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SUMMARY

Hypervisors serve as the backbone of cloud-based solutions by providing an abstraction

of hardware resources and isolation of guest hosts. While gaining attention, the attack

surfaces of hypervisors are broad due to the complexity of the design. The consequences of

a compromised cloud service can be disastrous, leading to denial of service, information

leakage, or even VM escape, jeopardizing the integrity of the other instances running on the

same platform. Recent studies have found success in finding vulnerabilities in hypervisors

with formal verification and symbolic execution. While fuzzing remains one of the most

effective bug-finding techniques in most real-world programs, the challenges of applying it in

the current context can be non-trivial. Particularly to non-user applications, like hypervisors,

both efficiency and determinism are required from any proposed fuzzing approaches to be

considered effective.

In this thesis, we propose a hardware-assisted nested virtualization framework for fuzzing

hypervisors. With fast resets on guest VM, including states of virtualized CPU, memory,

and devices, it avoids the primary source of overhead from reboots. Meanwhile, we adopt a

customized OS to further reduce the performance costs from VM exits and dirty memory

pages in the nested setting. Prototyped as a type-II framework in work with KVM and

QEMU, our system demonstrates that it can achieve a 72x higher fuzzing throughput than the

existing solutions. Given that, our system has found 14 bugs among real-world hypervisors,

such as QEMU and VirtualBox.

xiv



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

With a booming number of applications and their end-users in the past decade, software

security has been emphasized more than ever. Nonetheless, a consistent increase of security-

critical bugs have been observed along the way, mainly due to the variety and complexity

of existing software. Based on the numbers provided by GitHub, more than 100 million

open-source projects have been created to date, spanning different protection rings, including

browsers, kernels, and hypervisors. To mitigate the situation, software hardening in the

daily development cycle typically involves three stages. When a new code snippet is created,

bug-finding techniques involving static or dynamic analyses are applied to find all possible

bugs in the existing codebase. Once the effort has been exhausted and the software is

deployed, runtime protection schemes with a different security guarantee, such as control

flow integrity and memory access control, try to ensure the validity of program execution.

In the case where the prior steps have failed and any hidden bugs have been exploited, fault

analyses help to pinpoint the root cause of the error, while providing rollback mechanisms

for recovery if necessary. The cycle iterates the stages in order, until there is no obvious

incident to be handled.

While previous research has proposed various software-hardening techniques across

the stages, a considerable number of works have relied on hardware support to achieve

their goals. Table 1.1 shows a list of recent samples in chronological order. For example,

kAFL [1] and Honggfuzz [2] utilize Intel Processor Trace (PT) [3] for efficient coverage

tracking when fuzzing targeted binaries. PHMon [4] and HDFI [5], on the other hand,

revise the existing architecture to ensure control and data security. The reasons behind the
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Table 1.1: A survey of hardware-assisted software-hardening techniques in recent years.

Bug Finding Runtime Mitigation Fault Analysis

SNAP [8]
Ptrix [9]

PTfuzz [10]
kAFL [1]

Honggfuzz [2]
WinAFL [11]

PHMon [4]
libmpk [12]
uCFI [13]

PITTYPAT [14]
HDFI [5]

ARCUS [15]
REPT [16]
POMP [17]

noticeable trending of hardware-based solutions are three-folded. First, the performance

benefit from hardware can be substantial compared to a purely software-based solution. In

the case of virtualization, for instance, Intel VMX [6] with the extended page table (EPT)

enabled by the hardware extension can outperform the software mechanism of shadow

page tables by 3× due to the tremendous cost of the maintenance of memory pages [7].

Second, compatibility and ease of use are also key for more and more solutions to adopt

hardware features besides performance gain. While tracing schemes based on source-based

instrumentation or binary rewriting are commonly applied under various constraints, tracing

by Intel PT can effectively avoid the hassles, such as when applying to a large codebase

or legacy binaries without source code. Last, implementation with hardware support can

consequentially present a smaller codebase, thus introducing less attack surface for attackers.

Even though a technical idea might be sound, the inevitable implementation errors in a large

codebase, such as logical or functional bugs, might render the approach useless in extreme

cases.

However, leveraging hardware extensions for software hardening can be non-trivial.

This is especially true when existing features are not tailored for the intended purposes,

resulting in extra but unwanted overhead. One of the example comes from the design and

use of Intel PT. Although the hardware extension has been introduced for debugging given

its full traces in a highly compressed manner, many works have suggested borrowing it as a

substitution for existing tracing techniques. While most use cases, such as runtime security

and fuzzing, do not require full traces, the inevitable overhead from decoding is thus forced

onto them when applied. In my first work, I presented PittyPat [14], an efficient control
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security scheme for online protection against hijacking attacks under the support of Intel PT.

To provide the strictly stronger security guarantee with path-sensitive points-to analysis, we

adopt the hardware feature in a careful design. Specifically, we offer a parallel trace-sharing

mechanism, along with various optimizations, to avoid the major sources of overhead from

decoding conditional branches. By maintaining the current program state at the LLVM

IR level and identifying control-relevant instructions on the fly, the solution only suffers

12.73% runtime overhead with most indirect call sites posing one precise branch target.

Unlike the previous work, which relies on the exact execution paths for path-sensitive

analyses, the use case of fuzzing can find such path information unnecessary. Although

works [2, 9] have adopted Intel PT in a similar way as proposed in PittyPat, they can

barely catch up with the tracing overhead from source instrumentation (e.g., 60+%), still

significantly underperforming based on the standard of hardware-assisted solutions. In

my second work, I presented SNAP [8], a customized hardware platform dedicated for

performant fuzzing. Since most micro-architectural states, such as executed branch addresses

and instruction bytes, are already in the existing CPU pipeline, our solution barely introduces

any overhead. Along with proposed micro-architectural optimization for efficient coverage

tracing, including memory-request aggregation and opportunistic bitmap updating under free

cache bandwidth, we find our platform to be practical, incurring 3.14%, 4.82%, and 6.53%

for runtime, area, and power overhead while being compatible with most existing fuzzers

without much manual intervention. Compared to fuzzers running off our platform, those

running with our hardware support can achieve more coverage under a limited timeframe

due to the high fuzzing throughput enabled.

Meanwhile, the overhead of coverage tracing might not necessarily be the only root cause

of the slowdown in pursuit of fuzzing speed when testing non-user applications, which are

valuable targets due to their role in daily services, but are vulnerable due to their complexity.

For example, to test the functionalities of hypervisors serving as the backbone for any cloud-

based solutions [18, 19, 20], directly applying fuzzing in the context can be non-trivial. In

3



particular, fuzzers need to sit at the guest kernel space in a virtualized environment with a

clean state of VM for each mutated input. The major overhead thus results from continuous

VM reboots after each fuzzing execution, in general, taking seconds with serious limitations

on efficiency. To mitigate this problem, Syzkaller [21] sacrifices determinism of unit testing

for speed and only reboots periodically. Other approaches [22, 23] propose customized

guest OSes as the main executors of fuzzing inputs for faster reboot time compared to the

default Linux Kernel configuration, yet still are throttled by the throughput of up to four

executions per second. Neither solution is ideal, as they fundamentally lack determinism

and efficiency to fulfill the requirement of an effective fuzzing framework.

1.2 Research Outline

To overcome the aforementioned issues, this thesis aims to develop a hardware-based

solution for this specialized testing target, i.e., hypervisors. Besides the desired determinism

and efficiency, this solution is also designed to be compatible with most existing hypervisors

that can run on the Linux platform, such as QEMU and VirtualBox. Specifically, a nested

virtualization framework consisting of two major components is proposed, including 1 a

snapshot and restoring mechanism realized by Intel VMX and 2 a minimized OS with little

redundancy. As mentioned previously, one source of overhead is a result of the rebooting

process itself. For example, QEMU and the booting Linux kernel can each take seconds to

initialize all their internal data structures, before a VM can be launched to reach a stable state

for fuzzing. This process is expensive in the fuzzing space and inevitable as long as reboots

are involved. Rather, in our framework, since the testing hypervisor resides in the L1 VM,

the L0 host acts as the snapshot maintainer, taking and reloading the intended snapshot for

faster reset. By resetting virtualized CPU, memory, and devices per request, the framework

effectively prohibits side effects carried over from previous executions (i.e., determinism)

without really rebooting the tested VM (i.e., efficiency). Another source of overhead in the

framework comes from the complexity of the compiled kernel image. While the L2 guest

4



kernel is only expected to execute fuzzing inputs, applying the Linux Kernel can be overkill,

downgrading performance through additional VM exiting requests and memory overhead.

The minimized OS trims the unnecessary OS features in the current context to perform the

snapshot and restore operations in a more efficient manner. Overall, the work serves as

the last piece of the thesis by proposing another performant hardware-assisted solution for

software hardening. In the following, I will briefly introduce my first two works, PITTYPAT

and SNAP, before diving into more of its details.
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CHAPTER 2

PITTYPAT: EFFICIENT PROTECTION OF PATH-SENSITIVE CONTROL

SECURITY

2.1 Introduction

Attacks that compromise the control-flow of a program, such as return-oriented program-

ming [24], have critical consequences for the security of a computer system. Control-Flow

Integrity (CFI) [25] has been proposed as a restriction on the control-flow transfers that a

program should be allowed to take at runtime, with the goals of both ruling out control-flow

hijacking attacks and being enforced efficiently. A CFI implementation can be modeled as

program rewriter that (1) before a target program P is executed, determines feasible targets

for each indirect control transfer location in P , typically done by performing an analysis

that computes a sound over-approximation of the set of all memory cells that may be stored

in each code pointer (i.e., a static points-to analysis [26, 27]). The rewriter then (2) rewrites

P to check at runtime before performing each indirect control transfer that the target is

allowed by the static analysis performed in step (1).

A significant body of work [25, 28, 29] has introduced approaches to implement step

(2) for a variety of execution platforms and perform it more efficiently. Unfortunately, the

end-to-end security guarantees of such approaches are founded on the assumption that if

an attacker can only cause a program to execute control branches determined to be feasible

by step (1), then critical application security will be preserved. However, recent work

has introduced new attacks that demonstrate that such an assumption does not hold in

practice [30, 31, 32]. The limitations of existing CFI solutions in blocking such attacks

are inherent to any defense that uses static points-to information computed per control

location in a program. Currently, if a developer wants to ensure that a program only chooses
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valid control targets, they must resort to ensure that the program satisfies data integrity,

a significantly stronger property whose enforcement typically incurs prohibitively large

overhead and/or has deployment issues, such as requiring the protected program being

recompiled together with all dependent libraries and cannot be applied to programs that

perform particular combinations of memory operations [33, 34, 35, 36].

In this work, we propose a novel, path-sensitive variation of CFI that is stronger than

conventional CFI (i.e., CFI that relies on static points-to analysis). A program satisfies

path-sensitive CFI if each control transfer taken by the program is consistent with the

program’s entire executed control path. Path-sensitive CFI is a stronger security property

than conventional CFI, both in principle and in practice. However, because it does not

place any requirements on the correctness of data operations, which happen much more

frequently, it can be enforced much more efficiently than data integrity. To demonstrate

this, we present a runtime environment, named PITTYPAT, that enforces path-sensitive

efficiently using a combination of commodity, low-overhead hardware-based monitoring

and a new runtime points-to analysis. PITTYPAT addressed two key challenges in building

an efficient path-sensitive CFI solution. The first challenge is how to efficiently collect the

path information about a program’s execution so as to perform the analysis and determine

if the program has taken only valid control targets. Collecting such information is not

straightforward for dynamic analysis. An approach that maintains information inside the

same process address space of the monitored program (e.g., [33]) must carefully protect the

information; otherwise it would be vulnerable to attacks [37]. On the other hand, an approach

that maintains information in a separate process address space must efficiently replicate

genuine and sufficient data from the monitored program. The second key challenge is how

to use collected information to precisely and efficiently compute the points-to relationship.

Niu et al. [38] have proposed leveraging execution history to dynamically activate control

transfer targets. However, since the activation is still performed over the statically computed

control-flow graph, its accuracy can degrade to the same as pure static-analysis-based
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approach.

PITTYPAT applies two key techniques in addressing these two challenges. First, PITTYPAT

uses an event-driven kernel module that collects all chosen control-transfer targets from the

Processor Tracing (PT) feature available on recent Intel processors [39]. PT is a hardware

feature that efficiently records conditional and indirect branches taken by a program. While

PT was originally introduced to enable detailed debugging through complete tracing, our

work demonstrates that it can also be applied as an effective tool for performing precise, effi-

cient program analysis for security. The second technique is an abstract-interpretation-based

incremental points-to analysis. Our analysis embodies two key innovations. First, raw PT

trace is highly compressed (see §2.2 for details). As a result, reconstructing the control-flow

(i.e., source address to destination address) itself is time consuming and previous work

has utilized multiple threads to reduce the decoding latency [40]. Our insight to solve this

problem is to sync up our analysis with the execution, so that our analysis only needs to

know what basic blocks being executed, not the control transfer history. Therefore, we can

directly map the PT trace to basic blocks using the control-flow graph (CFG). The second

optimization is based on the observation that static points-to analyses collect and solve a

system of constraints over all pairs of pointer variables in the program [26, 41]. While this

approach has good throughput, it introduces unacceptable latency for online analysis. At

the same time, to enforce CFI, we only need to know the points-to information of code

pointers. Based on this observation, our analysis eagerly evaluates control relevant points-to

constraints as they are generated.

2.2 Motivation: Precision and Performance

In this section, we demonstrates the limitation on traditional CFI and shows the definition

path-sensitive CFI with a motivating example. We further describes Intel PT, a commodity,

low-overhead hardware extension dedicated for tracing.
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1 struct request {
2 int auth_user;
3 char args[100];
4 };
5

6 void dispatch() {
7 void (*handler)(struct request *) = 0;
8 struct request req;
9

10 while(1) {
11 // parse the next request
12 parse_request(&req);
13 if (req.auth_user == ADMIN) {
14 handler = priv;
15 } else {
16 handler = unpriv;
17 // NOTE. buffer overflow, which can overwrite
18 // the handler variable
19 strip_args(req.args);
20 }
21 // invoke the hanlder
22 handler(&req);
23 }
24 }

Figure 2.1: A motivating example that illustrates the advantages of control-path validity.

2.2.1 Limitations of existing CFI

Figure 2.1 contains a C program, named dispatch, that we will use to illustrate

PITTYPAT. dispatch declares a pointer handler (line L7) to a function that takes an

argument of a struct request (defined at line L1–L4), which has two fields: auth_user

represents a user’s identity, and args stores the arguments. dispatch contains a loop (line

L10–L23) that continuously accepts requests from users, and calls parse_request (line 12)

to parse the next request. If the request is an administrator (line L13), the function pointer

handler will be assigned with priv. Otherwise, handler is assigned to unpriv (line L16),

and dispatch will call strip_args (line L19) to strip the request’s arguments. At last,

dispatch calls handler to perform relevant behaviors. However, the procedure strip_args

contains a buffer-overflow vulnerability, which allows an attacker with control over input to

strip_args to potentially subvert the control flow of a run of dispatch by using well-known

techniques [42]. In particular, the attacker can provide inputs that overwrite memory outside

of the fixed-size buffer pointed to by req.args in order to overwrite the address stored in

handler to be the address of a function of their choosing, such as execve.

Protecting dispatch so that it satisfies conventional control-flow integrity (CFI) [25]

9



does not provide strong end-to-end security guarantees. An implementation of CFI attempts

to protect a given program P in two steps. In the first step, the CFI implementation computes

possible targets of each indirect control transfer in P by running a flow-sensitive points-to

analysis1 [26, 27, 41]. Such an approach, when protecting dispatch, would determine that

when the execution reaches each of the following control locations L, the variable handler

may store the following addresses p(L):

p(L7) ={0} p(L14) ={priv}

p(L16) ={unpriv} p(L22) ={priv, unpriv}

While flow-sensitive points-to analysis may implement various algorithms, the key property

of each such analysis is that it computes points-to information per control location. If there

is any run of the program that may reach control location L with a pointer variable p storing

a particular address a, then the result of the points-to analysis must reflect that p may point

to a at L. In the case of dispatch, any flow-sensitive points-to analysis can only determine

that at line L22, handler may point to either priv or unpriv. After computing points-to

sets p for program P , the second step of a CFI implementation rewrites P so that at each

indirect control-transfer instruction in each run, the rewritten P can only transfer control

to a control location that is a points-to target in the target register according to p. Various

implementations have been proposed for encoding points-to sets and validating control

transfers efficiently [25, 45, 29].

However, all such schemes are fundamentally limited by the fact that they can only

validate if a transfer target is allowed by checking its membership in a flow-sensitive points-

to set, computed per control location. dispatch and the points-to sets p illustrate a case

in which any such scheme must allow an attacker to subvert control flow. In particular, an

attacker can send a request with the identity of anonymous user. When dispatch accepts

1Some implementations of CFI [29, 43, 44] use a type-based alias analysis to compute valid targets, but
such approaches are even less precise.
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such a request, it will store unpriv in handler, and then strip the arguments. The attacker

can provide arguments crafted to overwrite handler to store priv, and allow execution to

continue. When dispatch calls the function stored in handler (line L22), it will attempt to

transfer control to priv, a member of the points-to set for L22. Thus, dispatch rewritten

to enforce CFI must allow the call. Let the sequence of key control locations visited in the

above attack be denoted p0 = [L7, L16, L22].

Per-input CFI (denoted π-CFI) [38] avoids some of the vulnerabilities in CFI inherent

to its use of flow-sensitive points-to sets, such as the vulnerability described above for

dispatch. π-CFI updates the set of valid targets of control transfers of each instruction

dynamically, based on operations performed during the current program execution. For

example, π-CFI only allows a program to perform an indirect call to a function whose

address was taken during an earlier program operation. In particular, if dispatch were

rewritten to enforce π-CFI, then it would block the attack described above: in the execution

of π-CFI described, the only instruction that takes the address of handler (line L14) is never

executed, but the indirect call at L22 uses priv as the target of an indirect call. However,

in order for π-CFI to enforce per-input CFI efficiently, it updates valid points-to targets

dynamically using simple, approximate heuristics, rather than a precise program analysis

that accurately models the semantics of instructions executed. For example, if a function

f appears in the static points-to set of a given control location L and has its address taken

at any point in an execution, then f remains in the points-to set of L for the rest of the

execution, even if f is no longer a valid target as the result of program operations executed

later. In the case of dispatch, once dispatch takes the address of priv, priv remains in

the points-to set of control location L22 for the remainder of the execution.

An attacker can thus subvert the control flow of dispatch rewritten to enforce π-CFI

by performing the following steps. (1) An administrator sends a request, which causes

dispatch to store priv in handler, call it, and complete an iteration of its loop. (2) The

attacker sends an anonymous request, which causes dispatch to set unpriv in handler. (3)
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The attacker provides arguments that, when handled by strip_args, overwrite the address

in handler to be priv, which causes dispatch to call priv with arguments provided by

the attacker. Because priv will be enabled as a control target as a result of the operations

performed in step (1), priv will be a valid transfer target at line L22 in step (3). Thus, the

attacker will successfully subvert control flow. Let the key control locations in the control

path along which the above attack is performed be denoted p1 = [L7, L14, L22, L16, L22].

2.2.2 Path-sensitive CFI

In this paper, we introduce a path-sensitive version of CFI that addresses the limitations

of conventional CFI illustrated in §2.2.1. A program satisfies path-sensitive CFI if at each

indirect control transfer, the program only transfers control to an instruction address that

is in the points-to set of the target register according to a points-to analysis of the whole

executed control path. dispatch rewritten to satisfy path-sensitive CFI would successfully

detect the attacks given in §2.2.1 on existing CFI. One collection of valid points-to sets for

handler for each control location in subpath p0 (§2.2.1) are the following:

(L7, {0}), (16, {unpriv}), (L22, {unpriv})

When execution reaches L22, priv is not in the points-to set of handler, and the program

halts. Furthermore, dispatch rewritten to satisfy path-sensitive CFI would block the attack

given in §2.2.1 on π-CFI. One collection of valid points-to sets for handler for each control

location in subpath p1 are the following:

(L7, {0}) (L14, {priv}) (L22, {priv})

(L16, {unpriv}) (L22, {unpriv})

When execution reaches L22 in the second iteration of the loop in dispatch, priv is not

in the points-to set of handler, and the program determines that the control-flow has been
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Table 2.1: Control-relevant trace packets from Intel PT.

Packet Description
TIP.PGE IP at which the tracing begin
TIP.PGD Marks the ending of tracing
TNT Taken/non-taken decisions of conditional branches
TIP Target addresses of indirect branches
FUP The source addresses of asynchronous events

subverted.

2.2.3 Intel Processor Trace

Intel PT is a commodity, low-overhead hardware designed for debugging by collecting

complete execution traces of monitored programs. PT captures information about program

execution on each hardware thread using dedicated hardware facilities so that after execution

completes, the captured trace data can be reconstructed to represent the exact program flow.

The captured control flow information from PT is presented in encoded data packets. The

control relevant packet types are shown in Table 2.1. PT records the beginning and the end

of tracing through TIP.PGE and TIP.PGD packets, respectively. Because the recorded control

flow needs to be highly compressed in order to achieve the efficiency, PT employs several

techniques to achieve this goal. In particular, PT only records the taken/non-taken decision

of each conditional branches through TNT, along with the target of each indirect branches

through TIP. A direct branch does not trigger a PT packet because the control target of a

direct branch is fixed.

Besides the limited packet types necessary for recovering complete execution traces, PT

also adopts compact packet format to reduce the data throughput aggressively. For instance,

TNT packets use one bit to indicate the direction of each conditional branches. TIP packets,

on the other hand, contain compressed target address if the upper address bytes match the

previous address logged. Thus on average, PT tracing incurs less than 5% overhead [40].

Compared to source-based instrumentation, PT tracing is protected with CR3 filtering, while

traces are shared from the hardware to the kernel, before delegated to the user space. Even if

a vulnerable program is compromised, tampering with collected traces is not straigtforward
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Figure 2.2: The architecture of PITTYPAT. P denotes a target program. The analyzer and driver
modules of PITTYPAT are described in §2.3.1.

in this case. On the other hand, compared to any dynamic binary instrumentation schemes,

such as Intel PIN [46] and QEMU [47], PT tracing is much faster due to the hardware

support with compressed packets for low bandwidth as mentioned above.

2.3 Design

2.3.1 Overview

The points-to sets for control paths considered in §2.2.2 illustrate that if a program can be

rewritten to satisfy path-sensitive CFI, it can potentially satisfy a strong security guarantee.

However, ensuring that a program satisfies path-sensitive CFI is non-trivial, because the

program must be extended to dynamically compute the results of sophisticated semantic

constraints [26] over the exact control path that it has executed. A key contribution of our

work is the design of a runtime environment, PITTYPAT, that enforces path-sensitive CFI

efficiently. PITTYPAT’s architecture is depicted in Figure 2.2. For program P , the state

and code of PITTYPAT consist of the following modules, which execute concurrently: (1) a

user-space process in which P executes, (2) a user-space analysis module that maintains

points-to information for the control-path executed by P , and (3) a kernel-space driver that

sends control branches taken by P to the analyzer and validates system calls invoked by P

using the analyzer’s results.

Before a program P is monitored, the analysis module is given (1) an intermediate
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representation of P and (2) meta data including a map from each instruction address in

the binary representation of P to the instruction in the intermediate representation of P .

We believe that it would also be feasible to implement PITTYPAT to protect a program

given only as a binary, given that the analyzer module only must perform points-to analysis

on the sequence of executed instructions, as opposed to inferring the program’s complete

control-flow graph. As P executes a sequence of binary instructions, the driver module

copies the targets of control branches taken by P from PT’s storage to a ring buffer shared

with the analyzer. PT’s storage is privileged: it can only be written by hardware and flushed

by privileged code, and cannot be tampered with by P or any other malicious user-space

process. The analyzer module reads taken branches from the ring buffer, uses them to

reconstruct the sequence of IR instructions executed by P since the last branch received,

and updates the points-to information in a table that it maintains for P ’s current state by

running a points-to analysis on the reconstructed sequence. When P invokes a system call,

the driver first intercepts P (➊), while waiting for the analyzer module to determine in

parallel if P has taken a valid sequence of control targets over the entire execution up to the

current invocation (➋ and ➌). The analyzer validates the invocation only if P has taken a

valid sequence, and the driver allows execution of P to continue only if the invocation is

validated (➍).

There are two key challenges we must address to make PITTYPAT efficient. First, trace

information generated by PT is highly compressed; e.g., for each conditional branch that a

program executes, PT provides only a single bit denoting the value of the condition tested

in the branch. Therefore additional post-processing is necessary to recover transfer targets

from such information. The approach used by the perf tool of Linux is to parse the next

branch instruction, extract the offset information, then calculate the target by adding the

offset (if the branch is taken) or the length of instruction (if branch is not taken). However,

because parsing x86 instructions is non-trivial, such an approach is too slow to reconstruct

a path online. Our insight to solve this problem is that, to reconstruct the executed path,
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an analysis only needs to know the basic blocks executed. We have applied this insight by

designing the analysis to maintain the current basic block executed by the program. The

analysis can maintain such information using the compressed information that PT provides.

E.g., if PT provides only a bit denoting the value of a condition tested in a branch, then the

analysis inspects the conditional branch at the end of the maintained block, and from the

branch, updates its information about the current block executed.

The second key challenge in designing PITTYPAT is to design a points-to analysis

that can compute accurate points-to information while imposing sufficiently low overhead.

Precise points-to analyses solve a system of constraints over all pairs of pointer variables

in the program [26, 41]; solving such constraints uses a significant amount of time that is

often acceptable in the context of an offline static analysis, but would impose unacceptable

overhead if used by PITTYPAT’s online analysis process. Other analyses bound analysis

time to be nearly linear with increasing number of pointer variables, but generate results that

are often too imprecise to provide strong security guarantees if used to enforce CFI [27]. To

address the limitations of conventional points-to analysis, we have designed an online points-

to analysis that achieves the precision of precise analysis at high performance. The analysis

eagerly evaluates control relevant points-to constraints as they are generated, while updating

the points-to relations table used for future control transfer validation. The analysis enables

PITTYPAT, when analyzing runs of dispatch that execute paths p0 and p1, to compute the

accurate points-to information given in §2.2.2. The following sections explain the details of

our solution to each challenge as described.

2.3.2 Efficient branch sharing

PITTYPAT uses the PT extension for Intel processors [39] to collect the control branches

taken by P . A naive implementation of PITTYPAT would receive from the monitoring

module the complete target address of each branch taken by P in encoded packets and

decode the traces offline for analysis. PITTYPAT, given only Boolean flags from PT, decodes
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complete branch targets on the fly. To do so, PITTYPAT maintains a copy of the current

control location of P . For example, in Figure 2.1, when dispatch steps through the path

[L10, L16, L22], the relevant PT trace contains only two TNT packets and one TIP packet. A

TNT packet is a two-bit stream: 10. The first bit, 1, represents the conditional branch at L10

is taken (i.e., the execution enters into the loop). The second bit, 0, indicates the conditional

branch at L13 is not taken, and the executed location is now in the else branch. The TIP

packet contains the address of function unpriv, which shows an indirect jump to unpriv.

PITTYPAT uses the Linux perf infrastructure to extract the execution trace of P . In

particular, PITTYPAT uses the perf kernel driver to (1) allocate a ring buffer shared by the

hardware and itself and (2) mark the process in which the target program executes (and any

descendant process and thread) as traced so as to enable tracing when context switching

into a descendant and disable tracing when context switching out of a descendant. The

driver then transfers the recorded PT packets, together with thread ID and process ID, to

the analyzer module through the shared buffer. This sharing mechanism has proved to

be efficient on all performance benchmarks on which we evaluated PITTYPAT, typically

incurring less than 5% overhead.

PITTYPAT intercepts the execution of a program at security-sensitive system calls in

the kernel and does not allow the program to proceed until the analyzer validates all

control branches taken by the program. The list of intercepted system calls can be easily

configured; the current implementation checks write, mmap, mprotect, mremap, sendmsg,

sendto, execve, remap_file_pages, sendmmsg, and execveat. The above system calls are

intercepted because they can either disable DEP/W⊕X, directly execute an unintended

command, write to files on the local host, or send traffic over a network.

2.3.3 Online points-to analysis

The analyzer module executes in a process distinct from the process in which the monitored

process executes. Before monitoring a run of the program, the analyzer is given the
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monitored program’s LLVM IR and meta information about mapping between IR and binary

code. At runtime, the analyzer receives the next control-transfer target taken by the protected

program from the monitor module, and either chooses to raise an alarm signaling that

the control transfer taken would violate path-sensitive CFI, or updates its state and allows

the original program to take its next step of execution. The updated states contain two

components: (1) the callstack of instructions being executed (i.e., the pc’s) and (2) points-to

relations over models of memory cells that are control relevant only. The online points-to

analysis addresses the limitations of conventional points-to analyses. In particular, it reasons

precisely about the calling context of the monitored program by maintaining a stack of

register frames. It avoids maintaining constraints over pairs of pointer variables by eagerly

evaluating the sets of cells and instruction addresses that may be stored in each register and

cell. It updates this information efficiently in response to program actions by performing

updates on a single register frame and removing register frames when variables leave scope

on return from a function call.

In general, a program may store function pointers in arbitrarily, dynamically allocated

data structures before eventually loading the pointer and using it as the target of an indirect

control transfer. If the analyzer were to maintain precise information about the points-to

relation of all heap cells, then it would maintain a large amount of information never used

and incur a significant cost to performance. We have significantly optimized PITTYPAT

by performing aggressive analyses of a given program P offline, before monitoring the

execution of P on a given input. PITTYPAT runs an analyzer developed in previous work on

code-pointer integrity (CPI) [33] to collect a sound over-approximation of the instructions in

a program that may affect a code pointer used as the target of a control transfer. At runtime,

the analyzer only analyzes instructions that are control relevant as determined by its offline

phase. Meanwhile, a program may also contain many functions that perform no operations

on data structures that indirectly contain code pointers, and do not call any functions that

perform such operations. We optimized PITTYPAT by applying an offline analysis based on
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a sound approximation of the program’s call graph to identify all such functions. At runtime,

PITTYPAT only analyzes functions that may indirectly perform relevant operations.

To illustrate the analyzer’s workflow, consider the execution path [L10, L12, L16, 19, L22]

in Figure 2.1 as an example. Initially, the analyzer knows that the current instruction being

executed is L10, and the points-to table is empty. The analyzer then receives a taken TNT

packet, and so it updates the pc to L12, which calls a non-sensitive function parse_request.

However instead of tracing instructions in parse_request, the analyzer waits until receiving

a TIP packet signaling the return from parse_request before continue its analysis. Next, it

updates the pc to L16 after receiving a non-taken TNT packet, which indicates that the else

branch is taken. Here, the analyzer updates the points-to table to allow handler to point to

unpriv when it handles L16. Because the program also calls a non-sensitive function at L19,

the analyzer waits again and updates the pc to L22 only after receiving another TIP packet.

Finally, at L22, the analyzer waits for a TIP packet at the indirect call, and checks whether

the target address collected by the monitor module is consistent with the value pointed by

handler in the points-to table. In this case, if the address in the received TIP packet is not

unpriv, the analyzer throws an alarm.

2.4 Implementation

2.4.1 Monitor module

PITTYPAT controls the Intel PT extension and collects an execution trace from a monitored

program by adapting the Linux v4.4 perf infrastructure. Because perf was originally

designed to aid debugging, the original version provided with Linux 4.4 only supports

decoding and processing traces offline. In the original implementation, the perf kernel

module continuously outputs packets of PT trace information to the file system in user space

as a log file to be consumed later by a userspace program. Such a mechanism obviously

cannot be used directly within PITTYPAT, which must share branch information at a speed

that allows it to be run as an online monitor.
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We modified the kernel module of perf, which begins and ends collection of control

targets taken after setting a target process to trace, allocates a ring buffer in which it shares

control branches taken with the analyzer, and monitors the amount of space remaining in

the shared buffer. The module also notifies the analyzer when taken branches are available

in its buffer, along with how many chosen control targets are available. The notification

mechanism reuses the pseudo-file interface of the perf kernel module. The analyzer creates

one thread to wait (i.e., poll) on this file handler for new trace data. Once woken up by the

kernel, it fetches branches from the shared ring buffer with minimal latency.

System calls are intercepted by a modified version of the system-call mechanism pro-

vided by the Linux kernel. When the monitored process is created, it—along with each

of its sub-processes and threads created later—is flagged with a true value in a PT_CPV

field of its task_struct in kernel space. When the kernel receives a request for a system

call, the kernel checks if the requesting process is flagged. If so, the kernel inspects the

value in register rax to determine if it belongs to the configured list of marked system

calls as described in §2.3.2. The interception mechanism is implemented as a semaphore,

which blocks the system call from executing further code in kernel space until the analyzer

validates all branches taken by the monitored process and signals the kernel.

The driver module and modifications to the kernel consist of approximately 400 lines of

C code.

2.4.2 Analyzer module

PITTYPAT’s analyzer module is implemented as two core components. The first component

consists of a LLVM compiler pass, implemented in 500 lines, that inserts an instruction

at the beginning of each basic block before the IR is translated to binary instructions.

Such instructions are used to generate a map from binary basic blocks to LLVM IR basic

blocks. Thus when PITTYPAT receives a TNT packet for certain conditional branch, it knows

the corresponding IR basic block that is the target of the control transfer. The inserted
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instructions are removed when generating binary instructions; therefore no extra overhead is

introduced to the running program.

The second component, implemented in 5,800 lines C++ code, performs a path-sensitive

points-to analysis over the control path taken by the monitored process, and raises an error

if the monitored process ever attempts to transfer control to a branch not allowed by path-

sensitive CFI. Although the analysis inspects only low-level code, it directly addresses

several challenges in analyzing code compiled from high-level languages. First, to analyze

exception-handling by a C++ program, which unwinds stack frames without explicit calls

to return instructions, the analyzer simply consumes the received TNT packets generated

when the program compares the exception type and updates the pc to the relevant exception

handler.

To analyze a dynamic dispatch performed by a C++ program, the analyzer uses its

points-to analysis to determine the set of possible objects that contain the vtable at each

dynamic-dispatch callsite. The analyzer validates the dispatch if the requested control target

stored in a given TIP packet is one of the members of the object from which the call target

is loaded. At each call to setjmp, the analyzer stores all possible setjmp buffer cells that

may be used as arguments to setjmp, along with the instruction pointer at which setjmp is

called, in the top stack frame. At each call to longjmp, the analyzer inspects the target T of

the indirect call and unwinds its stack until it finds a frame in which setjmp was called at

T, with the argument buffer of longjmp may have been the buffer passed as an argument to

setjmp.

2.5 Evaluation

We performed an empirical evaluation to answer the following experimental questions. (1)

Are benign applications transformed to satisfy path-sensitive CFI less susceptible to an

attack that subverts their control security? (2) Do applications that are explicitly written to

perform malicious actions that satisfy weaker versions of CFI fail to satisfy path-sensitive
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CFI? (3) Can PITTYPAT enforce path-sensitive CFI efficiently?

To answer these questions, we used PITTYPAT to enforce path-sensitive CFI on a

set of benchmark programs and workloads, including both standard benign applications

and applications written explicitly to conceal malicious behavior from conventional CFI

frameworks. In summary, our results indicate that path-sensitive CFI provides a stronger

security guarantee than state-of-the-art CFI mechanisms, and that PITTYPAT can enforce

path-sensitive CFI while incurring overhead that is acceptable in security-critical contexts.

2.5.1 Methodology

We collected a set of benchmarks, each described in detail in §2.5.2. We compiled each

benchmark with LLVM 3.6.0, and ran them on a set of standard workloads. During each run

of the benchmark, we measured the time used by the program to process the workload. If

a program contained a known vulnerability that subverted conventional CFI, then we ran

the program on inputs that triggered such a vulnerability as well, and observed if PITTYPAT

determined that control-flow was subverted along the execution. Over a separate run, at

each control branch taken by the program, we measured the size of the points-to set of the

register that stored the target of the control transfer.

We then built each benchmark to run under a state-of-the-art CFI framework implemented

in previous work, π-CFI [38]. While π-CFI validates control targets per control location, it

instruments a subject program so that control edges of the program are disabled by default,

and are only enabled as the program executes particular triggering actions (e.g., a function

can only be called after its address is taken). It thus allows sets of transfer targets that are no

larger than those allowed by conventional implementations of CFI, and are often significantly

smaller [38]. For each benchmark program and workload, we observed whether π-CFI

determined that the control-flow integrity of the program was subverted while executing

the workload and measured the runtime of the program while executed under π-CFI. We

compared PITTYPAT to π-CFI because it is the framework most similar to PITTYPAT in
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concept: it validates control-transfer targets based not only on the results of a static points-to

analysis, but collecting information about the program’s dynamic trace.

2.5.2 Benchmarks

To evaluate the ability of PITTYPAT to protect long-running, benign applications, and to

evaluate the overhead that it incurs at runtime, we evaluated it on the SPEC CPU2006

benchmark suite, which consists of 162 C/C++ benchmarks. We ran each benchmark three

times over its provided reference workload. For each run, we measured the runtime overhead

imposed by PITTYPAT and the number of control targets allowed at each indirect control

transfer, including both indirect calls and returns. We also evaluated PITTYPAT on the

NGINX server—a common performance macro benchmark, configured to run with multiple

processes.

To evaluate PITTYPAT’s ability to enforce end-to-end control security, we evaluated it

on a set of programs explicitly crafted to contain control vulnerabilities, both as analysis

benchmarks and in order to mount attacks on critical applications. In particular, we eval-

uated PITTYPAT on programs in the RIPE benchmark suite [48], each of which contains

various vulnerabilities that can be exploited to subvert correct control flow (e.g. Return-

Oriented Programming (ROP) or Jump-oriented Programming (JOP)). We compiled 264

of its benchmarks in our x64 Linux test environment and evaluated PITTYPAT on each.

We also evaluated PITTYPAT on a program that implements a proof-of-concept COOP at-

tack [32], a novel class of attacks on the control-flow of programs written in object-oriented

languages that has been used to successfully mount attacks on the Internet Explorer and

Firefox browsers. We determined if PITTYPAT could block the attack that the program

attempted to perform.

2We don’t include 447.dealII, 471.omnetpp, and 483.xalancbmk because their LLVM IR cannot be
completely mapped to the binary code.
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2.5.3 Results
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Figure 2.3: Control-transfer targets allowed by π-CFI and PITTYPAT over 403.gcc and 444.namd.

Protecting benign applications. Figure 2.3 contains plots of the control-transfer targets

allowed by π-CFI and PITTYPAT over runs of example benchmarks selected from §2.5.2.

In the plots, each point on the x-axis corresponds to an indirect control transfer in the run.

The corresponding value on the y-axis contains the number of control targets allowed for

the transfer. Previous work on CFI typically reports the average indirect-target reduction

(AIR) of a CFI implementation; we computed the AIR of PITTYPAT. However, the resulting

data does not clearly illustrate the difference between PITTYPAT and alternative approaches,

because all achieve a reduction in branch targets greater than 99% out of all branch targets

in the program. This is consistent with issues with AIR as a metric established in previous
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work [49]. Figure 2.3, instead, provides the absolute magnitudes of points-to sets at each

indirect control transfer over an execution.

Figure 2.3a contains a Cumulative Distribution Graph (CDF) of all points-to sets at

forward (i.e., jumps and calls) indirect control transfers of size no greater than 40 when

running 403.gcc under π-CFI and PITTYPAT. We used a CDF over a portion of the points-to

sets in order to display the difference between the two approaches in the presence of a small

number of large points-to sets, explained below. Figure 2.3a shows that PITTYPAT can

consistently maintain significantly smaller points-to sets for forward edges than that of

π-CFI, leading to a stronger security guarantee. Figure 2.3a indicates that when protecting

practical programs, an approach such as π-CFI that validates per location allows a significant

number of transfer targets at each indirect callsite, even using dynamic information. In

comparison, PITTYPAT uses the entire history of branches taken to determine that at the

vast majority of callsites, only a single address is a valid target. The difference in the

number of allowed targets can be explained by the different heuristics adopted in π-CFI,

which monotonically accumulates allowed points-to targets without any disabling schemes

once targets are taken, and the precise, context-sensitive points-to analysis implemented in

PITTYPAT. Similar difference between π-CFI and PITTYPAT can also be found in all other

C benchmarks from SPEC CPU2006.

For the remaining 4% of transfers not included in Figure 2.3a, both π-CFI and PITTYPAT

allowed up to 218 transfer targets; for each callsite, PITTYPAT allowed no more targets

than π-CFI. The targets at such callsites are loaded from vectors and arrays of function

pointers, which PITTYPAT’s current points-to analysis does not reason about precisely. It is

possible that future work on a points-to analysis specifically designed for reasoning precisely

about such data structures over a single path of execution—a context not introduced by

any previous work on program analysis for security—could produce significantly smaller

points-to sets.

A similar difference between π-CFI and PITTYPAT is demonstrated by the number of
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transfer targets allowed for other benchmarks. In particular, Figure 2.3c contains similar data

for the 444.namd benchmark. 444.namd, a C++ program, contains many calls to functions

loaded from vtables, a source of imprecision for implementations of CFI that can be exploited

by attackers [32]. PITTYPAT allows a single transfer target for all forward edges as a result

of its online points-to analysis. The difference between π-CFI and PITTYPAT are also found

for other C++ benchmarks, such as 450.soplex, 453.povray and 473.astar.

π-CFI and PITTYPAT consistently allow dramatically different numbers of transfer

targets for return instructions. While monitoring 403.gcc, π-CFI allows, for some return

instructions, over 1, 400 return targets (Figure 2.3b). While monitoring 444.namd, π-CFI

allows, for some return instructions, more than 46 transfer targets (Figure 2.3d). Because

PITTYPAT maintains a stack of points-to information during its analysis, it will always allow

only a single transfer target for each return instruction, over all programs and workloads.

PITTYPAT thus significantly improves defense against ROP attacks, which are still one of

the most popular attacks software.

Mitigating malicious applications. To determine if PITTYPAT can detect common attacks

on control, we used it to monitor selected RIPE benchmarks [48]. For each of the 264

benchmarks that ran in our experimental setup, PITTYPAT was able to successfully detect

attacks on the benchmark’s control security.

We constructed a proof-of-concept program vulnerable to a COOP [32] attack that

corrupts virtual-function pointers to perform a sequence of method calls not possible by

a well-defined run of the program. In Figure 2.4, the program defines two derived classes

of SchoolMember (line L1–L4), Student (line L5–L10) and Teacher (line L11–L16). Both

Student and Teacher define their own implementation of the virtual function registration()

(lines L7–9 and L13–15, respectively). set_buf() (line L17–L21) allocates a buffer buf

on the stack of size 4 (line L18), but does not bound the amount of data that it reads

into buf (line L20). The main function (line L22–L37) constructs instances of Student

and Teacher (lines L23 and L24, respectively), and stores them in SchoolMember pointers
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1 class SchoolMember {
2 public:
3 virtual void registration(void){}
4 };
5 class Student : public SchoolMember{
6 public:
7 void registration(void){
8 cout << "I am a Student\n";
9 }

10 };
11 class Teacher : public SchoolMember{
12 public:
13 void registration(void){
14 cout << "This is sensitive!\n";
15 }
16 };
17 void set_buf(void){
18 char buf[4];
19 //change vptr to that of Teacher’s sensitive func
20 gets(buf);
21 }
22 int main(int argc, char *argv[]){
23 Student st;
24 Teacher te;
25 SchoolMember *member_1, *member_2;
26 member_1 = &te;
27 member_2 = &st;
28 //Teacher calling its virtual functions
29 member_1->registration();
30 //Student calling its virtual functions
31 member_2->registration();
32 //buffer overflow to overwrite the vptr
33 set_buf();
34 //Student calling its virtual functions again
35 member_2->registration();
36 return 0;
37 }

Figure 2.4: A program vulnerable to a COOP attack.

(lines L26 and 27 respectively). main then calls the registration() method of each in-

stance (lines L29–L31), reads input from a user by calling set_buf() (line L33), and calls

Student::registration() a second time (line L35). A malicious user can subvert control

flow of the program by exploiting the buffer overflow vulnerability in set_buf to overwrite

the vptr of Student to that of Teacher and run Teacher::registration() at line L35.

Previous work introducing COOP attacks [32] established such an attack cannot be

detected by CFI. π-CFI was not able to detect an attack on the above program because it

allows a dynamic method as a call target once its address is taken. However, PITTYPAT

detected the attack because its analyzer module accurately models the effect of each load

of a function pointer used to implement the dynamic calls over the program’s well-defined

runs.
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Enforcing path-sensitive CFI efficiently. Table 2.2 contains measurements of our experi-

ments that evaluate performance of PITTYPAT when monitoring benchmarks from SPEC

CPU2006 and NGINX server, along with the performance results replicated from the paper

that presented π-CFI [38]. A key feature observable from Table 2.2 is that PITTYPAT

induces overhead that is consistently larger than, but often comparable to, the overhead

induced by π-CFI. The results show that PITTYPAT incurs a geometric mean of 12.73%

overhead across the 16 SPEC CPU2006 benchmarks, along with a 11.9% increased response

time for NGINX server over one million requests with concurrency level of 50. Overhead of

sharing branch targets taken is consistently less than 5%. The remaining overhead, incurred

by the analysis module, is proportional to the number of memory operations (e.g., loads,

stores, and copies) performed on memory cells that transitively point to a target of an

indirect call, as well as the number of child processes/threads spawned during execution of

multi-process/-threading benchmarks.

Another key observation from Table 2.2 is that PITTYPAT induces much smaller over-

head than CETS [35] and SoftBound [36], which can only be applied to a small selection of

the SPEC CPU2006 benchmarks. CETS provides temporal memory safety and SoftBound

provides spatial memory safety; both enforce full data integrity for C benchmarks, which en-

tails control security. However, both approaches induce significant overhead, and cannot be

applied to programs that perform particular combinations of memory-unsafe operation [33].

Our results thus indicate a continuous tradeoff between security and performance among

exisiting CFI solution, PITTYPAT, and data protection. PITTYPAT offers control security

that is close to ideal, i.e. what would result from data integrity, but with a small percentage

of the overhead of data-integrity protection.
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CHAPTER 3

SNAP: HARDWARE SUPPORT TO IMPROVE FUZZING PERFORMANCE

AND PRECISION

3.1 Introduction

Historically, bugs have been companions of software development due to limitations of

human programmers. Those bugs can lead to unexpected outcomes ranging from simple

crashes, which render programs unusable, to exploitation toolchains, which grant attackers

partial or complete control of user devices. As modern software evolves and becomes more

complex, a manual search for such unintentionally introduced bugs becomes unscalable.

Various automated software testing techniques have thus emerged to help find bugs efficiently

and accurately, one of which is fuzzing. Fuzzing in its essence works by continuously feeding

randomly mutated inputs to a target program and watching for unexpected behavior. It

stands out from other software testing techniques in that minimal manual effort and pre-

knowledge about the target program are required to initiate bug hunting. Moreover, fuzzing

has proven its practicality by uncovering thousands of critical vulnerabilities in real-world

applications. For example, Google’s in-house fuzzing infrastructure ClusterFuzz [50] has

found more than 25,000 bugs in Google Chrome and 22,500 bugs in over 340 open-source

projects. According to the company, fuzzing has uncovered more bugs than over a decade

of unit tests manually written by software developers. As more and more critical bugs are

being reported, fuzzing is unarguably one of the most effective technique to test complex,

real-world programs.

An ideal fuzzer aims to execute mutated inputs that lead to bugs at a high speed. However,

certain execution cycles are inevitably wasted on testing the ineffective inputs that do not

approach any bug in practice. To save computing resources for inputs that are more likely to
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trigger bugs, state-of-the-art fuzzers are coverage-guided and favor mutation on a unique

subset of inputs that reach new code regions per execution. Such an approach is based on the

fact that the more parts of a program that are reached, the better the chance an unrevealed

bug can be triggered. In particular, each execution of the target program is monitored for

collecting runtime code coverage, which is used by the fuzzer to cherry-pick generated inputs

for further mutation. For binaries with available source code, code coverage information is

traced via compile-time instrumentation. For standalone binaries, such information is traced

through dynamic binary instrumentation (DBI) [51, 52, 47], binary rewriting [53, 54], or

hardware-assisted tracing [3, 55].

Nonetheless, coverage tracing itself incurs large overhead and slows the execution speed,

making fuzzers less effective. The resulting waste of computing resources can extend

further with a continuous fuzzing service scaling up to tens of thousands of machines [50,

56]. For example, despite its popularity, AFL [57] suffers from a tracing overhead of

nearly 70% due to source code instrumentation and of almost 1300% in QEMU mode for

binary-only programs [54]. Source code instrumentation brings in additional instructions

to maintain the original register status at each basic block, while DBI techniques require

dynamic code generation, which is notoriously slow. Although optimized coverage tracing

techniques have been proposed to improve performance, especially for binary-only programs,

they impose different constraints. RetroWrite [53] requires the relocation information of

position-independent code (PIC) to improve performance for binary-only programs. Various

existing fuzzers [2, 21, 11] utilize Intel Processor Trace (PT) [3], a hardware extension that

collects general program execution information. Nevertheless, Intel PT is not tailored for

the lightweight tracing required by fuzzing. The ad-hoc use of Intel PT in fuzzing results

in non-negligible slowdown caused by extracting useful information (e.g., coverage), with

a merely comparable execution speed as source instrumentation in the best effort from

the large-scale profiling results [9, 58]. UnTracer [54] suggests coverage-guided tracing,

which only traces testcases incurring new code paths. However, UnTracer adopts basic
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block coverage without edge hit count and measures a less accurate program execution trace

that misses information about control transfers and loops. The overhead of software-based

coverage tracing is inevitable because it requires extra information not available during

the original program execution. Moreover, the applicability of fuzzing heavily depends on

the availability of source code, given that existing techniques commonly used for fuzzing

stand-alone binaries are unacceptably slow and there is a need for faster alternatives.

In this paper, we propose SNAP, a customized hardware platform that implements

hardware primitives to enhance the performance and precision of coverage-guided fuzzing.

When running on SNAP, fuzzing processes can achieve near-to-zero performance overhead.

The design of SNAP is inspired by three key properties observed from the execution cycle

of a program in the hardware layer.

First, a hardware design can provide transparent support of fuzzing without instrumenta-

tion, as coverage information can be collected directly in the hardware layer with minimal

software intervention. By sitting at the bottom of the computer stack, SNAP can assist

fuzzers to fuzz any binary efficiently, including third-party libraries or legacy software,

regardless of source code availability, making fuzzing universally applicable.

Second, we find that the code tracing routine, including measuring edge coverage and

hit count, can be integrated seamlessly into the execution pipeline of the modern CPU

architecture, and a near-zero tracing overhead can be achieved without the extra operations

inevitable in software-based solutions. To enable such low-cost coverage tracing, SNAP

incorporates two new micro-architectural units inside the CPU core: Bitmap Update Queue

(BUQ) for generating updates to the coverage bitmap and Last Branch Queue (LBQ) for

extracting last branch records. SNAP further adopts two micro-architectural optimizations

to limit the overhead on the memory system from frequent coverage bitmap updates: memory

request aggregation, which minimizes the number of updates, and opportunistic bitmap

update, which maximizes the utilization of free cache bandwidth for such updates and

reduces their cost.
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Third, rich execution semantics can be extracted at the micro-architecture layer. One

may think that the raw data gathered at the hardware level largely loses detailed program

semantics because the CPU executes the program at the instruction granularity. Counter-

intuitively, we find that such low-level information not only enables flexible coverage

tracing, but also provides rich execution context for fuzzing without performance penalty.

For example, various micro-architectural states are available in the processor pipeline during

program execution, such as lastly executed branches (which incur higher overhead to extract

in software) and branch predictions (which are entirely invisible to software). Using such

rich micro-architectural information, SNAP is able to provide extra execution semantics,

including immediate control-flow context and approximated data flows, in addition to code

coverage. SNAP also supports setting address constraints on execution-specific micro-

architectural states prior to execution, providing users the flexibility to selectively trace and

test arbitrary program regions. Thus, fuzzers on SNAP can utilize the runtime feedback that

describes the actual program state more precisely and make better mutation decisions.

3.2 Motivation: Precision and Performance

In this section, we provide an overview of coverage-guided fuzzing and introduce recent

efforts in the research community to improve the quality of coverage feedback. We then dive

into the excessive tracing overhead of source instrumentation from AFL, a state-of-the-art

coverage guided fuzzer.

3.2.1 Better feedback in fuzzing

Fuzzing has recently gained wide popularity thanks to its simplicity and practicality. Funda-

mentally, fuzzers identify potential bugs by generating an enormous number of randomly

mutated inputs, feeding them to the target program and monitoring abnormal behaviors.

To save valuable computing resources for inputs that approach real bugs, modern fuzzers

prioritize mutations on such inputs under the guidance of certain feedback metrics, one
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1 static void demangle_it (char *mangled) {
2 char *cur = mangled;
3 ...
4 while (*cur != ’\0’) {
5 switch (*cur) {
6 case ’S’: ... // static members
7 case ’L’: ... // local classes
8 case ’T’: ... // G++ templates
9 // more cases...

10 }
11 }
12 // buggy mangled pattern
13 if (has_SLLTS(mangled)) BUG();
14 }
15 int main (int argc, char **argv) {
16 ...
17 for (;;) {
18 static char mbuffer[32767];
19 unsigned i = 0;
20 int c = getchar();
21 // try to read a mangled name
22 while (c != EOF && ISALNUM(c) && i < sizeof(mbuffer)) {
23 mbuffer[i++] = c;
24 c = getchar();
25 }
26 mbuffer[i] = 0;
27 if (i > 0) demangle_it(mbuffer);
28 if (c == EOF) break;
29 }
30 return 0;
31 }

Figure 3.1: An illustrative example for the runtime information gathered by SNAP. The code
abstracts demangling in cxxfilt.

of which is code coverage. Coverage-guided fuzzers [57, 2, 59, 60] rely on the fact that

the more program paths that are reached, the better the chance that bugs can be uncovered.

Therefore, inputs that reach more code paths are often favored. Coverage guidance has

proved its power by helping discover thousands of critical bugs and has become the design

standard for most recent fuzzers [57, 2, 59, 60].

Despite its success, feedback that is solely based on the code coverage reached by the

generated inputs can still be coarse grained. Figure 3.1 depicts an example of a buggy

cxxfilt code snippet that reads an alphanumeric string from stdin (line 17-29) before

demangling its contained symbols based on the signatures (line 4-11). Specifically, BUG in

the program (line 13) results from a mangled pattern (i.e., SLLTS) in the input. With a seed

corpus that covers all the branch transfers within the loop (line 4-11), the coverage bitmap

will be saturated even with the help of edge hit count, as shown in Algorithm 1, guiding the

fuzzer to blindly explore the bug without useful feedback.
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Algorithm 1: Edge encoding by AFL
Input :BBsrc → BBdst, prevLoc

1 curLoc = Random(BBdst)
2 bitmap[curLoc ˆ prevLoc] += 1
3 prevLoc = curLoc ≫ 1

Output :prevLoc – hash value for the next branch

1 # [Basic Block]:
2 # saving register context
3 mov %rdx, (%rsp)
4 mov %rcx, 0x8(%rsp)
5 mov %rax, 0x10(%rsp)
6 # bitmap update
7 mov $0x40a5, %rcx
8 callq __afl_maybe_log
9 # restoring register context

10 mov 0x10(%rsp), %rax
11 mov 0x8(%rsp), %rcx
12 mov (%rsp), %rdx

(a) AFL-gcc

1 # preparing 8 spare registers
2 push %rbp
3 push %r15
4 push %r14
5 ...
6 mov %rax, %r14
7 # [Basic Block]: bitmap update
8 movslq %fs:(%rbx), %rax
9 mov 0xc8845(%rip), %rcx

10 xor $0xca59, %rax
11 addb $0x1, (%rcx,%rax,1)
12 movl $0x652c, %fs:(%rbx)

(b) AFL-clang

Figure 3.2: Source-instrumented assembly inserted at each basic block between compilers.

To improve the quality of coverage feedback, much effort has been directed to more

accurately approximate program states with extra execution semantics. In particular, to

achieve context awareness, some fuzzers record additional execution paths if necessary [61,

9, 2, 11], while others track data-flow information [62, 60, 63, 64, 65, 59] that helps to

bypass data-driven constraints. Those techniques enrich the coverage feedback and help a

fuzzer approach the bugs in Figure 3.1 sooner, yet they can be expensive and thus limited.

For example, traditional dynamic taint analysis can under-taint external calls and cause

tremendous memory overhead. Although lightweight taint analysis for fuzzing [64] tries

to reduce the overhead by directly relating byte-level input mutations to branch changes

without tracing the intermediate data flow, it can still incur an additional 20% slowdown in

the fuzzing throughput of AFL across tested benchmarks.

3.2.2 Dissecting AFL’s tracing overhead

AFL injects the logic into a target program in two different ways based on the scenarios.

When source code is available, AFL utilizes the compiler or the assembler to directly

instrument the program. Otherwise, AFL relies on binary-related approaches such as DBI
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Table 3.1: The cost of program size and runtime overhead for tracing on x86 platform across the
SPEC benchmarks.

Name Size (MB) Runtime Overhead (%)

baseline instrumented AFL-clang AFL-QEMU

perlbench 2.58 6.56 105.79 376.65
bzip2 0.95 1.20 63.66 211.14
gcc 4.51 15.73 57.15 257.76
mcf 0.89 0.95 66.30 92.52
gobmk 4.86 8.11 44.80 224.27
hmmer 1.51 2.57 39.34 340.03
sjeng 1.04 1.38 47.36 261.04
libquantum 1.10 1.23 47.95 186.63
h264ref 1.70 3.43 49.32 542.73
omnetpp 3.72 7.31 48.97 186.35
astar 1.10 1.39 43.57 124.93
xalancbmk 8.49 49.56 107.64 317.63

Mean 2.70 8.29 (207.04%) 60.15 260.14

and binary rewriting. While source code instrumentation is typically preferred due to

its significantly lower tracing overhead compared to binary-related approaches, previous

research indicates that AFL can still suffer from almost a 70% slowdown under the tested

benchmarks [54]. Table 3.1 shows that the situation can worsen for CPU-bound programs,

with an average tracing overhead of 60% from source code instrumentation and 260%

from DBI (i.e., QEMU). In the worst case, DBI incurs a 5× slowdown. The tracing

overhead from DBI mostly comes from the binary translation of all applicable instructions

and trap handling for privileged operations. On the other hand, the overhead of source

code instrumentation results from the instructions inserted at each basic block that not

only profiles coverage but also maintains the original register values to ensure that the

instrumented program correctly runs. Figure 3.2a depicts the instrumentation conducted by

afl-gcc, which requires assembly-level rewriting. Due to the crude assembly insertion at

each branch, the instructions for tracing (line 7-8) are wrapped with additional instructions

for saving and restoring register context (line 3-5 and line 10-12). Figure 3.2b shows the

same processing done by afl-clang, which allows compiler-level instrumentation through

intermediate representation (IR). The number of instructions instrumented for tracing

can thus be minimized (line 8-12) thanks to compiler optimizations. Nevertheless, the

36



instructions for maintaining the register values still exist and blend into the entire workflow

of the instrumented program (line 2-6). Table 3.1 lists the increased program sizes due

to instrumentation by afl-clang, suggesting an average size increase of around 2×. The

increase of program size and the runtime overhead given by afl-gcc can be orders of

magnitude larger [66].

37



User

OS

Fuzzer

Branch
Predictor

Execution
Unit

CPU

Corpus

Mem

Feedback

Syscall

Device Driver

Branch Records Cov. Bitmap

mmap()hwtrace()

LBQ

exe.

HW
BUQ

b0 b1 b2
...

✓ ...✗ ✓

b0 b1 b2
...

✓ ...✗ ✓

(a) Overview of SNAP.

Fetch
Controller

L1 I-Cache

Branch
Predictor

Branch
Unit

⋅⋅⋅
Fetch Buffer

LDQ1 STQ2 BUQ

Fetch Stage Execution Stage Memory Stage

Issue
RegRead

Trace
Decision
Logic

{uses_buq, uses_lbq, inst_bytes}

Fetched inst.

L1 D-Cache

Branch Prediction
Front-end

Opportunistic
Bitmap Update

Branch Resolution Info

Aggregation

target address, prediction result

Decode
Rename
Dispatch LBQ

from dispatch stage,
allocate new entries.

❶

❷

❸❹

❺

A
L
U ❻

❼

1LDQ (Load Queue)
2STQ (Store Queue)

(b) Architecture of the RISC-V BOOM core.

Figure 3.3: Overview of SNAP with its CPU design. The typical workflow involves the components from userspace, kernel, and hardware. The
architecture highlights the modified pipeline stages for the desired features, including trace decision logic, Bitmap Update Queue (BUQ), and Last
Branch Queue (LBQ).
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3.3 Design

3.3.1 Overview

Motivated by the expensive yet inevitable overhead of existing coverage-tracing techniques,

we propose SNAP, a customized hardware platform that implements hardware primitives

to enhance performance and precision of coverage-guided fuzzing. A fuzzer coached by

SNAP can achieve three advantages over traditional coverage-guided fuzzers.

1 Transparent support of fuzzing. Existing fuzzers instrument each branch location to

log the control-flow transfer, as explained in §3.2.2. When source code is not available,

the fuzzer has to adopt slow alternatives (e.g., Intel PT and AFL QEMU mode) to conduct

coverage tracing, a much less favored scenario compared to source code instrumentation.

By sitting in the hardware layer, SNAP helps fuzzers to construct coverage information

directly from the processor pipeline without relying on any auxiliary added to the target

program. SNAP thus enables transparent support of fuzzing any binaries, including third-

party libraries or legacy software, without instrumentation, making fuzzing universally

applicable.

2 Efficient hardware-based tracing. At the hardware level, many useful resources are

available with low or zero cost, most of which are not exposed to higher levels and cause

excessive overhead to obtain through the software stack. For example, SNAP provides the

control-flow information by directly monitoring each branch instruction and the correspond-

ing target address that has already been placed in the processor execution pipeline at runtime,

eliminating the effort of generating such information that is unavailable in the original

program execution from a software perspective. This allows fuzzers to avoid program size

increase and significant performance overhead due to the instrumentation mentioned in

Table 3.1. In addition, SNAP utilizes idle hardware resources, such as free cache bandwidth,

to optimize fuzzing performance.

3 Richer feedback information. To collect richer information for better precision of cov-
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Table 3.2: New Control and Status Registers (CSRs) in SNAP.

Name Permission Description

BitmapBase Read/Write Base address of coverage bitmap
BitmapSize Read/Write Size of coverage bitmap

TraceEn Read/Write Switch to enable HW tracing
TraceStartAddr Read/Write Start address of traced code region
TraceEndAddr Read/Write End address of traced code region

LbqAddr[0-31] Read Only Target addresses of last 32 branches
LbqStatus Read Only Prediction result of last 32 branches

PrevHash Read/Write Hash of the last branch target inst.

erage, many existing fuzzers require performance-intensive instrumentation. Surprisingly,

we observe that the micro-architectural state information already embeds rich execution se-

mantics that are invisible from the software stack without extra data profiling and processing.

In addition to code coverage, SNAP exposes those hidden semantics to help construct better

feedback that can more precisely approximate program execution states without paying

extra overhead. Currently, SNAP provides the records of lastly executed branches and the

prediction results to infer immediate control-flow context and approximated data flows. We

leave the support of other micro-architectural states as future work.

Figure 3.3a shows an overview of SNAP in action, which includes underlying hardware

primitives, OS middleware for software support and a general fuzzer provided by the user.

While running on SNAP, a fuzzer is allowed to configure the hardware and collect desired

low-level information to construct input feedback through interfaces exposed by the OS.

In addition, the fuzzer coached by SNAP can perform other fuzzing adjustments directly

through the hardware level, such as defining code regions for dedicated testing on specific

logic or functionalities.

3.3.2 Deep-dive: Implementation of Hardware Primitives

We design and implement SNAP based on the out-of-order BOOM core [67], one of the

most sophisticated open-source RISC-V processors to match commercial ones with modern

performance optimizations. Figure 3.3b highlights the lightweight modifications on key

40



State ⋅⋅⋅ Addr
tail à s_init ⋅⋅⋅ -

s_load ⋅⋅⋅ C

s_load ⋅⋅⋅ B
s_load ⋅⋅⋅ A

head à s_store ⋅⋅⋅ A

- Load can be speculatively executed.

- Stalls until the dependent older
entry finishes its store.

- Store is executed in program order.

Figure 3.4: Bitmap update operation in the Bitmap Update Queue.

hardware components in SNAP.

Trace Decision Logic. In the front-end of the BOOM core (Figure 3.3b), instructions are

fetched from the instruction cache (I-cache), enqueued to the Fetch Buffer, and then sent

onward for further execution at every cycle. We extend the Fetch Controller by adding

the Trace Decision Logic ( 1 ), which determines whether an instruction inserted into the

Fetch Buffer needs to be traced by SNAP. The trace decision results in tagging two types

of instructions within the code region to be traced (i.e., between HwTraceStartAddr and

HwTraceEndAddr) using two reserved bits, uses_buq and uses_lbq. The uses_buq bit is

used to tag the target instruction of every control-flow instruction (i.e., a branch or a jump)

to help enqueued bitmap update operations into the BUQ. Note that we choose to trace

the target instruction instead of the control-flow instruction itself for bitmap update due to

our newly devised trace-encoding algorithm (described later in §3.3.4). The control-flow

instruction itself is also tagged with the uses_lbq bit to help enqueue the corresponding

branch resolution information (i.e., the target address and the prediction result) into the LBQ

for additional contextual semantics (described later in §3.3.5). Overall, the trace decision

logic conducts lightweight comparisons within a single CPU cycle in parallel to the existing

fetch controller logic and thus does not delay processor execution or stall pipeline stages.

Bitmap Update Queue. The BUQ ( 2 ) is a circular queue responsible for bitmap updates

invoked by the instructions following control-flow instructions. A new entry in the BUQ is

allocated when such an instruction tagged with uses_buq is dispatched during the Execute

Stage ( 4 ). Each entry stores the metadata for a single bitmap update operation ( 5 ) and
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performs the update sequentially through four states:

1. s_init: The entry is first initialized with the bitmap location to be updated, which is

calculated using our trace encoding algorithm described in §3.3.4.

2. s_load: Subsequently, the current edge count at the bitmap location is read from the

appropriate memory address.

3. s_store: Then, the edge count is incremented by one and written to the same bitmap

location stored in the entry.

4. s_done: Once the entry reaches this state, it is deallocated when it becomes the head

of the BUQ.

Figure 3.4 depicts the bitmap update operation in the BUQ designed in a manner that

imposes minimal overhead. Since the bitmap itself is stored in user-accessible memory,

its contents can be read and written via load and store operations with the base address of

the bitmap and specific offsets. To ensure the bitmap update operation does not stall the

CPU pipeline, the load part of the update operation is allowed to proceed speculatively in

advance of the store operation, which is only executed when the corresponding instruction

is committed. However, in case there are store operations pending for the same bitmap

location from older instructions, such speculative loads are delayed until the previous store

completes to prevent reading stale bitmap values. Moreover, each bitmap load and store

is routed through the cache hierarchy, which does not incur the slow access latency of the

main memory. Note that the cache coherence and consistency of the bitmap updates can

be ensured by the hardware in a manner similar to that for regular loads and stores in the

shared memory. Last, a full BUQ can result in back pressure to the Execution Stage and

cause pipeline stalls. To avoid this, we sufficiently size up the BUQ; our 24-entry BUQ

ensures that such stalls are infrequent and incur negligible overhead.

Last Branch Queue. The LBQ ( 3 ) is a circular queue recording the information of the

last 32 branches as context-specific feedback used by a fuzzer, as we describe in §3.3.5.

42



Specifically, each entry of the LBQ stores the target address and the prediction result for

a branch (i.e., what was the branch direction and whether the predicted direction from the

branch-predictor was correct or not). Such information is retrieved through the branch

resolution path from the branch unit ( 7 ), where branch prediction is resolved. To interface

with the LBQ, we utilize the CSRs described in Table 3.2. Each LBQ entry is wired to a

defined CSR and can be accessible from software after each fuzzing execution using a CSR

read instruction.

3.3.3 Micro-architectural Optimizations

Since the BUQ generates additional memory requests for bitmap updates, it may increase

cache port contention and cause non-trivial performance overhead. To minimize the perfor-

mance impact, we rely on the fact that the bitmap update operation is not on the critical path

of program execution, independent of a program’s correctness. Hence, the bitmap update

can be opportunistically performed during the lifetime of a process and also aggregated

with subsequent updates to the same location. Based on the observations, we develop two

micro-architectural optimizations.

Opportunistic bitmap update. At the Memory Stage in Figure 3.3b, memory requests

are scheduled and sent to the cache based on the priority policy of the cache controller.

To prevent normal memory requests from being delayed, we assign the lowest priority to

bitmap update requests and send them to the cache only when unused cache bandwidth is

observed or when BUQ is full. Combined with the capability of the out-of-order BOOM

core in issuing speculative bitmap loads for the bitmap updates, this approach allows us to

effectively utilize the free cache bandwidth while also minimizing the performance impact

caused by additional memory accesses.

Memory request aggregation. A memory request aggregation scheme ( 6 ) is also de-

ployed to reduce the number of additional memory accesses. When the head entry of the

BUQ issues a write to update its bitmap location, it also examines the other existing entries,
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which might share the same influencing address for subsequent updates. If found, the

head entry updates the bitmap on behalf of all the matched ones with the influence carried

over, while the represented entries are marked finished and deallocated without further

intervention. This is effective, especially for loop statements, where the branch instruction

repeatedly jumps to the same target address across most iterations. In that case, the BUQ

can aggregate the bitmap update operations aggressively with fewer memory accesses.

3.3.4 Edge Encoding

Algorithm 1 describes how AFL [57] measures edge coverage, where an edge is represented

in the coverage bitmap as the hash of a pair of randomly generated basic block IDs inserted

during compile time. To avoid colliding edges, the randomness of basic block IDs plays an

important role to ensure the uniform distribution of hashing outputs. Rather than utilizing a

more sophisticated hashing algorithm or a bigger bitmap size to trade efficiency for accuracy,

AFL chooses to keep the current edge-encoding mechanism, as its practicality is well backed

by the large number of bugs found. Meanwhile, software instrumentation for coverage

tracing requires excessive engineering effort and can be error-prone, especially in the case

of complex COTS binaries without source code. Since it is non-trivial to instrument every

basic block with a randomly generated ID, one viable approach is to borrow the memory

address of a basic block as its ID, which has been proven effective in huge codebase [21].

Such an approach works well on the x86 architecture where instructions have variable

lengths, usually ranging from 1 to 15 bytes, to produce a decent amount of entropy for

instruction addresses to serve as random IDs. In the case of the RISC-V architecture,

however, instructions are defined with fixed lengths. Standard RISC-V instructions are

32-bit long, while 16-bit instructions are also possible only if the ISA compression extension

(RVC) is enabled [68]. As a result, RISC-V instructions are well-aligned in the program

address space. Reusing their addresses directly as basic block IDs for edge encoding lacks

enough entropy to avoid collisions.
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Algorithm 2: Edge encoding by SNAP
Input :BBsrc → BBdst, prevLoc

1 p = Address(BBdst)
2 inst_bytes = InstBytes(BBdst)
3 curLoc = p ˆ inst_bytes[15 : 0] ˆ inst_bytes[31 : 16]
4 bitmap[curLoc ˆ prevLoc] += 1
5 prevLoc = curLoc ≫ 1

Output :prevLoc – hash value for the next branch

To match the quality of edge encoding in AFL, we devise a new mechanism (Algorithm 2)

for SNAP that produces a sufficient amount of entropy with no extra overhead compared

to naive employment of memory addresses. Specifically, SNAP takes both the memory

address and the instruction byte sequence inside a basic block to construct its ID. A pair of

such basic block IDs are then hashed to represent the corresponding edge in the coverage

bitmap. By sitting at the hardware level, SNAP is able to directly observe and leverage

the instruction bytes as a source of entropy without overhead to compensate the lack of

randomness due to the RISC-V instruction alignment. To be compatible with both 16- and

32-bit long RISC-V instructions, SNAP always fetches two consecutive 16-bit sequences

starting at the instruction address and performs bitwise XOR twice to produce a basic bock

ID (line 3 in Algorithm 2, also in Figure 3.5). Therefore, each ID contains the entropy

from various data fields, including opcode, registers, and immediates, of either an entire

instruction or two compressed ones. In addition, SNAP chooses to operate on the destination

instruction of a branching operation to construct a basic block ID, as it provides a larger

variety of instruction types (i.e., more entropy) than the branch instruction itself. Similar

to that of AFL, the encoding overhead of SNAP is considered minimal, as the operation

can be completed within one CPU cycle. Note that Algorithm 2 can be easily converted to

trace basic block coverage by discarding prevLoc (line 5), which tracks control transfers

(i.e., edges), and performing bitmap update (line 4) solely based on curLoc (line 3).
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li a5, 60
bge a5, a4, 106cc

de ad c7 b7106cc: lui a5, 0xdeadc

…

0x106cc

0xdead

0xc7b7

0x11fd6=
+

Figure 3.5: An example of encoding a basic block ID.

3.3.5 Richer Coverage Feedback

As discussed in §3.2.1, edge coverage alone can be coarse-grained and does not repre-

sent execution states accurately. Meanwhile, collecting additional execution semantics

via software-based solutions always incurs major performance overhead. SNAP aims to

solve the dilemma from a hardware perspective. With various types of micro-architectural

state information available at the hardware level, SNAP helps fuzzers to generate more

meaningful feedback that incorporate immediate control flow context and approximated data

flow of a program run without extra overhead.

Capturing immediate control-flow context. Tracking long control-flow traces can be

infeasible due to noise from overly sensitive feedback and the performance overhead from

comparing long traces. Therefore, SNAP records only the last 32 executed branches of a

program run in the circular LBQ by default. Note that SNAP provides the flexibility of

configuring branch entry number and address filters through software interfaces so that

the hosted fuzzer can decide to track the execution trace of an arbitrary program space,

ranging from a loop to a cross-function code region. A unique pattern of the 32 branch

target addresses recorded in LBQ captures the immediate control-flow context of a program

execution, such as the most recent sequence of executed parsing options inside string

manipulation loops. When the immediate control-flow context is included in coverage

feedback, a fuzzer is inspired to further mutate the inputs that share identical edge coverage

but trigger unseen branch sequences within the loop (Figure 3.1 line 4-11) that will otherwise

be discarded. As a result, the fuzzer is more likely to generate the input that can reach the
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while(*cur != ‘\0’){
switch (*cur) {
case ‘S’: ...
case ‘L’: ...
case ‘T’: ...

}
}
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Figure 3.6: An example of data flow approximation between two runs leveraging the branch
predictions stored in LBQ.

specific lastly executed branch sequence (i.e., SLLTS) for the buggy constraint (line 13).

Approximating data flow via branch prediction. Data flow analysis has proven to be

useful for fuzzers [62, 60, 63] to mutate inputs more precisely (e.g., identify the input

byte that affects a certain data-dependent branch condition). However, recent research [64]

points out that the traditional data-flow analysis requires too much manual effort (e.g.,

interpreting each instruction with custom taint propagation rules) and is slow, making

fuzzing less effective. Surprisingly, SNAP is able to provide an approximation of data flow

without paying extra performance overhead by leveraging the branch prediction results in

the LBQ. A typical branch predictor, such as the one used in RISC-V BOOM [69] and

shown in Figure 3.6, is capable of learning long branch histories and predicts the current

branch decision (i.e., taken vs. not-taken) based on the matching historical branch sequence.

Conversely, given the prediction results of the recorded branch sequence in the LBQ, SNAP

is able to infer a much longer branch history than the captured one. Therefore, if a mutated

input byte causes a change in the prediction result of a certain branch, the branch condition

is likely related to the input offset, thus revealing dependency between them with near-zero

cost. Since most branch conditions are data-dependent [70, 63, 64], the prediction result thus

approximates the data flow from the input to any variables that affect the branch decision.

In Figure 3.6, even if the coverage map and the immediate control-flow context remain

the same, the fuzzer can still rely on the approximated data flows to mutate further for the

sequence of interest (i.e., line 13 in Figure 3.1) when it is not captured by the LBQ.
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3.3.6 OS Support

Besides the hardware modification, kernel support is another key for SNAP to work as

expected. We generalize it into three components, including configuration interface, process

management, and memory sharing between kernel and userspace. Rather than testing the

validity of modified OS on the hardware directly, we also provide the RISC-V hardware

emulation via QEMU [47], allowing easier debugging of the full system.

Configuration interface. Among the privilege levels enabled by the standard RISC-V

ISA [68], we define the newly added CSRs (Table 3.2) in supervisor-mode (S-mode) with

constraints to access through the kernel. To configure the given hardware, SNAP provides

custom and user-friendly system calls to trace a target program by accessing the CSRs. For

example, one can gather the lastly executed branches to debug a program near its crash site

by enabling branch record only. Others might request dedicated fuzzing on specific code

regions or program features by setting the address range to be traced. Overall, SNAP is

designed to be flexible for various use cases.

Process management. Besides the software interface that allows user programs to con-

figure hardware through system calls, the kernel also manages the tracing information of

each traced process. Specifically, we add new fields to the process representation in the

Linux kernel (i.e., task_struct), including the address and the size of the coverage bitmap,

the address and the size of the branch queue, the tracing address range, and the previous

hash value. Those fields are initialized with zeros upon process creation and later assigned

accordingly by the system calls mentioned before. During a context switch, if the currently

executing process is being traced, the kernel disables the tracing and saves the hash value and

branch records in the hardware queue. In another case, if the next process is to be traced, the

SNAP CSRs will be set based on the saved field values to resume the last execution. Note

that when fuzzing a multi-threaded application, existing fuzzers typically do not distinguish

code paths from different threads but record them into one coverage bitmap to test the
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application as a whole. Although maintaining unique bitmaps is supported, SNAP enables

the kernel to copy all the SNAP-related fields of a parent process, except the address of

the branch queue, into its newly spawned child process by default. In addition, when a

target process exits, either with or without error, SNAP relies on the kernel to clean up

the corresponding fields during the exit routine of the process. However, the memory of

the coverage information and the branch queue will not be released immediately, as it is

shared with the designated user programs (i.e., fuzzers) to construct the tracing information.

Instead, the memory will be freed on demand once the data have been consumed in the

userspace.

Memory sharing. To share the memory created for the coverage bitmap and the branch

queue with the userspace program, SNAP extends the kernel with two corresponding device

drivers. In general, the device drivers enable three file operations: open(), mmap(), and

close(). A user program can create a kernel memory region designated for either of the

devices by opening the device accordingly. The created memory will be maintained in a

kernel array until it is released by the close operation. Moreover, the kernel can remap the

memory to userspace if necessary. The overall design is similar to that of kcov [71], which

exposes kernel code coverage for fuzzing.

3.4 Evaluation

We perform empirical evaluations on the benefits of SNAP on fuzzing metrics and answer

the following questions:

• Performance. How much performance cost needs to be paid for tracing on SNAP?

• Effectiveness. Can SNAP increase coverage for fuzzing in a finite amount of time? How

do branch records and branch predictions provide more context-sensitive semantics?

• Practicality. How easy is it to support various fuzzers on SNAP? How much power and

area overhead does the hardware modification incur?
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Table 3.3: Evaluated BOOM processor configuration.

Clock 75 MHz L1-I cache 32KB, 8-way
LLC 4MB L1-D cache 64KB, 16-way
DRAM 16 GB DDR3 L2 cache 512KB, 8-way

Front-end 8-wide fetch
16 RAS & 512 BTB entries
gshare branch predictor

Execution 3-wide decode/dispatch
96 ROB entries
100 int & 96 floating point registers

Load-store unit 24 load queue & 24 store queue entries
24 BUQ & 32 LBQ entries

3.4.1 Experimental setup

We prototype SNAP on Amazon EC2 F1 controlled by FireSim [72], an open-source FPGA-

accelerated full-system hardware simulation platform. FireSim simulates RTL designs with

cycle-accurate system components by enabling FPGA-hosted peripherals and system-level

interface models, including a last-level cache (LLC) and a DDR3 memory [73]. We synthe-

size and operate the design of SNAP at the default clock frequency of LargeBoomConfig,

which is applicable to existing CPU architectures without significant design changes. While

modern commercial CPUs tend to adopt a data cache (L1-D) larger than the instruction cache

(L1-I) for performance [74, 75, 76], we mimic the setup with the default data cache size of

64 KB for our evaluation. In general, the experiments are conducted under Linux kernel

v5.4.0 on f1.16xlarge instances with eight simulated RISC-V BOOM cores, as configured

in Table 3.3. Our modified hardware implementation complies with the RISC-V standard,

which has been tested with the official RISC-V verification suite. The area and power

overhead of the synthesized processor after modification is measured by a commercial EDA

tool, Synopsys Design Compiler [77].

We evaluate SNAP on the industry-standardized SPEC CPU2006 benchmark suite to

measure its tracing overhead. The reference workload is used on the 12 C/C++ benchmarks

compilable by the latest RISC-V toolchain to fully explore the CPU-bound benchmarks for

a more accurate measurement. Meanwhile, we test AFL’s runtime coverage increase and
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Table 3.4: Tracing overhead from AFL source instrumentation and SNAP with various L1-D cache
sizes across the SPEC benchmarks.

Name HYPERSET (%) AFL-gcc (%)
32 KB 64 KB 128 KB

perlbench 7.63 4.28 4.20 690.27
bzip2 2.32 2.21 2.10 657.05
gcc 7.85 5.11 4.97 520.81
mcf 1.75 1.54 1.54 349.83
gobmk 16.92 5.25 4.92 742.98
hmmer 0.72 0.60 0.54 749.56
sjeng 7.29 0.68 0.52 703.44
libquantum 0.80 0.67 0.44 546.67
h264ref 10.37 0.27 0.07 251.56
omnetpp 13.88 5.55 5.37 452.89
astar 0.37 0.30 0.30 422.96
xalancbmk 21.24 11.26 11.11 1109.24

Mean 7.59 3.14 3.00 599.77

throughput with Binutils v2.28 [78], a real-world collection of binary tools that have been

widely adopted for fuzzing evaluation [79, 80]. In general, we fuzz each binary for 24 hours

with the default corpus from AFL in one experimental run and conduct five consecutive runs

to average the statistical noise in the observed data.

3.4.2 Tracing Overhead by SNAP

We measure the tracing overhead imposed by SNAP and source instrumentation (i.e., AFL-

gcc1) across the SPEC benchmarks. Table 3.4 suggests that SNAP incurs barely 3.14%

overhead with the default cache size of 64 KB, significantly outperforming the comparable

software-based solution (599.77%). While we have excluded the numbers for DBI solutions

(e.g., AFL QEMU mode), the resulting overhead is expected to be much heavier than source

instrumentation, as explained in §3.2.2. The near-zero tracing overhead of SNAP results

from its hardware design optimizations, including optimistic bitmap update and memory

request aggregation (§3.3.3). Table 3.5 shows that the bitmap update requests have been

reduced by 13.47% on average thanks to aggregation. In the best case, the reduction rate

can reach above 40%, which effectively mitigates cache contention from frequent memory

1We use AFL-gcc rather than AFL-clang because LLVM has compatibility issues in compiling the SPEC
benchmarks.
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Table 3.5: Memory request aggregation rates and L1 cache hit rates between the baseline and SNAP
across the SPEC benchmarks.

Name Agg. Rate (%) L1 Cache Hit Rate (%)

Base HYPERSET ∆

perlbench 3.32 97.82 96.49 -1.33
bzip2 13.67 91.80 91.32 -0.47
gcc 25.14 68.53 67.42 -1.11
mcf 7.83 44.45 43.89 -0.56
gobmk 8.78 95.51 91.81 -3.70
hmmer 1.36 95.80 95.64 -0.17
sjeng 5.24 98.44 96.18 -2.26
libquantum 41.60 53.97 53.24 -0.73
h264ref 16.23 96.67 95.89 -0.78
omnetpp 4.69 82.10 79.68 -2.42
astar 3.77 87.39 87.09 -0.30
xalancbmk 30.04 82.94 77.17 -5.77

Mean 13.47 82.95 81.32 -1.63

accesses (e.g., array iteration) and avoids unnecessary power consumption.

Further investigation shows that the performance cost of SNAP might also result from

cache thrashing at the L1 cache level. In general, applications with larger memory footprints

are more likely to be affected. Since bitmap updates by the BUQ are performed in the cache

shared with the program, cache lines of the program data might get evicted when tracing

is enabled, resulting in subsequent cache misses. Note that this problem is faced by all

existing fuzzers that maintain a bitmap. For instance, Table 3.5 points out that gobmk and

xalancbmk both suffer from comparably higher overhead (≥ 5%) caused by reduced cache

hit rates of over 3.5%. The impact of cache thrashing can also be tested by comparing the

tracing overhead of SNAP configured with different L1 D-cache sizes. Table 3.4 shows

that a larger cache exhibits fewer cache misses and can consistently introduce lower tracing

overhead across benchmarks. In particular, the overhead can be reduced to 3% on average

by increasing the cache size to 128 KB. Alternatively, the extra storage can be repurposed

as a dedicated buffer for the coverage bitmap to avoid cache misses due to bitmap update,

which we leave for future work.

In addition, Table 3.4 shows that the tracing overhead of AFL-gcc is much larger. With

the CPU-bound benchmarks that best approximate the extreme circumstances, the overhead
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Figure 3.7: The average execution speed from fuzzing with AFL-QEMU, AFL-gcc and AFL-SNAP
for 24 hours across the Binutils binaries. The numbers below the bars of AFL-QEMU show the
number of executions per second for the mechanism.

is expected [66], as discussed in §3.2.2. This finding is generally consistent with the numbers

from the x86 setup, which also incurs an average of 228.09% overhead on the same testing

suite by AFL-gcc. The extra slowdown in the current RISC-V experiment is caused by the

additional instrumented locations in binaries due to different ISAs. For example, RISC-V

specification does not define a specific instruction for backward edges (i.e., ret), which are

not tracked on x86 binaries when instrumented. Thus, the RISC-V benchmarks have 58.51%

more instrumentation than the x86 version, resulting in a 40.03% increase of binary size.

Note that the cache size has negligible impact on the tracing overhead for the software-based

solution. Although bitmap updates can still cause cache thrashing, the overhead mainly

comes from the execution cost of instrumented instructions.

3.4.3 Evaluating Fuzzing Metrics

To understand how SNAP improves fuzzing metrics, we evaluate it on seven Binutils

binaries. Given the default corpus, we compare the code coverage and runtime throughput

of AFL running for 24 hours under the existing DBI scheme (i.e., AFL-QEMU), source

instrumentation (i.e., AFL-gcc), and support of SNAP.

Fuzzing throughput. Figure 3.7 shows the fuzzing throughput across the compared

mechanisms. Specifically, AFL on SNAP can achieve 228× higher execution speed than

AFL-QEMU, which is limited by the low clock frequency and its inefficient RISC-V support.
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Figure 3.8: The overall covered paths from fuzzing seven Binutils binaries for 24 hours. The solid
lines represent the means, and the shades suggest the confidence intervals of five consecutive runs.

The average throughput of AFL-QEMU (i.e., 0.18 exec/s) is consistent with the previous

findings in PHMon [4]. Note that SNAP improves the throughput much more significantly

than PHMon, which only achieves a 16× higher throughput than AFL-QEMU. Despite

that the baseline BOOM core in SNAP is about 50% faster [81] than the baseline Rocket

core [82] adopted by PHMon, the difference of 14× more throughput accomplished by

SNAP mainly results from its design optimizations (e.g., optimistic bitmap update and

memory request aggregation). Compared to AFL-gcc, SNAP can still achieve a 41.31%

higher throughput on average across the benchmarks.

Edge coverage. Figure 3.8 depicts the resulting coverage measurement, where the con-

fidence intervals indicate the deviations across five consecutive runs on each benchmark.

Given an immature seed corpus and a time limit, AFL with SNAP consistently covers more

paths than the others throughout the experiment. Since no change to fuzzing heuristics (e.g.,

seed selection or mutation strategies) is made, the higher throughput of SNAP is the key

contributor to its winning. On average, AFL-QEMU and AFL-gcc have only reached 23.26%
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and 84.59% of the paths discovered by AFL-SNAP, respectively. Although larger devia-

tions can be observed when the program logic is relatively simple (Figure 3.8f), SNAP in

general can help explore more paths in programs with practical sizes and complexity thanks

to its higher throughput. For example, AFL with SNAP manages to find 579 (16.74%),

237 (20.82%), 378 (19.77%) more paths when fuzzing cxxfilt, objdump, and readelf,

respectively.

Adopting execution context. Given the lastly executed branches and their prediction

results in LBQ, fuzzers on SNAP are equipped with additional program states. To take

the feedback, one can easily follow the mechanisms introduced previously [9, 2, 11]. Our

prototype of AFL instead adopts a similar feedback encoding mechanism as Algorithm 1 to

showcase the usage. Specifically, the highest significant bit (HSB) of each 64-bit branch

address is set based on the respective prediction result (i.e., 1/0). To maintain the order

of branches, the records are iterated from the least recent to the latest in the circular LBQ

and right circular shift’ed (i.e., rotated) by N bits based on their relative positions in the

sequence before being bitwise XOR’ed. The encoded value is finally indexed into a separate

comparing bitmap from the one for edge coverage (i.e., trace_bits).

Reproducing a known bug. Running on SNAP, the modified AFL is able to trigger

CVE-2018-9138 discovered by the previous work [9], which proposes to use feedback

similar to that provided by our platform. As in Figure 3.1, the vulnerability occurs when

cxxfilt consumes a long consecutive input of "F"s, each indicating that the current mangled

symbol stands for a function. The corresponding switch case in the loop (line 5-10) tries

to further demangle the function arguments (i.e., demangle_args()) before running into

the next "F" to start a recursive call chain. Luckily, SNAP offers the execution context by

capturing branch sequences triggered by mutated inputs. While a vanilla AFL cannot easily

reach the faulty program state with only edge coverage feedback, our fuzzer can consistently

achieve it within one fuzzing cycle, led by the guidance.
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Table 3.6: Estimates of area and power consumption.

Description Area (mm2) Power (mW)

BOOM core 9.2360 36.4707
HYPERSET core 9.6811 38.8513

3.4.4 Practicality of SNAP

To estimate the area and power overhead of SNAP, we synthesize our design using Synopsys

Design Compiler at 1GHz clock frequency. To obtain a realistic estimate of the SRAM

modules such as L1 D-cache, L1 I-cache, and branch predictor (BPD) tables used in

the BOOM core, we black-box all the SRAM blocks and use analytical models from

OpenRAM [83]. Our synthesis uses 45nm FreePDK libraries [84] to measure the area

and power consumption between the unmodified BOOM core and the modified SNAP

core. Table 3.6 shows that SNAP only incurs 4.82% area and 6.53% power overhead,

more area-efficient than the comparable solution (16.5%) that enables hardware-accelerated

fuzzing [4]. When tracing is disabled, the power overhead can be mostly avoided by clock

gating through the switch CSR TraceEn.

3.5 Limitations and future directions

While SNAP is carefully desgined not to hamper the maximum clock frequency, we are

limited in our evaluation to a research-grade hardware setup with low clock speed. We

hope our work motivates future studies, and adoption on more powerful cores [85] and

custom ASICs by processor vendors [86]. Besides, while SNAP does not support kernel

coverage filtered by the privilege level, leveraging the hardware for tracing kernel space

is not fundamentally restricted. Meanwhile, SNAP is not suitable to track dynamic code

generation with reused code pages, such as JIT and library loading/unloading, as it affects the

validity of the coverage bitmap. If needed, annotations with filters on the program space can

be applied to reduce noise. Future work includes repurposing a buffer dedicated for coverage

bitmap storage to avoid extra cache misses, leveraging other micro-architectural states from
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hardware, such as memory access patterns, to identify dynamic memory allocations (e.g.,

heap) across program runs, or adopting operands of comparing instructions for feedback

as suggested [87]. Alternatively, given filters in the debug unit of ARM’s CoreSight

extension [88], the practicality of the design can be further demonstrated without relying on

custom hardware.
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CHAPTER 4

HYPERSET: NESTED VIRTUALIZATION FRAMEWORK FOR

PERFORMANT HYPERVISOR FUZZING

4.1 Introduction

Given a total market cap of $130 billion in 2020 [89], Amazon Web Services (AWS) [18], for

example, serves as many as 2 million registered parties, including publicly traded companies

(e.g., Netflix) and US military services, and still poses a yearly growth of 36.5% despite

the potential slowdown caused by the pandemic. Due to the popularity from daily usage,

cloud services have become the new battleground between attackers and security researchers.

While almost all major providers have their own bug-bounty program, a bug in the off-

market can be priced at half a million based on Zerodium [90]. Microsoft has even released

the debugging symbols of Hyper-V [91], the hypervisor essential to its cloud security, for

gathering the public effort of bug finding from the community. This is because a zero-day

vulnerability from any cloud-based solutions can cause severe consequences, including

denial of service, information leakage, or VM escape, jeopardizing the integrity of the other

instances running on the same platform.

While fuzzing remains one of the most effective bug-finding techniques in most real-

world programs, the challenges of applying it in the current context can be non-trivial.

Particularly to non-user applications, like hypervisors, the overhead of coverage tracing

might not necessarily be the only root cause of the slowdown in pursuit of fuzzing speed.

Instead, the major overhead comes from continuous VM reboots after each fuzzing execution

to ensure determinism. To mitigate this problem, Syzkaller [21] sacrifices reproducibility

of unit testing for speed and only reboots periodically. Other approaches [22, 23] propose

customized guest OSes as the main executors of fuzzing inputs for faster reboot time
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compared to the default Linux Kernel configuration, yet still are throttled by the throughput

of up to four executions per second. Neither solution is thus ideal, as they fundamentally lack

either determinism or efficiency to fulfill the requirement of an effective fuzzing framework.

The current work aims to develop a hardware-based solution for this specialized testing

target, i.e., hypervisors. Besides the desired determinism and efficiency, it is also designed

to be compatible with most existing hypervisors that can run on the Linux platform, such as

QEMU and VirtualBox. Specifically, a nested virtualization framework consisting of two

major components is proposed, including 1 a snapshot and restoring mechanism realized

by Intel VMX and 2 a minimized OS with little redundancy. In our framework, since

the testing hypervisor resides in the L1 VM, the L0 host acts as the snapshot maintainer,

taking and reloading the intended snapshot for faster reset. By resetting virtualized CPU,

memory, and devices per request, the framework effectively prohibits side effects carried over

from previous executions (i.e., determinism) without really rebooting the tested VM (i.e.,

efficiency). Another source of overhead in the framework comes from the complexity of the

compiled kernel image. While the L2 guest kernel is only expected to execute fuzzing inputs,

applying the Linux Kernel can be overkill, downgrading performance through additional

VM exiting requests and memory overhead. The minimized OS trims the unnecessary OS

features in the current context to perform the snapshot and restore operations in a more

efficient manner.

4.2 Background

4.2.1 x86 Virtualization

Over the last decade, cloud-based solutions have been flourishing, thanks to the emergence

of hardware virtualization extensions to their x86 platforms [6, 92], given the support of

root mode and VMCS for CPU virtualization, as well as EPT for efficient memory mapping.

Despite the few key differences between type-I and type-II in terms of design, hypervisors

in general serve as the coordinator of all, providing an abstraction of hardware resources and
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Figure 4.1: An overview of KVM/QEMU for x86 virtualization.

isolation of guest VMs. Figure 4.1 shows an overview of x86 virtualization on the Linux

platform. In particular, a VM is launched as a child process of QEMU, which works with

KVM in the kernel space to configure the virtualization specifications. While QEMU has

direct control of the VM, such as vCPU execution and guest memory, it also serves as the

emulator for IO requests by interpreting the IO addresses and the associated virtual devices

enabled by the guest machine. More miscellaneous features, including dirty page tracking

for live migration of VMs [93], are also supported.

4.2.2 Nested Virtualization

The nested virtualization scheme was initially proposed and developed for testing and

benchmarking hypervisors and virtualization setups [94, 95]. KVM [96] was the first

hypervisor to support the idea of nested virtualization, which allows running a VM (i.e.,

L2) inside another VM (i.e., L1) on the same host (i.e., L0). Compared to the single-layer

virtualization scheme where L0 serves as the hypervisor of the L1 guest, L1 now also

becomes the virtual machine monitor (VMM) of the L2 guest. Ideally, both L0 and L1

should have the dedicated responsibilities for controlling their own guest VMs. Figure 4.2a

shows the stacked interactions between the nested layers, where most privileged operations

(i.e., VM exit) from L2 are supposed to be trapped by L1, before some are rendered to L0

60



Multiplex: Logical vs. Implementational

L2

L1

L0

…

…
L2

L0

L1
…

…

(a) Logical view.

Multiplex: Logical vs. Implementational

L2

L1

L0

…

…
L2

L0

L1
…

…

(b) Implementationl view.

Figure 4.2: The nested virtualization scheme supported on x86 platforms.

for further processing if they cannot be handled properly.

Nevertheless, the actual implementation of nested virtualization differs from the logical

view. This is mainly due to the lack of support from the x86 extensions, which only provide

a single-level architectural support, fundamentally limited by the design of the hypervisor

mode, VMCS, and so on. In other word, only one hypervisor is allowed to run in the root

mode, supporting multiple guests at the same time. To overcome the barriers to the desired

goal, L0 multiplexes the extensions between L1 and L2 for its virtualization. Instead of

letting L1 take over, L0 serves as the intermediate layer to relay the requests from L2 to L1,

without L1 being aware of the non-root mode it resides in. Figure 4.2b shows the abstracted

handling workflow of a single VM exit from the L2 nested guest. On the other hand, the

performance is hurt by the relaying job of L0 due to exit multiplication. In extreme cases, a

single L2 exit can cause more than 40 L1 exits [94]. Although many works [97, 98, 99] try

to improve this situation with virtual passthrough for occasionally allowing direct access

hardware, the additional overhead is mostly guaranteed with the design.

4.2.3 Attack surfaces on hypervisors

Hypervisors serve as the fundamental backbone for cloud-based solutions these days. Due

to the values from daily usage, recent research [23, 100, 101, 102] has focused more on

the security of cloud services by major vendors [18, 19, 20]. Yet, the attack surfaces of

hypervisors are still wide due to their complexity. The consequences of a compromised
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cloud service, of course, can be disastrous, leading to denial of service, information leakage,

or even a VM escape [100], jeopardizing the integrity of the other instances running on

the same host. Hence, most bounty programs usually rate the cloud-related vulnerabilities

among the highest, rewarding up to half a million dollars for a single security-critical

bug [102].

Based on the virtualization target, hypervisors have exposed multiple attack surfaces,

including virtualized CPU, memory, device, VM exit handlers, and vendor-specific methods,

such as backdoor RPC/HGCM. Among them, some previous studies [103, 104] tried to

explore vulnerabilities from the first two surfaces through verification. However, since these

efforts necessitate the latest hardware features, it is harder to find a relevant bug that can

be considered as security-critical. Meanwhile, emulation of virtual devices occurs in the

host userspace, and is triggered by IO accesses (e.g., port and memory-mapped IO) from

the guests. As most hypervisor vendors do not implement their own device drivers on the

hosts, device emulation through relaying the requests from the guests to the host kernel

space can be complex. Given the large codebase of available virtual devices and the lack

of maintenance for some that are rarely used in the cloud environment (e.g., sound card),

almost all recent vulnerabilities reside in this space per survey.

4.2.4 Fuzzing Non-user Applications

Fuzzing has been proven to be effective as an automatic bug-finding techniques, widely

adopted by industry for commercial products [56, 50]. However, directly applying fuzzers in

the context of non-user programs can be non-trivial, as reboots are needed for a clean state

of VM per mutated fuzzing input. While the expensiveness is expected, various approaches

have been taken to mitigate this challenge. Some merge multiple inputs for each fuzzing

trial without rebooting the guest VMs [21, 1], while others try to use customized kernels to

accelerate the loading processes [22, 23]. Nonetheless, they are not ideal since an effective

fuzzer requires both determinism and efficiency without sacrificing one or the other. On the
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Figure 4.3: The overview of the proposed system performant hypervisor fuzzing.

other hand, recent works have tried to tackle the challenge from a fundamentally different

perspective. For example, Intel has introduced a VM forking mechanism [105] for testing

Xen [106]. Agamotto [107] has proposed to dynamically checkpoint a VM state for fuzzing

kernel drivers. Neither applies directly to the current topic, however, as VM forking only

works for hypervisors sitting on the bare metal (i.e., type-I), and fuzzing drivers does not

involve a nested framework of multiple type-II hypervisors.

4.3 Design

In this section, we discuss the nested framework with its workflow. Then we dive into the

details of the snapshot framework and the customized OS designated for fuzzing.
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4.3.1 Overview

To test any hypervisor target, which involves kernel and userspace components for virtu-

alization, the guest OS is often assumed to be malicious and can perform any privileged

operations, such as PIO and MMIO. A crafted attack can exploit through the trapped inter-

actions from the guest (i.e., VM exit) to make intended state transitions in the hypervisor,

before a security-critical state (e.g., UAF) can be reached. Given the threat model, along

with the intended snapshot and restore functionalities, Figure 4.3a shows the logical view

of the nested virtualization framework overall. In particular, the L2 guest serves as the

executor of fuzzing inputs, testing the hypervisor at L1, while the L0 host plays the role

of snapshot maintainer for quick reset (without reboot). The fuzzing inputs contain the

self-defined specification similar to that of existing fuzzers targeting non-user applications

(e.g., Syzkaller), and are shared from L0 to L2 through a pre-allocated memory. Note that

the L1 testing target can be of any hypervisors, as long as they can run on the Linux platform

in a nested setting. For L0, KVM/QEMU is chosen to meet the requirement of compatibility,

as a type-II hypervisor can be adopted more easily. By restoring anything that has been

changed since the last execution, such as registers, memory and devices, the host maintainer

ensures the determinism of its guest VM, including both L1 and L2 states.

Figure 4.3b depicts the typical workflow of the snapshot mechanism throughout fuzzing.

A snapshot request is created by the L2 guest VM once its kernel boots up before executing

any fuzzing inputs ( 1 ). The hypercall request is then trapped to KVM at L0, which reflects

to the L1 guest hypervisor ( 2 ). However, since it is a self-defined hypercall and the testing

hypervisor is left unmodified, L1 cannot recognize it and finally gives up after multiple

communications with L0. Such a sign as VM entry is trapped again in L0 ( 3 ) before

further processing in the userspace ( 4 ). Although this process might seem redundant at first

glance, as L0 could have handled it without reflection, it is indeed necessary. While L1 is

the hypervisor of the L2 guest VM in the nested setting, most privileged requests, such as

hypercalls and IOs, will be handled appropriately at L1 instead of L0. Violating the process

64



Nested Virtualization VCPU Reset

L2

L0

L1

VMCS0à1

VMCS1à2

VMCS0à2

Figure 4.4: VMCSes maintained in the nested virtualization setting.

can cause deadlocks and freeze the VM based on the implementation. Meanwhile, QEMU at

L0 makes the snapshot of the entire VM per request ( 5 ), and continues the guest for further

execution ( 6 ). After L2 finished executing a fuzzing input, a restore request is issued and

handled similarly as that of the snapshot request, and so the details are skipped here.

4.3.2 Snapshot and Restore

In this section, we describe the necessity of the snapshot mechanism. The resets relate to the

virtualization features enabled by any hypervisors to run a guest VM, including virtualized

CPU, memory, and devices.

CPU reset. To support the virtualized CPU with hypervisor mode (i.e., root), Intel

VMX [6] defined the usage of the Virtual Machine Control Structure (VMCS), which

contains information about VM entries and exits for handling. More like the program states

on context switches, the information includes the register values, page table pointer, exit

reason, and so on. However, due to the lack of hardware support for nested virtualization

as mentioned in §4.2, the current design multiplexes the extension by having L0 acting

as the intermediate layer between L1 and L2. While only one VMCS can be loaded per

CPU at once, L0 maintains both VMCS0->1 and VMCS0->2 for the purpose, as shown by

Figure 4.4. Specifically, the former is used when L0 runs L1, and the latter allows L0 to

run L2. On the other hand, since L1 is unaware of the virtualized environment that it lives

in, an extra VMCS1->2 is maintained for its L2 guest. Although it is never loaded into the

processor, L0 shadows the information to construct VMCS0->2 and syncs frequently after
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each mode transition [94]. Thus, our approach bookkeeps and resets all the VMCS per

request. VMCS0->1 and VMCS0->2 are saved as part of the live migration feature [93] enabled

by QEMU, whereas VMCS1->2 is kept by the memory resets, which are described next.

Memory reset. A guest VM is created as a child process in QEMU. Figure 4.5 shows the

setup of virtualized memory, where the guest physical memory (GPA) is mapped to the

QEMU virtual memory on the host (HVA). Despite the existence of page tables and EPT [6],

each page follows the one-to-one mapping as indicated. In the nested setting, the L0 QEMU

contains the entire memory used by the L1 guest, which in turn creates its own L2 guest

with memory space that still falls into the range. Therefore, resetting the memory in the L0

QEMU should perform a full reset on both L1 and L2. A libc function, such as memcpy(),

will do the job as expected. However, copying all the memory pages can be time consuming,

especially if the VM is configured with gigabytes of memory. In fact, memory reset has

a key impact on the performance of the snapshot mechanism as proposed, and we show

the related findings in a later section. To reduce the heavyweight cost, dirty page tracking

following each restore request is enabled so that L0 can selectively resets memory in use.

Particularly, the L0 KVM sets the permission of all memory pages allocated for the guest as

read-only (RO). Any writes to a fresh page are trapped, causing a bit set in the dirty bitmap

shared with the L0 QEMU. Note that the permission of the corresponding page is then

changed back to read&write (RW), so any subsequent accesses will not trigger more traps

with additional overhead. Finally, QEMU refers to the dirty bitmap and only resets pages as

needed. In general, this is also partially implemented by the live migration feature [93].

Device reset. Non-memory device states, such as those for sound, display, network,

storage, and USB, are important targets to reset, as most of them can be enabled as virtual

devices, which are considered the most vulnerable attack surfaces mentioned in §4.2. In

the nested virtualization framework, where most device emulation occurs in the L1 guest

through QEMU, there are still IO requests that are not reflected and handled in L0 instead.

For example, emulated pci buses at L0 are often affected by IOs from L2 consequentially,
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Figure 4.5: Management of virtualized memory in KVM/QEMU.

spanning across multiple interactions between L0 and L1, as suggested in Figure 4.2b.

Fortunately, most enabled virtual devices in QEMU have already defined their important

data structures that need to be reset, thanks to the live migration feature [93]. The metadata

are saved in a JSON array, with each item indicating a device along with its necessary data

in the fields. By bookkeeping and restoring them, our approach can ensure the last piece

for determinism without sacrificing the efficiency through reboots. Note, however, that the

current implementation cannot perform device reset on those that have not defined their

critical structures. Any customized or legacy devices that fail the assumption are considered

beyond the scope of our current resetting scheme.

4.3.3 Minimized Guest OS

While the nested framework involves two guest VMs, their complexity matters due to the

multiplexing design. As discussed in §4.2.2, such a design can cause multiplication on

multiple aspects, including VM exits and dirty memory pages, which interleave with one

another in terms of their impact on the overhead in general. Although many works [97,

98, 99] have examined ways to reduce the cost, the current work tries to minimize the

complexity of OSes based on their roles in the fuzzing context. Since the L1 hypervisor

67



is the testing target, the L1 kernel only needs to maintain the minimal support of KVM as

long as the L2 guest can be run. Specifically, we adopt the minimal configuration of the

Linux Kernel with KVM for compatibility, as most hypervisors (e.g., QEMU, VirtualBox)

would still need the platform to work properly. On the other hand, since L2 serves as the

executor of privileged instructions (i.e., IO) based on the specification shared by L0, it can

be fully minimized. Compared to a typical kernel, for example, the L2 kernel can give

up the majority of the codebase, such as that for memory management, task scheduling,

interrupt handling, and so on. The only required feature left is to scan the available port and

memory-mapped regions once launched, which are the target addresses of any effective IO

operations. We build upon CrashOS [22] to meet our goal. The following sections highlight

the potential impact of a complex OS, such as the Linux Kernel, on the nested setting.

VM exits. One of the potential fallbacks against efficiency is the execution speed affected

by the number of VM exits. The corresponding multiplication effect is well depicted in the

original proposal of the nested virtualization design [94]. For instance, to handle a single

L2 exit, L1 could trigger many more exits to L0, such as reading and writing the VMCS

maintained, disable interrupts, and so on. With each VM exit causing considerable overhead,

the goal is to minimize the exits from L2 other than the intended IO requests for the purpose

of fuzzing. In contrast, if we adopt the Linux Kernel at L2, more interrupts, IOs, MSR

read/write will likely occur concurrently (e.g., kthreads) while executing inputs, causing

additional exits and thus slowing the fuzzing throughput.

Memory overhead. Another potential downgrade of performance comes from the memory

overhead handled by the snapshot mechanism, also suffering from the multiplication effect

in the nested setting. Even though only the dirty pages are tracked and reset as mentioned,

memory overhead can be significant when a typical kernel is used as L2. For example, the

Linux Kernel contains an RCU lock-detection scheme [108] that applies to CPU deadlock if

necessary. It can persist different amount of memory footprint based on its implementation

on various system specifications, meeting the requirement from real-time servers with a large
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Table 4.1: Components of the nested virtualization framework with their implementation complexity
in lines of code.

Component Lines of code (LoC)

Snapshot & restore mechanism (QEMU) 1,317 lines in C
VM exit trapping and handling (KVM) 97 lines in C

Fuzzing executor (L2 kernel) 1,146 lines in C
Fuzzing coordinator (fuzzer) 1,386 lines in Python

number of CPUs to IoT devices with a non-preemptible uniprocessor. Note that the memory

overhead could lead to more VM exits from memory management, causing page faults and

EPT exceptions trapped to L1. Thus, the impact from both is interleaving, jeopardizing

more on the performance gain from the framework.

4.4 Implementation

Our prototype consists of four major components, which are summarized in Table 4.1.

Particularly, the majority of the snapshot mechanism is implemented in QEMU, which

allows fast resets on states of virtual CPU, memory, and enabled devices. It also tracks

dirty memory pages set in KVM, which handles the VM exits in the nested settings by

trapping the requests of snapshot and restore from the L2 OS. By modifying QEMU v5.0.0

and Linux 5.0 accordingly and having these two components working together, the desired

functionality has been mostly fulfilled.

On the other hand, to fuzz hypervisors more efficiently, we need the minimized OS at

L2, which involves scanning IO addresses and parsing self-defined fuzzing specifications

before executing the inputs shared. The coordinator, being the only component implemented

in Python, serves to randomly generate fuzzing inputs and monitor launched instances for

statistics collection and abnormal statuses, such as timeout and ASAN-enabled crashes.

Although the current design is Linux-specific by borrowing the existing infrastructure of

KVM and QEMU, we believe that the approach is applicable to other type-II hypervisors

with similar efforts. Overall, the prototype is written in around 4,000 lines of code.
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4.5 Evaluation

We perform empirical evaluations on our system by answering the following questions:

• Efficiency. How much performance gain does the system provide in terms of fuzzing

throughput? (§4.5.2)

• Effectiveness. How much does the improvement benefit from the design choices? (§4.5.3)

• Practicality. How easily can we apply the framework to test multiple hypervisors? Can

we find real-world vulnerabilities with it? (§4.5.4)

4.5.1 Experimental Setup

To evaluate our system, the experiment has been conducted on a machine of 64 cores and

126GB memory, with the processor of Intel(R) Xeon(R) CPU E7- 4820 @ 2.00GHz. The

evaluations on throughput improvement and overhead breakdowns are collected from a

single instance running on one physical core, as we believe it would better represent the

meaning behind the numbers. For the average throughput comparison, we let the fuzzers

of various schemes run for 24 hours as one trial and persist for three consecutive trials to

reduce potential statistical noise. QEMU v5.0.0 and Linux 5.0 are involved as parts of

the comparing approaches in this study. To hunt zero-day bugs, we test our system on the

real-world hypervisors, i.e., the latest QEMU and VirtualBox from the HEAD of their master

branches, with all the cores utilized. In general, we fuzzed the targets for a total of 20 days,

with most virtual devices enabled.

4.5.2 Improving Fuzzing Throughput

To illustrate the benefits of our system with the snapshot mechanism and the customized

OS, we compare its average throughput with that achievable by the other fuzzing schemes.

Specifically, we measure the numbers from the approaches of rebooting VM with the

Linux Kernel (miniconfig), HYPERCUBE [23], and nested snapshot on the Linux Kernel
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(defconfig and miniconfig) in the multiple fuzzing trials. Note that since HYPERCUBE has

not released its source code yet, the specific number is borrowed from the published paper

without reproducing it on our end.

Figure 4.6 shows the throughput comparison when fuzzing QEMU built with Address-

Sanitizer (ASAN) [109]. Our system well outperforms the other approaches, enabling a

72x faster execution speed over the baseline, which consistently reboots VM with the Linux

Kernel. When comparing to HYPERCUBE, which is the state-of-the-art hypervisor fuzzer

from the academics, we still present a 9x throughput improvement due to our snapshot

mechanism. Meanwhile, the numbers from the nested setting with snapshot across various

kernels demonstrate the benefits from the customized OS at L2. More importantly, a consis-

tent increase of performance gain can be observed when the kernel complexities have been

reduced, resulting in less exit and memory overhead as expected (§4.3.3). More detail about

the overhead breakdown is discussed in a later section.

Although the AddressSanitizer does have a negative influence on the absolute throughput

in general, posing almost half of the execution speed as that from the build without ASAN

enabled, it does not have a significant impact on the relative throughput across the schemes

based on our observation. Compared to the rebooting approaches, the snapshot mechanism

will suffer an extra slowdown from dirty page-tracking and recovering, in addition to the

slower execution of the ASAN build itself. However, with the random fuzzing heuristic

adopted by the current framework, we do not see much of an increase for dirty pages

that may be significant to throttle throughput in most executions. Overall, the findings of

throughput improvement can be generalized to testing other hypervisors, such as VirtualBox.

4.5.3 Anatomy of Overheads

In this section, we provide the details of performance cost in the nested setting, and examine

the design choices of our framework.
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Figure 4.6: The average throughput improvement across multiple fuzzing schemes when testing
ASAN-enabled QEMU. The numbers below the bars indicate the actual throughput (i.e., executions
per second) on our evaluating setup.

Nested virtualization: the multiplexing effect. The cause of the multiplexing effect

from the nested virtualization framework due to the lack of hardware support has been

discussed in §4.2.2 and §4.3.3. Figure 4.7 presents the additional VM exits and dirty-

memory pages incurred on average across multiple kernels in both the single and nested

virtualization setting. While the VM exits slow the execution, the dirty pages stress the

snapshot mechanism. Note that to reduce noise, the kernels do not perform any fuzzing-

related IO operations. Instead, only the requests of snapshot and restore are issued before

the VM states are reset. In this way, we can reason more precisely about the extra overhead

within each fuzzing execution. In general, the result shows that both VM exits and dirty-

memory pages have been multiplicated from the single to the nested setting as expected.

However, with the custom OS that removes all the unnecessary kernel features, our system

only triggers 8.00% of VM exits and 27.37% of dirty memory from the Linux Kernel of

defconfig per reset. Compared to the Linux Kernel of miniconfig that significantly improves

over defconfig, our OS still manages to reduce VM exits and dirt memory by 83.80% and

59.38%, respectively.
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Nested side-effect: exit overhead (sol.)
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Figure 4.7: The breakdown of exit and memory overhead from single and nested virtualization
setting across kernels of various complexity.

In terms of VM exits, only EPT violations have occurred in the customized OS when

applied in the single virtualization setting. The violations are common and inevitable when

a new guest memory region is created and accessed, as they indicate a missing mapping

from a guest physical address (GPA) to a host physical address (HPA). In contrast, the Linux

Kernel is more complex by orders of magnitude with common features including scheduling,

interrupt handling, multi-threading support, and IO subsystems regardless of the building

configuration, causing more VM exits in the nested setting. On the other hand, unlike the

customized OS, the Linux Kernel also maintains more kernel data structures, such as those

for RCU detection explained in §4.3.3. While the exit and memory overhead is interleaving

by affecting one another, more memory accesses in L2 could lead to more VM exits, such as

EPT violations, waking up the L1 hypervisor more often for handlers and thus creating more

dirty pages overall from the perspective of L0. The impact from both types of overhead on

performance is addressed in the next section.

Performance costs. We try to identify the performance bottleneck of the snapshot mecha-

nism through FlameGraph [110], a stacked visualizer of overhead sorted by the implemented

functions. Based on our profile and the resets enabled, the time needed to recover dirty-

memory pages between two consecutive executions drives the majority of the slowdown.

The resets on virtual CPUs and devices, on the other hand, are considered minimal. While
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Figure 4.8: Performance cost from the memory overhead in the single virtualization setting.

the memory handling could be further divided into two stages, such as dirty-page tracking

and recovering, the former has a bigger impact on the performance by changing the page

permissions. Nevertheless, the tracker cannot be disabled, as simply recovering all memories

per execution could cause a even more significant overhead based on our observation. That

being said, memory recovery through memcpy() becomes the key contributor that we look

forward to optimizing, as the memory overhead could burden the snapshot mechanism in

regard to its efficiency.

Figure 4.8 suggests the impact by showing the correlation between the number of

dirty pages and the absolute throughput consequentially in the single virtualization setting.

Particularly, we see a continuous downgrade of performance when the number of dirty pages

increases. The decreasing pattern is almost linear since memcpy() dominates. Given this

finding, we can conclude that our customized OS with a much smaller memory overhead

plays an important role in improving the fuzzing throughput. Meanwhile, the time needed

for reboots persists regardless of the memory overhead.

However, in the nested virtualization setting, the increase of VM exits could be more

detrimental to the performance overall. Figure 4.9 shows the throughput from the nested

settings with the Linux Kernel and the customized OS, applying Figure 4.8 as the background.

With the vertical space between each throughput data point and the blue line indicating the

memory overhead on snapshot throughput, we can see a significant performance downgrade
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Figure 4.9: Performance cost from the exit overhead in the nested virtualization setting.

of 53.88% and 42.59% for the adoption of the Linux Kernel in defconfig and miniconfig,

respectively. Note that the slowdown is irrelevant to the impact from dirty-memory pages,

as the numbers on the x-axis stay the same. Rather, the multiplicated VM exits mentioned

previously should explain the situation. Although our customized OS also increases the

VM exits due to the multiplexing design, it does not overwhelm, and only suffers a bare

throughput reduction of 4.07%. In general, our design of adopting the customized OS in

place of the Linux Kernel at L2 as the fuzzing executor is considered effective, dramatically

reducing the multiplicated overhead from VM exits and dirty memory to achieve the desired

fuzzing speed as requested.

4.5.4 Testing Real-world Hypervisors

To examine the practicality of our fuzzing framework, we apply it to multiple real-world

hypervisors, including QEMU and VirtualBox, for hunting zero-day vulnerabilities. In

preparation for the fuzzing targets, we build the dynamic binaries of hypervisors and their

library dependencies, before storing them into a ramfs image [111]. Since QEMU accepts

the command line options of kernel and ramfs directly, applying the target is considered
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Table 4.2: Assigned CVEs for bugs that have been found by our system.

CVE Device Vulnerability

CVE-2020-13361 ES1370 audio Heap OOB access
CVE-2020-13362 MegaRAID SAS storage manager Heap OOB access
CVE-2020-13659 MegaRAID SAS storage manager Null pointer dereference
CVE-2020-13754 Message Signalled Interrupt (MSI-X) Heap OOB access
CVE-2020-13791 ATI VGA display Heap OOB access
CVE-2020-13800 ATI VGA display Infinite recursion

hassle-free. Specifically, we also put the customized OS into the ramfs image so that it can

be booted as the L2 executor from the L1 QEMU. VirtualBox, however, does not allow the

options from command line, but rather boots on a unique VM image format. To overcome

this, we create a Ubuntu image for VirtualBox and replace the default grub option to our

customized OS. We then store the VM image into the ramfs image similarly. That being

said, adopting other hypervisor targets, including proprietary ones that are closed source,

should not be a fundamental challenge to the current system as long as they can run on

Linux in a nested virtualized environment provided by KVM/QEMU. We leave it as future

work to the study.

In total, our system was able to find 14 bugs, including assertions and crashes triggered

by ASAN, from both evaluating targets. Table 4.2 summarizes the 6 CVEs assigned so far

across QEMU’s emulated devices of various types, such as sound, storage, display, and

MSI. At the time of this writing, two more bugs among all the reported ones are still under

investigation. Interestingly, one of them is a stateful bug, which requires three IO reads

and writes to trigger. Given the blackbox fuzzing heuristic without any feedback and the

argument from previous works on the bottleneck of fuzzing non-user applications [21, 23],

we credit our bug-finding result to the improved throughput enabled by our framework.

4.6 Discussion

In this section, we address the limitations of our current system, and discuss the potential

future directions.
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4.6.1 Limitations

While performance is considered the major roadblock for fuzzing non-user applications [23],

fuzzing precision based on various feedback can still be beneficial to bug finding in general.

A typical fuzzer could rely on coverage guidance, which has proved its power by helping

discover thousands of critical bugs, to prioritize inputs that cover rare paths [1, 2, 57, 59,

112]. It may also adopt dataflow information to better approximate program executions and

bypass data-driven constraints [62, 60, 63, 64, 65]. However, neither approach is considered

lightweight, adding more pressure to the fuzzers targeting non-user applications that are

already slow enough. Intel PT [3] is another viable option, especially for testing proprietary

hypervisors that are closed-source. Nonetheless, adopting the hardware extension for

fuzzing is ad-hoc, which typically involves the decoding of full traces before translating the

data to fuzzers as feedback [9, 61]. Although SNAP [8] proposes embedding the tracing

algorithm into the existing processor pipeline on custom hardware without incurring extra

cost, applying the approach is not straightforward, as it requires the architectural support for

virtualization.

Another limitation that we consider is from implementation. Specifically, the current

functionality of resetting device states heavily relies on the live migration feature from

QEMU [93]. Despite it being the source of the second major overhead in the snapshot

mechanism, it is non-trivial to decouple the functionality from the existing QEMU feature

and further improve the performance.

4.6.2 Future Directions

Future studies might apply the current system to more hypervisor targets, including those

that are closed source. It may even be extended to non-user applications beyond hypervisors,

such as core kernel. Meanwhile, adopting various sanitizers [113, 114] and feedback for

guidance could be interesting to improve the fuzzing precision. While most security-critical

bugs are stateful, various corresponding techniques [115, 116] can also be applicable. Since
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device emulation is our main target among the attack surfaces, we might also be able to

auto-generate fuzzing harnesses from kernel device drivers, which contain valuable code

snippets for communicating with virtual devices in a valid format. Last, more advanced

techniques like concolic execution can also be applied to replace pure fuzzers for bug

finding.
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CHAPTER 5

CONCLUSION

In this dissertation, we present a series of software-hardening solutions with careful design

to adopt hardware features for the goals of performance, compatibility, and reliability.

PITTYPAT utilizes Intel PT for collecting full execution traces and efficiently enforcing

path-sensitive control-flow security at runtime. SNAP, on the other hand, proposes hardware

primitives realized on the FPGA platform to enhance the performance and precision of

coverage-guided fuzzing. Finally, HYPERSET shows a nested virtualization framework with

fast VM resets for performant hypervisor fuzzing.

In the work of HYPERSET, we demonstrate the improvement on fuzzing throughput

when testing non-user applications, such as hypervisors. We further dissect the overhead,

and break down the benefits of our major design choices, including the snapshot mechanism

and the customized OS. Given the hardware support of virtualization on x86 platforms, our

system is able to achieve a 72x faster execution speed than that of traditional approaches

when fuzzing hypervisors. When applying to the real-world targets, such as QEMU and

VirtualBox, it also shows its practicality by successfully finding 14 zero-day vulnerabilities.
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