School of Electrical and Computer Engineering

Nanoplasmonic Waveguides: Optical Interconnects, Lasers, and Near-Field Probes

David S. Citrin

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0250 USA

and

Unité Mixte Internationale 2958 Georgia-Tech-CNRS Georgia Tech Lorraine, 2-3, rue Marconi, 57070 Metz France citrin@ece.gatech.edu

School of Electrical and Computer Engineering

Outline

- Research Overview
- Metal nanoparticle arrays
 - Nanoplasmonics
- Conclusions

S. E. Ralph, D. Denison-Georgia Tech

M. S. Sherwin-UCSB

and various other approaches

School of Electrical and Computer Engineering

Nonlinear Optics

THz/Optical Nonlinearities in Semiconductors

School of Electrical and Computer Engineering

Outline

- Research Overview
- Metal nanoparticle arrays
 - Nanoplasmonics
- Conclusions

The Lycurgus Cup (glass; British Museum; 4th century A. D.)

When illuminated from outside, it appears green. However, when Illuminated from within the cup, it glows red. Red color is due to very small amounts of gold powder (about 40 parts per million)

Surface Plasmons: Periodic (but damped) charge oscillations

Q~10

Surface Plasmon at Dielectric-Metal Interface

School of Electrical and Computer Engineering

Dispersion Relation for Surface Plasmon

Boundary Conditions Result in Discrete SP Modes

Can be obtained from Mie theory

Guiding SPPs in 2D metallo-dielectric Photonic Crystals

Guiding along line defects in hexagonal arrays of metallic dots (period 400 nm)

Scanning electron microscopy images

- SPP is confined to the plane
- · Full photonic bandgap confines SPP to the line defect created in the array

- Array of 50 nanometer diameter Au particles spaced by 75 nanometer
- · Guides electromagnetic energy at optical frequency below the diffraction limit
- Enables communication between nanoscale devices
- Information transport at speeds and densities exceeding current electronics

M.L. Brongersma, et al., Phys. Rev. B **62**, R16356 (2000) S.A. Maier et al., Advanced materials **13**, 1501 (2001)

School of Electrical and Computer Engineering

Metal Nanoparticle Chains

 Potential: Fabricate optical waveguides with lateral dimensions << I --Nano-optical
 Interconnects, near-field optical probes

• Challenges: Control attenuation!

Metal Nanoparticle Chains

- 40-100 nm radius Au/Ag nanoparticles on glass/semiconductor substrate; chains with 75-300 nm period
- Single nanoparticles: broad plasmon resonance
- Optical propagation along chains measured (indirectly)

Electron micrograph

Optical Extinction

2D FDTD Calculation of Electromagnetic Propagation in Metal Nanoparticle Chains

APPLIED PHYSICS LETTERS

VOLUME 81, NUMBER 9

26 AUGUST 2002

Metal Nanoparticle Chains

Nanoparticle surface plasmons modeled as static point dipoles with nearest-neighbor coupling, PhD Thesis, S. A. Maier

School of Electrical and Computer Engineering

Effects of Higher Multipoles

• Distortion of dispersion relation, compared to retaining only dipole-dipole interaction--effect most pronounced when particles approach contact

But Hard to Incorporate!

What we do: only keep electric dipole moment; correctly account for retardation

Excellent account of optical properties provided spacing is not too small (G. Schatz)

School of

Electrical and Computer Engineering Plasmon-Polariton Dispersion Relation $w(q)-w_p-S[w(q),q]=0$

Self-Energy: Real part: mode frequency Imaginary part: radiative loss

School of Electrical and Computer Engineering

Self-Energy:Retarded Dipole-Dipole Energy

Retarded dipole-dipole coupling:

- Polarization perpendicular to \mathbf{r}_{12}
 - : \mathbf{r}_{12}^{-1} , \mathbf{r}_{12}^{-2} , \mathbf{r}_{12}^{-3}
- Polarization parallel to \mathbf{r}_{12} :

$$\mathbf{r}_{12}^{-2}, \, \mathbf{r}_{12}^{-3}$$

 Long-range coupling only for perpendicular polarization

- •Fourier transform $\mathbf{r}_{12} \rightarrow q$
- •Express excitation wavelength and optical wavelength in dimensionless units

k=qd, c=kd $k=we^{1/2}/c$

•Write S in units of single nanoparticle radiative width

Dispersion and Radiative Width in Infinite Chains

School of Electrical and Computer Engineering

Excitation wavevector

School of Electrical and Computer Engineering

Radiative Width in Infinite Chains

Excitation wavevector

Surface-Plasmon Laser

MIR and FIR QCL

A. Tredicucci *et al.*, Appl. Phys. Lett. **76**, 2164 (2000).

Attenuation Management via a Gain Medium

Attenuation Management via a Gain Medium

Attenuation Management via a Gain Medium

Surface plasmon polaritons benefit from gain; radiative Plasmon polaritons do not!

Radiative decay rate goes negative for surface plasmon polaritons! D. S. Citrin, Opt. Lett., in press.

School of Electrical and Computer Engineering

> In-Coupling to and Out-Coupling from Semi-Infinite Nanoparticle Chains: Far-Field Coupling

Conclusion: Dipole distribution only modified within ~10 nanoparticles nearest chain termination.

In-Coupling to Semi-Infinite Nanoparticle Chains: Far-Field Radiation Patterns

Conclusion: Kirchhoff approximation is lousy.

Out-Coupling to Semi-Infinite Nanoparticle Chains: Far-Field Coupling

Conclusion: Dipole distribution only modified within ~10 nanoparticles nearest chain termination.

School of Electrical and Computer Engineering

In-Coupling to Semi-Infinite Nanoparticle Chains: Far-Field Radiation Patterns

In plane perpendicular to polarization

Dashed lines are the radiation distributions in the Kirchhoff approximation

Conclusion: Kirchhoff approximation is lousy.

School of Electrical and Computer Engineering

Near-Field Coupling to Semi-Infinite Nanoparticle Chains

School of Electrical and Computer Engineering

Near-Field Coupling to Semi-Infinite Nanoparticle Chains

Recall: Dispersion of T-modes on nanoparticle chain exhibits negative group velocity

School of Electrical and Computer Engineering

Near-Field Coupling to Semi-Infinite Nanoparticle Chains

n

School of Electrical and Computer Engineering

Near-Field Coupling to Semi-Infinite Nanoparticle Chains

Local spatial phase is positive: Phase velocity *away* from termination/excitation

Local spatial phase is (mostly) negative: Phase velocity *toward* termination/excitation

School of Electrical and Computer Engineering

Defects in Nanoparticle Chains

Substitutional Impurity

O

School of Electrical and Computer Engineering

Defects in Nanoparticle Chains

Exact inversion of D^{+-1}_{nm} Two-step approach

- Diagonal term using standard approach
- Off-diagonal term

Exact T-matrix $T_{qq'}$: Describes the vacancyinduced scattering of plasmon polaritons

Other Topics Investigated

• Finite length chains (D. S. Citrin, Nano Lett. 5,

985 (2005).

School of Electrical and Computer Engineering

Nanoparticle Ring

Nano-optical resonator Nano-optical corral Nano-antenna Nano-optical trap...

D. S. Citrin, J. Opt. Soc. Am. B 22, 1763 (2005).

School of Electrical and Computer Engineering

What are the bright modes?

School of Electrical and Computer Engineering

Nanoantenna

Nanoparticle Ring Resonator

School of Electrical and Computer Engineering

Conclusions

- Optical propagation on nanoparticle chains involves interplay of long/short-range coupling, polarization effects, radiative decay,...
- Attenuation is severe, but there might be strategies for its management.
- A nascent understanding of in- and out-coupling to nanoparticle chains is emerging.
- Nanoparticle rings might form subwavelength optical resonators.