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SUMMARY 

 

Life cycle assessment is a method to evaluate economic and environmental 

benefits and tradeoffs of technologies, human activities, and systems. Data gaps, 

variability, uncertainty, and weak generalizability are among the continuing challenges in 

life cycle assessment. As a way of resolving these issues, a parametric life cycle 

assessment framework is proposed and demonstrated, using case studies of vehicle 

electrification and decentralized power generation for buildings. The parametric life cycle 

assessment involves investigating governing equations; identifying overall relationships 

between input and output variables; evaluating characteristics and typology of input and 

output variables; assessing relative importance and contribution of individual input 

parameters; and developing a parametric form of life cycle assessment models.  

For medium- and heavy-duty vehicles electrification, the results from the 

parametric life cycle assessment indicate that electric vehicles provide positive social 

benefits for niche applications or locations, regardless of the variations and uncertainties 

in input conditions including future electric grid evolution and fuel prices changes. 

Beyond the niche applications or locations, however, electrifying medium- and heavy-

duty vehicles is not expected to provide positive net social benefits in the near future, in 

comparison with conventional technologies powered by petroleum, biofuels, or natural 

gas. Vehicle operation strategy modifications or a moderate level of electrification such 

as micro-hybrid technology can provide more immediate benefits.  

Using the same parametric LCA approach, life cycle tradeoffs of decentralized 

power generation technologies for buildings are systematically evaluated, including 
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natural gas-based hydrogen fuel cell and microturbine technologies. Combined cooling, 

heating, and power provides numerous benefits including more efficient and stable 

electricity provision compared to conventional building energy systems. From the life 

cycle perspective, cogeneration or trigeneration technologies, in particular, microturbines 

help reduce air emissions and water consumption but at the expense of energy efficiency. 

Although fuel cell and microturbine technologies tend to move air emissions sources 

from less-populated locations to population centers, overall air pollution impacts across 

the U.S. are lower than for conventional systems. Depending on the building types, 

overall social benefits of these alternative and distributed power production technologies 

can vary. In general, achieving electric grid independence and improving resilience 

against power outage requires up to 50% higher valuation of reliable power production.   
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CHAPTER 1 

INTRODUCTION 

 

A parametric life cycle assessment (LCA) approach begins with the investigation 

of governing equations – Process 1 in Figure 1.1. If analytic (or mathematical) solutions 

can be found by solving the governing equations, product use phase and life cycle results 

can be formulated based on those analytic solutions. If not, simulation can be utilized 

alternatively, which may require data collection beforehand to account for a range of 

product operating conditions – Process 2 in Figure 1.1. Governing equations also provide 

a foundation to develop types of variables. Depending on the types, different treatment 

strategies can be developed to deal with different types of variables. Governing equations 

also help characterize key variables so that they can be used as explanatory or predictive 

independent variables afterwards. The basic requirement of satisfactory variable 

characterization or treatment strategy development is the convergence or dependency of 

the use phase or life cycle results on the input parameters. In other words, there must be a 

distinct relationship between the output results and input variables. If not, re-evaluation 

of governing equations and the variable development process must be repeated until a 

pattern (of output results) emerges in the identified independent variables. Once such 

converging relationship is found – Process 3 in Figure 1.1, statistical analysis including 

linear regression can be utilized, Process 4 in Figure 1.1, to systematically characterize 

the changing behavior of use phase or life cycle results as functions of input variables. 

Also, depending on the treatment strategy of variables, correction factors could be 

included in the statistical model. As a result, a reduced form of parametric LCA model in 
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functional forms will be achieved – Process 5 in Figure 1.1, which will provide a 

reasonable level of specificity and carry essential information without having to run 

complicated simulations or conducting mathematical analysis over and over again.     

In the following chapters, I demonstrate the parametric LCA approach with a set 

of case studies – medium-duty truck electrification (Chapter 2), heavy-duty transit bus 

electrification (Chapter 3), and combined cooling, heating, and power for buildings 

(Chapter 4). All case studies follow the same processes illustrated in Figure 1.1. 

 

 

Figure 1.1 Overall Processes for Parametric LCA 
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CHAPTER 2 

MEDIUM-DUTY VEHICLE ELECTRIFICATION 

 

2.1 Chapter Summary 

 Using a parametric modeling approach, I evaluate economic and environmental 

life cycle trade-offs of medium-duty electric trucks in comparison with nine non-electric 

technologies for model year 2015 in the U.S. – conventional internal combustion engine, 

diesel hybrid electric, and idle reduction technologies with each powered by diesel, 

biodiesel, or compressed natural gas (CNG). To develop a parametric life cycle 

assessment model, I modify and integrate the ADVISOR and EPA MOVES models, run 

vehicle dynamic and emissions simulations, and construct a linear regression-based 

prediction model using the simulation results. I develop state-by-state hourly marginal 

electric grid energy consumption, air emissions, and water use factors to assess the 

impact of electric truck charging load on regional electric grids.  

From the overall social life cycle cost standpoint, electric trucks for niche 

application provide positive net social benefits in many areas of the U.S. However, in the 

same niche application, idle reduction technology for conventional diesel and biodiesel 

trucks is also cost-competitive in terms of overall social life cycle cost. For electric trucks 

to definitely outperform other options in typical operating conditions beyond the niche 

application, current electric truck capital costs must drop by 30 – 50%; diesel fuel prices 

must be in the range of 6.5 – 8.1 $/gallon; or carbon emissions reduction must be credited 

by $300 – $2,000 per metric ton of carbon dioxide. I also find that electric trucks can 

increase water intensity by 200%.  
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2.2 Motivation 

Today’s average U.S. automobiles are about twice as efficient as those in the 

1970s (Davis & Diegel 2015). In contrast, average fuel efficiency of current medium-

duty trucks weighing 4.5 – 12 metric tons (10,001 – 26,000 pounds) is more or less the 

same as that of four decades ago (BTS 2015).  The new regulations for medium- and 

heavy-duty vehicles (Federal Register 2015a) will increase fuel efficiency and reduce air 

emissions in coming years. In terms of overall energy efficiency and reducing 

environmental impacts of these trucks, alternative medium-duty freight truck 

technologies such as battery electric (Lee et al. 2013), hybrid-electric (Bachmann et al. 

2015), natural gas (Fan et al. 2015), and biodiesel can help.  

A number of studies have identified the benefits and limitations of different 

medium-duty truck (MDT) technologies (Nellums et al. 2003; Delorme and Karbowski 

2010; Barnitt 2011; Burton et al. 2013a; Lee et al. 2013; Bachmann et al. 2015). What all 

these studies indicate is that there are “conditional” trade-offs. For instance, the 

advantage of the electric-drive technology is maximized in city-type drive cycles (i.e., 

speed-time profiles or schedules), but the benefit diminishes in high speed driving 

conditions that are typical for highway or long-haul operations (Lee et al., 2013). On the 

other hand, what these previous MDT studies are lacking is the prediction capability of 

life cycle trade-offs varying with input conditions. Whether electric or non-electric MDT 

life cycle assessment (LCA), most studies rely on average (Fan et al. 2015) or case-

specific (Lee et al. 2013; Bachmann et al. 2015) parameters, conditions, and assumptions. 

It is hard to come by a study that systematically predicts and explains life cycle trade-offs 

of different MDT technologies with changing input conditions as operationalized 

variables. Here I develop and propose a parametric LCA for evaluating conditional trade-

offs of MDT technologies, focusing on electric trucks.  

Our parametric LCA extends conventional LCA and/or previous MDT life cycle 

studies in that I present LCA results with generic equations, whereas previous life cycle 
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studies report point estimates, i.e., averages or case-specific results, oftentimes with 

ranges. Parametric LCA provides four advantages. First, parametric LCA enables 

systematic prediction of life cycle trade-offs and shows under which conditions electric 

trucks provide the largest benefits. This can help identify strategic niche applications for 

electric trucks and assign electric trucks for the most suitable operating conditions (e.g., 

routes) based on holistic information as to the benefits and trade-offs over a range of 

operating conditions. Second, parametric LCA reveals to what extent the benefits are 

robust under numerous conditions and uncertainties. This information can help guide 

future electric truck technology research, development, and demonstration (RD&D) in 

the long run. Electric trucks will ultimately have to compete with other truck technologies 

for general freight transportation operations rather than just for limited or niche 

applications (e.g., urban delivery). As I sweep through entire input ranges with a 

parametric LCA approach, I can identify necessary conditions for electric truck benefits 

to be robust. Third, the parametric approach requires minimal input (e.g., total distance 

traveled divided by travel time) to evaluate life cycle results and thus alleviates the 

burden of input and output data availability. Not all truck drivers, fleet operators, or 

researchers have the capability of collecting, processing, and analyzing individual 1-10 

Hz duty cycle (speed-payload-grade-time profile) data and/or running complicated 

vehicle dynamic and emissions simulations or collecting experimental measurements. 

Fourth, the parametric LCA explains three things in a predictive manner: How overall 

energy is consumed – varying with input conditions; why medium-duty (or heavy-duty) 

electric vehicles show different energy use patterns compared to light-duty electric 

vehicles; and why this is not the case for non-electric vehicles, that is, almost identical 

pattern for light-duty and medium-duty vehicles. Explaining “how” (predictive) and 

“why” (descriptive) as such will eventually help compare and generalize individual MDT 

life cycle research findings beyond the conditions assumed or tested. Furthermore, 

compared to previous freight truck LCA studies that focused on carbon footprint (Lee et 
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al., 2013; Bachmann et al., 2015), I provide a more comprehensive environmental impact 

assessment (i.e., water and air pollutants emissions) in a parametric manner.  

The rationale for a parametric LCA approach is that vehicle energy use and air 

emissions inherently depend on vehicle dynamics which are a function of drive cycle 

characteristics (e.g., speed and acceleration), vehicle attributes (e.g., vehicle mass, 

aerodynamic drag coefficient, etc.), roadway conditions (e.g., road grade), etc. For 

example, although the exact degree or pattern of the impact can vary with technology, the 

dependency on drive cycles is universal – all being governed by the laws of physics. That 

is, most of the time, more severe drive cycles will increase energy consumption and 

emissions, regardless of vehicle technologies. Numerous studies have shown that vehicle 

energy use and emissions can be predicted and/or explained with drive cycle 

characterization parameters. Examples include Watson et al. (1983), Ross (1994), André 

(2004), Clark et al. (2010), and etc. In other words, once drive cycles are parameterized, 

vehicle operation performance such as energy consumption and emissions can be 

represented and predicted as functions of drive cycle parameters. This logic pertains to 

other input parameters as well. Here I apply this concept to the economic and 

environmental LCA of medium-duty freight truck technologies, incorporating the 

following input conditions as predictors: drive cycles, vehicle weight (or payload), road 

grade, and ambient temperature. 
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2.3 Life Cycle Assessment Goal and Scope 

The goal of my life cycle assessment (LCA) is to compare medium-duty freight 

truck technologies in terms of cost, energy efficiency, fresh water consumption, and air 

emissions impacts (i.e., acidification, eutrophication, smog formation, global warming, 

and monetized human health and ecological damage). As shown in the system boundary 

diagram in Figure 2.1, my life cycle air emissions inventory includes greenhouse gases 

(GHGs – CO2, N2O, and CH4), carbon monoxide (CO), ammonia (NH3), nitrogen oxides 

(NOx), particulate matter (PM2.5 and PM10), sulfur dioxide (SO2), and volatile organic 

compounds (VOC). I also account for PM2.5 and PM10 emissions from tire and brake 

wear. Once these air emissions are tallied, I assess their midpoint life cycle 

environmental impacts – climate change, acidification, eutrophication, smog formation, 

and human health based on TRACI 2.1 (Bare et al. 2002; Bare 2011, 2012) and the 20- 

and 100-year global warming potential (GWP) from the Fifth Assessment Report (AR5) 

 

Figure 2.1. Framework and System Boundary Diagram for Medium-Duty Truck 

Parametric LCA. 
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of the Intergovernmental Panel on Climate Change (IPCC 2013). As for life cycle water 

consumption, I present my result in gallons of fresh water used. For endpoint life cycle 

impact assessment, I utilize APEEP model (Muller 2011) and evaluate monetized air 

pollutants emissions damage cost combined with social cost of carbon emissions (The 

White House 2013). The target audience of my LCA includes policy makers, the general 

public, fleet managers, and LCA researchers. Our study aims to improve understanding 

of both the promise and limitations of medium-duty truck (MDT) electrification under 

various operating conditions and in relation to competing truck technologies. The product 

systems to be compared are 2015 Model Year (MY) medium-duty trucks, specifically, 

gross vehicle weight rating (GVWR) class 6 (8.8 – 11.8 metric tons or 19,501 – 26,000 

lb) goods movement trucks. Table 2.1 summarizes the vehicle specifications. The 

functional unit is the product of weight of freight moved (payload) and distance traveled 

(i.e., ton-km). To comply with this definition, whenever I present the results per distance 

traveled for simplicity, I provide the vehicle weight condition tested so that per-ton-km 

results can be derived. I compare three different vehicle technologies such as internal 

combustion engine (ICE), hybrid-electric, and battery electric for four different fuel types 

such as conventional diesel (or ultra-low sulfur diesel, ULSD), compressed natural gas 

(CNG), biodiesel (BD), and electricity. Under the Renewable Fuel Standard (RFS), 

conventional diesel fuel in the U.S. currently contains approximately 3% of biodiesel by 

volume, and up to 5% of biodiesel blend (or B5) can be called or used as “conventional” 

diesel without separate biodiesel labeling requirement at the pump. In my analysis, I refer 

biodiesel to the petroleum diesel blended with 20% of soybean-based biodiesel by fuel 

volume (or B20). Most of the recent diesel engines and trucks are designed to handle 

B20, but above that blend level, dedicated biodiesel engine and truck will be needed, 

which is not included in my analysis. 
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2.4 Vehicle Production and Refueling Station 

For vehicle and parts production and repairs for the truck technologies with 

specifications in Table 2.1, material-by-material energy use, water consumption, and 

emissions factors from the GREET 2 model (ANL 2015) were applied to truck material 

composition data (Gaines et al. 1998) modified to reflect more recent vehicular materials 

composition (Davis & Diegel 2015). For tires and fluids (e.g., engine oils, transmission 

oils, coolant, etc.), default values in the GREET 2 model were used with adjustments 

based on the difference between light-duty vehicles in GREET 2 and medium-duty trucks 

(e.g., the number of tires, tire size, engine displacement, frontal area, weight, etc.). 

Compressed natural gas (CNG) cylinders, two Type-3 72-inch cylinders (Freightliner 

2014), are not specifically addressed in the GREET 2 model. For this, I assume a 50-50 

share of aluminum (for a metal liner) and carbon fiber (for an overwrap) materials 

(Luxfer 2013). I use EIO-LCA to analyze the energy efficiency, water use, and emissions 

from the refueling stations construction and operation (CMU GDI 2008), based on the 

parameters in Table 2.1 and the following section. Lee et al. (2013) used a similar 

method, combining process-based and EIO-LCA approaches, oftentimes called a hybrid 

LCA. 
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Table 2.1. Modeled Truck Specifications 

Vehicle and parts specifications: (Freightliner 2014; Kenworth 2014; Eaton 2014; SEV 

2014; Allison Transmission 2015; Cummins 2015). Cost data sources: (Fairley 2011; 

Sankey et al. 2011; Deal 2012; ATRI 2013; ANL 2013; Lee et al. 2013, Gibson and 

Adamson 2013; WVU 2014). 

 

Diesel 
Biodiesel 

(BD20) 

Diesel 

or Biodiesel 

Hybrid 

CNG 
CNG  

Hybrid 
Electric 

Model year 2015 

Vehicle weight 

class 
6 

Manufacturer Freightliner SEV 

Gross vehicle 

weight (ton) 
11.8 (curb weight + payload capacity) 

Overall size (m) 8.8 (length) x 2.2 (width) x 2.8 (height) 

Curb weight (kg) 7700 7700 7980 7960 8240 6830 

Payload cap. (kg) 4100 4100 3820 3840 3560 4970 

Engine model & 

power (kW) 

Cummins ISB 6.7L 

(186 kW) 

Cummins ISL G250 

(186 kW) 
- 

Aftertreatment 

system 

Diesel Particulate Filter (DPF) and 

Selective Catalytic Reduction (SCR) 

Three-Way Catalyst 

(TWC) 
- 

Electric motor 

power (kW) 
- - 

44 kW 

Induction 
- 

44 kW 

Induction 

120 kW 

PMSM 

Transmission 
6-speed 

Allison 2100 HS 

6-speed 

Eaton Fuller 

6-speed 

Allison 

2100 HS 

6-speed 

Eaton 

Fuller 

Single-gear 

reduction 

Traction battery 

capacity (kWh) 
- - 

1.9 kWh 

(Hitachi Li-

ion) 

- 

1.9 kWh 

(Hitachi Li-

ion) 

80 or 120 

kWh (Li-

ion) 

Fuel tank  
Single aluminum tank 

(50  DGE, diesel gallon equivalent) 

2 Type-3 Cylinders 

(17 DGE) 
- 

Refueling option Gas station CNG station 
AC Level 2 

15kW 

Refueling station 

cost ($) 
- 

141,000 per truck for 10 

fleet; 43,000 per truck for 

50 fleet 

7,000 

Tire (6 

pieces/truck) 
Michelin 215 75R17.5 

Capital cost ($) 75,000 75,000 115,000 105,000 145,000 
150,000 - 

180,000 

Battery pack 

specific cost 

($/kWh) 

- - 
See SI – 

Section 7 
- - 

See SI – 

Section 7 

Maintenance cost 

($/mile) 
0.2 0.2 0.16 0.22 0.22 0.14 

 



 11 

2.5 Cost 

I include purchase cost without incentives, maintenance and repairs cost, fuel 

cost, and additional internal combustion engine (ICE) emissions-related cost (e.g., 

aftertreatment fluid cost). I also account for air emissions damage cost as mentioned 

earlier. All monetary values are in constant 2015 dollars. Purchase prices for model year 

2015 class 6 freight trucks are $75,000, $115,000, and $105,000 for diesel, hybrid, and 

CNG models, respectively (Deal 2012; ANL 2013). The electric truck with an 80 kWh 

battery costs $150,000 and the one with a 120 kWh battery costs $180,000 (SEV 2014). 

Maintenance and repair costs are $0.2/mile for diesel, 0.16 for hybrid, 0.22 for CNG, and 

0.14 for electric (ANL 2013; ATRI 2013). For hybrid and electric trucks, I assume three 

battery replacements over a vehicle’s operating lifetime. The first replacement will be 

covered by manufacturer warranty and the remaining two will cost fleet operators. Future 

battery price is expected to go down to $250/kWh by 2020 (Fairley 2011; Sankey et al. 

2011; Gibson and Adamson 2013). CNG refueling station costs about $141,000 per truck 

for the fleet of 10 natural gas trucks and $43,000 for the fleet of 50 trucks (WVU 2014). 

Electric vehicle supply equipment (EVSE) cost per truck is around $7,000 (Lee et al. 

2013). For current fuel prices, I use state-by-state monthly data (AAA 2015; EIA 2015a). 

For future fuel prices evolutions, I use EIA’s three fuel price projections (baseline, high, 

and low) for petroleum diesel, CNG, and electricity (EIA 2015b). It has been reported 

that approximately two regenerations of a diesel particulate filter (DPF) are required per 

week totaling a half an hour of down time and an additional 0.4 gallon of fuel used per 

week (CARB 2008). Selective catalytic reduction (SCR) for NOx emission control 

consumes urea with approximately 3% of the diesel fuel gallon burnt, at a cost of 

$4/gallon. A residual value is not included in my calculation, because my previous study 

(Lee et al. 2013) shows the residual value is not significant. I assume vehicle lifetime as 

560,000 km (or 350,000 miles) (Huai et al., 2006) over a 20-year time horizon (2015 – 

2035). 
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2.6 Fuel Supply and Electric Grid (Average & Marginal) 

Upstream energy, water, and emissions factors associated with petroleum diesel, 

soybean-based biodiesel, and natural gas fuel production, transmission, and distribution 

were taken from the GREET 1 model (ANL 2015). GREET model assumes about 1% of 

fugitive methane emissions for natural gas. I also consider 5% emissions case, based on 

the literature (Howarth et al. 2011; Schwietzke et al. 2014; Camuzeau et al. 2015). I 

assume about 75% carbon uptake credit for soybean-based biodiesel production (Wang et 

al. 2011). I use GREET factors for power plant construction and operation as well as 

power generation fuel supply. For on-site energy consumption, water use, and air 

emissions in power plants, I use EPA CEM’s hourly data (EPA 2016a) augmented with 

EPA NEI database (EPA 2015a). This enables us to account for heterogeneity in energy 

efficiency and air emissions of different power plants in different locations and times. I 

estimate water withdrawal and consumption factors for thermo-electric power plants 

based on EIA data (EIA 2015c) for 2013. I aggregate individual boiler-level data to 

cooling systems and power plants, with differentiation by fuel type, prime mover, water 

source type (e.g., surface, ground, fresh, saline, etc.), and cooling system type (e.g., once-

through, recirculating, dry, hybrid, etc.) for each state. 

I model state-by-state hourly power generation with a simplified load-filling 

approach. I take 8760-hour power load profiles (FERC 2015) and fill with actual hourly 

fossil fuel generation data (EPA 2016a) and renewable power generation (NREL 2015; 

EIA 2015c). I then convert these generation results to consumption-based hourly 

electricity mix, based on the methodology proposed by Marriott and Matthews (2005) 

and inter-state electricity trade data (EIA 2015c), as follows: 

𝐸𝐺𝑒𝑛𝑠,ℎ =
∑ (𝑃𝑠,ℎ,𝑓∙𝐸𝑠,ℎ,𝑓)
𝑁𝑠,𝐹
𝑓

∑ 𝑃𝑠,ℎ,𝑓
𝑁𝑠,𝐹
𝑓

                             (2.1) 

𝐸𝐶𝑜𝑛𝑠𝑠,ℎ =
(𝑃𝑠,ℎ∙𝐸𝑠,ℎ) − (∑ 𝑃𝑠𝑒,ℎ ∙𝐸𝑠𝑒,ℎ

𝑁𝑠,𝐸
𝑒 ) + (∑ 𝑃𝑠𝑖,ℎ∙𝐸𝑠𝑖,ℎ

𝑁𝑠,𝐼
𝑖

)

𝑃𝑠,ℎ − ∑ 𝑃𝑠𝑒,ℎ
𝑁𝑠,𝐸
𝑒  + ∑ 𝑃𝑠𝑖,ℎ

𝑁𝑠,𝐼
𝑖

                      (2.2) 
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where 𝐸𝐺𝑒𝑛𝑠,ℎ and 𝐸𝐶𝑜𝑛𝑠𝑠,ℎ are energy use, water intensity, and air emissions factors for 

the 𝑠-th state and ℎ-th hour for power generation and consumption, respectively; 𝑃𝑠,ℎ,𝑓 

and 𝐸𝑠,ℎ,𝑓 are power generation and energy use, water intensity, and air emissions for the 

𝑠-th state, ℎ-th hour, and 𝑓-th fuel type; 𝑃𝑠𝑒,ℎ and 𝑃𝑠𝑖,ℎ  are the export to the 𝑒-th state (𝑠𝑒) 

and the import from the 𝑖-th state (𝑠𝑖) in the ℎ-th hour; and 𝑁𝑠,𝐹, 𝑁𝑠,𝐸, and 𝑁𝑠,𝐼 are the 

total number of fuel types, exporters, and importers for the 𝑠-th state, respectively. 

Although the equations Eqs. (2.1) and (2.2) are used for state-level results, whenever 

possible, I aggregate the input data based on individual boilers and/or generators.    

Based on the same data sources and Siler-Evans et al.’s methodology (2012), I 

estimate hourly marginal electric grid efficiency, air emissions, and water consumption 

(see Figure 2.2 for example). This information constitutes average and marginal 8760-

hour power consumption characteristics for 2014. For future years, I use state-by-state 

carbon emissions reduction goals in the clean power plan (CPP) (Federal Register 

2015b). For this assessment, I divide all power generating units into three separate 

groups: zero emitting units (ZEU), U.S. Clean Power Plan (CPP) target units (CPPTU), 

and non-CPPTU. I estimate carbon emissions factors for 2030 as follows: 

𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2014 =
𝐶𝑂2𝑇𝑜𝑡𝑎𝑙,2014

𝐺
                          (2.3) 

𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2030 =
1

𝐺
∙ [𝐺𝐶𝑃𝑃𝑇𝑈 ∙ 𝐶𝐸𝐹𝐶𝑃𝑃𝑇𝑈 ∙ (1 − 𝛼) + 𝐺𝑁𝑜𝑛−𝐶𝑃𝑃𝑇𝑈 ∙ 𝐶𝐸𝐹𝑁𝑜𝑛−𝐶𝑃𝑃𝑇𝑈]    (2.4) 

𝛾 =
𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2030

𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2014
                (2.5) 

𝐸𝐹𝐿𝐶,2030 = 𝐸𝐹𝐼𝑛𝑓𝑟𝑎 + 𝐸𝐹𝐹𝑆 + (𝛾 ∙ 𝐸𝐹𝐺𝑒𝑛)             (2.6) 

where 𝐶𝑂2𝑇𝑜𝑡𝑎𝑙,2014 is total (direct and on-site) carbon dioxide emissions (kg); 𝐺 is total 

power generation (kWh); 𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2014 and 𝐶𝐸𝐹𝑇𝑜𝑡𝑎𝑙,2030 are overall carbon emission 

factors for 2014 and 2030; 𝐺𝐶𝑃𝑃𝑇𝑈, 𝐺𝑁𝑜𝑛−𝐶𝑃𝑃𝑇𝑈, 𝐶𝐸𝐹𝐶𝑃𝑃𝑇𝑈, and 𝐶𝐸𝐹𝑁𝑜𝑛−𝐶𝑃𝑃𝑇𝑈 are 

power generation and carbon emissions factors for CPPTU and Non-CPPTU; 𝛼 is the 

CPP carbon emissions reduction target; 𝐸𝐹𝐿𝐶,2030 is life cycle energy use and emissions 
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factors for 2030; 𝐸𝐹𝐼𝑛𝑓𝑟𝑎, 𝐸𝐹𝐹𝑆, and 𝐸𝐹𝐺𝑒𝑛 are energy use and emissions factors for 2014 

infrastructure, fuel supply, and generation (or on-site), respectively. Note that 𝐶𝐸𝐹𝑍𝐸𝑈 is 

zero and thus not included in Eq. (2.4) and that the CPP carbon emissions reduction only 

applies to direct (or on-site) emissions in Eq. (2.6). Given the complexity of water 

consumption for power generation, carbon emissions reduction may not be directly 

 

Figure 2.2. Example of hourly average and marginal emissions rates for the state of 

New York in winter in 2014. Power consumption fuel mix (top left); Marginal carbon 

dioxide emissions based on 8760-hour (a whole year) marginal power consumption 

(top right); Relationship between marginal fossil fuel mix and total fossil fuel 

generation as a proxy of overall power demand (bottom left); Comparison between on-

site (not life cycle) average and marginal hourly carbon dioxide emissions and fresh 

water consumption (bottom right). 
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related to water use reduction. For simplicity, however, I apply the same method above 

for water consumption for future years’ power generation and consumption. 
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2.7 Vehicle Dynamic Simulation and Integration with VSP-based 

Emissions Model 

For vehicle operation energy consumption, I use ADVISOR (ImagineMade, 

2014), a vehicle dynamic simulator. Compared to a simpler tractive energy-based 

modeling approach (Davis and Figliozzi, 2013; LaClair 2012), the vehicle dynamic 

simulation software accounts for non-linear behavior of vehicle components (e.g., non-

constant efficiency of internal combustion engine, traction battery, etc.). Also, the vehicle 

dynamic simulator is helpful for reducing potential biases (i.e., over- or under-

estimation), as the software accounts for physical limits of vehicle performance (e.g., top 

speed, maximum payload, drive cycle traceability, etc.). U.S. EPA specifically sets 

allowable range of traceability (following requested vehicle speed) (40 CFR part 1066). 

Based on this requirement, I filter simulation results and use only those that pass the 

traceability test.  

For the tail-pipe emissions analysis, I utilize MOVES (EPA, 2014a), a modal 

emissions model based on emissions data stratification by statistical or deductive 

definition of vehicle operating modes. MOVES is built upon the concept of vehicle 

specific power (VSP), the instantaneous tractive power per unit mass of the vehicle, 

proposed by Jimenez (1999). VSP is oftentimes called scaled tractive power (STP). 

MOVES has numerous disadvantages and issues. Examples include lack of transparency 

of input data, mismatch with real-world vehicle test results, time lag in data collection 

and implementation for more recent model years, no consideration of variations in 

vehicle specifications or physical capacity (e.g., traceability), and etc. For CNG vehicles, 

MOVES provides emissions factors only for transit buses. I take the ratios between the 

emissions factors for diesel and CNG buses and apply them to diesel trucks and get CNG 

truck factors. Before doing so, as shown in Figure 2.3, I adjust CNG bus emissions 

factors based on vehicle test data (Yoon et al. 2013; WVU 2014) to reflect recent 
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advances in CNG vehicles such as stoichiometric engine equipped with three-way 

catalyst (TWC) system. MOVES also provides no emissions factors for hybrid vehicles. 

For hybrid and idle reduction technologies, I build my own map-based emissions 

 
Figure 2.3. Adjustment factors for MOVES2014-based tail-pipe emissions rates for 

CNG medium-duty truck. Two sets of vehicle test data (Yoon et al. 2013; WVU 2014) 

for EPA Heavy-Duty Urban Dynamometer Driving Schedule (HD-UDDS) were used 

for reference (average of the two data sets). All test vehicles were equipped with 

stoichiometric engine and TWC aftertreatment system. For MOVES2010 erroneous 

data and bugs (e.g., zero VOC rates), see EPA materials (2012a, 2012b). 
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modeling approach based on ADVISOR internal combustion engine model and MOVES 

emissions factors for conventional vehicles. More detailed description is provided in 

Appendix A. Figure 2.4 shows an example of my integrated vehicle dynamic and 

emissions simulations based on ADVISOR and MOVES. Following the hybrid-electric 

vehicle test guidelines proposed by Wayne et al. (2004) and to minimize bias, I make 

sure that the final state of charge (SOC) at the end of each drive cycle (e.g., 62.5% in 

Figure 2.4) is the same as the initial SOC at the beginning of the drive cycle. 
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2.8 Life-Cycle Inventory Parameterization 

To identify the underlying relationship between input parameters (e.g., vehicle 

operation conditions) and output results (e.g., energy consumption), I run simulations 

(see Figure 2.4 for example) thousands of times with different input conditions for each 

technology and construct a sample space upon which I can develop a statistical 

relationship between input and output variables. I use hundreds of drive cycles collected 

from publicly-available sources – the ARTEMIS project (ARTEMIS 2006), the NGSIM 

program (FHWA 2004), ADVISOR (ImagineMade 2014), MOVES (EPA 2014a), and 

TSDC (NREL 2014a). Part of the results is shown in Figure 2.5, where each data point 

represents an aggregated result of an individual simulation (for example, Figure 2.4). 

Although not all of the drive cycles collected are medium-duty truck-specific and only 

some of them are real-world, they are still useful to build the spectra of possible driving 

conditions (Duran and Walkowicz 2013). Note that I distinguish drive cycle and duty 

cycle: Drive cycle is a speed-time profile, whereas duty cycle refers to time profile of 

speed as well as vehicle weight and/or road grade. Drive cycles can be characterized by 

parameters such as average trip/cycle speed, average driving speed, number of stops, 

maximum speed, positive kinetic energy (PKE), product of speed and acceleration, 

vehicle specific power (VSP), kinetic intensity (KI), aerodynamic speed, characteristic 

acceleration, and etc. (Watson et al. 1983; EPA 1993; Jimenez 1999; EPA 2003; O'Keefe 

et al. 2007; Lascurain 2008; Lascurain et al. 2012; Burton et al. 2013a, 2013b). Energy 

consumption and emissions can be similar for completely different drive cycles, if they 

share common characteristics (O'Keefe et al. 2007; Lascurain  2008; Clark et al. 2010; 

Lascurain et al. 2012; Burton et al. 2013a; LaClair et al. 2014). These studies support my 

parametric approach for the prediction of energy use and emissions based on statistical 

parameterization of input conditions. Figure 2.5 shows that on an operation-only (not full 

life cycle basis), electric vehicles use less energy than diesel or CNG vehicles. This is not 
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Figure 2.4. Vehicle dynamic and emissions simulation – example results for a part (first 

1880 seconds) of Hybrid Truck Users Forum Class 6 Parcel Delivery Driving Schedule 

(HTUF-6PDDS). 
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surprising, considering the relative efficiency advantage of electric-drive systems 

(converting 60% of the electric energy from the grid to useful work) over the internal 

combustion engine (about 20%) (DOE, 2014). Also, electric trucks emit no tail-pipe 

GHGs. 

Among the numerous duty cycle characterization parameters, I choose average 

trip speed, positive kinetic energy, vehicle weight, payload, ambient temperature, and 

road grade. As shown in Figure 2.5, average trip speed has a close relationship with 

energy consumption of non-electric trucks. However, I find that average trip speed or 

positive kinetic energy (or PKE) (Watson et al. 1983) are not very effective in explaining 

the variability of electric trucks’ energy use (Figure 2.6). Therefore, I modify the concept 

of PKE and define weighted PKE (WPKE), as follows: 

𝑊𝑃𝐾𝐸 =
∑ 𝑚𝑖(𝑉𝑖+1

2−𝑉𝑖
2)𝑇−1

𝑖=0

∫ 𝑉
𝑇
0 𝑑𝑡

  for 𝑉𝑖+1 > 𝑉𝑖                                           (2.7) 

where 𝑚𝑖 and 𝑉𝑖 are vehicle weight and speed for the 𝑖-th moment (second) of total time 

duration (𝑇) of the given trip. The newly-defined WPKE can account for medium- and 

heavy-duty vehicles’ dominant kinetic energy in total vehicle energy consumption as 

wells as a mass change over the freight delivery route.  

Although average trip/cycle speed does not have a universal effect as such, other 

variables do. For example, regardless of vehicle technologies, more hilly roads and/or 

more extreme climate conditions will universally lead to increased energy use with 

different degrees of impact (sensitivities) that vary with different vehicle technologies. As 

shown in Figure 2.7, based on the vehicle dynamic simulation, I develop scaling factors 

as a function of road grade for each of the technologies to avoid the biases of averages 

and extremes. Regarding recoverable energy for electric trucks during downhill driving, 

there are three aspects to note: First, the recoverable energy level depends on the initial 

state of charge of traction battery. If the battery is fully charged (hypothetically), no 

regenerative braking energy can be saved. Second, because of the second law of 
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thermodynamics, recovered energy in downhill driving is always smaller than total 

braking energy consumed on the wheels. Third, despite the limitations of recoverable 

energy and irreversibility as such, even without regenerative braking, downhill driving 

requires less overall traction energy than that for level-ground or uphill driving, owing to 

 

Figure 2.5. Use phase energy consumption and tail-pipe greenhouse gas emissions for 

medium-duty freight truck – moving a ton of payload per unit distance. Energy use for 

the electric truck refers to the input (purchased) utility AC electricity to Level 2 EVSE, 

that is, energy consumed by the external charger. CNG 20-YR and 100-YR refer to the 

time horizon of the global warming potential. Tail-pipe GHG emissions from the 

electric vehicle are not shown; see Figure 2.10 for life cycle emissions results. 
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the gravitational acceleration effect, as is the same for non-electric trucks. That’s why we 

see asymmetric patterns in Figure 2.7.  

I develop similar scaling factors for climate condition impact (Figure 2.8), using 

the electric vehicle test data as well as EPA MOVES and IBIS models (ANL 2014; EPA 

2014a; WVU 2014). This type of correction factors can also be found in sensitivity 

analyses – see Noel and Wayson (2012) for example. I use county-by-county hourly 

climate condition profiles and integrate them with the scaling factors, as shown in the 

example in Figure 2.8. Cold or hot climates increase energy consumption for both diesel 

and electric trucks, but non-electric trucks exhibit a different pattern from their electric 

counterpart. Non-electric trucks consume more energy for air-conditioning and removing 

the waste heat while overcoming the hot ambient temperature. In winter time, the energy 

consumption becomes lower, owing to the waste heat of the engine available for cabin 

heating, but can increase again as the climate condition becomes more extreme. 

However, climate condition does not always explain the overall impact, because of the 

confounding effect of fuel prices, specifically due to monthly fuel prices variations. As 

illustrated in Figure 2.8, diesel fuel prices decreased from 2014 to 2015, while CNG 

prices were relatively steady, and shows a direct relationship with seasonal temperature 

variations. Electricity tends to be more expensive in summer than in winter. Therefore, in 

 

Figure 2.6. Relationship between energy use for electric truck operation and kinematic 

(i.e., average trip speed and PKE) and kinetic (e.g., WPKE) variables. 
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Los Angeles, with a mild winter, higher summer electricity prices have larger impact than 

climate conditions, leading to higher fueling cost in summer than in winter. This is not 

the case for New York area, where a cold winter results in higher fuel costs during the 

winter time even though there are higher electricity rates during summer. 

 

Figure 2.7. Energy consumption impact of road grade, based on the result for local 

drayage drive cycle (Thiruvengadam et al. 2015). Biases of averages and extremes (top 

left); Asymmetric impact of road grade for diesel truck (top right); Percentage change in 

energy use for different truck technologies (bottom left); Scaling factors (weighted 

averages of uphill and downhill) for different technologies and road grades. 
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Based on the parameterization discussed above along with vehicle dynamic and 

simulation results, I develop the following generic life cycle inventory prediction models, 

written as the product of powers: 

�̂� = exp(�̂�0) ∙ ∏ [exp(𝑋𝑖)]
�̂�𝑖𝐼

𝑖=1 ∙ ∏ 𝑋𝑗
�̂�𝑗𝐽

𝑗=1 ∙ ∏ [exp (
1

𝑋𝑘
)]
�̂�𝑘𝐾

𝑘=1                      (2.8) 

where �̂�’s are life cycle results (e.g., energy consumption, air emissions, smog formation, 

 

 

Figure 2.8. Impact of local climate condition and seasonal electricity prices variation. 

Scaling factor function for temperature variation (top left); Average hourly temperature 

profiles for 12 months in two select metropolitan areas – New York and Los Angeles 

(top right); Fuel cost with both temperature (6 am – 9 pm average) effect and monthly 

fuel prices variations accounted for (bottom left); Annual fuel cost differential relative 

to conventional diesel trucks (bottom right). 
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etc.); 𝑋’s are independent variables (or predictors) (e.g., average trip speed, payload, 

WPKE, etc.); and �̂�’s are the multiple linear regression parameters estimated based on 

the ordinary least squares method. On top of these generic models, scaling factors for 

road grade and climate condition can be multiplied. Due to data availability, I apply 

county-by-county hourly climate profiles without road grade, but the scaling factors I 

developed can be used when the high-resolution road grade data coupled with drive 

cycles become available. Using the generic models in Eq. (2.8), the complicated vehicle 

dynamic and emissions simulations do not need to be run. Instead, one can simply plug 

the characterization values into Eq. (2.8). For this calculation, I utilize the National 

Renewable Energy Laboratory’s Fleet DNA project data (Walkowicz et al. 2014) for 

1,520 samples of medium-duty truck activity records across the U.S (Figure 2.9). The 

data are based on vehicle routes and duty cycle characterization parameters, which 

matches the parametric modeling framework. I also incorporate EPA SmartWay data 

 

Figure 2.9. Probability density for statistical operating condition of medium-duty freight 

trucks – adapted based on the data from the NREL Fleet DNA project (1,527 samples) 

and EPA SmartWay program. The most severe, average, and the least severe conditions 

refer to the combinations of 5-, 50-, and 95-th percentiles in the two-dimensional 

probability density domain. 
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(EPA 2015b) for statistical distribution of vehicle weight and real-world electric truck 

charging profiles (Duran et al. 2014). 
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2.9 Parametric Prediction of Life Cycle Inventory and Impact 

Assessment Results 

Figure 2.10 shows the life cycle inventory results for vehicle and parts production. 

Despite the lighter curb weight and lack of diesel engine, bulky multi-speed transmission, 

and after-treatment systems, the electric truck is generally worse than the other 

technologies, mostly because of the secondary (or traction) battery packs. This contrasts 

with the operation-level-only comparison, in which the electric truck outperforms the 

other competing technologies in terms of energy use per unit distance traveled (Figure 

2.5).  

For electric trucks, neither operational nor life cycle energy show a strong 

dependency on average trip speed, unlike non-electric trucks. This distinctly different 

pattern between electric and non-electric trucks is not observed in light-duty vehicles 

(Figure 2.11). To explain this difference, based on the vehicle dynamic simulations of 

light- and medium-duty vehicles, I break down life cycle energy consumption into 

individual components (Figure 2.11). Note that the modeled light-duty vehicle is based 

on the Toyota Corolla and that the electric grid I used for the results shown in Figure 2.11 

is based on the U.S. national average for illustration; the overall relationship is also seen 

in other cases. I find two factors are in play. First, as shown in Figure 2.11, for both light- 

and medium-duty non-electric vehicles, the energy associated with the internal 

combustion engine dominates overall life cycle energy consumption, which varies with 

average trip speed. Second, among the operation-level energy use components, useful 

work accounts for the largest portion for electric trucks, which varies with positive 

kinetic energy (not average trip speed) – see Appendix A. In contrast, other energy use 

components including aerodynamic drag and electric motors are more dominant than 

useful work for light-duty electric vehicles, which all vary with average trip speed. For 

these reasons, both light- and medium-duty non-electric vehicles show a changing pattern 
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directly related to average trip speed, which also is seen for light-duty electric vehicles. 

However, this is not the case for medium-duty electric vehicles for which the changing 

 

Figure 2.10. Medium-duty freight truck and parts production inventory (per truck and 

for truck lifetime) in percentage with the diesel truck as reference (100%). Detailed 

data are provided in Appendix A. 
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pattern of life cycle results depend on positive kinetic energy rather than average trip 

speed. In Figure 2.11, note that because of the differences in top speed of light- and 

medium-duty vehicles as well as electric and non-electric trucks, the horizontal axes are 

different.  

As discussed earlier, both life cycle inventory and impact assessment results can 

be evaluated with a parametric modeling approach. Table 2.2 and Table 2.3 show linear 

regression-based parametric models for life cycle energy use and greenhouse gas 

emissions, respectively. For electric trucks, I only show the two select U.S. states for 

simplicity, for minimum and maximum cases as of 2015 in the U.S. These predictive 

models explain 91 to 98% of the variability of life cycle results. Parameters for other life 

cycle results can be found in the Appendix A. Figure 2.12 is a graphical illustration of the 

predictive models in the average trip speed domain, for half-loaded vehicle weight 

condition (see Table 2.1 for payload and vehicle weight information). Because of the lack 

of dependency of electric trucks on average trip speed, I show constant values for electric 

trucks as references, based on the average PKE value from the Fleet DNA project 

(Walkowicz et al. 2014). The minimum for electric trucks is for the daytime charging 

case for the state with the least value for each impact category, whereas maximum refers 

to the nighttime charging case for the state with the largest values.  

As shown in Figure 2.12, CNG trucks show the highest life cycle energy 

consumption across the board. Although CNG trucks have lower tail-pipe GHG 

emissions than their diesel counterpart, CNG trucks emit more GHGs for fuel supply-

chain, vehicle and parts production, and infrastructure installation, which leads to very 

similar overall GHG emissions to that of diesel trucks in the case of 1% fugitive methane 

emissions. However, in the 5% fugitive methane emissions case, CNG trucks, whether 

conventional or hybrid, are the most carbon-intensive technologies in terms of both 100- 

and 20-year global warming potential impacts. Other than smog (ground-level ozone) 

formation impact, CNG trucks do not provide life cycle benefits over diesel trucks. The 
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20% biodiesel option (BD20) is the most water-intensive and electric trucks generally 

consume more (fresh) water than diesel or CNG trucks. Other than water use impact, 

electric truck’s overall life cycle environmental impacts are similar to or slightly higher 

than those of diesel trucks. Electric and hybrid (diesel and biodiesel) trucks are the most 

efficient and least GHG-emitting in general. As Lee et al. (2013) showed, the more 

 

Figure 2.11. Parametric structure of life cycle energy consumption and its variation 

with different technologies (i.e., internal combustion engine vs. battery electric) and 

different vehicle weight classes and/or types (i.e., light-duty passenger cars vs. 

medium-duty freight trucks). 
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severe the drive cycle is (Figure 2.9), the higher the advantage of electrification becomes. 

The same tendency can be found for idle reduction technologies. At lower average trip 

speed conditions, the reduction potential is higher for life cycle energy use, air emissions, 

and water consumption impacts. For average trip (or drive cycle) speed and statistics 

(e.g., average trip speed and positive kinetic energy), please see Appendix A. 

I pick two extreme cases, the most and least severe operating conditions in Figure 

2.10, and show state-by-state results in Figure 2.13. Here the most severe condition refers 

to the 95th percentile of average trip speed and 5th percentile of WPKE in Figure 2.10, and 

the least refers to the combination of severe 5th and 95th percentiles of average trip speed 

and WPKE, respectively. The operating condition severity is directly related to the 

overall energy intensity. As opposed to the constant values in Figure 2.12, now as I 

account for WPKE in addition to average trip speed, I have more accurate life cycle 

results for electric trucks, as shown in Tables 2.2 and 2.3. I present only conventional 

diesel and diesel-powered hybrid trucks as reference technologies to compare with 

electric trucks, because CNG and other (non-electric) truck technologies emit similar or 

higher GHGs, although CNG shows slightly lower life cycle water-intensity (Figure 

2.12). Biodiesel (B20) trucks consume far more water than the other technologies (Figure 

2.12). In most of the states, whether the most or least severe conditions, electric trucks 

provide GHG emissions reduction benefits, although electric trucks almost always 

consume more fresh water than diesel-powered technologies over the life cycle. 

Considering the results in Figure 2.13 are based on marginal nighttime electric grid, 

which tends to have higher carbon-intensity than average or daytime electric grid, I can 

say that the GHG emissions reduction benefits are robust.  

Another thing to note in Figure 2.13 is the complexity of carbon-water-intensity 

of thermo-electric power generation and resulting trade-offs of electric trucks. Simply 

put, the state emitting the least amount of GHGs is not necessarily the place where water 
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intensity is the lowest. Nuclear generating units don’t emit direct greenhouse gases, but 

depending on cooling system type and water source type, fresh water consumption can 

vary widely. For example, plant Vogtle in Georgia draws fresh water from the Savannah 

River for its recirculating cooling system, consuming 0.8 gallons of fresh water per kWh 

Table 2.2. Life cycle inventory (LCI) prediction model for energy consumption – see 

Appendix A for other life cycle inventory and impact prediction models. 

 

Predictors

Dependent variable: , Life cycle energy use (MJ/km) per truck

Conventional ICE Hybrid Electric Battery Electric
Diesel BD20 CNG Diesel BD20 CNG CA CT

Coefficients and t-statistic (in parenthesis)
2.33 2.38 3.52 1.671 1.72 3.29 1.548 1.84

(117.6) (119.3) (61.9) (170.4) (173.6) (82.9) (193) (209)
1.33x10-2 1.35x10-2 1.28x10-2 1.79x10-2 1.8x10-2 3.64x10-2 3.06x10-2 3.31x10-2

(12.9) (12.9) (12.6) (10.8) (10.8) (17.03) (31.1) (30.7)
0.1188 0.1194 0.108 0.153 0.154 0.122 0.192 0.208
(66.3) (66.1) (58.2) (55.1) (55) (34.6) (66.9) (66.2)

-1.59x10-2 -1.61x10-2

(-21.8) (-21.8)
3.27 3.27 1.74 3.91 3.94

(30.3) (30.1) (10.1) (38.7) (38.6)
-0.396 -0.397
(-25.3) (-34.1)

1.57x10-4 1.58x10-4 7.09x10-5 3.73x10-5 3.75x10-5 9.31x10-5 7.66x10-5 8.34x10-5

(21.6) (21.5) (22.6) (13.38) (13.31) (22.5) (28.6) (28.5)

Adj. R2 0.97 0.97 0.98 0.94 0.94 0.91 0.94 0.94

F-stat. 5485 5446 6416 2465 2452 1684 2348 2296

725 725 680 624 624 645 489 489

: total vehicle weight (metric ton) = sum of curb weight (metric ton) and payload 

(metric ton), : average trip speed (km/hour) = total distance traveled divided by total trip 

time taken, : ( ) weighted positive kinetic energy (ton·meter/sec2), and : the 
number of observations (or samples).

For battery electric, I here show the results for two select cases – minimum (daytime charging in 
California (CA) and nighttime charging in Connecticut (CT), based on consumption-based 
marginal electric grid. Other states fall between the two (minimum and maximum).

On top of this generic prediction equation, correction factors may be applied (multiplied) for 
road grade (Figure 2.7) and/or temperature (Figure 2.8). 
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of electricity generated. Plant St. Lucie in Florida is also a nuclear power plant, but it 

draws saline water from the Atlantic Ocean for its once-through cooling system, 

consuming 0 gallons of fresh water. In other words, despite its lower carbon-intensity 

advantage, nuclear power plants can add to regional water stress. In contrast, coal power 

plants certainly emit direct greenhouse gas emissions, but there are wide variations of 

water-intensity. For example, the coal power plant Bowen in Georgia draws fresh water 

Table 2.3. Life cycle inventory (LCI) prediction model for greenhouse gas emissions 

(with 100-year horizon) – see Appendix A for other life cycle inventory and impact 

prediction models. 

 

Predictors

Dependent variable: , Life cycle GHG-100YR emissions (gram/km) per truck

Conventional ICE Hybrid Electric Battery Electric
Diesel BD20 CNG Diesel BD20 CNG VT ND

Coefficients and t-statistic (in parenthesis)
6.68 6.67 7.81 6 6 7.44 4.87 6.205

(334) (333) (151.5) (605) (604) (192) (4215) (683)
1.35x10-2 1.35x10-2 1.28x10-2 1.81x10-2 1.8x10-2 3.55x10-2 4.6x10-3 3.4x10-2

(12.9) (12.9) (13.9) (10.8) (10.8) (17.01) (32.5) (30.5)
0.1194 0.119 0.0997 0.154 0.154 0.1197 0.0282 0.213
(65.9) (65.9) (59.2) (55) (55) (34.8) (68.6) (66)

-1.62x10-2 -1.62x10-2

(-21.9) (-21.9)
3.28 3.28 1.623 3.94 3.94

(30.1) (30) (10.4) (38.6) (38.6)
-4.09 -0.379

(-28.9) (-33.3)
1.59x10-4 1.59x10-4 6.28x10-5 3.75x10-5 3.75x10-5 8.84x10-5 1.08x10-5 8.58x10-5

(21.6) (21.6) (22.1) (13.3) (13.3) (21.9) (28.1) (28.45)

Adj. R2 0.97 0.97 0.98 0.94 0.94 0.91 0.94 0.93

F-stat. 5455 5462 7854 2450 2452 1668 2506 2278

725 725 680 624 624 645 489 489

: total vehicle weight (metric ton) = sum of curb weight (metric ton) and payload 

(metric ton), : average trip speed (km/hour) = total distance traveled divided by total 

trip time taken, : ( ) weighted positive kinetic energy (ton·meter/sec2), and 
: the number of observations (or samples).

For battery electric, I here show the results for two select cases – minimum (daytime 
charging in Vermont (VT) and nighttime charging in North Dakota (ND), based on 
consumption-based marginal electric grid. Other states fall between the two (minimum and 
maximum).

On top of this generic prediction equation, correction factors may be applied (multiplied) 
for road grade (Figure 2.7) and/or temperature (Figure 2.8). 
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from the Etowah River for its four recirculating cooling systems, consuming 0.4 gallons 

of fresh water on average per kWh of electricity generated. However, the coal power 

plant C R Huntley in New York draws fresh water from Niagara River for its once-

through cooling system, with substantially lower fresh water consumption. 

I estimate both direct (or total cost of ownership, TCO) and indirect cost (i.e., 

monetized air emissions damage), based on the cost data discussed earlier and predictive 

life cycle inventory models presented above. I look at three cases in the average trip 

speed and PKE domain in Figure 2.10 – the most severe, average, and the least severe 

conditions. As mentioned above, the most severe condition favors electric trucks, which 

confirms Lee et al.’s (2013) findings. For overall social life cycle cost calculation, I take 

the following method: 

𝑆𝐿𝐶𝐶𝑐,𝑡 = 𝑇𝐶𝑂𝑐,𝑡 + ∑
(𝑆𝐶𝐶𝑡,𝑖∙𝐶𝐸𝑡,𝑖) + (𝐴𝐸𝐷𝐶𝑐,𝑡,𝑖∙𝐴𝑃𝐸𝑐,𝑡,𝑖)

(1+𝑑)𝑖
20
𝑖=0                      (2.9) 

where 𝑆𝐿𝐶𝐶𝑐,𝑡 and 𝑇𝐶𝑂𝑐,𝑡 refer to social life cycle cost (SLCC) and total cost of 

ownership (TCO) (see Lee et al. 2013) for the 𝑡-th technology in 𝑐-th county in the 

continental U.S., respectively; 𝑆𝐶𝐶𝑡,𝑖 and 𝐶𝐸𝑡,𝑖 are social cost of carbon (SCC) and 

carbon emissions (CE) for the 𝑖-th year and 𝑡-th technology, respectively; 𝐴𝐸𝐷𝐶𝑐,𝑡,𝑖 and 

𝐴𝑃𝐸𝑐,𝑡,𝑖 are air emissions damage cost (AEDC) and air pollutants emissions (APE) for 

the 𝑖-th year and 𝑡-th technology in 𝑐-th county, respectively; and 𝑑 is discount rate for 

the time value of money. I find that electric trucks are not cost-effective in both average 

and least severe operating conditions and that conventional diesel is the most cost-

effective across the country, mostly owing to the low diesel fuel prices as of 2015. In 

Figure 2.14, I show only the results for the most severe condition, based on Monte Carlo 

simulations with a range of cost parameters (see Appendix A). The results are based on 

nighttime charging and marginal electric grid. The overall cost (SLCC) difference 

between average and marginal electric grid cases, mostly owing to air emissions damage 

differential, ranges from 1 – 5%. Based on the 𝑆𝐿𝐶𝐶𝑐,𝑡, I pick the most cost-effective 
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truck technology in each county. If I exclude idle reduction option, the truck technology 

choice is biodiesel (B20) hybrid or battery electric. Even under the current low diesel fuel 

price condition, for niche application, battery electric trucks provide positive net social 

benefits in many areas. Once I include the idle reduction option, however, 33% of the 

counties that favored electric trucks and 100% of the counties that favored B20 hybrid 

trucks will now favor idle reduction as the most cost-effective technology, which shows 

the disruptive effect of idle reduction technology. This finding is in part due to the 

operating condition tested (the most severe) for which idle reduction can have the largest 

benefit (see Figure 2.12). For average and least severe operating conditions, biodiesel 

(B20, without idle reduction) and B20 hybrid provides the largest net social benefit, 

respectively. 
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Figure 2.12. Parametric prediction of life cycle impact assessment (LCIA) results. Electric for two states with minimum and 

maximum values. 
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Figure 2.13. Life cycle greenhouse gas (GWP100) emissions and fresh water consumption 

comparison between electric (marginal electric grid and nighttime charging) and two select 

non-electric (conventional diesel and hybrid-electric diesel) technologies – for the least severe 

operating condition (top) and for the most severe (bottom), based on the Fleet DNA truck 

operation statistics (see Fig. 2.10). 
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Figure 2.14. Spatial analysis of 2015 social life cycle cost (sum of total cost ownership and 

monetized life cycle air emissions impacts) for most severe truck operating condition (see 

Figure 2.10) – the best application (or sweet spot) for electric trucks – excluding (top) and 

including (bottom) the idle reduction option, based on Monte Carlo simulation using real-

world truck activity data. 
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2.10 Necessary Conditions for Robust Benefits from Truck 

Electrification 

The future is hard to predict. Nevertheless, successful medium-duty truck 

electrification requires electric trucks to be able to compete cost-effectively in major 

freight truck applications (e.g., typical or average operating conditions) beyond the niche 

market (e.g., the most severe operating conditions). Relying on Monte Carlo simulations 

based on the cost analysis and the predictive LCA models above, I sweep through entire 

domain of average trip speed and WPKE in Figure 2.10 and identify which conditions are 

necessary for electric trucks to become cost-effective. In doing so, I simultaneously vary 

key input cost parameters (e.g., capital cost, fuel prices, etc.). Testing the entire spectrum 

of operating condition characteristics as such is possible mainly because of the 

functionality of the parametric LCA approach with which I can see not only the trade-offs 

but also the robustness of competing technologies over the entire range of input variables. 

Furthermore, without detailed duty cycle data, my model enables the estimation of life 

cycle results with only a few variables of publicly-available truck operating statistics 

(e.g., NREL Fleet DNA project and EPA SmartWay). For simplicity, I define a niche 

application (for electric trucks) as the 5th percentile in the cost-effectiveness probability 

domain between electric and non-electric technologies. Major market or application 

refers to 50th percentile in the same domain. I exclude higher percentile cases, because 

my analysis indicates that it is very unlikely that electric trucks can compete against non-

electric trucks in those conditions (e.g., long-haul and/or highway).  

Figure 2.15 shows necessary conditions for electric trucks to be cost-effective and 

the advantage to be robust against B20 with idle reduction and conventional internal 

combustion engine technologies. Note that B20 with idle reduction is the second most 

cost-effective technology next to battery electric in niche application (Figure 2.14). 
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Figure 2.15. Necessary conditions for electrifying medium-duty freight trucks to be 

cost-effective, and for the advantage to be robust for a niche and major market 

penetration: (a) maximum electric truck capital cost; (b) minimum diesel fuel price; 

(c) minimum carbon price; (d) minimum payback time. Missing values in (c) indicate 

that electric trucks are cost-effective even without giving credits with social cost 

carbon. The analysis is based on Monte Carlo simulation using the parametric life 

cycle model, hourly temperature profiles, hourly marginal electricity consumption 

characteristics, statistical distribution of operating conditions (Figure 2.10).  
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Conventional internal combustion engine trucks powered by biodiesel (B20) is the most 

cost-effective technology in average operating conditions. More than 90% of the counties 

favor B20 in terms of social life cycle cost. Figure 2.15 shows that maximum capital cost 

of electric trucks ranges from $170,000 to $180,000 for niche market and from $105,000 

to $130,000 for major market. This confirms that electric trucks are cost-competitive and 

robust for niche market, even under 2015 electric truck prices ($150,000 - $180,000 for 

the largest and heaviest model – see Table 2.1). However, to penetrate major market, 

electric truck capital costs must fall by about half or 30% at least, varying by region. In 

terms of fuel prices, it is required that 2015-2030 average diesel fuel prices are in the 

range of 2 – 2.5 $/gallon for the cost-effectiveness of electric trucks to be robust in the 

niche market application. This required range is lower than the 2015 average price in all 

the states, which means current low diesel fuel prices do not negate the cost-effectiveness 

of electrification in niche applications. However, more drastic conditions are needed for 

major market application robustness, that is, 6.5 – 8.1 $/gallon. This result implies that 

within reasonably expected diesel fuel prices in the future, electric trucks’ cost-

effectiveness is not robust in terms of the major market adoption potential. According to 

the result of minimum required social cost of carbon (SCC), carbon emissions reduction 

benefit of electric trucks does not sufficiently compensate the lack of cost-effectiveness 

either in niche or major market. To be robust in the major truck market, giving credits to 

carbon emissions reduction for electric trucks, the SCC must be higher than $300 – 2,000 

$/metric ton of CO2, which is significantly higher than the typically-used SCC of $30 – 

60. Although not shown, according to my calculations, the maximum discount rate 

required ranges from 14% to 19% for the niche market, which is similar to or higher than 

the range of 5% - 15% that is typically used. This finding means that the cost-

effectiveness of electric trucks in the niche market is robust. There exist no positive 

discount rate solutions for major market application, confirming that electric trucks are 

less likely to be cost-effective in that application. This result can be inferred by the fact 
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that the necessary maximum capital cost for major market (Figure 2.15 – a) is below the 

normal range for an electric truck ($0.15 – 0.18 million dollars). The electric trucks’ 

robustness in cost-effectiveness for niche application is conditional on the expected 

payback time ranging from 11 – 20 years. If the desired payback time is less than 10 

years, it is very unlikely that an electric trucks can be cost-competitive in comparison 

with non-electric trucks. Lastly, given the wide range of variability of necessary 

conditions between regions, my analysis shows that policy incentives to promote electric 

trucks could be region-specific. For example, if electric trucks are to be adopted for a 

major market application in Massachusetts, about $40,000 – $70,000 incentives or tax 

credits for electric truck purchases may be needed to compensate the expensive upfront 

capital cost, whereas $20,000 – $50,000 will be needed in California. 
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CHAPTER 3 

HEAVY-DUTY VEHICLE ELECTRIFICATION 

 

3.1 Chapter Summary 

Variability and data gaps are among the continuing challenges for life cycle 

assessment (LCA). The economic and environmental life cycle performance of an 

industrial product or its use are inherently functions of the variables and parameters 

associated with product attributes, use profiles, and external environmental 

characteristics. Therefore, much of the variations of LCA results can be explained and/or 

predicted by modeling over the ranges of input values or by using functional forms. This 

is different from uncertainty and/or sensitivity analysis which shows the influence of each 

or group of input variables but doesn’t explain or improve the lack of generalizability of 

LCA results.  

Using transit bus electrification as a case study, I characterize and parameterize 

variable inputs and then treat them as variables in LCA so that results can be presented in 

functional forms or spectra. This shows how LCA results change in relation to input 

variables, and improves the generalizability of the assessment. Also, a parametric LCA 

modeling approach helps not only identify the potential bias of averages and extremes but 

also reveal data and future research needs for LCA in general. 
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3.2 Motivation 

 Variability – lack of consensus in data and results – is recognized as one of the 

unresolved challenges of life cycle assessment (LCA) (Reap et al. 2008a, 2008b; Masanet 

et al. 2013). Relying on commonly-used values can reduce variability at the risk of 

suppressing important variations. Alternatively, variability can be reduced through case-

specific studies, for example, tailored to individual product operating conditions, as in 

comparative LCAs of transportation vehicles and fuels (Raykin et al. 2012a, 2012b; 

Karabasoglu and Michalek 2013; Lee et al. 2013; Taptich and Horvath 2014). Sources of 

variability and their effect on LCA outcomes have regularly been identified and evaluated 

(Kennedy et al. 1997; Huijbregts 1998; Lloyd and Ries 2007; Venkatesh et al. 2011a, 

2011b; Hauck et al. 2014). Even so, the extent to which LCA results can be applied to 

conditions other than the ones studied is unclear. To fill this research gap, I show here a 

parametric LCA modeling approach: when the variation in parameters can be quantified 

and/or the relationship between key input variables and LCA output can be identified, the 

results can be developed as a function of the variables. This parametric approach not only 

can address the generalizability issue but also can help avoid biases of averages or 

extremes by revealing the changing patterns of the LCA results over the ranges of the 

variables. Furthermore, the parametric approach can improve descriptive and predictive 

power of conventional LCA and therefore alleviate the data gap challenge (Steinmann et 

al. 2014) and identify the data needs.  
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3.3 Rationale for Parametric Modeling Approach 

Typical life cycle assessment (LCA) is based on an aggregation structure of linear 

combination of individual life cycle components, as follows: 

where 𝑒 is energy (MJ/mile) or air emissions (gram/mile) inventory or impacts per 

distance traveled (𝑉𝑀𝑇) for life cycle (LC), product production (PROD), operation (OP), 

non-fuel operation and maintenance (NFOM), infrastructure (INFRA), and end-of-life 

(EOL); and 𝜏𝐹𝑆𝐶  is fuel supply chain (FSC) factors – inverse of FSC efficiency (𝜂𝐹𝑆𝐶), 

1

𝜂𝐹𝑆𝐶
, for energy and FSC emissions factor (gram/MJ), 𝐸𝐹𝐹𝑆𝐶 , for air emissions. Most of 

the time, life cycle results (𝑒𝐿𝐶) are presented as point estimates (averages or case-

specific) with ranges. However, as the results are inherently functions of input conditions 

and the aggregation is based on linear combination, once individual life cycle 

components in Eq. (3.1) are parameterized and the aggregated results converge to a 

certain pattern, the final results can also be presented in functional forms. Additionally, 

industrial products including mechanical systems (e.g., vehicles) have relatively clear 

deterministic properties/characteristics unlike socio-economic phenomena that oftentimes 

have no clear cause-and-effect relationship. Having deterministic relationship between 

input and output factors as such is another enabling element for the parametric LCA 

approach. 

 

𝑒𝐿𝐶 = 𝑒𝑃𝑅𝑂𝐷 + (1 + 𝜏𝐹𝑆𝐶) ∙ 𝑒𝑂𝑃 + 𝑒𝑁𝐹𝑂𝑀 + 𝑒𝐼𝑁𝐹𝑅𝐴 + 𝑒𝐸𝑂𝐿 (3.1) 
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3.4 Transit Bus Electrification Case Study 

In this study, I demonstrate the parametric modeling approach through a case 

study of transit bus electrification. I assess life cycle primary energy efficiency as well as 

greenhouse gases (CO2, CH4, and N2O) and air pollutants (CO, NOx, PM2.5, PM10, SO2, 

and VOC) emissions of various types of electric buses in comparison with conventional 

diesel, diesel hybrid-electric, and natural gas buses. More specifically, I evaluate three 

non-electric bus technologies: diesel (DB), diesel hybrid-electric (DHEB), and 

compressed natural gas (CNGB), and four electric bus system architectures: conventional 

battery electric (BEB), BEB with an on-route overhead DC rapid charging system (BEB-

ORC), BEB-ORC with lightweight body (BEB-ORC-LW), and electric trolley (ETB) 

buses. For the demonstration of the parametric approach, I focus on the vehicle operation 

phase (𝑒𝑂𝑃). Vehicle operation is known to be the largest variability component in overall 

life cycle results. Additionally, as shown in the second term in the right side of Eq. (3.1), 

vehicle operation (often called tank-to-wheel) energy also determines upstream fuel 

supply chain (or well-to-tank) energy consumption and emissions results, which further 

increases the importance of vehicle operation phase (𝑒𝑂𝑃) in overall life cycle results. I 

limit my analysis to model year 2015 buses over 2015 – 2027 (12 years) time horizon. 
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3.5 Governing Equations 

Parameterization of vehicle operation energy use and emissions output begins 

with the identification of overall relationship and pattern between the input and output 

values. Also, it is crucial to evaluate relative importance of contributing factors in overall 

energy consumption or emissions so that the results can be parameterized with important 

key input variables. Eq. (3.2) shows a normalization by VMT and scaling factors (𝑆𝐹, 10-

6 for energy and 1 for emissions) for the results from Eqs. (3.3) and (3.4) that are 

simplified governing equations for energy consumption (J) and emissions (gram) for 

vehicle operation phase.  

 

 

 

Similar to life cycle results in Eq. (3.1), vehicle operation results in Eqs. (3.3) and (3.4) 

are the aggregated effect of contributing input parameters, including vehicle properties 

(e.g., vehicle configuration, mass, frontal area, rolling coefficient, etc.), driving 

characteristics (e.g., acceleration, speed, braking, idling, etc.), and environmental 

conditions (e.g., road surface condition, ambient temperature, road grade, etc.). More 

𝑒𝑂𝑃 =
𝑆𝐹 ∙ 𝑒′𝑂𝑃

𝑉𝑀𝑇(= ∫ 𝑉𝑚𝑑𝑡
𝑇

0
)
 (3.2) 

𝑒′𝑂𝑃,𝐸𝑛𝑒𝑟𝑔𝑦 =
1

𝜂𝑅𝐹

1

𝜂𝐷𝑇
∫

𝐶𝑡𝑟

𝜂𝐸𝑆𝑆𝜂𝑃𝑀

𝑇

0
(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠)𝑉𝑑𝑡  

      + 
1

𝜂𝑅𝐹
∫

1

𝜂𝐸𝑆𝑆𝜂𝑃𝑀,𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑇

0
𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦𝑑𝑡  

      + 𝐸𝐼̅̅ �̅�𝑜𝑎𝑠𝑡𝑖𝑛𝑔𝑇𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔 + 𝐸𝐼̅̅ ̅𝑏𝑟𝑎𝑘𝑖𝑛𝑔𝑇𝑏𝑟𝑎𝑘𝑖𝑛𝑔 + 𝐸𝐼̅̅ �̅�𝑑𝑙𝑖𝑛𝑔𝑇𝑖𝑑𝑙𝑖𝑛𝑔  

      − 𝜂𝐷𝑇 ∫ 𝜂𝐸𝑆𝑆𝜂𝑃𝑀𝛾𝑟𝑒𝑔𝐶𝑏𝑟|(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠)𝑉 + 𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝐼𝐶𝐸 +
𝑇

0

                                                                       𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛|𝑑𝑡 

 

(3.3) 

𝑒′𝑂𝑃,𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = ∫ [(1 −
𝐸𝑅𝐴𝐹𝑇

100
)𝐸𝑀𝐹 + 𝐸𝑀𝐼̅̅ ̅̅ ̅̅

𝑤𝑒𝑎𝑟,𝑡𝑖𝑟𝑒|𝑉>0]
𝑇

0
𝑑𝑡  

               + (1 −
𝐸𝑅̅̅ ̅̅ 𝐴𝐹𝑇,𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔

100
) 𝐸𝑀𝐹̅̅ ̅̅ ̅̅

𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔𝑇𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔  

               + [(1 −
𝐸𝑅̅̅ ̅̅ 𝐴𝐹𝑇,𝑏𝑟𝑎𝑘𝑖𝑛𝑔

100
)𝐸𝑀𝐹̅̅ ̅̅ ̅̅

𝑏𝑟𝑎𝑘𝑖𝑛𝑔 +

                          𝐸𝑀𝐼̅̅ ̅̅ ̅̅
𝑤𝑒𝑎𝑟,𝑏𝑟𝑎𝑘𝑖𝑛𝑔] 𝑇𝑏𝑟𝑎𝑘𝑖𝑛𝑔  

               + (1 −
𝐸𝑅̅̅ ̅̅ 𝐴𝐹𝑇,𝑖𝑑𝑙𝑖𝑛𝑔

100
) 𝐸𝑀𝐹̅̅ ̅̅ ̅̅

𝑖𝑑𝑙𝑖𝑛𝑔𝑇𝑖𝑑𝑙𝑖𝑛𝑔  

 

(3.4) 
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specifically, vehicle operation energy is a combined result of propelling the vehicle 

(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎); overcoming resistance force (𝐹𝑟𝑒𝑠) related to rolling, slope climbing, and 

aerodynamic drag; providing accessory load (𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦); coasting (𝐸𝐼𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔), braking 

(𝐸𝐼𝑏𝑟𝑎𝑘𝑖𝑛𝑔), and idling (𝐸𝐼𝑖𝑑𝑙𝑖𝑛𝑔); and recuperating energy by regenerative braking shown 

in the third integral term in Eq. (3.3). Likewise, two of the key input parameters in Eq. 

(3.4), after-treatment emissions reduction efficiency (𝐸𝑅𝐴𝐹𝑇) and engine output emissions 

factors (𝐸𝑀𝐹), are all functions of 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 and 𝐹𝑟𝑒𝑠 as shown in Eqs. (3.5) – (3.7). 

 

 

 

All these contributing factors (𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎, 𝐹𝑟𝑒𝑠, 𝐸𝑅𝐴𝐹𝑇, 𝐸𝑀𝐹, etc.) are essentially functions 

of the duty cycle variables as in Eqs. (3.8) – (3.10). More specifically, vehicle mass (𝑚), 

speed (𝑉), acceleration (𝑎), and road grade (𝜃) affect virtually every component in the 

governing equations for operation phase energy consumption and emissions results in 

Eqs. (3.3) and (3.4).   

 

 

 

Also, duty cycle factors determine the driving regime – traction in Eq. (3.11), braking in 

Eq. (3.12), coasting (𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐹𝑟𝑒𝑠), or idling (𝑒′𝑂𝑃,𝐸𝑛𝑒𝑟𝑔𝑦 > 0 when 𝑉 = 0). 

𝐸𝑅𝐴𝐹𝑇 = 𝑝(𝐿) (3.5) 

𝐸𝑀𝐹 = 𝑞(𝐿) (3.6) 

𝐿 =
1

𝜂𝐷𝑇𝜂𝐸𝑆𝑆𝜂𝑃𝑀
[𝐶𝑡𝑟(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠)𝑉 + 

𝜂𝑃𝑀

𝜂𝑃𝑀,𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦
𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦]  

         - 𝜂𝐷𝑇𝜂𝐸𝑆𝑆𝜂𝑃𝑀𝛾𝑟𝑒𝑔𝑒𝑛𝐶𝑏𝑟|(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠)𝑉 + 𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝐼𝐶𝐸 +

                                                        𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛| 

 

(3.7) 

𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝑚𝑎 = (𝑚𝑐𝑢𝑟𝑏 +𝑚𝑃𝑋)𝑎 (3.8) 

𝐹𝑟𝑒𝑠 = 𝐶𝑟𝑟𝑚𝑔𝑐𝑜𝑠𝜃 +
1

2
𝜌𝐴𝐶𝐷𝑉

2 +𝑚𝑔𝑠𝑖𝑛𝜃 (3.9) 

𝜃 = 𝑡𝑎𝑛−1 (
% 𝑠𝑙𝑜𝑝𝑒

100
) = 𝑡𝑎𝑛−1 (

∆ℎ

𝑠
) (3.10) 
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Having said that, it is not surprising that the duty cycle factors explain large portion of 

the variations in energy use and emissions output values. In addition to the duty cycle 

variables, factors associated with the characteristics (e.g., efficiency, 𝜂𝑃𝑀) of prime 

movers – internal combustion engine (ICE) or electric motor – are among the key 

components in the governing equation for energy, Eq. (3.3). Likewise, prime mover-

related factors (e.g., engine output emissions, 𝐸𝐹𝑀) along with after-treatment systems 

are the important parameters in the emissions governing equation, Eq. (3.4).  

 

 

 

𝐶𝑡𝑟 = {
1, (𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.11) 

𝐶𝑏𝑟 = {
1, (𝐹𝑟𝑒𝑠 + 𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝐼𝐶𝐸 + 𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) < −𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.12) 
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3.6 Direct Operation Phase Energy and Emissions Simulation 

When identifying the relationships between input parameters and output values 

for energy use and emissions, the best approach would be finding analytic solutions to the 

governing equations in Eqs. (3.3) and (3.4). However, because of the non-linearity and 

interactions between the terms, it is difficult to derive analytic solutions for Eqs. (3.3) and 

(3.4). For example, the prime mover efficiency (𝜂𝑃𝑀) is a function of 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎, 𝐹𝑟𝑒𝑠, 

powertrain control algorithm, and other input parameters. For this reason, instead of 

analytic approach, I rely on vehicle dynamic and emissions simulation to estimate the 

energy consumption and air emissions. More precisely, I collect data from the vehicle 

dynamic and emissions simulations to construct a sample space and derive overall 

relationship between the input and output.  

I use West Virginia University’s Integrated Bus Information System (IBIS) as the 

primary data source for fuel consumption and tail-pipe emissions for DB, DHEB, and 

CNGB (Wayne et al. 2011; FTA 2013). IBIS provides only certain level of specificity. I 

complement IBIS with Motor Vehicle Emission Simulator (MOVES) model (EPA 

2014a) for more detailed analysis (e.g., vehicle weight, road grade, and hot/cold 

conditions, etc.). Note that I use MOVES only as a secondary data source to avoid the 

inaccuracy issues (FTA 2013), errors (EPA 2012b), and lack of transparency of the 

statistical black-box model of MOVES. Comparable to the Altoona proving ground test 

results (LTI 2013), the IBIS data are based on thousands of dynamometer and in-use 

vehicle test results archived in publicly-available place and therefore more verifiable and 

reliable. As a benchmark, I also use energy consumption and emissions standards from 

the recent heavy-duty vehicle regulations (Phase I and proposed Phase II) and regulatory 

impact assessments (EPA 2011; Federal Register 2011; Federal Register 2013; EPA 

2015c; Federal Register 2015a). For electric buses, I utilize the Advanced Vehicle 

Simulator (ADVISOR), an open source vehicle dynamic simulation software 

(ImagineMade 2014). I adopt a variety of drive cycles collected from publicly available 
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sources (ARTEMIS 2006; EPA 2014a; ImagineMade 2014) and simulate them in 

ADVISOR and MOVES.  
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3.7 Explanatory Variables 

 As briefly mentioned earlier, parametric modeling approach relies on the 

convergence of the life cycle results. This in turn requires that a set of input variables 

explains a significant portion and structure of the changing relationship (or pattern) of the 

results conditional on the input parameters. To identify the appropriate set of explanatory 

input variables as such, I evaluate the contribution of individual input components in Eqs. 

(3.3) and (3.4) in terms of the variability of overall energy use and emissions results. Not 

only absolute (or gross) contribution of individual components but also relative 

importance between them in overall energy consumption or emissions determine the 

relationship and pattern of changing life cycle results with respect to the input 

parameters. Figure 3.1 shows some of vehicle operation energy consumption components 

for diesel (DB) and electric (BEB-ORC-LW) buses – two technologies at both ends of the 

electrification spectrum. For both non-electric and electric buses, prime mover efficiency 

has a close relationship with average trip speed (�̅�𝑡𝑟𝑖𝑝 in miles/hour, as opposed to 𝑉𝑡 in 

meter/sec) defined in Eq. (3.13), as do aerodynamic resistances. Rolling resistances in 

MJ/mile are almost constant, varying only with vehicle weight (empty or full). To explain 

rolling resistance energy-related variability, vehicle weight will be an essential parameter. 

In contrast, neither the inertia term (or useful work) in Eq. (3.8) nor recuperated energy 

from regenerative braking can be effectively explained by �̅�𝑡𝑟𝑖𝑝. For this, based on the 

inertia-related energy equation in Eq. (3.14), I modify Watson et al.’s (1983) positive 

kinetic energy (PKE) concept and define weighted PKE (WPKE) as in Eq. (3.15). In Eq. 

(3.14) – (3.15), vehicle mass at time t (𝑚𝑡) is the sum of curb weight and passenger 

loading weight, and 𝑁𝑇 is the unit-less length (total duration) of the trip, which has the 

same value as 𝑇 but no unit. Dividing the summation of vehicle mass (𝑚𝑡) by 𝑁𝑇 is trip 

(or cycle) average vehicle mass (�̅�). As shown in Figure 3.1, whether non-electric and 
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electric technologies, WPKE can effectively explain the changing behavior of useful 

work and recovered energy.  

 

 

 

Another important implication in Figure 3.1 is that prime mover characteristics is the 

most influential factor for non-electric buses, as is useful work for electric buses. Engine 

loss accounts for over 60% of overall operation energy use, whereas electric motor’s 

portion is about 10%. The share of useful work for diesel bus is around 7%, but it takes 

40% of energy for electric bus on average. Rolling energy accounts for approximately 

40% of energy use for electric buses, but the variability is very small, which makes useful 

work the largest variability factor. From the parameterization standpoint, given the 

significance of prime mover characteristics for non-electric buses, it is natural to choose 

average trip speed as a key explanatory variable. This complies with previous studies 

(Chester et al. 2010; Delgado et al. 2011; Wayne et al. 2011; EPA 2012c; FHWA 2013; 

FTA 2013; Lajunen 2014) that showed the close relationship between average trip speed 

and energy use and emissions. For electric buses, since useful work is the largest 

contributor of energy consumption and its variability (and thus emissions) in general, 

WPKE becomes the most important explanatory variable. 

 

 

�̅�𝑡𝑟𝑖𝑝 =
2.24∑ 𝑉𝑡

𝑇
𝑡=1

𝑇
 (3.13) 

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∫ (𝑚𝑎)𝑑𝑠
𝐷

0

= ∫ 𝑚𝑉𝑑𝑉
𝑇

0

≈
1

2
∑𝑚𝑡−1

𝑇

𝑡=1

(𝑉𝑡
2 − 𝑉𝑡−1

2)|
𝑉𝑡>𝑉𝑡−1

 (3.14) 

𝑊𝑃𝐾𝐸 =
∑ 𝑚𝑡−1
𝑇
𝑡=1 (𝑉𝑡

2 − 𝑉𝑡−1
2)|

𝑉𝑡>𝑉𝑡−1

∫ 𝑉𝑑𝑡
𝑇

0

≈
(∑ 𝑚𝑡−1

𝑇
𝑡=1 ) [∑ (𝑉𝑡

2 − 𝑉𝑡−1
2)|

𝑉𝑡>𝑉𝑡−1

𝑇
𝑡=1 ]

1000 × 𝑁𝑇 ∫ 𝑉𝑑𝑡
𝑇

0

 

(3.15) 
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Figure 3.1. Component-by-component vehicle operation energy use samples for 

diesel (DB) and battery electric with on-route rapid charging system and lightweight 

body (BEB-ORC-LW) buses: Useful work, prime mover energy loss, and recovered 

energy in the spectrum of average trip speed (a and d) and WPKE (b and e); rolling 

and aerodynamic resistance energy loss (c and f).  
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3.8 Indirect Energy Use and Emissions 

 Energy use and emissions from the upstream fuel supply chain for petroleum 

diesel and natural gas are based on data from GREET (ANL 2015). GREET was also 

used for the power plant construction and electricity generation fuels supply chain 

inventory. For vehicle maintenance and repairs inventory, I use the EIO-LCA database 

(CMU GDI 2008). As for energy consumption and emissions from power plant operation, 

I develop a state-by-state electricity consumption fuel mix and emissions model to 

incorporate spatial and temporal heterogeneity. For this, I use data from the U.S. Energy 

Information Administration’s Annual Energy Outlook and Electric Power Monthly; and 

the U.S. Environmental Protection Agency’s Emissions & Generation Resource 

Integrated Database (eGRID); and Continuous Emissions Monitoring System (EIA 

2015b, 2015c; EPA 2016a, 2016b). Using the methods proposed by Siler-Evans et al. 

(2012) and Marriott and Matthews (2005), I also estimate air emissions for marginal 

electricity consumption. Both average and marginal air emissions for electricity 

consumption are shown in Figure 3.2. I take the result for Year 2014 as a baseline and 

project future years’ emissions reduction potentials based on the Clean Power Plan 

(Federal Register 2015b). 

I use material composition data for diesel-powered city buses manufactured by Volvo 

(Pusenius et al. 2005) and Mercedes-Benz (Ally and Pryor 2008). I disaggregate the data 

for vehicle parts (e.g., body and chassis, powertrain, transmission, tires, fluids, and etc.), 

based on the bus specifications and vehicle parts’ material input information from 

GREET (ANL 2015). I adjust the body and chassis data for my target vehicles based on 

vehicle specifications, and the result is used as a common platform across the bus 

technologies in consideration. I aggregate all the other remaining vehicle parts including 
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fluids for each of the technologies to complete the inventory for vehicle production, 

maintenance, and end-of-life (EOL). More detailed information for bus and parts and 

inventory results can be found in Appendix B.  

 

Figure 3.2. Annual average (Year 2014) life cycle emissions per unit electricity 

consumed (or life-cycle power consumption emissions) for average and marginal electric 

grid in the contiguous U.S. 
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 Natural gas, battery electric (with or without on-route rapid charging), and electric 

trolley buses all require a dedicated energy supply infrastructure to refuel and operate 

vehicles. When it comes to the infrastructure, lock-in effects and economies of scale are 

among the most important factors. The latter is directly related to vehicle fleet size for 

which I use the non-linear marginal infrastructure cost reported in IBIS for CNGB. In 

principle, BEBs can be charged on layover, overnight, or whenever possible. Given the 

large battery capacity (320 kWh) and corresponding range, however, I assume that BEB 

fleet operators will charge the BEBs once a day with the BEB manufacturer’s 324 kW 

fast charger system so the battery lifetime can be maximized (Bullis 2011). In the case of 

the BEB-ORC, to have a comparable operating range to BEB, two ORC (300 kW) 

stations, one in the depot and the other on route will be needed, which can be shared by 

the fleet of 10 – 20 BEB-ORC’s without service disruptions (De Filippo et al. 2014). I 

assume that the fleet of 10 ETBs serve a 24-mile route with the requirement of 12 miles 

of a two-way overhead wire system, in which each ETB is deployed to the route five or 

more times a day (Proterra 2009; KCM 2011). Environmental impact associated with the 

refueling infrastructure are normalized on a per-vehicle basis. I adopt the EIO-LCA 

database (CMU GDI 2008) to analyze the economy-wide impact of refueling 

infrastructure construction and operation.  
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3.9 Spatio-temporal Heterogeneity 

 In addition to the electric grid characteristics discussed above, I consider spatial 

and temporal variations in climatic condition, road grade, and fuel properties. Both 

climatic condition (e.g., ambient temperature and relative humidity) and road grade are 

cyclic parameters which fluctuate from moment to moment and from route to route. 

However, over a long span of time, road grade leads to rather universal (not cyclic) effect 

on energy consumption and emissions regardless of technologies – stiffer road grade 

resulting in higher level of energy consumption and emissions as can be seen in Eqs. 

(3.3) – (3.10). I don’t correlate road grade with city, county, or region, which otherwise is 

misleading, because road grade varies not only between but also within those 

geographical boundaries. In other words, road grade depends on individual routes rather 

than geographical boundaries. Sometimes, road grade is juxtaposed with drive cycle, 

most of the time assuming that the two are independent. However, doing so can introduce 

significant biases. For example, each additional 1% constant uphill road grade reduces 

the top speed of transit buses by roughly 10 miles/hour (i.e., +4% corresponding to about 

40 miles/hour reduction), compared to 65-70 miles/hour maximum speed on level 

ground. Note that road grade also limits maximum achievable acceleration. Because the 

time derivative of the left side of Eq. (3.3) is fixed/rated at maximum power, increasing 

road grade will affect/constrain other parameters (e.g., speed, acceleration, etc.), which is 

another reason why juxtaposing road grade and drive cycle is not a fair and realistic 

analysis. Also, it is crucial to consider not only uphill condition but also downhill portion 

of the trip to more accurately account for round-trip characteristics of vehicles. In case of 

electric buses, other complications may occur. For example, depending on the initial state 

of charge of traction battery which is not very repeatable or controllable, the impact of 

road grade on the energy consumption can be very different. For these reasons, I rather 

exclude road grade in my model, although I evaluate road grade impact of different 

technologies in Appendix B. For climatic conditions, I take county-by-county hourly data 
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for 12 months from MOVES model and average them for the typical transit bus operating 

duration – 7 am to 10 pm, because picking the hottest/coldest day and hottest/coldest 

hour can result in bias of extremes. Fuel properties for diesel or natural gas fuels across 

the country are assumed to be identical based on the MOVES data (EPA 2014a). 

MOVES provides location-specific emissions rates for DB and CNGB, but those 

variations are purely climate-dependent, because MOVES doesn’t differentiate the diesel 

and natural gas fuel properties between locations, especially for inventory year 2014 and 

later. 
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3.10 Linear Regression 

Governing equations mentioned earlier indicate that duty cycle variables and 

prime mover factors determine vehicle operation and fuel supply-chain energy use and 

emissions as well as overall life cycle results. Duty cycle factors are “cyclic” by nature. 

For instance, speed, passenger loading, and climatic conditions are all cyclic (fluctuating) 

within each trip. However, what really matters from the LCA perspective is an aggregate 

effect of those contributing factors. Although passenger loading may be cyclic within a 

trip, overall effect is universal across technologies, that is, higher passenger loading level 

leading to higher energy consumption and emissions. All things considered, I identified 

average trip speed (�̅�𝑡𝑟𝑖𝑝), vehicle weight (�̅�) in metric ton, and weighted positive kinetic 

energy (𝑊𝑃𝐾𝐸) as key variables that can explain the variability patterns. For example, 

�̅�𝑡𝑟𝑖𝑝 explains much of the variability associated with ICE characteristics and 

aerodynamic resistance; �̅� rolling resistance; and 𝑊𝑃𝐾𝐸 useful work (or kinetic energy). 

I also considered a variety of kinematic duty cycle characterization parameters (e.g., 

average positive acceleration, number of accelerations, standard deviation of speed, 

average product of speed and acceleration, etc.) but found that the three variables (�̅�𝑡𝑟𝑖𝑝, 

�̅�, and 𝑊𝑃𝐾𝐸) are enough to explain more than 90% variability of life cycle results. 

Adding more variables would increase specificity, but increasing precision and/or 

complexity doesn’t always lead to more accurate results. Among the three key variables I 

identified, �̅�𝑡𝑟𝑖𝑝 and �̅� are intuitive, easy to understand, and widely used. WPKE is by 

definition, as in Eq. (3.15), directly related to kinetic energy which in turn has much to do 

with driving behavior. More specifically, for the same average trip speed which is a 

proxy for transportation productivity or efficiency (distance and/or passengers moved per 

unit of time), higher WPKE means more aggressive driving or vice versa. Based on the 

data and key explanatory variables discussed thus far, I employ a linear regression 
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method and develop a set of functions/equations for estimating life cycle inventory (LCI) 

for energy consumption and air emissions. 

Figure 3.3 graphically illustrates my basic parametric model, for which some 

quantitative regression results (equations) are presented in Table 2.1, which are all based 

on the generic equation of Eq. (3.16): 

 

where �̂�𝑖,𝑡 is estimated results for the 𝑖-th LCI (energy consumption and air emissions) 

and 𝑡-th technology (DB, CNGB, DHEB, BEB, BEB-ORC, BEB-ORC-LW, and ETB), 

and �̂�’s are estimated parameters. Lines (or curves) in Figure 3.3 show average patterns 

that can be estimated with only average trip speed. Light shades are for the variability 

caused by passenger loading variation. Dark shades are for the impact (on top of the 

passenger loading) of driving behavior variation 

�̂�𝑖,𝑡 = 𝑒𝑥𝑝 [�̂�0𝑖,𝑡 + �̂�1𝑖,𝑡�̅�𝑡𝑟𝑖𝑝 + �̂�2𝑖,𝑡
1

�̅�𝑡𝑟𝑖𝑝
+ �̂�3𝑖,𝑡 𝑙𝑜𝑔(�̅�𝑡𝑟𝑖𝑝)

+ �̂�4𝑖,𝑡�̅�𝑡𝑟𝑖𝑝
2
 + �̂�5𝑖,𝑡�̅� + �̂�6𝑖,𝑡𝑊𝑃𝐾𝐸] 

(3.16) 
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Figure 3.3. Life cycle energy use and GHG emissions – lines: average, dark shades: 

variation related to passenger loading, and light shades: variation associated with 

driving behavior. 
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that leads to deviation from the average lines. For other results than energy use and GHG 

emissions in Figure 3.3 and Table 3.1, please see Appendix B. Note that I take a log-

transformation of the dependent variables to comply with the normality assumption in 

linear regression. Also, I adopt different forms of the variable �̅�𝑡𝑟𝑖𝑝 for better results. 

These modified terms of �̅�𝑡𝑟𝑖𝑝 are correlated with �̅�𝑡𝑟𝑖𝑝, but I draw implications based on 

only �̅�𝑡𝑟𝑖𝑝. The three primary variables (�̅�, �̅�𝑡𝑟𝑖𝑝, and 𝑊𝑃𝐾𝐸) are not correlated one 

another. As Table 3.1 indicates, the parametric model explains a reasonable amount of 

variability in life cycle results. 

Table 3.1. Linear regression models for life cycle energy use and GHG emissions 

 
All parameter estimates presented are statistically significant at a 5% significance level. 

for 

Energy 

(MJ/mile)

DB CNGB DHEB

BEB-ORC-

LW

(WA)

BEB-ORC-

LW

(KY)

Intercept 3.63 4.68 3.6 2.4 2.65

3.35 1.63 1.55

log( ) -0.23

7.9x10-5 6.93x10-5 7.2x10-5 1.62x10-4 1.8x10-4

1.16x10-2 9.46x10-3 1.66x10-2 1.78x10-2 2x10-2

WPKE 7.5x10-2 6.04x10-2 6.7x10-2 6.97x10-2 7.76x10-2

Adj. R2 0.97 0.98 0.95 0.91 0.91

F-statistic 3243 3380 1962 2625 2567

for GHG 

(kg/mile)
DB CNGB DHEB

BEB-ORC-

LW

(VT)

BEB-ORC-

LW

(KY)

Intercept 7.53 7.96 7.42 6.13 6.83

-8.7x10-3

2.9 2.5 1.4

log( ) -8.2x10-2

2.24x10-4 -6.9x10-5 1.04x10-4 8.08x10-5 1.79x10-4

1.06x10-2 8.65x10-3 1.44x10-2 8.7x10-3 2x10-2

WPKE 6.86x10-2 5.6x10-2 5.72x10-2 3.54x10-2 7.7x10-2

Adj. R2 0.97 0.98 0.94 0.92 0.91

F-statistic 2841 3723 1434 2795 2571
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3.11 Assessing Variability 

 I evaluate the impact of individual variability factors, based on the parametric 

LCA model. I first estimate constant terms such as vehicle production, infrastructure, 

non-fuel operation and maintenance, and base (minimum) value of well-to-wheel (direct 

operation plus fuel supply chain) inventory. I then vary values of input parameters and 

see how much the results change along with the direction (increase or decrease). The 

variables I considered include average trip speed (from 50 to 5 miles/hour), driving 

behavior, passenger loading (from 1 to 40), climatic conditions (VT for non-electric as an 

example), fleet size (from 40 to 10), electric bus configuration (conventional battery 

electric to electric trolley), electric bus light-weighting (difference between BEB and 

BEB-ORC-LW), average to marginal (daytime) electric grid, and daytime to nighttime 

marginal electric grid. Figure 3.4 illustrates the results for life cycle GHG (GWP100), 

NOx, and PM2.5 emissions. Average trip speed as well as fuel supply chain components 

cause the largest variability for GHG emissions of non-electric buses. Overall structure of 

variability impacts change significantly between geographical areas for electric buses, 

mainly because of the electricity source variations. Vehicle production and electric bus 

configuration accounts for the largest variability in Vermont (VT), but driving behavior, 

climatic conditions, and marginal electric grid characteristics comprise most of the 

variability in Kentucky (KY). In both Vermont and Kentucky, reducing electric bus 

weight decreases GHG emissions. On the other hand, marginal electric grid leads to an 

increase of GHG emissions in Vermont, whereas the opposite pattern is observed in 

Kentucky because of the transition from coal-based average power generation to firing 



 66 

natural gas (less carbon-intensive than coal) for marginal electricity generation. NOx 

emissions show similar patterns to GHG emissions. However, PM2.5 emissions 

 

Figure 3.4. Individual variability impacts on top of base values (1: production, 2: 

infrastructure, 3: non-fuel operation and maintenance), using the parametric modeling 

approach. Horizontal axes – 4: tire and brake wear particulate matters, 5: remaining well-

to-wheel base value, 6: average trip speed, 7: driving behavior, 8: passenger loading (1 to 

40), 9: climatic conditions (VT for non-electric), 10: fleet size (40 to 10), 11: electric bus 

configuration (BEB to ETB), 12: electric bus light-weighting (BEB to BEB-ORC-LW), 

13: average to marginal (daytime) electric grid, 14: daytime to nighttime marginal electric 

grid. 
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variability reveals somewhat different phenomena. Direct tail-pipe PM2.5 emissions for 

non-electric buses takes a very small portion in overall well-to-wheel emissions (items 4, 

5, and 6 combined), because tail-pipe PM emissions have been reduced dramatically over 

the years by regulations. Tire and brake wear (item 4) or upstream fuel supply chain 

emissions (most of the items 5 and 6) are approximately 250% (500% combined) larger 

than tail-pipe PM2.5 emissions. Unlike GHG and NOx, the variability stemming from 

tail-pipe emissions is very small, and vehicle production, non-fuel operation and 

maintenance, and fuel supply chain are the largest sources of variability. The large 

portion of the average trip speed impact (item 6) is mostly due to not tail-pipe but vehicle 

operation energy consumption varying with average trip speed and resulting in upstream 

emissions from the fuel supply chain. This has an important implication in terms of data 

needs for addressing variability. Depending on the air emission inventory categories (e.g., 

GHG, NOx, PM2.5, VOC, etc.), focus is to be put on different data and thus different 

industry sectors, for example, tail-pipe (or vehicle operation) for GHG and fuel supply 

chain (e.g., natural gas production) for PM2.5.  

 Variability impact is oftentimes complicated by the choice of functional unit, for 

example, vehicle miles traveled (VMT) (Figure 3.3) or passenger miles traveled (PMT, a 

product of VMT and the number of passengers transported) (Figure 3.5). The (marginal) 

impact of vehicle weight and/or passenger loading can be seen in Figure 3.5, for which 

the calculation is based on the following equation:  

 

𝑒𝐿𝐶𝑃𝑀𝑇,𝑡 =
𝑆𝐹 ∙ (𝑁𝑉 ∙ 𝑒𝐿𝐶𝐸𝑚𝑝𝑡𝑦,𝑡 + ∆𝑒𝐿𝐶𝑃𝑋,𝑡 ∙ 𝑁𝑃𝑋)

𝑉𝑀𝑇𝐿𝑇 ∙ 𝑁𝑃𝑋
 (3.17) 
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where 𝑒𝐿𝐶𝑃𝑀𝑇,𝑡 is life cycle inventory of energy consumption or air emissions, the same 

as Eq. (3.1) if multiplied by 𝑁𝑃𝑋, to transport a passenger a mile with the 𝑡-th bus 

technology, 𝑉𝑀𝑇𝐿𝑇 is lifetime vehicle miles traveled (VMT), 𝑁𝑃𝑋 is the number of 

passengers loaded (ranging from 1 to 80), 𝑁𝑉 is the number of buses required to transport 

 

Figure 3.5. Parametric analysis of passenger loading effect on life cycle GHG emissions 

for four different average trip conditions (5, 15, 20, and 40 miles/hour). 
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𝑁𝑃𝑋 (1 for 𝑁𝑃𝑋 ≤ 𝑁𝐶𝑎𝑝𝑡, 2 otherwise) , 𝑁𝐶𝑎𝑝𝑡 is passenger loading capacity for the 𝑡-th 

technology, 𝑒𝐿𝐶𝐸𝑚𝑝𝑡𝑦,𝑡 is life cycle inventory for empty (𝑁𝑃𝑋 = 0) condition, and 

∆𝑒𝐿𝐶𝑃𝑋,𝑡 is incremental life cycle inventory due to unit increase of passenger loading for 

the 𝑡-th technology. The importance of PMT tends to be over-emphasized because of the 

suppressing effect of PMT in communicating the life cycle results. Adding one more 

passenger doesn’t significantly increase the energy consumption or emissions on a VMT 

basis. More importantly, positive or negative change in passenger loading leads to 

universal effect on energy use and emissions (increase for positive change and vice 

versa), regardless of vehicle technologies or configurations. This relatively small and 

universal marginal effect, however, is magnified as the passenger loading is used in 

denominator for PMT-based life cycle results. PMT is a certainly important functional 

unit for transportation LCA, but lack of knowledge on passenger loading is not to limit 

the LCA thereof. Rather, simplification (dividing average life cycle results by PMT) 

provides reasonable estimates, as long as PMT-based parametric life cycle results are 

presented or passenger loading condition is specified as well as VMT-based results. It is 

also crucial to show or acknowledge different capabilities (e.g., maximum speed, 

passenger loading capacity, grade climbing ability, etc.) of different technologies being 

compared. Otherwise, the LCA results can be misleading or unfair. In fact, passenger 

loading is more about criticality than exact number of passengers, especially in terms of 

comparing different technology options. As shown in Figure 3.5, even when not knowing 

exact passenger loading condition, the parametric LCA approach enables an easy 

evaluation of the effectiveness of improving ridership (increasing passenger loading) in 

comparison with switching from non-electric to electric bus technologies. In case of 5 

miles/hour average trip speed, improving ridership is less effective than switching to 

electric buses for reducing GHG intensity for the same PMT. However, the comparison 

changes drastically for higher level of passenger transportation demand, because electric 
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buses have a lower passenger loading capacity than non-electric counterparts, as can be 

seen in Figure 3.5-(b) and (c). However, in medium- to high-speed operation in 

Kentucky, ridership improvement is much more effective way of achieving GHG 

emissions reduction. Carrying more passengers leads to increased energy consumption 

and emissions per unit distance traveled but is still much more efficient way of reducing 

emissions than switching to electric buses, in part because the marginal penalty in energy 

use and emissions are smaller than the gain in passenger transportation efficiency. 
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3.12 Uncertainty 

In addition to variability, uncertainty can make LCA studies less generalizable. 

For example, there is no consensus with regards to tail-pipe or upstream fugitive methane 

(CH4) emissions for CNG buses. Depending on the assumptions of CH4 emissions, the 

results can change drastically, because CH4 is about 30 times more potent GHG than 

CO2. When input values are highly uncertain, break-even analysis can be informative, 

which can easily be conducted based on my parametric LCA model. Tail-pipe CH4 

emissions of CNGB used to be over 80 times of those of DB, although the most recent 

heavy-duty vehicle regulations require CNGB’s tail-pipe methane emissions to be the 

same as DB’s. So, the possible range of the tail-pipe CH4 emissions ratio between CNGB 

and DB is 1 to 80. And I test 1 – 10% fugitive methane emissions range for CNG 

production. As shown earlier, GHG emissions of CNGB and DB vary in the average trip 

speed spectrum, which means that the break-even methane emissions will also vary 

accordingly. As shown at the top of Figure 3.6, higher average trip speed increases break-

even methane emissions. Per 100-year global warming potential (GWP), at 50 miles/hour 

average trip speed, CNGB will have lower GHG emissions than DB up to 4% fugitive 

emissions level. Because the break-even methane emissions depend on average trip speed 

as such, I conduct 2-dimensional break-even analysis, testing tail-pipe and upstream 

fugitive CH4 emissions simultaneously. Now, the break-even value is the average trip 

speed. The bottom of Figure 3.6 indicates that 5% fugitive emissions will make CNGB 

GHG emissions always higher than DB, no matter what the tail-pipe methane emissions 

are. In other words, even if CNGB’s tail-pipe methane emissions pair with DB, CNGB’s 

life cycle GHG emissions will not become lower than DB unless the fugitive methane 

emissions are reduced. Another important implication of Figure 3.6 is that reductions in 

both tail-pipe and fugitive methane emissions would not result in lower GHG emissions 

for CNGB compared to DB, especially for low to medium speed range. Lower GHG 

emissions benefits of CNGB’s will be limited for high-speed operating conditions even 
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Figure 3.6. Parametric breakeven analysis for fuel supply chain fugitive CH4 

emissions and tail-pipe CH4 emissions for CNGB relative to DB. Top: 1-dimensional 

breakeven analysis, bottom: 2-dimensional analysis for GWP100 (left) and GWP20 

(right) cases. 
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with significant reductions in tail-pipe and/or fugitive methane emissions. Multiple 

factors are in play here. Despite the lower CO2 intensity of natural gas fuel compared to 

petroleum diesel, lower operation efficiency, heavier weight, and new infrastructure 

requirement of CNGB in comparison with DB have a penalizing effect on life cycle GHG 

emissions. Despite the data gaps and uncertainty regarding methane emissions, as 

demonstrated here with the parametric break-even analysis, once variability and its 

impact can be incorporated methodologically, uncertainty and data gaps could in part 

addressed simultaneously. This exemplifies why the methodological approaches to 

variability are important. Along with uncertainty, variability lies at the center of the 

generalizability issue, but the most urgent and important step to take is to understand 

what is causing the variability, most importantly, not by a case-by-case but by generic 

methodological approach.  
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CHAPTER 4 

COMBINED COOLING, HEATING, AND POWER FOR BUILDINGS 

 

4.1 Chapter Summary 

Life cycle assessment is a method to evaluate economic and environmental 

benefits and tradeoffs of technologies, human activities, and systems. Data gaps, 

variability, uncertainty, and weak generalizability are among the continuing challenges in 

life cycle assessment. As a way of resolving these issues, a parametric life cycle 

assessment framework is proposed and demonstrated, using the case study of 

decentralized power generation for buildings. The parametric life cycle assessment 

involves investigating governing equations; identifying overall relationships between 

input and output variables; evaluating characteristics and typology of input and output 

variables; assessing relative importance and contribution of individual input parameters 

based on simulation or statistical analysis; and developing a parametric form of life cycle 

assessment models. 

I show the parametric life cycle assessment approach can systematically and 

effectively explain and predict more than 90% of variability in the life cycle trade-offs of 

combined cooling, heating, and power technologies such as microturbines and fuel cells 

with the building energy demand characteristics as input variables. I also propose a 

decoupled modeling strategy for the parametric life cycle assessment, particularly for the 

application of decentralized power generation technology analysis. Our results indicate 

that microturbines or fuel cells can reduce environmental impacts such as air emissions 

and water consumption, but those technologies are generally not cost-effective in 

comparison with conventional building energy systems. Decentralized power generation 

will be inherently fuel switching (from centrally-generated electricity to natural gas) and 

move the emissions sources from the central power plants to population centers. The cost 
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that customers must bear to achieve 100% electric grid independence by relying on 

natural gas or other fuels will be 50% higher than the cost they currently pay for the 

energy services.   
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4.2 Motivation 

Conventional residential and commercial buildings in the U.S. rely on energy 

from natural gas and electric grids to meet the thermal and electric energy demand. For 

typical building energy systems, thermal energy is supplied from on-site combustion of 

natural gas, and electrical energy is delivered from electricity generation in centralized 

power plants. One of the disadvantages of this conventional building energy system 

architecture is a mismatch of waste heat streams in central power plants and thermal 

energy needs in buildings in dispersed locations. As an alternative, on-site or 

decentralized electricity production enables the direct utilization of the waste heat from 

the power generation process, improving overall energy efficiency. On-site power 

generation as such also provides increased energy self-sufficiency and resilience against 

power outage of centralized electric grid. One promising technology for decentralized 

building energy systems is combined cooling, heating, and power (CCHP) which is also 

called combined heat and power (CHP) when there is no cooling component in the 

system.  

CHP/CCHP systems are comprised of a prime mover for power generation and 

waste heat recovery system which is linked to heater for space or water heating and 

absorption chiller for space cooling. For this study, I analyze two types of prime movers: 

fuel cell (FC) and microturbine (MT) powered by natural gas (NG). Both prime movers 

are used for topping cycle, as opposed to bottoming cycle for waste heat-based power 

generation. Oxidation is a common underlying electricity generation mechanism of FC 

and MT, but FC is based on electrochemical process whereas MT is based on 

combustion, resulting in different electrical and thermal characteristics. Previous studies 

evaluated various aspects of the CHP/CCHP systems and decentralized power generation. 

By and large, they all can be categorized into four groups: Comparison of different prime 

mover technologies, evaluation of system operation control strategies, system design, and 

assessment of geographical and building type suitability for CHP/CCHP. Table 4.1 
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summarizes and characterizes the scope and some of the key aspects analyzed in previous 

CHP/CCHP literatures. 

I address the key factors that previous studies identified as important in evaluating 

CHP/CCHP systems, including system design, building energy demand characteristics, 

system operating strategy, variations in local conditions, etc. Compared to previous 

researches, however, my focus is to demonstrate a different way of looking at the 

economic and environmental tradeoffs of the CHP/CCHP systems. More specifically, 

previous CHP/CCHP literatures indicate that overall performances vary, but few studies 

show why and how much results vary in a systematic way, particularly from the life cycle 

perspective. I propose a systematic way of explaining and predicting economic and 

environmental performances of CHP/CCHP. In addition, to my knowledge, holistic LCA 

of CHP/CCHP for decentralized building energy systems is scant, especially in the U.S. 

context. Only few studies (Staffell et al. 2012; Balcombe et al. 2015a, 2015b) conducted 

life-cycle assessment (LCA) of the CHP/CCHP systems or technologies. Most studies 

focus on on-site and electric grid energy consumption, air emissions, or water 

consumption. In selecting the best possible technology for distributed building energy 

systems, indirect energy use and environmental impact from the CHP/CCHP system 

production and upstream fuel supply-chain can be significant. Not only that, it is hard to 

find research results that are based on detailed analysis of “avoided” electricity. Most of 

the existing studies rely on average numbers for electric grid. Average electric grid 

conditions can be misleading in determining true benefits of the CHP/CCHP system – 

energy consumption and/or environmental impact that are displaced or reduced by 

adopting CHP/CCHP system. Focusing on more holistic life cycle tradeoffs (i.e., energy 

consumption, air emissions, and water intensity) and displaced electric grid 

characteristics as such, I attempt to answer the following two research questions: What 

are the life cycle trade-offs, more importantly, avoided environmental impacts, of 
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CHP/CCHP for buildings? What explains the variability of the LCA results for 

CHP/CCHP systems?  

In the following sections, I propose a parametric life cycle assessment (LCA) 

approach to systematically predict the life cycle trade-offs of CHP/CCHP systems with 

functions of input factors or variables. This differs from conventional approaches that 

present generalized or case-specific results. For the parametric LCA approach, I first 

qualitatively and quantitatively assess the governing equations that define life cycle 

results (Section 4.3). I then evaluate the typology of variables and develop a strategy to 

deal with different types of variables in the parametric LCA (Section 4.4). To account for 

non-linear characteristics and collect samples for statistical analysis, I run building 

energy simulations and construct a sample space (Section 4.5). I also characterize the 

electricity that is avoided and displaced as buildings generate their electricity using 

CHP/CCHP technologies (Section 4.6). Based on the sample data collected from building 

energy simulation as such and the data for avoided electricity, I develop functional forms 

of  identify underlying relationships between input and output parameters and develop a 

parametric LCA model that can systematically predict the output as a function of input 

variables (Section 4.7). 
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Table 4.1. Summary of CHP/CCHP literatures 

 Geographical 

context 

Building type Prime 

movera 

Operation 

strategyb 
Mago and Chamra 

(2009) 

USA (Columbus, 

MS) 

Office - FEL, FTL, 

HETS and 

others 

Mago et al. (2009); Cho 

et al. (2009) 

USA (multiple 

states and cities) 

Office - FEL, FTL, and 

LP 

Fumo et al. (2009) USA (For Worth, 

TX; Minneapolis, 

MN) 

Office - Others 

Kavvadias and 

Maroulis (2010) 

Greece 350-bed 

hospital 

complex 

ICE FEL 

Mago and Hueffed 

(2010) 

USA (Chicago, 

IL) 

Office - FSS 

Shaneb et al. (2011) England House ICE, SE, 

SOFC, and 

PEMFC 

LP 

TeymouriHamzehkolaei 

and Sattari (2011) 

Iran (multiple 

cities) 

Residential 

(various sizes) 

SE - 

Mago and Smith (2012) USA (Chicago, 

IL) 

Commercial - BL 

Staffell et al. (2012) UK House SOFC - 

Magri et al. (2012) Italy (Milan) House SE - 

Naimaster and Sleiti 

(2013) 

USA (multiple 

cities) 

Office SOFC - 

Pruitt et al. (2013) USA (California 

and Wisconsin) 

Hotel and office SOFC BL and FEL 

Wu et al. (2014) Japan (multiple 

cities) 

Hotels, 

hospitals, stores, 

and offices 

ICE MRM 

Li et al. (2015) China (Dalian) Residential and 

commercial 

ICE FEL, FTL, 

HETL, FSS, 

and FBL 

Angrisani et al. (2015) Italy (Napoli and 

Torino) 

House ICE CL 

Cappa et al. (2015) Italy Residential ICE and 

PEMFC 

- 

Balcombe et al. (2015a; 

2015b) 

UK House SE - 

Shimizu et al. (2015) Japan (Tokyo, 

Sapporo, and 

Naha) 

Office, house, 

and hospital 

Fuel cell - 

James et al. (2015) USA (Atlanta, 

GA) 

Office and 

house 

MT FTL and others 

a Prime movers: ICE – internal combustion engine, SE – Stirling engine, SOFC – solid oxide fuel cell, 

PEMFC – proton exchange membrane fuel cell, MT – microturbine 

b Control strategies: FEL – following the electric load, FTL – following the thermal load, HETL – 

hybrid electric-thermal load following, FSS – following the seasonal operation strategy, FBL – 

following the electric-thermal load, CL – constant load, LP – linear programming, MRM – maximum 

rectangular method, BL – baseload 
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4.3 Governing Equations 

Parametric LCA starts with the evaluation of governing equations that determine 

all or part of the life cycle results. Governing equations provides theoretical foundation 

when characterizing and parameterizing life cycle results as functions of the input 

variables. For CHP/CCHP systems shown with a schematic in Figure 4.1, thermodynamic 

relationships between key components can be written as follows: 

𝑃𝐸𝑙𝑒𝑐 = 𝜂𝐷𝐶/𝐴𝐶 ∙ 𝑃𝑃𝑀(𝑓𝐶𝑆,𝑃𝑀) + 𝑃𝐸𝐺                     (4.1) 

�̇�𝐶𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶 𝐶𝐻𝑃

𝐶𝐶𝐻𝑃

∙ 𝑓𝐶𝑆,𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ∙
�̇�𝐶𝑜𝑜𝑙𝑖𝑛𝑔

𝐶𝑂𝑃𝐶𝐶𝐻𝑃,𝐶ℎ𝑖𝑙𝑙𝑒𝑟
                  (4.2)  

+(1 − 𝐶𝐶𝐻𝑃/𝐶𝐶𝐻𝑃) ∙ 𝑓𝐶𝑆,𝑐𝑜𝑜𝑙𝑖𝑛𝑔,𝐴/𝐶 ∙
�̇�𝐶𝑜𝑜𝑙𝑖𝑛𝑔

𝐶𝑂𝑃𝐴/𝐶
 

�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑓𝐶𝑆,ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ∙
�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔

𝜂𝐶𝐶𝐻𝑃,𝐻𝑒𝑎𝑡𝑒𝑟
+ 𝐶𝐻𝑒𝑎𝑡𝑒𝑟,𝐸/𝑁𝐺 ∙ 𝑓𝐶𝑆,ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝐻𝑒𝑎𝑡𝑒𝑟,𝐸 ∙

�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔

𝜂𝐸,𝐻𝑒𝑎𝑡𝑒𝑟
   

  +(1 − 𝐶𝐻𝑒𝑎𝑡𝑒𝑟,𝐸/𝑁𝐺) ∙ 𝑓𝐶𝑆,ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝐻𝑒𝑎𝑡𝑒𝑟,𝑁𝐺 ∙
�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔

𝜂𝑁𝐺,𝐻𝑒𝑎𝑡𝑒𝑟
       (4.3) 

where 𝑃 stands for power, 𝜂 efficiency, 𝑓𝐶𝑆 control factors, �̇� thermal energy flow rate, 

𝐶𝑂𝑃 coefficient of performance, and 𝐶 binary constant parameter for system 

configuration. System components in Figure 4.1 and Eqs. (4.1) – (4.3) include prime 

mover (PM), inverter (DC/AC), electric grid (EG), natural gas (NG), electric or NG 

heater, absorption chiller (or simply chiller), and air conditioner (A/C). �̇�𝐶𝑜𝑜𝑙𝑖𝑛𝑔, 

�̇�𝐻𝑒𝑎𝑡𝑖𝑛𝑔, and 𝑃𝐸𝑙𝑒𝑐 can be determined from the building energy demand profiles archived 

in OpenEI database (OpenEI 2015). Operating characteristics of electrical and thermal 

products, for example, nonlinear efficiency of prime movers, can be found from 

manufacturers’ product specifications and test data. I use Capstone microturbines and 

Bloom Energy’s solid oxide fuel cell (SOFC) as baseline products (Capstone 2016; 

Bloom Energy 2016). For any given moment, control strategy (represented by 𝑓 factors) 

contributes to calculating the output values of each electrical and thermal components. 

Note that Eqs. (4.1) – (4.3) are generic and applicable to any types of CHP/CCHP 
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systems or technologies. Taking integral of Eqs. (4.1) – (4.3) over the time horizon 𝑇 

(e.g., day, month, season, year, or product lifetime) produces the following electrical and 

natural gas energy consumption for building energy systems depicted in Figure 4.1: 

𝐸𝐸𝐺 = ∫ [𝑃𝐸𝑙𝑒𝑐 − 𝜂𝐷𝐶/𝐴𝐶 ∙ 𝑃𝑃𝑀(𝑓𝐶𝑆,𝑃𝑀)]𝑑𝑡
𝑇

0
                     (4.4) 

𝐸𝑁𝐺 =

∫

{
 
 
 

 
 
 

1

𝜂𝐹𝑃𝜂𝐶𝐶𝐻𝑃,𝑊𝐻𝑅(1−𝜂𝐶𝐶𝐻𝑃,𝑃𝑀)

[
 
 
 
 
 

 

𝐶𝐶𝐻𝑃/𝐶𝐶𝐻𝑃 ∙ 𝑓𝐶𝑆,𝐶𝑜𝑜𝑙𝑖𝑛𝑔 ∙
�̇�𝐶𝑜𝑜𝑙

𝐶𝑂𝑃𝐶𝐶𝐻𝑃,𝐶ℎ𝑖𝑙𝑙𝑒𝑟

+ (1 − 𝐶𝐶𝐻𝑃/𝐶𝐶𝐻𝑃) ∙ 𝑓𝐶𝑆,𝐶𝑜𝑜𝑙𝑖𝑛𝑔,𝐴/𝐶 ∙
�̇�𝐶𝑜𝑜𝑙

𝐶𝑂𝑃𝐴/𝐶

 +  𝑓𝐶𝑆,𝐻𝑒𝑎𝑡𝑖𝑛𝑔,𝐶𝐶𝐻𝑃 ∙
�̇�𝐻𝑒𝑎𝑡

𝜂𝐶𝐶𝐻𝑃,𝐻𝑒𝑎𝑡𝑒𝑟 ]
 
 
 
 
 

+𝑓𝐶𝑆,𝑃𝑀 ∙
𝑃𝑃𝑀

𝜂𝐹𝑃∙𝜂𝐶𝐶𝐻𝑃,𝑃𝑀
+ (1 − 𝐶𝐻𝑒𝑎𝑡𝑒𝑟,𝐸/𝑁𝐺) ∙ 𝑓𝐶𝑆,𝐻𝑒𝑎𝑡𝑖𝑛𝑔,𝐻𝑒𝑎𝑡𝑒𝑟,𝑁𝐺 ∙

�̇�𝐻𝑒𝑎𝑡

𝜂𝑁𝐺,𝐻𝑒𝑎𝑡𝑒𝑟}
 
 
 

 
 
 

𝑑𝑡
𝑇

0
    

                          (4.5) 

Similar equations can be developed for air emissions and water consumption. Due 

to nonlinear terms and interaction between variables as well as complex control 

strategies, it is not easy to derive analytic solutions for Eqs. (4.4) and (4.5). Therefore, I 

conduct building energy and emissions simulation as discussed in Section 4.5 below. 
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Figure 4.1. CHP/CCHP system schematic diagram. 
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4.4 Typology of Variables and Treatment Strategy 

Regarding the simplified governing equations shown in previous section, three 

types of variables represent most of the thermodynamic relationships and resulting 

economic and environmental performances: product attributes, operating conditions, and 

environmental factors. To deal with those three types of variables in the parametric 

modeling approach, I adopt characterization, simulation-based, and decoupled modeling 

strategies. Industrial products such as heaters, prime movers, chillers, and air conditioners 

all have unique performance characteristics, and their behavior is mostly predictable once 

product operating conditions are known. From the life cycle perspective, overall end 

results rather than instantaneous changing behavior of the product components will be 

important and useful. In other words, product attributes will be embedded in the overall 

life cycle results and thus I don’t treat them separately. Nevertheless, it is crucial to 

account for their nonlinear and varying performances based on detailed building energy 

and emissions simulation (Section 4.5). Second type of variables is related to operating 

conditions, including building energy demand characteristics and control strategies. I 

consider building energy demand profiles as known variables which will appear in my 

parametric LCA model as inputs. I test a variety of control strategies proposed by 

previous studies (Table 4.1), more specifically, providing base electric or thermal load 

(BEL or BTL), following electric or thermal load (FEL or FTL), and hybrid electric-

thermal load (HETL). Because of the complexity involved in control strategies and their 

impact on life cycle results, I develop a separate parametric LCA model for each of the 

control strategies. Third type of variables includes environmental factors such as local 

climate and built-in systems (e.g., electric grid) that individual building operators or 

owners cannot change or control. Climatic conditions affect product efficiency and other 

components in the CHP/CCHP systems. Climate is decoupled from the building energy 

demand characteristics, because I am primarily interested in characterizing life cycle 

results as a function of input variables such as building energy demand profiles. Once I 
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develop the baseline parametric model (or functions of those characterization variables), I 

incorporate the climatic condition as an additional correction factor. Like climatic 

condition, I also take a decoupled modeling approach for electric grid and on-site results. 

I develop two separate (one for on-site and the other for electric grid) models for each life 

cycle inventory or impact result (see Section 4.6). 
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4.5 Building Energy and Emissions Simulation 

As a bridge from the governing equations and the input variables in those 

equations in Section 4.2 to a parameterized LCA model, I conduct building energy and 

emissions simulation and construct sample space which is a set of the results collected 

from the simulation. Those samples are used later for a statistical analysis to develop a 

parametric LCA model. For building simulation, I take hourly energy demand profiles 

from the OpenEI database (OpenEI 2015) as an input. For a baseline case, I choose a 

building in the largest city for each state in the continental U.S., which leads to 48 cases 

in total.  

With the hourly energy demand profiles, I first conduct a system design 

(component sizing and configuration) for each control strategy and each prime mover. I 

determine the size (or capacity) of prime mover, heater, chiller, and air conditioner based 

on the energy demand characteristics and control strategies. For example, for base 

electric load (BEL) control strategy for microturbine (MT), I pick a prime mover that can 

provide up to 50th percentile of the electrical power demand during the off-peak (March – 

May, and October) period. The CHP/CCHP system performance and competitiveness are 

very sensitive to the utilization level of prime mover. To run and use the prime mover as 

much as possible, the 50th percentile of off-peak demand is a reasonable choice of 

threshold. Above the 50-th percentile threshold, CHP/CCHP is likely to operate more 

frequently but with more energy not fully utilized and thus wasted. Below the threshold, 

the system is going to operate less frequently, but the use value of CHP/CCHP will 

become limited. Finding optimal level of threshold could be investigated further in future 

research, but it is not the focus of my study. When the electrical power demand is above 

the threshold, the prime mover runs at its full capacity and the deficit power is provided 

from the electric grid. When the power demand is lower than the prime mover capacity, 

prime mover output is lowered and switches to following the electric load (FEL) mode. 

In addition to the component sizing, I simultaneously determine the system configuration 
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– single or tandem. Because it is difficult to always match the building energy demand 

and the output energy from the CHP/CCHP system, prime movers are likely to run at part 

load most of the time. Therefore, it is important to consider part load characteristics. In 

case of fuel cell (FC), because of the high efficiency at lower power level (Figure 4.2 – b) 

 

 

Figure 4.2. Electric and thermal efficiency of prime movers – microturbine and solid 

oxide fuel cell. 
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which is the advantage of electrochemical prime mover, single configuration will suffice. 

However, for microturbine (MT), tandem configuration provides higher efficiency at low 

power region in comparison with single configuration, but the choice between single and 

tandem configuration is also constrained by the available MT models in the market and 

the building energy demand characteristics. Whenever possible, I design the system in 

tandem configuration to compare the best MT and FC technologies. 

Once the size and configuration of the system components are determined, I 

simulate hourly system operation for all the elements (i.e., prime mover, chiller, heater, 

etc.) shown in Figure 4.1. I consider part load operating characteristics for both energy, 

water, and emissions, based on the product specifications, emissions certification data, 

and experimental test data (BNL 2009; EPA 2014; Capstone 2016; Bloom Energy 2016). 

The building energy simulation only provides on-site and direct energy consumption, air 

emissions, and water use. Sections 4.6 and 4.7 below discuss the upstream and fuel 

supply chain parts.  
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4.6 Electric Grid 

In addition to CHP/CCHP analysis described in previous section, a fair 

assessment of potential benefits and drawbacks of decentralized energy production for 

buildings also requires accurate evaluation of the centralized electric grid characteristics. 

For example, “avoided” environmental impacts from the centralized electric grid by 

adopting CHP/CCHP technology is secondary and consequential benefit of decentralized 

building energy systems. If the analysis is solely based on average or typical electric grid 

conditions on an attributional basis, the comparison may lead to biases, i.e., under- or 

over-estimation of true environmental impacts. To more accurately reflect the avoided 

and displaced electricity and its environmental impacts, I adopt the following accounting 

method for net emissions of avoided power generation in centralized electric grid:  

𝐸𝑀𝐸𝐺,𝑁𝑒𝑡 = ∫ {(𝑃𝐸𝑙𝑒𝑐 ∙ 𝐸𝑀𝐸𝐺,𝐴𝑣𝑒𝑟𝑎𝑔𝑒) − [𝑃𝐸𝑙𝑒𝑐 − 𝜂𝐷𝐶/𝐴𝐶 ∙ 𝑃𝑃𝑀(𝑓𝐶𝑆,𝑃𝑀)] ∙
𝑇

0

𝐸𝑀𝐸𝐺,𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑}𝑑𝑡                        (4.6) 

where 𝐸𝑀 stands for emissions factors (e.g., grams of NOx per kW of purchased 

electricity), 𝑃𝐸𝑙𝑒𝑐 electrical power demand in buildings, and 𝑃𝑃𝑀 output power from the 

prime mover. What most CHP/CCHP studies assume is that decentralized power 

generation displaces average electricity generation sources: 𝐸𝑀𝐸𝐺,𝐴𝑣𝑒𝑟𝑎𝑔𝑒 and 

𝐸𝑀𝐸𝐺,𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 are equal. This simplistic average electric grid displacement assumption 

implies that the change in emissions due to the introduction of decentralized power 

generation depends solely on how much power or electricity generated from the 

CHP/CCHP prime mover. In reality, that is not entirely true. When all or part of the 

electricity demand in buildings is met by the power generated from decentralized 

electricity generation technologies, electricity generation sources that are displaced by the 

decentralized power production is not the average sources (e.g., 20% of hydroelectric, 

30% coal, 25% nuclear, and 25% natural gas, hypothetically). In reality, it is more likely 

that the displaced or avoided electricity generation sources in centralized electric grid are 
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non-average sources such as natural gas, petroleum, and others used for peak loads or 

ramping-up/down. Therefore, it is crucial to distinguish emission factors for typical or 

average electric grid (𝐸𝑀𝐸𝐺,𝐴𝑣𝑒𝑟𝑎𝑔𝑒) and those for avoided or displaced electric grid 

(𝐸𝑀𝐸𝐺,𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑), which Eq. (4.6) accounts for. Not only that, electricity consumed in one 

state may have not been generated within the state boundary and could have been 

imported from the neighboring states or regions. This requires the distinction between 

power generation and consumption. Using the life cycle energy efficiency, air emissions, 

and water intensity data for marginal (or avoided/displaced) power consumption 

developed by Lee and Thomas (2016a, 2016b), I estimate net environmental impacts of 

CHP/CCHP technologies, as shown in Eq. (4.6). Regardless of electricity generation or 

consumption, I assume 7% loss for transmission and distribution (EIA 2016). 
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4.7 Parametric Life Cycle Assessment 

For economic and environmental life cycle assessment (LCA) of CHP/CCHP 

technologies, as shown in Figure 4.3, I include two sub-systems such as fuel (i.e., natural 

gas and electricity) and CHP/CCHP-related products as well as natural gas heaters and air 

conditioners for conventional buildings. I exclude components related to building 

construction and operation, assuming CHP/CCHP will make only changes in energy 

consumption without significant changes in baseline buildings. The goal of my LCA is to 

compare CHP/CCHP-based decentralized power generation technologies and 

conventional building energy systems in terms of primary energy consumption, water 

intensity, and air emissions (greenhouse gases such as CO2, CH4, and N2O, and air 

pollutants including CO, NOx, PM2.5, PM10, SO2, and VOC). As Figure 4.3 indicates, I 

calculate social life cycle cost for impact assessment and draw implications from both life 

cycle inventory and social life cycle cost results. The intended audience of my LCA 

includes policy-makers, analysts, and researchers interested in the trade-offs of 

CHP/CCHP technologies or decentralized building energy systems. The target industrial 

products are solid oxide fuel cell (SOFC) and microturbine (MT) combined with 

absorption chiller, which is used for midrise (4-story) apartment buildings of 34,000 

square feet across the country over 20 years of lifetime between 2016 and 2036. The 

functional units are energy throughput or end-use energy use (thermal or electrical). Our 

 
Figure 4.3. System boundary diagram. 
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modeling approach shares some elements of consequential LCA, as I incorporate the 

changes (avoided and displaced resources) in electric grid caused by adopting 

CHP/CCHP technologies as discussed in previous section. I adopt a hybrid LCA 

framework, integrating process-based and input-output-based data and methods. I use 

process-based data (ANL 2015) for fuel supply chain for natural gas and electricity and 

product use (on-site power generation) (BNL 2009; EPA 2014b; Capstone 2016; Bloom 

Energy 2016). Input-output-based data set (CMU GDI 2008) is used for product 

manufacture and non-fuel operation and maintenance. Every cost in my analysis is in 

constant 2015 dollars in net present value over 20 years of CHP/CCHP system lifetime, 

at 7% of discount rate. I use Nick Muller’s APEEP model to estimate ecological damage 

costs of air emissions (Muller 2011), based on the state-by-state average damage costs for 

each of ground-level and smoke stack emissions. Despite various potential benefits, 

CHP/CCHP-based decentralized building energy systems are capital-intensive investment 

and may move emissions sources closer to population centers from rural/suburban areas 

where utility-scale power plants are typically located. Having said that, the air pollution 

damage cost estimation can provide useful insights as to overall and monetized trade-offs 

of CHP/CCHP technologies.   

Most importantly, my LCA is oriented towards developing a parametric life cycle 

assessment (LCA) model to systematically explain and predict life cycle trade-offs of 

CHP/CCHP systems in comparison with conventional building energy systems. For this, 

I adopt ordinary least squares (OLS) linear regression method. I characterize building 

energy use profiles with hundreds of variables (e.g., annual mean heating demand, 

standard deviation of summer electricity use, etc.) and evaluate overall relationship 

between those statistical characterization variables and life cycle results. For variable 

selection, I rely on least absolute shrinkage and selection operator (LASSO) and 

correlation coefficients. However, to make my model more intuitive, I choose annual 

average statistics whenever possible, instead of standard deviation and others. Annual 
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average values are relatively more readily available compared to standard deviation and 

other measures for building energy demand statistics. To compare the best CHP/CCHP 

technology and system design for each state with conventional building systems, I run 

simulations for all the possible combinations of prime mover (microturbine or SOFC), 

control strategy (base electric load, following the thermal load, etc.), and system 

configurations (single vs. tandem or CHP vs. CCHP) discussed above. Based on the 

simulations and social life cycle cost estimation for each combination, I pick the least 

cost technology and configuration and compare with the conventional building energy 

system. Although I use sequential optimization for the ease of presentation and analysis 

as such, performances of individual technology and configuration can also be 

parameterized using the same method. In addition to the sequential optimization based on 

social life cycle cost, another strategy I adopt is to decouple life cycle results related to 

on-site energy consumption and those for electric grid. Life cycle results for on-site 

components will be directly estimated by the parametric LCA method. On the other hand, 

due to the heterogeneity of electric grid, I estimate on-site electricity consumption 

separately so that those parameterized electricity use data can be applied to any local or 

regional electric grid. 
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4.8 Results 

CHP/CCHP technologies such as microturbine (MT) and solid oxide fuel cell 

(SOFC) do reduce some of the life cycle air pollutants emissions, as shown in Figure 4.4. 

For example, in the state of Michigan, both MT and SOFC for CHP/CCHP systems 

create less life cycle NOx, PM2.5, and SO2 emissions. Also, MT reduces fresh water 

consumption by around 20% compared to conventional building energy system, but 

SOFC shows higher water intensity than the conventional system. MT and SOFC emit 

higher greenhouse gases (GHG) and VOC. In particular, MT creates significantly higher 

CO emissions than conventional or SOFC technologies. However, the life cycle 

inventory results of air emissions will vary from state to state and from one building 

energy profile to another. Therefore, here I demonstrate a systematic way of predicting or 

describing the air emissions reduction potential of CHP/CCHP technologies. As an 

example, here I show annual life cycle GHG emissions savings as a function of natural 

gas load portion of overall building energy demand, annual total electricity consumption, 

and the natural gas load ration over electricity (Table 4.2). Note that I take a log 

transformation of the dependent variable to comply with the normality assumption of 

OLS linear regression. As indicated in Table 4.2, my parametric life cycle inventory 

model explains 99% of variability in the GHG emissions savings potential. This shows 

why parametric LCA can be an effective way of dealing with the variability in LCA. As 

mentioned earlier, I take a decoupled modeling approach and present a model for annual 

net electricity consumption separately. As in the case of GHG emissions savings, Table 

4.2 shows 91% variability is explainable by the parametric LCA model. With this net 

electricity demand prediction model, any LCA researchers or practitioners can estimate 

electricity consumption using the building energy demand characteristics and then 

multiply with the electric grid energy efficiency, air emissions, and water intensity data to 

get life cycle results. This result can then be combined with the on-site life cycle results 

(e.g., GHG savings potential in Table 4.2) to produce overall life cycle results. 
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Despite that MT or SOFC CHP/CCHP systems provide emissions and water 

consumption savings potential as discussed above, MT or SOFC is not cost-competitive 

in comparison with conventional building energy systems. In state of Michigan, social 

life cycle of MT-based CHP system with base electric load (BEL) control strategy is 

slightly lower than conventional system, but generally my analysis indicates that MT and 

particularly SOFC don’t have cost competitiveness. The air emissions reduction 

potentials and their damage cost reduction effect are not sufficient to make the 

CHP/CCHP systems cost-competitive. Also, as in the case of air emissions and water 

consumption above, social life cycle cost comparison varies from one area to another. For 

instance, MT-BHTL system shows the lowest social life cycle cost among CHP/CCHP 

 

Figure 4.4. Life cycle inventory results – Michigan as an example. 
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technologies in Georgia, but SOFC-BHTL is the least-expensive CHP/CCHP system in 

California. Dealing with each scenario on a case-by-case manner is time-consuming and 

not very efficient way of analyzing life cycle trade-offs of CHP/CCHP technologies. I 

demonstrate that the social life cycle cost differential can be predicted in a systematic 

way with the parametric LCA. Figure 4.6 shows the social life cycle cost (SLCC) results 

from building energy and emissions simulation (Section 4.5) and SLCC results from a 

parametric SLCC model which explains 92% variability of SLCC. As can be seen in 

Figure 4.6, parametric LCA approach is a very effective way of explaining and predicting 

life cycle results whether life cycle inventory or impact assessment. Previous studies have 

shown that spark spread (or fuel prices ratio or differences between natural gas and 

electricity) can explain the cost-effectiveness of CHP/CCHP systems. However, as shown 

in Figure 4.6, the spark spread does not sufficiently explain the changing pattern of 

Table 4.2. Parametric life cycle assessment model, based on decoupled modeling 

approach – greenhouse gas emissions savings example 

Parameters 

(On-site) Annual Life 

Cycle GHG Emissions 

Savings 
 

log(metric ton of CO2e) 

Annual Net Electricity 

Consumption (MWh) 

for CHP/CCHP System 
 

log(EMWhe) 

Intercept 5.14 

(111) 

0.69 

(2.1) 

NG Load Portion -1.29 

(-34.4) 

2.58 

(4.5) 

Total Electricity 

Consumption 

0.01 

(7.67) 

0.105 

(12.9) 

NG/Electricity Load Ratio  -0.28 

(-3.3) 

F-stat. 3240 163 

Adj. R2 0.99 0.91 

(Values in parentheses are t-statistic.) 
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SLCC, which is why my parametric modeling approach produces better descriptive and 

predictive power. 

Lastly, Figure 4.7 shows social life cycle cost results for all the cases that I 

simulated and evaluated for the 48 states in the continental U.S. As can be seen in black 

diamonds, currently the electric grid independence (or the reliance on natural gas over 

electricity) is 40% for typical midrise apartment buildings in the U.S. Whether energy 

concern, power outage, environmental protection, or some other reasons, if building 

operators or owners want to adopt CHP/CCHP technologies and achieve 100% electric 

grid independence (EGI), the additional cost to pay is about 50% for microturbine-based 

CHP/CCHP and much higher for fuel cell-based system. As such, even when the 

 

Figure 4.5. Social life cycle cost results for four select states. Control strategies: BEL 

– base electric load; BHTL – base heating thermal load. 
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environmental impacts are internalized, microturbine or fuel cell-based CHP/CCHP is not 

currently cost-effective approach for reaching 100% EGI.  

  

 

 
Figure 4.6. Social life cycle cost differential in constant million 2015$ for each state 

considered. The result is based on sequential optimization by running all possible 

combinations of system configuration and control strategies and pick the most cost-effective 

CHP/CCHP technology and calculate the cost differential against conventional building 

system without CHP/CCHP. The parametric SLCC model is based on 6 different variables 

(total electricity demand, total natural gas demand, electricity vs. total load ratio, natural gas 

vs. electricity load ratio, electricity vs. natural gas fuel prices differential, and electricity vs. 

natural gas fuel prices ratio) in the same form as the one shown in Table 4.2. 
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Figure 4.7. Cost for electric grid independence (EGI) – all cases (or system design and 

configuration variations) analyzed in this study for 48 states in the continental U.S. 
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4.9 Conclusion 

I developed and demonstrated how parametric life cycle assessment approach can 

be utilized for analyzing economic and environmental life cycle trade-offs of 

microturbine and SOFC-based CHP/CCHP systems compared to conventional building 

energy systems. I showed that the parametric life cycle assessment can be successfully 

applied to evaluating varying trade-offs of the CHP/CCHP technologies. And the same 

methodology can be used for any types of energy systems modeling or analysis. I find 

that microturbine and SOFC-based CHP/CCHP systems provide life cycle air emissions 

and water consumption reduction benefits but currently lack cost-effectiveness and can 

use more life cycle energy for the same level of energy service. Internalizing the potential 

air emissions and water consumption benefits does not significantly improve cost 

barriers. This study is focused on current technologies and two prime movers (i.e., fuel 

cell and microturbine). Future research would evaluate future technological advances as 

well as the interaction between technologies and market evolutions for more diverse 

prime movers and fuel types. 
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CHAPTER 5 

CONCLUSION 

 

As demonstrated in previous chapters, the parametric LCA approach can be 

applied to numerous industrial products and systems, particularly to deal with the 

variability issue in LCA. More specifically, the parametric LCA explains and predicts 

why and how much LCA results change. As input parameters are operationalized in 

functional forms, adjustable levels of specificity become feasible, for example, meeting 

the needs of case-specific, local, regional, or national scale analysis. Not only that, the 

parametric LCA alleviates the issues related to functional units, because the functional 

unit-related parameters are included in functional forms of parametric LCA models. The 

parametric LCA can also help reduce the burden of data availability or unknowns, as it 

provides the capability of sweeping through the spectra of input variables, even when 

exact input conditions are not known. Despite the potential benefits, the parametric LCA 

has limitations. Among others, the parametric LCA relies on the existence of converging 

and distinct relationship or pattern between input variables and outputs. In case that there 

are no discernible relationship or pattern, it will be difficult to develop a parametric LCA 

model.  

Although the parametric LCA approach can help deal with the variability issue in 

LCA, the framework and case studies presented in this dissertation will need to be 

enhanced further to develop a general theory that can be applicable to any LCA study. In 

particular, a unified methodological framework would be needed to help and guide full 
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parameterization and corresponding explanatory/predictive model development 

throughout LCA. 
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APPENDIX A 

APPENDIX FOR CHAPTER 1: MEDIUM-DUTY VEHICLE 

ELECTRIFICATION 

 

 A.1 Integration of Vehicle Dynamic Simulator and VSP-based 

Emissions Model 

EPA MOVES (EPA 2014a) is a modal emissions model based on statistical 

stratification and/or binning method using the concept of vehicle specific power (VSP) 

proposed by Jimenez (1999). That is, vehicle operation modes (or their bins) and 

corresponding emissions rates are determined sequentially based on VSP. VSP for heavy-

duty vehicles is often called specific tractive power (STP), but VSP and STP are 

essentially the same concepts. As shown in Eq. (A1), VSP is a function of vehicle 

dynamics-related parameters such as speed, acceleration, etc.  

𝑉𝑆𝑃𝑡 =
1

𝑓𝑠𝑐𝑎𝑙𝑒
× [𝐴 × 𝑉𝑡 + 𝐵 × 𝑉𝑡

2 + 𝐶 × 𝑉𝑡
3 + (𝑚𝑐𝑢𝑟𝑏 +𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) × (𝑎𝑡 + 𝑔 ×

𝑠𝑖𝑛𝜃𝑡) × 𝑉𝑡]                        (A1) 

, where 𝑉𝑆𝑃𝑡 is vehicle-specific power (kW) at time 𝑡; 𝑓𝑠𝑐𝑎𝑙𝑒 is a mass factor (17.1 for 

medium-duty trucks); 𝑚𝑐𝑢𝑟𝑏 is curb mass of individual test vehicle in metric ton; 

𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is mass of cargo loaded in vehicle in metric ton; 𝐴 is the rolling resistance 

coefficient (0.0785 × 10−3 × [𝑚𝑐𝑢𝑟𝑏 +𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑]) in kW·sec/meter; 𝐵 is the rotational 

resistance coefficient (0 by MOVES definition) in kW·sec2/meter2; 𝐶 is the aerodynamic 

drag coefficient (2.091 × 10−3) in kW·sec3/meter3; 𝑉𝑡 is instantaneous vehicle speed in 

meter/sec; 𝑎𝑡 instantaneous vehicle acceleration in meter/sec2; 𝑔 is gravitational 

acceleration (9.81 meter/sec2); and 𝑠𝑖𝑛𝜃𝑡 is the fractional road grade. For each moment of 

time 𝑡, MOVES calculates VSP as in Eq. (A1), determines the so called operating mode 

bin, and then produces corresponding emissions rates (gram/sec or gram/mile) which 
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constitute generic emissions data in my analysis. Depending on the vehicle specifications 

modeled/tested, customized values instead of MOVES default can be used for 𝐴, 𝐵, and 

𝐶.  

The statistical stratification of operating mode(s) in MOVES is solely based on 

high level variables such as vehicle speed and acceleration as in Eq. (A1). The basic 

output of MOVES is mean base rate (MBR) which is re-scaled for final output, based on 

other types of inputs and/or specifications (e.g., fuel properties, climate condition, etc.) in 

MOVES. MBR data are directly available from the MOVES MySQL database and 

retrievable without running simulations. The relationship between the input and final 

output which is a function of VSP can be summarized by the following generic equation:   

𝑀𝐵𝑅𝑖 = 𝐶𝑖0 + 𝐶𝑖𝛼𝑉𝛼 + ∑ 𝐶𝑖𝑗𝑉
𝑗𝐽

𝑗=1 + ∑ 𝐶𝑖𝑘𝑎
𝑘𝐾

𝑘=1 + ∑ ∑ 𝐶𝑖𝑚𝐶𝑖𝑛𝑉
𝑚𝑎𝑛𝑁

𝑛=1
𝑀
𝑚=1       (A2) 

, where 𝑀𝐵𝑅𝑖 is mean base rate (gram/sec) for the 𝑖-th pollutant; 𝑉 is instantaneous 

vehicle speed; and 𝑎 is acceleration. Here the coefficients (𝐶𝑖0, 𝐶𝑖𝛼, 𝐶𝑖𝑗, 𝐶𝑖𝑚, 𝐶𝑖𝑚, and 

𝐶𝑖𝑛) are functions of vehicle characteristics (e.g., vehicle mass, drag coefficient, and etc.) 

and other factors including road grade 𝛼, which are embedded in MOVES, along with the 

specific values of 𝐽, 𝐾, 𝑀, and 𝑁. This approach is convenient and efficient when 

measuring and modeling real-world vehicle emissions and/or when integrating with 

traffic simulators/models, because the only information needed is vehicle speed and 

acceleration. However, this dependency on high-level information sacrifices the 

functionality of detailed vehicle dynamic and emissions simulation, testing, and/or 

modeling, which requires low level data, including engine torque, engine speed, gear 

selection, etc. This issue becomes even more significant when it comes to emissions 

modeling for hybrid-electric vehicles.  

Here I integrate the VSP-based emissions model (MOVES) and vehicle dynamic 

simulator (ADVISOR) for a more detailed analysis, based on the vehicle dynamics 

principles. In conventional internal combustion engine vehicles, engine output torque and 
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speed (or rpm) has the following relationships with overall power demand for moving 

vehicles and providing accessory loads (e.g., air conditioning, etc.):  

𝑁𝐸𝑛𝑔𝑖𝑛𝑒𝑜𝑢𝑡[𝑟𝑝𝑚] =
63,360

2×𝜋×60
× (

𝐺𝑅𝑖×𝜉𝑎𝑥𝑙𝑒×𝑉[𝑚𝑝ℎ]

𝑟𝑤ℎ𝑒𝑒𝑙[𝑖𝑛𝑐ℎ]
)                     (A3) 

𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑜𝑢𝑡[𝑁 ∙ 𝑚] =
{(

1

𝜂𝐷𝑇
×𝑓𝑠𝑐𝑎𝑙𝑒×𝑉𝑆𝑃) + 𝑃𝑎𝑐𝑐}

(𝑁𝐸𝑛𝑔𝑖𝑛𝑒𝑜𝑢𝑡[𝑟𝑝𝑚]×
2×𝜋

60
)[
𝑟𝑎𝑑

𝑠𝑒𝑐
]
                                (A4) 

, where 𝑁𝐸𝑛𝑔𝑖𝑛𝑒𝑜𝑢𝑡 and 𝑇𝐸𝑛𝑔𝑖𝑛𝑒𝑜𝑢𝑡  are engine output speed and torque; 𝑉 is vehicle speed 

in miles/hour; 𝜉𝑎𝑥𝑙𝑒 is axle ratio; 𝐺𝑅𝑖 is the 𝑖-th gear ratio; 𝑟𝑤ℎ𝑒𝑒𝑙 is wheel radius; 𝑃𝑎𝑐𝑐 is 

accessory load; and 𝜂𝐷𝑇 is drive-train efficiency which is non-linear. As discussed earlier, 

once drive or duty cycle as well as vehicle specifications are known, 𝑓𝑠𝑐𝑎𝑙𝑒, 𝑉, 𝑎, and 

𝑉𝑆𝑃 are determined, and then engine output torque and speed can be estimated. In doing 

so, a certain level of approximation can be done, for example, assuming some parameters 

to be constant, but here I take advantage of the ADVISOR for a very detailed simulation 

of non-linear vehicle dynamic behavior, including gear selection, engine control, etc. 

Above all, what Eqs. (A1 – A4) tell us is that emissions rates information (i.e., MBR) 

from MOVES can be populated in the engine output torque and speed domain, because of 

the vehicle dynamic relationships shown in those equations. Also, since the “mean” base 

rate (MBR), by definition, is the expected value of emissions for the given vehicle 

operating condition, a large number of simulations are to be run to comply with the 

“expected” value concept of MBR. For this, I run thousands of vehicle dynamic 

simulations in ADVISOR and populate the MOVES MBR in engine operating domain. In 

the end, the expected emission rate will be drawn from the constructed sample space of 

MBR in engine torque and speed domain.  

Figure A1 shows the comparison of direct results for diesel truck emissions from 

MOVES and those from ADVISOR implemented with MOVES MBR. Most of the data 

points lie close to the diagonal parity line, and thus the emissions map implemented in 

ADVISOR provides almost the same result as MOVES. The emissions maps built in this 
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way based off MOVES MBR can also be used for hybrid-electric truck modeling in 

ADVISOR, taking advantage of the hybrid-electric truck’s engine operating data from 

ADVISOR. Using the vehicle dynamic simulator such as ADVISOR also minimizes the 

biases of more simplistic tractive energy-based modeling approach.   

 

 

 

 
Figure A1. Comparison of SO2 emissions results between direct output from MOVES (x-

axis) and engine map-based output from ADVISOR populated with MOVES rates. Data 

points align well with the diagonal parity line, resulting in a very low root mean square 

(RMS) error value. 
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A.2 Vehicle Dynamic and Emissions Simulation for WVU-HD City 

Driving Schedule 

In addition to the example (for HTUF-6PDDS driving schedule) shown in Figure 

2.4 in main text, here I present another example for West Virginia University Heavy Duty 

City (WVU-HD City) driving schedule and provide more detailed discussion of the 

simulation results.  

The first chart in Figure A2 shows the driving schedule of WVU-HD City. The 

second chart from the top shows internal combustion engine power for conventional 

diesel, compressed natural gas (CNG), and diesel hybrid-electric trucks. Note that engine 

power for hybrid trucks (blue dashed lines) are sometimes 0, mostly when vehicle speed 

is 0, whereas diesel and CNG trucks’ engine power stay in idle (above 0) at the same 

condition. Although the same diesel engine is used for both conventional diesel and 

 
Figure A2. Vehicle dynamic and emissions simulation result for WVU-HD City drive cycle, 

tested at 11.8 metric ton of total vehicle weight – Part I (driving schedule and energy-related 

output). 
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hybrid-electric trucks, engine power of hybrid trucks is sometimes higher than diesel 

trucks for the same condition, because the additional engine power is used to charge the 

traction battery, increasing the state of charge, as can be seen around 1,200 second in the 

second and third charts from the top. Whenever the electric motor is used for generating 

electrical energy to charge the battery, the electric motor power becomes negative, 

because the internal combustion engine and/or vehicle inertia (when braking) rotates the 

electric motor in those cases. When the electric motor is providing tractive energy 

(directly propelling the vehicle), the power becomes positive. Also, note that the final 

state of charge (SOC) of hybrid-electric truck battery at the end of the test is the same as 

the initial SOC value at the beginning, which is needed to avoid biases, as discussed in 

main text. This requirement, however, doesn’t apply to battery electric vehicles, because 

the battery recharging consumes energy exclusively from the wall plugs rather than on-

board generator like automotive internal combustion engine. 

Figure A3 shows tail-pipe emissions result. Battery electric trucks do create tire- 

and brake-wear particulate matters, but those emissions are not shown here for 

combustion-related “tail-pipe” emissions. These non-tail-pipe particulate emissions are 

all accounted for in overall life-cycle emissions calculations. As can be seen in the first 

chart in Figure A3, CNG trucks emit much higher tail-pipe methane emissions, mainly 

because of the unburned fuel (methane). CNG trucks used to emit even higher methane 

emissions (more than a few thousand times higher than diesel). This in turn has resulted 

in overall higher tail-pipe greenhouse gas emissions of CNG trucks than diesel trucks, 

negating the lower carbon intensity of CNG fuel than petroleum diesel, because methane 

is 25 or more powerful greenhouse gas than carbon dioxide in terms of global warming 

potential. However, owing to recent CNG truck engine and aftertreatment technology 

advances, relative methane emissions level in comparison with that of diesel engine has 

become lower. Also, the new heavy-duty vehicles regulations require the tail-pipe 

methane emissions of CNG buses and trucks to be the same (0.1 gram/bhp-hr for FTP 
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duty cycle) as diesel vehicles, which can contribute the tail-pipe greenhouse gas 

emissions advantage of CNG trucks over diesel counterparts. CNG trucks emit lower 

NOx, in part due to the stoichiometric engine + three-way catalyst system, however, 

CNG trucks don’t show definitive advantage in terms of SO2 emissions. CNG trucks 

emit much higher VOC and CO than diesel trucks, which together contribute to the 

ground-level ozone (smog) formation with NOx and ultraviolet radiation from the sun, 

among other factors.   

 
Figure A3. Vehicle dynamic and emissions simulation result for WVU-HD City drive cycle, 

tested at 11.8 metric ton of total vehicle weight – Part II (tail-pipe emissions). 
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A.3 State-by-State Energy-Water Intensity for Average and Marginal 

Power Consumption 

Here I provide state-by-state energy efficiency and water intensity for average and 

marginal power consumption (per unit electricity purchased at wall plugs). The detailed 

estimation method is presented in the main text. I only show energy (Table A1) and water 

(Tables A2 and A3) data. For state-by-state air emissions for average and marginal power 

consumption, please see (Lee and Thomas 2015).  

As can be seen in Table A1, in most of the states, marginal energy efficiency is lower 

than average efficiency. This is because of the effect of the higher efficiency of 

renewable power generation that is included in average electric grid. Except nuclear and 

biomass, thermal efficiency of renewables are approximately doubly higher than that of 

fossil fuels. In some states (e.g., New Jersey and Massachusetts), however, marginal 

efficiency is higher than average electric grid. In those states, coal and nuclear together 

accounts for about half of average power consumption mix. And in both states, marginal 

electricity generation is primarily based on natural gas which has higher thermal 

efficiency than petroleum, coal, and/or nuclear. This contributes to the higher marginal 

life cycle power consumption efficiency. 

Table A2 shows life cycle fresh water withdrawal for power consumption in each state in 

the U.S. Unlike energy efficiency, I don’t see a distinctive general pattern for (fresh) 

water withdrawal between average and marginal electricity consumption. This is not 

surprising, given the complexity and heterogeneity of cooling systems for thermo-electric 

power generation between regions and generating units, as briefly discussed in main text. 

Table A3 shows fresh water consumption. Considering the dominance of natural gas as a 

marginal fuel and the high portion of recirculating cooling system type for natural gas 

power plants in the U.S., water consumption is expected to increase from average to 

marginal grid. However, in some cases (e.g., Georgia), marginal power consumption 
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leads to lower (fresh) water intensity, because nuclear power that accounts for significant 

portion of average electric grid tends to be very water-intensive. 

 

Table A1. Consumption-based Life Cycle Energy Efficiency for Purchased Electricity 

(Year 2014) 

 

State AVERAGE MARGINAL State AVERAGE MARGINAL

AL 0.352 0.340 NC 0.333 0.363

AR 0.333 0.329 ND 0.423 0.291

AZ 0.346 0.339 NE 0.350 0.285

CA 0.457 0.453 NH 0.345 0.335

CO 0.388 0.361 NJ 0.342 0.416

CT 0.343 0.320 NM 0.352 0.304

DC 0.340 0.305 NV 0.426 0.342

DE 0.322 0.338 NY 0.419 0.385

FL 0.334 0.321 OH 0.331 0.361

GA 0.347 0.395 OK 0.415 0.309

IA 0.480 0.312 OR 0.752 0.362

ID 0.683 0.411 PA 0.338 0.309

IL 0.338 0.307 RI 0.341 0.345

IN 0.343 0.314 SC 0.321 0.321

KS 0.418 0.264 SD 0.735 0.278

KY 0.315 0.292 TN 0.361 0.365

LA 0.336 0.320 TX 0.388 0.341

MA 0.353 0.376 UT 0.347 0.346

MD 0.330 0.319 VA 0.326 0.355

ME 0.564 0.369 VT 0.391 0.391

MI 0.347 0.335 WA 0.768 0.325

MN 0.404 0.312 WI 0.331 0.316

MO 0.318 0.317 WV 0.340 0.304

MS 0.324 0.314 WY 0.353 0.310

MT 0.547 0.302 US-AVG 0.383 0.339
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Table A2. Consumption-based Life Cycle Fresh Water Withdrawal (gal/kWh) for 

Purchased Electricity (Year 2014) 

 

State AVERAGE MARGINAL State AVERAGE MARGINAL

AL 16.30 12.45 NC 15.59 17.52

AR 4.79 3.12 ND 7.83 9.93

AZ 0.29 0.40 NE 22.77 29.57

CA 0.53 0.77 NH 1.64 5.26

CO 0.40 0.39 NJ 3.11 50.72

CT 0.93 9.50 NM 0.54 0.55

DC 7.98 8.74 NV 1.28 1.53

DE 13.66 128.25 NY 5.86 28.66

FL 0.34 0.48 OH 9.61 8.73

GA 4.42 5.20 OK 3.68 4.87

IA 10.03 12.07 OR 0.68 2.66

ID 0.67 2.02 PA 14.51 369.09

IL 23.14 18.69 RI 0.27 0.04

IN 12.41 11.75 SC 12.49 10.74

KS 4.05 3.09 SD 0.46 3.49

KY 9.95 10.34 TN 31.95 35.37

LA 15.32 14.89 TX 20.44 22.36

MA 5.28 125.25 UT 0.49 0.39

MD 4.08 34.96 VA 8.27 6.14

ME 0.47 0.30 VT 23.73 23.73

MI 23.39 24.57 WA 0.24 0.40

MN 22.35 30.68 WI 20.89 28.07

MO 31.33 27.67 WV 7.96 8.73

MS 6.99 8.10 WY 0.78 0.94

MT 1.21 6.50 US-

AVG

11.15 34.05
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Table A3. Consumption-based Life Cycle Fresh Water Consumption (gal/kWh) for 

Purchased Electricity (Year 2014) 

 

State AVERAGE MARGINAL State AVERAGE MARGINAL

AL 0.36 0.33 NC 0.23 0.28

AR 0.44 0.42 ND 0.30 0.36

AZ 0.26 0.35 NE 0.17 0.17

CA 0.31 0.44 NH 0.08 0.07

CO 0.35 0.34 NJ 0.21 0.30

CT 0.12 0.17 NM 0.50 0.52

DC 0.38 0.41 NV 0.13 0.15

DE 0.31 0.31 NY 0.34 0.45

FL 0.17 0.25 OH 0.43 0.38

GA 0.50 0.39 OK 0.19 0.19

IA 0.31 0.44 OR 0.07 0.19

ID 0.19 0.48 PA 0.45 0.50

IL 0.35 0.25 RI 0.04 0.04

IN 0.27 0.25 SC 0.37 0.53

KS 0.18 0.22 SD 0.38 1.05

KY 0.76 0.71 TN 0.25 0.19

LA 0.43 0.46 TX 0.54 0.68

MA 0.20 0.22 UT 0.47 0.39

MD 0.20 0.22 VA 0.29 0.40

ME 0.14 0.27 VT 0.21 0.21

MI 0.18 0.14 WA 0.12 0.29

MN 0.47 0.32 WI 0.34 0.29

MO 0.16 0.12 WV 0.37 0.41

MS 0.43 0.28 WY 0.23 0.23

MT 0.35 0.53 US-

AVG

0.34 0.38
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A.4 Vehicle and Parts Production Inventory 

Table A4. Energy and Air Emissions – Conventional Diesel (& Biodiesel, B20) Truck 

 Energy (MJ) CH4 (kg) N2O (kg) CO2 (kg) CO2e (kg) CO (gram) 

Body, Chassis, & Support Structure 3.56E+05 5.24E+01 4.56E-01 2.37E+04 4.06E+04 1.01E+05 

Engine & Transmission 7.07E+04 1.01E+01 8.33E-02 4.09E+03 7.33E+03 1.45E+04 

Electric Motor & Controller 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Traction Battery Pack 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 3.48E+04 3.83E+00 2.46E-02 2.85E+03 4.03E+03 1.14E+03 

Other Fluids 5.83E+03 1.28E+00 1.35E-02 2.76E+02 6.45E+02 3.54E+02 

Tires 6.05E+04 8.51E+00 8.71E-02 4.29E+03 7.01E+03 1.14E+04 

Painting & Assembly 1.62E+05 2.62E+01 2.49E-01 1.04E+04 1.79E+04 4.41E+03 

Disposal 4.49E+04 5.59E+00 5.01E-02 3.23E+03 4.95E+03 8.68E+02 

Total 7.35E+05 1.08E+02 9.63E-01 4.88E+04 8.25E+04 1.34E+05 

 NH3 (gram) NOx (gram) PM2.5 (gram) PM10 (gram) SO2 (gram) VOC (gram) 

Body, Chassis, & Support Structure 2.65E+03 3.10E+04 9.45E+03 1.88E+04 1.11E+05 2.11E+04 

Engine & Transmission 5.27E+02 5.45E+03 2.08E+03 4.17E+03 1.97E+04 3.33E+03 

Electric Motor & Controller 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Traction Battery Pack 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 2.59E+02 4.82E+03 1.41E+03 1.98E+03 5.99E+03 3.27E+03 

Other Fluids 4.35E+01 5.06E+02 8.54E+01 1.57E+02 1.10E+03 8.22E+01 

Tires 4.51E+02 6.02E+03 8.42E+02 1.60E+03 1.66E+04 6.15E+03 

Painting & Assembly 1.21E+03 1.48E+04 1.77E+03 2.95E+03 1.73E+04 2.15E+04 

Disposal 3.35E+02 4.14E+03 6.12E+02 1.04E+03 8.80E+03 3.31E+02 

Total 5.48E+03 6.67E+04 1.62E+04 3.07E+04 1.80E+05 5.58E+04 
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Table A5. Energy and Air Emissions – CNG Truck 

 Energy (MJ) CH4 (kg) N2O (kg) CO2 (kg) CO2e (kg) CO (gram) 

Body, Chassis, & Support Structure 3.64E+05 5.34E+01 4.63E-01 2.43E+04 4.16E+04 1.05E+05 

Engine & Transmission 7.57E+04 1.09E+01 8.95E-02 4.37E+03 7.85E+03 1.57E+04 

Electric Motor & Controller 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Traction Battery Pack 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CNG Cylinders 5.93E+03 6.83E-01 6.62E-03 3.81E+02 6.04E+02 2.31E+02 

Engine & Transmission Fluids 3.59E+04 3.96E+00 2.54E-02 2.94E+03 4.17E+03 1.18E+03 

Other Fluids 6.03E+03 1.32E+00 1.40E-02 2.85E+02 6.66E+02 3.66E+02 

Tires 6.05E+04 8.51E+00 8.71E-02 4.29E+03 7.01E+03 1.14E+04 

Painting & Assembly 1.70E+05 2.75E+01 2.61E-01 1.09E+04 1.87E+04 4.62E+03 

Disposal 4.71E+04 5.87E+00 5.26E-02 3.38E+03 5.20E+03 9.10E+02 

Total 7.65E+05 1.12E+02 9.99E-01 5.09E+04 8.58E+04 1.39E+05 

 NH3 (gram) NOx (gram) PM2.5 (gram) PM10 (gram) SO2 (gram) VOC (gram) 

Body, Chassis, & Support Structure 2.71E+03 3.17E+04 9.64E+03 1.92E+04 1.13E+05 2.16E+04 

Engine & Transmission 5.64E+02 5.84E+03 2.19E+03 4.38E+03 2.12E+04 3.58E+03 

Electric Motor & Controller 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Traction Battery Pack 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CNG Cylinders 4.42E+01 1.04E+03 3.12E+02 6.08E+02 1.50E+03 7.80E+01 

Engine & Transmission Fluids 2.68E+02 4.98E+03 1.45E+03 2.05E+03 6.19E+03 3.38E+03 

Other Fluids 4.49E+01 5.23E+02 8.82E+01 1.63E+02 1.13E+03 8.50E+01 

Tires 4.51E+02 6.02E+03 8.42E+02 1.60E+03 1.66E+04 6.15E+03 

Painting & Assembly 1.27E+03 1.55E+04 1.86E+03 3.09E+03 1.81E+04 2.26E+04 

Disposal 3.51E+02 4.34E+03 6.42E+02 1.09E+03 9.23E+03 3.47E+02 

Total 5.70E+03 7.00E+04 1.70E+04 3.22E+04 1.87E+05 5.78E+04 
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Table A6. Energy and Air Emissions – Diesel Hybrid Truck 

 Energy (MJ) CH4 (kg) N2O (kg) CO2 (kg) CO2e (kg) CO (gram) 

Body, Chassis, & Support Structure 3.61E+05 5.30E+01 4.60E-01 2.40E+04 4.12E+04 1.03E+05 

Engine & Transmission 7.51E+04 1.07E+01 8.78E-02 4.36E+03 7.76E+03 1.51E+04 

Electric Motor & Controller 4.04E+03 6.24E-01 6.11E-03 2.46E+02 4.99E+02 6.45E+02 

Traction Battery Pack 1.03E+04 1.33E+00 1.07E-02 6.38E+02 1.10E+03 4.85E+02 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 3.48E+04 3.83E+00 2.46E-02 2.85E+03 4.03E+03 1.14E+03 

Other Fluids 5.83E+03 1.28E+00 1.35E-02 2.76E+02 6.45E+02 3.54E+02 

Tires 6.05E+04 8.51E+00 8.71E-02 4.29E+03 7.01E+03 1.14E+04 

Painting & Assembly 1.68E+05 2.72E+01 2.58E-01 1.08E+04 1.85E+04 4.57E+03 

Disposal 4.66E+04 5.81E+00 5.20E-02 3.35E+03 5.14E+03 9.01E+02 

Total 7.66E+05 1.12E+02 1.00E+00 5.09E+04 8.59E+04 1.38E+05 

 NH3 (gram) NOx (gram) PM2.5 (gram) PM10 (gram) SO2 (gram) VOC (gram) 

Body, Chassis, & Support Structure 2.69E+03 3.14E+04 9.56E+03 1.90E+04 1.12E+05 2.14E+04 

Engine & Transmission 5.60E+02 5.78E+03 2.29E+03 4.58E+03 2.06E+04 3.49E+03 

Electric Motor & Controller 3.01E+01 3.75E+02 1.02E+02 2.00E+02 3.13E+03 1.14E+02 

Traction Battery Pack 7.65E+01 1.07E+03 4.52E+02 7.90E+02 4.09E+03 2.22E+02 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 2.59E+02 4.82E+03 1.41E+03 1.98E+03 5.99E+03 3.27E+03 

Other Fluids 4.35E+01 5.06E+02 8.54E+01 1.57E+02 1.10E+03 8.22E+01 

Tires 4.51E+02 6.02E+03 8.42E+02 1.60E+03 1.66E+04 6.15E+03 

Painting & Assembly 1.25E+03 1.54E+04 1.84E+03 3.06E+03 1.79E+04 2.24E+04 

Disposal 3.47E+02 4.30E+03 6.35E+02 1.08E+03 9.14E+03 3.44E+02 

Total 5.71E+03 6.96E+04 1.72E+04 3.25E+04 1.90E+05 5.74E+04 
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Table A7. Energy and Air Emissions – CNG Hybrid Truck 

 Energy (MJ) CH4 (kg) N2O (kg) CO2 (kg) CO2e (kg) CO (gram) 

Body, Chassis, & Support Structure 3.72E+05 5.46E+01 4.72E-01 2.50E+04 4.27E+04 1.09E+05 

Engine & Transmission 8.01E+04 1.14E+01 9.41E-02 4.64E+03 8.29E+03 1.63E+04 

Electric Motor & Controller 4.04E+03 6.24E-01 6.11E-03 2.46E+02 4.99E+02 6.45E+02 

Traction Battery Pack 1.03E+04 1.33E+00 1.07E-02 6.38E+02 1.10E+03 4.85E+02 

CNG Cylinders 5.93E+03 6.83E-01 6.62E-03 3.81E+02 6.04E+02 2.31E+02 

Engine & Transmission Fluids 3.56E+04 3.92E+00 2.52E-02 2.91E+03 4.13E+03 1.17E+03 

Other Fluids 6.03E+03 1.32E+00 1.40E-02 2.85E+02 6.66E+02 3.66E+02 

Tires 6.05E+04 8.51E+00 8.71E-02 4.29E+03 7.01E+03 1.14E+04 

Painting & Assembly 1.76E+05 2.85E+01 2.70E-01 1.13E+04 1.94E+04 4.79E+03 

Disposal 4.88E+04 6.08E+00 5.45E-02 3.50E+03 5.38E+03 9.43E+02 

Total 8.00E+05 1.17E+02 1.04E+00 5.32E+04 8.98E+04 1.45E+05 

 NH3 (gram) NOx (gram) PM2.5 (gram) PM10 (gram) SO2 (gram) VOC (gram) 

Body, Chassis, & Support Structure 2.78E+03 3.25E+04 9.85E+03 1.96E+04 1.15E+05 2.22E+04 

Engine & Transmission 5.97E+02 6.17E+03 2.39E+03 4.80E+03 2.22E+04 3.75E+03 

Electric Motor & Controller 3.01E+01 3.75E+02 1.02E+02 2.00E+02 3.13E+03 1.14E+02 

Traction Battery Pack 7.65E+01 1.07E+03 4.52E+02 7.90E+02 4.09E+03 2.22E+02 

CNG Cylinders 4.42E+01 1.04E+03 3.12E+02 6.08E+02 1.50E+03 7.80E+01 

Engine & Transmission Fluids 2.65E+02 4.93E+03 1.44E+03 2.03E+03 6.12E+03 3.37E+03 

Other Fluids 4.49E+01 5.23E+02 8.82E+01 1.63E+02 1.13E+03 8.50E+01 

Tires 4.51E+02 6.02E+03 8.42E+02 1.60E+03 1.66E+04 6.15E+03 

Painting & Assembly 1.31E+03 1.61E+04 1.92E+03 3.20E+03 1.88E+04 2.34E+04 

Disposal 3.64E+02 4.50E+03 6.65E+02 1.13E+03 9.57E+03 3.60E+02 

Total 5.96E+03 7.32E+04 1.81E+04 3.41E+04 1.98E+05 5.97E+04 
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Table A8. Energy and Air Emissions – Battery Electric Truck 

 Energy (MJ) CH4 (kg) N2O (kg) CO2 (kg) CO2e (kg) CO (gram) 

Body, Chassis, & Support Structure 2.32E+05 3.40E+01 2.96E-01 1.54E+04 2.64E+04 6.56E+04 

Engine & Transmission 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Electric Motor & Controller 1.10E+04 1.70E+00 1.67E-02 6.71E+02 1.36E+03 1.76E+03 

Traction Battery Pack 4.75E+05 6.14E+01 4.94E-01 2.95E+04 5.11E+04 2.24E+04 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Other Fluids 5.83E+03 1.28E+00 1.35E-02 2.76E+02 6.45E+02 3.54E+02 

Tires 6.05E+04 8.51E+00 8.71E-02 4.29E+03 7.01E+03 1.14E+04 

Painting & Assembly 1.62E+05 2.62E+01 2.49E-01 1.04E+04 1.79E+04 4.41E+03 

Disposal 4.49E+04 5.59E+00 5.01E-02 3.23E+03 4.95E+03 8.68E+02 

Total 9.91E+05 1.39E+02 1.21E+00 6.38E+04 1.09E+05 1.07E+05 

 NH3 (gram) NOx (gram) PM2.5 (gram) PM10 (gram) SO2 (gram) VOC (gram) 

Body, Chassis, & Support Structure 1.73E+03 2.01E+04 6.14E+03 1.22E+04 7.19E+04 1.37E+04 

Engine & Transmission 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Electric Motor & Controller 8.21E+01 1.02E+03 2.79E+02 5.47E+02 8.52E+03 3.11E+02 

Traction Battery Pack 3.54E+03 4.95E+04 2.09E+04 3.66E+04 1.90E+05 1.03E+04 

CNG Cylinders 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Engine & Transmission Fluids 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Other Fluids 4.35E+01 5.06E+02 8.54E+01 1.57E+02 1.10E+03 8.22E+01 

Tires 4.51E+02 6.02E+03 8.42E+02 1.60E+03 1.66E+04 6.15E+03 

Painting & Assembly 1.21E+03 1.48E+04 1.77E+03 2.95E+03 1.73E+04 2.15E+04 

Disposal 3.35E+02 4.14E+03 6.12E+02 1.04E+03 8.80E+03 3.31E+02 

Total 7.39E+03 9.61E+04 3.07E+04 5.51E+04 3.14E+05 5.24E+04 
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Table A9. Fresh Water Consumption (gallons) 

 Diesel CNG Diesel Hybrid CNG Hybrid Electric 

Body, Chassis, & Support Structure 1.11E+05 1.13E+05 1.12E+05 1.16E+05 7.23E+04 

Engine & Transmission 2.55E+04 2.67E+04 2.83E+04 2.95E+04 0.00E+00 

Electric Motor & Controller 0.00E+00 0.00E+00 1.44E+03 1.44E+03 3.93E+03 

Traction Battery Pack 0.00E+00 0.00E+00 5.25E+03 5.25E+03 2.43E+05 

CNG Cylinders 0.00E+00 5.08E+03 0.00E+00 5.08E+03 0.00E+00 

Engine & Transmission Fluids 1.85E+03 1.91E+03 1.85E+03 1.89E+03 0.00E+00 

Other Fluids 4.35E+02 4.50E+02 4.35E+02 4.50E+02 4.35E+02 

Tires 4.68E+03 4.68E+03 4.68E+03 4.68E+03 4.68E+03 

Painting & Assembly 4.39E+04 4.60E+04 4.55E+04 4.77E+04 4.39E+04 

Disposal 1.22E+04 1.28E+04 1.26E+04 1.32E+04 1.22E+04 

Total 2.00E+05 2.11E+05 2.13E+05 2.25E+05 3.81E+05 
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A.5 Life Cycle Inventory (LCI) Prediction Models 

Table A10. CO Emissions LCI Prediction 
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Table A11. NH3 Emissions LCI Prediction 
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Table A12. NOx Emissions LCI Prediction 
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Table A13. PM2.5 Emissions LCI Prediction 
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Table A14. PM10 Emissions LCI Prediction 
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Table A15. SO2 Emissions LCI Prediction 
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Table A16. VOC Emissions LCI Prediction 
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A.6 Life Cycle Impact Assessment (LCIA) Prediction Models 

Table A17. GHG (GWP20) LCIA Prediction 
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Table A18. Fresh Water Consumption LCIA Prediction 
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Table A19. Acidification LCIA Prediction 

 

 



 129 

Table A20. Eutrophication LCIA Prediction 
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Table A21. Smog Formation LCIA Prediction 
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Table A22. Human Health LCIA Prediction 
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A.7 Additional Parameters and Results of Monte Carlo Simulation 

In addition to the key input parameters presented in Table 2.1 in main text, here I 

discuss in more detail my Monte Carlo simulations for Figures 2.14 and 2.15 in main 

text. By and large, I use two different types of Monte Carlo simulation. One is for a 

baseline analysis (Figure 2.14 in main text) with reasonable (or commonly-agreed) ranges 

of input parameters that are presented in Table 2.1 in main text. The other is for 

robustness test and identification of necessary conditions in Figure 2.15. For this, I relax 

the assumptions used for a baseline Monte Carlo simulation and look at a broader range 

of input parameters. Note that all monetary values are in 2015 constant U.S. dollars and 

that I use uniform distribution for the input parameters in Monte Carlo simulations. 

As can be seen in Table A23, I don’t consider some input parameters in my 

robustness analysis, for example, CNG and electricity fuel prices and battery pack price. 

As shown in Figures A5 and A6, CNG and electricity fuel prices are expected to remain 

relatively steady. Also, my baseline analysis indicates that in average (e.g., typical local-

hauling) and least severe (e.g., highway) operating conditions, conventional diesel trucks 

are generally the most cost-effective. In more severe (e.g., extreme city or urban) 

operating conditions which is believed to be a niche for electric trucks, the technology 

choice from the overall cost minimization standpoint is idle reduction for conventional 

diesel, hybrid electric diesel, or battery electric trucks. For this, Figure 2.14 in main text 

shows the results for niche application condition. For these reasons, I focus on 

conventional diesel and battery electric trucks for my robustness analysis for average 

operating conditions (or major market/application).  

There are two reasons that I don’t consider secondary battery pack price in 

robustness analysis. First, it is almost certain that electric vehicle battery price will 

decrease over time, as shown in Figure A6. Second, battery replacement costs are not 

significant, compared to other parameters (e.g., purchase cost). I estimate that two or 

three battery replacements will be needed. First of the replacements will be covered by 
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truck manufacture warranty, which is part of the reason why electric truck’s upfront cost 

is significantly more expensive than diesel or other non-electric trucks. The impact of the 

second and third battery replacements would be not significant, not only because the 

battery price is declining, but also because the battery replacement cost in several or more 

years becomes less significant because of the concept of time value of money. 

 

Table A23. Comparison of the ranges of input parameters for Monte Carlo simulations 

Input Parameters 
Monte Carlo Simulations 

Baseline Analysis Robustness Analysis 

Diesel fuel prices Figure A4 1 – 10 $/diesel gallon 

CNG fuel prices Figure A4 - 

Electricity fuel prices Figure A5 - 

Secondary battery pack 

price 

Figure A6 - 

Purchase cost $150,000 – 180,000 $70,000 – 180,000 

Carbon price 30 – 60 $/metric ton CO2 0 – 3,000 $/metric ton 

CO2 

Payback time 20 years 3 – 20 years 

Discount rate 7.5% 5 – 20% 
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Figure A4. Actual fuel prices in two select states (min and max in continental U.S. for 2014 

and 2015) and future fuel price projections – diesel (top) and CNG (bottom). The ranges 

shown here are used for baseline Monte Carlo simulation. For robustness test Monte Carlo 

simulation, future diesel fuel prices assumptions are relaxed with a wider ranges. 
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Figure A5. Actual electricity rates in two select states (min and max in continental U.S. for 

2014 and 2015) and future price projections. 

 
Figure A6. Secondary Li-ion battery pack cost estimation, based on (NRC 2010; Lee et al. 

2013; Nykvist and Nilsson 2015). 
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APPENDIX B 

APPENDIX FOR CHAPTER 2: HEAVY-DUTY VEHICLE 

ELECTRIFICATION 

 

B.1 Vehicle Specifications 
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B.2 Life-Cycle Inventory for Bus and Parts Production, Replacement, 

and End-of-Life 

 The materials composition data are created based on the transit bus specifications 

in Section 1 above, transit bus studies (Pusenius et al. 2005; Ally and Pryor 2008), and 

GREET model (ANL 2014a).  Fluids (e.g., engine coolant, transmission oil, after-

treatment urea, and etc.), their replacements, and corresponding material input are based 

on the light-duty vehicle (LDV) data in GREET but adjusted by the differences between 

the LDV and transit bus (e.g., engine displacement, frontal area, and etc.) as well as 

transit bus parts maintenance schedule specifications.  The EOL inventory is considered 

only for new buses. It is expected that approximately the same amount of energy 

consumption and emissions will be caused from the retirement of in-use buses, regardless 

of the vehicle retirement scenarios or technology choice. As for the electric buses’ 

traction battery and its replacement over the bus lifetime, as Cooney et al. (2013) 

proposed, I base my calculation on US-specific data from GREET. I estimate battery 

degradation and lifetime based on the battery age, duty cycle, depth of discharge, ambient 

temperature, voltage level, and state of health (see SI – Section 4). 

𝑒𝑠,𝑡,𝑘 =∑∑{[
(𝑚𝑐𝑢𝑟𝑏 −𝑚𝐹𝐿 −𝑚𝑇𝑅 −𝑚𝑓𝑢𝑒𝑙)𝑁𝑒𝑤 𝐹𝑙𝑦𝑒𝑟,𝑑𝑖𝑒𝑠𝑒𝑙

(𝑚𝑐𝑢𝑟𝑏 −𝑚𝐹𝐿 −𝑚𝑇𝑅)𝑠
×𝑚𝑠,𝑗

𝑗𝑖

−𝑚𝑇𝑅(1 + 𝜃𝑇𝑅,𝑡)𝜑𝑇𝑅,𝑗 −𝑚𝑃𝑇(1 + 𝜃𝑃𝑇,𝑡)𝜑𝑃𝑇,𝑗 −𝑚𝑇𝑋(1 + 𝜃𝑇𝑋,𝑡)𝜑𝑇𝑋,𝑗

+𝑚𝑡,𝑖(1 + 𝜃𝑡,𝑖)𝜑𝑖𝑗] 𝑒𝑗𝑘} + [
(𝑚𝑐𝑢𝑟𝑏 −𝑚𝐵𝑇 −𝑚𝐹𝐿 −𝑚𝑓𝑢𝑒𝑙)𝑡,𝑘

(𝑚𝑐𝑢𝑟𝑏 −𝑚𝐵𝑇 −𝑚𝐹𝐿 −𝑚𝑓𝑢𝑒𝑙)𝐺𝑅𝐸𝐸𝑇 𝐿𝐷𝑉
]

× (𝜏𝑃𝑎𝑖𝑛𝑡,𝑘 + 𝜏𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔,𝑘 + 𝜏𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦,𝑘 + 𝜏𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑙,𝑘) 

𝑒𝑠,𝑡,𝑘: the 𝑘-th inventory component (energy and emissions) for the 𝑡-th technology, 

based on the 𝑠-th material composition data source 

𝜃𝑡,𝑖: the number of replacements over lifetime for the 𝑖-th vehicle component (or parts) 

and the 𝑡-th technology 
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𝜑𝑖𝑗: material compositions for the 𝑖-th vehicle component (or parts) and the 𝑗-th material; 

in case of the battery, battery assembly is included 

𝑒𝑗𝑘: energy and emissions factors for the 𝑗-th material and the 𝑘-th inventory component 

from GREET (ANL 2014a) 

𝜏𝑘: energy and emissions factors per vehicle for the 𝑘-th inventory component 

𝑚: mass in kg 

𝐹𝐿: fluids (see below) 

𝑇𝑅: tires 

𝑃𝑇: powertrain 

𝑇𝑋: transmission 

𝑘: inventory component (energy and emissions) 

𝑠: the bus for which material composition is based on – Volvo 8500 Low Entry (Pusenius 

et al. 2005) or Mercedes-Benz O LE500 (Ally and Pryor 2008) 

𝑡: technology – DB, HEB, CNGB, BEB, BEB-ORC, BEB-ORC LW, or ETB 

 

The results are summarized in the following charts: 
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ESS: energy storage system (battery, compressed natural gas cylinders, including ESS 

assembly and disposal) 

EDS: electric-drive system such as electric motor and controller  

PT: powertrain 

TX: transmission 

 

DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB

Energy (10 GJ) GHG (ton)

Assembly & Disposal 31.5 31.5 31.5 31.5 31.5 31.5 31.5 22.2 22.2 22.2 22.2 22.2 22.2 22.2

Tire 19.4 19.4 19.4 19.4 19.4 19.4 19.4 14.7 14.7 14.7 14.7 14.7 14.7 14.7

Fluids 7.0 7.0 12.8 0.7 0.7 0.7 0.7 5.6 5.6 10.6 0.3 0.3 0.3 0.3

ESS 0.0 13.6 3.5 65.9 13.1 16.8 5.2 0.0 9.1 2.4 41.6 8.3 10.6 3.6

EDS 0.0 2.2 0.0 3.4 2.2 2.0 3.0 0.0 1.6 0.0 2.2 1.5 1.4 2.2

PT & TX 10.9 10.4 10.6 0.0 0.0 0.0 0.0 6.8 6.5 6.6 0.0 0.0 0.0 0.0

Body & Chassis 80.4 82.5 82.3 70.6 96.7 118.8 96.7 56.6 58.3 58.2 49.7 68.1 76.0 68.1

Total 149.3 166.6 160.2 191.5 163.7 189.3 156.6 106.0 118.1 114.7 130.8 115.1 125.2 111.0
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DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB

CO (kg) NOx (kg)

Assembly & Disposal 8.0 8.0 8.0 8.0 8.0 8.0 8.0 28.9 28.9 28.9 28.9 28.9 28.9 28.9

Tire 33.9 33.9 33.9 33.9 33.9 33.9 33.9 20.6 20.6 20.6 20.6 20.6 20.6 20.6

Fluids 2.5 2.5 4.4 0.4 0.4 0.4 0.4 9.2 9.2 17.3 0.5 0.5 0.5 0.5

ESS 0.0 11.8 1.1 24.5 4.9 6.2 3.9 0.0 12.7 6.3 62.2 12.4 15.9 9.9

EDS 0.0 4.3 0.0 4.9 3.3 3.0 6.0 0.0 2.1 0.0 3.0 2.0 1.8 2.8

PT & TX 21.1 20.5 20.4 0.0 0.0 0.0 0.0 8.7 8.3 8.5 0.0 0.0 0.0 0.0

Body & Chassis 127.8 137.3 136.6 112.2 153.7 71.5 153.7 77.5 79.6 79.4 68.1 93.2 114.8 93.2

Total 193.3 218.4 204.5 183.9 204.2 123.1 206.0 145.0 161.4 160.9 183.2 157.6 182.5 155.9
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CO & NOx Emissions (kg)

DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB

SOx (kg) VOC (kg)

Assembly & Disposal 39.8 39.8 39.8 39.8 39.8 39.8 39.8 33.4 33.4 33.4 33.4 33.4 33.4 33.4

Tire 31.1 31.1 31.1 31.1 31.1 31.1 31.1 19.5 19.5 19.5 19.5 19.5 19.5 19.5

Fluids 12.1 12.1 22.0 1.2 1.2 1.2 1.2 32.5 32.5 39.1 27.3 27.3 27.3 27.3

ESS 0.0 170.6 8.0 227.4 45.2 58.1 125.3 0.0 2.5 0.4 14.0 2.8 3.6 4.3

EDS 0.0 21.1 0.0 24.9 16.6 15.2 29.3 0.0 0.7 0.0 0.9 0.6 0.6 1.0

PT & TX 27.9 26.9 27.0 0.0 0.0 0.0 0.0 5.0 4.8 4.8 0.0 0.0 0.0 0.0

Body & Chassis 178.8 184.5 184.1 157.0 215.1 203.4 215.1 24.5 25.8 25.7 21.5 29.5 19.4 29.5

Total 289.7 486.0 311.9 481.3 349.0 348.7 441.7 114.9 119.2 123.0 116.6 113.1 103.7 114.9
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DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB DB HEB CNGB BEB
BEB-
ORC

BEB-
ORC-
LW

ETB

PM2.5 (kg) PM10 (kg)

Assembly & Disposal 3.6 3.6 3.6 3.6 3.6 3.6 3.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1

Tire 3.4 3.4 3.4 3.4 3.4 3.4 3.4 5.7 5.7 5.7 5.7 5.7 5.7 5.7

Fluids 2.6 2.6 4.9 0.0 0.0 0.0 0.0 3.8 3.8 7.0 0.1 0.1 0.1 0.1

ESS 0.0 2.1 1.9 25.9 5.2 6.6 2.2 0.0 3.7 3.6 44.6 8.9 11.4 3.8

EDS 0.0 0.6 0.0 0.9 0.6 0.5 0.9 0.0 1.2 0.0 1.7 1.2 1.1 1.6

PT & TX 3.3 3.1 3.3 0.0 0.0 0.0 0.0 6.6 6.1 6.5 0.0 0.0 0.0 0.0

Body & Chassis 21.3 21.9 21.8 18.7 25.7 21.3 25.7 39.6 40.6 40.5 34.8 47.6 49.3 47.6

Total 34.3 37.3 38.9 52.5 38.4 35.5 35.8 61.7 67.2 69.4 92.9 69.5 73.5 64.9
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B.3 Impact of Road Grade and Hot/Cold Conditions 

 Our results imply that more exposure to hilly roads will benefit the 

competitiveness of electric buses, whereas extreme hot or cold temperatures can 

disproportionally increase the energy consumption of electric buses compared to non-

electric competitors. Non-electric buses are less sensitive to extremely hot or cold 

temperatures. As both road grade and weather conditions fluctuate over time and space, 

location-specific (or regional) average values would be sufficient for electric bus LCA to 

avoid bias of (national) averages. Getting more into details than that or focusing on 

specific conditions might actually result in the bias of extremes. 

 To see the road grade impact, I test three cases – level ground (0%), downhill 

driving (constant -1%), and uphill driving (constant +1%) – for all the drive cycles that I 

included in my study. In reality, buses experience varying road grades over the route. 

Also, as bus drivers experience up- or down-hill roads, it is very likely that they adjust 

vehicle speeds or drive differently than they would on level ground. Not only the level of 

road grade but also its extent affect drivers’ behavior. In other words, there may be an 

interaction between drive cycles (speed-time profiles) and road grades. I don’t consider 

these two aspects – varying road grades over the route and interaction between drive 

cycles and road grades. Our main objective here is to see the relative net impact of road 

grade with respect to the bus technology and its overall contribution to the energy and 

emissions performance. The figure below shows a sequence of two identical drive cycles 

with two different constant road grades. Considering that buses typically return to the 

depot after service, making back-to-origin trips, the overall change in energy 

consumption will be averages of the results at constant positive (+1%) and negative (-

1%) road grades. 
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 Real-world road grades can vary between -8% and +8%, with different probability 

distributions by location (NREL 2014b). It should be noted that the steeper the grade is, 

the more likely that buses having the specifications shown in Section 1 cannot follow the 

original drive cycles because of the mechanical constraints (e.g., maximum power). If 

these constraints are not considered, the energy and emissions results can be misleading, 

especially when the road grade assumed is high. That’s why I use 1% road grade - to save 

original drive cycles and avoid biases by estimating the energy and emissions within the 

vehicle performance constraints specified in Section 1. More realistic analysis should use 

duty cycles, i.e., profiles of speed, road grade, passenger loading over time. Last, it is also 

important to not use constant road grade over the entire drive cycles or trips. It is not 

impossible that buses travel on uphill or downhill throughout their lifetime, but a more 

realistic approach is to look at combinations of uphill and downhill driving for back-to-

origin trips.  
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 The figure above shows net change in energy consumption (DGE/100 miles) for 

±1% road grade conditions, showing technology-dependent sensitivity to road grade. 

Also, for non-electric buses, the net change in energy consumption is not zero; the energy 

use reductions in downhill driving are smaller than the energy penalty in uphill driving. 

This phenomenon appears also in light-duty vehicles (NREL 2014b). Considering the 

road grade-related energy penalty tends to be linear (NREL 2014b), the factors found 

here can be multiplied to extrapolate to road grades steeper than 1%. However, as 

discussed previously, if only road grade is increased while drive cycles are fixed, there is 

no guarantee that vehicles can follow the given drive cycles.   

 Interestingly, the electric bus shows negative net energy consumption when the 

initial state-of-charge (SOC) is 50%, regardless of whether the bus experiences uphill 

first and then downhill or vice versa. However, when the initial SOC is 100% 

(hypothetically) and the bus operates in downhill condition followed by uphill on the way 

back to origin, the energy use savings potential significantly diminishes; less energy from 

the regenerative braking in downhill driving can be fed back to the traction battery 

because the battery is already full – see figure below. Overall, for back-to-origin (or 

roughly equal share of uphill and downhill) bus trips, electric buses have an energy 

advantage because of the energy recuperation potential. 
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 In addition to the route characteristics, driving pattern, and passenger loading 

cases, I incorporate the impact from the exposure to extreme climate conditions, that is, 

hot and cold. Using the electric vehicle’s cooling and heating system performance test 

data (ANL 2014b) and the conventional bus technologies’ heating and cooling load data 

(WVU 2014), I develop the following energy consumption penalty factors for a range of 

extreme climate conditions. For air emissions, I use climate condition-embedded 

emissions factors for each location (county) directly from MOVES. 
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 These factors are integrated with location-dependent seasonal temperature 

fluctuation profiles (Current Results Nexus 2014; EPA 2014) – see below for examples – 

to get location-specific energy consumption and emissions results. For heating (the left 

side of the temperature spectrum), non-electric buses have advantages because of the 

availability of waste heat from the internal combustion engine. For the same reason (the 

engine heat availability), cooling is more energy-intensive than heating in case of non-

electric buses. Heating and/or cooling increases electric buses’ energy consumption 

significantly more than non-electric counterparts, which in turn affects the electric range. 

For example, at the temperature of 20 ⁰F, energy consumption of the BEB will increase 

by 50% and the advertised electric range of 150 miles will shrink to 100 miles.  
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B.4 Traction Battery Lifetime Estimation 

 I use a non-linear parametric modeling approach for secondary battery 

degradation, based on Schmalstieg et al.’s work (2014). Depth of discharge (DOD) for 

each charge cycle is one of the key input variables to the battery degradation model, 

which varies with drive cycle and travel demand per trip or day among others. The DOD 

of electric buses is highly dependent on the utilization level (daily travel distance), 

charging strategies, and route characteristics. It should be noted that maximum daily 

utilization level is also dependent upon how fast the buses travel on routes. To estimate 

these variables, I use my cycle-dependent energy consumption results aforementioned as 

well as the transit bus operation statistics data from National Transit Database (FTA 

2012) and American Public Transportation Association (APTA 2013).  

 Allowing a 20% state of charge (SOC) buffer for unaccounted energy drain and 

capacity loss, the 35,000 miles per year scenario corresponds to 120 miles per day for 

urban transit bus operation (80% x 35,000 miles a year) / 12 months x 20 days per month) 

I also account for the electric buses technological capability including electric range per 

full charge. To provide 120-mile service a day, BEB-ORC with a 120 kWh battery will 

need to charge once or twice during the day, totaling three times a day (including 

nighttime charging). Given the fact that severe DOD can decrease the battery lifetime 

significantly, I expect that the electric bus operators will keep the DOD around 50% so 

that the lifetime of expensive traction batteries can be maximized.  

 The figures below show the impact of DOD (per charging cycle) on the battery 

lifetime. As a result, BEB’s battery (BYD) is expected to have 8-10 years of lifetime, and 

BEB-ORC’s battery (NF) will have 6-7 years of lifetime at about 50-70% DOD. 

Considering this and the potential improvement of the next generation batteries, I expect 

that battery replacement is needed once or twice over the 16-year time horizon of my 

analysis. 
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B.5 Cost Parameters 

 

Mid-life  

capital 

investment 

Repair and 

maintenance 

Fueling 

station 
Charger 

Overhead 

trolley 

(unit) $ $/mile $/vehicle $/vehicle $/mile/vehicle 

DB 
min: 65,400 

max: 131,900 
0.73 15,600 - - 

HEB 
min: 229,000 

max: 355,200 
0.22 - 0.448 15,600 - - 

CNGB 
min: 65,400 

max: 131,900 
0.84 

(see the 

chart below) 
- - 

BEB - 

0.11 - 0.22 

- 

(see the 

chart below) 

- 

BEB-RF - - - 

BEB-ORC - - - 

BEB-ORC-LW - - - 

ETB - 1.241 - - 26000 

NAICS Code #336300 #8111A0 #230103 #335999 and #811200 

Data sources: (FTA 2007; KCDOT 2011; Chambers 2012; Farnham 2013; Woody 2013;  Boudart 
and Figliozzi 2012; De Filippo et al. 2014; WVU 2014) 
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B.6 Life-Cycle Inventory (LCI) Prediction Model 

 In addition to life cycle energy and GHG emissions model in Table 1.1 in main 

text, here I provide other results which are all based on Eq. (16) in main text: 

�̂�𝑖,𝑡 = 𝑒𝑥𝑝 [�̂�0𝑖,𝑡 + �̂�1𝑖,𝑡�̅�𝑡𝑟𝑖𝑝 + �̂�2𝑖,𝑡
1

�̅�𝑡𝑟𝑖𝑝
+ �̂�3𝑖,𝑡 𝑙𝑜𝑔(�̅�𝑡𝑟𝑖𝑝) + �̂�4𝑖,𝑡�̅�𝑡𝑟𝑖𝑝

2
+ �̂�5𝑖,𝑡�̅�

+ �̂�6𝑖,𝑡𝑊𝑃𝐾𝐸] 

As in Table 1.1 in main text, all the parameter estimates presented here are statistically 

significant at a 5% significance level.  

 Given the spatio-temporal heterogeneity of electric grid, I here provide only the 

results for minimum and maximum cases for BEB-ORC-LW. For example, BEB-ORC-

LW based on daytime electric grid in Virginia (VA) emits the lowest life cycle CO 

emissions, and nighttime in Nevada (NV) the highest. These min and max cases should 

give the reasonable range of the life cycle results of electric buses (BEB-ORC-LW). Note 

that the min-max cases in main text are for average electric grid condition, whereas the 

min-max cases here are for marginal electric grid. 
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