Licensing Information

Attribution Statement

The contents of this document were developed under a grant from the U.S. Department of Education. However, those contents do not necessarily represent the U.S.
Department of Education, and you should not assume endorsement by the Federal Government.

Copyright

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Contact Information

Questions regarding this document can be directed to Greg Mayer (gsmayer@gmail.com), who would be happy to hear your suggestions on how to improve this document.

Welcome to QH6 Recitation!

We'll get started at 8:05. See if you can:
-use the chat window (bottom left) to send a message -use your mic to say hi: press and hold TALK button -move yourself in and out of a breakout room (top right) - draw a picture in the space below of something (drawings are always anonymous)

If you have questions during recitation

Voice

- use microphone any time
- to use mic, pres TALK, or press and hold
- Windows: control
- Mac: command

Text

- use chat window to send message
- can send a message to me, another student, or to "main room"

Purpose of Recitations

Currently, the purpose of our recitations:
help students understand course material so that they can complete assignments and prepare for quizzes and exams.

QH6 in a Nutshell

- students in Math 1502 are divided into 6 sections
- ours is the only section that
- doesn't have campus students
- uses Wimba for recitations
- Why Wimba?
- you can interact with students at other schools

Wimba Technical Problems?

You can:

- reload your browser
- log in/ out of Wimba
- use a different web browser (don't use Chrome)
- get help from another student and/ or your TA
- contact Wimba tech support http:// support. blackboardcollaborate.com

Tablets and Mics

Students in QH6 can borrow tablets and mics

If you already have a tablet and/ or mic you want to use, that's ok too

Equipment need to be returned

If you don't have a tablet and/ or mic and want to borrow one, email me

Tablets come with CD, use it to configure tablet settings

Grading Weights

	QH6 (\%)	All other sections (\%)
Homework	10	10
Final	25	25
Quizzes	60	65
Recitations	5	0
Total	100	100

Grades will be made available through T- Square

Grading

Activities not be graded for first few recitations.

Each recitation activity is worth 5\%/N, where $\mathrm{N}=$ number of graded activities in the semester.

Related Websites

- Recordings of recitations and lectures: tegrity.gatech.edu
- Discussion forum: piazza.com
- Lectures: gtcourses.gatech.edu
- Homework: www.mymathlab.com

First homework due August 22, 11:59 PM

MATH 1502 - Calculus II 08/19/2013 07:46 AM
Thomas Morley

Georgia Profession

Your TA: Greg

- Canadian, eh
- mon français est tres mauvais
- moved to the US ~1 year ago
- post-doctoral fellow
- PhD in applied math (image processing), MSc in Electrical Engineering
- email or call me with any questions you have
- greg.mayer@ceismc.gatech.edu
- 404-894-8599

Questions?

Any questions before we discuss

- Geometric Series,
- Alternating Series,
- Taylor Series, and
- Taylor Polynomials?

Geometric Series

The sum of the geometric series is equal to

$$
\sum_{k=1}^{\infty} a r^{k-1}=
$$

Application

Express 1.79797979... as a rational number.

园－（0）田－

```
三 Examples ~~ Random
```


Input Interpretation：
 1.79797979797979

```
Rational approximation:
    \frac{178}{99}=1+\frac{79}{99}
```

What other methods can you use to check your answer？

Koch Snowflake

Let's create a Koch Snowflake and find its area. Start with an equilateral triangle with unit area.

Taylor Polynomials and Series
The formula for the \qquad is

$$
P_{N}=\sum_{k=0}^{N} \frac{f^{(k)}()}{k!} x^{k}=f()+\frac{f^{\prime}(~)}{1!} x+\frac{f^{\prime \prime}()}{2!} x^{2}+\ldots+\frac{f^{(N)}()}{N!} x^{N}
$$

Formula for the \qquad is

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}()}{k!} x^{k}=f()+\frac{f^{\prime}()}{1!} x+\frac{f^{\prime \prime}(~)}{2!} x^{2}+\ldots
$$

How are these formulas different?

Formula for $\exp (x)$
In class you saw (or will see that)

$$
\exp (x)=e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Find the Taylor expansions of:

$$
\begin{aligned}
& e^{-x}= \\
& e^{-x^{2}}=
\end{aligned}
$$

First Question on Quiz 1 Last Year
Use series to find the limit as $\mathrm{x} \rightarrow 0$ of $\frac{e^{2 x^{2}}-1-x^{2}}{x^{4}}$

RECITATION OI
WRTE

$$
=1+\frac{79}{99}
$$

$$
=\frac{178}{99}
$$

WE HAVE: EXPRESSED
A Repeating becinal
AS A RAT NUMBER, th a (labe is prat) ar)

$$
\begin{aligned}
& 1 . \overline{79}=1+\frac{79}{?}+\frac{79}{3}+\frac{79}{?}+\ldots: \quad ?=\operatorname{get} \text { students } \\
& =1+\frac{79}{100}\left[1+\frac{1}{100}+\frac{1}{10000}+1\right] \\
& \text { to tell you, } \\
& \text { or screw it } \\
& \text { up } 2 a s k \\
& \text { then to fix } \\
& =1+\frac{79}{100}\left[\frac{1}{1000}+\frac{1}{100}+\frac{1}{100^{2}}+\cdots\right] \\
& =1+\frac{79}{100} \sum_{k=?}^{\infty}\left(\frac{1}{100}\right)^{?} \\
& =1+\frac{79}{100}\left(\frac{1}{1-?}\right) \quad \frac{0 \text { then exp 'sk }}{1 / 100 \text {, why? }}
\end{aligned}
$$

Recitation oz
SAY

㓎 divide each side into 3 equal
\&
area of (blue) $\Delta=1$
area of $($ red $) \Delta=1 / 9$

$$
(\operatorname{gceen}) \Delta=\frac{i}{q^{2}}
$$

area of shoustake

$$
\begin{aligned}
& \text { area }\left.=1+3\left(\frac{1}{q}\right)+12\left(\frac{1}{q^{2}}\right)+48 \frac{1}{q^{3}}\right)+\ldots \\
&= 1+3\left(\frac{1}{9}+4^{1} \frac{1}{q^{2}}+4^{2} \frac{1}{q^{3}}+\ldots\right) \\
&=1+3 \sum_{k=1}^{\infty} \frac{4^{k-1}}{q^{k}} \\
&=1+\frac{3}{q} \sum_{k=1}^{\infty} \frac{4^{k-1}}{q^{k-1}}
\end{aligned}
$$

$$
=1+\frac{1}{3} \frac{1}{1-4 / 9}
$$

what is this?

$$
=8 / 5
$$

FINITE ArEA! whoa.
dd-dd-dd $\Delta \Delta \Delta$
each deration has different color. recall: area of Δ is $\frac{\sqrt{3}}{4} 5^{2}$ ($s=$ length one site)

How many red Δs ?
How may gree Δ ?
How many froe ΔA_{0}

QH6 Recitation 02

Today:

1. Geometric Series (10.2)
2. Wimba
3. Taylor Series, Taylor Polynomials (10.8)

While we're waiting to start:

$$
\sum_{k=0}^{\infty} \frac{10}{0^{k}}=
$$

Wimba Status

clear	away	approve	disapprove	surprise
confusion	clap	laughter	go faster	go slower

Taylor Polynomials and Series

Definition of the \qquad is

$$
P_{N}=\sum_{k=0}^{N} \frac{f^{(k)}()}{k!} x^{k}=f()+\frac{f^{\prime}()}{1!} x+\frac{f^{\prime \prime}()}{2!} x^{2}+\ldots+\frac{f^{(N)}()}{N!} x^{N}
$$

Definition of the
is

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(~)}{k!} x^{k}=f()+\frac{f^{\prime}()}{1!} x+\frac{f^{\prime \prime}(~)}{2!} x^{2}+\ldots
$$

How are these formulas different?

Taylor Expansion of e^{x}

The Taylor expansion of e^{x}, about $\mathrm{x}=0$, is:

$$
e^{x}=\sum_{k=0}^{\infty} \frac{\left(e^{x}\right)^{(k)}(0)}{k!} x^{k}=
$$

Find the Taylor expansion of e^{-x} about $x=0$.

Taylor Polynomials $\exp \left(-x^{2}\right)$, about $x=0$

Checking our result

WolframAlpha＊anmationa knowledge engine

taylor expansion of $\mathrm{e}^{\wedge}\left(-\mathrm{x}^{\wedge} 2\right)$

趿－号－田
三 Examples
\leftrightharpoons Random

Input interpretation：

```
series e}\mp@subsup{e}{}{-\mp@subsup{x}{}{2}
```

Series expansion at $\mathrm{x}=0$ ：

$$
1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{6}+\frac{x^{8}}{24}+O\left(x^{9}\right)
$$

Approximations about $\mathrm{x}=0$ up to order 2 ：

（order n approximation shown with n dots）

First HW

- When is it due?
- If you get stuck, send me an email.
- We can meet on Wimba. Send me an email to set up a time.

Taylor Polynomials of $\exp (x)$, about $x=3$

Checking our result

Taylor expansion of $\mathrm{e}^{\wedge}(\mathrm{x})$ at 3

Input interpretation:

Series expansion at $\mathrm{x}=3$:

$$
\begin{array}{r}
\boldsymbol{e}^{3}+\boldsymbol{e}^{3}(x-3)+\frac{1}{2} \boldsymbol{e}^{3}(x-3)^{2}+\frac{1}{6} \boldsymbol{e}^{3}(x-3)^{3}+ \\
\frac{1}{24} \boldsymbol{e}^{3}(x-3)^{4}+\frac{1}{120} \boldsymbol{e}^{3}(x-3)^{5}+O\left((x-3)^{6}\right)
\end{array}
$$

(converges everywhere)

Approximations about $x=3$ up to order 3:

Remainder Theorems

Recall: the $\mathrm{N}^{\text {th }}$ Taylor Polynomial

$$
P_{N}=\sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!} x^{k}
$$

Formula for the Taylor Series

$$
\begin{aligned}
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} & =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots \\
& =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+R_{3}(x)
\end{aligned}
$$

Two useful expressions for the remainder

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad\left|R_{n}(x)\right| \leq\left(\max _{t \in[0, x]}\left|f^{(n+1)}(t)\right|\right) \frac{|x|^{n+1}}{(n+1)!}
$$

Example 1: Find the Lagrange form of the remainder, $R_{n}(x)$, if

 $\mathrm{n}=4$, and $\mathrm{f}(\mathrm{x})=\mathrm{e}^{2 \mathrm{x}}$.

$$
\begin{aligned}
& \text { EXAMPlE }{ }^{" a "} \\
& \sum_{k=0}^{\infty} \frac{10}{3^{k}}=10 \sum_{k=0}^{\infty} \frac{1}{3^{k}} \\
& \left.\begin{array}{l}
\text { LET } k_{k=u-1}^{k=0}=10\left(\sum_{u=1}^{\infty} \frac{1}{3^{n-1}}\right. \\
\text { THEN, when } k=0)^{n-1}=1
\end{array}\right) \\
& =10\left(\frac{1}{1-\frac{1}{3}}\right) \\
& =10\left(\frac{3}{2}\right) \\
& =15 \\
& \text { USE CAMETRICK } \infty \\
& \Rightarrow \quad \sum_{k=1}^{\infty} a r^{k-1}=\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}
\end{aligned}
$$

ASK STUDENTS:
DOES TINES CONVeRGE? WHY?

No Preve
Taycor poly at o

$$
P_{N}=\sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!} x^{k}
$$

俯CLR EXPANSION AT $x=0$

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

$$
\begin{aligned}
& e^{x}: f^{(0)}(0)=? \\
& \\
& f^{(1)}(0)=? \\
& f^{(2)}(0)=? \\
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

Taler Above $x=0$ of e^{-x}
$e^{-x} \quad$ let $u=-x$,

$$
e^{n}=\sum_{k=0}^{\infty} \frac{u^{k}}{k!}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k}}{k!}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}
$$

Ask
What doEs "About $x=0$ "
MEAN?

TAXer fory $e^{-x^{2}}, \operatorname{abd} x=0$

WrRUTART WITH TAylod Exparsions

$$
\begin{aligned}
& e^{-x^{2}}=\sum_{k=0}^{\infty} \frac{\left(-x^{2}\right)^{k}}{k!} \\
& P_{k=0}^{0}=\sum_{\left.k!-x^{2}\right)^{k}}^{k!}=? \\
& P_{1}=\sum_{k=0}^{1} \frac{\left(-x^{2}\right)^{k}}{k!}=? \\
& P_{2}=?
\end{aligned}
$$

lets
try,
jome hing
different

$$
\begin{aligned}
& e^{x} a t x=3 \\
& e^{x}=\sum_{k=0}^{\infty} \frac{e^{?}(x-3)^{k}}{k!} \\
& p_{0}=e^{3} \\
& P=e^{3} e^{3}(x-3)=e^{3}(x-2) \\
& \left.R_{2}=P_{1}+\frac{e^{3}(x-3)^{2}}{2!}=\frac{1}{2} e^{2}(x)-4 x+5\right)
\end{aligned}
$$

QH6 Recitation 03

1. $P_{2}(x)$ of $1 /(1-x)^{2}$
2. Lagrange remainder (10.9)
3. HW questions?
4. Announcements
5. Group work

While we're waiting to start:
a)Plot a rough sketch of $f(x)=1 /(1-x)^{2}$ for x between -1 and +1 .
b)Use the Taylor expansion for $1 /(1-x)$ to find $P_{2}(x)$ of $f(x)$ about $x=0$.

The Taylor expansion of $1 /(1-x)$ about $x=0$ is

$$
\frac{1}{(1-x)}=1+x+x^{2}+x^{3}+\ldots
$$

$P_{2}(x)$ of $1 /(1-x)^{2}$

a) Plot a rough sketch of $f(x)=1 /(1-x)^{2}$ for x between -1 and +1 .
b) Use the Taylor expansion for $1 /(1-x)$ to find $P_{2}(x)$ of $f(x)$ about $x=0$.

The Taylor expansion of $1 /(1-\mathrm{x})$ about $\mathrm{x}=0$ is $\frac{1}{(1-x)}=1+x+x^{2}+x^{3}+\ldots$
$P_{2}(x)$ of $1 /(1-x)^{2}$

Lagrange Remainder

Recall: the $\mathrm{N}^{\text {th }}$ order Taylor Polynomial about $\mathrm{x}=0$ is:

$$
P_{N}(x)=\sum_{k=0} \underline{f^{(k)}(0)} x
$$

The Taylor Series about $\mathrm{x}=0$ is:

$$
f(x)=\sum_{k=0} \frac{f^{(k)}(0)}{} x=
$$

Questions about HW1?

Announcements

Online Survey

- I need your input on the recitations
- you'll receive an email invitation today for an online survey
- we will discuss survey results next week

Technical problems viewing lectures? Call Distance Education at

QH6 recitations are for QH6 students.

Let's Try Group Work

First Question on Quiz 1 Last Year
Use series to find the limit as $x \rightarrow 0$ of

$$
\frac{e^{2 x^{2}}-1-x^{2}}{x^{4}}
$$

Example 3: Find the Taylor expansion for $f(x)=\frac{2 x}{1-x^{2}}$

Row

$$
b)
$$

$$
f=\frac{d}{d x}\left(\frac{-1}{1-x}\right)=1+2 x+3 x^{2}+\ldots \ldots
$$

$$
P_{2}(x)=1+2 x+3 x^{2}
$$

SAY If we sketch P'

Say P_{2} approximates $f(x):$ well when x small for and poorly when x 's large. How com wee implore the approximation? - increase N

- keep internal of aypuan mend

LAGR利GE (prom 10,1)

$$
\begin{aligned}
& \text { T.R. } P_{N}=\sum_{k=0}^{N} \frac{f^{(n)}(0)}{k!} x^{k} \\
& \text { T.S. } \left.\quad f(x)=\sum_{k=0}^{\infty} \frac{f^{n}(0)}{k!} x^{k}=f(0)+\frac{f^{n}(t)}{n!} x+\frac{f^{n}(0)}{2!} x^{2} \right\rvert\, \\
& =P_{n}(x)+R_{N}(x) \\
& \angle \text { Agnanget } R_{N}=\text { remainder }=f(x)-P_{h}(x) \\
& \text { FORM if: }=\frac{f^{(n+1)}(c)}{(n+1)!} X^{n+1}, \quad C_{\text {somen number }} \in(x, x] \\
& \text { ReMAWMEL }
\end{aligned}
$$

QH6 Recitation 04

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH 6 students.

Today:

1. Group work
2. Remainder Theorems (10.9)

While we're waiting to start: -if possible, visit www.speedtest.net \bullet •click BEGIN TEST -write your download speed on this board, or type it in the chat window

Group Work

- For today, l'll assign everyone randomly into breakout rooms
- You'll have about 5 min
- A few suggestions:
o discuss a solution strategy before solving
o solve the question in 4 to 6 lines
- I will move between rooms and will move everyone back to main room

A Question from Quiz 1 Last Year

Use series to find the limit as $\mathrm{x} \rightarrow 0$ of $\frac{e^{2 x^{2}}-1-x^{2}}{x^{4}}$
Don't use l'Hospital's rule.

If you can't make it to a recitation or lecture ...

- A video archive of recitations and lectures in Math 1502 can be viewed at:

Taylor Polynomials of $\sin (x)$

Another Question from Quiz 1 Last Year
Estimate $\mathrm{e}^{3 / 2}$ to within 10^{-4}.

Estimate the integral to within 0.01 by using series

$$
\int_{0}^{1} x^{4} e^{-x^{2}} d x
$$

$R O 4$

$$
\begin{aligned}
& \frac{e^{2 x^{2}}-1-x^{2}}{x^{4}} \\
& \\
& \begin{aligned}
& \frac{e^{2 x^{2}}}{}=1+\frac{2 x^{2}}{1!}+\frac{\left(2 x^{2}\right)^{2}}{2!}+\frac{\left.2 x^{2}\right)^{3}}{3!}+\ldots \\
& x^{4}=\frac{x^{2}+\frac{4 x^{4}}{2}+\frac{8 x^{8}}{3!}+\ldots}{x^{4}} \\
&=x^{-2}+2+\frac{8}{3!} x^{4}+\ldots \\
&=\infty
\end{aligned} \\
& \begin{array}{l}
\lim _{x \rightarrow 0}
\end{array}
\end{aligned}
$$

Taylor Polynomials of $\sin (x)$

We have a graph of $\sin (x)$ and a few Taylor Polynomials.
What color is $\sin (x)$?
What color is $\mathrm{P} 1(\mathrm{x})$? How do we know? Is P1 always linear?
What color is P3(x)? Why?
P5 is purple.
Use the graph to estimate R1(π), R3(π) and R5(π).
What could we do to get a better approximation of $\sin (x)$ at π ?

$$
\begin{array}{ll}
\text { Recall: } & f(x)=P_{N}(x)+R_{N}(x) \\
\text { so: } & R_{N}=f(x)-P_{N}(x) . \\
\text { using the graph } \left.\mid R_{1}(\pi) \approx+3 .\right)_{5},\left|R_{3}(\pi)\right| \approx 2 \\
& \left|R_{5}(\pi)\right| \approx-0.5
\end{array}
$$

Estimate $e^{3 / 2}$ to within $10^{-4} ., f=e^{x}, f(k)=e^{x} \forall k$

$$
R_{N}^{(A)}=f(x)-P_{N}(x)
$$

$$
=\frac{f^{(n)}(c)}{\left(x^{n+1}\right.} \frac{x^{n+1]}!}{(\text { Lagrange }),}, \quad c \in[0, x]
$$

Ask: what is the pideris of e^{x} ?

$$
\begin{aligned}
& 2^{V b} \\
& 3
\end{aligned}
$$

is e^{x} ami increasing funct of x ?,

Announcements

Online Survey

- I need your input on the recitations
- you'll receive an email invitation today for an online survey
- we will discuss survey results

Group Work

- For today, l'll assign everyone randomly into breakout rooms
- You'll have about 10 min
- A few suggestions:
o discuss a solution strategy before solving
o solve the question in 4 to 6 lines
- I will move between rooms and will move everyone back to main room

Estimate the integral to within 0.01 by using series

$$
\int_{0}^{1} x^{4} e^{-x^{2}} d x
$$

Sum of a Series
Find the sum of $\sum_{k=1}^{\infty} \frac{1}{(3 k-2)(3 k+1)}$

$$
\text { ESTIMATE } e^{3 / 2} \text { To WITH,N } 10^{-4}
$$

$$
\begin{aligned}
\mid R_{N}(x) & \left.=\mid f-P_{N}\right) \\
& =\left|\frac{f^{n+1)}(c)}{(n+1)!} x^{n+1}\right|, \quad c \in[0, x] \\
& \leqslant \max _{c} \frac{f(n)(x)(x)^{n+1}}{(n+1)!}
\end{aligned}
$$

What do we use for $\max _{c} f^{(n+1)}(c)$?
5 wats (because $e^{3 / 2} x 4,48$) (choose at $>e^{3 / 2}$)

$$
\begin{aligned}
& \begin{array}{l|l}
n & 5 \cdot(3 / 2)^{n+1}(n+1)! \\
\hline 1 & 5.625 \\
2 & 2.8125
\end{array} \\
& 1 \text { : } \\
& 80,00052969796 \ldots \\
& q\left\{0,00008 \mathrm{~V}\left(<10^{-4}\right)\right. \\
& \Rightarrow e^{3 / 2} \approx p_{q}\left(\frac{3}{2}\right)=1+x+\frac{x^{2}}{2}+\ldots . .+\left.\frac{x 9}{9!}\right|_{x=3 / 2} \\
& =4.48167 \ldots \\
& \text { NASTY! }
\end{aligned}
$$

R05

$$
\begin{aligned}
& \iint_{0}^{1} x^{4} e^{-x^{2}} d x \text { with in } 0,01 \\
& I=\int_{0}^{1}\left(x^{4} \sum_{k=1}^{\infty}\left(-x^{2}\right)^{k} / k!\right) d x \\
& =\int_{0}^{1} x^{4}-x^{6}+\frac{x^{8}}{2!}-\frac{x^{10}}{3!}+\ldots x \\
& =\frac{1}{5}-\frac{1}{7}+\frac{1}{9 \cdot 2}-\frac{1}{11 \cdot 3 \cdot 2}+\frac{1}{288} \\
& =\frac{1}{5}-\frac{1}{7}+\frac{1}{18}-\frac{1}{66}+\frac{1}{288}-\ldots . \\
& \text { why do } \\
& \text { we not to } \\
& \text { use } \\
& \text { lagromge? } \\
& \begin{array}{c}
\text { By A.S:R.T. } 9 \\
\left|R_{n}\right|<\left|a_{n+1}\right|
\end{array} \\
& I_{1}=\frac{1}{5},|R|=1 / 7=0.14 \ldots>0.01 \\
& I_{2}=\frac{1}{5}-\frac{1}{7}=2 / 35,\left|R_{2}\right|=\frac{1}{18}=0.06>0.01 \\
& \vdots\left|R_{-3}\right|=\left|y_{56}\right|=0.015>0.01 \\
& I_{4}=1 / 5-\frac{1}{2}+1 / 16-1 / 66=0.0975 \\
& \left|R_{4}\right|=\left|a_{5}\right|=\frac{1}{288}=0.003472<0.01 \\
& \Rightarrow I=0.0975 \pm 0.01
\end{aligned}
$$

ROD, Off (DIDNT mANE TIME TO FINISH in ROS)
Find the sum of $\sum_{k=1} \frac{1}{(3 k-2)(3 k+1)}$
-wHIT is 000 RHS?

$$
\frac{1}{(3 k-2)} \frac{1}{3 k+1)}=\frac{A}{3 k-2}+\frac{B}{3 k+1}
$$

distract linear factors, not
what do we do how? repeated

$$
1=A(3 k+1)+B(3 k-2)
$$

describe using text oh at the next step
UTCTDNS

$$
\left.\begin{array}{rl}
1 & =3 k(A+B)+(A-2 B) \\
\Rightarrow & A+B=0 \\
& A-2 B=1
\end{array}\right\} \begin{aligned}
& B=-1 / 3 \\
& A=1 / 3
\end{aligned}
$$

$$
\begin{aligned}
S & =\sum \frac{1 / 3}{3 k-2}-\frac{1 / 3}{3 k+1} \\
& \left.=1 / 3\left(11^{\prime} / 4\right)+(1 / 4-1 / 2)+\left(\frac{1}{7}-1 / 0\right)+\ldots .\right)
\end{aligned}
$$

fill in blanker

$$
=1 / 3
$$

became we fo
found a series. - Send LiNk-

QH6 Recitation 6

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH6 students.

Today: Partial Fractions, Integration of Series, Convergence

$$
\text { Find the sum of: } \sum_{k=1}^{\infty} \frac{1}{(3 k-2)(3 k+1)}
$$

Quiz

To prepare for quiz:
-review the integral test for convergence (Section 10.3)
-pay close attention to tomorrow's lecture
-complete practice quiz
-email me with questions
Bring a calculator.
Questions during quiz:
-can call/text me on my cell,
-can call Dr. Morley (his number provided to your facilitator), -if you can connect to Wimba, you can ask questions that way.

What are you putting on your formula sheet?

Integration of Series

Find a series representation of $\int_{0}^{x} \sin \frac{\pi t^{2}}{2} d x$
Find at least the first 3 non-zero terms.

Integral Test

Determine whether the series converges: $\sum_{k=1}^{\infty} \frac{1}{k \ln (1+k)}$

Bound on Finite Sum

Find an upper bound for $\sum_{k=1}^{N} \frac{1}{k^{2}}$

RO5, Off (DIDNT have time to FinISh in RO5)
Find the sum of $\sum_{k=1}^{1} \frac{1}{(3 k-2)(3 k+1)}$

- WHT Is on RHS?

$$
\frac{1}{(3 k-2)} \frac{1}{3 k+1)}=\frac{A}{3 k-2}+\frac{B}{3 k+1}
$$

distinct invar factors not
What do we do now? repeated

$$
1=A(3 k+1)+B(3 k-2)
$$

describe using text ohs the next step
UTCTDNS

$$
\left.\begin{array}{rl}
& 1=3 k(A+B)+(A-2 B) \\
\Rightarrow & A+B= \\
& A-2 B=1
\end{array}\right\} \begin{aligned}
& A=-1 / 3 \\
& A
\end{aligned}
$$

$$
\begin{aligned}
S & =\sum \frac{1 / 3}{3 k-2}-\frac{1 / 3}{3 k+1} \\
& =1 / 3\left(\left(1 / \frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{7}\right)+\left(\frac{1}{7}-1 / 10\right)+\ldots .\right) \\
& =1
\end{aligned}
$$

fill in blanks
because We

$$
2 \text { found a series. }
$$

- Send Link-

R06
Series for $\int_{0}^{x} \sin \frac{\pi t^{2}}{2} d x$

$$
\frac{k}{2 k-1} 4+3 k
$$

$$
=5
$$

$$
37
$$

$$
\begin{aligned}
& 1^{\text {st }} 3 \text { terms } \\
& \left.\left.\int_{0}^{x}\left[\left(\frac{\pi t^{2}}{2}\right)-\left(\frac{\pi t^{2}}{2}\right)^{3} / 3!+\frac{\left(\pi t^{2}\right.}{2}\right)^{5}-\ldots\right]\right) d t \\
& =\int_{0}^{x} \frac{\pi t^{3}}{2-1!}-\frac{\pi^{3} t^{6}}{2^{3} \cdot 3!}+\frac{\pi^{5} t^{10}}{2^{5} \cdot 5^{!}}-\ldots d t \\
& =\frac{\pi x^{4}}{4 \cdot 2 \cdot 1!}-\frac{\pi^{3} x^{7}}{7 \cdot 2^{3} \cdot 3!}+\frac{\pi^{5} x^{10}}{11 \cdot 2^{5} \cdot 5!}- \\
& 4+3 k \\
& =\sum_{k=0}^{\infty} \frac{\left.(-1)^{k} \frac{\pi^{2 k+1} x^{4+3 k}}{\left(2^{2 k+1}\right)(2 k+1)!(4+3 k)} \quad(n+t+\operatorname{necossan} y)\right)}{}
\end{aligned}
$$

$$
\text { R06/ } \sum_{k=1}^{\infty} \frac{1}{k \ln (k+1)}
$$

LEFT-Sum

$$
\begin{aligned}
\sum \frac{1}{k \ln (k+1)} & >\int_{1}^{\infty} \frac{1}{x \ln (x+1)} d x \\
& >\int_{1}^{\infty} \frac{1}{(x+1) \ln (x+1)} d x \\
& =\left.\ln (\ln (x+1))\right|_{1} ^{\infty}(=\infty-1)
\end{aligned}
$$

$$
\Rightarrow \sum_{k=1}^{\infty} \frac{1^{\text {which DNE. }}}{k \ln (k+1)} \text { DNE }
$$

QH6 Quiz 3

Good luck on Quiz 3!
If you have any questions, you can message me through wimba. I'll be on wimba until 8:55.

QH6 Recitation 8

Today: Alternating Series Test, Quiz 1, Limits, Survey Results
Suppose we have the series $\sum(-1)^{k} a_{k}$
What conditions do we need to apply the alternating series test?

Does the following series converge? Why/why not?
$\sum(-1)^{k} k e^{-k}$

Checking Our Work


```
\(\operatorname{sum}(-1)^{\wedge} k k^{*} e^{\wedge}(-k)\)
```

\＆
畨－田－

Input interpretation：
$\sum\left(-\frac{1}{e}\right)^{k} k$

Infinite sum：

$$
\sum_{k=0}^{\infty}\left(-\frac{1}{\boldsymbol{e}}\right)^{k} k=-\frac{\boldsymbol{e}}{(1+\boldsymbol{e})^{2}}
$$

Decimal approximation：
$-0.1966119332414818525374247335859090256226728542731357757632 \ldots$

Convergence tests：

By the alternating series test，the series converges．
By the ratio test，the series converges．

How was Quiz 1?
What challenges, if any, did you encounter when writing Quiz 1?

Using Series to Evaluate a Limit
$\lim x-\tan x$
Evaluate $\lim x$
The Taylor expansion of $\tan (x)$ is
$\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots$

$$
{ }_{x \rightarrow 0} x-\sin x
$$

Checking Our Work

Using Series to Evaluate a Limit

Evaluate

Using Series to Evaluate a Limit

$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\sin (2 x)}$
 Evaluate

If $\sum(-1)^{k} a_{k}$, what conditions do we need to apply the ACCT?
$\eta \quad a_{k} \geqslant 0 \forall k$

$$
\text { not } a_{k} \rightarrow 0
$$

Does $\sum_{k}(-1)^{k} k e^{-k}$ converge?

$$
\cdot k e^{-k} \geqslant 0 \forall k
$$

- is $k e^{-k}$ decreasing? know?

$$
\begin{aligned}
\frac{d}{d x} x e^{-x} & =e^{-x}-x e^{-x} \\
& =e^{-x}(1-x)<0 \text { for } x>1
\end{aligned}
$$

$\Rightarrow k e^{-k}$ is decreasing function of k

$$
\Rightarrow \sum(-1)^{k} k e^{-k} \text { converges. }
$$

Sometimes: take derivative to verify ASCT com be applaud

ROB

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x-\tan x}{x-\sin x}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-\frac{x^{3}}{3}-\frac{2 x^{5}}{15}+\ldots}{\frac{x^{3}}{6}-x^{5} / 5!+\ldots}
\end{aligned}
$$

(What trick can we use?

- poly. division, yes, but hard.
- multiply by $\frac{x^{3}}{1 x^{3}}=\frac{x^{-3}}{x^{-3}}$

Guests:

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-1 / 3-\frac{2}{15} x^{2}+\ldots}{1 / 6-x^{3} / 5!+\ldots} \\
& =1 / 3 / 1 / 6 \\
& =2
\end{aligned}
$$

ROB
$\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-1 \lambda\right)$, There meat leave two Ampentitus.

$$
\begin{aligned}
& \begin{array}{l}
\text { COMMON DENOMINATOR } \\
=\lim _{x \rightarrow 0}\left(\frac{x-\sin x}{x \sin x}\right) \\
=\lim _{x \rightarrow 0} \frac{-x^{3} / 3!+x^{5} / 5!-\cdots}{x^{2}-\frac{x^{4}}{3!}+x^{6} / 5!} \\
=0 / x+0=0 \\
\left(\text { multiply by } \frac{x^{-2}}{x^{-2}}\right)
\end{array}
\end{aligned}
$$

EXPAND CSC X

$$
\csc x=\frac{1}{x}+\frac{x}{6}+\frac{7 x^{3}}{360}+\ldots
$$

$$
\Rightarrow \lim _{x \rightarrow 2}\left(\frac{1}{\sin x}-\frac{1}{x}\right)
$$

$$
=\lim _{x \rightarrow 0}\left(\frac{x}{6}+\frac{7 x^{3}}{360}+\ldots\right)
$$

$$
=0
$$

QH6 Recitation 9

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH6 students.
Today: I'Hopital's Rule, Quiz 2 Notes, Ice Breaker, Dot Products
Use l'Hopitals rule to evaluate: $\lim _{x \rightarrow 0} \frac{x-\tan x}{x-\sin x}$

Checking Our Work

Quiz 2 Formula Page Collaboration

Let's work together on creating formula pages for Quiz 2!
Participation is optional, not graded.

Google Docs

- can add drawings
- can see who wrote what
- has a chat feature
- can export documents to Word and other formats
- revision history
- no $\log -\mathrm{in}$ required to view

Quiz 2 Formula Page Collaboration

Vote using text chat: which technology would you prefer?
1.Google Docs
2.Piazza

Rules:
a)errors in contributions can be corrected by anyone b)don't delete other students contributions
c)

(First?) Icebreaker

To use mic: press and hold the talk button.

Everyone:

- say your name,
- one thing about yourself,
- place a dot on the map that approximates your current location.

The Dot Product

If $\mathbf{u}=5 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}$, and $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$,

Properties

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{a} & =\|\mathfrak{a}\|^{2}, \text { which is the } \quad \ldots \\
\vec{a} \cdot \stackrel{\rightharpoonup}{b} & =\vec{b} \cdot \\
\stackrel{\rightharpoonup}{a} \cdot \vec{b} & =\|\vec{a}\|\|\vec{b}\|^{\text {of vector } \mathbf{a} .}
\end{aligned}
$$

Presenter Status

- allows you to move yourself and others in/out of breakout rooms
- allows you to give/remove others presenter status

Dot Products

a) A rhombus is a parallelogram with four sides of equal length. Show that the diagonals of a rhombus are perpendicular.
b) Show that $4(\vec{a} \cdot \vec{b})=\|\stackrel{\rightharpoonup}{a}+\vec{b}\|^{2}-\|\vec{a}-\vec{b}\|^{2}$

Projections

Given any two vectors \mathbf{u} and \mathbf{v}, find $\mathbf{u}_{\|}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

	$=$ $-$ 1 1 OH،
 	2y

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH 6 students.

Today: Dot Products

A rhombus is a parallelogram with four sides of equal length. Show that the diagonals of a rhombus are perpendicular.

Show that

$$
4(\vec{a} \cdot \vec{b})=\|\vec{a}+\vec{b}\|^{2}-\|\vec{a}-\vec{b}\|^{2}
$$

Application of Angles

Suppose vectors $\mathbf{u}=\mathbf{i}+x \mathbf{j}+\mathbf{k}$, and $\mathbf{v}=\mathbf{2 i}-\mathbf{j}+\mathbf{y} \mathbf{k}$. Find x and y so that \mathbf{u} and \mathbf{v} are perpendicular.

Dot Products

What can we conclude about vectors \mathbf{a} and \mathbf{b} if:

$$
\text { a) }\|\vec{a}\|^{2}+\|\vec{b}\|^{2}=\|\vec{a}+\vec{b}\|^{2}
$$

b) $|\vec{a}|^{2}+|\vec{b}|^{2}=|\vec{a}-\bar{b}|^{2}$

QH6 Recitation 11

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH 6 students.
Today: Projections, Cross Products, Planes
Given any two vectors \mathbf{u} and \mathbf{v}, find $\mathbf{u}_{\|}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Quiz 2, Midterm Grades

Quiz 2
 Thursday October 10.
 Questions?

Midterm Grades

- Submitted on Friday at noon
- Calculated as
- 50\% quiz 1
- 50\% homework
- Let me know if any grades in t-square are not correct
- Did you get Quiz 1 back? How did you get it back?

Cross Product Properties

If $\mathbf{a}=\mathbf{i}+6 \mathbf{k}$, and $\mathbf{b}=3 \mathbf{i}+2 \mathbf{j}$,
then $\mathbf{a} \times \mathbf{b}=$

Properties
$\vec{a} \times \vec{b}$ is
to vectors \vec{a} and \vec{b}
$\vec{a} \times \vec{b}=\|\vec{a}\|\|\vec{b}\|$

Properties

If $\mathbf{a} \times \mathbf{b}=0$ and $\mathbf{a} \cdot \mathbf{b}=0$, what can we conclude about vectors \mathbf{a} and \mathbf{b} ?

Planes

Suppose we have the points $P(1,2,3), Q(1,3,4), R(2,2,2)$.
a) Find a unit normal vector to the plane that contains the three points.
b) Find an equation of the plane.

We read an expression for $\vec{u}_{11}=$ pro jp \vec{u}.

$$
\left.\begin{array}{l}
\text { We need an expression for } \vec{u}_{11}=\text { pro five } u \text {. } \\
\left(\begin{array}{l}
\vec{u}_{11}+\vec{u}_{1}=\vec{u}, ~ o r ~ \\
u_{1}
\end{array}=\vec{u}-\vec{u}_{11}\right. \\
\hat{v}=\vec{v}_{1 / \|}
\end{array}\right)^{\text {D. ONT }} \text { WRITE }
$$

Let's try: $\vec{u}_{11}=(\vec{u} \cdot \vec{v}) \vec{v}$.
Then $O=\vec{u}_{n} \cdot \vec{u}_{1}$

$$
\begin{aligned}
& =(\vec{u} \cdot \vec{v}) \vec{v} \cdot \vec{u}_{1} \text {, by deon of } \vec{u}_{11}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=(\overrightarrow{\vec{u}} \cdot \vec{v})(\vec{u} \cdot \vec{v})-\vec{u} \cdot \vec{v})(\vec{v}, \vec{v}, \vec{u}), \text { because dot prod son edition the } \\
=(\vec{u} \cdot \vec{v})(\vec{u} \cdot \vec{v})-\vec{u} \cdot \vec{v})(\vec{u} \cdot \vec{v}) \vec{v}
\end{array} \\
& =(\vec{u} \cdot \vec{v})(\vec{u} \cdot \vec{v})-(\vec{u} \cdot \vec{v})(\vec{u} \cdot \vec{v}) \vec{v} \cdot \vec{v} \\
& \text { need this }
\end{aligned}
$$

How can we change our deft of \vec{u}_{11} sot. be 1
Q
we do home zero?

$$
\begin{aligned}
& \text { we do home zero: } \\
& \Rightarrow \vec{u}_{1}=\operatorname{proj}_{v} \vec{u}=(\vec{u} \cdot \hat{v}) \hat{v} \text {, because }
\end{aligned}
$$ it works

$R \| \& R D$
If $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=0$ then what can we conclude about \vec{a} and \vec{b} ?

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \perp \vec{b} \text { or ane of } \vec{a}, \vec{b} \text { zero } \\
& \vec{a} \times \vec{b}=0 \Rightarrow \vec{a} \| \vec{b} \text { or one of } \vec{a}, \vec{b} \text { zero }
\end{aligned}
$$

Q

$$
P(1,2,3), Q(1,3,4), R(2,2,2)
$$

$Q /$ How do we for two vectors in the plane?

$$
\stackrel{\rightharpoonup}{P Q}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{P R}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

$$
\begin{align*}
& \begin{aligned}
\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{cc}
\hat{1} \\
1 & j \\
0 & \hat{k} \\
1 & 0
\end{array}\right| & =(-1-0) \hat{i}-(0-1) \hat{j}+(0-1) \hat{k} \\
& =-\hat{i}+\hat{j}-\hat{k} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]
\end{aligned} \\
& \|\vec{N}\|=\sqrt{3} \Rightarrow \hat{N}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]
\end{align*}
$$

specific

$$
0=\hat{N} \cdot\left[\begin{array}{l}
x-1 \\
\frac{y-2}{z-3}
\end{array}\right]=\begin{array}{cc}
=(-(x-1)+(y-2)-(z-3)) \frac{1}{\sqrt{3}} \\
\Rightarrow x-y+z=2
\end{array}
$$

- What dido we learn?

QH6 Recitation 12

If you are not in QH6, please attend your recitation at gtcourses.gatech.edu. This recitation is for QH6 students.

Today: Cross Products, Planes, Lines

Suppose we have the points $P(1,2,3), Q(1,3,4), R(2,2,2)$.
a) Find a unit normal vector to the plane that contains the three points.
b) Find an equation of the plane.

Dot and Cross Products

Which of the following make sense? Explain why/why not.

1) $a \times(b \cdot c)$
2) $a \cdot(b \cdot c)$
3) $a \times(b \times c)$
4) $a \cdot(b \times c)$
5) What do you get when you cross an elephant and a grape?
6) What do you get when you cross a mountain-climber with a mosquito?

Coplanar

Determine whether the vectors are co-planar:

$$
\begin{aligned}
& \mathbf{j}-\mathbf{k} \\
& 3 \mathbf{i}-\mathbf{j}+2 \mathbf{k} \\
& 3 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

What do these equations represent?

$$
\begin{array}{ll}
x_{1}=1+t & x_{2}=1-u \\
y_{1}=-1-t & y_{2}=1+3 u \\
z_{1}=-4+2 t & z_{2}=-2 u
\end{array}
$$

```
Planes
```

Find the equation for the line that is perpendicular to the yz-plane, and also passes through $\mathrm{P}(1,4,3)$.
$R \| \& R D$
If $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=0$ then what can we conclude about \vec{a} and \vec{b} ?

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \perp \vec{b} \text { or ane of } \vec{a}, \vec{b} \text { zero } \\
& \vec{a} \times \vec{b}=0 \Rightarrow \vec{a} \| \vec{b} \text { or one of } \vec{a}, \vec{b} \text { zero }
\end{aligned}
$$

Q

$$
P(1,2,3), Q(1,3,4), R(2,2,2)
$$

$Q /$ How do we for two vectors in the plane?

$$
\stackrel{\rightharpoonup}{P Q}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{P R}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

$$
\begin{align*}
& \begin{aligned}
\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{cc}
\hat{1} \\
1 & j \\
0 & \hat{k} \\
1 & 0
\end{array}\right| & =(-1-0) \hat{i}-(0-1) \hat{j}+(0-1) \hat{k} \\
& =-\hat{i}+\hat{j}-\hat{k} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]
\end{aligned} \\
& \|\vec{N}\|=\sqrt{3} \Rightarrow \hat{N}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]
\end{align*}
$$

specific

$$
0=\hat{N} \cdot\left[\begin{array}{l}
x-1 \\
\frac{y-2}{z-3}
\end{array}\right]=\begin{array}{cc}
=(-(x-1)+(y-2)-(z-3)) \frac{1}{\sqrt{3}} \\
\Rightarrow x-y+z=2
\end{array}
$$

- What dido we learn?
$k 12$
WHAT GUES co-plamar MEAN?

$$
\left.\left[\begin{array}{cccc}
1 \\
1 \\
-1
\end{array}\right] \times \begin{array}{ccc}
-2 & -2 \\
3
\end{array}\right]=\left[\begin{array} { c c c }
{ i } & { j } & { k } \\
{ 0 } & { 1 } & { - 1 } \\
{ 3 } & { - 1 } & { 2 }
\end{array} \left|\times\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]=\left|\begin{array}{ccc}
i & j & k \\
3 & -3 & -3 \\
3 & -2 & 3
\end{array}\right|\right.\right. \text { TORD }
$$

* U,V,w ase co-plamon fien are in the some plame.
(1) if uvew ape corplamon, then (urvkw $\neq 0 \times$
(2) $4, v, w$
$\| \quad \Leftrightarrow(u \times V) \cdot w=0$
RQ:Whift?

$$
\left.4 s=2, \quad \begin{array}{cc}
3 & \begin{array}{c}
3 \\
-3 \\
-3
\end{array} \\
-2 \\
3
\end{array}\right]=9+6-9 \neq 0
$$

\Rightarrow unv,w are nt copplanar.

EQU LNE FORMEG FROM INTERSECTION of

$$
\begin{aligned}
& \text { (1) } x+2 y+3 z=0 \\
& \text { i }-3 x+4 y+z=0 \text { Nectorin lome } \\
& \text { C is } c=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
z \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
x-0 \\
y-0 \\
z-0
\end{array}\right] \\
& 0=\left[\begin{array}{c}
-3 \\
4 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
x^{-6} \\
y^{-6} \\
x^{-0}
\end{array}\right] \\
& \vec{N}_{1} \times \vec{N}_{2}=\left[\begin{array}{cc}
123 \\
-34
\end{array}=\left[\begin{array}{r}
-10 \\
-10 \\
0
\end{array}\right]\right.
\end{aligned}
$$

QH6 Recitation 13

Today: Cross Products, Planes, Lines

Do these lines intersect each other? Why?

$$
\begin{array}{ll}
x_{1}=1+t & x_{2}=1-u \\
y_{1}=-1-t & y_{2}=1+3 u \\
z_{1}=-4+2 t & z_{2}=-2 u
\end{array}
$$

Announcements

- Fall Recess: October 14, 15 - no lectures and recitations?
- Technology online survey: everyone please complete the survey!
- Any questions about HW7?

Presenter Status

- allows you to move yourself and others in/out of breakout rooms
- allows you to give/remove others presenter status

Q1, Last Year's Quiz 2

Find a parametrization of the line that is the intersection of the planes
P: $x-2 y+z=3$
Q: $2 x+y+z=1$

$$
\left.\begin{array}{l}
x_{1}=1+t \\
y_{1}=-1-t \\
z_{1}=-4+2 t
\end{array}\right\} x_{1}
$$

$$
\left.\begin{array}{l}
x_{1}=1-n \\
y_{2}=1+3 u \\
z_{2}=-2 u
\end{array}\right\} d_{2}
$$

$$
\left\{\begin{array}{ll}
X_{1} & y_{2}=1+3 n \\
z_{2} & =-2 n
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\left.z_{1}=-4+2 t\right) \\
\text { Why If } t=0, & P(1,-1,-4) \\
t=1 & Q(2,-2,-2)
\end{array}\right\} \overrightarrow{P Q}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

$\overrightarrow{P Q}$ is a vector Il to d_{1}

$$
\begin{array}{ll}
u=0 \\
u=1
\end{array}, \quad R(1,1,0), \overrightarrow{k S}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
$$

Do $d_{1} \& l_{2}$ intersect?
if thy $d:\{1+t=1-u \Rightarrow t=-u$
I t, u that $\left\{\begin{array}{rl}-1-t & =1-3 u \Rightarrow-1+u=1+3 u \\ -4-2 t & =-2 u\end{array} \quad u=-1, t=+1\right.$. $-6=+2$
$V 0$
\Rightarrow LINES ARE "SKEW"

RB 814
2 EqUATIONS, 3 inknoms.

$$
\begin{aligned}
& \operatorname{cis} x-2 y+z=3 \\
& p \quad x+y+z=1 \\
& \text { a } 2 x+y
\end{aligned}
$$

Let $y=t$, Then

$$
\begin{aligned}
x+3 t=-2 \Rightarrow x & =-2-3 t \\
y & =t \\
z & =1-t+2+6 t \\
& =3+5 t
\end{aligned}
$$

P con be written in the form

$$
\underbrace{(1,-2,1) \cdot(\underbrace{x-, y-, z-}_{\text {pone }})=0}_{\text {a vector } 1 \text { to plane } P}
$$

we need $-x_{0}+4_{0}-z_{0}=+3$ choose $z_{0}=0, y_{0}=1 \Rightarrow x_{0}=-1$

Likewise $\left[\begin{array}{c}2 \\ 1 \\ \vdots\end{array}\right]$ is a vector $\perp Q$.

$$
\Rightarrow\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \times\left[\begin{array}{c}
2 \\
1 \\
\end{array}\right]=\left\lvert\, \begin{array}{cccc}
\text { is } & \text { vector } \| \text { to } & 1 \\
i & j & k \\
1 & -2 & 1 \\
2 & 1 & 1
\end{array}\right.
$$

$$
=\left[\begin{array}{c}
-3 \\
+1 \\
5
\end{array}\right]
$$

ℓ is $x=1-3 t \quad$ Let

$$
\begin{aligned}
& y=-1+t \\
& z=0+5 t
\end{aligned}
$$

test $x=1: y=-1$

ALTERNATE SOLUTiON

$$
\begin{aligned}
& x-2 y+z=30 \\
& 2 x+y+z=12
\end{aligned}
$$

Parametric form is

$$
\begin{aligned}
& x=x_{0}+t d x \\
& y=y_{0}+t d y \\
& z=z_{0}+t d z
\end{aligned}
$$

$\vec{d}=$ vector II to line
$(2)-1)$ is

$$
x+3 y=-2
$$

- One equeg t ave unkams
- line ir \mathbb{R}^{2}.
- $k+t=t, x=-2-3 t$
whet dols $y=t$ man?
Then (1) yields

$$
\begin{gathered}
(-2-3 t)-2 t+z=3 \\
z=5+5 t \\
\Rightarrow \quad x=-2-3 t \\
4=t \\
z=5+5 t
\end{gathered}
$$

why can we eliminate one voided?

Find a parametrization of the line that is the intersection of the planes. P: $x-2 y+z=3$
$Q: 2 x+y+z=1$

$$
\begin{aligned}
& -x+2 y-1=-3 \\
& 2 x+y+z=1 \\
& x+3 y=-27 x+3 t=-2 \\
& y=t \quad x=-3 t-2 \\
& F_{g=t} \quad \begin{array}{c}
=-x+2 y+3=-(-3 t-2)+2 t+3=5=5 t+5) \\
(x, y, y)=(-3 t-2, t, 5 t+5))
\end{array}
\end{aligned}
$$

Announcements

- Quiz 2 Office Hours are:

Planes and Lines

Line L is determined by $P_{1}(4,-3,1)$ and $P_{2}(2,-2,3)$. Plane Q is determined by $\mathrm{Q}_{1}(2,0,-4), \mathrm{Q}_{2}(1,2,3), \mathrm{Q}_{3}(-1,2,1)$. Do L and Q intersect? If so, where?

Planes and Lines

Find the equation for the line that is perpendicular to the yz-plane, and also passes through $\mathrm{Q}(1,1,7)$. Explain your process.

Q2, Last Year's Quiz 2 (basically)

For what values of b is \mathbf{w} in the plane determined by vectors \mathbf{u} and \mathbf{v} ?

$$
\vec{w}=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]
$$

$$
\vec{u}=\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right], \vec{v}=\left[\begin{array}{l}
1 \\
1 \\
b
\end{array}\right]
$$

RB 814
2 Equations, 3 inknoms.
P $\quad x-2 y+z=3$
Let $y=t$. Then

$$
\begin{aligned}
& \text { N End } M y, \\
& x+3 t=-2 \Rightarrow x=-2-3 t \\
& y=t \\
& z=1-t+2+6 t \\
&=3+5 t
\end{aligned}
$$

$$
k 2 x+y+z=1
$$

P com be writes in the form

$$
\underbrace{(1,-2,1)}_{\text {a vector } 1 \text { to plane? }} \cdot(\underbrace{x-, y-, z-}_{\text {var in e }})=0
$$

we need $-x_{0}+2 y_{0}-z_{0}=+3$ choose $z_{0}=0, y_{0}=1 \Rightarrow x_{0}=-1$

Likewise $\left[\begin{array}{c}2 \\ 1\end{array}\right]$ is

$$
\Rightarrow\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \times\left[\begin{array}{c}
2 \\
1
\end{array}\right]=\left[\left.\begin{array}{ccc}
\text { is } & \text { a } & \text { vector } 11 . t_{0} \\
i & j & k \\
1 & -2 & 1 \\
2 & 1 & 1
\end{array} \right\rvert\,\right.
$$

$$
=\left[\begin{array}{c}
-3 \\
+1 \\
5
\end{array}\right]
$$

l is

$$
\begin{aligned}
& x=1-3 t \\
& y=-1+t \\
& z=0+5 t
\end{aligned} \quad \begin{aligned}
& \text { Let } \\
& z=1
\end{aligned}
$$

test $x=1: y=-1$

$$
t=1=u, t=u+1
$$

$$
\begin{aligned}
& t=1=u, t=u+1 \\
& \Rightarrow x=1-3(u+1)=-2-3 t
\end{aligned}
$$

$$
z=5(u+1)
$$

choose $z=0$, then $\left[\begin{array}{cccc}1 & -2 & 0 & 3 \\ 2 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & -2 & 0 \\ 0 & -3 & 0\end{array}\right]$
or plat

ALTERNATE PLUTON

$$
\begin{aligned}
& x-2 y+z=30 \\
& 2 x+y+z=16
\end{aligned}
$$

Parametric form is

$$
\begin{aligned}
& x=x_{0}+t d x \\
& y=y_{0}+t d y \\
& z=z_{0}+t d_{z}
\end{aligned}
$$

$\vec{d}=$ vector II to line
$(2)-1 / 5:$

$$
x+3 y=-2
$$

- One egirg two vakowns
- line in \mathbb{R}^{2}.

$$
\text { Let } t=t, x=-2-3 t
$$

what does $y=t$ mean?
Then (1) yields

$$
\begin{aligned}
&(-2-3 t)-2 t+z=3 \\
& z=5+5 t \\
& \Rightarrow \quad x=-2-3 t \\
& 4=t \\
& z=5+5 t
\end{aligned}
$$

why com we elinimete one variole?
$R 4$

$$
d:\left[\begin{array}{l}
-2 \\
+1 \\
+2
\end{array}\right]
$$

nomal to plone, \vec{N}

ASK

- take sono tine to thite asont, the describe bue your would tart is textarmic.
what do me need to frod to do this?
If it does intersect:

$$
\begin{aligned}
& x(t)=4-2 t \\
& y(t)=-3 t+ \\
& z(t)=1+2 t
\end{aligned}
$$

Fid ts.t.
equ. of plom satiafied.
Equ of plane:

$$
\begin{aligned}
& O=\vec{N} \cdot(\vec{x}-\vec{Q}) \\
& 0=\left[\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right] \cdot\left(\begin{array}{c}
x-z \\
y-0 \\
z+4
\end{array}\right) \\
& 6=x+4 y-z
\end{aligned}
$$

sub: $L H=6$
$\Rightarrow \vec{d} \| \vec{N}$. Is $L_{\text {in }} Q$?
Q is $\vec{N} \cdot\left[\begin{array}{c}x-x_{0} \\ y-x_{0} \\ z-z_{0}\end{array}\right]=0$ is P_{1} is in plone, then

Equ HAE 1 TO XPPLANE E passes tareomal Q $(1,6,7,7)$. - nomar to xp-plane: $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

- LNE, PKRAMETRIC, is.

$$
\begin{aligned}
& x=1+0 t \\
& y=5+0 t \\
& z=7+t
\end{aligned}
$$

$$
\vec{w}=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right], \quad \vec{W}=\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right], \vec{v}=\left[\begin{array}{l}
1 \\
1 \\
b
\end{array}\right]
$$

X If \vec{w} is in the plane, then
If $\vec{N} \cdot \vec{W}=0$, then \vec{W} is in the plan:

$$
\begin{aligned}
\vec{N}=\vec{u} \times \vec{v} & =\left[\begin{array}{ccc}
4 & 2 & 3 \\
1 & b
\end{array} \left\lvert\,=\left[\begin{array}{c}
2 b-3 \\
-4 b+3 \\
2
\end{array}\right]\right.\right. \\
O=\vec{N} \cdot \vec{w} & =(2 b-3)(-11)+(-4 b+3)(2)+(2)(3) \\
O & =-2 b+3+3-4 b+6 \\
6 b & =12 \\
b & =2
\end{aligned}
$$

QH6 Recitation 15

Today: Review for Quiz 2
For what values of z does the series converge?

$$
\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{z}}
$$

Announcements

- Quiz 2 Office Hours
- I'll be in Wimba
- Tuesday: 7:30 pm to 9:00 pm
- Wednesday: 7:30 pm to 9:00 pm
- May need to get my attention with mic -
- Last year's Quiz 2, Q2 and Q3, will be more helpful for your Quiz 3
- Google Doc notes
- Bring calculator
- Any questions about Quiz 2?

Planes and Lines

a) Find the angle between the planes:

$$
\begin{aligned}
& x+y+z=1 \\
& x-2 y+3 z=1
\end{aligned}
$$

b) Find the symmetric equation of the line between the planes.

Distance Formula

Vector \mathbf{r} is || to line L. Find the distance between L and an arbitrary point P.

Lines

L is the line $r(t)=r_{0}+t d$.
a)Find the scalar t_{0} so that $r\left(t_{0}\right) \perp L$
b)Find the parameterization $\mathbf{R}(\mathrm{t})=\mathbf{R}_{0}+\mathrm{tD}$ for L, where $\mathbf{R}_{0} \perp \mathrm{~L}$, and $\|\mathrm{D}\|=1$.

For whtt values of z does the seres convirge?

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{z}} \\
& \begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{z}} d x & =\int_{2}^{\infty} \frac{1}{x u^{z}} x d u
\end{aligned} \quad u=\ln x \\
&=\int_{2}^{\infty} u^{-z} d u=\frac{1}{x} d x \\
&=\left.\frac{1}{1-z} u^{-1-z}\right|_{2} ^{\infty} \\
& \Rightarrow z>1
\end{aligned}
$$

$$
\sum_{k=2}^{\infty} \frac{\ln k}{k^{p}}
$$

Why a wo mply inteyual test?
(1) DRAN D AGRAM
(2) wredonce
 Find the distane between an arbltroun pian P and l

$$
\|P R\|=d=\|\overrightarrow{Q P}\| \sin \theta
$$

- We don't howe θ
but:

$$
\begin{aligned}
\|\vec{r} \times \overrightarrow{Q P}\| & =\|\vec{r}\|\|\overrightarrow{Q P}\| \sin \theta \\
& =\|\vec{r}\| d \\
\alpha & =\frac{\|\vec{r} \times \overrightarrow{Q P}\|}{\|\vec{r}\|}
\end{aligned}
$$

$$
\begin{aligned}
& x+y+z=1 \\
& x-2 y+3 z=1
\end{aligned}
$$

a

$$
\begin{aligned}
& N_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], N_{2}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \text { why? } \\
& \cos \theta=\frac{1-2+3}{\sqrt{3} \sqrt{1+4+9}}=\frac{2}{\sqrt{3} \sqrt{4}} \Rightarrow \theta \approx 72^{\circ}
\end{aligned}
$$

Dib Yow SEE S.F.?
Symmetric form: $\frac{x-x_{0}}{r_{1}}=\frac{y-y_{0}}{r_{2}}=\frac{z-z_{6}}{r_{3}}$
\vec{r} is lt to line. $\left(x_{0}, y_{2}, 7\right.$ is any point:

$$
\vec{r}=\vec{N}_{1} \times \vec{N}_{2}=\left[\begin{array}{c}
5 \\
-2 \\
-3
\end{array}\right]
$$

KV NEED POATT: chase $z=0$, then

$$
\left.\begin{array}{rl}
& x+y=1 \\
x-2 y=1
\end{array}\right\} y=0, x=1
$$

OR: get $\begin{aligned} & x(t)=x_{0}+5 t \\ & y(t)=\end{aligned}$
L is the the $\vec{r}(t)=\vec{r}_{0}+t \vec{d}$.
a) Find the scalar t_{0} sit. $\vec{r}\left(t_{0}\right) \perp L$
b)
a)

$$
\begin{aligned}
& \left.O=\vec{d} \cdot \dot{r}\left(t_{0}\right)=0 \quad b\right)^{2} \cdot \frac{\text { 等 }}{\vec{R}=\vec{R}_{0}}+t \vec{D} \\
& =\vec{d} \cdot\left(\vec{r}_{0}+t_{0} \vec{d}\right) \quad \quad \text { st. } \vec{R}_{0} \perp l,\|D\|=1 \text {, } \\
& =d \cdot d t+J \cdot p_{0}^{d} \\
& \vec{R}_{0} \perp \ell \Rightarrow \vec{R}_{0}=\vec{r}\left(t_{0}\right) \\
& t_{0}=\frac{\vec{a} \cdot \overrightarrow{r_{0}}}{\|\vec{d}\|^{2}} \\
& \vec{D} \| \vec{d} \text {, }
\end{aligned}
$$

QH6 Quiz 4

Good luck on Quiz 4!

If you have any questions, you can message me through wimba. I'll be on wimba until 8:55.

QH6 Recitation 17

Today: Pop Quiz, Linear Systems

- Pop quiz grading
- Correct 5 points
- Name on page 3 points
- Did not take: 0 points.
- Time: 10 minutes
- To submit your work, either
a) work on whiteboard in breakout room, press the SAVE button
b) work on paper,
- give to facilitator,
- leave 2 inch margin,
- write your name and QH6 at the top

Moving to Breakout Room

Pop Quiz

For what values of a does

$$
\begin{array}{r}
7 x+2 y-3 z=25 \\
y+3 z=5 \\
3 y+a z=3
\end{array}
$$

Have a solution?

Linear Combinations

For what values of h is b a linear combination of vectors v_{1}, v_{2} ?
$\vec{v}_{1}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-5 \\ -8 \\ 2\end{array}\right], \vec{b}=\left[\begin{array}{c}3 \\ -5 \\ h\end{array}\right]$

Announcements

Solutions to a System

Find h and k such that the system has a) no sol'n, b) a unique sol'n, and c) many solutions.

$$
\begin{aligned}
& x_{1}+h x_{2}=2 \\
& 4 x_{1}+8 x_{2}=k
\end{aligned}
$$

Two Fundamental Questions

If

$$
\vec{y}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}
$$

then \vec{y} is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
If we are only given $\vec{y}, \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, then:

1. can we find the c's?
2. how do we find the c's?

Example 1 Determine whether b is a linear combination of the vectors formed from the columns of A.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right), b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)
$$

QH6 Recitation 17
Today: Pop Quiz, Linear Systems
- Pop quiz grading
• Correct 5 points
• Name on page 3 points
• Did not take: 0 points.
- Time: 10 minutes
- To submit your work, either
a) work on whiteboard in breakout room, press the SAVE
b) work on paper,
• give to facilitator,
• leave 2 inch margin,
write your name and QH6 at the top

Two Fundamental Questions
If

$$
\vec{y}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}
$$

then \vec{y} is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
If we are only given $\vec{y}, \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, then:

QH6 Recitation 18

Today: Linear Dependence

Determine whether b is a linear combination of the vectors formed from the columns of A.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right), b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)
$$

The vector b is a linear combination of the columns of matrix A if:

Pop Quiz

For what values of a does

$$
\begin{array}{r}
7 x+2 y-3 z=25 \\
y+3 z=5 \\
3 y+a z=3
\end{array}
$$

Have a solution?

Linear Dependence (1.7)

Vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \ldots, \vec{v}_{N}$ are linearly dependent (LD) if $\exists c_{1}, c_{2}, c_{3}, \ldots, c_{N}$ not all \qquad , such that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots . c_{N} \vec{v}_{N}=\overrightarrow{0}
$$

If the vectors are not LD, they are \qquad .

To determine whether a set of vectors are \qquad , we solve:

$$
c_{1} \stackrel{\rightharpoonup}{v}_{1}+c_{2} \stackrel{\rightharpoonup}{v}_{2}+c_{3} \stackrel{\rightharpoonup}{v}_{3}+\ldots+c_{N} \stackrel{\rightharpoonup}{v}_{N}=\stackrel{\rightharpoonup}{0}
$$

which has the same solution as the linear system whose augmented matrix is $\left[\begin{array}{lllll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \ldots \vec{v}_{N} & \overrightarrow{0}\end{array}\right]$.

Announcements

Determine whether the following vectors are LI .
$\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 7\end{array}\right]$

Conceptual Question

Determine whether the following vectors are LI .

$$
\left[\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
2 \\
4
\end{array}\right]
$$

Moving to Breakout Room

Example 1 Find the values of h s.t. the following vectors are LD.
$\left[\begin{array}{c}3 \\ -6 \\ 1\end{array}\right],\left[\begin{array}{c}-6 \\ 4 \\ -3\end{array}\right],\left[\begin{array}{l}9 \\ h \\ 3\end{array}\right]$

\vec{b} is A imeen conb of cols of A if!
A

$$
\frac{\left.c_{1} c_{n}, c_{3} \text { exst s, } t_{1}\right]}{c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}} \vec{b}
$$

W We com write this os a maxdionequ!

$$
A\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\vec{b}
$$

$$
\left[\begin{array}{lll}
\overrightarrow{a_{1}} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=b(2)
$$

Q
Thus: D is a LC of cols of A if equation (2) has a solution.

Kecm ang om
Q what is the question usking us to do
A
$-\operatorname{Fin}\left(c_{1}, 4, c_{3}\right.$

$$
\begin{aligned}
& \begin{array}{l}
\text { ERMNE } \\
\text { C CAN HE }
\end{array} \\
& \text { EXPRESEO } \\
& \text { as a cic. if clls of A. }
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
100 & 5 \\
-2 & 5-6 \\
0 & 23
\end{array}\right], \vec{y}=\left[\begin{array}{c}
2 \\
7 \\
6
\end{array}\right]
$$

Form ane- matrixi:

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 6 & 6
\end{array}\right]_{R_{3}}^{R_{1}} \sim} \\
\sim
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 1 & 4 & 3
\end{array}\right] \begin{array}{l}
R_{2}+2 R_{1} \\
R_{3} / 2
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] R_{3}-R_{2} .
$$

$$
\Rightarrow c_{3} \text { is tree }
$$

$$
\begin{aligned}
& c_{2}=3-4 c_{3} \\
& c_{1}=2-5 c_{3}
\end{aligned}
$$

$\Rightarrow J c_{1}, c_{2}, c_{3} s_{2} t$. (1) is satitiod.
(non-wnigue)

R18

$$
\begin{array}{r}
\text { 5y sem } \\
y x+2 y-3 z=25 \\
y+3 z=5 \tag{3}\\
3 y+a z=3
\end{array}
$$

$3(2)$

$$
\begin{aligned}
& \text {-(3): }(9-a) z=12 \\
& \Rightarrow\left\{\begin{array}{l}
\text { if } a=9,0 \cdot z=12 \\
\text { if } a \neq 9, z=\frac{12}{a-a}
\end{array}\right. \\
& \Rightarrow \text { if } a=9 \text {, system sot' ho. } \\
& \text { if } a \neq 9 \text {, sylten has at leest ons sol'h. }
\end{aligned}
$$

Q whly do we avaid (1)?
Q what is the a arking us to do?

QH6 Recitation 19

Today: Linear Dependence, Transforms

Find the values of h s.t. the following vectors are LD.
$\left[\begin{array}{c}3 \\ -6 \\ 1\end{array}\right],\left[\begin{array}{c}-6 \\ 4 \\ -3\end{array}\right],\left[\begin{array}{l}9 \\ h \\ 3\end{array}\right]$
\qquad , then the three vectors are LD.

Tuesday: Graded Activity

- You'll have about 10 minutes to solve question 3 from last year's quiz
- Can work by yourself or in a group of up to 3 students
- You'll need to submit your work through wimba in a breakout room
- Press the SAVE button to create screen shot of your work

Moving to Breakout Room

Let $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], y_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right], y_{2}=\left[\begin{array}{c}-1 \\ 6\end{array}\right]$ and T be a linear
transformation that maps e_{1} onto y_{1}, and e_{2} onto y_{2}.
Find the image of $\left[\begin{array}{l}5 \\ 2\end{array}\right]$ under T.

RI

$$
\left[\begin{array}{c}
3 \\
-6 \\
1
\end{array}\right],\left[\begin{array}{c}
6 \\
8 \\
-3
\end{array}\right],\left[\begin{array}{l}
9 \\
h \\
3
\end{array}\right]
$$

Find h ste. vectors ane LD.

If \bar{F} then the vectucsana $6 D$. $\exists c_{1}, c_{2}, c_{3}$ not all zero, st,

$$
\text { or } \overrightarrow{0}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}
$$

From R3: $x_{2}=0$

$$
A \vec{x}=\overrightarrow{0}, \infty\left[\begin{array}{ccc}
3 & 6 & 0 \\
-6 & 4 & n \\
1 & -3 & 3
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
$$

To determine whiten ω_{3} satisfied, form once. motive, ad soche.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & 6 & 9 & 0 \\
-6 & 4 & 4 & 0 \\
+1 & -3 & 3 & 0
\end{array}\right] \xrightarrow{3}\left[\begin{array}{cccc}
1 & -3 & 3 & 0 \\
-6 & 4 & 4 & 0 \\
3 & 6 & 9 & 0
\end{array}\right]} \\
& R 3 / 3\left[\begin{array}{cccc}
1 & -3 & 3 & 0 \\
-6 & 4 & h & 0 \\
1 & 2 & 3 & 0
\end{array}\right]
\end{aligned}
$$

Two codes $h \neq 18, x_{3}=0$. But $x_{2}=0$. So $x_{1}=0$.
So $x_{1}=x_{2}=x_{3}=0$. Thus, vectors are $L I$.
2, If $h=-18,0 \cdot x_{3}=0$. Thus x_{3} is free! $x_{2}=0, x_{1}=-3 x_{3}$, AND vectors are $L D$.
$\Rightarrow n=-18$ for vectors to be $L D$.

EXAMPLE 3
If: $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\vec{y}_{1}=\left[\begin{array}{l}
2 \\
5
\end{array}\right], \vec{y}_{2}=\left[\begin{array}{c}
-1 \\
6
\end{array}\right]
$$

Let T map \vec{e}_{1} to \vec{y}_{1}, and \vec{e}_{2} to \vec{y}_{2}.
Find image of $\left[\begin{array}{c}5 \\ -3\end{array}\right]$ and er $\overbrace{1}$ Too redundanT
rask students how to stack this ane.

- Now find clemens of A using givessinfo"

Similarly, $\left[\begin{array}{ll}a_{11} & a_{11} \\ a_{2} & a_{22}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}-1 \\ -1\end{array}\right] \Rightarrow\left\{\begin{array}{l}a_{12}=-1 \\ a_{22}=6\end{array}\right.$

$$
\Rightarrow A\left[\begin{array}{c}
5 \\
-3
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 6
\end{array}\right]\left[\begin{array}{c}
5 \\
-3
\end{array}\right]=\left[\begin{array}{c}
13 \\
7
\end{array}\right]
$$

$$
\operatorname{Let} A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}
\operatorname{Cos}\left[\frac{-\pi}{3}\right] & -\operatorname{Sin}\left[\frac{-\pi}{3}\right] \\
\operatorname{Sin}\left[\frac{-\pi}{3}\right] & \operatorname{Cos}\left[\frac{-\pi}{3}\right]
\end{array}\right),
$$

$\mathrm{C}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Compute the image of the house under the transformation ABC . Show the intermediate steps.

For convenience, let's label the 4 corners of the house as above. The transfamation matrix is the prudent of three matrices:

$$
T=A B C
$$

Matrix C gets applied ${ }^{5 T}$:

$$
\begin{aligned}
& P: C\left[\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right. \\
& Q: C\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
& R: C\left[\begin{array}{c}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& S: C\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Now we oppty matrix B. Bus inspection, we know that B is a rotation matisty, and that it will cerate the house b, $\pi / 3 \mathrm{rad}$ clockwise.

$$
\begin{aligned}
P: B C\binom{1}{0} & =B\binom{1}{0} \\
& =\binom{\frac{1}{2} \sqrt{3}}{-\sqrt{3} / 2}\binom{1}{0} \\
& =\binom{1 / 2}{-\sqrt{3} / 2}
\end{aligned}
$$

$$
\begin{gathered}
\text { Calculatims for then } \\
\text { points similar. }
\end{gathered}
$$

matrix A reflects each point about the line $y=x$;

$$
P: A B C\left[\begin{array}{l}
1 \\
0
\end{array}\right]=A\left[\begin{array}{c}
1 / 2 \\
=\sqrt{3} / 2
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right]
$$

$$
\operatorname{Let} A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}
\operatorname{Cos}\left[\frac{-\pi}{3}\right] & -\operatorname{Sin}\left[\frac{-\pi}{3}\right] \\
\operatorname{Sin}\left[\frac{-\pi}{3}\right] & \operatorname{Cos}\left[\frac{-\pi}{3}\right]
\end{array}\right),
$$

$\mathrm{C}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Compute the image of the house under the transformation ABC . Show the intermediate steps.

For convenience, let's label the 4 corners of the house as above. The transfamation matrix is the prudent of three matrices:

$$
T=A B C
$$

Matrix C gets applied ${ }^{5 T}$:

$$
\begin{aligned}
& P: C\left[\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right. \\
& Q: C\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
& R: C\left[\begin{array}{c}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& S: C\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Now we oppty matrix B. Bus inspection, we know that B is a rotation matisty, and that it will cerate the house b, $\pi / 3 \mathrm{rad}$ clockwise.

$$
\begin{aligned}
P: B C\binom{1}{0} & =B\binom{1}{0} \\
& =\binom{\frac{1}{2} \sqrt{3}}{-\sqrt{3} / 2}\binom{1}{0} \\
& =\binom{1 / 2}{-\sqrt{3} / 2}
\end{aligned}
$$

$$
\begin{gathered}
\text { Calculatims for then } \\
\text { points similar. }
\end{gathered}
$$

matrix A reflects each point about the line $y=x$;

$$
P: A B C\left[\begin{array}{l}
1 \\
0
\end{array}\right]=A\left[\begin{array}{c}
1 / 2 \\
=\sqrt{3} / 2
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right]
$$

QH6 Recitation 20

Today: Transforms (1.8), LU Decomposition (2.5)
Find an LU factorization of A, if possible.

$$
A=\left[\begin{array}{cc}
9 & 12 \\
18 & 21
\end{array}\right]
$$

Announcements

- HW due tonight on inverses
- Quiz on Thursday
- Office hours tonight and tomorrow, 8:00 pm to 10:00 pm, on Wimba
- I'll email you last year's Quiz 3 today. Only questions 2 and 3 from it are relevant.

Graded Activity

- You'll have about 10 minutes to solve question 3 from last year's quiz
- Can work by yourself or in a group of up to 3 students
- You'll need to submit your work through wimba in a breakout room
- Press the SAVE button to create screen shot of your work

Moving in/out of Breakout Rooms

To Move Yourself Into a Breakout Room:

1. Select the Breakout Rooms tab
2. Select Manual
3. Select your name
4. Move to: select a room

Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}\operatorname{Cos}\left[\frac{-\pi}{3}\right] & -\operatorname{Sin}\left[\frac{-\pi}{3}\right] \\ \operatorname{Sin}\left[\frac{-\pi}{3}\right] & \operatorname{Cos}\left[\frac{-\pi}{3}\right]\end{array}\right)$,
$\mathrm{C}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Compute the image of the house under
the transformation ABC . Show the intermediate steps.

LU Factorization (2.5)

Suppose we have matrix A and vector b, and we want to find x , where
$A x=b$

If we can find matrices, L, U, such that

- L is lower triangular
- U is upper triangular
- where $A=L U$
then we can solve $A x=b$ by solving

$$
\begin{aligned}
& \mathrm{Ly}=\mathrm{b} \\
& \mathrm{Ux}=\mathrm{y}
\end{aligned}
$$

LU Decomposition (From Homework)

Solve the equation $A \mathbf{x}=\mathbf{b}$ by using the $L U$ factorization given for A.

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -6 & 3 \\
-6 & 10 & 0 \\
6 & -10 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & -6 & 3 \\
0 & -2 & 6 \\
0 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
9 \\
-8 \\
8
\end{array}\right]
$$

Find the inverse matrix of: $\left[\begin{array}{ll}3 & 2 \\ 8 & 5\end{array}\right]$

Example 3 Determine whether the following vectors are LI.

$$
\left[\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
2 \\
4
\end{array}\right]
$$

QH6 Recitation 20

Today: Transforms (1.8), LU Decomposition (2.5)
Find an LU factorization of A, if possible.

$$
A=\left[\begin{array}{cc}
9 & 12 \\
18 & 21
\end{array}\right]
$$

$\sin A^{2}=L U$, we west L and U, water

$$
V=\left[\begin{array}{ll}
u_{11} & u_{12} \\
0 & n_{22}
\end{array}\right], \quad L=\left[\begin{array}{ll}
1 & 0 \\
L_{21} & 1
\end{array}\right]
$$

Use sour ofinations to ford u

$$
H=\left(\begin{array}{ll}
9 & 12 \\
0 & -3
\end{array}\right)
$$

$\left(\begin{array}{ll}9 & 12 \\ 12 & 21\end{array}\right)^{2}{ }^{2} 26\left[\begin{array}{cc}9 & 12 \\ 0 & -3\end{array}\right)$
$\Rightarrow M=\left(\begin{array}{ll}1 & 12 \\ 0 & -3\end{array}\right]$
since $L u=A \Rightarrow L_{2,1}=q=18 \Rightarrow L_{2,1}=2$
$\Rightarrow L=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$, see text for wothod

Announcements

- HW due tonight on inverses
- Quiz on Thursday
- Office hours tonight and tomorrow, 8:00 pm to $10: 00 \mathrm{pm}$, on Wimba
- l'll email you last year's Quiz 3 today. Only questions 2 and 3 from it are relevant.

LU Factorization (2.5)

Suppose we have matrix A and vector b, and we want to find x, where

$A x=b$

If we can find matrices, L, U, such that

- L is lower triangular
- U is upper triangular
- where $A=L U$
then we can solve $A x=b$ by solving

$$
\begin{aligned}
& L y=b \\
& U x=y
\end{aligned}
$$

Example 3 Determine whether the following vectors are LI.

$$
\begin{aligned}
& {\left[\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-7 \\
2 \\
4
\end{array}\right]} \\
& \text { (ES BECAUSE } C_{2} \text { is arbitrary. }
\end{aligned}
$$

QH6 Recitation 21

Today: Subspaces of R^{n} (2.8)
Find i) a nonzero vector in Nul A, and ii) a vector in Col A.
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \\ 3 & 3 & 4\end{array}\right]$

Announcements

- Quiz 3 graded on Friday, you'll get it back next week
- Graded Activity Thursday
- You'll have about 10 minutes to solve question 1 from last year's quiz 3
- group size: 1 to 3 students
- submit your work through wimba, in a breakout room
- Press the SAVE button to submit your work
- Write name on board
- Everyone in group use a different color

Definitions (From Section 2.8)

Let's fill in the blanks:
$\operatorname{Col} A$ is the set of all linear combinations of the \qquad of A.
$\mathrm{Nul} A$ is the set of all solutions to \qquad .

The \qquad columns of the matrix A form a basis for the column space of A.

Example 2
 a) how many vectors are there in the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$?

 b) how many vectors are there in Col A ?c) is p in $\operatorname{Col} \mathrm{A}$?

$$
\vec{v}_{1}=\left[\begin{array}{c}
2 \\
-8 \\
6
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
8 \\
-7
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-4 \\
6 \\
-7
\end{array}\right], \vec{p}=\left[\begin{array}{c}
6 \\
-10 \\
11
\end{array}\right], A=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right]
$$

Example 3 Determine whether the vectors form a basis in R^{2}
a) $\left[\begin{array}{c}4 \\ -2\end{array}\right]\left[\begin{array}{c}16 \\ -3\end{array}\right]$
b) $\left[\begin{array}{c}-2 \\ 5\end{array}\right],\left[\begin{array}{c}4 \\ -10\end{array}\right]$

Example 6
 Construct a 3×3 matrix A and a nonzero vector b s.t. b is not in Col A.

(1) IND Vaverio vector in NULA

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 7 \\
-5 & -1 & 0 \\
2 & 7 & 11 \\
3 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -5 \\
0 & 9 & 15 \\
0 & 3 & 5 \\
0 & -3 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 5 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

\# 14 from 2.8
$\Rightarrow x_{3}$ is free.
Let $x_{3}=1$. Then $\left[\begin{array}{c}+1 / 3 \\ -5 / 3 \\ 1\end{array}\right]$ is in NulA.
(Would any value of x_{3} suffice? What about $x_{3}=0$?). is \vec{x} unique?
(2) FIND A VEctor in the column space of A

Any column of A will do. Eg- $\left[\begin{array}{c}1 \\ 4 \\ -5 \\ 2 \\ 3\end{array}\right]$

82

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{c}
2 \\
-8 \\
6
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
8 \\
-7
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-4 \\
6 \\
-7
\end{array}\right] . \\
& \vec{p}=\left[\begin{array}{c}
6 \\
-16 \\
11
\end{array}\right], \quad A=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array} \vec{v}_{3}\right]
\end{aligned}
$$

\#7 from 2.8
a) how many vectors are in $\left\{v_{1}, v_{2}, v_{3}\right\}$?

Car someone tell me "how many"?
b) how many vectors are in ColA?
∞
$\binom{$ there is an ∞ number of linear combinations }{ of the columns of $A}$
c) is \vec{p} in col A?

$$
\begin{aligned}
{\left[\begin{array}{ccc:c}
2 & -3 & -4: 6 \\
-8 & 8 & 6 & -10 \\
6 & -7 & -7: 11
\end{array}\right] } & \sim\left[\begin{array}{cccc}
2 & -3 & -4 & 6 \\
0 & -4 & -10 & -14 \\
0 & 2 & 5 & -7
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & - & - \\
0 & 0 & - & 0
\end{array}\right]
\end{aligned}
$$

Form angruated matrix and see if $\exists \vec{x}$ st. $A \vec{x}=\vec{p}$.
\Rightarrow at least one free variable
\Rightarrow system is consistent

$$
\Rightarrow \vec{P} \in C_{0} \mid A .
$$

QH6 Quiz 4

Good luck on Quiz 4!

If you have any questions, you can message me through wimba. I'll be on wimba until 8:55.

QH6 Recitation 23

Today: Null Space Example, Pop Quiz, Graded Activity (2.8)

Find i) a basis for $\operatorname{Col} \mathrm{A}$, and ii) a basis for $\operatorname{Nul} \mathrm{A}$.

$$
A=\left[\begin{array}{ccccc}
3 & -1 & -3 & -1 & 8 \\
3 & 1 & 3 & 0 & 2 \\
0 & 3 & 9 & -1 & -4 \\
6 & 3 & 9 & -2 & 6
\end{array}\right] \sim\left[\begin{array}{ccccc}
3 & -1 & -3 & 0 & 6 \\
0 & 2 & 6 & 0 & -4 \\
0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Pop Quiz Instructions

- Pop quiz grading
- Correct 5 points
- Name on page 3 points
- Did not take: 0 points.
- Time: 10 minutes
- To submit your work, either
a) work on whiteboard in breakout room:
- write name on board
- press the SAVE button
b) work on paper
- give to facilitator,
- leave 2 inch margin,
- write your name and QH6 at the top

Moving in/out of Breakout Rooms

To Move Yourself Into a Breakout Room:

1. Select the Breakout Rooms tab
2. Select Manual
3. Select your name
4. Move to: select a room

Pop Quiz

Find the coordinates of the vector $\binom{1}{4}$ with respect to the basis
$\mathrm{v}_{1}=\binom{1}{2}$ and $\mathrm{v}_{2}=\binom{-1}{1}$

Graded Activity

- Quiz 3 graded on Friday, you'll get it back next week
- Graded Activity Thursday
- You'll have about 10 minutes to solve question 1 from last year's quiz 3
- group size: 1 to 3 students
- for full marks: identify basis vectors, state nullity and rank
- submit your work through wimba, in a breakout room
- Press the SAVE button to submit your work
- Write name on board
- Everyone in group use a different color

Graded Activity

Find a basis for the null space of A, where $A=\left(\begin{array}{ccccc}3 & -1 & 1 & -1 & 2 \\ 0 & 1 & 3 & 2 & 4 \\ 0 & 1 & 3 & 2 & 4\end{array}\right)$

Find the rank of A and the nullity of A

QH6 Recitation 24

Today: Col A Example from Thursday, Eigenvalues (5.1, 5.2)
Construct a 3×3 matrix A and a nonzero vector b s.t. \mathbf{b} is not in Col A.

How do we know if this is correct?

Announcements

Pop Quiz

Find the coordinates of the vector $\binom{1}{4}$ with respect to the basis
$\mathrm{v}_{1}=\binom{1}{2}$ and $\mathrm{v}_{2}=\binom{-1}{1}$
5.1 Is $\lambda=2$ an eigenvalue of matrix A ? Why/why not?
$A=\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$
5.2 Find a basis for the eigenspace of A, for the eigenvalue $\lambda=-5$.
$A=\left[\begin{array}{ccc}-4 & 1 & 1 \\ 2 & -3 & 2 \\ 3 & 3 & -2\end{array}\right]$
5.2 Find the characteristic polynomial and e-values of:
a) $A=\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
b) $B=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2\end{array}\right]$

R24

$$
A=\left[\begin{array}{ll}
1112 \\
222 \\
333
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

b is $\notin \operatorname{Col} A$ if $\nexists \vec{x}$ set. $A \vec{x}=\vec{b}$;

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

row 3 is $0 x_{1}+0 x_{2}+x_{3}=+1$, not cans is ind.
$\Rightarrow \vec{b}$ not in ColA.
POP

$$
\begin{aligned}
& \exists \dot{x} \sin x_{1}\left[v v_{1}+x_{2} v_{2}=[4]\right. \\
& {\left[\begin{array}{cc}
1^{-1} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]} \\
& \text { SOLVE STEM: } \\
& x_{1}=5 / 3
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=5 / 3 \\
& x_{2}=2 / 3
\end{aligned}
$$

\Rightarrow chords ane $(5 / 3,2 / 3)$
(3) Is $\lambda=2$ an eval of $A=\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$? Whyphy not?
Q) If $\pi=2$ is a_{n} eject, then equation does λ have to satisfy?
A) If λ is $\begin{gathered}\text { is } \\ \text { ala }\end{gathered} \quad A \vec{v}=\vec{v}$, or $(A-\lambda I) \vec{v}=0$
Q) what is $A-\lambda I$? (accanatis II)
A)

$$
(A-\lambda I) \vec{v}=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
v_{2}
\end{array}\right]=0
$$

Q) are columns of A-xI L.I.?
A) $n e: 2\left[\frac{1}{3}\right]=\left[\begin{array}{l}2 \\ 6\end{array}\right] \Rightarrow$ columns are $L D$.

SAT Let $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$. Then,

$$
\left.\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right] v_{4}\right]=v_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+v_{2}\left[\begin{array}{l}
2 \\
6
\end{array}\right]=0
$$

\Rightarrow has a nontrivial sol'n
\Rightarrow can find evects

$$
\begin{aligned}
& \Rightarrow \text { can find evects } \\
& \Rightarrow \lambda=2 \text { is an eval }
\end{aligned}
$$

COMPREHENSION G HECK: Quin cols of $A-\lambda I$
were LI, what would \vec{v} have to be?

GOOD GROUP WORK PROBLEM: (TRY To DOTMIS as THURSDAY)
Find a basis for the eigenspace of
(3) $15,5.1$

$$
A=\left[\begin{array}{ccc}
-4 & 1 & 1 \\
2 & -3 & 2 \\
3 & 3 & -2
\end{array}\right] \text {, FoR } \lambda=-5
$$

Q) what are the corresponding eavectors of $\lambda=-5$?
A) Soling to:

$$
(A-\lambda I) \vec{r}=\overrightarrow{0}
$$

or:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\overrightarrow{0}
$$

$$
\begin{aligned}
& \text { or: } \\
& \left(\begin{array}{ccc:c}
1 & 1 & 2 & 0 \\
2 & 2 & 0 \\
3 & 3 & 3 & 0
\end{array}\right) \Rightarrow x_{2}, x_{3} \text { free } \\
& \Rightarrow \text { let } x_{2}=-1, x_{3}=0 \Rightarrow x_{1}=+1, \vec{V}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
& x_{2}=0, x_{3}=-1, \Rightarrow x_{1}=+1, \stackrel{\rightharpoonup}{v_{2}}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

\vec{V}_{1}, \vec{v}_{2} are $L I$ e-vectors that form a basis for e-space of A for $\lambda=-5$.

QH6 Recitation 25

Today: Diagonalization (5.3)

An matrix A is diagonalizable if it can be written in the form:
where
P is \qquad
D is \qquad
Suppose A is $\mathrm{N} \times \mathrm{N}$. To diagonalize A :
1.find all of A
2.find N \qquad eigenvectors of A
3.construct \qquad
4.construct \qquad from vectors in step 2 from values of step 1
5.3 Diagonalize the following matrices, if possible.
$A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right] ; B=\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right] ; C=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ where $\lambda '$ s of C are $2,2,5$
5.2 Find the characteristic polynomial and e-values of:
a) $A=\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
b) $B=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2\end{array}\right]$
5.1 Is $\vec{v}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ an eigenvector of $B=\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]$?

(ANOTHER NICE GROVP work PRPBLEM)
Fino The characteristic papfomial

$$
A=\left[\begin{array}{ll}
2 & 7 \\
7 & 2
\end{array}\right]
$$ e-values of

Q) What equation do we reed to solve?

$$
A \operatorname{det}(A-\lambda I)=0
$$

Q) What values of λ solve it?

$$
\begin{aligned}
\text { A) } 0=\left|\begin{array}{cc}
2-\lambda & 7 \\
7 & 2-\lambda
\end{array}\right| & =(2-\lambda)^{2}-7^{2} \\
& =4-4 \lambda+\lambda^{2}-49 \\
& =\lambda^{2}-4 \lambda-45 \\
0 & =(\lambda-9)(\lambda+5) \\
\Rightarrow \lambda & =9_{0}-5
\end{aligned}
$$

A, by inspection.

$A v=p r$
Q) What/ equation would we solve?
A) $\operatorname{det}(A-\lambda I)=0$

$$
\Rightarrow \lambda=+3,-2,0
$$

Th they might forget this one

Q how r soong e-rolies ace there? A) 3 (notrecessarily unique)

- Is $\vec{i}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ an evect off= $=\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]$?
Q) What equation must \vec{v} satisfy?
A) $A \vec{v}=\overrightarrow{\lambda r}$
Q) What is AN?
A) $A \vec{v}=\left[\begin{array}{l}-3 \\ +3\end{array}\right]$

Q I Is A \vec{v} a scalar multiple
A) of course

WRITE \exists a scalar, λ, st.

$$
A \vec{v}=\lambda \vec{v}
$$

\Rightarrow vi s an evect of A

ConneR HENEOU
(1) Q) what is the evil corresponding to \vec{v} ?,
A) $x=3$, of course
(2) Q) is \vec{v} the on h evect of A ?
A) No. $2 \vec{v}$ is also in erect.

QH6 Recitation 26

Today: Orthogonality, Quiz Review

Let $\mathrm{v}_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), \quad \mathrm{v}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), \quad \mathrm{v}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Show that these are (pairwise) orthogonal. If
$\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}$,
where the v_{i} ' s are as above and the a_{i} ' s are scalars, FIND a_{2}

Quiz 4

l'll have office hours tonight, tomorrow, 8 to 10 PM, on Wimbaaaa.
1.What topics does Quiz 4 cover?
2.What would you like to us to review now?

2012 Quiz 4, Question 2
6 is an eigenvalue of $\left(\begin{array}{ccc}12 & 3 & -3 \\ 2 & 9 & 1 \\ -6 & 3 & 15\end{array}\right)$.Find a corresponding eigenvector.

6.4 Orthog Basis, QR Decomposition

$A=\left[\begin{array}{ccc}3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & -2 \\ 3 & -7 & 8\end{array}\right]$

Are the columns of $\mathrm{A} L I ?$

Do the columns of A form a basis for R^{4} ?
Are the columns of A mutually orthogonal?

6.4 Orthog Basis, QR Decomposition

$A=\left[\begin{array}{ccc}3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & -2 \\ 3 & -7 & 8\end{array}\right]$

Find an orthogonal basis for the column space of A .

6.4 QR

$A=Q R . R$ is an upper triangular matrix. Find R.

$$
A=\left[\begin{array}{cc}
5 & 9 \\
1 & 7 \\
-3 & -6 \\
1 & 5
\end{array}\right], Q=\left[\begin{array}{cc}
5 / 6 & -1 / 6 \\
1 / 6 & 5 / 6 \\
-3 / 6 & 1 / 6 \\
1 / 6 & 3 / 6
\end{array}\right]
$$

2012 Quiz 4, Question 1

Find a the eigenvalues and corresponding eigenvectors for the matrixA =
$\left(\begin{array}{ll}5 & 2 \\ 4 & 7\end{array}\right)$. Use this to find a formula for A^{k}
(you may leave it as a product of three 2×2 matrices) in terms of these quantifies.

E-Values \& E-Vectors True or false:
a) Eigenvalues must be nonzero scalars.
a) Eigenvectors must be nonzero vectors.

Answer this question without finding eigenvalues.
5.2 Find the characteristic polynomial and e-values of:
a) $A=\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
b) $B=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2\end{array}\right]$

Basis Vectors

Determine whether the vectors form a basis in R^{2}. Explain your reasoning.
a) $\left[\begin{array}{c}4 \\ -2\end{array}\right]\left[\begin{array}{c}16 \\ -3\end{array}\right]$
b) $\left[\begin{array}{c}-2 \\ 5\end{array}\right],\left[\begin{array}{c}4 \\ -10\end{array}\right]$

$$
V_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], V_{2}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], V_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

PARWISE ORTA:
if two vectors aces not orthognane, then

$$
\begin{aligned}
& v_{1} v_{2}=6 \\
& v_{1} v_{3}=0 \\
& v_{2} v_{3}=0
\end{aligned}
$$ What is theic det puodurit?

- buly is dot paduct of two aftrag necters zero?

$$
\begin{aligned}
b\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right) & =a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3} \\
& =\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{aligned}
$$

hard!'

$$
\begin{aligned}
\text { easy: }\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right] & =a_{1} v_{1} v_{2}+a_{2} v_{2} \cdot v_{2}+a_{3} v_{2} \cdot v_{3} \\
& =0+a_{2}(1+4+1) \\
& \Rightarrow a_{2}=G
\end{aligned}
$$

6 is an e-val of $\left(\begin{array}{ccc}12 & 3 & -3 \\ 2 & 9 & 1 \\ -6 & 3 & 15\end{array}\right)$. Findevect.
Silve: $\quad(A-\lambda I) \vec{v}=\overrightarrow{0}$

$$
\begin{array}{rl}
\Rightarrow\left(\begin{array}{cccc}
6 & 3 & -3 \\
2 & 3 & 1 \\
-6 & 3 & 9
\end{array}\right) \stackrel{v}{l} \\
6 & 3 \\
2 & -3 \\
3 & 1
\end{array} 0
$$

125
EXAMPLE 2: A gk if students would eke io do ingrates.
FIND AN ORTHOG BASIS FOL COLSPACE OF A. 9.6 .4

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & -5 & 1 \\
1 & 1 & 1 \\
3 & -7 & 8
\end{array}\right] \\
& \text { Let } x_{1}, x_{2}, x_{3} \text { be columns of } A \text {. } \\
& V_{1}=X_{1}=\left[\begin{array}{c}
3 \\
-1 \\
1 \\
3
\end{array}\right] \\
& v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right]-\frac{-40}{20}\left[\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
9 \\
3 \\
-3 \\
9
\end{array}\right] \\
& v_{3}=X_{3}-\frac{X_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{X_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} \\
& =\left[\begin{array}{c}
1 \\
1 \\
-2 \\
8
\end{array}\right]-\frac{3}{2} v_{1}-\left(\frac{-1}{2}\right) v_{2} \\
& =\left[\begin{array}{c}
-3 \\
1 \\
3
\end{array}\right] \\
& \Rightarrow \text { orthog basis is }\left\{v_{1}, v_{2}, v_{3}\right\} \\
& \text { ALL } \\
& \text { procedural } \\
& \text { THe } 11, \text { P. } 355 \\
& \begin{array}{l}
\text { DONOr DO, } \\
\text { TUSTWRTE. }
\end{array} \\
& \text { Justwrite. } \\
& \text { Comprety: of wat would happen if }{ }^{\prime} \text { in Colspoce } A=2 \text { ? }
\end{aligned}
$$ A \therefore iff(dimColspace $A=2)$, \#Vectors in basis s 2 , we would find only two nonzero vectors. ie: $V_{3}=0\left(\right.$ or $\left.V_{2}=0\right)$

$R 2 S$
EXAMPLE $3: Q R$ FACTORIZATION

$$
\left.\begin{array}{l}
\text { Find } R \text { R. } \\
A=\left[\begin{array}{cc}
5 & 9 \\
-3 \\
-3 & -5 \\
1
\end{array}\right]
\end{array}\right]=Q=\left[\begin{array}{cc}
5 / 6 & -1 / 6 \\
1 / 6 & 5 / 6 \\
-3 / 6 & 1 / 6 \\
1 / 6 & 3 / 6
\end{array}\right]
$$

-dost give algorithm, cather, explore the process.
Q/ What dinnasions does R have?
A/ A is $4 \times 2, Q$ is 4×2, s. R is 2×2
Q R is [], and is upper-tri, what is bortom-keft element?
O. We need to find three elements: $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$
-we have a little puzzle here
Q what is a ?
A $a: \frac{5}{6} a-\frac{1}{6} \cdot 0=5 \Rightarrow a=6$
Q what ore $b \& c$?

$$
\begin{array}{r}
\left.\begin{array}{l}
\text { ace } b 民 c ? \\
5 / 6 b-\frac{c}{6}=9 \\
\frac{1}{6} b+\frac{5}{6} c=7
\end{array}\right\} \Rightarrow\left(\begin{array}{cc:c}
5 & -1 & 54 \\
1 & 5 & 42
\end{array}\right) \\
\ldots\left(\begin{array}{ccc}
1 & 0 & 12 \\
0 & 1 & 6
\end{array}\right)
\end{array}
$$

ME TOD 2

Q are col's of A orthonormal?
A yes, by def in
Q $Q^{\top} Q=$? (and have you sear transpose? ?)
A $Q^{\top} Q=\left[\begin{array}{cc}v_{1} \cdot v_{1} & v_{1}, v_{2} \\ v_{1}, v_{2} & v_{2}, v_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
wRiTE $\begin{gathered}A=Q R \\ Q^{\top} A=Q^{\top} Q R\end{gathered}$

- students mays not know- this definition

QH6 Quiz 4

Good luck on Quiz 4!

If you have any questions, you can message me through wimba. I'll be on wimba until 8:55.

QH6 Recitation 28

Today: Announcements, Least Squares
Dec 2: Quiz 4 graded, Least Squares HW due Dec 6: last day of classes
Dec : final exam
Jan 6: first day of Math 2401, please complete online survey
Exemptions from final exam? I have no idea. I hope so.

Motivation

Consider the system $A x=b$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

1) Are the columns of A LI ?
2) Do the columns of A form a basis for R^{3} ?
3) Is b in Col A?
4) Is there a solution to $A x=b$?
5) Therefore, we will:

Essential Idea

Consider the system $A x=b$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Our solution to this system:
find a vector x such that $\|b-A x\| \leq\|b-A x\|$

A Special Case

Find a least squares sol'n to $A x=b$, where:

$$
A=\left[\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right], b=\left[\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right]
$$

Example True or false:

a) The LS problem is to find an x that makes $A x$ as close as possible to b.
a) A LS solution of $A x=b$ is a vector x such that:

Example
 Describe all LS solutions to
 $$
\begin{aligned} & x+y=2 \\ & x+y=4 \end{aligned}
$$

Example True or false:

a) If $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ form an orthogonal basis, then $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{Cv}_{3}\right\}$ is another, different orthogonal basis
a) If $A=Q R$, and Q has orthonormal columns, then $R=Q^{\top} A$
a) If x is in subspace W, then $x-\operatorname{proj}_{w} x \neq 0$

COnceptual questions
Q The LS problem is to find an \vec{x} that mole $A \vec{x}$ as close $17 a$ as posisthe to \vec{b}.
A True. (This is the def' nat the LSapobblen)
Q A L.S. sold of $A \vec{x}=\vec{b}$ is a vector \hat{x} s.t. $17 b$

$$
\left\|_{b}-A_{x}\right\| \leqslant \| b-n x \forall x \text { in } \mathbb{R}^{n}
$$

A F ! inequality in rang direction
Q The L.S sol'm of $A x=b$ is pant in the col space of A closest to \vec{b}.
F. The LS sol' h is \hat{x}.
The closest point in the colspace of A is \hat{b}.
Q Describe altos solons to $x+y=2$ (1)
A Nonet Rent Tour: $A^{\top} A A^{\lambda}=A^{\top}$ b $\quad x+y=4 \quad \theta$

$$
\left.A^{=}\binom{1}{i} \Rightarrow A^{\top} A=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\right\}
$$

and $A^{\top} b=\binom{6}{6} \quad\left\{\begin{array}{l}2 x+2 y=6 \\ \text { or } x+y=3\end{array}\right.$

EXAMPLE 4: CONCEPTMAL QUESTIANS

A F, A basis is a set of Gif linear caubinactions of vectors.
\Rightarrow The two bases ace the same.
Q If $A=Q R, Q$ hos orthonormal columns, (17c) then $R=Q^{\top} A$
A T. Because $Q^{\top} Q=I$

Q IF x is not in subspace W, then $\vec{x}-\operatorname{proj}_{w} x \neq 0$.

A $T, \frac{\text { eg: } x / y / v_{2}}{v_{1}-z e r o}$ vector

But:
IF x is in W, then $\vec{x}-\operatorname{prij}_{w} \vec{x}=0$ get then, san this

QH6 Recitation 28

Today: Least Squares, Initial Value Problems
Describe all least squares solutions to

$$
x+y=2
$$

$$
x+y=4
$$

Dec 2: Quiz 4 graded, Least Squares HW due Dec 6: last day of classes
Dec : final exam
Jan 6: first day of Math 2401, please complete online survey
Can students be exempted from writing the final exam?

True or False

a) If $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ form an orthogonal basis, then $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{Cv}_{3}\right\}$ is another, different orthogonal basis.
a) If $A=Q R$, and Q has orthonormal columns, then $R=Q^{\top} A$.
a) If x is in subspace W, then $x-\operatorname{proj}_{W} x \neq 0$.

Initial Value Problems

$$
\begin{aligned}
& x_{1}^{\prime}(t)=a x_{1}+b x_{2} \\
& x_{2}^{\prime}(t)=c x_{1}+d x_{2}
\end{aligned}
$$

a) We can write this system as:
b) If w is a solution to $x^{\prime}=A x$, then $w^{\prime}=$
c) If $b=c=0$, what is the solution to $x^{\prime}=A x$?
d) If A has e-value λ and e-vector v, then show that

Example 3 Let A be some 2×2 matrix.

$$
\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \lambda_{1}=-3, \lambda_{2}=-1, \vec{x}(0)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

If $x(t)$ is the position of a particle at time t, and $x^{\prime}(t)=A x$, find an expression for $x(t)$.

Example 4 Solve the IVP $\mathrm{x}=\mathrm{Ax}$, where

$$
A=\left[\begin{array}{cc}
-2 & -5 \\
1 & 4
\end{array}\right], \lambda_{1}=-1, \lambda_{2}=3, \vec{x}_{0}=\left[\begin{array}{l}
3 \\
2
\end{array}-\right.
$$

Conceptual questions
Q The LS problem is to find an \vec{x} that miles $A \vec{x}$ as close as pessithe to \vec{b}.
A True. (This is the def not the LSuprobien)
9 A L.S. sol'n of $A \vec{x}=\vec{b}$ is a vector \hat{x} s.t. $17 b$

$$
M b-A x\|\leqslant\|-H x \quad \forall x \text { in } \mathbb{R}^{n}
$$

A F! inequality in rang diceotin
Q The LS sol'm of $A x=b$ is point in the col space of A closest to \vec{b}.
F. The LS sol'h is \hat{x}.
The closest point in the colspace of A is \hat{b}.
Q Describe all Lssol'ns to $x+y=2$

EXAMPLE 4: CONCEPTHAL QUESTIANS

$$
Q \left\lvert\, \begin{array}{ll}
\text { TRuE/FALSE } \\
\text { IF }\left\{v_{1}, v_{2}, v_{3}\right\} \\
\left\{v_{1}, v_{2}, C v_{3}\right\}
\end{array}\right. \text { is a different orthog basis w hor basis; } \quad 17 a, 4
$$

A F. A basis is a set of ribinear combinations of vectors.
\Rightarrow The two bases are the sane.
(FRan R25)
Ex AMPLE 2:TERMWOLDGP \& UP DEF N
Suppose

$$
\begin{aligned}
& x_{1}^{\prime}(t)=a x_{1}+b x_{2} \\
& x_{2}^{\prime}(t)=c x_{1}+d x_{2}
\end{aligned}
$$

LET'S Just make SURE WERE ALL SPEAKING THE SAME LANGMAGE.

Q Then $\left[\begin{array}{l}x_{1}^{1} \\ x_{2}\end{array}\right]=[?]\left[\begin{array}{l}x \\ y\end{array}\right]$ $\left(\begin{array}{c}\text { GOULDN'T } \\ \text { SuRpRISE } \\ \text { ANYONE }\end{array}\right)$
Let $\vec{x}^{\prime}=A \vec{x}$
Q Let \vec{w} be a "solution" to $\vec{x}=A \vec{x}$;
When we sub wind the DE,

$$
A \quad \vec{w}^{\prime}=A \vec{w} .
$$

Q IF $b=c=0$, what is the solis?

$$
\text { ? } 4+1 s=R+5
$$

A

$$
\begin{aligned}
& b=c=a x_{1} \Rightarrow x_{1}=e^{a t} \\
& x_{1}^{\prime}=a x_{1} \\
& x_{2}^{\prime}=d x_{2} \Rightarrow x_{2}=e^{b t}
\end{aligned}
$$

\Rightarrow sol'hs use (real) exponemitials
If A has e val a and evert \vec{v},
Q show $\vec{x}=\vec{v} e^{\pi t}$ is $A \operatorname{soln} u$ ind.
A $\quad \frac{d}{d t} \vec{x}=\frac{y}{x}\left(\vec{v} e^{\lambda t}\right)=\lambda \vec{v} e^{\lambda t}=A v e^{\lambda t}$

$$
\Rightarrow \vec{x}^{\prime}=A \vec{x}
$$

\vec{v} is constant $\left(\begin{array}{rl}x & =v e^{\lambda t} \\ A x & A v e^{\lambda t}\end{array}\right)$
SAY GENERAL SALTINE TO $\vec{x}^{\prime}=A \vec{x}$
is $\vec{x}=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}$
 at TME to

$$
\begin{aligned}
H=\vec{X} & \vec{x}^{\prime}=A \vec{X}, \text { WHERE } \\
& A \text { is } 2 \times 2 \\
& \vec{v}_{1}=\left[\begin{array}{l}
-1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda_{1}=-3, \lambda_{2}=-1 \\
& \vec{X}(0)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{aligned}
$$

FIND YOSITIN AT TIME t 。
Q What are two sol'ris? (to $\left.\overrightarrow{x^{\prime}}=A \vec{x}\right)$
A YES. (Do you know This, or ARE ron Guessing?)
Q The Lin, comb of solutions is a solution, so/preas:

$$
c_{1} \vec{v}_{1} e^{-3 t}+c_{2} \vec{v}_{2} e^{-t}=\vec{x}
$$

is GENSGLN.
HOW DO WE FIND c_{1}, c_{2} ?
A USE $\vec{x}(0)$:

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
2 \\
3
\end{array}\right]=c_{1}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]^{0}+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{0}} \\
\text { or }\left(\begin{array}{rr}
-1 & -1 \\
1 & -1 \\
\vdots
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 1 / 2 \\
0 & 1 & 5 / 2
\end{array}\right] \\
\Rightarrow \vec{x}=\frac{1}{2}\left[\begin{array}{l}
-1 \\
1
\end{array}\right] e^{-3 t}+\frac{5}{2}[1 \\
t \rightarrow 0
\end{array}\right] e^{-t} .
$$

Q	as $t \rightarrow 0$, , what happens $t_{0} \frac{2}{x}$?
A	$\vec{x} \longrightarrow$?

ASK STUDENTS IF THETD LLKE TO DO THS GRoure (ITM)
SOLVE THE IVP $\vec{X}=A \vec{x}, \quad A=\left[\begin{array}{cc}-2 & -5 \\ 1 & 4\end{array}\right] \# 45.7$
e-vals are $-1 s+3$
(Q) what anche)-values?

A

$$
\begin{aligned}
0 & =(-2-\lambda)(4-\lambda)+5 \\
& =\lambda^{2}-2 \lambda-3 \\
& =(\lambda+1)(\lambda-3) \Rightarrow \lambda=-1,3
\end{aligned}
$$

(Q) $\frac{\text { WHAT is THE }}{\text { e-Vect for } \lambda=-1} \begin{gathered}\left(\begin{array}{cc}-1 & -5 \\ 10 \\ 1 & +5 \\ \hline\end{array}\right) \sim\left(\begin{array}{lll}1 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)\end{gathered} \vec{V}_{1}=\left[\begin{array}{c}-5 \\ 1\end{array}\right]$

(Q) What is geveral sol'n?

$$
\vec{x}=c_{1}\left[\begin{array}{c}
-5 \\
1
\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{3 t}
$$

We still need c 's, hourdo we get tham?

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=c_{1}\left[\begin{array}{c}
-5 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
{\left[\begin{array}{cc:c}
-5 & -1 & 3 \\
1 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ll}
13 / 4 \\
0 & 1
\end{array}-5 / 4\right.}
\end{array}\right) .
$$

Q Sol'n is?

- Sadple, origin
- trajectury N solution space
- if tis laráz,

$$
\begin{aligned}
& \text { if } t \\
& \vec{x} \approx \frac{5}{4}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{3 t} \\
&=\left[\begin{array}{l}
5 / 4 e^{3 t} \\
-5 / 4 e^{3 t}
\end{array}\right]
\end{aligned}
$$

QH6 Recitation 29

Today: Differential Equations

If You Are Writing the Final

-exam has two parts, each part is 50 minutes
-Work with your facilitator to schedule a time on either the $9^{\text {th }}$ or
$10^{\text {th }}$ to write the final
-Your facilitator has complete instructions for writing final
-l will not be on wimba during the final
-Grady students write on campus on Dec 11
-Office hours: Sun 3:00 pm to 4:00 pm \& 8:00 pm to 9:00 pm
Grades: after this recitation I will
1.enter your HW grades in t-square
2.apply recitation grades in t-square
3.send you an email to indicate if you are/aren't exempt from final
a) Solve the IVP: ty' $+2 y=4 t^{2}, y(0)=y_{0}$.
b) Plot the solution for various values of y_{0}.

Solve the BVP:
$y^{\prime \prime}+4 y^{\prime}+13 y=0, y(0)=2, y(\pi / 2)=1$.

Example

12 is an eigenvalue of $\left(\begin{array}{ccc}10 & 3 & -1 \\ 2 & 9 & 1 \\ -2 & 3 & 11\end{array}\right)$. Find as many linearly independent eigenvectors for this eigenvalue as possible.

Initial Value Problems

$$
\begin{aligned}
& x_{1}^{\prime}(t)=a x_{1}+b x_{2} \\
& x_{2}^{\prime}(t)=c x_{1}+d x_{2}
\end{aligned}
$$

a) We can write this system as:
b) If w is a solution to $x^{\prime}=A x$, then $w^{\prime}=$
c) If $b=c=0$, what is the solution to $x^{\prime}=A x$?
d) If A has e-value λ and e-vector v, then show that

Example 3 Let A be some 2×2 matrix.

$$
\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \lambda_{1}=-3, \lambda_{2}=-1, \vec{x}(0)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

If $x(t)$ is the position of a particle at time t, and $x^{\prime}(t)=A x$, find an expression for $x(t)$.

QH6 Office Hours

Thank you for coming to office hours! If you have a question, you may need to get my attention by typing something in the chat window. Or by saying something with the mic.

Today's office hours run from 8:00 PM to 10:00 PM.

