scales. The presence of disparate length and time

scales, along with the complex physics, makes this a formidable problem, theoretically,

experimentally and computationally.

Depending on the magnitude of the inertial force in comparison with the restor-

ing surface tension force, the droplet breaks up via oscillatory, bag, multimode or

shear breakup mechanism. Figure 4.2 shows the various breakup modes observed by

researchers for Newtonian droplets exposed to subsonic and supersonic air streams

(Gel’fand et al., 1974; Krzeczkowski, 1980; Borisov et al., 1981; Arcoumanis et al.,

1994; Berthoumieu et al., 1999; Theofanous et al., 2004; Miller et al., 2007).

A few studies on highly viscous and non-Newtonian droplet breakup under the

action of an air jet have also been reported (Arcoumanis et al., 1994, 1996; Joseph
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Figure 4.2. Various droplet breakup mechanisms observed by researchers for New-
tonian liquids.

et al., 1999; Lopez-Rivera & Sojka, 2009; Lopez-Rivera, 2010). Krzeczkowski (1980)

conducted experimental investigations to understand deformation mechanisms and

droplet lifetimes for different fluids by examining disintegration of falling droplets in

a wind tunnel. The density ratio was kept constant by the choice of liquids consid-

ered. It was concluded that the mechanism and duration of droplet deformation and

breakup is a strong function of Weber number. Similar experiments were conducted by

Arcoumanis et al. (1994) using high speed photography and pulsed laser illumination

to study the breakup of Newtonian and viscoelastic non-Newtonian liquid droplets

falling under gravity in a cross air stream. The droplet diameters ranged from 2.4

to 3.3 mm with air jet velocities ranging up to 360 m/s (Arcoumanis et al., 1994,

1996). Three distinct breakup modes, bag and stamen, stripping, and chaotic, were

identified and categorized based on the Weber number. Following this, three kinds

of non-Newtonian fluid droplets were tested. Photographic evidence revealed that

non-Newtonian droplets undergo stretching and shear stripping where fluid ligaments

are shed from the droplet as the droplet falls in the air stream. It was also found

that as the concentration of the thickening agent is increased, the total breakup time
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increases. Theofanous et al. (2004) also conducted experiments on viscous droplets

under the action of supersonic rarefied air streams. The experimental conditions con-

sisted of droplet diameters between 3.5-4.5 mm and air flow speed up to Mach 3

with the gas density varying between 5 × 104 and 0.1kg/m3. Similar to other ex-

periments, four different breakup regimes were identified for TBP while for Glycerin,

only three regimes were observed owing to its high viscosity. Recently, Lopez-Rivera

(Lopez-Rivera & Sojka, 2009; Lopez-Rivera, 2010) conducted experiments to study

non-Newtonian droplet breakup morphology. Six different solutions of CMC in wa-

ter were used to study the effect of liquid rheology on the breakup process. The

droplet diameter ranged from 2.2-2.8 mm. Bag and multimode breakup regimes were

observed with extended bag sizes and persistent ligaments. Various breakup times

were reported and correlated with Weber and Ohnesorge numbers. The TAB droplet

breakup model (O’Rourke & Amsden, 1987) was modified to include inelastic non-

Newtonian power law liquids and the modified TAB model was used to compare

breakup times with the experimental data.

In addition to experiments listed before, extensive shock tube experiments have

also been conducted to study the breakup characteristics of single droplets due to the

flow behind the disturbance created by a travelling shock wave (Ranger & Nicholls,

1968; Krauss & Leadon, 1971; Gel’fand et al., 1974; Boiko et al., 1987; Hsiang & Faeth,

1992, 1993; Faeth et al., 1995; Hsiang & Faeth, 1995; Chou et al., 1997; Chou & Faeth,

1998; Joseph et al., 1999; Dai & Faeth, 2001). Hsiang & Faeth (Hsiang & Faeth,

1992, 1993, 1995) studied the effect of steady and shock wave initiated disturbances

on droplet breakup using pulsed shadowgraphy. The driven section of the shock tube

had a length of 6.7 m with a rectangular cross section (38 mm wide × 64 mm high).

The test location was 4.0 m from the downstream end. This provided test times of 17-

21 ms in the uniform flow region behind the incident shock wave. The initial droplet

size varied from 150-1550 µm. Quite a few liquids were studied covering a range of
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initial conditions varying in the following range of non-dimensional numbers: We:

0.5-1000, Oh: 0.0006-4; ρl/ρg : 580-12000, and Re: 300-16000. Droplet deformation

and breakup regime map was developed along with correlations for breakup times,

droplet drag, size and velocities after breakup. These studies were followed by more

detailed experiments by Chou et al. (Chou et al., 1997; Chou & Faeth, 1998) and

Dai & Faeth (2001) to investigate the temporal properties of the bag, shear and

multimode breakup regimes, respectively. Temporal distributions of droplet size and

velocities at various stages of the breakup process for bag and multimode breakup

modes were observed and analyzed using simplified theories.

In contrast to experimental studies, limited literature exists on numerical inves-

tigations of droplet breakup phenomena. Han & Tryggvason (1999; 2001) conducted

numerical simulations to study the effect of constant force and impulsive acceleration

on droplet deformation, using a compressible, axisymmetric interface tracking tech-

nique. The work was limited to small density ratios of 1.15 and 10 and did not consider

droplet breakup. The same problem was later simulated by Quan & Schmidt (2006)

to examine droplet deformation and drag force induced by the deforming droplet us-

ing an incompressible, finite volume staggered mesh method coupled with a moving

mesh interface tracing scheme. Similar axisymmetric calculations were conducted by

Helenbrook & Edwards (2002) to study quasi steady deformation and drag of liq-

uid droplets with density ratios between 5 and 500, viscosity ratios between 5 and

15, Weber numbers between 0.1 to 50, and Ohnesorge numbers between 104 and 10

using an arbitrary-Lagrangian-Eulerian unstructured mesh movement scheme. Cor-

relations were developed to predict various droplet shapes and drag coefficient, taking

into account the effect of internal circulation on aerodynamic drag. One of the few

three-dimensional numerical simulations on single droplet breakup was conducted by

Khosla et al. (2006). They conducted 3D and axisymmetric calculations using the

volume-of-fluid (VOF) approach to study the breakup of a single liquid drop by gas
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crossflow. Calculations were first conducted to simulate a water droplet in shock

tube environment. It was concluded that shock interaction with the droplet did not

have any effect on the droplet breakup process. Due to the immense computational

expense, the rest of the simulations were conducted in an axisymmetric framework.

It is quite evident from the brief literature survey above that most of the exper-

imental investigations on droplet breakup have been for ρl/ρg > 500 and Oh < 0.1

(Faeth, 1996). The numerical simulations, on the other hand, have been limited to

low density ratios but, owing to the extreme computational burden, were formulated

either with two-dimensional or axisymmetric assumption, which is not enough to ex-

plain the rich physics involved in this complex multi-phase phenomena. Moreover,

from a purely fluid dynamics point of view, the underlying physics behind liquid

droplet deformation and breakup is still elusive. This chapter will try to address sev-

eral unanswered questions currently confronting the spray community. Unanswered

questions include identification of breakup modes, quantitative description of funda-

mental processes underlying droplet breakup and generalized correlations for Newto-

nian liquid droplets over a broad range of operating conditions. In the present work

we aim at answering the above questions by investigating the detailed flowfield and

structure dynamics of liquid droplet breakup and extracting essential physics gov-

erning the breakup phenomena. Since limited literature exists for droplet breakup

at higher pressures, during the present research effort, emphasis has been placed on

droplet deformation and breakup at elevated pressures, which also represents typical

pressure conditions inside a combustion chamber in a practical propulsion device. To

isolate the hydrodynamic mechanisms dictating droplet breakup phenomena, evapo-

ration is neglected, and simulations are performed at isothermal conditions. Since the

breakup process is governed by non-dimensional parameters involving surface tension,

σ, and viscosity, µ, property evaluation for numerical computations at room temper-

ature and a range of operating pressures of interest is vital. Effect of pressure on
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Figure 4.3. Viscosity of water as a function of pressure (Schmelzer et al., 2005).

surface tension has already been discussed in Section 2.4 and is shown in Figure 2.3.

The effect of pressure on the viscosity of water is not profound as seen in Figure 4.3

(Schmelzer et al., 2005). In the present calculations, appropriate values of the surface

tension and viscosity of water in the presence of air have been taken. The results in

this chapter are based on Khare et al. (2011, 2012).

4.2 Oscillatory Breakup

This is the least violent of all the breakup modes. If a 100 µm water droplet is given

an initial velocity of 12 m/s to achieve a We = 24, Re = 7609, at a density ratio

of 8.29, oscillatory breakup is observed. Figure 4.4 shows the temporal evolution of

events taking place during the oscillatory breakup of a droplet. The figure shows 3D

iso-surface of the droplet on the top and streamlines and droplet surface contours

on the bottom. As shown before, these results are in excellent agreement with the

results obtained by (Han & Tryggvason, 2001) (refer Figure 3.10). In general, if the
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aerodynamic forces are large enough, the droplet deforms until it breaks up following

bag, multimode, shear breakup mechanism, otherwise, the droplet oscillates due to

the restoring surface tension force and internal circulation (Karam & Bellinger, 1968).

If the oscillations are unstable, the droplet breaks up into relatively larger fragments,

which was the case during the present calculation. This observation is consistent with

those made by previous researchers (Hsiang & Faeth, 1992; Han & Tryggvason, 2001;

Lopez-Rivera, 2010).

In a nutshell, as the droplet starts to move in the ambient atmosphere, it first

transforms into a bowl, followed by the inversion of the bowl forming a dome, and

eventually breaks up into two child and a satellite droplet. The streamlines are first

plotted in drop coordinate system as shown in Figure 4.4. The movement of the

droplet in quiescent ambient creates two counter rotating vortices. Static pressure

at the forward and rear stagnation points is higher than that at the sides, which is

typical for flow over a sphere. This unequal static pressure distribution causes the

droplet to deform laterally and forms a bowl with a lid. The droplet core velocity in

the downward direction is much higher than the velocity at the edges. As a result the

droplet edges are pushed in the direction opposite to the motion of the droplet, while

overall the droplet is still moving downwards. This results in the formation of a bowl

shape as opposed to a dome shape. If the droplet velocity and Reynolds number are

small enough for a given Weber number, the droplet might deform to form a dome

shaped structure as illustrated by (Hsiang & Faeth, 1995). Similar observations were

made by Sehgal et al. (1999) for a density ratio of 1 using a Lattice-Boltzmann

approach. The instantaneous Weber number associated with the moving droplet

decreases owing to the reduction in the relative velocity of the droplet due to the

action of drag force. As the instantaneous Weber number decreases, the fluid surface

tension causes the droplet to oscillate and leads to the formation of a dome followed

by the stretching of the droplet in the flow direction, after which, it eventually breaks,
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first from the bottom, and then from the top, giving rise to two child and a satellite

droplet. The breakup takes place via pinch-off, as result of shear stresses created by

the retracting surface tension force which tries to minimize the surface area causing

the liquid interface to recede and creating concentrated shear stresses at the point of

breakup. As the droplet deforms, the velocity at different points inside the droplet is

different and hence it becomes impossible to plot the results in a coordinate system

fixed to the droplet, and so from here onwards, the results will be presented in fixed

coordinate system as shown in the bottommost droplet iso-surface contours in Figure

4.4.

4.3 Bag and Multimode Breakup

Bag and multimode breakup mechanisms share several features, especially at the

beginning of breakup process. Therefore, these two breakup modes are discussed

together in this section. As the Weber number is increased beyond 30, the breakup

mechanism changes. Temporal events taking place when a 50 µm water droplet is

subjected to an initial velocity of 20 m/s are shown in Figure 4.5. This corresponds to

a We = 33, Re = 6342 at a density ratio of 8.29. As in the case of oscillatory breakup,

the droplet deforms due to unequal pressure distribution over the droplet periphery

and flattens from the top. The flowfield associated with this breakup mechanism is

analyzed by looking at the development of streamlines (in fixed coordinate system)

and normalized gauge pressure contours as the droplet structure evolves. The gauge

pressure is defined as pgauge = (p − pambient)/ρgU
2. Two counter rotating vortices

are formed as the droplet starts moving. Since the droplet acts as a bluff body, it

creates a wake as it moves downwards, thereby creating a high pressure region above

the droplet. This leads to the formation of a thin bag/balloon structure. The bowl

shaped structure formed in our simulations agrees well with the numerical simulations

conducted by Han & Tryggvason (2001); Sehgal et al. (1999) at lower density ratios
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Figure 4.4. Oscillatory breakup - We = 24, Re = 7609, ρl/ρg = 8.29. Temporal
evolutions of 3D droplet structure in non-dimensional time. Droplet iso-surface in 2D
flooded in grey and streamlines at various times. Non-dimensional time, t = T*U/D.
The first three contours show streamlines in drop coordinate system while the rest
are in fixed coordinate system.
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when the droplet was subjected to an impulsive acceleration. The formation of a bowl

rather than a dome shape is also consistent with the observations and correlations

presented by Hsiang & Faeth (1995). The bag keeps thinning due to higher pressure

inside the bag as shown in Figure 4.5. As the droplet moves further into the ambient,

the thinning of the bag causes the incompressible liquid to move towards the rim

making it thicker than the bag. The bag, which is progressively becoming thinner,

eventually cracks at multiple locations to form a web like structure. The breaking

of the bag is caused due to the breakup of the thin film via capillary instability as

shown in the zoomed plot in Figure 4.5. This event is followed by the breakup of the

rim to form another set of child droplets. By the time the bag breaks up, the relative

velocity between the droplet and the environment has decreased considerably and

the instantaneous Weber number becomes very small. As a result, the rim breakup

takes place via oscillatory breakup as discussed in the previous section. These results

phenomenologically similar to those obtained by Sehgal et al. (1999) for bag breakup

as shown in Figure 4.6 for a Weber number of 276 at a density ratio of 1.

One of the objectives of this work is to quantitatively identify the temporal loca-

tions of various events taking place during the breakup process. The droplet structure

and shape is primarily determined by the surface tension force. Normalized surface

energy, which is the product of overall surface area of the droplet and the surface

tension, normalized by the initial value of surface energy, is calculated at each time

step. Since the surface energy is normalized by its initial value, it starts at 1. Var-

ious events during the droplet lifetime can be predicted by analyzing the variation

of normalized surface energy of the droplet. Figure 4.7 shows the time evolution of

kinetic and surface energies associated with the droplet. As the droplet moves, the

kinetic energy of the droplet decreases due to aerodynamic drag. Simultaneously, the

surface energy increases due to droplet deformation which causes an increase in the

effective surface area and hence the surface energy of the droplet. The location of
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Figure 4.5. Bag breakup - We = 33, Re = 6342, ρl/ρg = 8.29. Temporal evolutions
of 3D droplet structure in non-dimensional time. Droplet iso-surface in 2D, stream-
lines and normalized gauge pressure distribution in the droplet periphery at various
times. Non-dimensional time, t = T*U/D.
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Figure 4.6. Bag breakup - We = 276, Re = 113, ρl/ρg = 1, Oh = 0.15. Temporal
evolutions of 2D droplet structure (Sehgal et al., 1999).
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Figure 4.7. Evolution of surface energy of the droplet for the bag breakup regime.
Breakup initiates at 20 µs.

the first point of breakup at 20 µs, as shown in Figure 4.7, is marked by a sharp

decrease in the surface energy. As the droplet breaks up at the first point, there are

two competing effects influencing the overall surface area; the liquid surface tension,

which tries to minimize the liquid surface area, and the formation of child droplets,

increasing the surface area. During the breakup in this particular case, the surface

tension force dominates and the surface energy falls rapidly as the droplet is being

broken up. Surface and kinetic energies of the droplet reach a stationary value once

the droplet looses most of its momentum and is incapable of further deformation and

breakup.

Figure 4.8 shows the multimode breakup mechanism. This breakup phenomenol-

ogy is observed when a 100 µm water droplet is given an initial velocity of 42 m/s to

achieve a We = 292. Typical temporal evolution of droplet deformation and breakup

in the multimode breakup regime is shown in this figure. As clearly seen, the droplet

morphology during the start of the breakup process is similar to bag breakup with an

additional stem oriented in the direction opposite to the droplet motion. The events

leading to the formation of the bowl shape are similar to that of the bag breakup
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regime except for the fact that due to a higher inertial force, the droplet rim becomes

thinner forming a “lip”. The time scale governing the motion of the liquid from the

bottom to the top of the droplet is much larger than the “effective” time scale associ-

ated with the action of inertial forces on the droplet. This also leads to the formation

of a stem which protrudes from the bottom of the droplet. Once the droplet slows

down due to aerodynamic drag, a rim and a bag is formed, similar to bag breakup.

Meanwhile, the lip along with the bag stretches and undergoes thinning. The for-

mation of the lip leads to the development of a recirculation zone and creates a low

pressure region inside the droplet just below the rim as shown in the gauge pressure

contours in Figure 4.8. This difference in pressure leads to lip thinning, eventually

leading to its breakup via pinch off. Depending on the flow conditions, the initial

breakup can take place in the bag or the lip. This is followed by the breakup of bag,

rim, and finally the stamen. The breakup of bag and the rim takes place via the

same processes as that of bag breakup mechanism. The stamen breaks up due to

oscillatory breakup owing to the reduced momentum of the droplet because of the

action of drag force. Multimode breakup mechanism essentially encompasses bag and

oscillatory breakup modes with additional features represented by the formation of

lip and stamen.

Figure 4.9 shows the time evolution of kinetic and surface energies associated with

the droplet. Similar to bag breakup, the normalized surface energy first increases to

a maximum due to droplet deformation and then decreases once the droplet starts

to break up due to the effect of surface tension, which retracts the droplet interface,

thereby reducing the overall surface area. In contrast to bag breakup where the

decrease in surface energy was rather abrupt at the point of breakup, the surface

energy in this case decreases much more gradually. This can be explained using that

fact that the breakup initialization in case of multimode breakup is more violent and

produces more child droplets as compared to bag breakup. As a result, even though
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Figure 4.8. Multimode breakup - We = 292, Re = 26635, ρl/ρg = 8.29. Tempo-
ral evolutions of 3D droplet structure in non-dimensional time. Droplet iso-surface
flooded, streamlines and gauge pressure contours. Non-dimensional time, t = T*U/D.
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Figure 4.9. Evolution of surface and kinetic energy of the droplet for the multimode
breakup regime.

the initialization of breakup is marked by decrease in surface energy, the rate at which

the surface energy decreases is much lower than that of bag breakup.

4.4 Shear Breakup

We classify sheet thinning and wave travelling breakup as shear breakup throughout

this thesis since the physics pertaining to shear and piercing breakup is similar (Lee

& Reitz, 2000). As shown in Figure 4.10, shear breakup is the most violent of the four

breakup regimes discussed in this chapter. In this particular case, the Weber number

is 4237 at a density ratio of 8.29. The time associated with shear breakup process is

the lowest in comparison to the other three regimes owing to extremely high inertial

forces. In addition to sheet thinning we observe Rayleigh-Taylor (R-T) instability

wave travelling on the droplet surface due to sudden acceleration of the denser droplet

in a lighter medium. Bellman & Pennington (1954) investigated the effect of surface

tension on R-T instability and found that there is a cutoff wave number below which
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or equivalently a cutoff wavelength above which the perturbations become unstable,

given by λc =
√
U̇ (ρl − ρg) /σ. A simple calculation using the time evolution of

kinetic energy, shown in Figure 4.11, yields a cutoff wavelength ranging from 3.5

- 9.8 µm for this particular case, which is much smaller than the wavelength of

smallest waves travelling on the droplet surface. The aerodynamic force exerted by

the surrounding fluid causes deflection and thinning of the droplet periphery. This is

enhanced by the unstable R-T waves travelling on the droplet surface. Sheet thinning

of the droplet periphery in turn leads to the breakup of the parent droplet which is

more or less like shedding of child droplets from the droplet surface. This is consistent

with the observations made by several researchers in the past (Liu & Reitz, 1997; Lee

& Reitz, 1999, 2000, 2001; Khosla et al., 2006; Lopez-Rivera & Sojka, 2009). The

thin film then breaks up into ligaments and child droplets. Since droplets are shed

continuously in this breakup mechanism, as expected, we do not see a decrease in the

surface energy, in fact as shown in Figure 4.11 the surface energy increases because

of the rapid production of child droplets which increases the effective surface area

and hence the surface energy. As a result, the previous approach of predicting the

breakup initialization cannot be used for this breakup mechanism.

4.5 Generalized Regime Diagram

We studied the effect of pressure on the breakup process by conducting a thorough

parametric study over wide range of pressure conditions and identified the critical

Weber number for the various breakup modes discussed in this chapter. Qualita-

tively, the physics pertaining to different breakup mechanisms is similar at different

pressure conditions. For example, Figures 4.12 and 4.13 shows the shear breakup

morphology at 25 and 60 atm pressures respectively. Even though the fundamental

breakup physics is independent of operating pressure, it was found that the critical
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Figure 4.10. Shear breakup - We = 4237, Re =162350, ρl/ρg = 8.29. Temporal
evolutions of droplet structure in non-dimensional time. Non-dimensional time, t =
T*U/D.
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Figure 4.11. Temporal evolution of surface and kinetic energy of the droplet for
shear breakup regime.

Weber number for water droplets corresponding to different breakup regimes is de-

pendent on pressure, in addition to the Weber number. In particular, for 100 atm

pressure conditions, the critical Weber numbers were found to be approximately 33,

110 and 1000, for bag, multimode and shear breakup regimes, respectively. This is

shown graphically in Figure 4.14, which shows the calculation matrix for 100 atm,

along with the critical Weber numbers for bag, multimode and shear breakup regimes

identified during this work. These numbers differ considerably as compared to the

one’s found in the literature for lower pressure conditions (Hsiang & Faeth, 1995). It

should be pointed out that even though experiments have been conducted at a wide

range of density ratios, the density ratio in the experiments was varied by changing

the liquid as opposed to changing the ambient pressure. In the present study, den-

sity ratio was changed by changing ambient pressure conditions. The difference in

critical Weber numbers at different pressures suggests that the ambient pressure not
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only changes the density ratio but has some other effect which, to the best of our

knowledge, has not been identified before. The differences observed in critical Weber

numbers at elevated pressure conditions can be explained using the fact that at higher

pressures, the drag experienced by the droplet is much higher. This implies that the

effective relative velocity between the droplet and the ambient environment reduces at

a much higher rate as compared to lower pressures, i.e., the rate of change of momen-

tum is much higher at high pressures. As a result the instantaneous Weber number

decreases much faster and a higher Weber number is required to begin with for the

droplet to undergo deformation and breakup (which shows phenomenological simi-

larity to breakup process that occurs at lower pressure conditions) at higher pressure

conditions. Qualitatively, our observations are confirmed by numerical simulations of

droplet deformation and breakup performed by Sehgal et al. (1999), using a Lattice-

Boltzmann method at a density ratio of 1. An empirical model was developed to take

into account the pressure effect on the critical Weber number shown in Equation 4.1

which is valid for Oh < 0.1. Figure 4.15 shows the generalized regime diagram based

on the developed model. It can be clearly seen that, as p → pcr,Wecr,p → ∞, since

σ → 0 as p → pcr. The reference conditions for the model is 1 atm pressure, where

experimental data exists. The black (experimental data, which was also confirmed

by numerical simulations performed during the present study), green, red and blue

symbols represent the critical Weber numbers for bag, multimode and shear breakup

regimes at 1, 25, 60 and 100 atm pressures, respectively. In principle, this correlation

can be used to predict the mode of breakup and the associated statistics at a broad

pressure range. An example of the application of this correlation is present in the next

section to predict SMD of the child droplet distribution at 1atm pressure conditions.

The results agreed fairly well with the published experimental data.
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Figure 4.12. Shear breakup - We = 373, P = 25 atm. Temporal evolutions of
3D droplet structure in non dimensional time. Droplet iso-surface at various times.
Non-dimensional time, t = T*U/D.

Figure 4.13. Shear breakup - We = 486, P = 60 atm. Temporal evolutions of
3D droplet structure in non dimensional time. Droplet iso-surface at various times.
Non-dimensional time, t = T*U/D.
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Figure 4.14. Regime diagram for 100 atm.

Figure 4.15. Generalized regime diagram.
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We = Weref
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)
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]}

pr =
p

pcr
, pref = 1atm, c = 0.62

(4.1)

4.6 Child Droplet Diameter Distribution

Child droplet diameter distributions were studied for a wide range of Weber numbers.

Interestingly, it was found that the normalized probability density distribution of the

droplet diameters (shifted by 0.05), could be correlated using a log-normal distribution

for We > 300 given by:

probabilitynormalized =
1

dC1

√
2π
exp

{
−(ln(d)− C2)2

2C2
1

}
for We > 300, Oh < 0.1

(4.2)

where d is the representative child droplet diameter, C1 and C2 are the correlation

constants. Figure 4.16 shows the normalized probability density function of the child

droplet diameters for Weber numbers of 365, 537, 636, 742, 858 and 1400. The

symbols show the results obtained from the numerical simulations while the line is

a log-normal distribution fitted to the data points. The PDFs are decidedly similar

with almost the same C1 and C2 as listed in Table 4.3. Coincidently, We > 300 also

corresponds approximately to the boundary between bag and multimode (and shear)

breakup mechanisms.

For Weber numbers less than 300, the droplet distribution is discontinuous. As

the droplet moves, it decelerates due to the action of drag force. This reduction in the

relative velocity of the droplet changes the breakup mode to oscillatory breakup. This

leads to the formation of relatively larger child droplets containing a large percentage

of the original droplet mass. For example, during the bag breakup process, the

bag thinning takes place with the formation of a thick rim, which has most of the

mass from the original droplet. The bag breaks up with the formation of small

fragments. This is also accompanied by the reduction in the instantaneous Weber
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Figure 4.16. Normalized probability distribution of child droplet diameter for Weber
numbers of 365, 537, 636, 742, 858 and 1400.
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Table 4.3. Correlation coefficients C1 and C2 for a range of Weber numbers.

Weber number C2 C1

365 0.2395 0.4010

447 0.2417 0.3646

537 0.2357 0.3753

636 0.2384 0.4005

742 0.2626 0.3877

858 0.2586 0.3884

981 0.2480 0.4041

1112 0.2879 0.4120

1253 0.3182 0.4218

1400 0.2926 0.3947
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number of the droplet; as a result, the rim breakup takes place via oscillatory breakup

mode producing larger droplets, and hence an overall discontinuous child droplet

distribution.

The normalized probability distribution function of droplet sizes presented above

is a number based probability normalized by its maximum value (so that the maxi-

mum value on the y-axis is 1). In order to take into account the liquid volume, we

develop a correlation to predict the sauter mean diameter (SMD), d32, of the droplet

distribution. The end of breakup is marked by a steady state value of surface tension

and inertial aerodynamic forces. Since these are competing forces and the breakup of

the droplet primarily depends on them, the end of breakup process implies that they

reach a certain kind of an equilibrium. If an effective representative sphere of diam-

eter, d, is assumed for a given volume of liquid, the surface tension and aerodynamic

forces can be written as:

Faerodynamic =
1

2
Cdρgu

2
relAfrontal

whereAfrontal =
πd2

4

(4.3)

Fsurface tension = σπd (4.4)

At equilibrium, Faerodynamic = kFsurface tension

k = constant, d =
8kσ

Cdρgu2
rel

=⇒ d

D
=

8k

CdWe

(4.5)

SMD was calculated for a range of Weber numbers from the present DNS calculations.

Since SMD and d are characteristic diameters associated with a particular Weber

number, they can be correlated using the relation obtained in equation 4.5, given by:

d32

D
= f(We)

d

D
= kf(We)

8

CdWe
(4.6)
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Figure 4.17. Sauter mean diameter, d32, correlated using an analytical model .

where f(We) is chosen not only because it is the most important non-dimensional

quantity in the present physical situation but also because it represents a quantity

similar to d32. Figure 4.17 shows the predicted SMD along with the one obtained

from the simulation. The final form of the correlation is given by:

kf(We) = We0.28 (4.7)

d32

D
=

8We−0.72

Cd
(4.8)

Here, Cd = 0.5, which corresponds to the drag coefficient of flow over solid spheres

in the range 103 < Re < 105, where all the numerical simulations were performed. In

general, Cd changes throughout the lifetime of the droplet, as will be seen in Chapter

5, but since the child droplets have a tendency to assume spherical geometry due to

surface tension, the use of drag coefficient corresponding to flow over solids spheres

seems appropriate for the determination of d32. Excellent agreement between the

model and the numerical data is observed. The correlation predicts that the SMD
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distribution does not change significantly beyond We of 300, which also bolsters the

previous finding that the PDF of droplet diameter follows a universal log-normal

distribution for We > 300. The results for SMD for shear breakup regime, which we

define beyond Weber numbers of approximately 1000 for 100 atm pressure conditions,

seems to asymptote to a value near 0.1.

As a last step, we use the generalized regime diagram and SMD correlation to pre-

dict the SMD of droplet distribution for a Weber number of 125 at 1 atm conditions.

Quasi steady correlation developed by Chou et al. (1997) proposed that SMD/D =

0.09 (with a 22% standard deviation) for the shear breakup regime. If we use our

generalized correlation (equation 4.1) to obtain the corresponding Weber number at

100 atm which pertains to the same breakup physics as exhibited by Weber number of

125 for water/air system at 1 atm, and use equation 4.8, we find that our correlation

yields a value of 0.11, which is quite close to the experimental predictions and lies

within the range of experimental error. This further validates the used approach and

the generalized regime diagram developed during the course of this study. A simi-

lar procedure can be used to predict a number of properties associated with droplet

breakup phenomena at a wide pressure range.

4.7 Concluding Remarks

To summarize, this chapter addresses the deformation and fragmentation of Newto-

nian liquid droplets over a broad range of operating pressures, Reynolds and Weber

numbers. Even though single droplet deformation and breakup has been a subject of

active research for a long time, to our knowledge, this is the perhaps the first time that

a comprehensive study (experiments or computations) over a broad range of operating

pressure, Weber and Reynolds numbers has been conducted, highlighting the tem-

poral evolution of details, including pressure, velocity, structure dynamics and shear

stress of this complex multiphase phenomena. Previous experimental studies relied
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on visual graphics to describe the breakup process while computational studies were

conducted either with two-dimensional or axisymmetric assumption, and thus were

unable to capture all the details. For Newtonian fluids, we quantitatively identified

four different breakup mechanisms, oscillatory, bag, multimode and shear breakup

modes, which corroborates the observations made by other researchers. In general,

the aerodynamic drag force exerted by the surrounding fluid causes the droplet to

deform. The deformation is resisted by viscous and surface tension forces. The

breakup mechanism becomes progressively violent as the Weber number increases

and the breakup process changes from oscillatory to shear breakup. The droplet

lifetime decreases as the inertial force increases in comparison to the surface tension

force. The physical mechanism leading to breakup for the four breakup modes can

be summarized as follows:

1. Oscillatory: The droplet deforms into an ellipsoid due to unequal pressure dis-

tribution on its surface. The pressure difference and vibration of the droplet

further leads to the formation of a bowl, followed by a dome. This is followed by

the stretching of the droplet in the flow direction, eventually, leading to breakup

due to excessive shear stress development.

2. Bag: Similar to oscillatory breakup, the droplet first deforms into a disk and

then into a bowl. Because of higher inertia, the bowl is further transformed

into a thin bag. The bag becomes progressively thinner and finally breaks up

followed by the disintegration of the rim.

3. Multimode: At progressively higher We numbers, multimode mechanism be-

comes the dominant mode of breakup. Due to an even higher inertial force, the

bag development is accompanied by the formation of a “lip” and a stamen. The

breakup process can either start from the lip or from the bag depending on the

flow conditions. This is followed by the disintegration of the rim and the stem
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to form ligaments and child droplets.

4. Shear: This is the most “explosive” breakup mode studied in this research. The

droplet breaks up due to the formation of R-T waves, which enhances sheet

thinning of the droplet at the periphery, eventually leading to child droplet

shedding from the surface.

Child droplet diameter correlations were also developed and it was found that a

log-normal distribution describes the child droplet diameter distribution with excel-

lent accuracy. The distribution seemed to be similar for Weber number greater than

about 300. For smaller Weber numbers, the distribution was found to be discontin-

uous due to smaller inertial force associated with it. A theoretical model was also

developed to predict the SMD (d32) of droplet distribution. The correlation agreed

reasonably well with numerical and experimental results. Another highlight of the

current work was the development of a generalized regime diagram, which was based

on the current simulation results, along with data obtained from the literature to

predict the critical Weber numbers at a wide range of pressure conditions valid for

Oh < 0.1.

104



CHAPTER V

DRAG COEFFICIENTS OF DEFORMING AND

FRAGMENTING LIQUID DROPLETS

5.1 Literature Review and General Overview

Coefficient of drag for flow over spherical objects is a fundamental quantity in fluid

dynamics and has been a part of published literature for over 150 years (Stokes, 1851).

According to Maxey & Riley (1983), the total force acting on a particle is given by:

fi = fdi + f li + f∇pi + f vi + f bi +mgi (5.1)

Here fdi is the steady-state drag force, f li the lift force and f∇pi includes the force due

to the local pressure gradient and the shear-stress of the carrier phase. The unsteady

forces can be divided into virtual mass force f vi due to the acceleration of the particle

and the Basset history force, mgiis the force due to gravity. Numerical study of liquid

sprays and other particle laden flows traditionally involve Eulerian-Lagrangian frame-

work where the Eulerian equations of motion, i.e., the Navier-Stokes equations, are

used to model the continuous phase and the dispersed phase is modeled by Newtons

second law of motion using Equation 5.1. For most practical purposes, steady-state

drag force is the most important force acting on the particle and hence accurate eval-

uation of drag coefficient becomes extremely important. Figure 5.1 shows the varia-

tion of drag coefficient for non-deformable spheres as a function of Reynolds number

(Schlichting, 1979). This plot can be divided into Stokes, viscous and Newton’s regime

based on the flow Reynolds number as suggested by Kolev (2012). Theoretical and

experimental investigations have been conducted by numerous researchers in the past

to study the motion of solid spheres and the drag coefficient associated with them

(Proudman & Pearson, 1957; Odar & Hamilton, 1964; Taylor & Acrivos, 1964; Chester
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Figure 5.1. Drag coefficient for solid spheres as a function of Reynolds number
(Schlichting, 1979).

et al., 1969; Pruppacher et al., 1970; Ockendon & Evans, 1972; Flemmer & Banks,

1986; Turton & Levenspiel, 1986; Kim et al., 1998; Kurose et al., 2003; Michaelides,

2006; Almedeij, 2008). Kelbaliyev (2011) and Almedeij (2008) summarized some of

the major empirical correlations which have been developed to predict drag coeffi-

cients on solid spheres. Several studies on non-spherical, non-deformable shapes have

also been performed by researchers in the past (Kelly et al., 1971; Swamee & Ojha,

1991; Michaelides, 2006; Gabitto & Tsouris, 2008). A review of currently available

correlations for drag coefficient over non-spherical objects can be found in Chhabra

et al. (1999) where the authors evaluated various correlations and compared them to

experimental data obtained from independent sources.

Let us consider incompressible flow over a solid sphere. Figure 5.2 shows the

recirculation bubble in x − y plane for incompressible flow past a solid sphere for

Re < 200. Air flows in the domain from left to right. At very low Reynolds numbers,
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the flow is completely attached to the surface and there is no separation. As the

Reynolds number increases, the flow separates due to adverse pressure gradient at the

surface of the sphere and further reattaches to form a symmetric separation bubble.

The rear stagnation point, θ = 0, corresponds to the highest pressure and is called

the stagnation pressure. The pressure decreases until θ = 90, after which the flow

experiences an adverse pressure gradient and it separates. Topologically similar flow

features can be observed for Re < 210 (Johnson & Patel, 1999) with an increase in the

length of the separation bubble and the movement of the separation point upstream

with increasing Reynolds number as shown in Figure 5.2. Vorticity is generated near

the surface due to no-slip boundary condition and pressure gradient at the wall. It

is then convected and diffused downstream. Once the Reynolds number goes beyond

210, the flow does not reattach and the wake becomes unsteady, leading to vortex

shedding. Figure 5.3 shows the length of recirculation bubble for axisymmetric wakes

as a function of Reynolds number. Our results shows excellent agreement with other

results published in the literature (Taneda, 1956; Tomboulides et al., 1993; Johnson &

Patel, 1999). Figure 5.4 shows the x− y plane for incompressible flow over an ellipse.

As before, air flows from left to right. Similar to the sphere, as the Reynolds number

increases, the flow separates due to adverse pressure gradient and then reattaches to

form a recirculation bubble. Once the Reynolds number reaches a high enough value,

vortices are shed, as shown in Figure 5.5, which shows contour lines of y-velocity for

flow over an ellipse for Re = 1000.

If the physical situation of interest involves deformable solids where the size

changes, such as crystal formation, granulation, or a process where the particle disap-

pears completely such as vaporization and combustion, theoretical determination of

drag coefficient becomes extremely difficult, and it is usually estimated using empirical

correlations based on experimental data. Determination of drag coefficient becomes

107



Figure 5.2. Flow over a sphere: recirculation zone for Re < 200. The contour shows
u < 0.
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Figure 5.3. Length of recirculation bubble as a function of Reynolds number.
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Figure 5.4. Flow over an ellipse: recirculation zone for Re = 100 and 300. The
contour shows u < 0.

even more formidable in case of liquid droplets because of surface pulsations, hy-

drodynamic instabilities, evaporation, deformation and breakup. Spherical droplets

deform due to the action of aerodynamic forces. The deformation and fragmentation

is resisted by surface tension and viscous forces. As pointed out by researchers in the

past, the magnitude of the inertial to surface tension force, i.e., the Weber number

dictates the breakup mechanism (Krzeczkowski, 1980; Arcoumanis et al., 1994; Faeth

et al., 1995; Arcoumanis et al., 1996; Faeth, 1996, 2002).
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Figure 5.5. Flow over an ellipse: vortex shedding at Re = 1000.

Several experimental investigations on liquid droplet motion have been conducted

in the past which have addressed droplet drag coefficient (Hadamard, 1911; Yuen

& Chen, 1976; Stone, 1994; Warnica et al., 1995a,b; Abbad & Souhar, 2004; Fisher

& Golovin, 2007; Mashayek & Ashgriz, 2011). Temkin & Mehta (1982) performed

experiments to study the motion of small droplets under the action of accelerating and

decelerating flows using a shock tube facility. The Reynolds number was limited to

100 and the Weber number to 0.137 so that there was no deformation. A correlation

for drag coefficient was proposed for practically non-deforming droplets in a strong

unsteady environment. Drag coefficient of non-evaporating, spherical, liquid droplets

in quiescent gaseous fields was also measured for a 20 < Re < 120 and We < 10

by Warnica et al. (1995a). It was inferred that the drag coefficient decreases with

increase in Reynolds and Weber number.

The time and length scales associated with physical processes at the interface of

liquid droplet during the deformation and breakup process are often so small that

experimental apparatus cannot resolve them and high fidelity numerical calculations

are required to elucidate the phenomena. Sugioka & Komori (2007) conducted 3-D

direct numerical simulations (DNS) to study drag and lift forces on a spherical water
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droplet in homogeneous shear flow. The study was limited to particle Reynolds num-

bers of 300 and deformation was not considered in the study owing to an extremely

low Weber number of 0.3. It was concluded that the drag coefficient on a spherical

droplet increases with increasing shear rate for a fixed value of the particle Reynolds

number.

More recently, Wadhwa et al. (2007) conducted axisymmetric calculations to study

transient deformation and drag of decelerating droplets. Although deforming liquid

droplets were considered but breakup of the droplet was not modeled in the study

which can have considerable influence on the drag coefficient. Operating conditions

corresponding to We < 100 and 0.001 < Oh < 0.1 were considered and it was

concluded that oblate shapes result in greater drag and prolate shapes in lower drag

relative to the drag experienced by solid spheres.

In this chapter we focus on the determination of drag coefficient of deforming and

fragmenting liquid droplets. The study focuses on the temporal evolution of drag co-

efficient along with the development of a correlation to predict the time averaged drag

coefficient for a wide range Weber numbers. Practical Reynolds number of interest,

especially for aerospace applications generally falls in the category of Newton’s regime

where the drag coefficient for a non-deformable sphere has a constant value. As a

result, the most important non-dimensional parameter in the current study is the

Weber number. To isolate the hydrodynamic mechanisms dictating droplet breakup

phenomena, evaporation is neglected and simulations are performed at isothermal

conditions. DNS calculations at a wide range of operating pressure conditions and

Weber numbers are conducted. Since droplet dynamics inside a combustion chamber

is one of the most challenging and unresolved problems in the literature, we concen-

trate on the results obtained at low density ratio environment. The droplet structure,

and statistics associated with the parent and child droplets are tracked as a function of

time, which are then used to evaluate the drag coefficient from first principles. Once
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temporal evolution of drag coefficient is calculated, we develop a correlation for time-

mean drag coefficient of deforming and breaking liquid droplets valid for a wide range

of Weber numbers in a non-evaporating environment. The details of droplet breakup

physics and child droplet statistics have been discussed in the previous sections. The

results in this chapter are based on Khare & Yang (2013).

5.2 Data extraction and coefficient of drag for deforming
and fragmenting droplets

As the droplet moves in the ambient environment, momentum is exchanged between

the liquid droplet and the surrounding air. The drag coefficient is defined by:

Cd(t) =

d (murel(t))

dt
1/2ρgu2

rel(t)Afrontal(t)

whereAfrontal(t) = πr2
effective(t)

(5.2)

The numerator is the time dependent drag force acting on the droplet. The

projected frontal area, Afrontal, is defined as the frontal area of a sphere of equivalent

surface area. The droplet shape evolves in time and as a result the frontal area is also

a time varying quantity. Data extraction for the current research work is conducted by

tracking the temporal location and associated properties of the liquid phase. Droplet

momentum, relative velocity, location and surface area are calculated at each time

step. Using these properties, the drag coefficient is calculated using equation 5.2 as

the droplet moves in the ambient environment. A broad range of Weber numbers from

0.1 to 1400 was considered during the current work, encompassing bag, multimode

and shear breakup mechanisms. Since most of the practical operating conditions lie

in Newton’s regime, where the drag coefficient over a solid sphere has a constant

value independent of Re. All the results pertaining to the drag coefficient presented

in this chapter are normalized by a constant value, Cd,0 = 0.45 (Efstathios & Clayton,

2005). Consequently, the drag coefficient of deforming and breaking liquid droplets is
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solely treated as a function of Weber number. Three different breakup mechanisms,

namely, bag, multimode, and shear breakup modes are addressed during the current

research effort. Weber number governs the transition from one breakup mechanisms

to another. In the next three sections, the different breakup modes will be discussed

in detail with emphasis on the evaluation of drag coefficient.

5.2.1 Bag breakup

Typical temporal evolution of droplet structure for bag breakup mechanism is shown

in Figure 5.6. The figure corresponds to a water droplet of 100 µm with a velocity of

22 m/s. As the droplet starts to move in the ambient environment, it first deforms

laterally into a disk with a lid. This is followed by the formation of a bowl. Because

of inertia, the bowl is further transformed into a thin bag due to the movement of

the liquid from the bottom to the rim. The bag becomes progressively thinner and

finally breaks up starting with the formation of a web like structure followed by

the disintegration of the rim. The detailed physics pertaining to this phenomena is

discussed in Section 4.3. The physics we are interested in exploring in the current

section pertains to time history of drag coefficient as the droplet moves. As reflected

by equation 5.2, Cd for deformable objects is primarily dependent on the time history

of momentum and frontal area. Therefore, it is informative to look at the bottom view

of the droplet structure to appreciate the extent of area change during the droplet

lifetime. This is shown in Figure 5.7. It is quite clear from the figure that there is a

tremendous increase in the frontal, as well as the overall surface area of the droplet

as it deforms and breaks up. Once the breakup initializes, there are two competing

forces effecting the surface area; externally imposed inertial forces and formation

of child droplets, which are trying to increase the surface area and surface tension

force causing surface retraction to prevent the growth of surface area. Figure 5.8

shows the time history of momentum and surface energy during bag breakup process
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Figure 5.6. Perspective view of the temporal evolution of droplet structure for bag
breakup mechanism. We = 80, Re = 13951, ρl/ρg = 8.29, t = T ∗ U/D.

and elucidates this complex physics in a more quantitative manner. Momentum

is normalized by its initial value, so that it takes a maximum value of 1. On the

horizontal axis, non-dimensional time is defined as t = T ∗ U/D, where D and U are

the initial diameter and velocity of the droplet respectively. The droplet starts with

some initial value of momentum, corresponding to the initial velocity imparted to the

droplet. As it moves further, it is resisted by surface tension and viscous forces and

the momentum is transferred to the surroundings. The surface energy, defined as the

product of surface tension and surface area, has the minimum value at the beginning

of the simulation when the droplet is spherical. It is normalized by this minimum

value and hence has a value of 1 at t = 0. As the droplet deforms, the surface energy

increases till the point of breakup where it falls suddenly due to surface retraction.

Qualitatively, we can expect the drag coefficient to increase initially due to the rapid

decrease of momentum associated with the droplet owing primarily to pressure drag.

Once the droplet breakup initializes, the drag coefficient is expected to decrease.
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Figure 5.7. Bottom view of the temporal evolution of droplet structure for bag
breakup mechanism. We = 80, Re = 13951, ρl/ρg = 8.29, t = T ∗ U/D.

Figure 5.8. Time evolution of momentum and surface energy for We = 80.
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Figure 5.9. Time history of normalized drag force for bag breakup (We = 80).

Figure 5.10. Time history of drag coefficient for bag breakup.

117



Figures 5.9 and 5.10 show the variation of normalized drag force and Cd for bag

breakup process. This was calculated by taking the gradient of momentum shown

in Figure 5.8 and using the definition of drag coefficient from equation 5.2. Initially,

while the droplet is still spherical, the drag coefficient has a value corresponding

to that of flow over a solid sphere. As expected, the drag coefficient first increases

to a maximum value and then dips down. Once the droplet starts to breakup via

the formation of webs and holes, as seen in Figure 11, the surface area and as a

result the surface energy falls rapidly. By this time the droplet has already lost

most of its momentum and hence the drag coefficient decreases. The instantaneous

Weber number of the droplet reduces as time progresses and the surface tension force

becomes comparable to the inertial forces acting on the droplet. This causes the

droplet to oscillate. Oscillations of the droplet has a much more prominent effect on

the surface area as compared to the momentum and as a result the drag coefficient

oscillates between moderately small values (owing to a very small change in the droplet

momentum).

5.2.2 Multimode breakup

At progressively higher Weber numbers, multimode mechanism becomes the domi-

nant mode of breakup. Due to an even higher inertial force, the bag development is

accompanied by the formation of a lip and a stamen. The breakup process can either

start from the lip or from the bag depending on the flow conditions. This is followed

by the disintegration of the rim and the stem to form ligaments and child droplets.

This is shown in Figure 5.11. The droplet diameter and velocity in this case were 100

µm and 47 m/s respectively. The detailed physics associated with this breakup mode

can be referred to in Section 4.3. Figure 5.12 shows the time evolution of momentum

and surface energy associated with a droplet undergoing multimode breakup. The

initial events during this breakup process are similar to bag breakup, as shown in the
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Figure 5.11. Perspective view of the temporal evolution of droplet structure for
multimode breakup mechanism. We = 365, Re = 29805, ρl/ρg = 8.29, t = T ∗ U/D.

3D figures as well as the evolution of momentum and surface energy associated with

the droplet. As pointed before, there are two competing effects affecting the overall

surface area; the liquid surface tension, which tries to minimize the liquid surface

area, and the formation of child droplets, increasing the effective surface area. De-

pending on the breakup mechanism, the beginning of breakup is accompanied with

a sharp or a gradual reduction in surface energy. In this case the decrease in surface

energy is rather gradual, indicating that increase in surface area because child droplet

formation plays a rather significant role and compensates the surface retraction effect

caused due to surface tension to a much larger extent as compared to bag breakup.

Figures 5.13 and 5.14 show the evolution of normalized drag force and drag co-

efficient for multimode breakup mechanism. As the droplet starts to move, the drag

coefficient is about 0.45 corresponding to that of flow over a sphere. Similar to bag

breakup, once the droplet starts deforming laterally the drag coefficient starts to in-

crease and reaches a maximum value. As shown in Figure 5.15 the frontal area of the

water droplet increases multiple folds laterally before it breaks up. As the droplet
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Figure 5.12. Time evolution of momentum and surface energy for We = 365.

starts to break up and holes and webs are developed in the parent droplet, drag co-

efficient starts to drop since ambient fluid can pass through the droplet without any

resistance. The end of breakup process corresponds to a stationary value of surface

and kinetic energies and the result is a steady distribution of child droplets. As a

consequence, once the droplet breaks up completely, the drag coefficient also reaches

a steady value.

5.2.3 Shear breakup

This is the most explosive breakup mode observed during this research. The droplet

breaks up due to the formation of Rayleigh-Taylor (R-T) waves, which causes shear

thinning of the droplet at the periphery, leading to child droplet formation. Temporal

evolution of the front and bottom view of the droplet structure corresponding toWe =

1112 is shown in Figure 5.16 and 5.17. Multimode and shear breakup phenomena

differ in two ways; 1) formation of strong R-T waves on the droplet surface in case of
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Figure 5.13. Time history of normalized drag force for multimode breakup (We =
365).

Figure 5.14. Time history of drag coefficient for multimode breakup.
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Figure 5.15. Bottom view of the temporal evolution of droplet structure for multi-
mode breakup mechanism. We = 365, Re = 29805, ρl/ρg = 8.29, t = T ∗ U/D.

shear breakup; and 2) formation of a hollow bag before the protrusion of stem which

is unique for multimode breakup. Detailed discussion on the breakup characteristics

of shear breakup mechanism can be found in Section 4.4.

Typical temporal variation of momentum and surface energy for shear breakup

phenomena is shown in Figure 5.18. As is clear from the figure, the decrease in surface

area is much more gradual in this case because child droplets are constantly being

generated because of extremely high external forcing. The slopes of momentum and

surface energy stay almost constant after t = 1 and t = 1.5 respectively. Because

of this the drag coefficient tend to a stationary value at later stages of the breakup

process. The variation of normalized drag force and drag coefficient for this case are

shown in Figures 5.19 and 5.20.

5.3 Time averaged drag coefficient of deforming and frag-
menting droplets

As pointed before, practical multiphase engineering problems are often investigated

using a Eulerian-Lagrangian framework. To account for the steady-state drag force

experienced by a liquid droplet in such a framework, accurate knowledge of time

averaged drag coefficient is of immense importance. Average value of drag coefficient
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Figure 5.16. Perspective view of the temporal evolution of droplet structure for
shear breakup mechanism. We = 1112, Re = 52000, ρl/ρg = 8.29, t = T ∗ U/D.

Figure 5.17. Bottom view of the temporal evolution of droplet structure for shear
breakup mechanism. We = 1112, Re = 52000, ρl/ρg = 8.29, t = T ∗ U/D.

123



Figure 5.18. Time evolution of momentum and surface energy for We = 1112.

Figure 5.19. Time history of normalized drag force for shear breakup (We = 1112).
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Figure 5.20. Time history of drag coefficient for shear breakup.

is obtained by calculating the area under the curve of the temporal evolution of drag

coefficient, and dividing it by the droplet lifetime. Time averaged drag coefficient is

calculated for a range of Weber numbers and a correlation is developed to predict the

value of drag coefficient for a given Weber number. The correlation is given by:

Cd
Cd,0

= 2We−0.175 We > 0.1, Oh < 0.1 (5.3)

The variation of time-mean drag as a function of Weber number is shown in Figure

5.21. The time averaged drag coefficient decreases as the Weber number is increased.

To explain this phenomena, it is useful to look at the breakup mechanisms dominant

at various Weber numbers. When the Weber number is small the breakup process

usually proceeds via bag breakup mechanism and the droplet deformation before

the initialization of breakup is large. In addition, the time associated with this

large deformation is usually very large. This in affect corresponds to a larger drag

coefficient in comparison to the processes taking place at higher Weber numbers,

where fragmentation proceeds quickly. Maximum value of drag coefficient was also
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Figure 5.21. Variation of average drag coefficient with Weber number.

investigated for the range of Weber numbers investigated in this research and is

shown in Table 5.1. If the value of maximum drag coefficient is linearly extrapolated

for We = 10, we obtain a value of 2.58 which agrees closely with the value obtained

by Wadhwa et al. (2007). The decreasing trend of the maximum and average drag

coefficient was also observed in experiments conducted by Warnica et al. (1995a)

although the Weber numbers studied during their experiments were very low.

The time-mean drag coefficient for fragmenting liquid droplets at different oper-

ating pressures can be predicted by using the generalized regime diagram (equation

4.1) along with the correlation developed in this section given by equation 5.3.

5.4 Concluding Remarks

In this chapter, a numerical study investigating transient deformation and breakup

of liquid droplets is presented for a wide range of Weber and Reynolds numbers. As
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Table 5.1. Maximum value of drag coefficient as a function of Weber number.

Weber number Maximum Cd

23 2.44
33 2.56
66 2.60
80 2.58
95 2.62
292 2.15
365 2.11
447 2.10
537 2.04
636 1.75
858 1.37
981 1.33
1112 1.21
1253 1.08
1400 1.03

a droplet moves through a gaseous environment with a velocity relative to the ambi-

ent, it deforms and eventually breaks up into a number of child droplets. Temporal

evolution of momentum balance and droplet structure is used to calculate the drag

coefficient at each time step from first principles. Results show that the drag coef-

ficient first increases to a maximum as the droplet frontal area increases and then

decreases at the initiation of breakup. The drag coefficient reaches a steady value at

the end of droplet lifetime, corresponding to the momentum retained by the droplet.

A correlation to predict the time-mean drag coefficient given by,
Cd
Cd,0

= 2We−0.175,

is developed, which indicates that the time averaged drag coefficient decreases with

Weber number. This is attributed to the physics associated with the breakup pro-

cesses at different Weber numbers. This model can be used in Eulerian-Lagrangian

based large scale numerical simulations of practical multiphase problems.
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CHAPTER VI

BREAKUP AND DYNAMICS OF NON-NEWTONIAN

LIQUID DROPLETS

6.1 Overview and Literature Review

The motivation to study non-Newtonian liquid droplet breakup stems from the various

advantages gelled propellants offer as compared to traditional liquid or solid propel-

lants in combustion systems, particularly in rocket engines. According to Natan &

Rahimi (2002):

“From the atomization point of view, very little is known about the atomization mech-

anism of non-Newtonian fluids and even less regarding gel propellants.” In addition

it is noted that, “From the combustion point of view, gels burn at a lower burning rate

than non-gelled fuels and exhibit lower combustion efficiency. Secondary atomization

seems to be a key parameter in order to obtain complete burning within a reasonable

combustion chamber length.”

Gelled propellants are characterized by unique viscosity and chemical behavior.

Their viscosity can often be modeled as a non-Newtonian fluid, where the viscosity

depends on the shear rate. Density impulse, thrust modulation and energy man-

agement capabilities, offering mission cycle flexibility provided by gelled propellants

is comparable to that of state-of-the-art solid and liquid propellants (Hodge et al.,

1999; Natan & Rahimi, 2002). Apart from performance aspects, safety and storage

capabilities offered by gelled propellants are insurmountable by either liquid or solid

propellants. Accidental leaks, spills and toxicity hazards caused by fuel vapors can
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be avoided in feeding systems or during storage because gel surface tends to harden

when in contact with gaseous atmosphere (Hodge et al., 1999). Other safety fea-

tures presented by gelled propellants include lower sensitivity to impact, friction and

electrostatic discharge preventing any accidental ignition or uncontrolled combustion

(Hodge et al., 1999). In addition, gelled propellants are highly stable and have ex-

hibited long term storage capabilities. In contrast to the various benefits of gelled

propellants, their non-Newtonian rheology is also the reason of the several disad-

vantages with respect to their atomization, burning, phase separation, instabilities,

feeding process and cost. Further details on the current understanding of gelled pro-

pellants, their rheology, flow behavior, atomization and combustion characteristics

can be obtained from the review article by Natan & Rahimi (2002).

Limited literature exists on breakup of non-Newtonian liquid droplets. One of

the earliest studies on non-Newtonian liquid droplets was performed by Wilcox et al.

(1961). The study was motivated by spray from high-speed aircraft for dissemina-

tion of insecticides, which are polymeric solutions and exhibit viscoelastic behav-

ior. A shocktube setup along with shadowgraphy, as described in Sections 1.2.1 and

1.2.3, was used in the experiments. 3 mm drops of polyisobutyl methacrylate in BIS,

polyvinyl acetates in DBP and nitrocellulose in DBP were exposed to air stream at

366 m/s. It was found that the use of polymers, even in small concentrations, retards

drop breakup by imparting viscoelatic properties to the fluid. Visually, most of the

results exhibited breakup behavior phenomenologically similar to shear breakup for

Newtonian liquids, but with the formation of stretched ligaments.

Matta & Tytus (1982) used high velocity air stream from a wind tunnel to investi-

gate mass median diameter (MMD) of various Newtonian and viscoelastic droplets. It

was found that the measured MMDs were an order of magnitude larger than what was

predicted by Weiss (1959). It can be inferred from their results that non-Newtonian

liquid droplets break up into much larger sizes as compared to Newtonian drops for

129



similar flow conditions.

Arcoumanis et al. (1994, 1996) conducted experiments on Newtonian and non-

Newtonian liquid droplet breakup phenomena in an air jet and high-speed photog-

raphy. About 16 different non-Newtonian fluids were used with diameters ranging

from 2-4 mm and velocities up to 540 m/s. Only shear breakup was observed in all

the experiments conducted on non-Newtonian drops. Waves were observed on the

surface of droplets as they entered the air stream with the formation of elongated

ligaments. As expected, total breakup time increased with increasing concentration

of the thickening agent. Arcoumanis et al. (1996) shows intriguing photographs com-

paring Newtonian and non-Newtonian droplet breakup.

One of the most recent experiments on non-Newtonian droplet breakup was con-

ducted by Lopez-Rivera & Sojka (2009); Lopez-Rivera (2010). Droplet morphology

and breakup times were studied for six different solutions of carboxymethyl cellulose

(CMC) in water with concentrations varying from 0.05 to 1.4 % by weight. Bag

and multimode breakup mechanisms were reported with significant stretching prior

to breakup. Breakup times were recorded for each breakup mode along with its

variation with flow behavior index, n and the consistency index, m. Except for the

breakup initialization time, all the other significant temporal events were shortened

with decrease in n and m. An analytical model was developed by modifying the TAB

breakup model of O’Rourke & Amsden (1987) to include the effects of shear-thinning,

power-law behavior.

Non-dimensional quantities, Weber and Ohnesorge numbers, have been used by

most researchers while describing their results for Newtonian liquid droplets. Con-

trary to this, there is no clear consensus on which non-dimensional should be used (if

at all) to describe the research findings for non-Newtonian fluids. Arcoumanis et al.

(1994, 1996) used critical speed to correlate their data. They reasoned that variation

in surface tension on the drop surface, in addition to viscosity, makes the definition
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of Weber and Ohnesorge numbers ambiguous. Perhaps, this is also the reason why a

regime diagram similar to the one developed by Hsiang & Faeth (1995); Chou et al.

(1997), shown in Figure 4.1 was never constructed for non-Newtonian fluids. How-

ever, recent studies by Joseph et al. (1999, 2002); Lopez-Rivera & Sojka (2009) and

Lopez-Rivera (2010) have used Weber number to describe the breakup dynamics of

shear thinning and viscoelastic droplets.

To the best of our knowledge, this is the first numerical investigation on non-

Newtonian droplet breakup. In general, non-Newtonian liquids are difficult to atomize

and require higher injection pressures. Since their viscosity depends on the shear rate,

it is beneficial if they behave as shear-thinning, i.e., their viscosity deceases with shear

rate. This situation is ideal for combustion applications since it offers the advantages

of non-Newtonian nature of the propellant during storage and is also relatively easy

(as compared to shear-thickening fluids for example) to atomize when subjected to

appropriate injection pressure. Therefore, in this research we use 0.5% CMC water

solution, which exhibits shear-thinning power-law behavior, as the working fluid and

define Weber and Ohnesorge numbers similar that defined by Lopez-Rivera (2010).

The main purpose of this chapter is to identify the physics underlying the breakup of

non-Newtonian liquid droplets and compare the differences between Newtonian and

shear-thinning non-Newtonian drop breakup in terms of basic structural phenomenol-

ogy and droplet size distribution. The rest of the chapter is divided in three sections.

We begin with the description of non-Newtonian fluids followed by the presentation

of results and comparison with Newtonian droplet breakup. The chapter ends with

concluding remarks.

6.2 Non-Newtonian Fluids

Probably the single most important characteristic of non-Newtonian fluids, which dif-

ferentiates them from Newtonian liquids is their shear-rate dependent viscosity. To
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understand the behavior of non-Newtonian fluids, let’s consider the flow of Newtonian

and non-Newtonian liquids from an orifice. Under the same pressure drop, if the non-

Newtonian liquid flows out faster than the Newtonian fluid, it is called shear thinning

or pseudoplastic. Their viscosity decreases with increasing shear rates. Examples of

such liquids are molten polyethylene, solutions of carboxymethyl cellulose in water,

polyacrylamide in water and glycerin (Bird et al., 1987). In fact, shear thinning liq-

uids are the most common non-Newtonian fluids which exhibit shear-rate dependent

viscosity. On the other hand, if the flow rate of non-Newtonian liquid is much smaller

than Newtonian fluid, it is called shear thickening or dilatant. Dilatants are relatively

less abundant and include fairly concentrated suspensions of small particles such as

suspensions of titanium dioxide in sucrose and corn starch in ethylene-glycol-water

mixture. In addition to shear thinning and thickening behavior, some non-Newtonian

liquids do not flow unless subjected to a critical shear stress, called the yield stress.

These are called viscoplastic or Bingham fluids. Common examples of Bingham liq-

uids are slurries, paints and cement. Still different behavior is shown by fluids which

needs a yield stress but also exhibit shear thinning property (Bird et al., 1987; Guil-

lope, 2006), called Herschel-Bulkley fluids in the literature. Figure 6.1 shows the

stress-strain relationship for various non-Newtonian liquids.

Several important non-Newtonian effects can be explained using the normal stress

differences exhibited by polymeric liquids in shear flows. Let us consider a coordinate

system where “1” denotes the flow direction, “2” is the direction of velocity variation

and “3” is the neural direction. In Newtonian liquids τ11− τ22, the first normal stress

difference and τ22 − τ33, the second normal stress difference is zero. In contrast, for

non-Newtonian fluids, the first normal stress difference is negative and much larger

in magnitude as compared to the second normal stress difference (which is often

positive). Extrudate swell and rod climbing nature of polymeric liquids is partially

attributed to to the normal shear stress differences. A detailed discussion of how
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Figure 6.1. Schematic figure showing the variation of shear stress as a function
of shear strain for Newtonian and common non-Newtonian fluids (Natan & Rahimi,
2002).

normal stress differences manifests themselves in various situations and effect the

behavior of non-Newtonian liquids can be found in Bird et al. (1987).

6.2.1 Constitutive Relations

The fundamental relationship between the stress tensor and flow dependent objective

variables such as pressure and rate of deformation for a liquid is called the constitutive

equation. For incompressible Newtonian liquids, shear stress is linearly proportional

to strain, the constant of proportionality being the dynamic viscosity (a constant

for a given temperature, pressure and composition). For non-Newtonian liquids, the

situation is quite different and the constitutive equation is more complex. The most

commonly used stress-strain relationship in engineering practice can be categorized

under generalized Newtonian fluids and takes into account the effect of shear-rate

on viscosity. However, normal stress or time-dependent elastic effects cannot be

explained using this model. Stress tensor at some point in space for a generalized
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Newtonian fluid is related to the rate-of-strain tensor at the same point and time. In

general for an incompressible generalized Newtonian fluid:

τ̃ = −η(γ̇)γ̇

γ̇ =
(
∇u + (∇u)T

) (6.1)

If η = µ, we recover equation 2.5. The power-law model of Ostwald (1925) and

De Waele (1923) is the most widely used constitutive relation to model non-Newtonian

fluids in practical problems in engineering and industry. It is a two parameter model

and the definition of viscosity η is given by:

η = mγ̇n−1 (6.2)

As described before, m is called the consistency index and has units of Pa.sn, while

n is a non-dimensional constant and is called the flow behavior index. When n = 1

and m = µ, Newtonian fluid is recovered. If 0 < n < 1, the fluid behaves as shear

thinning or pseudoplastic and if n > 1, the fluid is called dilatant or shear thickening.

Table 6.1 lists the commonly used empirical relations used to model generalized New-

tonian fluids. Even though, power-law models are widely used in engineering, their

applicability is associated with several caveats (Bird et al., 1987): (a) viscosity associ-

ated with very small shear rates cannot be defined. (b) effect of molecular weight and

composition on viscosity cannot be related to m and n. (c) time history effects on vis-

cosity, especially for viscoelatic fluids cannot be modeled using generalized Newtonian

fluid constitutive relations and thus power-law models are inappropriate where the

elastic response of the polymeric liquid becomes important. More sophisticated mod-

els are required to explain the behavior of viscoelastic non-Newtonian fluids. These

include linear viscoelastic models such as generalized Maxwell model, shear stress

models defined by differential equations such as the famous convected Jeffreys model

or Oldroyd’s fluid B (Oldroyd, 1950), Giesekus model (Giesekus, 1982) and integral

relations for stress tensor such as Factorized Rivlin-Sawyer model. An exhaustive list
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of these models, their applicability and limitations is given by Bird et al. (1987).

In the next section, fundamental physics governing the breakup of a 512 µm

droplet of 0.5% (by wt.) CMC-water solution, given an initial velocity of 55 m/s is

discussed. The corresponding Weber number is 2411 and the density ratio is 8.29.

Various instabilities underlying the breakup process are discussed in detail. Child

droplet size distribution for a wide range of Weber numbers (2000 < We < 10000) are

examined and compared with that obtained after Newtonian liquid droplet breakup.

6.3 Results and Discussion

Before we begin our discussion on the breakup and dynamics of non-Newtonian liquid

droplets, lets take a step back and consider 2D creeping couette flow inside two co-

axial cylinders of generalized Newtonian fluids. Figure 6.2 shows the schematic of

the setup and the comparison of the computed tangential velocity as a function of

radial position with analytical solutions of Bird et al. (1987). Each of these fluids can

be modeled by the relations, η =
η0

2γ̇
+ mγ̇n−1. The values of η0, m and n for the

various fluids used are listed in Table 6.2. As seen in the figure, excellent agreement

is obtained with theoretical results for Newtonian, power-law and Herschel-Bulkley

fluids.

Recently, the current approach was used to study the primary atomization of

non-Newtonian impinging jets (Chen & Yang, 2013). Numerical simulations were

conducted using TS-720 silica (5 wt. %) and 981A Carbopol (0.1 wt. %) in 75/25

by vol. ethanol/water mixture. Results were compared with experiments of Fakhri

(2009) for three different Weber numbers showing phenomenological similarity as

shown in Figure 6.3.

As exemplified by the two numerical simulations just described, our approach is

capable of handling non-Newtonian liquids with reasonable accuracy. Next, lets turn

our attention to the problem in hand, deformation and fragmentation of power-law
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Table 6.1. Constitutive relations for time-independent non-Newtonian liquids (Bird
et al., 1987; Natan & Rahimi, 2002).
η0 : zero-shear-rate viscosity
η∞ : infinity-shear-rate viscosity
λ : time constant
τ0 : yield stress
γ̇0 : value of γ̇ where shear-thinning begins
τ1/2 : τ =

√
(τ : τ)/2 at η = η0/2

Model Equation

Power law η = mγ̇n−1

Carreau-Yasuda
η − η∞
η0 − η∞

= [1 + (λγ̇)a](n−1)/a

Cross
η − η∞
η0 − η∞

= [1 + (λγ̇)](n−1)

Spriggs’ truncated power law η =

{
η0 γ̇ ≤ γ̇0

η0 (γ̇/γ̇0)n−1 γ̇ ≥ γ̇0

Bingham η =

∞µ0 +
τ0

γ̇

Ellis
η0

η
= 1 +

(
τ

τ1/2

)n−1

Eyring (η1 = 0, α = 1);
Powell-Eyring (α = 1);

Sutterby (η1 = 0) η = λ0τ0

(
arcsinh (λ0γ̇)

λ0γ̇

)α
+ η1
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Table 6.2. Values of η0, m and n for Newtonian, power-law and Herschel-Bulkley
fluids.

Liquid η0 m n

Newtonian 0 1 0

Power-law 0 0.08 0.5

Herschel-Bulkley 0.12 0.0672 0.5

Figure 6.2. Comparison of tangential velocity as a function of radial position for
various Newtonian, power-law and Herschel-Bulkley fluids with analytical solutions.
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Figure 6.3. Comparison of flow patterns for non-Newtonian impinging jets at Weber
numbers of 1549, 6195 and 12390 (from top to bottom). Images in the left row are
obtained from experiments by Fakhri (2009), and on the right from Chen & Yang
(2013) who used the present methodology for their simulations.
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Figure 6.4. Computational setup. 0.5% (by wt.) CMC-water droplet is given an
initial velocity and droplet structure and flowfield evolves in time.

drops. Similar to Newtonian droplets, we consider the breakup of a single non-

Newtonian droplet which is imparted an initial velocity. The schematic of the setup

is shown in Figure 6.4. CMC-water solution is treated as a power-law fluid with

m = 0.36 and n = 0.67 and has a surface tension of 0.0774 N/m (Lopez-Rivera,

2010). The corresponding Weber number is 2411.

Figure 6.5 shows the temporal evolution of droplet structure for a drop of diam-

eter 512 µm when subjected to an initial velocity of 55 m/s. As is clear from the

figures, the breakup mechanism is drastically different from that of Newtonian liq-

uids. The droplet, as it is decelerating downwards, stretches in the flow direction.

The stretching quickly becomes asymmetric because the fluid is non-Newtonian and

experiences different values of stresses at different regions of the droplet. This is at-

tributed to differential shear-rates leading to different values of viscosity at different

points on the droplet. Eventually two things happen: 1) droplet stretching creating

a dimple and eventually a bowl, and 2) it creates a torque due to unbalanced forces

and the droplet starts rotating. This process continues for a while before the bag

becomes thin enough so that it breaks up. The initial breakup, shown in Figure

6.6 resembles a very common non-Newtonian phenomena, beads-on-a-string (BOAS)

structure (Bhat et al., 2010). This breakup creates additional non-uniformity in the

shear strain experienced by the droplet leading to additional unbalanced forces. As

a result, the droplet starts to rotate rapidly. This is analogous to uniformly rotating
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Figure 6.5. Non-Newtonian droplet breakup - We = 2411, ρl/ρg = 8.29. Perspective
view of temporal evolutions of 3D droplet structure in non-dimensional time. Non-
dimensional time, t = T*U/D.
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Figure 6.6. Beads-on-a-string structure during the breakup of non-Newtonian liquid
drops.

liquid column where planar disturbances rotate with the stretched droplet. Twisting

and growth of these disturbances evolve into helical instabilities with a central core.

As it evolves in time, secondary capillary instabilities appear forming droplet ejection

sites in the form of liquid knots. Primary and secondary satellite drops result from

these sites due to pinching. These instabilities are shown more clearly in Figure 6.7.

Child droplet size distribution was also extracted during the breakup of non-

Newtonian droplets. Figure 6.8 shows the normalized pdf of the size distribution for

We = 2411. The size distribution follows a Gaussian distribution, shown by the black

line on the figure. Interestingly, the Gaussian distribution seems to be a universal fit

for the a wide range of Weber numbers, as shown in Figure 6.9. The symbols show

the results obtained from the numerical simulations while the line is a Gaussian fitted

to the data points. The distribution can be written as:

probabilitynormalized = αexp

(
−
(
d− β
ζ

)2
)

for 2000 < We < 10000 (6.3)

where d is the representative child droplet diameter, α, β and ζ are the correlation

constants. The values of correlation constants are listed in Table 6.3. Due to lack of

experimental data, we could not compare our results with known correlations or data

points.
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Figure 6.7. Helical instability, liquid drop ejection sites and formation of primary
and satellite droplets during the breakup of non-Newtonian liquid drops.
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Figure 6.8. PDF of droplet size distribution for non-Newtonian droplet breakup -
We = 2411, ρl/ρg = 8.29.

Table 6.3. Correlation coefficients α, β and ζ for droplet size distribution for a range
of Weber numbers for non-Newtonian droplet breakup.

Weber number α β ζ

2411 0.8398 19.85 17.620

3367 0.8904 11.87 7.026

4483 0.9987 10.47 6.959

5758 0.9990 10.80 5.768

7193 0.8781 8.39 6.520

9457 0.9566 14.88 6.182
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Figure 6.9. Normalized probability distribution of child droplet diameter for Weber
numbers of 4483, 5758, 7193 and 9457. Symbols are results from numerical simulations
and the line is a Gaussian curve.
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Several differences between Newtonian and non-Newtonian droplet breakup are

observed during the course of this research effort. They are summarized below:

1. The Weber numbers required for non-Newtonian droplet breakup are much

larger than that required for Newtonian liquids. This is attributed to the higher

viscosity of non-Newtonian liquids due to which they offer higher resistance to

the inertial aerodynamic forces acting to shatter the droplet.

2. In the range of Weber numbers studied, for Newtonian drops, four distinct

breakup mechanisms were observed while we observed only one kind of breakup

mode for non-Newtonian droplet breakup.

3. The breakup time for non-Newtonian droplets was much larger as compared to

Newtonian drops.

4. Beads-on-a-string structures were observed for non-Newtonian liquid droplet

breakup while the pinch off process during Newtonian droplet breakup did not

show any such structures.

5. Strong helical instabilities were observed (and caused) during the breakup of

non-Newtonian drops. No such instabilities were observed for Newtonian fluids.

6. The droplet size distribution followed log-normal distribution for Newtonian

droplets while it was Gaussian for non-Newtonian fluids.

6.4 Concluding Remarks

In this chapter, basic physics underlying non-Newtonian liquid droplet breakup was

analysed. It was found that the droplet stretches in the flow direction until a bowl

is formed which becomes thinner as time evolves. The breakup initiates with the

formation of beads-in-a-string due to the non-Newtonian nature of the fluid under

consideration. This is followed by rapid rotation of the droplet with the appearance
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of helical instability and liquid budges, which forms the sites for primary and satellite

droplet shedding. Child droplet size distribution were also examined and it was

found that a Gaussian curve universally characterizes the droplets produced during

non-Newtonian droplet breakup process. The differences between Newtonian and

non-Newtonian droplet breakup process are also identified and summarized in the

last section of the chapter.
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CHAPTER VII

CONCLUDING REMARKS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

This chapter summarizes the major contributions of this work and outlines the rec-

ommendations for future work to improve and enhance the knowledge base of droplet

breakup dynamics.

7.1 Contributions

The objectives of this research were to enhance the understanding of single droplet

deformation and breakup behavior and develop correlations which can be used in

large-scale Eulerian-Lagrangian LES based modeling methodologies to study systems

of practical engineering interest. Consequently, the contributions of this work can be

broadly divided into two categories - breakup physics and correlations. A summary

of these contributions is given in the next two sections.

7.1.1 Contributions to Droplet Breakup Physics

Even though single droplet deformation and breakup has been a subject of active

research for a long time, to our knowledge, this is the perhaps the first time that a

comprehensive study (experiments or computations) over a broad range of operating

pressure, Weber and Reynolds numbers has been conducted, highlighting the tem-

poral evolution of details, including pressure, velocity, structure dynamics and shear

stress of this complex multiphase phenomena. Previous experimental studies relied

on visual graphics to describe the breakup process while computational studies were

conducted either with two-dimensional or axisymmetric assumption, and thus were

unable to capture all the details. For Newtonian fluids, we quantitatively identified
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four different breakup mechanisms, oscillatory, bag, multimode and shear breakup

modes, which corroborates the observations made by other researchers. Physics un-

derlying the different breakup mechanisms is summarized in brief below:

1. Oscillatory breakup: In general, oscillatory breakup takes place at relatively

low Weber numbers. After a short travelling distance, the inertial and surface

tension forces compete with each other, which leads to oscillations of the droplet

(and hence the name). The droplet deforms into an ellipsoid due to unequal

pressure distribution on its surface. The pressure difference and vibration of

the droplet further leads to the formation of a bowl, followed by a dome. This

stretching, twisting and turning of the droplet continues until it breaks up due

to excessive shear stress development.

2. Bag breakup: As the Weber number is increased, the breakup mechanism

changes to bag breakup mode. Similar to oscillatory breakup, the droplet first

deforms into a disk and then into a bowl. Because of higher inertia, the bowl

is further transformed into a thin bag. The bag becomes progressively thinner

and finally breaks up followed by the disintegration of the rim.

3. Multimode breakup: At progressively higher We numbers, multimode mecha-

nism becomes the dominant mode of breakup. Due to an even higher inertial

force, the bag development is accompanied by the formation of a “lip” and a

stamen. The breakup process can either start from the lip or from the bag

depending on the flow conditions. This is followed by the disintegration of the

rim and the stem to form ligaments and child droplets.

4. Shear breakup: This is the most “explosive” breakup mode studied in this

research. The droplet breaks up due to the formation of R-T waves, which

enhances sheet thinning of the droplet at the periphery, eventually leading to

child droplet shedding from the surface.
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Another major contribution of this work to breakup physics is the quantification

of breakup initialization in terms of the surface energy associated with the droplet.

It was found that, irrespective of the breakup mechanism, there is a decrease in the

surface energy of the droplet at the point where it starts to break. The characteristics

of surface energy evolution changes from sudden to a gradual decrease at breakup

initialization as the Weber number is increased. This is an important finding from a

modeling standpoint and provides a universal criterion to identify the beginning of

the breakup process.

Extraction of drag coefficient for deforming and fragmenting liquid droplets is

another significant contribution to the physics of droplet breakup and dynamics. The

drag coefficient is evaluated from first principles based on the time evolution of the

droplet structure and momentum balance. For low Reynolds numbers, the calculated

drag coefficient shows excellent agreement against measurements for solid spheres. As

the Weber number increases, the droplet deforms laterally, and the drag coefficient

increases. Further, as the droplet starts to break up with the formation of holes

and web-like structures, the drag coefficient decreases. Once the breakup process is

complete, the drag coefficient asymptotes to a stationary value corresponding to the

momentum retained by the droplet.

Basic physics underlying non-Newtonian liquid droplet breakup was also analysed

during the course of this thesis. It was found that the droplet stretches in the flow

direction until a bowl is formed which becomes thinner. Breakup initiates with the

formation of beads-in-a-string due to the non-Newtonian nature of the fluid under

consideration. This is followed by rapid rotation of the droplet with the appearance

of helical instability and liquid budges, which forms the sites for primary and satellite

droplet shedding.
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7.1.2 Contributions to Correlations for Droplet Breakup and Dynamics

Three major correlations developed during the present study - generalized regime

diagram, child droplet size distribution and time-mean drag coefficients for a broad

range of Reynolds and Weber numbers, are summarized in this section.

7.1.2.1 Generalized Regime Diagram

To the best of our knowledge, the effect of pressure on droplet breakup phenomena

was comprehensively studied for the first time during this work. Based on this a gen-

eralized regime diagram was developed using the results from our research as well as

results from the literature. This is conceivably one of the most important correlations

developed during this research effort because it provides a way to predict the type of

breakup at different operating pressure conditions for a given fluid. It was found that

even though the fundamental breakup physics is independent of pressure, the critical

Weber number for water droplets corresponding to different breakup regimes is de-

pendent on pressure, in addition to the Weber number. The differences observed in

critical Weber numbers at elevated pressure conditions (as compared to low pressures)

can be explained using the fact that at higher pressures, the drag experienced by the

droplet is much higher. This implies that the effective relative velocity between the

droplet and the ambient environment reduces at a much higher rate as compared to

lower pressures, i.e., the rate of change of momentum is much higher at high pressures.

As a result the instantaneous Weber number decreases much faster and a higher We-

ber number is required to begin with for the droplet to undergo deformation and

breakup (which shows phenomenological similarity to breakup process that occurs at

lower pressure conditions) at higher pressure conditions. The correlation is given by:

We = Weref

{
1 +

c

1− pr
Weref

[(
ρg
ρl

)
−
(
ρg
ρl

)
ref

]}
valid for Oh < 0.1

pr =
p

pcr
, pref = 1atm, c = 0.62

(7.1)
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7.1.2.2 Droplet Size Distribution

Correlations to predict child droplet diameter distribution is another valuable addition

to the literature. It was found that the normalized probability density distribution of

the droplet diameters, shifted by 0.05, could be correlated using a universal log-normal

distribution for We > 300 given by:

probabilitynormalized =
1

dC1

√
2π
exp

{
−(ln(d)− C2)2

2C2
1

}
for We > 300, Oh < 0.1

(7.2)

A theoretical, physics based correlation to predict the sauter mean diameter of the

droplet size distribution, d32, was also developed and is given by:

d32

D
=

8We−0.72

Cd
(7.3)

Generalized regime diagram and the SMD correlation were used to predict and

compare the SMD of the droplet distribution a water droplet at a Weber number of 125

at 1 atm conditions. Our predictions compared very well with the experimental data,

demonstrating the usability of our correlations at different pressure and operating

conditions.

Child droplet size distribution were also examined for non-Newtonian droplets.

It was found that a Gaussian curve universally characterizes the droplets produced

during breakup process. The correlation is given by:

probabilitynormalized = αexp

(
−
(
d− β
ζ

)2
)

for 2000 < We < 10000 (7.4)

7.1.2.3 Time-mean Drag Coefficients

To complete the picture, a correlation to predict time-mean drag coefficients was

also developed during the present research effort. Time averaged drag coefficient was

calculated for a range of Weber numbers and a correlation was developed to predict
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the value of drag coefficient for a given Weber number. The correlation is given by:

Cd
Cd,0

= 2We−0.175 We > 0.1, Oh < 0.1 (7.5)

To put all things in perspective, as noted before, the idea behind developing

these correlations was to use them in an Eulerian-Lagrangian framework. To do this,

let us go back and identify what is needed in an algorithm where the droplets are

treated in Lagrangian coordinates. The first term on the RHS in Equation 5.1, the

steady state drag force, is the most important term and is often the only term used

to evaluate the droplet/particle trajectory. Given the initial droplet diameter and

relative velocity, Weber number can easily be calculated, then the time mean drag

coefficient correlation can be used to reasonably approximate trajectory. Once the

velocity is decreased to a small fraction (approximately 5%) of the original velocity,

the droplet size correlations can be used to find the distribution of the resulting child

droplets. However, these correlations were developed for 100 atm pressure conditions

and cannot be used otherwise. This is when the generalized regime diagram can

be used to first calculate the equivalent Weber number, which can then be used to

calculate the drag coefficient and child droplet diameter distributions.

7.2 Recommendations for Future Work

There are several questions, relevant to studies on Newtonian and non-Newtonian

droplet breakup and dynamics, which needs to be addressed by future studies. Some

of these are given below (in some sort of a logical order):

• How different is heat transfer in a deforming and fragmenting liquid droplet in

a high temperature environment as compared to a solid spherical drop?

From a computational perspective, to start with, heat transfer to/from the

droplet in a high temperature quiescent atmosphere (without vaporization) is

a good starting point. Preliminary results for this configuration can be seen in
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Figure 7.1. Normalized temperature contours for heat transfer in a spherical hep-
tane droplet at 300K in a quiescent air environment at 643K at four different non-
dimensional times.

Figure 7.1. The figure shows the temperature contours for a heptane droplet at

300 K in an air bath at 643 K. The normalized temperature profile at a section

going through the center of the droplet is shown in Figure 7.2. Since the droplet

is not undergoing any deformation, the results are compared to the theoretical

solution of the heat equation in a sphere, showing excellent agreement. Once

the droplet starts to deform, it will be interesting to how the heat transfer rate

is affected.

• What happens to the vaporization characteristics of a deforming liquid droplet

when it is subjected to a high temperature convective environment, similar to
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Figure 7.2. Comparison of normalized temperature profile for heat transfer in a
spherical heptane droplet at 300K in a quiescent air environment at 643K with theory.

the conditions in a real combustor?

This is a question of paramount importance since it resembles the situations

inside a practical combustion device. In a spherical droplet, convective heat

transfer should ideally enhance vaporization but when the droplet starts to

deform and break, which in turn increases the effective surface area, what will

be the extent of increase of heat transfer and vaporization rate?

• Once this vaporizing droplet is ignited, how does it differ from that of a spherical

droplet ignition? What does the transients look like?

• Lastly, how do the combustion characteristics change when the droplet is de-

forming, breaking, vaporizing and burning when subjected to an oxidizing con-

vective environment?
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This will perhaps be one of the most important, and simultaneously, most com-

plicated phenomena to measure/compute because of the tremendously different

time scales involved in the problem. It will be quite intriguing to see the com-

bustion behavior in such a configuration.

• What will be the combustion behavior when a fuel and oxidizer (hypergolic or

non-hypergolic) droplet collide with each other in a high temperature oxidizing

environment?

These are some of the important question to be addressed by researchers working

on droplet breakup and dynamics. Apart from this, development of generalized regime

diagram (if possible) for non-Newtonian fluids is an important issue which should be

addressed. It is a difficult task because of the different types of non-Newtonian fluids

found in nature, governed by different constitutive relations. In addition, surface ten-

sion might change over the range of operating conditions, making the task even more

challenging. Correlations for droplet size distribution and drag coefficient should also

be developed for non-Newtonian fluids. They will most likely have at least two in-

dependent variables, thus increasing the degree of freedom of the system and will

require much broader parametric studies for their development. Another important

study which can be undertaken is the breakup of viscoelastic liquid drops using more

sophisticated constitutive relations. From a computational perspective, while under-

taking the above mentioned research avenues, it is imperative to develop more efficient

algorithms which exhibit high parallel scalability to ensure that the numerical cal-

culations do not become cost prohibitive and have a reasonable turn around time.

We hope that this research contributed to droplet breakup and dynamics literature

by providing a more thorough understanding of the breakup phenomena of liquid

droplets.
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