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SUMMARY

Volume holographic grating couplers (VHGCs) are become increasingly attractive devices
for the application of optical interconnects because of their higher preferential coupling, dry
fabrication processing, and low cost. Moreover, for many practical cases for high-data rate
interconnects, the needed gratings have limited spatial apertures and are usually illuminated
by finite-width beams, such as Gaussian beams.

In order to design and characterize the performance of finite-size volume holo-
graphic gratings, a rigorous method of analysis is needed. In this work, the finite-difference
frequency-domain (FDFD) method is applied to analyze rigorously both unslanted and
slanted finite-number-of-periods gratings and is compared to the rigorous coupled-wave
analysis (RCWA). Furthermore, the FDFD method is adapted for the analysis of VHGCs
and is compared to the RCWA /leak-mode approach. Both output and input grating cou-
plers, which are placed either in the waveguide film region or in the waveguide cover
region, are investigated in this research. On the other hand, the DuPont OmniDex613
photopolymers are used to fabricate VHGCs in the experiment. In order to obtain a holo-
graphic grating with higher refractive-index modulation and thus higher diffraction effi-
ciency, both the theoretical analysis of a nonlocal diffusion model solved rigorously by use
of the finite-difference time-domain (FDTD) method and the experimental techniques of
real-time diffraction-monitoring and angular-selectivity measurements are applied to study
the optimization of holographic recording process. Finally, a VHGC in the waveguide cover

region is designed, fabricated, and tested.

xviil



CHAPTER 1

INTRODUCTION

Over the last several decades, improvements in circuit designs, materials, and microelec-
tronics fabrication technologies have continued to exponentially reduce the minimum feature
sizes of integrated circuits on electronic chips. This is known as Moore’s law, which states
that the number of transistors on a silicon chip increases by a factor of 2 every 18 months.
However, as the number of transistors increases, the performance of a system is domi-
nated by interconnection medium rather than the devices. Unfortunately, the conventional
electrical interconnects used in electronic devices have not advanced as rapidly as the per-
formance of devices. From this perspective, to improve the performance of future systems
new architectures and emerging technologies need to be developed.

In recent years, optical interconnects have been considered as a promising technology
capable of supporting future packaging system interconnection requirements. Since the
fundamental physics of optical interconnections is completely different from the conventional
electrical interconnections [1], optical interconnections have the potential to solve some
of the physical problems existing in electrical interconnections, such as electromagnetic
interference, crosstalk, voltage isolation, “aspect ratio” limit, impedance matching, and
timing skew in signals [1-3].

Based on the different routing methods, the optical interconnects can be classified
into free-space and guided-wave. Free-space optics [4-11] utilizes diffractive optical elements
(DOEs) and/or microlenses arrays to guide an optical signal in free-space or in a bulk

medium. The general structure for a free-space optical interconnect implemented with



Circuit
CMOS CMOS Board

OCs A)«Iicrolens OCs
I e

\ 4

A Substrate

L1

¥\ Substrate Mode ~
/Holograms A
[ il

A v Substrate

B >

SMHs

__Optics Chips

OCs | _stacked CMOS ocs [~
CMOS Chips CMOS
mm&mwmm Circuit

Board

Figure 1.1: Schematic for a general free-space optical interconnect. The substrate-mode
holograms (SMHs) are designed to couple incident beams in and out of a substrate, and
signal propagates with total internal reflection within the substrate. The microlenses are
used for beam collimating and focusing.

substrate-mode holograms (SMHs) is shown in Fig. 1.1. In this system, the SMHs are
designed to couple optical signals in and out of a substrate to provide required interconnect
functions such as chip-to-chip connections, bidirectional connections, fan-in, and fan-out [5],
and the microlenses are designed for beam collimating and beam focusing. On the other
hand, guided-wave optics [12-16] uses waveguides to contain the optical signals within a
board, a multiple-chip-module, or on a chip. Figure 1.2 shows an example of guided-wave
optical interconnect. In this system, the optical signal emitting from the laser is coupled into
the slab waveguide by use of a grating coupler, and then is guided to the output grating-
coupler, which diffracts the optical signal up to a photodetector. In general, the SMHs,
microlenses, and grating couplers can be implemented by surface-relief gratings fabricated
by using microelectronics fabrication technologies including thin-film deposition and etching

methods, or by holographic gratings fabricated using interferometric recording processes.
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Figure 1.2: Schematic for a guided-wave optical interconnect system. The holographic
grating couplers are designed to couple beams in and out of a waveguide structure.

For both routing methods, diffractive optics is an important technology to make opti-
cal interconnections feasible. For example, diffractive optical elements (DOEs), such as dif-
fractive lenses, diffractive mirrors, surface-relief gratings, and volume holographic gratings,
can be applied to free-space optics as focusing diffractive lenses [17-19] and to guided-wave
optics as waveguide couplers [15,20-22]. In addition to optical interconnects, DOEs have
various other applications including beam focusing (23, 24], optical pick-up heads [25-27],
filters [28,29], wavelength-selective coupling [30, 31], wavelength-division multiplexing [32],
optical sensors [33-36], distributed-feedback lasers [37-39], and multiple quantum well in-
frared photodetectors [40,41].

In practical applications, preferential-order coupling is usually necessary for efficient
and cross-talk-free optical interconnects. In order to achieve preferential-order coupling, re-
searchers have applied a variety of methods such as gratings with reflective layers embedded

in the substrate [25,26,42-45], gratings with double surface corrugations [46], blazed grat-



ings [47,48], and gratings comprised of parallelogramic surface profiles [49,50]. However,
these methods add complexity to the fabrication process because of complicated deposition,
very precise electron-beam lithography, or chemically assisted ion-beam etching process. In
addition, the fabrication errors resulting from the grating etching process and inconsistencies
of the refractive indices of deposited materials may change the performance characteristics
of surface-relief gratings [51].

On the other hand, Schultz et al. [20~22] recently used a photopolymer holographic
recording material to fabricate volume holographic grating couplers (VHGCs), first pro-
posed by Kogelnik and Sosnowski [52], to obtain extremely high (> 98%) preferential-order
coupling [20]. The use of photopolymers eliminates all of the chemical and etching steps,
therefore reducing the fabrication complexity. Moreover, for many practical cases for high-
data rate interconnections, the needed gratings could have limited spatial apertures and are
usually illuminated by finite-width beams.

Because the finite-size gratings illuminated by the finite-width beams are required
for practical applications, the traditional assumptions, such as the infinite gratings and the
infinite-incident beams, used in analyzing the grating diffraction problems may no longer be
valid. These requirements have motivated research to develop a rigorous numerical method
for grating diffraction problems. For optical interconnects, VHGCs can be used to couple
an incident guided mode out of a waveguide or an incident beam into a waveguide with
high coupling efficiencies. Moreover, VHGCs provide more advantages including higher
preferential-order coupling, dry processing, and lower cost than surface-relief gratings do.
Therefore, the analysis and fabrication of VHGCs as well as the study of the dynamics of

holographic grating formations in photopolymers are important issues in research.



1.1 Research Objectives

Given the above motivations, the objectives of this research are to analyze accurately the
interaction of finite-width beams with finite-size holographic gratings, to study theoreti-
cally and experimentally the dynamic behaviors of holographic grating formations in pho-
topolymers, and to analyze, design, fabricate, and test VHGCs for optical interconnect
applications for both input and output coupling configurations. First, the finite-difference
frequency-domain (FDFD) method [53-55] is developed and applied to solve rigorously
the finite gratings illuminated by finite-incident beams and is compared with the rigorous
coupled-wave analysis (RCWA) [56]. Then, the FDFD method is adapted for the analysis of
both output and input VHGCs, which could be used in optical interconnect systems. The
numerical results of the FDFD method for the analysis of output VHGCs are compared to
those of the RCWA inconjunction with the leaky-mode approach. Furthermore, the dynam-
ics of holographic grating formations in DuPont OmniDex613 photopolymers are studied
both theoretically and experimentally for both unslanted and slanted gratings. Finally, a
VHGC in the waveguide cover region is designed, fabricated, and tested providing also a

comparison between the developed theory and the experiment.

1.2 Literature Review

1.2.1 Finite-Number-of-Periods Gratings

In typical grating diffraction analysis, the rigorous coupled-wave analysis (RCWA) [56] is
the most common method applied to analyze an infinite-number-of-periods (INP) grating
(of perfect periodicity) illuminated by a plane wave (an infinite-width beam). However, for
many practical applications, the gratings could have finite sizes and are usually illuminated
by finite-width beams, such as Gaussian beams.

In order to analyze finite-size (or infinite-size) gratings illuminated by finite-size



beams, Kriezis et al. [57] applied a plane-wave spectrum decomposition of a Gaussian beam
in conjunction with the method of moments to study the effect of finite beams in periodic
metallic planar screens. Bendickson et al. [58] used a finite-beam RCWA to model finite
beams on infinitely periodic gratings. On the other hand, Kok [59] used a mode-matching
method and Mata-Mendez and Sumaya-Martinez [60] used a modal theory to determine
the electromagnetic scattering of a plane wave by a finite number of rectangular grooves
on a metallic plane. Pelosi et al. [61] used a heuristic diffraction coefficient to analyze the
scattering of a plane wave from a metallic strip grating with finite dimension. In addition,
Hirayama et al. [62,63] used the boundary element method (BEM) to study the character-
istics of finite-size diffractive lenses and finite-number-of-periods (FNP) dielectric/metallic
lamellar surface-relief gratings. Recently, few researchers have started to consider the effects
of FNP gratings and finite beams on the DOEs simultaneously. Mata-Mendez and Chavez-
Rivas [64,65] used the Rayleigh-Sommerfeld theory to study the diffraction of Gaussian
and Hermite-Gaussian beams by a lamellar finite grating at the scalar diffraction regime.
Finally, Bendickson et al. [58] developed a multiple-layer BEM to analyze the effect of
finite-number-of-periods gratings and finite-width beams on the guided-mode resonant sub-
wavelength surface-relief gratings.

However, there has been no rigorous analysis to determine the effects of FNP gratings
and finite-width beams simultaneously on volume holographic gratings. Therefore, a more
rigorous numerical method needs to be developed to study the effects of FNP gratings as

well as finite-width beams on the diffraction efficiencies of volume holographic gratings.

1.2.2 Dynamics of Holographic Grating Formations in Photopolymers

In recent years, photopolymers such as HRF DuPont’s series have become attractive optical
recording materials for a variety of applications including grating couplers [22,66], focus-
ing gratings [20,21], optical interconnects [67], optical storage disks [68], and holographic

filters [69] because they have large refractive-index modulation (An ~ 1072) while the stan-



dard inorganic optical materials, such as lithium niobate, have much smaller refractive-index
modulation (An ~ 10_4). In addition, photopolymers also exhibit several attractive ad-
vantages including dry processing, long lifetime, good photospeed, wide spectral sensitivity,
and relative low cost [70].

The fundamental mechanisms for holographic grating formations in the photopoly-
mers consist of three steps [71-73|: (a) initiation, (b) propagation, and (c) termination (as
shown in Fig. 1.3). First, when a photopolymer is exposed to an interference pattern, the
dye is excited and photoinitiates free radicals. The free radicals initiate the spatially nonuni-
form polymerization of free monomers, which is defined by the interference pattern, and
result in the decrease of the free-monomer concentration in bright regions. Because of the
monomer concentration gradient, the free monomers will propagate from dark regions (with
higher monomer concentration) to bright regions (with lower monomer concentration). This
process terminates when no free monomer is available or thermal fixing occurs [74]. Ther-
mal fixing is accomplished by flashing the hologram with a uniform-intensity UV light. The
combination of polymerization and diffusion of free monomers creates a spatial modulation
of refractive index and consequently yields a phase grating.

The characteristics of holographic grating formations in photopolymers have been
studied by several researchers. Rhee et al. {70,75] applied the real-time diffraction-monitoring
technique to study experimentally the temporal properties of holographic formations in
DuPont photopolymers with respect to exposure irradiance, exposure time, processing sit-
uations, shrinkage effects, and storage effects. Kostuk [76] exploited the same measurement
technique to study hologram formations in DuPont photopolymers at different stages of
exposure and at different spatial frequencies (grating periods). On the other hand, Zhao
and Mouroulis [77] proposed a one-dimensional local-response diffusion model with the as-
sumption that the polymerization rate is proportional to the exposure irradiance to study
the dynamic behavior of holographic grating formations in DuPont photopolymers. Later,

Zhao and Mouroulis {78] modified the local diffusion model by using a more general instead
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Figure 1.3: The mechanisms of holographic grating formations during exposure. There are
three basic steps for developing holographic gratings in photopolymers: initiation, propa-
gation, and termination.

of a linear relationship between the polymerization rate and the recording irradiance. This
relationship was necessary in order to describe the nonzero-second-harmonic component
of the refractive-index modulation. The latter component does not decrease to zero with
decreasing recording irradiance (as a linear relationship between polymerization rate and
recording irradiance assumes), effect that has been observed experimentally [79]. In addi-
tion, Colvin et al. [80] used the local diffusion model proposed by Zhao and Mouroulis in
conjunction with cure dependence of both the photoreaction kinetics and the monomer dif-
fusivity to study the hologram formations in photopolymers. However, this local diffusion
model [72,77,78,80] only provides a good explanation of low-spatial-frequency grating for-

mations in photopolymers. Recently, Sheridan et al. [81-85) proposed a nonlocal-response



diffusion model by introducing a nonlocal variance parameter, o, into the local-response dif-
fusion model [77,78] to model the effect of the formations of polymer chains growing away
from their initiation locations. This nonlocal diffusion model can predict the existence of
a high-frequency cutoff in the spatial-frequency response, while the local diffusion model
cannot predict it correctly.

In order to solve the nonlocal diffusion equation numerically, Sheridan et al. [81-85]
used a low-harmonic-component expansion on the monomer concentration and the diffusion
coefficient, and they assumed that the refractive-index modulation is linearly proportional
to the polymer concentration. Moreover, Sheridan et al. [81-84] applied Kogelnik’s first-
order two-wave coupled-wave theory [86] with a correction factor for the Fresnel reflection
loss to convert the diffraction efficiencies from the real-time measurement to the corre-
sponding refractive-index modulation values. Then, they fitted the theoretical model to
the experimental data to determine the various material properties, including monomer
diffusion coefficient and nonlocal variance parameter.

Although the low-harmonic-component approximation has been applied to solve the
nonlocal diffusion equation, it does not precisely predict the polymer concentration for the
smaller dimensionless reaction rate. By comparing the two-harmonic-component approxi-
mation to the four-harmonic-component approximation, the accuracy of the first harmonic
of the polymer concentration decreases as the dimensionless reaction rate decreases [82,84].
The maximum error of the first harmonic component of the polymer concentration predicted
by the two-harmonic-component approximation, with the assumption that the polymeriza-
tion rate is proportional to the square root of the exposure irradiance, is ~ 50% [84].
Therefore, a more accurate modeling of the polymer concentration is needed.

In summary, photopolymers can be critically important materials for the realization
of practical and efficient grating-based optical interconnects or devices in general. Therefore,
there is an increasing need for the accurate modeling of holographic grating formations

in photopolymers as well as for the optimization of the recording process parameters. In



addition, experimental measurements are needed for the validation of any new model and the
determination of the physical parameters of the photopolymers especially at UV recording

wavelengths.

1.2.3 Output Grating Couplers

Because of diverse applications of output grating couplers for coupling guided modes out of
a thin film optical waveguide, many researchers have proposed various numerical methods
to study their characteristics. Peng et al. [87,88] first used modal analysis in conjunction
with the leaky-wave approach to analyze rigorously the surface-relief grating coupler for
output coupling for both TE and TM polarizations. Moreover, Tamir and Peng [89] stud-
ied the leakage parameters (relating to coupling efficiencies) of surface-relief gratings with
respect to grating duty cycle, grating refractive indices, grating height, grating period, and
grating profile on the basis of perturbation theory. Izhaky and Hardy [90,91] proposed
the unified coupled-mode formalism to study the problems of parallel waveguides with or
without surface-relief gratings. Specifically, they studied the effects of grating parameters
including groove depths, duty cycles, operation wavelengths, and refractive indices on the
grating coupling performance. Viewing the surface-relief grating as a sequence of two alter-
nating types of waveguide sections connected by means of step discontinuities, Borsboom
and Frankena [92,93] used the modal representation of the fields in the waveguide sections
with scattering matrices of step discontinuities to study the two-dimensional uniform and
focusing (chirped) surface-relief grating couplers with finite lengths for output coupling. In
addition, Dinesen and Hesthaven [94, 95] proposed a boundary variation method (BVM)
for the analysis of both infinite periodic and finite aperiodic (chirped) surface-relief grating
couplers in two- and three-dimensional structures for output coupling. Recently, Lalanne
et al. [96-98] applied the Fourier-modal method (also known as the RCWA) to analyze
the waveguide and the surface-relief grating diffraction problems with the introduction of a

virtual periodicity along the transverse direction in conjunction with artificial absorbers at

10



the boundaries of the elementary cells of the periodic structure.

For the analysis of output VHGCs, Harris et al. [99] applied the modified Born ap-
proximation, the WKB approach, and the reciprocity theory, to analyze output VHGCs
without solving rigorously Maxwell’s equations in the grating region. Peng et al. [88] ap-
plied modal analysis in conjunction with the leaky-mode approach to analyze an output
VHGC with a sinusoidal permittivity variation. Wang and Dilaura [100] applied the thin
grating decomposition method in conjunction with conventional waveguide analysis to ana-
lyze a VHGC embedded in a waveguide. Jones et al. [101] also analyzed an output VHGC
embedded in a waveguide using the modal theory and Svidzinskii’s theory. Finally, Schultz
et al. [20] exploited the RCWA in conjunction with the leaky-wave approach to analyze
and design an output VHGC for line focusing. However, the leaky-wave approach does not
take into account the effects of reflection and the additional mode excitation resulting from
the discontinuity between the waveguide and the VHGC and generally is not an accurate
representation of the radiated (diffracted) field. For this reason, a more rigorous numerical

method needs to be developed in order to analyze accurately and design output VHGCs.

1.2.4 Input Grating Couplers

In contrast to the output grating coupler, the input grating coupler is used to couple an in-
cident beam into a thin film optical waveguide. In order to analyze the surface-relief grating
for input coupling, Ogawa et al. [102] applied the perturbation theory in conjunction with
the coupled transmission line analysis to study the input coupling efficiency of an infinite
surface-relief grating coupler illuminated by a plane wave with respect to the grating peri-
odicity, the grating depth, and the excitation condition. Neviere et al. [103-105] proposed
a rigorous electromagnetic formalism deduced from Maxwell’s equations to study the cou-
pling resonances of an infinite surface-relief grating illuminated by a plane wave as well as
by a limited incident beam. Dalgoutte and Wilkinson [106] applied modified Born approx-

imation and reciprocity theory to study the characteristics of a Gaussian beam launched
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into a single mode waveguide and a multimode waveguide by use of surface-relief grating
couplers. Woldarczyk and Seshadri [107,108] used the perturbation theory to analyze an
infinite surface-relief grating with a plane wave incidence for both input and output cou-
pling. Recently, different researchers [109-112] have applied the rigorous electromagnetic
formalism proposed by Neviere et al. [103-105] to study the input coupling efficiency of an
infinite surface-relief grating coupler illuminated by a Gaussian beam. Furthermore, Brazas
and Li [113] also investigated the effects of the size of Gaussian beam and the length of a
finite surface-relief grating on the input coupling efficiency. Finally, Waldh&usl et al. [114]
used the first order perturbation theory and Kwan and Taylor [115] developed a three-layer
waveguide model to study the characteristics of input grating couplers with blazed profiles.
On the other hand, Ogawa and Chang [116] used the perturbation theory to analyze both
unslanted and slanted input VHGCs with infinite lengths illuminated by a plane wave with
TE polarization.

Although a variety of numerical methods have been developed to analyze the input
grating couplers, especially for the surface-relief gratings, little study has been done for the
input VHGC. For practical applications, the input VHGC could have finite length, and the
incident beam is a Gaussian beam. Therefore, the grating length and the beam size could
significantly affect the input coupling efficiency for an input VHGC. In addition, as the
incident beam is coupled into a guided mode by a grating coupler, this guided mode will
propagate in the waveguide and will be coupled out of the waveguide by the same grating.
As a result, the input coupling efficiency will also depend on the incident-beam position
on the grating coupler. For these reasons, the effects of the grating length, the beam size,
and the incident-beam position on the input coupling efficiencies of input VHGCs will be

investigated in this research to determine the optimum coupling conditions.
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1.3 Thesis Overview

This thesis deals with the analysis, design, and fabrication of polymer-based VHGCs for
optical interconnects. In Chapter 2, the FDFD method in conjunction with the UPML as
an absorbing boundary used in this research is presented and discussed in some detail.

In Chapter 3, the FDFD method is applied to study the characteristics of a FNP holo-
graphic grating illuminated by a finite-width incident beam. Both unslanted and slanted
gratings are investigated in transmission as well as in reflection configurations. The dif-
fraction efficiency of a FNP holographic grating as a function of the grating size and the
incident-beam size calculated by the FDFD method are also compared with the eflicien-
cies determined by the RCWA. Furthermore, the effects of FNP holographic gratings on
their diffraction performance are compared with their counterparts of the FNP surface-relief
gratings.

In Chapter 4, the dynamic characteristics of holographic grating formations in pho-
topolymers based on the theoretical analysis as well as the experimental measurement are
presented. Both unslanted and slanted gratings are treated in this research. For the the-
oretical analysis, the nonlocal diffusion model is rewritten in a dimensionless form and
is rigorously solved by using the finite-difference time-domain (FDTD) method and com-
pared with the low-harmonic-component approximation. On the other hand, the real-time
diffraction-monitoring technique in conjunction with the RCWA is applied to study the
dynamic hologram recording characteristics of DuPont photopolymers. Furthermore, the
angular-selectivity experiment is used to determine the angular-dependent transmission ef-
ficiency of a slanted grating, and therefore, to estimate the shrinkage factor of the recording
material. The theoretical results are also fitted to the experimental data to determine the
characteristic parameters of the DuPont photopolymer. Moreover, the effects of post-baking
conditions on the enhancement of refractive-index modulations and the compensation of

recording shrinkage are presented.
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In Chapter 5, the FDFD method is applied to analyze rigorously the output VHGCs
for both TE and TM polarizations and for zero- or 45-degree output coupling. Two config-
urations of output VHGCs in integrated optics are investigated. These two configurations
depend on the position of the VHGC that can be placed either in the waveguide film region
or in the waveguide cover region. The FDFD results are compared with their counterparts
obtained by the RCWA in conjunction with the leaky-mode approach. The discontinuity
effects as well as multimode excitation and interference are also presented.

On the other hand, the numerical results of the input VHGCs analyzed by use of
the FDFD method are presented in Chapter 6. Similarly, an input VHGC placed either
in the waveguide film region or in the waveguide cover region is analyzed. The effects of
the grating length, the beam size, and the incident-beam position on the input coupling
efficiencies of input VHGCs will be investigated in this research to determine the optimum
coupling conditions.

In Chapter 7, the design, fabrication, and testing of a VHGC in the waveguide cover
region are presented. Finally, in Chapter 8, the results of the thesis are summarized, and

the possible directions for future research are presented.
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CHAPTER 2

FINITE-DIFFERENCE FREQUENCY-DOMAIN

METHOD

Although various numerical methods, such as the finite-beam RCWA [58], the mode-
matching method [59], the modal theory [60], the boundary element method [58,62,63],
and the Rayleigh-Sommerfeld theory [64,65] have been applied to study the effects of finite
beams and/or finite gratings (especially for the surface-relief gratings), there has been no
rigorous analysis to determine the effects of finite-size gratings and finite beams simulta-
neously for volume holographic gratings. However, finite-size volume holographic gratings
could be essential components of optical interconnects. Therefore, there is a need in devel-
oping analytical tools for the design and optimization of these gratings. In this chapter,
the finite-difference frequency-domain (FDFD) method in conjunction with the uniaxial
perfectly matched layers (UPMLs) [54,55] (for studying the diffraction characteristics of
finite-size gratings illuminated by finite beams in the case of volume holographic gratings)
will be presented. In Section 2.3, the performance of the UPML and the numerical consid-
eration of mesh size will be discussed. Moreover, to quantify the diffraction performance of
various gratings, some power-related performance metrics such as the diffraction efficiency,
the coupling efficiency, and the branching ratio have to be determined from the diffracted
fields calculated by the FDFD method. Therefore, in Section 2.4, the fast Fourier transform

(FFT) will be presented for the calculation of diffracted power.
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2.1 Configurations of Finite-Number-of-Periods Holographic

Gratings

The geometric configuration of the two-dimensional diffraction problem of a holographic
grating of width L and thickness d is shown in Fig. 2.1(a). The grating consists of a
variation in the permittivity throughout the volume of the grating with a period A and a
slant angle ¢. The grating vector K is defined as K = |K|(Z cos ¢p+sin ¢) where |K| = 27 /A
and Z, ¢ are the unit vectors along the x and y directions respectively. The permittivity in
the grating region can be written as
) o0
€ = eoe(x,y) = epleo + Z epcos(pKer) + Zeisin(pK-r)], (2.1)
p=1 p=1
where ¢ is the permittivity of free space, £(z,y) is the dielectric constant, €y is the average
dielectric constant, and eg and e, are the p-th harmonics of the dielectric constant, and r
is the position vector (r = z& + y7). Since regions 1 and 3 are unbounded, an absorbing
boundary layer of width § [see Fig. 2.1(a)] is included in order to truncate the computational
domain. This is necessary since the FDFD method will be utilized for the solution of the
diffraction problem. In this research the uniaxial perfectly matched layer [117-119] (UPML)
is used as the absorbing boundary layer. After the insertion of the UPML the computational
domain has dimensions L, and Ly along the x and y directions respectively [Fig. 2.1(a)].
In order to model a finite-width incident beam a flat cosine-squared window function

g(v’) is introduced to describe the profile of the beam. The function g(y’) is given by

1 0<|y/|<%
ly'|- %
o) = cof| iihn| Welwisp- ¥, (22)
0 D~ ¥ <|y|<oco

where W is the flat width, (2D — W) is the total width of the beam, y' = y cos ., and

Binc is the incident angle. The beam profile is shown in Fig. 2.1(b). The resulting incident
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Figure 2.1: (a) Geometry used to model the diffraction of a finite-width beam from a finite-
number-of-periods holographic grating. The holographic grating has a period A, a slant
angle ¢, a width L, and a thickness d. The thickness of the absorbing uniaxial perfectly
matching layer (UPML) is §. (b) The beam profile of the finite incident beam is shown with
flat width W, total width (2D — W), and incident angle €;n..
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beam for TE/TM polarization can be presented by an electric/magnetic field as follows
Emc/Hinc = g(y')exp(—jk-r)é, (2'3)

where k = koni(Zcos Oine + ysin Oine), ko = 2/, and Ag is the freespace wavelength. The
finite-width beam is incident from region 1 with refractive index n; on the FNP grating, and
then diffracts into region 3 with refractive index n3. In general, the profile of the incident
beam can represent any type of finite-width beam, such as Gaussian, Hermite-Gaussian,
etc., by appropriate selection of g(y’) function. In this research the flat cosine-squared
profile function has been selected to represent the finite-width beam since this resembles
more a plane wave if W is large compared to the wavelength. Therefore, comparisons with
plane wave diffraction by gratings can be performed when the incident beam and the grating

are large (D > \o).

2.2 Formulation of the Finite-Difference Frequency-Domain

Method

The basic idea of the FDFD method is to apply the central difference approximation on the
Helmholtz equation. For TE polarization, that is E = E, %, the Helmholtz equation can be

written as [55]

V2E, + w?uesE, = 0. (2.4)

Similarly, for TM polarization, that is H = H,Z2, the Helmholtz equation can be written

as [55]
Vo (jwe + o)

VQHZ + wQMest - wet o

VoH, =0, (2.5)

where s = 1 — j 2, o is the conductivity, w is the angular frequency, and V3 = a%i‘ + 8—y@).
To apply the central difference approximation on the Helmholtz equation, the mesh

size should be determined first. Therefore, the number of grid points per wavelength in the
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x direction, Nz, and in the y direction, Ny, of the FDFD method are determined by

A
N, = ——O/A”;”‘“‘, (2.6)
_ /\O/nmaz

where 7,4, is the maximum refractive index in the computational domain, Az is the mesh
size in the x direction, and Ay is the mesh size in the y direction. Therefore, the number
of grid points in the z direction is Ny maz = [Lz/Az|+ 1 and in the y direction is Ny ez =
[Ly/Ay] + 1 where [A] represents the integer part of A.

After discretizing the Helmholtz equation by using the central difference approxima-
tion, the end result of the FDFD formulation is a set of linear algebraié equations that can

be written compactly as

AU =b, (2.8)

where A is an Nz mazNy,maz X Ne,maz Ny,maz coefficient matrix depending on the material
properties and the geometry of the problem, U represents an Ny mazNy,maez X1 vector that
contains the field values (E, or H, components for TE or TM polarization respectively),
and b is an Ny maee Nymae X 1 vector that represents the incident wave.

To analyze the diffraction characteristics of gratings, the grating problem should
be decomposed into the incident field geometry and the scattered field geometry. For
the incident field geometry, the grating and region 3 are removed from the computational
domain and their space is filled by region 1. The finite-width incident beam is assigned on

the incident plane as shown in Fig. 2.1(a). Therefore, Eq. (2.8) can be written as

AincUinc = bs» (2'9)

where Zinc is the coeflicient matrix relating to the material properties without the grating
and region 3 in the computational domain, Ujye is the unknown incident field, and by is
the source term corresponding to the finite-width incident beam. On the other hand, for

the scattered field geometry, the grating and region 3 are included in the computational
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domain. In the latter case, Eq. (2.8) can be written as

AscalUsgea = (Kinc - ZSca)U'inC: (2'10)

where Ksca is the coefficient matrix relating to the material properties with the grating and
region 3 included in the computational domain, Uge, is the unknown vector of the scattered
field values, and Ujy,, is the incident field vector obtained from Eq. (2.9). Finally, the total
field in the computational domain is Ugot = Uspe + Usea.

To solve the large sparse linear systems for the incident and scattered fields as
shown in Egs. (2.9) and (2.10), the conjugate gradient method (CGM) [120] in its sparse
formulation is utilized. CGM is the most popular iterative method because its residual error
decreases monotonically at each iteration. The algorithm of the sparse-CGM is presented
in Appendix A.

Finally, it is worth mentioning that, in principle, the presented methodology of
solving the Helmholtz equation using the FDFD method can be applied in more general
diffraction problems. For example instead of FNP holographic gratings, just as easily,
surface-relief FNP gratings of any shape could be analyzed (while the boundary element
method cannot be applied to holographic gratings). Even multiplexed FNP holographic
gratings for applications in optical memories and optical computing can be similarly studied.
A similar approach can also be used in integrated optics configurations to analyze a broad

range of grating couplers.

2.3 Numerical Considerations and Absorbing Boundary Con-
ditions
2.3.1 Performance of the Uniaxial Perfectly Matched Layer

To solve the Helmholtz equation using the FDFD method in an unbounded domain [as it is

needed for the diffraction problem shown in Fig. 2.1(a)], it is necessary to apply absorbing

20



boundary conditions to truncate the computational domain to be able to absorb outgoing
propagating waves from the structure and prevent them from reflecting back. In addition,
the absorbing boundary conditions should provide good performance on the artificial reflec-
tion error. Generally speaking, the artificial reflection error should be decreased down to
at least —80dB [119].

In this research, the uniaxial perfectly matched layers (UPMLs) [117-119] are applied
as absorbing layers to truncate the computational domain. Although the performance of
UPMLs has been discussed in the finite-difference time-domain (FDTD) method [118], it is
also necessary to understand their performance in the FDFD method because the FDFD
and FDTD methods use different grid positions for the electromagnetic fields assignment.

The Maxwell’s equations in the UPML formulation can be written as [117]

VxE = —jwusH, (2.11)
VxH = jwesE, (2.12)
V-(e3E) = 0, (2.13)
V- (u$H) = 0, (2.14)

where 3 is a complex diagonal tensor of the form

S318y8; 0 0
5= 0 szsglsz 0 ) (2.15)
0 0 S2SyS; "

and s; = 1 — j2t for i = z,y,2. It is noted that s; and o; are spatially variant only along
the ¢ direction.

For two-dimensional problems [such as in Fig. 2.1(a)], with the elimination of the
magnetic field, the Helmholtz equation for TE polarization in the UPML region can be

written as

1 0 /10F, 160 /10E, 9
- | —-== — === E, =0. .
Sz O (sz 8z>+sy8y (sy ay)—i—wue 0 (2.16)
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Similarly, the Helmholtz equation for TM polarization in the UPML region can be written

as

1 0 [10H, 10 (10H, 2
_ —_— —_— [ — . =O 2.
Sz 0 <sz Oz > * Sy OY (sy 0y > ek (2.17)

Several profiles, such as polynomial grading [118,121] and geometric grading [122], have
been suggested for ¢;. To simplify the implementation of UPML in the FDFD method, a
polynomial grading is applied in this research. The polynomial grading dependence of o; is
simply of the form

ri\ ™ .
0i(7i) = Oimaz (?) , for i = z,y, z, (2.18)

where 0 maz is the maximum conductivity in the 7 direction of the UPML, r; is the distance
measured from the interface between the real computational domain and the UPML in the
i direction, ¢ is the thickness of the UPML, and m is the polynomial order. In order to
understand the performance of the UPML, the artificial reflection errors from the UPML
should be investigated and the optimal values of ez and m should be determined to
minimize the reflection errors to less than —80dB.

In order to determine the artificial reflection errors from the UPML, the behavior
of an incident beam propagating in a homogeneous medium with dielectric constant ¢ is
investigated by using the FDFD method and the diffraction integral method [17]. Since
the diffraction integral method combines Huygen’s principle with the appropriate Green'’s
functions to study the electromagnetic fields propagating in an unbounded domain, the
artificial reflection errors from the UPML can be defined as 20log|Upprp — Upmv| where
Upprp and Uppv are the fields calculated by the FDFD method and the diffraction
integral method respectively. As shown in Fig. 2.2, the reflection errors are plotted as a
function of ¢; ey for various polynomial orders (m = 2,3,4,5) for § = 2.0 um and € = 3.
In general, for a given m, the reflection error decreases as o;mqy increases. However, as
Oi.mag increases further, the reflection error reaches a saturation value. Therefore, for a set

of €, §, and m, the optimal values of ; maz can be determined to minimize the reflection
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error down to —90dB from this diagram.

Reflection Error (dB)

-100 |

0.0 2.5 5.0 7.5 10.0 12.5 15.0
(10* S/m)

L s

Maximum Conductivity of UPML, ¢

max

Figure 2.2: Artificial reflection errors from the UPML as functions of the maximum conduc-
tivity omaee and the polynomial order m as the dielectric constant of the truncated medium
is € = 3 and the thickness of the UPML is = 2.0 um.

Figure 2.3 shows the optimal ¢; uqz as a function of ¢ for different polynomial orders
(m = 2,3,4,5) for § = 2.0 wm. According to Fig. 2.3 the optimum parameters of the UPML
can be selected in order to minimize the computational domain and to insure that the effect

of the reflection error is down to at least —90dB. For example, to truncate a grating with

€ = go = 2.25, the optimal 0} 4, is about 6.5%x 10 S/meter for m = 3.

2.3.2 Numerical Consideration of the Mesh Size

In order to determine the effect of the mesh size on the numerical error, the planar interface
problems for TE and TM polarizations are treated. Namely, there are two regions separated
by a planar boundary in the computational domain. In this test case, the refractive indices
in region 1 and region 2 are n; = 1.0 and ny = 1.5 respectively. To truncate regions 1 and 2,

the maximum conductivities used in UPMLs are selected to be 01 mar = 3.7% 10 S /meter
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Figure 2.3: Optimal values of maximum conductivities as functions of the dielectric constant
e and the polynomial order m as the thickness of the UPML is § = 2.0 um.

and 09 maz = 6.5x10% S/meter for m = 3 (from the results of Fig. 2.3). Moreover, a
normally incident beam with W = 20um and D = 25 um propagates from region 1 to
region 2.

According to Fresnel equations, the percent reflected and transmitted powers that are
due to a normally incident plane wave (TE- or TM-polarized) are 4% and 96% respectively.
Figure 2.4 shows the normalized transmitted and reflected powers as a function of the
number of grid points per wavelength. As expected, the numerical error becomes smaller
as the number of grid points per wavelength increases. However, a rather non-physical
phenomenon is that the normalized transmitted power can be larger than 1.0 for N, =
N, = 5 as it can be observed in Fig. 2.4. The reason of this non-physical effect is that
the artificial wave reflects back to the real computational domain from the absorption
layers. Therefore, the overall electromagnetic power can be overestimated. In addition, the

convergence of the TM polarization is slower than that of the TE polarization. In order to
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Figure 2.4: Normalized transmitted and reflected powers as a function of the number of grid
points per wavelength (N, = N,) for the cases of a TE/TM-polarized normally incident
plane wave on a planar interface between two regions of refractive indices n; = 1.0 and
ng = 1.5.

avoid these non-physical effects IV, Ny > 20 for the TE polarization and N, N, > 25 for
the TM polarization.

Furthermore, the accuracy of the FDFD method is assessed by comparison of the
FDFD results with the ones obtained analytically for the magnitude of the electric field
or the magnetic field. The results are summarized in Fig. 2.5 for TE polarization with
N; = Ny = 20 and in Fig. 2.6 for TM polarization with N, = N, = 25. The accuracy of
the FDFD method is apparent both in region 1 and in region 2, including perfect continuity

at the dielectric interface located at z = 1.0 um.

2.4 Calculations of Diffraction Efficiencies

Applying the FDFD method, the scattered electromagnetic field by the FNP holographic

grating can be determined. However, to quantify the performance of DOEs, it is useful
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Figure 2.5: Magnitude and phase of the total electric field, E,, as a function of z in the case
of a TE-polarized normally incident plane wave on a planar interface between two regions
of refractive indices n; = 1.0 and ng = 1.5. The planar interface is located at = 1.0 um.
to calculate some power-related performance metrics. Some metrics that are commonly
used in the diffraction of light by gratings are the percentage of the power transmitted,
the percentage of the power reflected, and the diffraction efficiency (DE) of a specified
diffraction order. In order to determine these quantities, the fast Fourier transform (FFT)

can be used. The angular spectrum, F;, of the scattered field in region ¢ (i = 1 or 3) can

be expressed as

=

-1
Fi(kym) = Y Ul(zi, qAy) explikym(qAy)], (2.19)
g=0

where M is the number of sampling points of the scattered field, ky,, = 2mn/(MAy), U is

il

the scattered field values obtained from Egs. (2.9) and (2.10), and z; is the plane on which
the fields are used (i = 1 or 3). Once F;(kyn)’s have been determined, the transmitted (P3)

and reflected (P;) powers for TE incident polarization are given by [62,63]

PTE = =2 Fi(kym)|>Re{ =22 = 1,3). .
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Figure 2.6: Magnitude and phase of the total magnetic field, H,, as a function of z in the
case of a TM-polarized normally incident plane wave on a planar interface between two
regions of refractive indices n; = 1.0 and np = 1.5. The planar interface is located at

z = 1.0 um.

Similarly, the transmitted (P3) and reflected (P;) powers of TM polarization can be deter-

mined by
M-1

Ay N2 p g KiamT L
Wﬂgﬁz(kym)l Re{=7==}  (i=13), (2.21)

pTM _

K3
where k; = (2m/Ao)n; is the magnitude of wavevector in region i, ki zm = (k2 — ]csm)l/2
, i = /mi/ei, and Re{} denotes the real part of a complex number. Therefore, the

percentages of the transmitted and reflected powers can be defined as P3T E/TM / Pinc and

pTE/TM

1 / Pinec where Py, is the power of the finite-width incident beam. In addition, the

diffracted power of a specific diffracted order p in region ¢ (¢ = 1 for backward and i =

3 for forward) for TE polarization is given by

Ay B2 I
TE __ (1 2 LITm D
P =537 > | 5 (kym)|* Re{ e }oo(E=13). (2.22)

m=ki1,y—(p+1/2)Ky
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Similarly, the diffracted power of a specific diffracted order p in region 7 for TM polarization
is given by

k1y—(p=1/2)K, -
> IRGkm)PRAZEEY (=13, (2.29)
m=ky y—(p+1/2)Ky '

Ay

TM™ _
Fip™ = ou

where k1, = konisinfin., and Ky = |K|sin ¢. Therefore, the diffraction efficiencies of the p-
th forward-diffracted order (DE}; ) and p-th backward-diffracted order (DE;; ) can be defined

as DEL = PTE/TM

3 p / Pinc and DEg = Pf’:f/TNl/an respectively.

2.5 Summary and Discussion

In this chapter, the finite-difference frequency-domain (FDFD) method in conjunction with
uniaxial perfectly matched layers (UPMLs) for the analysis of a finite grating illuminated
by a finite beam has been described. In addition, the numerical considerations of the
UPML and the mesh size for the FDFD method have been studied. For the performance
of the UPML, the artificial reflection error from the UPML decreases as the conductivity
of the UPML increases and finally reaches a saturation value with —90dB. On the other
hand, the numerical error decreases as the number of grid per wavelength increases (i.e.
the mesh size decreases). The convergence of the TM polarization is slower than that of
TE polarization because the Helmholtz equation of TM polarization contains one more
derivative term (as seen in Eq. 2.5). In general, the numbers of grid per wavelength for
both TE and TM polarization are Ny, IV, > 20 and N;, Ny > 25 respectively. Finally,
the Fast Fourier transform (FFT) is also applied to determine the diffracted power, and

therefore, the diffraction efficiency.
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CHAPTER 3

FINITE-NUMBER-OF-PERIODS

HOLOGRAPHIC GRATINGS

In many practical applications for high-data rate interconnections, the needed gratings
could have finite sizes and are usually illuminated by finite-width beams. Therefore, in
this chapter, the effects of finite-number-periods (FNP) gratings and finite-width beam
simultaneously on the diffraction efficiencies of volume holographic gratings will be studied.
For all the cases that are treated in this research normally incident beams of TE or TM
polarization are considered [fin. = 0° in Fig. 2.1 (b)]. The flat widths of incident beams
[W, in Fig. 2.1(b)] are varied between 1A, to 12A, (1A, 2A,,4A,, 6Ay, 8A,, 10A,, and 12A,)
where Ay = A/sin ¢ is the grating period along the y direction (see Fig. 2.1). The freespace
wavelength of the incident beam is assumed to be Ao = 1.0 um. The refractive indices of
the regions surrounding the grating are n; = n3 = 1.0. In the grating region, the average
dielectric constant is o = 2.25 and the modulation is £ = 0.06 [one cosine harmonic is
assumed in Eq. (2.1)]. These grating parameters correspond to the DuPont OmniDex613
photopolymer [134]. FNP gratings with widths L of 20A,, 15A,, 10Ay, 5A,, and 3A,
are investigated in this chapter. In order to obtain the transmitted/reflected power, the
total/scattered field on a specified z; plane in region i (i = 3,1) is calculated by using the
FDFD method. Once the total/scattered field is determined, the transmission/reflection
efficiency of a specific diffraction order can be calculated using the FFT (as shown in Section

2.4).
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3.1 Unslanted Finite-Number-of-Periods Holographic Grat-
ings
3.1.1 Forward Diffraction Efficiencies

For the case of unslanted FNP holographic gratings, the grating period is A = 2.5 um and
the grating thickness is d = 8.0 um. The period and slant angle of this grating are selected
such that the diffraction efficiencies of the +1 diffracted orders are reasonable. Based on
these parameters, five diffracted orders are expected and the forward diffraction efficiencies
of the +1 diffracted orders are DETY = 10.98% and DETM = 10.37% for TE and TM
polarizations respectively in the INP gratings. In Fig. 3.1, the diffraction efficiency of the
+1 forward diffracted orders, DEL,, is plotted as a function of normalized beam width for
different grating widths L (L = 20A, 15A, 10A,5A,3A) for both TE and TM polarizations
(for the unslanted grating, A, = A).

As shown in Fig. 3.1, for the grating with L = 20A, the DEi1 is close to the RCWA
calculated efficiency and remains constant when the incident-beam width increases. In this
case, the width of the incident beam is always smaller than the grating width and the
resulting diffraction resembles the diffraction by an infinite-width grating. For this reason,
the resulting diffraction efficiencies DEj:1 are close to the values predicted by the RCWA.
For the grating with width L = 10A, as the incident-beam width increases but remains
smaller than the grating width, the DEi1 is the same as for the grating of L = 20A case.
However, as the incident-beam width becomes comparable or exceeds the grating width
(W > 6A), the DEi1 starts to decrease, because more of the incident light initially falls
outside the grating region. For the smaller grating with width L = 3A, the DEi1 decreases
monotonically as the incident-beam width increases. Also the maximum value of the DEi1

for the FNP gratings never exceeds that of the corresponding INP gratings.
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Figure 3.1: Forward diffraction efficiencies of the £1 diffracted orders as functions of W/A
and L/A for an unslanted FNP holographic grating with A = 2.5 um and d = 8 um. The
solid lines and dash lines represent the results for TE polarization and TM polarization
respectively. The RCWA results correspond to an infinite-number-of-periods grating illu-
minated by a plane wave (an infinite-width beam).

3.1.2 Electric Field Intensity

In order to gain a better physical understanding of the behavior of FNP gratings illuminated
by finite-width beams, the resulting total electric or magnetic field intensity (calculated by
the FDFD method) can be shown. For example, in Fig. 3.2, the electric field intensity is
shown for an unslanted grating with . = 10A illuminated by a TE-polarized beam with
various widths (W = 1A,6A,12A). Dark areas indicate regions of small field intensity while
lighter areas indicate regions of higher field intensity.

As seen in Fig. 3.2, most of the light is transmitted and the zero diffracted order
is the primary order. By comparing Figs. 3.2(a), 3.2(b), and 3.2(c), it can be observed
that there is more power diffracted in the directions of +1 and —1 diffracted orders for

the smaller-width incident beam. The +1 and —1 diffracted orders are equal because

31



of the symmetry of the unslanted grating and the normal incidence. However, for the
wider incident beam, as shown in Fig. 3.2(c), most of the power remains in the zero-order
diffraction direction. Therefore, the DEﬂf:1 increases as the incident-beam width decreases
in agreement with Fig. 3.1. This is not unexpected since the smaller-width beam contains
a broader spectrum of spatial frequencies (wavevectors) than the wider beam does. Thus,
more spatial frequencies in the narrow beam case are close to the Bragg condition resulting
in more efficient diffraction along the +1-order directions. On the other hand, the wider
beam contains a much smaller range of spatial frequencies further from the Bragg condition,

thus resulting in smaller DEil diffraction efficiencies.

(a) WiA=1, LIA=10 (b) WIA=6, LIA=10  (c) WIA=12, LIA=10

50 50

Yy (um)

X (um) X (um) X (um)

Figure 3.2: Two-dimensional diffracted field intensity patterns of unslanted FNP holo-
graphic gratings with A = 2.5 um, d = 8 um, and L = 10A illuminated by a TE-polarized
beam with (a) W = A, (b) W = 6A, and (¢) W = 12A.
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3.2 Slanted Finite-Number-of-Periods Holographic Transmis-

sion Gratings

3.2.1 Forward Diffraction Efficiencies

For the case of slanted FNP holographic transmission gratings, the grating period is assumed
A = 1.92 um, the slant angle is ¢ = 100°, and the thickness is d = 20 pm. Note that the
period and the slant angle of this grating are designed such that the incident beam (if a
plane wave) satisfies the first-order (for i = —1) Bragg condition. Based on this grating
design, most of the power is transmitted into region 3.

In Fig. 3.3, the diffraction efficiency of the —1 forward diffracted order, DE’ |, 1s
plotted as a function of the normalized beam width for various grating widths L (L =
20Ay,15A,,10A,,5A,,3A,). As shown in Fig. 3.3, for the wider (larger number of peri-
ods) grating with L = 20A,, the DE’ | increases and approaches the RCWA calculated
value as the incident-beam width increases. This trend is expected, because the wider the
incident beam is the more resembles a plane wave behavior that satisfies the first-order
Bragg condition. Narrower beams are more spread in wavevector space resulting in sig-
nificant deviations from the Bragg condition and consequently less diffraction efficiency.
For incident-beam widths greater than 10 grating periods (W > 10A,), the diffraction
efficiencies slowly converge to the values predicted by the RCWA.

For the grating with L = 10Ay, as the incident-beam width increases but remains
smaller than the grating width, the DEf | is almost the same as the one of the L = 20Ay
case. However, as the incident-beam width exceeds the grating width (W > 6A,), the DE’ 1
starts to decrease, since more of the incident light initially falls outside the grating region
and is not getting diffracted. Therefore, there exists a maximum diffraction efficiency in this
case. The maximum values of DE{1 are 74.57% and 70.60% for TE and TM polarizations,

respectively, for W = 6A,. Similarly, a maximum diffraction efficiency can also be observed
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Figure 3.3: Forward diffraction efficiencies of the —1 diffracted order as functions of W/A,
and L/Ay for a slanted FNP holographic transmission grating with A = 1.92 um, ¢ = 100°
and d = 20um. The solid lines and dash lines represent the results of TE polarization
and TM polarization respectively. The RCWA results correspond to an infinite-number-of-
periods grating illuminated by a plane wave (an infinite-width beam).
for the grating with L = 5A,. By comparing with the L = 10A, case, the position of the
maximum diffraction efficiency of the L = 5A, case is shifted towards the smaller incident
beam, since for the smaller-width grating a smaller-width incident beam is needed to fill
the grating region. In this case, the maximum values of DE')_C1 drop to 65.65% and 61.29%
for TE and TM polarizations respectively. For the smaller grating width of L = 3A,, the
DE! 1 i1s much smaller than the RCWA predicted value and decreases monotonically as the
incident-beam width increases.

A rather interesting observation is the effect of the FNP grating as it is separated
from the effect of the beam size. One might expect that for a given incident-beam width,
the diffraction efficiency would always increase as the grating width increases. However,

this is only correct for wide incident beams (W > 8A,). In contrast, for narrow incident

beams, the wider grating may have less diffraction efficiency than that of a less wide grating.
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For example, as W = A,, the diffraction efficiency of the L = 20A, case is less than that of

L = 5Ay case by ~ 3.5%.

3.2.2 Electric Field Intensity

The electric field intensity for a slanted FNP holographic transmission grating with L =
10A, illuminated by a TE-polarized beam with various widths (W = 1A,,6A,,12A,) is
shown in Fig. 3.4. Dark areas indicate regions of small field intensity, and lighter areas
indicate regions of higher field intensity. For the case of the slanted transmission grating,
the —1 diffracted order is the primary order according to the Bragg condition.

As observed in Fig. 3.4(b), the incident beam fills almost completely the grating
region. As a result the maximum DE’ , can be achieved. However, the narrower incident

beam [shown in Fig. 3.4(a)] is more spread in wavevector space resulting in significant

50(a.) WIAy=1, LIA,=10 50(b) WIA, =6, LIA,=10 50(c) WIA,=12, LIA,=10

40

Yy (um)

0o 5 10 1 2 0 5 10 % 2 0 5 10 15 2
X (pm) x (um) x (pm)

Figure 3.4: Two-dimensional diffracted field intensity patterns of slanted FNP holographic
transmission gratings with A = 1.92 um, ¢ = 100°, d = 20 ym, and L = 10A, illuminated
by a TE-polarized beam with (a) W = A, (b) W = 6A,, and (c) W = 12A,,.
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deviations from the Bragg condition and consequently less diffraction efficiency. Therefore,
the corresponding DE! ) decreases. On the other hand, for the wider incident beam [as
shown in Fig. 3.4(c)], part of the incident light can not interact with the grating completely,

thus the corresponding DE{ ) decreases.

3.3 Slanted Finite-Number-of-Periods Holographic Reflection

Gratings

3.3.1 Backward Diffraction Efficiencies

For the case of slanted FNP holographic reflection gratings, the grating period is A =
0.34 um, the slant angle is ¢ = 170°, and the thickness is d = 20 um. Note that the period
and the slant angle of this grating are designed such that the incident beam satisfies the
first-order (for ¢ = —1) Bragg condition. Based on this grating design, the diffraction is
primarily in the backward direction from the grating (reflection grating). In Fig. 3.5, the
backward diffraction efficiency of the —1 diffracted order, DEljl, is plotted as a function of
the normalized beam width for various grating widths.

As shown in Fig. 3.5, for the wider grating with width L = 20A,, the DE? | increases
and approaches the RCWA predicted value as the incident-beam width increases. The
trend is expected and is similar to the case of transmission gratings. For the grating with
L = 10Ay, as the incident-beam width increases but remains smaller than the grating width,
the DE?® | increases slowly approaching the RCWA efficiency. However, as the incident-beam
width exceeds the grating width (W > 6A,), the DE® | starts to decrease. Therefore, there
exists a maximum backward diffraction efficiency in this case. The maximum values of
DE®, are 61.28% and 55.02% for TE and TM polarizations, respectively, for W = 6A,,.
For the smaller grating of width L = 3A,, the DE?’, is much smaller than the RCWA

efficiency and decreases monotonically as the incident-beam width increases.
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Figure 3.5: Backward diffraction efficiencies of the —1 diffracted order as functions of W/A,
and L/A, for a slanted FNP holographic reflection grating with A = 0.34 um, ¢ = 170° and
d = 20 um. The solid lines and dash lines represent the results of TE polarization and TM
polarization respectively. The RCWA results correspond to an infinite-number-of-periods
grating illuminated by a plane wave (an infinite-width beam).

3.3.2 Electric Field Intensity

The electric field intensity for a slanted FNP holographic reflection grating with L = 10A,
illuminated by a TE-polarized beam with various widths (W = 1Ay, 6A,,12A,) is shown
in Fig. 3.6. Dark areas indicate regions of small field intensity, and lighter areas indicate
regions of higher field intensity.

As seen in Fig. 3.6(b), the incident beam fills almost completely the grating re-
gion resulting in the maximum DE’il. However, the smaller incident beam [as shown in
Fig. 3.6(a)] is more spread in wavevector space resulting in significant deviations from the
Bragg condition and consequently less diffraction efficiency. Therefore, the DEE1 decreases.
On the other hand, for the wider incident beam [as shown in Fig. 3.6(c)], some of the in-

cident light initially falls outside the grating region resulting in less interaction with the
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grating, thus the corresponding DE’lil decreases.
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Figure 3.6: Two-dimensional diffracted field intensity patterns of slanted FNP holographic
reflection gratings with A = 0.34 um, ¢ = 170°, d = 20 um, and L = 10A, illuminated by a
TE-polarized beam with (a) W = Ay, (b) W = 6Ay, and (¢) W = 12A,.

3.4 Comparison of Finite-Number-of-Periods Holographic to

Finite-Number-of-Periods Surface-Relief Gratings

In this section the effects of the FNP holographic gratings on their diffraction performance
are compared to those of FNP surface-relief gratings. In order to accomplish this comparison
the accuracy of the RCWA (which is valid for INP gratings) was examined in the cases of
FNP holographic and FNP surface-relief gratings. The error of the RCWA for FNP gratings

in the i-th forward- or backward-diffracted order efficiency can be defined (in percent) as

u, RCW A u,F"N P
E! — DE

1

Error = % 100, (3.1)

u,FFN P
DE!
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where DE}' REWA and DEZ"FN}D are the diffraction efliciencies of INP gratings (calculated
by the RCWA) and FNP gratings, respectively, for the i-th forward- or backward-diffracted
order (u = f for forward- and v = b for backward-diffracted orders). The diffraction ef-
ficiencies of FNP surface-relief gratings and FNP holographic gratings are determined by
using the boundary element method [63] and the FDFD method respectively. The results
are summarized in Tables 3.1 and 3.2. For all cases, the freespace wavelength of the incident
beam is A\g = 1.0 um and the widths of FNP gratings (L) are equal to the incident-beam
parameter D. The groove depth of the surface-relief gratings and the thickness of the holo-
graphic gratings are designed to obtain the maximum diffraction efficiency. Furthermore,
the average dielectric constant of the FNP holographic gratings and the dielectric constant
of the substrate and ridges of FNP surface-relief gratings are equal to 2.25.

For unslanted gratings, the comparison of the accuracy of the RCWA for 2-level
(rectangular-groove) FNP surface-relief gratings [63] and FNP holographic gratings [55] is

shown in Table 3.1. For the case of TE polarization, the error of the RCWA for FNP

Table 3.1: Comparison of the accuracy of the RCWA for 2-level FNP surface-relief gratings
and unslanted FNP holographic gratings

TE Polarization

2-level FNP Surface-Relief Grating [63] Unslanted FNP Holographic Grating [55]

A=094pum,d=0.63um A=25um,d=80um
L(=D) DEL™" DEL™%  Brror (%) DEL"™" DEL™?  Error (%)
5A 0.25750  0.37033 43.82 0.09669  0.10983 13.60
10A  0.30012  0.37033 23.39 0.10212  0.10983 7.55
15A  0.33022  0.37033 12.15 0.10430  0.10983 5.30

TM Polarization

2-level FNP Surface-Relief Grating [63] Unslanted FNP Holographic Grating [55]

A=094pum,d=1.09 um A=25um,d=80um
L(=D) DEL™Y DEL""  Eror (%) DEL™" DEL"?  Error (%)
5A 0.13736  0.16538 20.40 0.08578  0.10370 20.89
10A  0.14945  0.16538 10.66 0.09051  0.10370 14.58
15A 015714  0.16538 5.24 0.09255  0.10370 12.04
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Table 3.2: Comparison of the accuracy of the RCWA for 8-level FNP surface-relief gratings
and slanted FNP holographic transmission gratings

TE Polarization
8-level FNP Surface-Relief Grating [63] Slanted FNP Holographic Grating [55]

Ay=094pm,d=11pm Ay =1.95pum, d =20.0 um
L(=D) DE"™ DEN*Y®  Eror (%) DE™T DEPFY? Error (%)
5A, 0.46150 0.61540 33.35 0.63777 0.82310 29.06
10A, 0.54949 0.61540 11.99 0.72707 0.82310 13.21
157, 0.57140 0.61540 7.70 0.76244 0.82310 7.96

TM Polarization
8-level FNP Surface-Relief Grating (63] Slanted FNP Holographic Grating [55]

Ay =094pum, d =143 um Ay, =1.95pum, d = 20.0 um
L(=D) DE""" DE"A  Error (%) DE"™T DEL™A Error (%)
5Ay 0.27692 0.30769 11.11 0.59534 0.82176 38.03
104, 0.28681 0.30769 7.28 0.68738 0.82176 19.55
15A, 0.29670 0.30769 3.70 0.72549 0.82176 13.27

surface-relief gratings is larger than that for FNP holographic gratings. However, for the
case of TM polarization, the error of the RCWA for FNP holographic gratings is larger
than that for FNP surface-relief gratings. On the other hand, for slanted gratings, the
comparison of the accuracy of the RCWA for 8-level (stair-step approximation of a blazed
grating) FNP surface-relief gratings [63] and FNP holographic transmission gratings [55]
is shown in Table 3.2. For the case of TE polarization, the error of the RCWA for FNP
surface-relief gratings is almost the same as that for FNP holographic gratings. However, for
the case of TM polarization, the error of the RCWA for FNP holographic gratings is larger
than that for FNP surface-relief gratings. In general, the errors of the RCWA decrease as
the grating width and the incident-beam width increase. Therefore, it can be concluded
that the effects of the FNP on the diffraction efficiencies are important for both surface-
relief and holographic gratings and which one is more severe depends on the actual gratings

and the incident polarizations.
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3.5 Summary and Discussion

In this shapter, the effects of the finite number of periods and the finite width of the incident
beam on the diffraction performance of holographic gratings have been investigated for TE
and TM incident polarizations by using the FDFD rigorous electromagnetic method. Both
unslanted and slanted gratings in transmission and reflection configurations are examined.
The diffraction efficiencies of various diffracted orders are used as the metric of each grating
performance. These diffraction efficiencies are also compared to the ones predicted by the
RCWA that is applicable to infinite-number-of-periods (INP) gratings and infinite-width
incident beams (plane waves). The preceding numerical analysis of holographic gratings has
shown that the finite number of periods and the finite-width beam can play an important
role in the characteristics of diffraction efficiencies. For all the holographic grating cases
treated, the maximum diffraction efficiencies for the FNP gratings never exceeds that of the
corresponding INP gratings.

For unslanted gratings with at least 20 grating periods, the diffraction efficiencies are
close to the ones predicted by the RCWA and remain constant as the incident-beam width
increases (as far as its width remains within the grating W<L). However, as the number
of periods decreases, the diffraction efficiency also decreases for a constant beam width.
On the other hand, for slanted transmission/reflection gratings with at least 20 grating
periods, the diffraction efficiencies approach the efficiencies predicted by the RCWA as the
incident-beam width increases. However, as the incident-beam widths increase greater than
~ 10 grating periods (W > 10A,), the diffraction efficiencies slowly converge to the values
predicted by the RCWA. In general, as the number of periods decreases, the diffraction
efficiency also decreases for a constant beam width.

On the comparison of the accuracy of the RCWA for FNP surface-relief gratings and
FNP holographic gratings, the errors of the RCWA decrease as the grating width and the

incident-beam width increase. In general, the errors of the RCWA for FNP holographic
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gratings and FNP surface-relief gratings are of the same order revealing that the effects
of the FNP on the diffraction performance are equally important but are also case and
polarization dependent.

Finally, it is worth mentioning that in principle the presented methodology of solving
the Helmholtz equation using the FDFD method can be used in more general diffraction
problems. For example instead of FNP holographic gratings, just as easily, surface-relief
FNP gratings of any shape could be analyzed (while the boundary element method cannot
be applied to holographic gratings). Even multiplexed FNP holographic gratings for ap-
plications in optical memories and optical computing can be similarly studied. The same
approach can also be used in integrated optics configurations to analyze a broad range
of grating couplers. A study of finite-size holographic grating couplers for applications in
integrated optics and optical interconnects will be presented in the following chapters. In
addition, even if only a flat-cosine incident beam profile has been used in this work any
profile that can be described by the function g(y’) of Eq. (2.3) could be as easily analyzed.
In the case of a guided wave application, ¢g(y’) represents the incident guide mode on the

grating coupler.
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CHAPTER 4

DYNAMICS OF HOLOGRAPHIC GRATING

FORMATIONS IN PHOTOPOLYMERS

In order to study the dynamic characteristics of holographic grating formation in photopoly-
mers, the real-time diffraction-monitoring technique [70,75,76] in conjunction with Kogel-
nik’s first-order two-wave coupled-wave theory [86] has been applied to study experimentally
the temporal properties such as diffraction efficiencies and refractive-index modulations of
unslanted holographic grating formations in DuPont photopolymers with respect to expo-
sure irradiance, exposure time, and processing situations. However, Kogelnik’s theory [86]
does not provide an accurate estimation of refractive-index modulation in this diffraction
case because the average refractive index in the grating is not equal to those in the input and
output regions. On the other hand, a one-dimensional local-response diffusion model [77,78]
was proposed by Zhao and Mouroulis in 1994 to study theoretically the dynamic properties
of unslanted holographic grating formations in photopolymers. However, this local diffu-
sion model [77,78,80] only provides a good explanation of low-spatial-frequency grating
formations in photopolymers. Recently, a nonlocal-response diffusion model was proposed
by Sheridan et al. [81-85] by introducing a nonlocal variance parameter, o, into the local-
response diffusion model [77,78] to model the effect of the formation of polymer chains grow-
ing away from their initiation locations and was solved by use of low-harmonic-component
approximation. This nonlocal diffusion model can predict the existence of a high-frequency

cutoff in the spatial-frequency response, while the local diffusion model cannot predict it
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correctly. Although the low-harmonic-component approximation has been applied to solve
the nonlocal diffusion equation, it does not precisely predict the polymer concentration for
the smaller dimensionless reaction rate [84]. Moreover, both the local and nonlocal diffusion
models were only used for the theoretical study of the dynamics of unslanted holographic
gratings during recording. However, for practical applications, such as grating couplers for
optical interconnects [22,66], the gratings are slanted. Therefore, both the experimental
measurement and the theoretical analysis for studying the dynamics of unslanted or slanted
gratings during holographic recording are needed.

Furthermore, in order to enhance the refractive-index modulation and thus the
diffraction efficiency, the post-baking processing [67,123] was also applied in the grat-
ing fabrication to improve the diffraction efficiency. However, both holographic record-
ing [70,75,124-129] and post-baking processing [123, 130-132] introduce a shrinkage or
expansion and a change of refractive index of the recording material. According to Ko-
gelnik’s first-order two-wave coupled-wave theory [86], both effects can change the angular
selectivity of a volume holographic grating (i.e. the shift of Bragg angle), especially for a
slanted holographic grating. However, there has been no complete discussion for the effects
of various baking conditions on diffraction efficiencies as well as on photopolymer shrinkage
(or expansions) for both unslanted and slanted holographic gratings.

For these reasons, the real-time diffraction-monitoring technique in conjunction with
the RCWA [133,134] instead of Kogelnik’s theory is applied to study experimentally the
dynamic behaviors of both unslanted and slanted grating formations based on DuPont Om-
niDex613 photopolymers (recorded by UV light with free-space wavelength 363.8nm). On
the other hand, the finite-difference time-domain (FDTD) method [133,134] is applied to
solve rigorously the nonlocal diffusion equation for both unslanted and slanted gratings.
Furthermore, in order to estimate the shrinkage of a photopolymer after recording, the
angular-dependent diffraction efficiency of a slanted grating is measured, and the corre-

sponding angular-selective-curve is fitted by the RCWA in conjunction with Fresnel reflec-

44



tion losses instead of Bragg condition. Moreover, the effects of postprocessing including the
baking time and the baking temperature on the refractive-index modulations and the shifts
of Bragg angles of slanted holographic gratings (recorded by different exposure intensities)

are also investigated systematically in this research.

4.1 Theoretical Model of Holographic Grating Formations in

Photopolymers

4.1.1 Nonlocal Diffusion Model

The one-dimensional nonlocal diffusion equation describing the free-monomer diffusion and

the free-monomer depletion during exposure can be written as [81-85]

Pomlnt) _ 2 {p(a, 22z | 6Pt e, @

where ®@,,(z,t) is the free-monomer concentration, D(z,t) is the diffusion coefficient, F(x)
is the polymerization rate, and G(z,z’) is the nonlocal response function representing the
effect of the monomer concentration at location z’ on the amount of monomer being poly-
merized at location x. The general relationship between the polymerization rate and the
recording irradiance [78] and the diffusion coefficient exponential decrease with polymeriza-

tion rate [77,78] are expressed as follows,

F(z) = rlj[1+V cos(Kz)|”, (4.2)
and

D(z,t) = Dgexp[—aF(z)t], (4.3)

where & is a proportionality coefficient, v is the exponent of the relation between the poly-
merization rate and the exposure irradiance, Ij is the mean irradiance on the photopolymer
film, V is the fringe visibility, K = 27 /A is the grating vector (A is the grating period), Dg

represents the initial diffusion coefficient, and « is the diffusion coefficient decay parameter.
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In addition, a Gaussian probability distribution function is chosen as the nonlocal response

function; thus, G(z,2’) can be expressed as [81-85]

G(z,z') = = exp[

5 (4.4)

—(z — 2')?
(20 )]’

where /o represents the nonlocal response length. After exposure time ¢ (in seconds), the

concentration ®,(z,t) of the polymerized monomer (polymer) at location z is given by [81]

p(z,t) = /0 /_OO Gz, 2\ F(z") @y (2, t))d2’dt. (4.5)

In order to convert the nonlocal diffusion equation to its dimensionless form, four
dimensionless variables (a reaction rate Rp, a nonlocal variance parameter op, a time

variable tp, and a space variable xp) are defined as [133, 134]

Rp = DoK?/xI}, (4.6)
op = oK? (4.7)
tp = rlI¥t, (4.8)
zp = Kuz. (4.9)

Substituting these four dimensionless variables into Egs. (4.1) and (4.5), the governing
equations for the concentration of free monomer and polymer can be written in the dimen-

sionless forms as

a(I)m(a:DatD) 0®m(zp,tp)
ZomA\e Py PP _— try) — sy P
BtD RDaa:D {DD(:I:D’ D) 8$D }
o0
- / G (@D, Tp) Fn(Z) B2, t0)da’p, (4.10)
and
tp [o%)
(2, tp) = / / G (0, T) i (&) B (&, ) dzpdt, (4.11)
0 —00
where
Fp(zp) =[1+ Vcos(zp)]”, (4.12)
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DD(:IID,tD) =exp[—aFD(:zD)tD], (4.13)

1 —(zp — x'y)?
G . 4y [ D }
p(Tp, lD) ProD exp 20D

(4.14)

In general, the induced-during-the-recording-process refractive index depends not only on
the polymer concentration (corresponding to saturation characteristics of the measured
diffraction efficiencies) but also on the monomer concentration (corresponding to initial
fast-rising peak of the measured diffraction efficiencies) [73,75]. Therefore, the induced

refractive index, n(zp,tp), during exposure process can be expressed as [73]
n(zp,tp) = Cp®p(zp,tp) + Cm@m (2D, tp) cos ¢ , (4.15)

where C, and C,, are proportionality constants, and ¢ is the relative phase difference

between the monomer phase grating and the polymer phase grating.

4.1.2 Finite-Difference Time-Domain Method

In order to solve rigorously the free-monomer concentration and the polymer concentra-
tion [as shown in Eqs. (4.10) and (4.11)] during hologram recording, the finite-difference
approximations are applied on the dimensionless-space domain and on the dimensionless-
time domain to discretize the diffusion equation. First, assuming the increments in the
dimensionless-space domain and in the dimensionless-time domain are Axp and Atp re-
spectively, and then substituting them into Eq. (4.10), the free-monomer concentration at

the i-th dimensionless-space point and at the j-th dimensionless-time step can be written

as
Bnliyf) = {1 —20,(i, — 1)2—%}%(1,3’ ~1)
+{Cali,s - 1)22% +Cilisg = )y i+ 1, = 1)
+{Cali,i - 1)%2—% _ (i, - 1)22?1) bom(i—1,5-1)
—AtpCy(i j— 1), (4.16)
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where

0Dp(zp,i,tp,j-1)

Ci(i,j—1)=Rp e , (4.17)
Cg(i,j - 1) = RDDD(.’ITD’i,tD’j_l), (4.18)
N-1

. - Az . . .
Cs(i,j—1) = TD{fD(l,] -1)+2 };2 fok,j —1)+ fp(N,5 — 1)}, (4.19)
fo(k,i—1) =Gp(eps, 2pk)F(xpk)®m(zD .k, tD,j-1), (4.20)

N is number of sampling points in the dimensionless-space domain, Azp = %, Tp; =

—m 4+ (i — 1)Azp, and tp; = jAtp. Similarly, the polymer concentration at the i-th
dimensionless-space point and at the j-th dimensionless-time step can be represented as

-1
~ Atp !

@yi,5) = = {Cg(i,o) +23Cyli k) + C3(i,j)}. (4.21)

In this research, the number of sampling points in the dimensionless-space domain is chosen
as IV = 200. It is worth mentioning that the effect of the number of sampling points on the
numerical accuracy of the FDTD method has been tested by using four different values of N
(N = 50,100,200, and 300) to solve Eqgs. (4.10) and (4.11) for Rp = 1.0,6p = 0,v = 0.5,
and o = 0.0. With respect to the case of N = 300 the differences of the saturation
values of the first harmonic of the polymer concentrations are 0.24%,0.05%, and 0.03% for
N = 50,100, and 200 respectively. Furthermore, as is well known for the numerical stability
of the FDTD method, the increment in the dimensionless-time domain, Atp, must satisfy

the stability criterion [135]

. 4.22
5 R (4.22)

In this paper, Atp = 0.4A—sg—2 is used for all calculations.

Using the above procedure, the spatially nonuniform profile of the molecule con-
centration ®, (v = m for the monomer concentration and u = p for the polymer concen-
tration) can be determined at any dimensionless-time tp. However, to fit the theoretical
results to the experimental data, it is useful to calculate the spatial-harmonic components

of monomer /polymer concentrations. By applying the Discrete Fourier transform, the g-th
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spatial-harmonic component of the monomer/polymer concentration at any dimensionless-

time tp, ®yq¢(tp), can be expressed as
N—
1 1

Pug(tn) = 5— > ®u(zpi,tp)cos(q zp;) (u=m,p). (4.23)

i=1
4.2 Theoretical Results of Holographic Grating Formations

in Photopolymers

To illustrate the dynamics of holographic grating formation and compare the present method
to the low-harmonic-component approximation model, Egs. (4.10) and (4.11) are solved by
the FDTD method with the initial condition ®,,(zp,0) = 100 mole/cm?, which is selected
to be consistent with Sheridan and Lawrence’s assumption [81]. The fringe visibility is
assumed to be V = 1.0. Following the derivation done by Kown et al. [73] the polymerization
rate is proportional to the square root of the exposure irradiance, so v = 0.5 is applied for all
cases in this research. In addition, since changing « is equivalent to varying Rp [77,78,84],
a = 0.0 (which is equivalent of assuming that the diffusion coefficient is a constant D = Dy

during exposure) is used for all calculations.

4.2.1 Effects of Dimensionless Variables on Holographic Grating Forma-

tions

Figure 4.1 shows the monomer-concentration and the polymer-concentration profiles (within
one grating period) at various dimensionless times with Rp = 1.0 for three different
dimensionless-nonlocal variance parameters op (op = 0.0,0.62,1.23) [81]. As shown in
Fig. 4.1(a), with continuous exposure, free monomers are depleted in the bright region
resulting in a minimum concentration at /A = 0.0. As free monomers are completely
consumed for tp > 10, the holographic grating formation reaches steady state because
no free monomer remains in the system. With the diffusion and the polymerization of

free monomers, the spatially nonuniform profiles of polymer concentrations [as shown in
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Figure 4.1: Profiles of (a) the monomer concentration ®,,, and (b) the polymer concentra-
tion ®, within one grating period at various dimensionless times ¢p for different dimension-
less nonlocal variance parameters op (op = 0.0, 0.62, 1.23) with Rp = 1.0, a = 0.0, and
v =0.5.
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Fig. 4.1(b)] are developed. As seen in Fig. 4.1(b), for larger op the polymer-concentration
profiles resemble sinusoidal variations but have lower profile visibility.

By applying the Discrete Fourier transform the corresponding harmonics of the poly-
mer concentration at various tp [Fig. 4.1(b)] are plotted in Fig. 4.2. As shown in Fig. 4.2, as
tp increases, the amplitudes of harmonic components of the polymer concentration increase
and finally reach the saturation values. Moreover, increasing op (more nonlocal effect) the
saturation value of the first harmonic and the amplitudes of higher harmonics of the poly-
mer concentration decrease. Since the decreasing rate of the amplitude of higher harmonic
is larger than that of the first harmonic, the larger op is, the more the polymer profile
resembles a sinusoidal polymer profile [that is in agreement with Fig. 4.1(b)]. In the other
words, the error of the low-harmonic-component approximation decreases as op increases.

In order to study the effect of dimensionless reaction rates Rp on the hologram

120{

100

R,=1.0, a=0.0, v=0.5

c,=0.0
-= 6,=0.62

80T

401

20T

Harmonic Components of Polymer
Concentration (mole/cm %)

Normalized Time, t,

Figure 4.2: Harmonic components of polymer concentrations corresponding to Fig. 4.1(b)
at various dimensionless times ¢p for differing dimensionless nonlocal variance parameters
op (op = 0.0, 0.62, 1.23) with Rp = 1.0, & = 0.0, and v = 0.5. ®,, represents the ¢-th
harmonic of the polymer-concentration profile.
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recording, the profiles of polymer concentrations at tp = 10 (at the steady state) with
various Rp (Rp = 0.05,0.1,1.0,10.0,50.0) are summarized in Fig. 4.3. For the higher
dimensionless reaction rate (Rp > 1.0), the diffusion coefficient is higher than the poly-
merization rate, so the free monomer has enough time to diffuse from the dark region to
the bright region before the polymerized reaction occurs. Thus, the maximum value of
the polymer concentration occurs at /A = 0.0. In contrast, for the smaller dimensionless
reaction rate (Rp < 1.0), the polymerization occurs faster than diffusion and, consequently,
results in two peaks of the polymer concentration near the dark regions. As seen in Fig. 4.3,
the higher Rp corresponds to a more sinusoidal polymer profile. Therefore, higher Rp also
implies more accuracy for the low-harmonic-component approximation.

Figure 4.4 shows the saturation values of harmonic components of polymer concen-

trations as a function of Rp (in log scale) for various op (op = 0.0,0.62,1.23,1.85). As
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Figure 4.3: Polymer-concentration profiles ®, at the steady state for various values of Rp
(Rp = 0.05,0.1,1.0,10.0,50.0) with @ = 0.0, » = 0.5, and op = 0.0. The higher value
of Rp corresponds to smaller grating period, higher diffusion coeflicient, or lower exposure
irradiance (lower polymerization rate).
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Figure 4.4: Saturation values of the first three harmonics of polymer concentrations as a
function of Rp (in log scale) for various values of op (op = 0.0,0.62,1.23,1.85).
seen in Fig. 4.4, for higher Rp (Rp > 10.0), the harmonic-component saturation values are
independent of Rp. In this region, the amplitudes of the first-harmonic-component satu-
ration values are much larger than those of higher-harmonic-component saturation values,
so the recording profiles resemble sinusoidal ones. Therefore, the low-harmonic-component
approximation provides an accurate analysis for larger Rp (Rp > 10.0). However, for
smaller Rp (Rp < 1.0), the amplitudes of higher-harmonic-component saturation values be-
come comparable to those of first-harmonic-component saturation values, so the more non-
sinusoidal profiles are developed in this region. As a result, the low-harmonic-component
approximation is not a very precise method to analyze the hologram recording for small Rp
(Rp < 1.0).

To determine how good a sinusoidal profile is developed after exposure, the nonlin-

earity parameter of the ¢g-th harmonic of the polymer concentration at the steady state x; ,
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(g > 1) can be defined as

' p |
£ g

1 4-24
Xp,q I(I);’l’ (Q> )a ( )

where |®7 /| and |®; | are the amplitudes of the g-th (¢ > 1) harmonic and the first
harmonic of the polymer concentration (at the steady state) respectively. As shown in
Fig. 4.5, for larger Rp (Rp > 10.0), both x;,  and x; 4 are less than 1.0 for all range of op;
thus, the polymer-concentration profile resembles a sinusoidal one. However, for smaller Rp

(Rp < 0.1), the polymer-concentration profile has larger nonlinearity resulting in a profile

differing more from a sinusoidal one.
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Figure 4.5: Nonlinearity of polymer concentration at the steady state as a function of
Rp (in log scale) for various values of op (op = 0.0,0.62,1.23,1.85). X; , represents the

nonlinearity of the g-th harmonic of the polymer concentration at steady state.

4.2.2 Comparison of the Finite-Difference Time-Domain Method and the

Low-Harmonic-Component Approximation

As described in the previous section, the accuracy of the low-harmonic-component approx-

imation has been studied qualitatively with respect to the dimensionless reaction rates Rp,
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dimensionless-nonlocal variance parameters o p, and nonlinearities of polymer-concentration
profiles. In order to quantify the accuracy of the low-harmonic-component approximation,
the error of the first-harmonic saturation value of the polymer concentration calculated

using the low-harmonic-component approximation can be defined (in percent) as

®FDTD _ g LHC|

Error = —2* S,FDTDp’l x 100, (4.25)
(I)P,l
where @;{DTD and @;‘ILHC are the first-harmonic-component saturation values of poly-

mer concentrations calculated by the FDTD method and by the four-harmonic-component
approximation [84], respectively. In Fig. 4.6, the error of the first-harmonic components

calculated by the four-harmonic-component approximation [84] is plotted as a function of

Rp (in log scale) for different op values (op = 0.00,1.62,1.23,1.85).
As shown in Fig. 4.6, the error of four-harmonic-component approximation de-

creases as op and Rp increase because the polymer-concentration profile for larger op
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Figure 4.6: Errors of the first harmonic of polymer concentrations due to the four-harmonic-
component approximation with respect to the finite-difference time-domain method as a
function of Rp (in log scale) for various values of op (op = 0.0,0.62,1.23,1.85).
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and Rp resembles more a sinusoidal variation [as shown in Figs. 4.1(b) and 4.3]. The
error of the four-harmonic-component approximation is less than 6% as Rp > 10.0 for
all values of op. However, as Rp < 0.1 for all values of op, the error of four-harmonic-
component approximation is larger than 10%. The presented results of the accuracy of
the low-harmonic-component approximation by comparing the FDTD method to the four-
harmonic-component approximation are in agreement with the literature results obtained
by comparing the two-harmonic-component and the four-harmonic-component approxima-
tions [84]. Moreover, it is not unexpected that the trend of the error is similar to that of the
nonlinearity because the more nonlinear response causes larger error of the low-harmonic-

component approximation.

4.3 Unslanted Holographic Gratings

4.3.1 Real-Time Diffraction-Efficiency Measurement

The holographic recording material used in this research is the DuPont OmniDex613 pho-
topolymer. This holographic photopolymer consists of a 6.0um-thick photopolymer film
coated onto the substrate of polyethylene terephthalate (Mylar layer). The refractive in-
dices of the DuPont OmniDex613 photopolymer are ng, = 1.535 and ng, = 1.50 for
free-space wavelength Ao, = 363.8nm (recording wavelength) and for free-space wave-
length Ao, = 632.8 nm (reading wavelength) respectively. A removable cover sheet is added
to protect the photopolymer film. A sample is prepared by removing the cover sheet and
laminating the photopolymer film onto a glass (fused silica) as a substrate. The thickness
of this glass is ~ 1.0mm, and its refractive index is 1.4567.

The experimental setup applied to study the dynamics of unslanted holographic
grating formations is shown in Fig. 4.7 [70,75, 76, 134] The holographic grating is created
by use of a commercial argon-ion laser (Spectra-Physics BeamLok 2065-S) beam with di-

ameter 1 c¢m and maximum available power 0.5mW that is split into two incident beams,
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referred to as the reference beam and the objective beam. The free-space wavelength of the
argon-ion laser is Ao, = 363.8 nm. In order to obtain a high contrast interference pattern,
the intensity of two incident beams is adjusted to be equal (fringe visibility V' = 1.0 ). The
incident angle between the objective beam and the reference beam outside the sample is
60° (i.e. 8, = 6, = 30°), and thus the period of this unslanted grating is A = 363.8 nm. The
dynamics of the holographic grating formation are studied by monitoring the diffraction
efficiency during exposure by use of a He-Ne TE-polarized laser as a reading beam with

free-space wavelength A\g, = 632.8 nm because the recording photopolymer (DuPont Om-

Glass Plate
l Mylar

Objective Beam

(how=363.8 nm) 3

Reference Beam
{Ao,w=363.8 nm)

\
Iinc T ID1

Photopolymer
(Grating)

Reading Beam
{A0,=632.8 nm)

Figure 4.7: Schematic diagram of real-time diffraction-monitoring experiment for DuPont
OmniDex613 photopolymer. A argon-ion laser with free-space wavelength g, = 363.8 nm
is used as a writing beam to create the fringe interference, and a He-Ne laser with free-space
wavelength Ao, = 632.8 nm is used to monitor the temporal behavior of hologram recording.
The incident angle of writing beam is 6, = 8, = 30, resulting in a unslanted grating with
a period A = 363.8nm. The incident angle of the reading beam is 6;,. p = 60.42°, which
satisfies the first-order Bragg condition.

57



niDex613) is not sensitive to red light. The incident angle of the reading beam outside the
sample is 0. p = 60.42°, which is selected such that the incident beam satisfies the first-
order Bragg condition. Then, the power of the first-order diffracted-beam is measured by
a photodetector, and the diffraction efficiency of the first-diffracted order DE) (in percent)

can be defined as

Ip:

DE; = 221 x 100, (4.26)

inc

where Ip; is the diffracted intensity, and I;;. is the incident intensity.

After the holographic recording is completed, the sample is cured by a uniform UV
light with wavelength A\g = 365.0nm and exposure irradiance Iy = 5.0mW/cm? for 20
seconds to polymerize the residual free-monomer. Then, a post-baking process is applied
on the sample to improve the refractive-index modulation of the photopolymer. In order to
investigate the effects of postprocessing on the refractive-index modulation of photopoly-
mers, samples (after a uniform UV curing) are treated at different baking temperatures 73
(T, = 90°C, 120°C, 150°C) for various baking time periods tp (¢, = 1h,1.5h,2h) in this

research.

4.3.2 Effects of Exposure Irradiance on the Unslanted Holographic Grat-

ing Recording

Figure 4.8 shows the dynamic diffraction efficiency of the first-diffracted order during holo-
gram recording with respect to various exposure intensities Iy (Iy = 0.043,0.110, 0.240, 0.368
mW /ecm?). As shown in Fig. 4.8, for the lower exposure irradiance (Ip = 0.043 mW/cm?),
the DF) rises monotonically with a slow speed because the lower exposure irradiance cor-
responds to the lower polymerization rate; thus, the grating is developed slowly. As the
exposure irradiance increases, for example Io = 0.110 or 0.240 mW/cm?, the polymerization
rate also increases and is comparable to the diffusion coefficient of the free monomer. In

these cases, the free monomers in the bright regions are depleted and polymerized quickly,
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Figure 4.8: Experimentally monitored diffraction efficiencies as a function of exposure time
for unslanted transmission gratings recorded on DuPont OmniDex613 photopolymer by use
of various exposure irradiances Iy (I = 0.043,0.110,0.240,0.368 mW/cm?). The solid lines
represent the curve fitting for the experimental data.

and the free monomers have enough time to propagate from the dark regions to the bright
regions to develop a phase grating resembling more of a sinusoidal variation. This phe-
nomenon is similar to the numerical results of polymer concentrations for larger Rp (as
shown in Fig. 4.3). Thus, increasing the exposure irradiance, the DE; increases faster and
reaches a higher saturation value. If the exposure irradiance increases further, for example
Iy = 0.368 mW/ch, the polymerization rate increases further and is larger than the dif-
fusion rate (resulting in a smaller Rp). In this case, the holographic grating is developed
immediately after exposure, and, consequently, the D FE; rises faster because of the higher
polymerization rate. However, since the diffusion coefficient is smaller than the polymer-
ization rate in this case, the free monomers in the dark regions do not have enough time
to diffuse to the bright regions before the polymerized reaction occurs. Thus, the polymer-

concentration profile developed by use of a higher exposure irradiance does not represent
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well a sinusoidal variation, which is similar to the numerical result of polymer concentra-
tions for smaller Rp (shown in Fig. 4.3), resulting in a smaller saturation level of the first
harmonic of the refractive index.

Since the diffusion equation illustrates the dynamics of holographic formations in
terms of the monomer-concentration profile and the polymer-concentration profile, which
correspond to the refractive index directly, it is necessary to convert the experimentally
obtained data of diffraction efficiencies to the corresponding refractive-index modulations.
Although Kogelnik’s theory [86] with a correction factor for the Fresnel reflection loss has
been applied by many researchers [73,76,77,79-85] to accomplish this conversion, it does
not provide an accurate estimation of refractive-index modulation in this diffraction case
because the average refractive index in the grating is not equal to those in the input and
output regions. Furthermore, multiple interference effects between the various layers could
also affect the estimated refractive-index modulations. In this research, both Kogelnik’s
theory (corrected for Fresnel reflection losses) and the RCWA [56] are applied to estimate
the refractive-index modulations. The number of diffracted orders retained in the RCWA
was seven. Larger number of diffracted orders did not make any difference in the calculated
diffraction efficiencies or refractive-index modulations. The detail description for converting
experimental diffraction efficiencies to the corresponding refractive-index modulations by
use of Kogelnik’s theory and the RCWA can be found in Appendix B.

After applying the RCWA on the real-time measurement of diffraction efficiencies (as
shown in Fig. 4.8 the first-order harmonics of refractive-index modulations, An;, are pre-
sented in Fig. 4.9 for various exposure intensities (Io = 0.043,0.110,0.240, 0.368 mW/cm?).
As seen in Fig. 4.9, the growth curves of refractive-index modulations are similar to those
of the monitored diffraction efficiencies (shown in Fig. 4.8). According to the experimen-
tal results the optimal exposure irradiance is Io = 0.240 mW/cm?, and the corresponding
saturation value of refractive-index modulation is An; = 0.011.

To quantify the accuracy of Kogelnik’s theory (corrected for Fresnel reflection losses),

60



0.012¢

=

<

& 0.010

=)

S 0.008f

B

!

=

x 0.006¢

()

o

£ e 1,=0.043 mW/cm?

¢ 0.004 = 1,;=0.110mW/cm?

g 4 1,=0.240 mW/cm?

S 002t s 1,=0.368 mW/cm?

s O Curve Fitting

o

0.000 = . . — *

0 150 300 450 600

Exposure Time (sec)

Figure 4.9: Experimental refractive-index modulations that are converted from monitored
diffraction efficiencies (as shown in Fig. 4.8) by use of the RCWA, as a function of exposure
time for unslanted transmission gratings recorded on DuPont OmniDex613 photopolymer
by use of various exposure irradiances Iy (Ip = 0.043,0.110,0.240,0.368 mW/cm?). The
solid lines represent the curve fitting for the experimental data.

the error of refractive-index modulations (determined by Kogelnik’s theory) is defined (in

percent) as
Ani rewa — Ani Kog

x 100, 4.27
Ani rew A (427)

Error =

where Any rewa and Ang ko4 are refractive-index modulations estimated by the RCWA
and Kogelnik’s theory (corrected for Fresnel reflection losses) respectively. As shown in
Fig. 4.10, after the holographic recording is finished (diffraction efficiencies reach saturation
values), the errors of Kogelnik’s theory are ~ 30% for all exposure intensities. In summary,

Kogelnik’s theory may not be a very precise method for the estimation of refractive-index

modulation.
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Figure 4.10: Errors of refractive-index modulations estimated by wuse of Kogel-
nik’s theory with respect to RCWA for various exposure irradiances Iy (Ip =
0.043,0.110, 0.240, 0.368 mW/cm?).

4.3.3 Effects of Post-Baking Processing

In order to enhance the refractive-index modulation and thus the diffraction efficiency, re-
searchers have applied various exposure processing to fabricate holographic gratings. For ex-
ample, Piazzolla and Jenkins [72] used the alternate illumination to fabricate a holographic
grating, which was based on the DuPont HRF-150-38 photopolymer, and the diffraction
efficiency increases by 10% in the experiment. Using the same DuPont photopolymer, Rhee
et al. [75] exploited different combinations of postexposures on the grating fabrication, and
the maximum increase of the diffraction efficiency is ~ 5%. Moreover, Weitzel [136] studied
the effect of the preillumination on the diffraction efficiency of a grating, which was fabri-
cated by use of pulse exposure on the DuPont HRF-800X071-20 photopolymer film. The
maximum diffraction efficiency increases from ~ 7.5% (without preillumination) to 40%
and 75% by use of the pulse preillumination and the continuous incoherent preillumination

respectively. However, the preillumination does not improve the performance of the grating,

62



which is fabricated by use of the CW exposure.

In addition to exposure conditions, the post-baking processing [67,136,137] was also
mentioned in the grating fabrication to improve the diffraction efficiency. However, there
has been no complete discussion for the effects of various baking temperatures and baking
times on diffraction efficiencies of holographic gratings fabricated using photopolymers. In
this research, to investigate the effects of the post-baking on diffraction efficiencies the
grating samples are baked at various temperatures and baking times after the holographic
recording and the uniform UV curing

Figure 4.11 shows the experimental results of refractive-index modulations as a func-
tion of the baking time for various baking temperatures (7}, = 90°C, 120°C, 150°C') and dif-
ferent exposure intensities (Iop = 0.043,0.110,0.240, 0.368 mW/cm?). As shown in Fig. 4.11,
the post-baking processing does not enhance the refractive-index modulation a lot for the
lower exposure irradiance (I = 0.043 mW/ecm?). However, as the exposure irradiance in-
creases, the post-baking condition enhances the refractive-index modulation dramatically.
For the exposure irradiance with Iy = 0.110mW/cm?, the optimum baking temperature
and baking time are T, = 120°C and time ¢, = 1.5h respectively. Based on this opti-
mum baking condition, the refractive-index modulation increases from An; = 1.056 x 1072,
corresponding to DEy = 8.58% (without post-baking), to Any = 2.404 x 10™2 (correspond-
ing to DE, = 37.08%). Similarly, the optimum post-baking conditions for the exposure
irradiance with Iy = 0.240 mW/cm2 are T, = 120°C and £, = 2h, and, as a result, the
refractive-index modulation rises from Anj = 1.126 x 1072, corresponding to DE; = 9.71%
(without post-baking) to Anj = 2.750 x 1072 (corresponding to DE; = 44.92%). Further-
more, increasing the exposure irradiance up to Iy = 0.368 mW/cm?, the maximum increase
of the refractive-index modulation occurs at 7, = 120°C and t;, = 1.5 h. In this case, the
refractive-index modulation rises from An; = 1.066 x 10~2, corresponding to DE; = 8.75%
(without post-baking) to Anj = 2.422 x 1072 (corresponding to DE; = 37.50%). Generally

speaking, the optimum post-baking condition is 7}, = 120°C and ¢, = 1.5h. In addition,
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comparing the experimental data for different exposure intensities for the grating fabrica-
tion (as shown in Fig. 4.11), the higher the refractive-index modulation is before baking the
more the refractive-index modulation increases after baking (based on the optimum baking

conditions).

— 2
003r 1,=0.043 mW/cm2
—a— [,=0.110 mW/cm
—— 1,p=0.240 mW/cm? .
—+— 1,=0.368 mW/cm? ,...--""
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Figure 4.11: Effects of post-baking conditions on the refractive-index modulations for var-
ious exposure irradiances Iy (Ip = 0.043,0.110,0.240,0.368 mW/cm?). The holographic-
grating samples are baked at three different temperatures 7, = 90°C,120°C, 150°C for
three different time periods t, = 1h,1.5h,2h.

4.3.4 Characteristic Parameters of Holographic Photopolymers

In this section the characteristic parameters of unslanted holographic gratings based on
DuPont OmniDex613 photopolymers including diffusion coefficient Dy, nonlocal response
length /o, and the value of k are determined by fitting the theoretical model to the exper-
imentally obtained growth-curves of the refractive-index modulations. In order to optimize
the fittings of the theoretical results to the experimental data of the refractive-index mod-

ulations, an error function is defined and minimized. In this research, the error function
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Serror 1s defined as

ferror(RD, 0D, 5,8, Cp, Crm) = >_[A11 modet(BD, 0D, 5, ¢, Cp, Crn i) — Ay eqp ()],

: (4.28)
where Any modet(Rp, 0D, K, qﬁ',Cp, Chm, ti) and Ang ezp(t;) are the refractive-index modula-
tions obtained from the theoretical analysis and the real-time measurements, respectively,
at exposure time ¢; (where i = 1,2,..., M and M is the total number of measurements).

In order to minimize the error function [shown in Eq. (4.28)], i.e. to minimize
the difference between the theoretical model and the experimental data, a quasi-Newton
method [138] is applied in this research. Since the quasi-Newton method is used to solve
minimization problems subject to simple bounds on the variables, the expected ranges of
the variables have to be determined. Furthermore, some of the variables (x and ¢') can
be estimated from the saturation data and therefore the number of variables that minimize
ferror is reduced to the Rp, op, Cp, and Cy,. First let us assume the monomer phase grating
and the polymer phase grating are in phase (i.e. d)l = 0) because there is no zero-crossing
point of growth curves of refractive-index modulations [73] (as shown in Fig. 4.9). Since the
holographic formation reaches the steady state at tp = 10, the values of k¥ can be estimated

from the experimentally growth curves of refractive-index modulations at the steady state.

Thus, k can be determined by:

(4.29)

10
K = )
\/(1 - Rf)IOtsat

where Ry is a correction factor for the Fresnel loss of the glass (as described in Appendix B),
and tgq is the exposure time when the holographic formation reaches the steady state (i.e
the experimentally monitored diffraction efficiencies reach saturation values). As shown in
Fig. 4.8, the steady-state exposure-times are tg; = 180, 320, 550, and 1320 sec corresponding
to the values of xk = 0.10,0.07,0.06, and 0.04 cm/\/msec for Iy = 0.368,0.240,0.110, and
0.043 mW/cm? respectively.

Since the free monomers are completely consumed at steady state, i.e. ®p,(2p,tp sar) =
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0, Cp can be estimated from Eq. (4.15) as follows,

S
_Anj

CP - Ps )
p1

(4.30)

where An{ is the experimentally obtained refractive-index modulation at steady state, and
@, 1 is the theoretical saturation-value of the first harmonic of polymer concentration. Ac-
cording to Fig. 4.4, the saturation value of the first harmonic of the polymer concentration,

o

5.1; varies from ~ 0.1mole/cm?® to ~ 65mole/em®. In addition, the experimentally ob-
tained refractive-index modulation at steady state is Anj ~ 0.01 (as shown in Fig. 4.9).
Therefore, the range of Cp, is 1071 cm3/mole < C, < 1.5 x 107% ¢cm3/mole. Next, it is
assumed that the value of Cy, is of the same order as Cp. Thus, the range of Cy, is chosen
as 1071 em3/mole < Cp, < 1.5 x 107* em®/mole. Furthermore, the ranges of Rp and op
are assigned as 1072 < Rp < 102 and 0 < op < 10 respectively in this research which are
equivalent to the corresponding ranges used for non-normalized variables in literature [83].
It is worth mentioning that op = 0 corresponds to the local diffusion model [81].

By using a quasi-Newton method with a finite-difference gradient [138] in conjunction
with the expected ranges of Rp, op, Cp, and Cp, the error function feyror of Eq. (4.28) was
minimized and the optimum values Rp, op, Cp, and Cy, were obtained. Figure 4.12 shows
the theoretical fits (using the RCWA) to the experimentally growth curves of refractive-
index modulations. As shown in Fig. 4.12, the theoretical predictions are very good. Table
4.1 summarizes the optimum values of Rp, op, Cp, and C,, which are used for the theo-

retical calculations in Fig. 4.12. The corresponding diffusion coefficients Dy and nonlocal

response length /o shown in Table 4.1 are estimated by:

VA= RN,
Do = KZAzRD—(-——Q—O (4.31)

472 '

and

A/
Vo =YD (4.32)
2w
As shown in Table 4.1, Dy remains almost constant, which is in agreement with

the assumption of & = 0.0 in this research. The average of diffusion coefficient is Dy =
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Figure 4.12: Comparison between theoretical models and experimentally obtained
refractive-index modulations of unslanted holographic gratings for various exposure irradi-
ances Iy (Io = 0.043,0.110,0.240, 0.368 mW/cm?). The solid lines represent the theoretical
results based on the RCWA and on characteristic parameters listed in Table 4.1.

1.005 x 10712 em?2/sec. However, Moreau et al. [127] experimentally predicted the diffu-
sion coefficient of DuPont HRF600 photopolymer (similar to the DuPont OmniDex613) to
be Dy = 6.52 x 107 ¢m?/sec. The main reason for the smaller value of the diffusion
coefficient that we estimated is that we used much lower exposure irradiance and shorter
wavelength (Ip = 0.043 ~ 0.368 mW/cm? at Aow = 363.8nm) than Moreau et al. [127]
used (Ip = 10mW/cm? at Aoy = 514.5nm) to record the holographic gratings. More-
over, the nonlocal response length /o increases as the exposure irradiance decreases (i.e
Rp increases). The average nonlocal response length is \/o = 59.27nm. Since the ex-
act composition of the DuPont OmniDex613 photopolymer is proprietary, the predicted
value of the nonlocal length of DuPont OmniDex613 photopolymer is compared to those of
other materials. For an acrylamide based photopolymer, the nonlocal length estimated by

Lawrence et al. is v/o = 75.9 £ 25nm [84]. On the other hand, the values of /o of DuPont
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photopolymers (the product number is not given) found in literature varies from 47.6 nm
to 84.6nm [83]. Therefore, the nonlocal length of DuPont OmniDex613 photopolymer

predicted in this paper (/o = 59.27 nm) seems very reasonable.

Table 4.1: Characteristic parameters of unslanted holographic grating formations based on
the DuPont OmniDex613 photopolymers for exposure to Mg, = 363.8nm UV light

Exposure Irradiance K Cp Cm Dy Vo
Io(mW/em?) em/vVmWsec Rp op cm?/mole  cm®/mole em?/sec nm
0.043 0.04 3.89 1.30 33x107% 37x107% 0988 x 10712 66.01
0.110 0.06 1.57 125 36x107% 4.0x 1074 0.957 x 10712 64.74
0.240 0.07 0.96 092 3.8x107% 43x107% 1.009x 1072 5554
0.368 0.10 0.58 0.77 4.1x107% 4.6x107% 1.066 x 1072 50.81
Average 0.0675 1.06 3.7x107% 4.15x107% 1.005 x 102 59.27

4.4 Slanted Holographic Gratings

4.4.1 Real-Time Diffraction-Efficiency Measurement

Similar to the recording configuration for unslanted-grating fabrication (as shown in Fig. 4.7),
the basic interferometer for studying the dynamics of small slant-angle holographic grating
formations in photopolymers is shown in Fig. 4.13 [70,75,76]. The holographic grating is
recorded by use of a commercial argon-ion laser beam with diameter 1 cm and maximum
available power 0.5mW that is split into two incident beams, referred to as the refer-
ence beam and the objective beam. The free-space wavelength of the argon-ion laser is
Ao,w = 363.8nm. As seen in Fig. 4.13, the incident angles of the objective beam and the
reference beam (measured from the normal of the glass plate) are 6, and 6,. Thus, the
grating period A and the slant angle ¢ (measured from the interface of the grating) without
considering the shrinkage effect are

_ /\O,w
2ng. sin[%(@é +6)]

6 —o
p=-2—T > r (4.34)

(4.33)
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where 6, = sin~!(sin,/n,,,) and 6, = sin~!(sin 6, /n,,,) are the angles of the objective
beam and the reference beam respectively inside the photopolymer. In this research, the
incident angles of the objective beam and the reference beam for fabricating a small slant-
angle grating are selected as 8§, = 45.0° and 6, = 0.0° respectively. As a result, without
considering the shrinkage effect during holographic recording, the grating period is A =
0.5 um, and the slant angle is ¢ = 13.71°. Furthermore, considering the Fresnel reflection
losses and different projection areas of the objective beam and the reference beam, the

power ratio between the objective beam and the reference beam for the small slant-angle
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Reading Beam
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Reference Beam
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Figure 4.13: Schematic diagram of real-time diffraction-monitoring experiment for a small
slant-angle grating based on DuPont OmniDex613 photopolymer. An argon-ion laser with
free-space wavelength Ao ., = 363.8 nm is used as a writing beam to create the fringe inter-
ference, and a He-Ne laser with free-space wavelength Ao, = 632.8 nm is used to monitor
the temporal behavior of hologram recording. The incident angles of the objective beam
and the reference beam are 6, = 45.0° and 6, = 0.0° respectively, and results in a slanted
grating with a period A = 0.5 um and a slant angle ¢ = 13.71°. The incident angle of the
reading beam is 6;nc p = 17.01°, which satisfies the first-order Bragg condition.
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grating is set at P,/P, = 1.49 to obtain equal intensities of these two beams (i.e. fringe
visibility V' = 1.0 inside the photopolymer).

Furthermore, the dynamics of the holographic grating formation are studied by mon-
itoring the diffraction efficiency during exposure by use of a He-Ne TE-polarized laser as a
reading beam with free-space wavelength Ag, = 632.8 nm because the recording photopoly-
mer (DuPont OmniDex613) is not sensitive to red light. The incident angle of the reading
beam outside the sample is 6ic 8 = 17.01°, which is selected such that the incident beam
satisfies the first-order Bragg condition. Then, the power of the first-order diffracted-beam
is measured by a photodetector, and therefore the diffraction efficiency of the first-diffracted
order (DE1), defined as a ratio of the intensity of the first-order diffracted-beam (Ip1) to
the intensity of the incident beam (/;,.), can be obtained. Applying the RCWA with a cor-
rection factor for the Fresnel reflection loss (resulting from the interface between the glass
plate and air) to the measured diffraction efficiency of the first-diffracted order [134], the
corresponding refractive-index modulation of a small slant-angle grating formation during
holographic recording can be estimated.

Although a slanted grating can be fabricated by use of the basic interferometric
recording (as shown in Fig. 4.13), the maximum slant angle obtained from this recording
configuration is ¢ = 26.94° for a grating with period A = 0.5 um as the incident angles of
the objective beam and the reference beam are 6, = 90.0° and 8, = —20.56° respectively.
However, for practical applications, especially for input and output grating couplers, the
slant angles of holographic gratings are about 45 degrees [22,66]. Thus, in order to fabricate
a large slant-angle grating, especially for ¢ > 20.32°, a prism is needed [22,66]. The
experimental setup for developing a large slant-angle grating is shown in Fig. 4.14. As seen
in Fig. 4.14, a fused silica 45° — 45° — 90° prism with refractive index n, = 1.47 is inserted
between the prepared sample and air. The outside surfaces of the prism are AR coated to
reduce reflections.

Similarly, the free-space wavelength of recording beam is Ao, = 363.8 nm, and the
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incident angles of the objective beam and the reference beam (measured from the normal of
the prism) are 6, and 6,. As a result, the grating period and the slant angle (measured from

the interface of the grating) without considering the shrinkage effect can be represented as

/\O w
A= L I— 4.35
2ng. sin[ (6, — 6,)] (4.35)
8, +9,
¢ = _"_D, (4.36)
2
where 0; _ Sin—l{np'w sin[45+si7;1g_';(sin 00/@,1,,”} and 07’ _ Sin—l{np'w sin[45+si7ilg‘ﬂ:(sinOr/np,w)]}.

[=4

Following the selected grating period of the small slant-angle grating (A = 0.5 um) and
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Figure 4.14: Schematic diagram of real-time diffraction-monitoring experiment for a large
slant-angle grating based on DuPont OmniDex613 photopolymer. An argon-ion laser with
free-space wavelength g, = 363.8 nm is used as a writing beam to create the fringe inter-
ference, and a He-Ne laser with free-space wavelength Ao, = 632.8 nm is used to monitor
the temporal behavior of hologram recording. The incident angles of the objective beam
and the reference beam are 8, = 27.29° and 6, = 18.04° respectively, and results in a slanted
grating with a period A = 0.5 um and a slant angle ¢ = 45.0°. The incident angle of the
reading beam is ;5. p = 37.62°, which satisfies the first-order Bragg condition.
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designing the slant angle of the large slant-angle grating with ¢ = 45.0°, the incident
angles of the objective beam and reference beam for fabricating a large slant-angle grating
(A =0.5um, ¢ =45.0°) are 6, = 27.29° and 6, = 18.04° respectively. Similarly, in order to
obtain equal intensities of these two beams, and thus V' = 1.0 inside the photopolymer, the
power ratio between the objective beam and the reference beam for the large slant-angle
grating is set at P,/P, = 1.96.

Moreover, a He-Ne TE-polarized laser as a reading beam with free-space wavelength
Ao, = 632.8nm is used to monitor the diffraction efficiency during exposure to study
the dynamic characteristics of lage slant-angle grating formations in photopolymers. The
incident angle of the reading beam outside the sample is 0;,, g = 37.62°, which is selected
such that the incident beam satisfies the first-order Bragg condition. However, based on
the grating with period A = 0.5 um and slant angle ¢ = 45.0° fabricated by the prism
system (as seen in Fig. 4.13), the diffracted angle of the first-order diffracted beam in
the grating is 69.96° (measured from the normal of the grating interface) and results in
the total internal reflection at the interface between the Mylar and air, so the first-order
diffracted-beam cannot be detected. Therefore, instead of measuring the power of the first-
order diffracted-beam, the power of the zero-order diffracted-beam (Ipp) is measured, and
therefore the diffraction efficiency of the zero-diffracted order (DEy) is determined. Then,
the refractive-index modulation of a large slant-angle grating formation during exposure
can be estimated by use of the RCWA with the correction factors of Fresnel reflections to
the measured diffraction efficiency of the zero-diffracted order.

After the holographic recordings for both small and large slant-angle gratings are
completed, the samples are cured by a uniform UV light with wavelength Ao = 365.0 nm
and exposure irradiance Iy = 2.0 mW/cm? for 50 seconds to polymerize the residual free-
monomer. Then, the samples are mounted on a rotational stage to study the deviations
of Bragg angle caused by recording shrinkage (described in Section 4.4.2). Furthermore,

in order to study systematically the effects of post-baking processing on the shift of Bragg
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angle and the increment of refractive-index modulation, the samples for both small and large
slant-angle gratings after exposure are treated at different baking temperatures Ty (7} =
90, 120, 150°C) for various baking time periods t; (t, = 1,1.5,2 h). When the heat processing
is done, the samples are cooled down to room temperature. Then, the samples after post-
baking processing are mounted on a rotational stage for angular-selectivity experiments to

study the deviation of Bragg angle resulting from the post-baking processing.

4.4.2 Experimental Setup of Angular Selectivity

As has been mentioned in the previous section, the shift of Bragg angle resulting from
both the holographic recording and the post-baking processing is an important parameter
of a photopolymer, especially for a slanted holographic grating. In order to determine
the shift of Bragg angle and estimate the shrinkage factor of the DuPont OmniDex613
photopolymer (recorded by UV with free-space wavelength Ao, = 363.8nm), an angular-
selectivity testing configuration shown in Fig. 4.15 is used. A recorded sample is mounted
on a rotational stage and is illuminated by a He-Ne TE-polarized laser with free-space
wavelength Ao, = 632.8nm. In order to find the new Bragg angle (e, p) resulting from
the shrinkage effect, light transmitted through the sample (not diffracted) is measured for
a range of incident angles (fin.) around the designed Bragg angle 65. For example, for
the small slant-angle grating with period A = 0.5 um and slant angle ¢ = 13.71°, the
designed Bragg angle is g = 17.01°. On the other hand, the corresponding designed Bragg
angle of the large slant-angle grating with period A = 0.5 um and slant angle ¢ = 45.0°
is 6 = —30.93°. The transmission efficiency of a slanted grating (i.e. the zero-order
diffraction efficiency, DFEjp) is defined as a ratio of the intensity of the transmitted beam
(Ipo) to the intensity of the incident beam (Ijn). Then, the curve of angular-dependent
transmission efficiency of a slanted grating is fitted by the RCWA (considering the glass
plate as an input region and the Mylar layer as an output region) in conjunction with Fresnel

reflection losses (resulting from air-glass and Mylar-air interfaces). Then, the dependence
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of the transmission efficiency on the incident angle of the reading beam, 6., is used in

order to determine the shrinkage factor, &5, and the refractive-index modulation, An;.

Mylar

Glass Plate
Photopolymer

(Grating)

Reading Beam
(20,,=632.8 nm)

Figure 4.15: Experimental setup for the angular-selectivity measurement of a recorded
sample to determine the shrinkage factor, the refractive-index modulation, and the shift of
the Bragg angle.

4.4.3 Optimization of Rigorous Coupled-Wave Analysis Fittings to Angular-

Dependent Transmission Efficiencies

In order to optimize the fittings of the theoretical results to the experimental data of
angular-dependent transmission efficiencies (for determining the shrinkage factor, 45, and
the refractive-index modulation, Anj, after holographic recording), an error function is

defined and minimized. The error function gerror is defined as

Gerror (55; Ngr, Anl) Ginc,is /\O,r) = Z [DEO,RCWA(sz» Tg,ry Anh einc,iy /\O,r)_DEO,exp(einc,i)]27
einc,i

(4.37)
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where DEg rew 4 and D Eg ..y, are the transmission efficiencies obtained from the RCWA in
conjunction with Fresnel reflection losses and the experimental measurements, respectively,
at incident angle 6ip.; (where i =1,2,..., M and M is the total number of measurements).
The number of diffracted orders retained in the RCWA is assumed to be seven [134] (since
this number of orders guaranteed convergence of the diffraction efficiencies). In addition,
depending on the exposure intensity and the grating period, the nonlinearity parameter
of the second harmonic x;, (as seen in Fig. 4.5) of the polymer concentration at steady
state (corresponding to the ratio of the second harmonic to the first harmonic of dielectric
constant in the grating) for the DuPont OmniDex613 photopolymer varies from Xp2 ~ 0.1
to x; 9 ~ 0.2. As a result, the errors of transmission efficiencies, DEjp, without considering
the second harmonic of the dielectric constant in the grating for the RCWA (i.e. only the
first harmonic of the dielectric constant is retained in the RCWA) vary from 0.0008 to
0.0016 and from 0.0022 to 0.0045 for small and large slant-angle gratings respectively as the
first-order Bragg condition is satisfied. Therefore, a sinusoidally varying dielectric constant
in the grating is assumed. l.e. the second and higher harmonics of the dielectric constant
are neglected in the RCWA model since they are a lot smaller than the first harmonic and
they do not affect the diffraction efficiencies of interest.

To minimize the error function [shown in Eq. (4.37)], a quasi-Newton method [134,
138] incorporating simple bounds of variables is applied. In this research, ranges of d5 and
Any are chosen as 0.0% < 65 < 6.0% and 0.00 < An; < 0.02 respectively [70,75,124-129,
134]. Furthermore, the refractive index of grating and the free-space wavelength of reading
beam are assumed to be ny, = 1.50 and Ag, = 632.8 nm respectively. As a result, the new
Bragg angle, Opew, B, corresponding to the minimum value of DEgp rcw 4 can be obtained.

The deviation from the Bragg angle, Afp, is defined as
Abp = Opew B — 9B, (4.38)
where 0p is the designed Bragg angle. The designed Bragg angles are g = 17.01° and
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fp = —30.93° for both small and large slant-angle gratings respectively (as described in

Section 4.4.1).

4.4.4 Recording Shrinkage of DuPont OmniDex613 Photopolymers

In this research, two grating samples with the same grating period and different slant angles
are fabricated and tested. The first sample is a small slant-angle grating with A = 0.5 um
and ¢ = 13.71°, and the second sample is a large slant-angle grating with A = 0.5 um and
¢ = 45.0°. The small slant-angle grating is fabricated by use of four different exposure
intensities Iy (Ip = 0.043,0.110,0.240,0.368 mW/cm?). However, for the fabrication of a
large slant-angle grating, the power ratio of the objective beam to the reference beam is
P,/P, = 1.96. In addition, the projection areas of the objective beam and the reference
beam are 1.86cm? and 0.96 cm? respectively. Therefore, in order to obtain the exposure
intensity with Iy = 0.368 mW/cm?, the required powers of the objective beam and the
reference beam are P, = 0.344dmW and P, = 0.176 mW respectively and thus the total
power is 0.52mW, which is higher than the maximum available power of the UV laser
(0.5mW). In addition, our laser is unstable in the vicinity of 0.5mW output power. As
a result, the large slant-angle grating is fabricated only by use of three different exposure
intensities with Iy = 0.043,0.110, and 0.240 mW/cm?. After the holographic recordings
and the uniform UV exposure for polymerizing the residual free-monomer, both small and
large slant-angle gratings are completed, the samples are mounted on a rotational stage
(as seen in Fig. 4.15) and the incident angles, ;n., are scanned from 0.0° to 35.0° (for
small slant-angle gratings) and from —40.0° to —20.0° (for large slant-angle gratings) to
study the angular-dependent transmission efficiencies. Finally, the quasi-Newton method
is applied to optimize the theoretical fittings of RCWA to the curves of angular-dependent
transmission efficiencies to determine the shrinkage factors (after recording), the refractive-

index modulations, and the deviations of Bragg angles (as described in Section 4.4.3).
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A. Small Slant-Angle Gratings

Figure 4.16 shows the experimental results and the RCWA fittings of angular-dependent
transmission efficiencies of small slant-angle gratings (A = 0.5 um, ¢ = 13.71°), which are
fabricated by four different exposure intensities I (I = 0.043,0.110,0.240, 0.368 mW/cm?2).
As seen in Fig. 4.16, comparing the experimental curves to the RCWA fittings, the oscil-
lations of experimental curves can be observed, especially as the incident angles (6in.) of
the reading beam are away from the designed Bragg angle (g = 17.01°). These oscilla-
tions of experimental curves result from the multi-reflection effects of Mylar and/or glass
layers. The multiple interference effects of the Mylar and/or glass layers were also observed
in the RCWA results when the two layers were incorporated in the model as finite-width
optically-flat layers. However, the large number of oscillations made the accurate deter-
mination of the Bragg angle very difficult and thus it was decided to include these lay-
ers in the model as semi-infinite regions and correct the diffraction efficiencies with the
Fresnel power reflection factors. The above simplification is also justified by the partial
optical flatness of the glass and Mylar layers. Based on the RCWA fittings (represented
by solid lines in Fig. 4.16), the Bragg angles shift from the designed value (g = 17.01°)
to the small ones (fpey,p = 16.34°,16.32°,16.16°, and 16.15° for Iy = 0.043,0.110, 0.240,
and 0.368 mW/cm? respectively), implying that the DuPont OmniDex613 photopolymer is
shrank after recording. The corresponding shrinkage factors estimated by the RCWA fittings
are &, = 3.38%, 3.85%,4.18%, and 4.20% for Iy = 0.043,0.110,0.240, and 0.368 mW/cm?
respectively. In addition, the refractive-index modulations are An; = 0.015,0.015,0.014,

and 0.014 for Iy = 0.043,0.110,0.240, and 0.368 mW/cm? respectively.

B. Large Slant-Angle Gratings

On the other hand, the experimental results and the RCWA fittings of angular-dependent

transmission efficiencies of large slant-angle gratings (A = 0.5 um, ¢ = 45.0°), which are
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Figure 4.16: Angular selectivity of small slant-angle gratings with A = 0.5um and
¢ = 13.71° recorded by four different exposure intensities (a) In = 0.043mW/cm?2, (b)
0.110mW/em?, (c) 0.240mW/em?, and (d) 0.368 mW/ecm?. The solid lines represent the
RCWA fittings, and the dash lines represent the experimental measurements.
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fabricated with three different exposure intensities Ip (Ip = 0.043,0.110,0.240 mW/cm?),
are represented in Fig. 4.17. Similarly, the oscillations of experimental curves (with respect
to the RCWA fittings) resulting from the multi-reflection effects of Mylar and/or glass layers
can be observed. As seen in Fig. 4.17, the Bragg angles shift from the designed value (g =
—30.93°) to the small values (fpew B = —31.97°, —32.00°, and —32.00° for Iy = 0.043,0.110,

and 0.240 mW/em? respectively). The corresponding shrinkage factors and the refractive-
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Figure 4.17: Angular selectivity of large slant-angle gratings with A = 0.5 um and ¢ = 45.0°
recorded by three different exposure intensities (a) Ip = 0.043mW/cm?, (b) 0.110 mW/em?,
and (c) 0.240mW/cm?. The solid lines represent the RCWA fittings, and the dash lines
represent the experimental measurements.
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index modulations estimated by the RCWA fittings are d; = 2.75%, 3.30%, and 3.75% and

An; = 0.012,0.012, and 0.011 for Iy = 0.043,0.110, and 0.240 mW/cm? respectively.

4.4.5 Effects of Post-Baking Processing
A. Small Slant-Angle Gratings

Figure 4.18(a) shows the results of refractive-index modulations for small slant-angle grat-
ings (A = 0.5um,¢ = 13.71°) as a function of baking time for various baking tem-
peratures (7, = 90,120,150°C) and exposure intensities (Ip = 0.043,0.110,0.240, and
0.368 mW/cm?). The corresponding optimum baking conditions of small slant-angle grat-
ings for refractive-index modulations are summarized in Table 4.2. In general, the optimum
baking conditions are 7 = 120°C and t, = 1.5 h, and the refractive-index modulation can
increase from Anj ~ 0.013 to An; ~ 0.028.

Moreover, Fig. 4.18(b) shows the deviations of Bragg angles for small slant-angle
gratings as a function of baking time for various baking temperatures (7, = 90, 120, 150°C)
and exposure intensities (Ip = 0.043,0.110,0.240, and 0.368 mW/cm?). Before post bak-

Table 4.2: Optimum baking conditions for slanted holographic gratings based on DuPont
OmniDex613 photopolymers for exposure to Agq = 363.8nm UV light.

Small Slant-Angle Gratings (A = 0.5 um, ¢ = 13.71°)

Exposure Irradiance Optimum Temperature Optimum Time Any(x1072)
Inp (mW/em?) Ty (°C) ty (h) Before Baking After Baking
0.043 120 1.5 1.31 2.59
0.110 120 2.0 1.29 2.96
0.240 120 1.5 1.26 2.87
0.368 120 1.5 1.24 2.80
Large Slant-Angle Gratings (A = 0.5 um, ¢ = 45.0°)
Exposure Irradiance Optimum Temperature Optimum Time Any(x1072)
Io (mW/cm?) T, (°C) ty (h) Before Baking After Baking
0.043 120 2.0 1.20 2.01
0.110 120 1.5 1.13 2.12
0.240 120 1.5 1.12 2.33
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Figure 4.18: Effects of post-baking processing for small slant-angle gratings with A = 0.5 um
and ¢ = 13.71° (recorded by various exposure intensities Ip) on (a) the refractive-index
modulations and (b) the shifts of Bragg angles.
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ing, the shifts of Bragg angles are Afp = —0.67°, —0.69°, —0.85°, and —0.86° for Iy =
0.043,0.110,0.240, and 0.368 mVV/ch respectively. The negative values of Afg correspond
to the shrinkage of photopolymer during holographic recording. As seen in Fig. 4.18(b), for
lower baking temperature (7, = 90°C), the shifts of Bragg angles (Afg) before and after
baking are almost the same. The reason for this interesting phenomenon is that the material
expansion resulting from thermal processing at lower baking temperature (T, = 90°C) is
reversible. Therefore, the grating periods and slant angles do not change a lot after the grat-
ing samples (baked at T}, = 90°C) are cooled down to room temperature. As a result, the
shifts of Bragg angles are almost the same. However, as the baking temperature is increased
to T, = 120°C, the shifts of Bragg angles (Afp) increase as the baking time increases. For
example, for exposure intensity with Iy = 0.240 mW/ch, the deviations of Bragg angles
are Afg = —0.85°,—0.51°,-0.02°, and 0.19° for no post-baking, t, = 1.0,1.5, and 2.0A
respectively. The monotonical increase of Afg for this baking temperature (T, = 120°C)
results from the irreversible expansion and the decrease of the average refractive index
(ng, = 1.495 instead of 1.50) after post-baking processing of the recording material, and
thus, introduce a positive shift of Bragg angle. Furthermore, if the baking temperature is
increased to T, = 150°C, the value of Afp [as seen in Fig. 4.18(b)] increases as baking time
increases from t, = 0.0 h to t, = 1.0 h because of the irreversible expansion and the decrease
of the average refractive index during heating processing. However, as the baking time in-
creases further (from t, = 1.0 h to t;, = 2.0 h), in addition to the irreversible expansion and
the decrease of the average refractive index (resulting in a positive shift of Bragg angle),
volatile components are lost during heating and result in the shrinkage, and therefore, a
negative shift of Bragg angle. Therefore, Afp start to decrease as the baking time increases
further (from t, = 1.0h to t, = 2.0h) at higher baking temperature (I, = 150°C). In
general, the deviation of Bragg angle is strongly dependent on the baking temperature and
the baking time.

Figure 4.19 shows an example of the curves of angular-dependent transmission
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efficiencies for small slant-angle gratings (A = 0.5um,¢ = 13.71°), recorded at Iy =
0.240 mW/cm?, before and after baking at three different temperatures (7}, = 90, 120, and
150°C") for t, = 1.5 h. As shown in Fig. 4.19, after baking, the minimum values of transmis-
sion efficiencies decrease from DEy = 69.87% (no post-baking) to DEy = 35.40%, 20.05%,
and 20.38% for T}, = 90, 120, and 150°C with ¢, = 1.5 h respectively. The decrease of DEy
corresponds to the increase of the refractive-index modulation after post-baking, which is
consistent with the result shown in Fig. 4.18(a). In addition, the new Bragg angles (re-
lating to the incident angles for the minimum values of DEy) determined by the RCWA
shift from Opew,p = 16.16° to Opew,p = 16.20°,16.99°, and 17.15° for T, = 90,120, and
150°C with t, = 1.5 h respectively. It is noted that the new Bragg angle for the grating
baked at T}, = 120°C for 1.5h iS Onew,p = 16.99°, which is very close to the designed
value (A = 17.01°). Therefore, the shrinkage resulting from the holographic recording can

be compensated by the post-baking processing, especially for the baking conditions with
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Figure 4.19: Angular-dependent transmission efficiencies of small slant-angle gratings (A =
0.5 um and ¢ = 13.71°) recorded by Iy = 0.240mW/cm? before and after baking at three
various temperatures (7, = 90,120 and 150°C') for t, = 1.5 h.
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T, = 120°C and t, = 1.5 h.

B. Large Slant-Angle Gratings

For large slant-angle gratings with grating periods A = 0.5 wm and slant angles ¢ = 45.0°,
the results of both refractive-index modulations as a function of baking time for various
baking temperatures (T, = 90, 120, 150°C') and exposure intensities (Ip = 0.043,0.110, and
0.240 mW/cm?) are summarized in Fig. 4.20(a). Similarly, the corresponding optimum bak-
ing conditions of large slant-angle gratings for refractive-index modulations are summarized
in Table 4.2. In general, the refractive-index modulation can increase from Anj ~ 0.011 to
Any ~ 0.022 based on the optimum baking conditions with 7}, = 150°C and ¢, = 1.5 h.
Furthermore, Fig. 4.20(b) represents the shifts of Bragg angles for larger slanted
gratings as a function of baking time for various baking temperatures (7 = 90, 120, 150°C)
and exposure intensities (Ip = 0.043,0.110, and 0.240 mW/cm?). The trends of shifts of
Bragg angles for large slant-angle gratings with respect to the baking temperature and the
baking time are similar to the cases for small slant-angle gratings [as seen in Fig. 4.18(b)].
For the lower baking temperature (7, = 90°C), the post-baking processing does not com-
pensate the negative shifts of Bragg angles resulting from holographic recording (i.e. the
shifts of Bragg angles before and after baking are almost the same) because of the reversible
thermal-expansion. However, for the baking temperature with 7y = 120°C, the shifts of
Bragg angles (Afp) increase monotonically as the baking time increases because of the
irreversible expansion and the decrease of the average refractive index of gratings during
heating processing. For example, for exposure intensity with Iy = 0.240mW/cm?, the de-
viations of Bragg angles are Afg = —1.07°,—0.37°,0.03°, and 0.33° for no post-baking,
ty = 1.0,1.5, and 2.0 h respectively. Therefore, the shift of Bragg angle caused by recording
can be compensated by post-baking processing with 73 = 120°C and t, = 1.5 h. In addi-
tion, as the baking temperature is increased to 7 = 150°C, the values of Afp increases as

baking time increases from t; = 0.0h to ¢, = 1.0 h because the irreversible expansion and
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and ¢ = 45.0° (recorded by various exposure intensities [p) on (a) the refractive-index
modulations and (b) the shifts of Bragg angles.
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the decrease of the average refractive index during heating processing are dominant as the
baking time is less than one hour. However, as the baking time increases from ¢, = 1.0 A to
t, = 2.0 h, the shift of Bragg angle starts to decrease because the loss of volatile components
during baking processing becomes more important and results in the negative shift of Bragg
angle, and therefore, the decrease of the shift of Bragg angle.

Figure 4.21 shows an example of the curves of angular-dependent transmission ef-
ficiencies for large slant-angle gratings (A = 0.5 um, ¢ = 45.0°), recorded at the exposure
intensity of Ip = 0.240mW/cm?, before and after baking at three different temperatures
(T, = 90,120, and 150°C) for t, = 1.5h. As shown in Fig. 4.21, after baking, the mini-
mum values of transmission efficiencies decrease from DEy = 58.69% (no post-baking) to
DEy = 39.44%,11.24%, and 11.76% for T, = 90, 120, and 150°C with ¢, = 1.5h respec-
tively. The decrease of DEj correspond to the increase of the refractive-index modulation

after post-baking. In addition, the new Bragg angles (corresponding to the incident angles
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Figure 4.21: Angular-dependent transmission efficiencies of large slant-angle gratings (A =
0.5 um and ¢ = 45.0°) recorded by Iy = 0.240mW/cm? before and after baking at three
various temperatures (7, = 90,120 and 150°C') for ¢, = 1.5 h.
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of the minimum values of DEy) estimated by the RCWA shift from 8. p = —32.00° to
Onew B = —31.92°,-30.90°, and —31.05° for T}, = 90, 120, and 150°C with t; = 1.5 h respec-
tively. It is noted that the new Bragg angle for the grating baked at T}, = 120°C for 1.5Ah is
Onew,B = —30.90°, which is very close to the designed value (65 = —30.93°). Therefore, the
shrinkage resulting from the holographic recording can be compensated by the post-baking

processing with 73 = 120°C and ¢, = 1.5 A.

4.4.6 Characteristic Parameters of Holographic Photopolymers

Similarly, in order to study the dynamics of slanted grating formations in photopolymers,
the real-time diffraction-monitoring technique in conjunction with the RCWA is applied to
obtain the dynamic diffraction efliciencies, and thus, the growth curves of refractive-index
modulations during hologram recording. For each exposure intensity, nine samples were
prepared and exposed. Furthermore, in order to determine the characteristics parameters
of DuPont OmniDex613 for slanted-grating fabrications, a quasi-Newton method incorpo-
rating with an error function [134] is used to optimize the fittings of theoretical results to
the experimental data of refractive-index modulations. The detail optimization for the the-
oretical fittings to the experimental data can be found in Section 4.3.4. Figure 4.22 shows
theoretical fittings to the experimental data of refractive-index modulations for both small
and large slant-angle gratings. The solid lines represent the theoretical fittings based on
the RCWA analysis as well as the characteristic parameters summarized in Table 4.3. The
error bars represent the average, the maximum, and the minimum values of refractive-index
modulations of these nine recorded samples at each specific exposure intensity. As shown
in Fig. 4.22, the theoretical predictions are very good.

Table 4.3 summarizes the characteristic parameters of both small and large slant-
angle gratings. As seen in Table 4.3, for the lower exposure intensity (Io = 0.043 mW/cm?),
the diffusion coefficient of a slanted grating is Do ~ 0.6 x 107'? em?/sec, which is smaller

than that of an unslanted grating with Dy ~ 1.0 x 1072 ¢cm?/sec (as shown in Table 4.1).
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Figure 4.22: Comparisons between theoretical models and experimentally obtained
refractive-index modulations for (a) small slant-angle gratings (A = 0.5 um and ¢ = 13.71°)
and (b) large slant-angle gratings (A = 0.5 um and ¢ = 45.0°) recorded by various exposure
intensities Iy. The solid lines represent the theoretical results based on the RCWA and on
characteristic parameters listed in Table 4.3.
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Since the lower exposure intensity corresponds to the lower polymerization rate, the free
monomer has longer diffusion distance. As a result, both the photopolymer-Mylar and
the photopolymer-glass boundaries will affect the diffusion mechanism of free monomers,
and thus, a smaller diffusion coefficient is obtained. However, for the higher exposure
intensity (fp = 0.240 mW/em?), since the free monomers are polymerized quickly, they
cannot “sense” the existences of both the photopolymer-Mylar and the photopolymer-
glass boundaries. In the other words, the diffusion mechanism of a slanted grating with
a higher exposure intensity is the same as that of an unslanted one. Therefore, the diffu-
sion coefficient of a slanted grating recorded by a higher intensity (In = 0.240 mW/cm?) is
Dy ~ 1.0 x 1072 em? /sec, which is very close to the corresponding value of an unslanted
one (as seen in Table 4.1). Moreover, the average nonlocal response lengths for both small
and large slant-angle gratings are /o = 50.61nm and 53.68nm , which is close to the value
of an unslanted grating (y/o = 59.27 nm) [134].

Table 4.3: Characteristic parameters of slanted holographic grating formations based on
the DuPont OmniDex613 photopolymers for exposure to Ag ., = 363.8nm UV light

Small Slant-Angle Gratings (A = 0.5 um, ¢ = 13.71°)

Exposure Irradiance K Cyp Cm Dy Vo
Io(mW/cm?) em/vVmWsec Rp op  em®/mole  em®/mole em?/sec nm
0.043 0.032 1.40 049 38x107% 40x107% 0.588x 1072 55.68

0.110 0.059 069 0.44 4.1x107% 43x107* 0.854 x 10712 52.77

0.240 0.072 049 039 46x107% 42x107* 1.094 x 10712 49.68

0.368 0.096 033 031 55x107% 56x107% 1216 x 10712 44.29
Average 0.0648 041 45x107% 4.53x107% 0.938 x 10712 50.61

Large Slant-Angle Gratings (A = 0.5 um, ¢ = 45.0°)

Exposure Irradiance K Cp Cnm Do Vo
Io(mW/em?) em/vVmWsec Rp op om3/mole  cm3/mole em?/sec nm
0.043 0.032 1.36 051 34x107% 36x107% 0.571 x 10712 56.81

0.110 0.058 0.68 047 3.7x107% 39x107% 0.828 x 10712 54.54

0.240 0.073 049 039 4.1x107% 39x107% 1.109 x 10712 49.68
Average 0.0543 046 3.73x107% 3.8x107* 0.836x 1071 53.68




4.5 Summary and Discussion

The one-dimensional nonlocal diffusion equation governing the holographic grating for-
mation in the DuPont photopolymer was rewritten in the dimensionless form and rig-
orously solved by use of the FDTD method. The behavior of hologram recording was
studied with respect to dimensionless variables including dimensionless reaction rate Rp,
dimensionless nonlocal variance parameters op, and dimensionless time ¢p. The preceding
numerical analysis has shown that these dimensionless variables play an important roles
on the monomer-concentration profile and the polymer-concentration profile and thus the
refractive-index modulation.

For the larger dimensionless reaction rate (Rp > 1.0), the diffusion coefficient is
larger than the polymerization rate, so the free monomers have enough time to propagate
from the dark regions to the bright regions. Therefore, the polymer-concentration profile at
the steady state resembles more a sinusoidal variation. However, for the smaller dimension-
less reaction rate (Rp < 1.0), the polymerization occurs faster than diffusion, and results in
two peaks of the polymer-concentration profile near the dark regions. In general the larger
Rp, corresponding to smaller grating period, higher diffusion coefficient, or lower exposure
irradiance, creates a higher refractive-index-modulation holographic grating. Besides the
dimensionless reaction rate, the dimensionless nonlocal variance parameter op is another
important factor for the holographic recording. For a given Rp, the larger op, more resem-
bles a sinusoidal polymer-concentration profile, but the lower the visibility of the profile.
Therefore, increasing op, that is decreasing grating period or increasing nonlocal response
length, results in a weaker first-order holographic grating.

In addition the numerical results of the FDTD method were compared to those of the
four-harmonic-component approximation [84] to quantify the accuracy of the low-harmonic-
component approximation. In general the accuracy of the four-harmonic-component approx-

imation increases as Rp increases and op increases. The error of four-harmonic-component
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approximation was larger than 10% for Rp < 1.0 and for all value of op. Thus, for smaller
Rp (Rp < 1.0) the four-harmonic-component approximation is not a very precise numerical
method for the analysis of holographic grating formations.

In this research the both unslanted and slanted holographic gratings were fabri-
cated based on the DuPont OmniDex613 photopolymer using UV light of Ag ., = 363.8 nm.
The dynamic behaviors of holographic grating formations were studied by use of real-time
diffraction-monitoring technology. For unslanted holographic grating with the lower expo-
sure irradiance (corresponding to the lower polymerization rate) the diffraction-efficiency
growth curve rose monotonically with a slow rate. In this case more exposure time was
needed to reach the steady state. As the exposure irradiance increased, the saturation level
of refractive-index modulation increased because the polymerization rate was comparable
to the diffusion rate. As a result, the grating profiles resembled more the illuminating
fringe pattern. However, as the exposure irradiance increased furthermore, the diffraction-
efficiency growth curve rose more quickly but reached a smaller saturation level because Rp
became smaller resulting in more nonlinearity of the polymer-concentration profile. More-
over, instead of Kogelnik’s theory we applied RCWA to convert the diffraction-efficiency
growth curves to the corresponding index-modulation growth curves. Comparing to the
RCWA, the error of refractive-index modulation predicted by Kogelnik’s theory was ~ 30%.
We have also shown that post baking processing could enhance the refractive-index modu-
lation by two times. According to experimental results the optimal baking temperature was
T, = 120°C, and the optimal baking time was ¢, = 1.5h. The characteristic parameters
of holographic recording for unslanted gratings were estimated by fitting the theoretical
model to the experimental data. In this research, the estimated diffusion coefficient and the
nonlocal response length of the DuPont OmniDex613 photopolymer for unslanted gratings
were Do = 1.0 x 1072 cm?/sec and /o = 59.27 nm respectively for a recording wavelength
of 363.8 nm.

On the other hand, for the slanted holographic gratings, the dynamic behaviors
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of slanted holographic grating formations are similar to those of unslanted holographic
gratings. Applying the angular-selectivity experiment in conjunction with the RCWA fit-
ting, the recording-shrinkage factor of the DuPont OmniDex613 photopolymer varies from
Js ~ 2.75% to §s ~ 4.20%, which is very close to the corresponding results found in litera-
ture [70,75,126-129]. For example, the shrinkage factor of a DuPont HRF600 photopolymer
recorded at Ao = 514.5nm varies from 5 ~ 2.8% to ds ~ 3.5% (depending on the ex-
posure intensity) [126,127]. However, for a DuPont HRF-600X001 photopolymer recorded
at Aow = 514.6nm, the shrinkage factor is J; ~ 5.25% [128]. In addition, the effects
of post-baking conditions on the refractive-index modulations and the shifts of Bragg an-
gle of slanted holographic gratings are also investigated systematically. According to our
experimental results, the post-baking processing can not only double the refractive-index
modulations of slanted holographic gratings, which is consistent with those of unslanted
gratings [134], but also compensate the recording shrinkage due to the irreversible thermal
expansion, the decrease of the average refractive index, and the loss of volatile components
of recording material during post-baking processing. It is noted that the first two effects (i.e.
the irreversible thermal expansion and the decrease of the average refractive index) result
in a positive shift of Bragg angle, and the third effect (i.e. the loss of volatile components)
results in a negative shift of Bragg angle. In general, the optimal baking temperature and
baking time are 1} = 120°C and t;, = 1.5 h respectively.

Finally, the characteristic parameters of DuPont OmniDex613 photopolymers for
slanted holographic gratings are determined by fitting the theoretical model to the exper-
imental data. In contrast to unslanted gratings that the diffusion coefficient is constant
(Do ~ 1.0 x 107'2ecm?/sec) for all exposure intensities, the diffusion coefficients for both
small and large slant-angle gratings are dependent on exposure intensities. For the smaller
exposure intensity (Ip = 0.043mW/em?), the diffusion coefficient of a slanted grating is
Dy ~ 0.6 x 107'2¢em?/sec that is smaller than that of an unslanted grating because free

monomers have longer diffusion distance, and therefore, both the photopolymer-Mylar and
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the photopolymer-glass boundaries affect the diffusion process. However, as the exposure
intensity increases, the diffusion coefficient increases and approaches to the value of an un-
slanted grating because the higher exposure intensity corresponds to higher polymerization
rate, and as a result, the diffusion process of a slanted grating with a higher exposure inten-
sity (Ip = 0.240 mW/cm?) resembles that of an unslanted grating. Furthermore, the average
nonlocal response lengths for both smaller and larger slanted gratings are /o = 50.61 nm

and 53.68 nm.
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CHAPTER 5

OUTPUT VOLUME HOLOGRAPHIC

GRATING COUPLERS

Output grating couplers have been proposed to provide a means of coupling an incident
guided mode out of a waveguide for use in a variety of integrated optics applications [13-16].
However, for practical applications the preferential-order coupling is usually necessary to
achieve a high coupling efficiency and a low optical cross-talk of the system. In literature,
researchers have fabricated preferential-order surface-relief grating couplers for output cou-
pling by using a variety of methods, such as gratings with reflective layers embedded in the
substrate [25,26,42-45], blazed gratings [47,48], and gratings comprised of parallelogramic
surface profiles [49,50]. However, these methods add complexity to the fabrication process
because of complicated deposition, very precise electron-beam lithography, or chemically
assisted ion-beam etching process.

On the other hand, volume holographic grating couplers (VHGCs), first proposed
by Kogelnik and Sosnowski [52], provide high coupling efficiency and high preferential-order
coupling in integrated optics [12,20-22,66]. Of course, VHGCs have limitations in both
grating period and slant angle due to the limited recording wavelengths and the interference
patterns available in the holographic recording. Fortunately, for practical applications,
especially for couplers with high preferential-order coupling [20-22], the grating period
is about from 0.3 um to 0.7 um (depending on the operation wavelength) and the slant

angle is about 45 degrees, which can be fabricated by UV in conjunction with high-index
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prisms [22,66]. Furthermore, the use of photopolymers eliminates all of the chemical and
etching steps, therefore reducing the fabrication complexity.

Because of the diverse applications of output grating couplers, many researchers have
proposed various numerical methods to study their characteristics. Peng et al. [87,88] first
used modal analysis in conjunction with the leaky-mode approach to analyze rigorously the
output surface-relief grating coupler for both TE and TM polarizations. Moreover, Tamir
and Peng [89] studied the leakage parameters (relating to coupling efficiencies) of output
surface-relief gratings with respect to grating duty cycle, grating refractive indices, grat-
ing height, grating period, and grating profile on the basis of perturbation theory. Izhaky
and Hardy [90,91] proposed the unified coupled-mode formalism to study the problems of
parallel waveguides with or without surface-relief gratings. Specifically, they studied the
effects of grating parameters including groove depths, duty cycles, operation wavelengths,
and refractive indices on the grating coupler performance. Viewing the surface-relief grat-
ing as a sequence of two alternating types of waveguide sections connected by means of
step discontinuities, Borsboom and Frankena [92,93] used the modal representation of the
fields in the waveguide sections with scattering matrices of step discontinuities to study the
two-dimensional uniform and focusing (chirped) surface-relief grating couplers with finite
lengths for output coupling. In addition, Dinesen and Hesthaven [94,95] proposed a bound-
ary variation method (BVM) for the analysis of both infinite periodic and finite aperiodic
(chirped) output surface-relief grating couplers in two- and three-dimensional structures.
Recently, Lalanne et al. {96-98] applied the Fourier-modal method to analyze the wave-
guide and the surface-relief grating diffraction problems with the introduction of a virtual
periodicity along the transverse direction in conjunction with artificial absorbers at the
boundaries of the elementary cells of the periodic structure.

For the analysis of output VHGCs, Harris et al. [99] applied the modified Born ap-
proximation, the WKB approach, and the reciprocity theory, to analyze VHGCs without

solving rigorously Maxwell’s equations in the grating region. Peng et al. [88] applied modal
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analysis in conjunction with the leaky-mode approach to analyze an output VHGC with a
sinusoidal permittivity variation. Wang and Dilaura [100] applied the thin grating decom-
position method in conjunction with conventional waveguide analysis to analyze an output
VHGC embedded in a waveguide. Jones et al. [101] also analyzed an output VHGC embed-
ded in a waveguide using the modal theory and Svidzinskii’s theory. In addition, Schultz
et al. [20] exploited the RCWA in conjunction with the leaky-mode (RCWA/LM) approach
to analyze, design, and fabricate output VHGCs. However, the leaky-mode approach does
not take into account the effects of the modal reflection and the additional mode excitation
resulting from the discontinuity between the waveguide and the holographic grating coupler
and generally is not an accurate representation of the radiated (diffracted) field.

Although different numerical methods have been applied to study the output-coupling
characteristics for both surface-relief grating couplers and VHGCs, there has been no rig-
orous analysis for output VHGCs taking into account discontinuity effects as well as mul-
timode excitation and interference. In this chapter, FDFD method is applied to analyze
rigorously an output VHGC [139] and compares to the RCWA /LM approach with respect
to coupling efficiencies, branching ratios, and leakage parameters. T'wo basic configurations
of waveguide output-couplers comprised of a VHGC in the waveguide film region and in the
waveguide cover region are analyzed. Both normal (zero-degree) and off-normal (45-degree)
output coupling are investigated. Moreover, Both TE and TM polarizations are considered.
Furthermore, far-field distributions obtained from FDFD-calculated near-field distributions
using rigorous diffraction integrals [17] are also presented. The diffraction integral for the

far-field calculation can be found in Appendix C.

96



5.1 Output Volume Holographic Grating Coupler Configu-

rations

In this research, an output VHGC in the waveguide film region as well as in the waveguide
cover region [shown in Figs. 5.1(a) and 5.1(b) respectively] are analyzed by use of the FDFD
method [55] in conjunction with the uniaxial perfectly matched layer (UPML) [55, 117].
For both configurations, the waveguide consists of a glass substrate with refractive index
ng, a waveguide film layer with refractive index n,, and thickness t,,, and a cover layer
with refractive index n.. In addition, the waveguide mode is incident from the left onto
the grating coupler. The average refractive index, the thickness, and the length of the
holographic grating are ng, tg, and L, respectively. In addition, the grating vector K is
defined as K = |K|(& cos ¢+9sin ¢) where |K| = 27 /A, A is the grating period, ¢ is the slant
angle of the grating, and &, ¢ are the unit vectors along the z and y directions respectively.
The permittivity in the grating region can be represented by Eq. 2.1.

As shown in Fig. 5.1, a guided mode of power Pj,. is incident on the output VHGC.
The output VHGC is designed to couple out the guided mode into the cover region with
a pre-specified propagation direction 6,. After using the FDFD method to calculate the
scattered fields (E, or H, components for TE or TM polarization respectively), the fast
Fourier transform (FFT) (as seen in Section 2.4) is applied to calculate the corresponding
Fourier (angular) spectrums F' of the upward and the downward fields, and therefore, the
diffracted powers coupled into the cover (upward direction), P,, and into the substrate
(downward direction), P;. In addition, the modal decomposition of guided fields is used
to calculate both the transmitted power, F;, and the reflected power, P.. The modal
decomposition of the power calculations of waveguide modes can be found in Appendix D.
In order to quantify the performance of an output VHGC, the coupling efficiency CFE; is
defined (in percent) as

cE =2 % 100, (5.1)

inc
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Figure 5.1: Two basic configurations of waveguide output-couplers comprised of a VHGC
(a) in the waveguide film region and (b) in the waveguide cover region. The waveguide
consists of a cover region with refractive index n., a film region with refractive index n,,
and a substrate region with refractive index n;. The thickness of the waveguide film region
is t,,. The volume holographic grating has a grating vector |K| = 27/A (A is the grating
period), a slant angle ¢, a length Ly, and a thickness ¢;,. The average refractive index in the
grating region is ng. The designed out-coupling angle in the cover region is 6.. The power
of the incident beam is Pj,.. Py, Py, P,, and P, denote the upward-coupling power, the
downward-coupling power, the transmitted power, and the reflected power, respectively.
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where Pj, is the incident power, and P; (i = u, d, r, t) is the diffracted power in the specific
coupling direction. The branching ratio BR, relating to the preferential-order coupling, is
defined (in percent) as

Py
BR=—1"_ x 100. 5.2
k=575" (52)

Furthermore, the leakage parameter oy, corresponding to the coupling efficiency, is defined

as [22]
1 I

o = ———1In .
YT oL, Pine

(5.3)

In order to calculate the far-field distribution, the diffraction integral [17], relating the far
field at an arbitrary point in space to the near-field profile along a boundary I' (defined as

the interface between the grating layer and the cover region), is applied in this research.

5.2 Output Volume Holographic Grating Couplers in the

Waveguide Film Region

The output VHGC analyzed in this research is comprised of a fused-silica glass substrate
of refractive index ng = 1.4567, and of air as the cover region of refractive index n, = 1.0.
For an output VHGC in the waveguide film region [as shown in Fig. 5.1(a)], the waveguide
material is assumed to be the DuPont’s OmniDex613 photopolymer with refractive index
Ny = 1.5. The thicknesses of the waveguide and the grating are t,, = t;, = 1.8 um. The
thickness t,, is designed to support a single TE mode and a single TM mode in this wave-
guide. The propagation constants for both TEy mode and TMp mode in this waveguide

! respectively. In addition, the grating

are Brg, = 9.335um™! and Bry, = 9.327 um~
material is DuPont’s OmniDex613 photopolymer with average dielectric constant €p = 2.25
(ng = 1.5) and modulation € = 0.06 (An; ~ 0.02) [134]. The grating period A and the
slant angle ¢ of the VHGCs for both zero-degree (6, = 0°) and 45-degree (6. = 45°) output

coupling are designed using the phase-matching conditions for the first diffracted order [22],
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which will be discussed in Section 7.1. Based on the phase-matching conditions for the first
diffracted order, the design parameters of an output VHGC in the waveguide film region
for both zero- and 45-degree output coupling are summarized in Table 5.1. VHGCs of two
different lengths (L, = 100, 250 um) are considered. Furthermore, the incident waveguide
mode used in this analysis is TEg or TMg for TE or TM polarization respectively. The

freespace wavelength of the incident light is assumed to be Ag = 1.0 um.

Table 5.1: Design parameters of output volume holographic grating couplers

Output VHGCs in the Waveguide Film Region
TE Polarization =~ TM Polarization
Coupling Angle 6, (deg.) A (nm) ¢ (deg.) A (nm) ¢ (deg.)
0 473.7 —45.28 473.9 —45.30
45 651.5  —59.52  651.7  —59.56
Output VHGCs in the Waveguide Cover Region
TE Polarization =~ TM Polarization
Coupling Angle 8, (deg.) A (nm) ¢ (deg.) A (nm) ¢ (deg.)
0 470.6 —44.91 470.9 —44.94
45 647.3 —-58.91 647.7 —58.96

5.2.1 Output Coupling Efficiencies

Figure 5.2 shows the numerical results of the transverse field profiles at * = 0 um and =z =
100 um of an output VHGC in the waveguide film region. Both TE and TM polarizations
with zero- and 45-degree output coupling are presented. As seen in Figs. 5.2(a) and 5.2(c),
the electric fields of TE polarization for both zero- and 45-degree output coupling are
coupled into the substrate as well as into the cover region. On the other hand, for TM
polarization with zero-degree output coupling [as shown in Fig. 5.2(b)] the magnetic field
is weakly coupled out of the waveguide. However, comparing Figs. 5.2(b) and 5.2(d), the

magnetic field coupled into the cover region of 45-degree output coupling is stronger than

that of the zero-degree output coupling for TM polarization. Therefore, the characteristics
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Figure 5.2: The transverse field profiles of a VHGC in the waveguide film region for (a) TE
polarization with zero-degree output coupling, (b) TM polarization with zero-degree output
coupling, (¢) TE polarization with 45-degree output coupling, and (d) TM polarization with
45-degree output coupling. The dash lines and the solid lines represent the field profiles at
x = 0pm (i.e. incident waveguide mode) and at x = 100 um respectively.
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of VHGCs are strongly dependent on the incident polarization and the output-coupling
angle. In order to quantify the performances of output VHGCs for both TE and TM
polarizations, the coupling efficiencies C'F, branching ratios BR, and leakage parameters
«y of VHGCs for both zero- and 45-degree output coupling are summarized in Table 5.2.
The numerical results of the FDFD method are also compared to those of the RCWA /LM
approach.

As seen in Table 5.2, the upward coupling efficiencies C' E,, of TE polarization calcu-
lated using the FDFD method are much higher than those of TM polarization for zero-degree
output coupling, which are in agreement with Figs. 5.2(a) and 5.2(b). For example, as the
holographic grating length is L, = 250 um, the upward coupling efficiency of TE polariza-
tion is CE, = 76.38%; in contrast, the upward coupling efficiency of TM polarization is only
CE, = 0.29%. In addition, the average leakage parameters predicted by the FDFD method
for both TE and TM polarizations are a; = 0.33 x 1072 um ™! and og = 0.74 x 107% pm ™1,
respectively. On the other hand, for 45-degree output coupling, the upward coupling ef-
ficiencies C'F,, of TM polarization calculated using the FDFD method are comparable to
those of TE polarization. For example, as the holographic grating length is L, = 250 um,
the upward coupling efficiency of TE polarization is CE, = 77.20%; however, the upward
coupling efficiency of TM polarization is CE, = 29.79%. In addition, the average leak-
age parameters predicted by the FDFD method for both TE and TM polarizations are
a;=0.37x 1072 pm ™! and oy = 0.73 x 1073 um ™!, respectively. Moreover, with respect to
the cases of zero-degree output coupling for TE polarization, the average branching ratio
BR of 45-degree output coupling is 92.27%, which is smaller than that of zero-degree output
coupling (95.16%).

By comparing the FDFD method to the RCWA /LM approach for an output VHGC
in the waveguide film region (as seen in Table 5.2), the branching ratios estimated using
the FDFD method for both TE and TM polarizations and for both zero- and 45-degree

output coupling are generally smaller than the RCWA /LM predicted values. The reason of
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higher branching ratio predicted by use of the RCWA /LM approach is that the RCWA /LM

approach does not consider the modal reflection and the scattering into radiation resulting

from the discontinuity between the waveguide and the grating.

In addition, the leaky-

mode approach is only an approximation of the radiation field. In other words RCWA /LM

approach only provides relative quantities of upward and downward coupling efficiencies.

However, the FDFD method rigorously solves the output VHGC without neglecting the

effect of discontinuity. As a result, the FDFD method calculates absolute quantities instead

Table 5.2: Performance of an output VHGC in the waveguide film region and compari-
son with the RCWA /leaky-mode (RCWA /LM) approach for zero- and 45-degree output

coupling

Outcoupling Angle, 6, = 0°

TE Polarization (A = 473.7nm , ¢ = —45.28°)

Numerical Method Ly(um) CE.(%) CE4(%) CE{(%) CE. (%) BR(%) «(1/um)
FDFD 100 46.72 2.33 50.92 0.03 95.25  0.34 x 1072
250 76.38 3.96 19.64 0.02 95.07 0.33 x 1072
RCWA /LM 100 45.60 0.02 54.38 0.00 99.96 0.31 x 102
250 78.16 0.03 21.81 0.00 99.96 0.31 x 1072
TM Polarization (A = 473.9nm ,¢ = —45.30°)
Numerical Method Ly(upm) CE. (%) CEq(%) CE{(%) CE.(%) BR(%) o(1/pum)
FDFD 100 0.13 0.03 99.84 0.00 81.25 0.80 x 107°
250 0.29 0.05 99.66 0.00 85.29  0.68 x 107°
RCWA/LM 100 0.09 0.00 99.91 0.00 97.67 0.44 x 107°
250 0.22 0.00 99.78 0.00 97.67 0.44 x 107°
Outcoupling Angle, 8, = 45°
TE Polarization (A = 651.5nm , ¢ = —59.52°)
Numerical Method Ly(pm) CE.(%) CE4(%) CE(%) CE.(%) BR(%) «a;(1/um)
FDFD 100 48.68 4.07 47.25 0.00 92.28  0.38 x 1072
250 77.20 6.48 16.32 0.00 92.26  0.36 x 1072
RCWA /LM 100 45.74 3.84 50.42 0.00 92.26  0.34 x 1072
250 75.61 6.34 18.05 0.00 92.26  0.34 x 1072
TM Polarization (A = 651.7nm ,¢ = —59.56°)
Numerical Method Lg(um) CEu(%) CEq(%) CE(%) CE.(%) BR(%) ai(l/um)
FDFD 100 13.25 0.32 86.43 0.00 9764 0.73x 107
250 29.79 0.68 69.53 0.00 97.77 0.73x 1073
RCWA/LM 100 13.55 0.26 86.19 0.00 98.14 0.74 x 1073
250 30.45 0.58 68.97 0.00 98.14 0.74 x 1073
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of relative quantities of coupling efficiencies for output VHGCs.

5.2.2 Electric and Magnetic Fields

In order to gain a better physical understanding of the behavior of an output VHGC in
the waveguide film region, it is useful to represent the amplitude (corresponding to the
coupling efficiency) and the phase (corresponding to the direction of wave propagation)
patterns of total field, which includes both the incident and the diffracted fields calculated
by the FDFD method. Figure 5.3 shows the total field patterns of an output VHGC with
Ly =100 pm in the waveguide film region illuminated by both TEq and TMg modes for both
zero- and 45-degree output coupling. The waveguide layer is located between y = 4.0 um
and ¥y = 5.8 um, and the volume holographic grating is located between z = 0.5 um and
x = 100.5 pm. Dark areas indicate regions of low values (of field or phase), and lighter areas
indicate regions of higher values.

As seen in Fig. 5.3(a), the amplitude of the electric field |E,| in the waveguide for TE
polarization with zero-degree output coupling decreases as x increases because more power
is coupled out of the waveguide along the propagation direction. In this case, the upward
coupling efficiency is 46.72% (as seen in Table 5.2). However, for the TM polarization
with zero-degree output coupling [as shown in Fig. 5.3(b)], the amplitude of the magnetic
field |H,| remains almost constant because the upward coupling efficiency is very small
(CE, = 0.13%). Therefore, the grating coupler is polarization-dependent for zero-degree
output coupling. The results are in agreement with Figs. 5.2(a) and 5.2(b). On the other
hand, as seen in the phase patterns of zero-degree output coupling for both TE and TM
polarizations, the phase fronts in the cover region are parallel to the surface of the waveguide.
In other words the directions of wave propagation in the cover region for both TE and TM
polarizations are perpendicular to the surface of the waveguide (i.e. 6. = 0°), which are
in agreement with the design of zero-degree output coupling. In addition, the radiation

fields due to scattering into radiation modes resulting from the discontinuity between the
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Figure 5.3: Two-dimensional field-amplitude and field-phase patterns of an output VHGC
with Ly = 100 pm and tg = t,, = 1.8 um in the waveguide film region for (a) TE polarization
with zero-degree output coupling, (b) TM polarization with zero-degree output coupling,
(c) TE polarization with 45-degree output coupling, and (d) TM polarization with 45-degree
output coupling.
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waveguide and the grating can be observed at z < 2.0 wm in the cover as well as in the
substrate for both TE and TM polarizations.

In the case of the 45-degree output coupling [as seen in Figs. 5.3(c) and 5.3(d)], the
field amplitudes in the waveguide decrease along the propagation direction for both TE
and TM polarizations. In contrast to zero-degree output coupling, the grating coupler is
nearly polarization-independent for 45-degree output coupling. From the phase patterns, it
can be seen that the directions of wave propagation in the cover are 45 degrees. Similarly,
the radiation fields due to scattering into radiation modes can also be observed near the
discontinuity between the waveguide and the grating. Moreover, as seen in the phase
patterns of Fig. 5.3, the incident waveguide mode interacts with the whole grating and
propagates along the z direction without any mode conversion.

The corresponding intensities of Fourier spectrums of the upward field profiles (E,
or H, for TE or TM polarization) at y = 7.8 um of output VHGCs with L, = 100 um in the
waveguide film region for both zero- and 45-degree output coupling are shown in Fig. 5.4. As
seen in Figs. 5.4(a) and 5.4(b) (corresponding to the design of zero-degree output coupling),
the intensities of the Fourier spectrums for both TE and TM polarizations are centered at
O, = 0.34° and at . = 0.28°, respectively. In contrast, the Fourier-spectrum intensities
of 45-degree output coupling are centered at 6, = 45.50° for TE polarization [as seen in
Fig. 5.4(c)] and at 6, = 45.46° for TM polarization [as seen in Fig. 5.4(d)]. The reason of
the difference between the calculated value of 6, and the designed value of . is that the
grating period and the slant angle are designed based on the propagation constant of a
waveguide without the grating modulation being considered (i.e. the grating is considered
homogeneous with an average refractive index). The presence of the modulation affects
slightly the real part of the propagation constant which results in the small difference of

the diffracted angle 6, from their designed values.
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Figure 5.4. Corresponding intensities of Fourier spectrums of the upward field profiles at
y = 7.8 um of an output VHGC with Ly, = 100 um in the waveguide film region for (a) TE
polarization with zero-degree output coupling, (b) TM polarization with zero-degree output
coupling, (¢) TE polarization with 45-degree output coupling, and (d) TM polarization with
45-degree output coupling.
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5.2.3 Near and Far Fields

Figure 5.5 shows the normalized electric field intensities at the top surface of the waveguide
film layer for the case of an output VHGC in the waveguide film region with zero-degree
output coupling for TE polarization. As seen in Fig. 5.5, since the RCWA /LM approach
does not take into account the effect of the incident mode, the normalized electric field in-
tensity of the RCWA /LM approach is only an exponential decay along the « direction. This
exponential decay is due to the leaky mode that is coupled through the grating. However,
for the FDFD method, the normalized electric field intensity is not only an exponential
decay but also contains an oscillatory term because the FDFD method provides a rigorous

analysis by including the incident mode in the calculation. The oscillation with a period of

27/ BrE, = 0.672 pm results from the interference between the TEg waveguide mode and

the radiation field. In order to interpret the oscillatory term, it is useful to represent the
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Figure 5.5: Normalized field intensity at the top surface of the waveguide film layer (i.e. at
y = 5.8 um) of an output VHGC with Ly = 100 um in the waveguide film region for TE
polarization with zero-degree output coupling. The dash lines and the solid lines represent
the results of the RCWA /LM approach and the FDFD method respectively.
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total field in the waveguide film region. Since the reflection is less than 0.1% (as seen in
Table 5.2), the reflected field can be neglected. As a result, the total field in the waveguide

film region and along the film-cover boundary can be represented as
E; ot = [ + Co exp(—jBre,z)] exp(—az), (5.4)

where exp(—ayz) corresponds to the field component of the diffracted field, exp(—jBrg,z)
exp(—ayz) corresponds to the field component of the leaky TE( mode in the waveguide,
and Cy = |Co|exp(j1o) is a complex constant that represents the waveguide mode at the

film-cover interface. Therefore, the electric field intensity can be written as
I ot = |Ez,tot|2 = exp(—2a;z)[1 + |Co|? + 2|Co| cos(Bre,x — o)) (5.5)

From Eq. (5.5), we can see the electric field intensity is an exponential decay with decay
rate 2¢; [from the term of exp(—2q;z)] and it has an oscillatory term with a period of
27/BrE, |from the term of cos(Brg,x — 10)]. As seen in Fig. 5.5, the decay rate is about
2a; = 0.61 x 1072 um™", and the period of the oscillation is 0.672 yum, which is in close
agreement to the value of 27/8rg, (BrE, = 9-335 ™! in this case).

Furthermore, using the diffraction integral (as described in Appendix C), the cor-
responding normalized electric field intensities of an output VHGC in the waveguide film
region with zero-degree output coupling for TE polarization at three different distances y,
(yo = 2um,100 um, and 1mm) measured from the surface of the grating are shown in
Fig. 5.6. The numerical results of both the RCWA /LM approach and the FDFD method
are represented. As seen in Fig. 5.6(a), the result of the FDFD method is very close to
that of the RCWA /LM approach when y, = 2um. The agreement between the FDFD
method and the RCWA/LM approach away from the film-cover boundary is due to the
exponential decay of the waveguide mode along the y-direction, i.e. Cp in Eq. (5.5) decays
exponentially as a function of y. In this case, the output-coupled field intensity decreases

along the propagation direction. However, as the observation distances increase [as seen
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Figure 5.6: Normalized intensity of far-field distribution at (a) y, = 2 um, (b) y, = 100 um,
and (c) yo = 1mm of an output VHGC with L, = 100 um in the waveguide film region
for TE polarization with zero-degree output coupling. The dash lines and the solid lines
represent the results of the RCWA /LM approach and the FDFD method respectively.
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in Figs. 5.6(b) and 5.6(c)], the results of the FDFD method are shifted from those of the
RCWA /LM approach. The reason of this shift is that the output coupling angle in this case
is §, = 0.34° instead of 6. = 0° that the RCWA /LM approach assumes. For example, based
on the output coupling angle 6, = 0.34° and the propagation distance y, = 1 mm, the shift
of the FDFD method from the RCWA /LM approach is 5.9 um, which is in agreement with

the result shown in Fig. 5.6(c).

5.3 Output Volume Holographic Grating Couplers in the

Waveguide Cover Region

For the configuration of an output VHGC in the waveguide cover region [as shown in
Fig. 5.1(b)], the thicknesses of the waveguide film and the grating are ¢,, = 0.4 um and ¢, =
6.0 pm (DuPont’s OmniDex613 photopolymer in laminate sheet), respectively. In addition,
the waveguide material is assumed to be a polyimide (Ultradel 9020D) with refractive index
ny = 1.56. Based on this waveguide structure, there are five TE modes and five TM modes
for the film-grating structure. The propagation constants of the first two TE modes are

1

Bre, = 9.456 um~! (confined in the film region) and Brg, = 9.407 um~! (confined in the

film-grating region). On the other hand, the propagation constants of the first two TM

modes are SBrp, = 9.445 um~! and Bruw, = 9.405 pm™ L

Similarly, applying the phase-
matching conditions, the design parameters of an output VHGC in the waveguide cover

region are summarized in Table 5.1.

5.3.1 Output Coupling Efficiencies

Figure 5.7 shows the numerical results of the transverse field profiles at x = 0um and
z = 100 um of an output VHGC in the waveguide cover region. In addition, the coupling
efficiencies CE, branching ratios BR, and leakage parameters «; of output VHGCs in the

waveguide cover region are summarized in Table 5.3. As seen in Fig. 5.7 and Table 5.3,
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Figure 5.7: The transverse field profiles of an output VHGC in the waveguide cover region
for (a) TE polarization with zero-degree output coupling, (b) TM polarization with zero-
degree output coupling, (¢) TE polarization with 45-degree output coupling, and (d) TM
polarization with 45-degree output coupling. The dash lines and the solid lines represent the
field profiles at z = 0 um (i.e. incident waveguide mode) and at z = 100 um respectively.
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the characteristics of an output VHGC in the waveguide cover region is similar to those

of an output VHGC in the waveguide film (as seen in Fig. 5.2 and Table 5.2). For zero-

degree output coupling, the output-coupling efficiency of TE polarization (CE, = 72.88%

for Ly = 250pum) is much larger than that of TM polarization (CE, = 0.86% for Ly, =

250 um), and thus, a polarization-dependent coupler is obtained. However, for 45-degree

output coupling, the output coupling efficiency of TM polarization (CE, = 33.69% for

Ly = 250 pm) become larger and comparable to that of TE polarization (CE, = 73.42%

Table 5.3: Performance of an output VHGC in the waveguide cover region and compar-
ison with the RCWA /leaky-mode (RCWA/LM) approach for zero- and 45-degree output

coupling

Outcoupling Angle, 8, = 0°

TE Polarization (A = 470.6 nm , ¢ = —44.91°)

Numerical Method Ly(um) CEW(%) CE4(%) CE(%) CE.(%) BR(%) «a(1/um)
FDFD 100 41.37 1.19 57.37 0.70 97.20  0.28 x 1072
250 72.88 3.03 23.71 0.38 96.01  0.29 x 1072
RCWA /LM 100 42.34 0.09 57.57 0.00 99.78  0.28 x 102
250 74.68 0.17 25.15 0.00 99.78  0.28 x 1072
TM Polarization (A = 470.9nm , ¢ = —44.94°)
Numerical Method Lg(pm) CEL(%) CE4W«(%) CE(%) CE.(%) BR(%) «l/um)
FDFD 100 0.35 0.02 99.62 0.01 94.59  0.19 x 107¢
250 0.86 0.05 99.08 0.01 94.51  0.19 x 1074
RCWA /LM 100 0.33 0.02 99.65 0.00 95.45 0.18 x 107*
250 0.84 0.04 99.12 0.00 95.45 0.18 x 1074
Outcoupling Angle, 6, = 45°
TE Polarization (A = 647.3nm ,¢ = —58.91°)
Numerical Method Lg(um) CEW(%) CEg(%) CE(%) CE.(%) BR(%) «1/um)
FDFD 100 42.35 4.08 53.57 0.00 91.21 0.31 x 1072
250 73.42 7.29 19.29 0.00 90.99 0.33 x 1072
RCWA/LM 100 42.94 4.11 52.95 0.00 91.27 0.32x 1072
250 72.65 6.95 20.40 0.00 91.27 0.32x 1072
TM Polarization (A = 647.7nm , ¢ = —58.96°)
Numerical Method Lg(um) CEu (%) CE4«(%) CE(%) CE. (%) BR(%) o(l/pm)
FDFD 100 14.53 0.30 85.17 0.00 97.98 0.80 x 1073
250 33.69 0.70 65.61 0.00 97.96  0.84 x 1073
RCWA/LM 100 17.27 0.22 82.51 0.00 98.72 0.96 x 1073
250 37.68 0.49 61.83 0.00 98.72 0.96 x 107°
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for Ly, = 250 um). Moreover, the branching ratios estimated using the FDFD method for
both TE and TM polarizations with zero- and 45-degree output coupling are smaller than
the RCWA /LM predicted values. The reason of the higher branching ratios predicted by
the RCWA /LM approach are the same as in the case of an output VHGC in the waveguide

film region (discussed in Section 5.2.1).

5.3.2 Electric and Magnetic Fields

The amplitude and the phase patterns of the total field of an output VHGC with L, =
100 pm in the waveguide cover region are shown in Fig. 5.8. As seen in Fig. 5.8, the
characteristics of field amplitudes along the propagation direction, the phase patterns both
in the cover and in the substrate, and the radiation fields due to scattering into radiation
modes resulting from the discontinuity between the waveguide and the grating are similar
to those of an output VHGC in the waveguide film.

Another interesting phenomenon of the configuration of an output VHGC in the
waveguide cover region is the modal conversion and the modal interference between the
incident waveguide mode and the modes in the grating layer. For example, as seen in the
phase pattern of Fig. 5.8(c), the incident waveguide mode only interacts with the lower
region of the grating and converts into the leaky mode as z < 15 um in the grating layer.
These effects can not be predicted by the RCWA /LM approach. From the phase fronts, it
can be seen that the direction of the wave propagation in the upper region of the grating layer
is about 28.13° (measured from the y axis), which corresponds to 8. = 45° in air (cover).
However, when the propagation distance increases further (x > 15 um), the diffracted field
propagating in the upper-grating region starts to convert back to the waveguide leaky mode
through the grating. As a result, it can be seen that the phase fronts at about z = 30 um
are similar to the phase fronts of the incident mode, i.e. the wave fronts are perpendicular
to the z axis. The similar phenomenon can also be observed for TE polarization with zero-

degree output coupling and for TM polarization with 45-degree output coupling [as shown
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Figure 5.8: Two-dimensional field-amplitude and field-phase patterns of an output VHGC
with L, = 100 pm and ty = 6.0 um in the waveguide cover region for (a) TE polarization

with zero-degree output coupling, (b) TM polarization with zero-degree output coupling,
(c) TE polarization with 45-degree output coupling, and (d) TM polarization with 45-degree

output coupling.
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in Figs. 5.8(a) and 5.8(d)]. In conclusion, the output VHGC in this case overmodulates the
waveguide mode. In order to verify this overmodulation phenomenon of an output VHGC,
a new waveguide structure with a thinner grating (t, = 1.8 um instead of t, = 6.0 um)
is analyzed by using the FDFD method. Figure 5.9 shows the amplitude and the phase
patterns of the total field of an output VHGC with t; = 1.8 um and L, = 100 um in the
waveguide cover region. From the phase pattern of the total field [as seen in Fig. 5.9(b)],
there is no overmodulation in this case, and, therefore, the diffracted mode does not convert

back to the incident mode.

Amplitude Phase

X (pm)

Figure 5.9: Two-dimensional field-amplitude and field-phase patterns of an output VHGC
with Ly, = 100 um and t; = 1.8 um in the waveguide cover region for TE polarization with
zero-degree output coupling.

Furthermore, the corresponding intensities of Fourier spectrums of the upward field
profiles (E, or H, for TE or TM polarization) at y = 16.4 um of output VHGCs with
Ly = 100 pm and t, = 6.0 um in the waveguide cover region for both zero- and 45-degree
output coupling are shown in Fig. 5.10. As can be determined from Figs. 5.10(a) and 5.10(b),
the intensities of Fourier spectrums for both zero-degree output coupling are centered at
0. = 0.38° for TE polarization and at 8, = 0.35° for TM polarization. On the other hand,
the Fourier-spectrum intensities of 45-degree output coupling are centered at 6§, = 45.53°
and at 0. = 45.47° for both TE and TM polarizations, respectively [as seen in Figs. 5.10(c)

and 5.10(d)]. Similar to the case of an output VHGC in the waveguide film region, the
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Figure 5.10: Corresponding intensities of Fourier spectrums of the upward field profiles at
y = 16.4 um of an output VHGC with L, = 100 pm and t, = 6.0 um in the waveguide cover
region for (a) TE polarization with zero-degree output coupling, (b) TM polarization with

zero-degree output coupling, (¢) TE polarization with 45-degree output coupling, and (d)
TM polarization with 45-degree output coupling.
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difference between the calculated value of 8, and the designed value of 8, results from the
design of the grating period and the slanted angle using the unperturbed by the grating

propagation constant of the incident mode.

5.3.3 Near and Far Fields

Figure 5.11 shows the normalized electric field intensities at the top surface of the wave-
guide film layer for the case of an output VHGC in the waveguide cover region with zero-
degree output coupling for TE polarization. As seen in Fig. 5.11, the normalized electric
field intensity of the RCWA /LM approach is an exponential decay with the decay rate of
20y = 0.552 x 1072 um™~! along the propagation direction because of the leaky mode cou-
pling. However, for the FDFD method, the normalized electric field intensity is not only an
exponential decay but also has an oscillatory component along the = direction. In contrast
to the case of an output VHGC in the waveguide film region (as seen in Fig. 5.5), there are
two different oscillation periods (as seen in Fig. 5.11). Similarly, in order to explain this
oscillation phenomenon, it is useful to represent the total field in the waveguide film region
and at the film-grating interface. Neglecting the reflected field and taking into account of

the additional TE; mode excitation, the total field can be represented as

E.tot = [1 + Coexp(—jBrEe,x) + C1 exp(—jfBrE, )] exp(—oz), (5.6)

where Cy = |Co|exp(jyn) and C; = |C\|exp(ji1) are complex constants at the grating-

cover interface. Thus, the electric field intensity can be written as

Iz,tot = lEz,totl2 = eXp(—Qoq:C){l + lC()|‘2 + |01I2 + 2|CO| COS(BTon - wo) +
2|C1| cos(Brex — 1) + 2|Col|Cr| cos[(Brm, — Bre)z — (Yo —Y)l}. (5.7)
From Eq. (5.7), it can be seen that the electric field intensity is an exponential decay with

a decay rate 2ay and contains oscillations of three different periods. The first two oscillation

periods are 27/fBrE, [from the term of cos(Brg,z — v0)] and 27/BrE, [from the term of
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Figure 5.11: Normalized field intensity at the top surface of the waveguide film layer (i.e. at
y = 8.4 um) of an output VHGC with Ly = 100 pm and ty = 6.0 um in the waveguide cover
region for TE polarization with zero-degree output coupling. The dash lines and the solid
lines represent the results of the RCWA /LM approach and the FDFD method respectively.
cos(Bre,  —11)], which correspond to the incident TEq mode and the additional TE; mode
excitation (at the waveguide discontinuity), respectively. As seen in Fig. 5.11, these two
oscillation periods are 0.662 um, which is close to the value of 27/B7g, (BrE, = 9.456 pm !
in this case), and 0.668 um, which is close to the value of 27/8rg, (Bre, = 9.407 um~! in
this case). In conclusion, an additional mode (TE; mode) is excited for the configuration of
an output VHGC in the waveguide cover region. Furthermore, from the term of cos|(8rg, —
Bre, )z — (Yo —11)], the third oscillation period is 27 /(BrE, — BrE,) (also known as the beat
length) resulting from the mode interference between the TEg mode and the TE; mode.
The beat length resulting from the mode interference will be discussed in the Section 5.3.4.

Applying the diffraction integral (as described in Appendix C) the normalized electric

field intensities of an output VHGC in the waveguide cover region with zero-degree output

coupling for TE polarization at three different distances y, (yo = 2 pm, 100 um, and 1 mm)
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away from the grating-cover boundary are shown in Fig. 5.12. The numerical results of both
the RCWA /LM approach and the FDFD method are represented. Similar to the case of an
output VHGC in the waveguide film region, the results of the FDFD method are shifted
from those of the RCWA /LM approach as the observation distances increase because the
output coupling angle in this case is 6. = 0.38° instead of 6, = 0° [as seen in Fig. 5.10(a)].
As seen in Fig. 5.12(a), for the case of an output VHGC in the waveguide cover
region, the field intensity at y, = 2 pm initially decreases along the propagation direction.
However, as the propagation distance increases furthermore, the field intensity starts to
increase. In contrast to this case, the output-coupled field intensity along the propaga-
tion direction for the case an output VHGC in the waveguide film region is monotonically
decreased [as seen in Fig. 5.6(a)]. The reason of this difference between these two con-
figurations is that there is an additional TE; mode excitation and interference with the
fundamental TEp mode in the grating layer for the case of an output VHGC in the wave-
guide cover region. This mode excitation and mode interference can be found in the phase
pattern of the total field [as shown in Fig.5.8(a)]. Because of the interference between the

TEy mode and the TE; mode, the beat length (discussed in Section 5.3.4) can be observed

in the electric-field-intensity profile near the grating-cover boundary.

5.3.4 Beat Lengths

As has been mentioned in Section 5.3.3, there is an additional TE; mode excitation and in-
terference with the fundamental TEg mode for the case of an output VHGC in the waveguide
cover region. According to Eq. (5.7), the mode interference between the TEy mode and
the TE; mode can be characterized by the beat length L, = 27/(8rr, — BrEe,). In order to
study the characteristics of the beat length resulting from the mode interference, two output
VHGCs with different thicknesses (one is ¢, = 6.0 um and the other is t; = 1.8 wm) in the
waveguide cover region for TE polarization with zero-degree output coupling are analyzed

by use of the FDFD method. For the case of t; = 6.0 um, there are five TE modes in the
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Figure 5.12: Normalized intensity of far-field distribution at (a) y, = 2 um, (b) yo = 100 um,
and (c) Yo = 1 mm of an output VHGC with Ly = 100 m and ¢ty = 6.0 pm in the waveguide
cover region for TE polarization with zero-degree output coupling. The dash lines and
the solid lines represent the results of the RCWA/LM approach and the FDFD method
respectively.
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waveguide structure (confined in the film-grating region). The corresponding propagation
constants of the first two TE modes are Brg, = 9.456 pm~! and Bre, = 9.407 um™L. How-
ever, for the case of t; = 1.8 um, there are only two TE modes with propagation constants
Bre, = 9.452 um™! and Brg, = 9.246 um ™! in this waveguide.

As seen in Fig. 5.13(a) (for the case of ty = 6.0 um and Ly = 250 um), the normalized
electric field intensity at y, = 2 um is non-monotonically decreased along the z direction
with L, = 127.78 um, which is close to the value of 2n/(8rE, — BrE,) (BrE, = 9.456 pm ™1
and Brg, = 9.407 um™! in this case). On the other hand, for the case of ty = 1.8 um and

Ly = 100 um [as seen in Fig. 5.13(b)], the normalized electric field intensity at y, = 2 um

-
o

0.5

127.78 um

0 50 100 150 200 250

0.0

1.0 T} (b) t,=1.8 um

Normalized Electric Field Intensity, IE I?/IE,__I?

0.0
0 20 40 60 80 100

X (um)

Figure 5.13: Non-monotonical decrease of the normalized intensity of electric field distri-
bution at y, = 2 pum for the configuration of an output VHGC with (a) t;, = 6.0 um and
(b) ty = 1.8 um in the waveguide cover region for TE polarization with zero-degree output
coupling. The numerical results are calculated by use of the FDFD method.
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is non-monotonically decreased along the z direction with L, = 30.60 um, which is close to
the value of 27/(Bre, — BrE,) (BrE, = 9452 um™! and Brp, = 9.246 um ™! in this case).
Furthermore, comparing Figs. 5.13(a) to 5.13(b), we can see the non-monotonical decrease
variation of the case of t; = 6.0 wm is more obvious than that of the case of t; = 1.8 um.
The reason of this interesting result is that the propagation constant of the TE; mode
(BrE,) is closer than that of the TEg mode (87g,) for the case of t4 = 6.0 um (with respect
to the case of t; = 1.8 um). Therefore, the additional TE; mode is more easily excited.
In addition, the thicker grating has higher overmodulation effect and results in stronger
interference between the TEg mode and the TE; mode, and larger electric-field-intensity
variation. The actual periodicities are close to the predicted values but can not be exactly

predicted since the propagation constants are the unperturbed by the modulation ones.

5.4 Summary and Discussion

Two configurations of volume holographic grating couplers (VHGCs) for output coupling
in integrated optics are rigorously analyzed using the finite-difference frequency-domain
(FDFD) method. Both TE and TM polarizations with zero- and 45-degree output coupling
are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis
in conjunction with the leaky-mode (RCWA/LM) approach. For both configurations, the
upward coupling efficiency of TE polarization is much higher than that of TM polarization
for zero-degree output coupling, and thus polarization-dependent couplers can be obtained.
On the other hand, the upward coupling efficiency of TM polarization is comparable to that
of TM polarization for 45-degree output coupling. Therefore, the grating coupler could be
polarization-independent if the grating is designed for 45-degree output coupling.
Comparing the results of the FDFD method and the RCWA/LM approach, the
FDFD method shows that the normalized electric field intensity is not only an exponential

decay, which the RCWA /LM approach assumes, but also has oscillatory components along
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the propagation direction because the FDFD method takes into account the interference
between all modes (excited in the waveguide film-grating region) and the radiation fields.
In addition, the FDFD results shows that there is a higher-order waveguide mode excitation
and interference with the fundamental waveguide mode in the case of an output VHGC in
the waveguide cover region. Because of this additional mode excitation and mode interfer-
ence, the intensity of the output-coupled field could decrease non-monotonically along the
propagation direction. The period of this non-monotonical decrease corresponds to the beat
length resulting from the interference between the fundamental waveguide mode and the
higher-order waveguide mode. Furthermore, a thicker grating has stronger non-monotonical
decrease variation along the propagation direction as compared to a thinner grating. More-
over, a thicker grating has stronger overmodulation effect and results in stronger interference

between the fundamental waveguide mode and the higher-order waveguide mode.
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CHAPTER 6

INPUT VOLUME HOLOGRAPHIC GRATING

COUPLERS

In contrast to the output grating coupler, the input grating coupler is used to convert an
incident light beam into guided modes of a waveguide. As has been mentioned in Section
1.2.4, a variety of numerical methods including the perturbation theory [102,107,108,114],
the modified Born approximation and the reciprocity theory [106], the rigorous electromag-
netic formalism developed by Neviere et al. [103—-105,109-112], and three-layer waveguide
model [115] have been applied to analyze an infinite surface-relief grating illuminated by a
plane wave or a Gaussian beam. In addition, the perturbation theory [116] has been also ap-
plied to analyze both unslanted and slanted input VHGCs with infinite lengths illuminated
by a plane wave with TE polarization. However, for practical applications for high-data
rate interconnections, the input VHGC should have finite length, and the incident beam is
a finite beam such as a Gaussian beam. Therefore, the grating length and the beam size
could significantly affect the input coupling efficiency for an input VHGC. In addition, as
the incident beam is coupled into a guided mode by a grating coupler, this guided mode
will propagate in the waveguide and will be coupled out of the waveguide by the same
grating. As a result, the input coupling efficiency will also depend on the incident-beam
position on the grating coupler. For these reasons, the effects of grating lengths, beam
sizes, and incident-beam positions on the input coupling efficiencies of input VHGCs will

be investigated in this chapter to determine the optimum coupling conditions.
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6.1 Input Volume Holographic Grating Coupler Configura-

tions

Similarly to the configurations of output VHGCs (as seen in Section 5.1), two basic con-
figurations of an input VHGC with finite length, L4, placed in the waveguide film region
[as shown in Fig. 6.1(a)] as well as in the waveguide cover region [as shown in Fig. 6.1(b)]

are analyzed by use of the FDFD method [55,139]. For both configurations, the waveguide

Py

(a) (b)

Figure 6.1: Two basic configurations of waveguide input-couplers comprised of a VHGC
(a) in the waveguide film region and (b) in the waveguide cover region. The waveguide
consists of a cover region with refractive index n., a film region with refractive index n,,
and a substrate region with refractive index ns. The thickness of the waveguide film region
is t,,. The volume holographic grating has a grating vector K, a slant angle ¢, a length L,
and a thickness t;. The average refractive index in the grating region is ny,. The incident
beam with incident angle 6;,. and incident position y, is incident on the grating. The power
of the incident beam is Py,.. P,, Py, P;, and P, denote the upward-coupling power, the
downward-coupling power, the transmitted power, and the reflected power, respectively.
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consists of a glass substrate with refractive index ng, a waveguide film layer with refractive
index n,, and thickness t,,, and a cover layer with refractive index n.. The average refractive
index, the thickness, the grating period, and the slant angle of the holographic grating are
ng, tg, A, and ¢ respectively. The period and the slant angle of input VHGCs are designed
to couple the incident beam into the TEp mode. In addition, the permittivity in the grating
region can be represented by Eq. (2.1).

On the other hand, in order to study the effects of incident-beam positions on the
coupling efficiencies of input VHGC, a finite beam with incident angle 6;,. and incident
position y, is incident on the grating from the cover region with refractive index n. (as
seen in Fig.6.1). Furthermore, in order to study the effects of beam sizes and beam profiles
on the coupling efficiencies of input VHGCs, a Gaussian beam with beam waist W, a flat
cosine-squared beam (i.e. a quasi plane wave) with flat width W, and an exponential-decay
beam with decay width W are introduced in this research. The window functions, g(v’),

for these three incident beams can be represented as

9(y') = exp {(%)2} : (6.1)

for the Gaussian beam,

1 o<ly|<¥%
now
9(y) = { cos? ['2%)]_—»21/—)77] %<ly|<D- %, (6.2)
0 D — ¥ <y|<o0

exp [~y - §)] 0<|y|<%
9(y') = { cos® [%W] W<ly'|l<D-% (6.3)
0 D — ¥ <]y |<oo
for the exponential-decay beam. «; is the leakage parameter of a VHGC, which can be

determined by use of the leaky-mode approach. Substituting Eqs. (6.1), (6.2), and (6.3) into
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Eq. (2.3), the resulting incident Gaussian, flat cosine-squared, and exponential-decay beams
for TE/TM polarization can be obtained. The corresponding configurations of incident

beams with finite widths are summarized in Fig. 6.2.

(a (b) (c)

Figure 6.2: Three finite-width incident beams of (a) a Gaussian beam with beam waist
W, (b) a flat cosine-squared beam (i.e. a quasi plane wave) with flat width W, and (c)
an exponential-decay beam with decay width W. 6;,. is the incident angle of the incident
beam.

Similar to the analysis of output VHGCs (as seen in Chapter 5), the FDFD method
in conjunction with UPMLs is applied to calculate the scattered fields of the input VHGC,
and the modal decomposition of guided fields (as described in Appendix D) is used to cal-
culate the corresponding power coupled into the TE,, mode of the waveguide both in the
upward direction, P, rE,,, and in the downward direction, P;rg,, . In order to quantify

the performance of an input VHGC, the input coupling efficiency of TE,, mode CE; E,,

is defined (in percent) as

P
CE;rE, = P’ x 100, (6.4)
mc
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where Pj. is the incident power, and P; (i = u,d) is the diffracted power coupling in the
upward direction or in the downward direction.

In this chapter, an input VHGC with finite length L, = 50 um in the waveguide
film region as well as in the waveguide cover region illuminated by a Gaussian beam, a
flat cosine-squared beam, and an exponential-decay beam is analyzed. For all cases treated
in this chapter, normally incident beams (i.e. 6in. = 0°) of TE polarization from the
cover region are considered. The incident position ¥y, of the finite incident beam are varied
between 0.3Lg to 0.9Ly (i.e. yo = 0.3Ly,0.4L4,0.5L,4,0.6Ly,0.7Ly,0.8Ly, and 0.9L,). In
addition, three different beam sizes of W = L,,0.5L,, and 0.25L, for the Gaussian, flat
cosine-squared, and exponential-decay beams are investigated. The freespace wavelength of

the incident beam is assumed to be Ag = 1.0 um.

6.2 Input Volume Holographic Grating Couplers in the Wave-
guide Film Region

For an input VHGC in the waveguide film region [as shown in Fig. 6.1(a)], the waveguide
material is assumed to be the DuPont’s OmniDex613 photopolymer with refractive index
ny, = 1.5, The thicknesses of the waveguide and the grating are ¢, = t;, = 1.8 um. The
thickness t,, is designed to support a single TE mode in this waveguide. The propagation
constants for TEg mode in this waveguide is frg, = 9.335 wm~!. In addition, the grating
material is DuPont’s OmniDex613 photopolymer with average dielectric constant ep = 2.25
(ng = 1.5) and modulation €§ = 0.06 (Any ~ 0.02) [134]. The grating period and the slant
angle of the input VHGC are designed to couple the normally incident beam (as a plane
wave) into TEp mode of the waveguide. Applying the phase-matching conditions (as seen
in Section 7.1), the grating period and the slant angle of the input VHGC in the waveguide

film region are A = 473.7nm and ¢ = 135.28° respectively.
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6.2.1 Electric Fields

Figure 6.3 shows the amplitude patterns of the total electric-field of a finite VHGC with L, =
50 um in the waveguide film region illuminated by a Gaussian beam with beam waist W =
0.5L4 at three different incident positions (y, = 0.3Lg4,0.6L,, and 0.9L,). The waveguide
layer is located between x = 2.0um and x = 3.8 um, and the finite volume holographic
grating is located between y = 10um and y = 60 um. Dark areas indicate regions of
lower field amplitude, and the lighter areas indicate regions of higher field amplitude. In
addition, both transmitted fields at z = 8 um and waveguide-coupled fields at y = 80 um
corresponding to Fig. 6.3 are also represented in Fig. 6.4.

As seen in Fig. 6.3(a) with the incident position y, = 0.3L4, the Gaussian beam

normally incident from the cover region is coupled into the TEp mode propagating in

(a) yo=0.3Lg (b) yo=0.6Lg (c) yo=0.9L

9

y (um)

X (pm) x (pm) X (pm)

Figure 6.3: Two-dimensional field-amplitude patterns of a finite input VHGC with L, =
50 um in the waveguide film region illuminated by a 'T'E-polarized Gaussian beam with
beam waist W = 0.5L4 at the incident position of (a) y, = 0.3Lg, (b) yo = 0.6Lg, and (c)
Yo = 0.9Ly.
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Figure 6.4: Field profiles corresponding to Fig. 6.3 for (a) the transmitted field at z = 8 um
and (b) the waveguide-coupled field at y = 80 um.
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the waveguide and then this guided mode is coupled out of the waveguide by the same
VHGC from y = 40 um to y = 60 wm [as seen in Fig. 6.4(a)]. This output-coupling effect
will result in the leakage of guided mode from the waveguide and therefore deteriorate
the performance of input VHGC. However, as the incident-beam position is increased to
Yo = 0.6Lg4, the output-coupling effect is small [as seen in Figs. 6.3(b) and 6.4(a)] because
the larger value of y, corresponds to a shorter output-coupling length (i.e. less power of the
guided mode will be coupled out of the waveguide for the larger y,), and consequently, more
power of the guided mode remains in the waveguide. Therefore, as seen in Fig. 6.4(b), the
amplitude of the waveguide-coupled field of y, = 0.6L, is higher than that of y, = 0.3L,. In
other words, the input coupling efficiency increases as the incident-beam position increases
from y, = 0.3L,4 to yo = 0.6L4. As the incident-beam position increases further, for example
Yo = 0.9L,, although the output-coupling effect of y, = 0.9L, is much smaller than those
of yo = 0.3Ly and y, = 0.6L, [as seen in Fig. 6.4(a)], some of the incident beam initially
falls outside the VHGC and transmits through the waveguide without getting diffracted
[as seen in Fig. 6.3(c)]. This grating region termination effect can be seen in Fig. 6.4(a).
Therefore, the amplitude of the waveguide-coupled field decreases as the incident-beam
position increases to y, = 0.9L, [as seen in Fig. 6.4(b)]. In summary, for a finite input
VHGC in the waveguide film region, there is an optimum incident-position for a finite
incident-beam to obtain the maximum coupling efficiency. The optimization of an input

VHGC in the waveguide film region will be discussed in Section 6.2.2.

6.2.2 Optimization of Input Coupling Efficiencies

Figure 6.5 shows the numerical results of input coupling efficiencies of TEg mode in the up-
ward direction (CE, 7f,) as a function of normalized incident-beam positions with various
incident-beam widths and different incident-beam profiles for a VHGC in the waveguide film
region. As seen in Fig. 6.5(a), the optimum incident-positions, ¥, 0pt, and the corresponding

input coupling efficiencies, CE, Tg,, of Gaussian beams with beam waists W = L,;,0.5L,,
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Figure 6.5: Input coupling efficiencies of TEqg mode in the upward direction as functions of
Yo/Ly and W/L, for a finite input VHGC with L, = 50 pm in the waveguide film region
illuminated by (a) a Gaussian beam, (b) a flat cosine-squared beam, and (c) an exponential-
decay beam.
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and 0.25Lg are Yo opt = 0.5Lg,0.6Ly, and 0.8L, and CEy 1, = 18.29%, 14.71%, and 8.46%
respectively. As has been discussed in Section 6.2.1, for y, < y,0pt, the input coupling effi-
ciency increases as the incident-beam position increases because the output-coupling effect
decreases. On the other hand, for y, > yo0pt, the input coupling efficiency decreases as
the incident-beam position increases because the grating region termination effect increases
(i.e. more of the incident beams initially falls outside the VHGC). Furthermore, the in-
put coupling efficiency (at the optimum coupling condition) decreases as the incident-beam
width decreases because narrower beams are more spread in the wave-vector space, result-
ing in significant deviations from the Bragg condition, and thus, less coupling efficiencies.
The characteristics of input coupling efficiencies with respect to the incident-beam position
(yo/L4) and the incident-beam width (W/L,) for a finite input VHGC illuminated by a flat
cosine-squared beam [as seen in Fig. 6.5(b)] and by an exponential-decay beam [as seen in
Fig. 6.5(c)] are similar to that of a finite input VHGC illuminated by a Gaussian beam.
Comparing Figs. 6.5(a), 6.5(b), and 6.5(c), the beam profiles do not significantly affect the
performance of a finite input VHGC.

The optimum incident-positions and the corresponding coupling efficiencies in the
upward direction (CE,, g, ) of a finite input VHGC in the waveguide film region illuminated
by various incident-beam profiles with different incident-beam widths are summarized in
Table 6.1. As seen in Table 6.1, as the incident-beam widths decrease from W = Lg to
W = 0.5Lg, the optimum incident-positions increase from yo opt = 0.5Lg to Yo 0pt = 0.6L,
for the Gaussian beam and to y, o = 0.7L, for both the flat cosine-squared beam and
the exponential-decay beam. However, as the incident-beam width decreases further (i.e.
W = 0.25Ly), the optimum incident-beam positions for all beam profiles increase to ¥o,opt =
0.8L4. Consequently, for a given beam profile, the optimum incident-position y, op: shifts to
the end of the VHGC as the incident-beam width decreases. However, the optimization of a
finite input VHGC is weakly dependent on the beam profiles. Finally, it is worth mentioning

that the input coupling efficiencies of TEq mode in the downward direction (CE4rg,) for
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all cases treated in this section are less than 0.02%.

Table 6.1: Optimization of a finite input VHGC with length L, = 50 um in a waveguide
film region illuminated by various incident-beam profiles.

Optimization for Coupling into TEy Mode

Beam Profiles Beam Width Optimum Incident-Position Input Coupling Efficiency
W/Lg Yo,opt/ Lig CEyrE (%)
1.0 0.5 18.29
Gaussian 0.5 0.6 14.71
0.25 0.8 8.46
1.0 0.5 18.30
Flat Cosine-Squared 0.5 0.7 14.15
0.25 0.8 8.65
1.0 0.5 18.19
Exponential-Decay 0.5 0.7 14.13
0.25 0.8 8.65

6.3 Input Volume Holographic Grating Couplers in the Wave-

guide Cover Region

For the configuration of an input VHGC in the waveguide cover region [as shown in
Fig. 6.1(b)], the thicknesses of the waveguide film and the grating are t,, = 0.4pum and
tg = 6.0 um (DuPont’s OmniDex613 photopolymer in laminate sheet), respectively. More-
over, the waveguide material is assumed to be a polyimide (Ultradel 9020D) with re-
fractive index n, = 1.56. Based on this waveguide structure, there are five TE modes
for the film-grating structure. The propagation constants of the first two TE modes are
Ore, = 9.456 pm~* (confined in the film region) and Brg, = 9.407 um™! (confined in the
film-grating region). Designing the input VHGC to couple the normally incident beam
(as a plane wave) into TEg mode of the waveguide by applying the phase-matching condi-
tions, the period and the slant angle of the input VHGC in the waveguide cover region are

A =470.6 nm and ¢ = 134.91° respectively.
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6.3.1 Electric Fields

The amplitude patterns of the total electric-field of a finite VHGC with L, = 50 um in the
waveguide cover region illuminated by a Gaussian beam with beam waist W = 0.56L, at
three different incident positions (y, = 0.3Ly,0.6L,, and 0.9L,) are shown in Fig. 6.6. In
this case, the grating is located between z = 2.0 um and = = 8.0 um and between y = 10 um
and y = 60 um. In addition, the waveguide layer is from z = 8.0 um to z = 8.4 um. Again,
dark areas indicate regions of lower field amplitude, and the lighter areas indicate regions
of higher field amplitude. In addition, both transmitted fields at x = 16 ym and waveguide-
coupled fields at y = 80 um corresponding to Fig. 6.6 are also represented in Fig. 6.7.

As seen in Figs. 6.6 and 6.7(a), the characteristics of a finite input VHGC in the

waveguide cover region are similar to those of a finite input VHGC in the waveguide film

(a) y,:,=0.3Lg (b) y°=0.6Lg
80 o

(c) yo=0.9Lg

y (um)

0 4 & 12 1 0 4 § 12 16
X {(um) X (um) X (um)

Figure 6.6: Two-dimensional field-amplitude patterns of a finite input VHGC with L, =
50 um in the waveguide cover region illuminated by a TE-polarized Gaussian beam with
beam waist W = 0.5L, at the incident position of (a) y, = 0.3Lg, (b) yo = 0.6Lg, and (c)
Yo = 0.9L,.
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Figure 6.7: Field profiles corresponding to Fig. 6.6 for (a) the transmitted field at z = 16 um
and (b) the waveguide-coupled field at y = 80 um.
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region. The output-coupling effect, resulting in the leakages of guided modes from the
waveguide and therefore deteriorating the performance of a finite input VHGC, decreases
as the incident-beam position increases. On the other hand, the grating region termination
effect, causing an incomplete interaction between the finite beam and the finite VHGC
and thus worsening the input coupling efficiency, increases as the incident-beam position
increases. As a result, there is an optimum incident-position for a finite incident-beam for a
finite input VHGC in the waveguide cover region. The optimization of an input VHGC in
the waveguide cover region will be discussed in Section 6.3.2. Furthermore, in contrast to
the configuration of a finite input VHGC in the waveguide film region [as seen in Figs. 6.3
and 6.4(b)|, another interesting phenomenon for the case of a finite input VHGC in the
waveguide cover region is an additional TE; mode excitation. As seen in Figs. 6.6 and
6.7(b), besides the fundamental TEg mode (confined in the film layer), an additional TE;

mode (confined in the grating-film layer) are excited by the input VHGC.

6.3.2 Optimization of Input Coupling Efficiencies

The numerical results of input coupling efficiencies (in the upward direction) of TEy mode
(CEyu1E,) and TE; mode (CEy 7E,) as a function of normalized incident-beam positions
with various incident-beam widths and different incident-beam profiles for a VHGC in the
waveguide cover region are represented in Figs. 6.8 and 6.9 respectively. It is noted that
for all cases treated in this section, the input coupling efficiencies (in the upward direction)
of TEy mode (CE, rE,), TE3 mode (CE,1E,), and TE4 mode (CE, rE,) are less than
1.0%, 2.0% and 0.005% respectively. On the other hand, the input coupling efficiencies for
all guided modes in the downward direction are less than 0.06%. In addition, the opti-
mum incident-positions (y,pt) and the corresponding coupling efficiencies (in the upward
direction) for both TEy and TE; modes of a finite input VHGC in the waveguide cover
region illuminated by various incident-beam profiles with different incident-beam widths

are summarized in Table 6.2.
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Figure 6.8: Input coupling efficiencies of TEg mode in the upward direction as functions
of yo/Ls and W/L, for a finite input VHGC with L; = 50 um in the waveguide cover
region illuminated by (a) a Gaussian beam, (b) a flat cosine-squared beam, and (c) an
exponential-decay beam.
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Figure 6.9: Input coupling efficiencies of TE; mode in the upward direction as functions
of yo/Ly and W/L, for a finite input VHGC with L, = 50 um in the waveguide cover
region illuminated by (a) a Gaussian beam, (b) a flat cosine-squared beam, and (c¢) an
exponential-decay beam.
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As seen in Figs. 6.8 and 6.9, similar to the case of a finite input VHGC in the wave-

guide film region (shown in Fig. 6.5), the input coupling efficiency is strongly dependent

on the incident-beam width as well as on the incident-beam position, but is weakly depen-

dent on the incident-beam profile. On the other hand, as seen in Table 6.2, the optimum

incident-positions of y, opt for both TEg and TE; modes shift to the end of the VHGC as the

incident-beam width decreases. Furthermore, the corresponding input coupling efficiencies

for both TEp and TE; modes (at the optimum coupling condition) decrease as the incident-

beam width decreases. However, the incident-beam profile does not significantly affect the

Table 6.2: Optimization of a finite input VHGC with length Ly, = 50 um in a waveguide

cover region illuminated by various incident-beam profiles.

Beam Profiles

Optimization for Coupling into TEg Mode
Beam Width Optimum Incident-Position

Input Coupling Efficiency

W/Lg Yo,opt/ Lg CEu e, (%)

1.0 0.6 8.98

Gaussian 0.5 0.7 8.00

0.25 0.8 5.37

1.0 0.5 8.83

Flat Cosine-Squared 0.5 0.7 8.07
0.25 0.8 5.53

1.0 0.5 8.76

Exponential-Decay 0.5 0.7 8.03
0.25 0.8 5.52

Beam Profiles

Optimization for Coupling into TE; Mode
Beam Width Optimum Incident-Position

Input Coupling Efficiency

W/Lg yo,opt/Lg CEu,TE1 (%)

1.0 0.5 42.02

Gaussian 0.5 0.7 31.38

0.25 0.8 18.57

1.0 0.5 45.27

Flat Cosine-Squared 0.5 0.7 31.43
0.25 0.8 19.02

1.0 0.5 44.78

Exponential-Decay 0.5 0.7 31.33
0.25 0.8 19.01
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optimization of a finite input VHGC in the waveguide cover region.

Comparing Figs. 6.8 and 6.9, although the input VHGC is designed to couple the
normally incident beam into the TEy mode of the waveguide based on the phase-matching
condition for the first diffracted order, the input coupling efficiencies of the TE; mode are
much higher than those of the TEg mode. For example, for a VHGC in the waveguide cover
region illuminated by a Gaussian beam with W = 0.5L, at the optimum incident-position of
Yo = 0.7Lg4, the input coupling efficiencies of TEg mode and TE; mode are CE,, 7g, = 8.00%
and CE, g, = 31.38%. In order to explain this interesting phenomenon, let us apply this
VHGC in the waveguide cover region as an output grating coupler to couple the TEg mode
normally out of the waveguide (i.e. the output coupling angle in the cover region is 6, = 0°).
As discussed in detail in Section 5.3.2, the output coupling angle is 8, = 0.38° instead of
the designed value of 8. = 0° because the grating period and the slant angle are designed
based on the propagation constant of a waveguide without the grating modulation being
considered (i.e. the grating is considered homogeneous with an average refractive index). As
a result, the effective tangential-component of the grating vector (i.e. the component of the
grating vector along the propagation direction of the guided mode) is Ky .75 = 9.414 pm™1,
which is away from the expected value K, = 9.456 um™! (i.e. the propagation constant of
TEo mode), but is closer to the propagation constant of TE; mode. On the other hand, if
this VHGC is used to couple the normally incident beam into the waveguide, more incident

light will be coupled into the TE; mode than into the TEy mode.

6.4 Summary and Discussion

The effects of the incident-beam width, the incident-beam position, and the incident-beam
profile on the input coupling efficiency of a finite input VHGC are investigated for TE inci-
dent polarization by use of the FDFD rigorous electromagnetic method. Two configurations

of an input VHGC embedded in the waveguide film region as well as an input VHGC placed
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in the waveguide cover region are examined.

For both configurations, the preceding numerical analysis has shown that the incident-
beam width as well as the incident-beam position can dramatically affect the input cou-
pling efficiency. In general, for a given VHGC, the input coupling efficiency decreases as
the incident-beam width decreases because a narrower beam corresponds to a broader spec-
trum of spatial frequencies, resulting in a significant deviation from the Bragg condition,
and thus, a smaller coupling efficiency. On the other hand, for the incident-position effect,
depending on both the output-coupling effect and the grating region termination effect, an
optimum incident-position Yo, opt, Which is strongly dependent on the incident-beam width,
for a given beam can be obtained. For example, the optimum incident-positions of a VHGC
in the waveguide film region illuminated by a Gaussian beam are yoopt = 0.5L4,0.6L, and
0.8L, as the incident-beam widths are W = L,,0.5L,, and W = 0.25L respectively. The
similar results for the optimization of a flat cosine-squared beam and an exponential-decay
beam can also be observed. In summary, the optimum incident-beam position shifts to the
end of a VHGC as the incident beam width decreases. However, the beam profile does
not dramatically affect the input coupling efficiency as well as the optimization of input
coupling.

In addition, the FDFD results show that there is a higher-order waveguide mode
excitation in the configuration of an input VHGC in the waveguide cover region. A rather
interesting observation is that the input coupling efficiency of TE; mode is much higher
than that of TEy mode, even though the input VHGC is designed to couple the normally
incident beam into the TEg mode of the waveguide. The reason of this interesting result is
that the effective tangential-component of the grating vector corresponding to the tangential
component of the first diffracted order is closer to the propagation constant of TE; mode

than to that of TEg mode.
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CHAPTER 7

DESIGN, FABRICATION, AND
PERFORMANCE OF A VOLUME

HOLOGRAPHIC GRATING COUPLER

In this research, a VHGC in the waveguide cover region with output coupling angle 6, = 0°
[as seen in Fig. 5.1(b)] will be designed, fabricated, and tested. For ease of testing this
device, the operation wavelength (i.e the reading beam) at freespace is Ao, = 632.8 nm.
The waveguide material is the Avatrel 2000P polymer (fabricated by Promerus, LLC) with
refractive index n,, = 1.518 at Ay, = 632.8 nm. The thickness of the waveguide is de-
signed as t,, = 0.5 um. In order to fabricate a holographic grating, a commercial argon-ion
laser (Spectra-Physics BeamLok 2065-S) with freespace wavelength Ao, = 363.8 nm is used
to create the desired interference pattern. The grating material is DuPont’s OmniDex613
photopolymer with refractive index ng, = 1.50 and ng, = 1.535 at Ao, = 632.8nm
and Ao, = 363.8 nm respectively. The refractive-index modulation and the thickness of
this grating are An; ~ 0.02 and t; = 6.0 um respectively. In addition, the substrate
is fused silica with refractive index ny; = 1.4567 and the cover is air (n, = 1.0). As a
result, the waveguide grating coupler supports a single waveguide mode with propaga-
tion constant Brg, = 14.897 um™' and seven photopolymer modes with corresponding
propagation constants Grg, = 14:.879#777,“17 Bre, = 14.848 um™, Bre, = 14.800 um™t,

Bre, = 14.738 um™}, Bre, = 14.659 um™!, BrE, = 14.567 um™!, and Brg, = 14.466 um=".
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7.1 Design of a Volume Holographic Grating Coupler

In order to design a VHGC (operated at Ao, = 632.8nm) to couple out the guided mode
into the cover region with a pre-specified output coupling angle 6. (as seen in Fig. 5.1), the
standard phase-matching condition between the incident guided mode and desired diffracted
wave is applied. Figure 7.1 shows the corresponding wavevector diagram for the case of
a VHGC in the waveguide cover region. In this case, the waveguide is comprised of a
substrate with refractive index ng, a grating layer with refractive index ng,, a waveguide
film region with refractive index n,,r, and a cover region with refractive index n.. 8 is the
propagation constant of a guided mode of this waveguide without the grating modulation
being considered.

As seen in Fig. 7.1, the z-component of the grating vector K, is determined by

using the phase matching condition to achieve the pre-specified output coupling angle 6.,

Yy A
e(2 1

1
Cover H Ko Ne

!
Grating 9 E K|=2m/A

[}

! ¢

B kl:b,rng,r
Waveguide Ko, My r

Figure 7.1: Corresponding wavevector diagram for the design of a VHGC in the waveguide
cover region with output coupling angle ..
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and the y-component of the grating vector K, is determined by using the Bragg condition.

Therefore, the grating vector can be represented as
K= K,&+ K;j = (korncsin. — 8)& + ko,yng,r cos 4y, (7.1)

where ko, = 27/Xo, is the freespace wave number, and 6 is the output coupling angle in
the grating layer. In addition, since ngy,, sin; = n.sin ., the slant angle of the grating can

be written as

2 2 ain2
K ng, — Ng sin® Oc
=tan"! =¥ = tan~! 7.2
¢ Ky 0 Tngsin— nggy (72)

where ngsr = B/ko, is the effective index of this waveguide. Furthermore, according to the

wavevector diagram, the grating period can be represented as

2 27
= — S Q. 7.3
K| = B = koo 6, ¢ (73)
Although Eqgs. (7.2) and (7.3) are derived for a VHGC in the waveguide cover region, they
could be applied for a VHGC in the waveguide film and/or cover region for both output

coupling and input coupling.

7.2 Design of a Holographic Recording Configuration

7.2.1 Arrangement of Interferometric Recording

In order to fabricate a VHGC in the waveguide cover region, the interferometric recording
configuration shown in Fig. 7.2 is applied. As shown in Fig. 7.2 recording light from an
argon-ion TE-polarized laser with freespace wavelength Ao, = 363.8nm is focused and
smoothed by a spatial filter and then collimated by a lens with a focal length of f = 1000 mm
to obtain a uniform phase-front. Then, the recording beam is redirected by use of a fixed
mirror to a polarizing beamsplitter. The polarizing beamsplitter consisting of a rotatable
half-wave plate, followed by a beamsplitter cube and a fixed half-wave plate, is used to

split the recording beam into two incident beams (referred to the objective beam and the
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Figure 7.2: Configuration of volume holographic grating recording.

reference beam). The power ratio of the objective beam and the reference beam P,/P,
can be adjusted by the rotation of the first half-wave plate. Then, both the objective
beam and the reference beam are redirected by two gimbaled mirrors toward the recording
sample. The sample is prepared by laminating a DuPont OmniDex613 photopolymer on an
Avatrel waveguide. The fabrication processing will be discussed in Section 7.3. Similar to
the configuration for the fabrication of a large slant-angle holographic grating (as seen in
Fig. 4.14), a fused silica 45° — 45° — 90° prism with refractive index n;,, = 1.47 is inserted
between the prepared sample and air to obtain the desired interference pattern, especially

for the grating with large slant-angle ¢ = 20.32°. The outside surfaces of the prism are
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AR coated to reduce reflections. The configuration of the prism system is represented in

Fig. 7.3.

Objective Beam
(how=363.8 nm) A

Grating

Reference Beam

{Ao,w=363.8 nm)

Waveguide

Glass Plate

Figure 7.3: Configuration of a prism system for the fabrication of volume holographic
gratings. An argon-ion laser with free-space wavelength Ag, = 363.8nm is used as a
writing beam to create the fringe interference. The coordinate systems used for the grating
and the prism are z — y and z’ — y’ respectively. The angle between the objective beam
and the reference beam are A6, and the rotation angle of the prism (in counterclockwise) is
1. The corresponding angle of the incident angles of the objective beam and the reference
beam are 6, = A8/2 + 1) and 6, = AB/2 — 9 respectively.

7.2.2 Interference Pattern

The configuration of the prism system to create the desired interference pattern is shown in
Fig. 7.3. As shown in Fig. 7.3, the angle between the objective beam and the reference beam
is A6, and the rotation angle (in counterclockwise direction) of the prism is 9. Therefore,

the incident angles of the objective beam (6,) and the reference beam (6,) can be written

as
90 = '%9' + 1/), (74)
6, = % _ . (7.5)



From the Snell’s law and the geometry of the prism, the incident angles of the objective
beam both in the prism (6,,) and in the grating (6,4) and the incident angles of the

reference beam both in the prism (6, ;) and in the grating (6, 4) can be represented as

sin 4,

0pp = 45°+si —1( (7.6)

Nop,w

)
0oy = sin~! (n sin 6, p>, (1.7)
g,w
)

sin 6,
0, = 45° (np, (7.8)
. —1 {Mpuw
0,y = sin ( sm91p> (7.9)

Ng,w

As a result, the recorded grating vector K = K, + K,y are

Ky = kowngw(sin,, —sinb,,), (7.10)

Ky = kowngw(cosbrg—cosb,g), (7.11)

where ko, = 27/Xow is the freespace wavevector of the writing (recording) beam. Finally,

the slant angle, ¢, and the grating period, A, can be represented as

¢ = tan_l(%), (7.12)

A= (7.13)

K2+ K2

However, as has been discussed previously, the holographic recording introduces
material shrinkage of the DuPont OmniDex613 photopolymer, and therefore, changes the
grating period and the slant angle. Figure 7.4 shows the effect of the material shrinkage on
the grating vector. From the geometry of the grating (as seen in Fig. 7.4), the new slant

angle, ¢5, and the new grating period, Ay, resulting from recording shrinkage are

_ _y [ tang¢
¢s = tan (——1_5S>, (7.14)
COS (g
cos¢

Ay =

(7.15)

where d; is the shrinkage factor. Therefore, the new grating vector Kg = K; ;& + Ky 5§ can
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be written as

Kz,s = g, (7.16)
Ky

—_—. 1
1=, (7.17)

Kys=

It is noted that the recording shrinkage does not change the z-component of the grating
vector. Depending on the exposure intensity, the shrinkage factor of a DuPont OmniDex613

photopolymer varies from §; ~ 2.75% to ds ~ 4.20% (discussed in Chapter 4).

Figure 7.4. Effects of material shrinkage on a photopolymer after holographic recording.
The solid lines represent the grating configuration (with period A, slant angle ¢, and grating
vector K) without material shrinkage, and the dash lines represent the grating configuration
(with period Aj, slant angle ¢5, and grating vector Kg) after recording shrinkage. The
original thickness and the shrinkage factor of the photopolymer are t, and ds respectively.

In addition, in order to obtain a high-contrast interference pattern, the intensities of
the objective beam and the reference beam have to be adjusted to be equal (i.e. the fringe
visibility V' = 1.0 inside the photopolymer). Considering the Fresnel reflection losses and
different projection areas of the objective beam and the reference beam, the power ratio

between the objective beam and the reference beam for V = 1.0 can be easily derived as

P, (=R )(1- R/f‘r) cos 0y cos 0y, cos(, p — 45°) 718
P (1- Ryo)(1 = R} ,)cos 8,08 0o cos(Orp — 45°) (7.18)

where R ; and R'fﬂ- (i = o,r) are the Fresnel reflection losses of the 1 beam at the prism-glass

interface and at the glass-grating interface respectively.
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Figure 7.5 shows an example for the design of the grating period (A), the slant
angle (¢), the output coupling angle (6.), and the power ratio of the objective beam and
the reference beam (P,/F,) of a VHGC in the waveguide cover region based on the prism
system (as seen in Fig. 7.3) as functions of the angle between the objective beam and
the reference beam (A#) as well as the rotation angle of the prism (¢). The solid lines
and the dash lines represent the cases of shrinkage factors with 6; = 0.0% and §, = 3.0%
respectively. As seen in Figs. 7.5 (a) and (b), as the shrinkage factor increases, the grating
period decreases and the slant angle increases. However, the recording shrinkage does not
change the output coupling angle 6, [as seen in Fig. 7.5 (c¢)] because the z-component of
the grating vector is the same before and after recording (i.e. K, = K, ;). Although the
recording shrinkage does not affect the output coupling angle, it introduces a deviation
of the y-component of the grating vector increases (K, , = Ky,/1 — d,). However, as has
been discussed in Chapter 4, this shift of the y-component of the grating vector can be
compensated by using post-baking processing. As seen in Fig. 7.5, in order to obtain the
zero-degree output coupling angle (6, = 0°), the angle between the objective beam and the
reference beam and the rotation angle (in counterclockwise) of the prism are A§ = 83.58°
and ¥ = 7.70° respectively for d; = 0.0%. As a result, the corresponding grating period
and the slant angle are A = 298.27nm and the slant angle ¢ = —44.99° respectively. In
addition, the power ratio of the objective beam and the reference beam is P,/ P, = 4.81 for

the fringe visibility V' = 1.0 inside the photopolymer.

7.3 Fabrication of a Volume Holographic Grating Coupler

7.3.1 Sample Preparation

In this research, the waveguides are fabricated by using a 15% (by weight) solution of
Avatrel 2000P. Before fabricating waveguides, the fused-silica substrates (with thickness

~ 1.0mm) are first rinsed using TCE, acetone, methanol, and isoproponol. Then, the
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Figure 7.5: Design of (a) the grating period (A), (b) the slant angle (¢), (¢) the output
coupling angle (6.), and (d) the power ratio of the objective beam and the reference beam
(P,/P;) of a VHGC in the waveguide cover region based on the prism system for holographic
recording (as seen in Fig. 7.3) as functions of the angle between the objective beam and
the reference beam (Af) as well as the rotation angle of the prism (¢). The solid lines
and the dash lines represent the cases of shrinkage factors with ds = 0.0% and é; = 3.0%
respectively. In addition, the operation wavelength and the effective index of the waveguide
are assumed to be Ay, = 632.8nm and n.fy = 1.5003 respectively.

152



substrates are dried at 100°C' by a hot plate for 2 minutes to drive off excess moisture.
Next, the AP3000 adhesion promoter is spun on the substrate at 3000 rpm with increasing
rate 1000 rpm/sec for 30 seconds. Then, a 15% (by weight) solution of Avatrel 2000P is
spun on the on the sample at 6000 rpm with increasing rate 1000 rpm/sec for 120 seconds.
After the spinning processing is finished, the waveguide sample is placed on a hot plate at
100°C for 10 minutes. As a result, the thickness of the Avatrel waveguide is t,, = 0.5 um.
The recording material for the grating fabrication is the DuPont OmniDex613 pho-
topolymer. A photopolymer piece with a width of 1 — 2¢m cutting from a photopolymer
sheet is prepared by removing one of the Mylar cover sheets. Then, the photopolymer
piece is laminated on the Avatrel waveguide. Next, the sample (consisting of a fused-silica
substrate, a 0.5um-thick Avatrel waveguide, a photopolymer piece, and a Mylar layer) is
placed in the prism system (as seen in Figs. 7.2 and 7.3) for the grating fabrication. It is

noted that mineral oil is used between the sample and the prism for the index match.

7.3.2 Grating Recording

A VHGC with zero-degree output coupling (6. = 0°) is fabricated in this research. Based
on the desired operation freespace wavelength (Ao, = 632.8wm) and the waveguide struc-
ture consisting of a substrate with refractive index ny, = 1.4567, a 0.5um-thick Avatrel
waveguide with refractive index ny,, = 1.518, a 6.0um-thick grating with refractive index
ng,r = 1.50, and air as a cover (n. = 1.0), the propagation constant and the effective in-
dex of TEg mode are frg, = 14.897 um_l and neyy = 1.5003 respectively. Substituting
Bre, = 14.897 um™! (as ) and nefs = 1.5003 into Eqs. 7.2 and 7.3, the slant angle
and the grating period for zero-degree output coupling (6. = 0°) are ¢ = —44.99° and
A = 298.27 nm respectively. Although the grating period and the slant angle are designed
without considering the shrinkage effect, which results in the changes of the grating period
and the slant angle, and thus, the deviation of Bragg angle, the shift of Bragg angle due

to holographic recording can be compensated by applying the post-baking processing. In
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addition, the post-baking processing can also improve the refractive-index modulation, and
thus, the coupling efficiency.

Following the procedure for the design of a holographic recording configuration (de-
scribed in Section 7.2.2), in order to fabricated a slanted grating with the period A =
298.27nm and the slant angle ¢ = —44.99° the angle between the objective beam and
the reference beam and the rotation angle (in counterclockwise direction) of the prism are
set as Af = 83.58° and ¥ = 7.70° respectively (as seen in Fig. 7.3). Furthermore, the
power ratio of the objective beam and the reference beam are selected as P,/P, = 4.81
to obtain the equal intensities of these two beams (i.e. the fringe visibility V = 1.0 inside
the photopolymer). Then, the sample placed in the prism system is exposed at intensity
Ip = 0.110mW/em? for 10 minutes. After recording, the sample is rinsed using isopro-
ponol for removing the mineral oil. Then, the sample is cured by a uniform UV light with
wavelength A\g = 365.0nm and exposure irradiance Iy = 2.0mW/ em? for 5 minutes to fix
both the Avatrel waveguide and the grating. Next, the sample is baked at temperature
Ty = 120°C for 1.5 hours to improve the refractive-index modulation as well as the coupling
efficiency and compensate the shrinkage effect resulting from the holographic recording.

After the post-baking, the other Mylar layer can be easily removed from the sample.

7.4 Performance of a Volume Holographic Grating Coupler

In order to determine the performance of a VHGC designed for zero-degree output coupling
(6. = 0°), an angular-selectivity testing configuration shown in Fig. 4.15 is used. A VHGC
sample (fabricated in Section 7.3) is mounted on a rotational stage and is illuminated by
a He-Ne TE-polarized laser with free-space wavelength Ao, = 632.8 nm. Light transmitted
through the sample (not diffracted) is measured for a range of incident angles (6;,.) around
the designed coupling angle.

Figure 7.6 shows the normalized transmitted power as a function of incident angle
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Figure 7.6: The normalized transmitted power as a function of incident angle 6;,. for the
fabrication of VHGC.

Oine for the VHGC described in Section 7.3. As seen in Fig. 7.6, there are eight resonances
representing the coupling into the fundamental TEq mode (confined in the film layer) and the
photopolymer modes (confined in the film-grating layer). For the fundamental TEg mode,
the input coupling angle (i.e. the output coupling angle) of the experimental measurement
is O ezp = —0.28° and the transmission efficiency is 61.17% (i.e. the input coupling efficiency
of TEg mode is CErg, ~ 39.93%). It is noted that the measured coupling angle 6. ¢qp =
—0.28° is slightly off their designed value (6, = 0°). The possible reasons for the deviation of
the measured coupling angle (0. ezp) from the designed coupling angle (6.) are the fabrication
errors resulting from the holographic recording process (determining the period and the
slant angle of a grating) and the spin-on process (defining the thickness of a waveguide-
film layer). On the other hand, even though a perfect grating and a perfect waveguide are
fabricated, the measured and designed values of the coupling angle may be different because
the grating period and the slant angle are designed based on the propagation constant of a

waveguide without the grating modulation being considered (i.e. the grating is considered
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homogeneous with an average refractive index). The presence of the modulation affects
slightly the real part of the propagation constant which results in the small difference of the
diffracted angle from its designed value (described in Sections 5.2.2 and 5.3.2). In addition,
as discussed in Section 6.3.1, the tangential component of an ideal grating (i.e. K, in
Fig. 7.1) is also different from the expected value, and therefore, causes the deviation of the
measured coupling angle from its designed value.

Assuming the fabricated grating is perfect (i.e. K, = 14.897 um™'), the incident

angle can be replaced with a corresponding effective index, n.y s, by applying the relationship

K. .
Neff = koj — sin(Bine). (7.19)

The experimental results of the normalized transmitted power as a function of the corre-
sponding refractive index is shown in Fig. 7.7. In addition, the experimental measurements
of the performance of a VHGC in the waveguide cover region with respect to the coupling
angles, the corresponding refractive indices, and the coupling efficiencies for all guided

modes are summarized in Table 7.1.

Table 7.1: Experimental measurements of the performance of a VHGC in the waveguide
cover region with respect to the coupling angle, the effective index, and the coupling effi-
ciency.

Guided Modes Coupling Angle Effective Index Coupling Efficiency

Gc,e:z:p (deg-) Neff CE(%)
TEg —-0.28 1.5052 39.93
TE; 0.22 1.4965 29.39
TE, 0.48 1.4919 42.84
TE3 0.78 1.4867 79.85
TE4 1.08 1.4815 79.69
TEs 1.50 1.4741 66.34
TEg 2.00 1.4654 46.85
TE~, 2.54 1.4560 15.18

156



Normalized Transmitted Power

0.2 . ) . TEa TEA

1.56 1.54 1.52 1.50 1.48 1.46 1.44

Effective Index of Refraction, n

Figure 7.7: The normalized transmitted power as a function of the corresponding refractive
index, n.sy for the fabrication of VHGC.

7.5 Summary and Discussion

The present chapter discusses the design, fabrication, and testing of a VHGC in the wave-
guide cover region for zero-degree output and/or input coupling (6, = 0°) of TEy mode at
the operation wavelength of Ay, = 632.8 nm. The waveguide material is the Avatrel 2000P
polymer, and the thickness of the waveguide is designed as t,, = 0.5 um to support a single
mode confined the film layer. On the other hand, the grating coupler is designed by use of
the phase-matching condition for the first diffracted order and is fabricated based on the
DuPont OmniDex613 photopolymer. In addition, the effect of the recording shrinkage on
the grating period and the slant angle are also discussed in Section 7.2.2. As seen in Fig. 7.5,
the grating period decreases and the slant angle increases as the shrinkage factor increases.
However, the recording shrinkage does not change the tangential component of the grating
vector (i.e. K, does not change after holographic recording) as well as the coupling angle. In

order to study the performance of a VHGC fabricated in Section 7.3, an angular-selectivity
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measurement is applied. As seen in Fig. 7.6, eight resonances corresponding to coupling
into the fundamental TEp mode (confined in the film layer) and the photopolymer modes
(confined in the film-grating layer) are observed. For coupling into the TEy mode, the
coupling efficiency is CErpg, ~ 39.93%, and the coupling angle is 6 ezp = —0.28°, which is

very close to the designed value (6, = 0°).
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CHAPTER 8

CONCLUSIONS

Grating couplers including volume holographic grating couplers (VHGCs) and surface-relief
grating couplers have been proposed for use in integrated optics systems because of their
compatability with other optical and electronic devices. In contrast to the surface-relief
grating couplers, VHGCs provide attractive advantages including high coupling efficiency,
high preferential-order coupling, and dry processing (i.e. no etching) [20-22,52,66]. How-
ever, for practical applications, the needed VHGCs could have limited spatial apertures
and are usually illuminated by finite-width beams (such as a Gaussian beams). As a result,
the numerical methods of the rigorous coupled-wave analysis (RCWA) and the leaky-mode
(LM) approach that have been commonly applied in the past to analyze grating couplers do
not provide rigorous analysis because the RCWA assumes the grating is an infinite grating
illuminated by a plane wave and the LM approach does not take into account the effects
of the discontinuity between the waveguide and the VHGC and the resulting excitation of
other guided or radiation modes. In addition, the dynamic characteristics of holographic
grating formations in photopolymers are also important issues for the fabrication of VHGCs.

The research in this thesis dealt with the rigorous analysis, design, and fabrication of
VHGCs as well as studied in detail the dynamic behaviors of holographic grating formations
in photopolymers. The finite difference frequency-domain (FDFD) method from Chapter
2 and the finite-number-of-periods holographic gratings analysis in Chapter 3 have been
presented at a conference [54] and published [55]. Most of the work in Chapter 4 on dynamics

of holographic grating formations in photopolymers has been presented at a conference [133],

159



published [134], and submitted for publication [141]. The results of Chapter 5 for output
VHGCs analysis have been accepted for publication [139]. Finally, the research in Chapter

6 of input VHGCs analysis is also being prepared for submission [142].

8.1 Summary of Results

8.1.1 Finite-Difference Frequency-Domain Method

The finite-difference frequency-domain (FDFD) method in conjunction with uniaxial per-
fectly matched layers (UPMLs) was presented for the first time to rigorously analyze finite
gratings illuminated by finite beams. This numerical technique allows rigorous analysis of
VHGCs as well as surface-relief grating couplers, which can be placed either in the film or in
the cover of a waveguide, for both output and input coupling. In order to verify the FDFD
method and the performance of the UPML, the planar interface problems for both TE and
TM polarizations were tested. It was found that the performance of the UPML, such as
the artificial reflection error from the UPML, is the dependent on the characteristics (such
as the conductivity, the dielectric constant, and the thickness) of the UPML. In general,
the artificial reflection error from the UPML decreases as the conductivity of the UPML
increases and finally reaches a saturation value with —90dB. On the other hand, it was
found that the numerical error decreases as the number of grid per wavelength increases
(i.e. the mesh size decreases) and the convergence of the TM polarization is slower than
that of TE polarization for solving the Helmholtz equations. In general, the numbers of
grid per wavelength for both TE and TM polarization are Ny, N, > 20 and N, N, > 25

respectively for the FDFD analysis.

8.1.2 Finite-Number-of-Periods Holographic Gratings

Finite-number-of-periods (FNP) holographic gratings illuminated by finite-width incident

beams (for both TE and TM polarizations) have been rigorously analyzed by use of the
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FDFD method in conjunction with the UPMLs. Both unslanted and slanted gratings in
transmission and reflection configurations were examined. The diffraction efficiencies of var-
ious diffracted orders were used as the metric of each grating performance. These diffraction
efficiencies were also compared to the ones predicted by the RCWA that is applicable to
infinite-number-of-periods (INP) gratings and infinite-width incident beams (plane waves).
It was found that the maximum diffraction efficiencies for the FNP holographic gratings
never exceeded that of the corresponding INP holographic gratings.

For unslanted gratings with at least 20 grating periods, the diffraction efficiencies
estimated by the FDFD method were close to the ones predicted by the RCWA and re-
mained constant as the incident-beam width increases because in this case the width of the
incident beam was smaller the grating width, and the resulting diffraction resembled the
diffraction by an infinite-width grating. In addition, as the number of periods decreased,
the diffraction efficiency also decreased for a constant beam width. On the other hand,
for slanted transmission/reflection gratings with at least 20 grating periods, the diffraction
efficiencies determined by the FDFD method approached the efficiencies predicted by the
RCWA as the incident-beam width increased because the wider the incident beam was,
the more it resembled a plane-wave characteristic. However, as the incident-beam widths
increased greater than ~ 10 grating periods (W > 10A,), the diffraction efficiencies slowly
converged to the values predicted by the RCWA.

For the comparison of the accuracy of the RCWA for FNP surface-relief gratings and
FNP holographic gratings, the errors of the RCWA decrease as the grating width and the
incident-beam width increased. In general, the errors of the RCWA for FNP holographic
gratings and FNP surface-relief gratings are of the same order revealing that the effects
of the FNP on the diffraction performance are equally important but are also case and

polarization dependent.
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8.1.3 Dynamics of Holographic Grating Formations in Photopolymers

The dynamic characteristics of holographic grating formations in photopolymers were stud-
ied by use of both theoretical analysis [a nonlocal diffusion model and the finite-difference
time-domain (FDTD) method] and experimental techniques (including a real-time diffraction-
monitoring technique and an angular-selectivity measurement). Both unslanted and slanted
gratings were recorded at UV wavelength of 363.8 nm based on DuPont OmniDex613 pho-
topolymers and tested. Furthermore, the effects of the post-baking conditions were also
investigated.

For the theoretical analysis based on the nonlocal diffusion model rigorously solved
by use of the FDTD method, it was found that the behavior of hologram recording was
strongly dependent on the dimensionless reaction rate Rp (corresponding to the exposure
intensity, the diffusion coefficient of free monomers, and the grating period), the dimension-
less nonlocal variance parameters op (relating to the nonlocal response length), and the
dimensionless time tp. For the larger dimensionless reaction rate (Rp > 1.0), the diffu-
sion coefficient was larger than the polymerization rate, so the free monomers had enough
time to propagate from the dark regions to the bright regions, and therefore, the polymer-
concentration profile at the steady state resembled more a sinusoidal variation (i.e. a better
first-order holographic grating was obtained). However, for the smaller dimensionless re-
action rate (Rp < 1.0), the polymerization occured faster than diffusion, and resulted in
two peaks of the polymer-concentration profile near the dark regions. Besides the dimen-
sionless reaction rate, the dimensionless nonlocal variance parameter op (corresponding to
the effects of the formation of polymer chains growing away from their initial locations)
was another important factor for the holographic recording. For a given Rp, the larger op,
more resembled a sinusoidal polymer-concentration profile, but the lower the visibility of
the profile. Therefore, increasing op, i.e. decreasing grating period or increasing nonlocal

response length, resulted in a weaker first-order holographic grating. In addition the numer-
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ical results of the FDTD method were compared to those of the four-harmonic-component
approximation [84] to quantify the accuracy of the low-harmonic-component approximation.
It was found that the accuracy of the four-harmonic-component approximation increased
as Rp increased and op increased. The error of four-harmonic-component approximation
was larger than 10% for Rp < 1.0 and for all value of op.

Based on the angular-selectivity experiment in conjunction with the RCWA fitting
for slanted holographic gratings, the recording-shrinkage factor of the DuPont OmniDex613
photopolymer varied from d; ~ 2.75% to §; ~ 4.20%. In addition, it was found that the
post-baking processing can not only double the refractive-index modulations of holographic
gratings but also compensate the recording shrinkage due to the irreversible thermal ex-
pansion, the decrease of the average refractive index, and the loss of volatile components of
recording material during post-baking processing. It was noted that the first two effects (i.e.
the irreversible thermal expansion and the decrease of the average refractive index) resulted
in a positive shift of Bragg angle, and the third effect (i.e. the loss of volatile components)
resulted in a negative shift of Bragg angle. In general, the optimal baking temperature and
baking time are 73 = 120°C and t;, = 1.5 h respectively.

Finally, the characteristic parameters of DuPont OmniDex613 photopolymers for
both unslanted and slanted holographic gratings were determined by fitting the theoretical
results of the nonlocal diffusion model to the experimental data (based on the real-time
diffraction-monitoring measurement). It was found that for unslanted gratings the diffusion
coefficient was constant (Dg ~ 1.0 x 10712 cm?2/sec) for all exposure intensities. However,
for slanted gratings, the diffusion coefficient was dependent on exposure intensities. For
the smaller exposure intensity (Ip = 0.043mW/cm?), the diffusion coefficient of a slanted
grating was Do ~ 0.6 x 1072 cm?/sec that was smaller than that of an unslanted grating
because free monomers had longer diffusion distance, and therefore, both the photopolymer-
Mylar and the photopolymer-glass boundaries affected the diffusion process. However, as

the exposure intensity increased, the diffusion coefficient increased and approached to the
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value of an unslanted grating because the higher exposure intensity corresponded to higher
polymerization rate, and as a result, the diffusion process of a slanted grating with a higher

exposure intensity (Io = 0.240 mW/cm?) resembled that of an unslanted grating.

8.1.4 Output Volume Holographic Grating Couplers

Output volume holographic grating couplers (VHGCs) placed either in the film or in the
cover waveguide region were rigorously analyzed using the FDFD method. Both TE and
TM polarizations with zero- and 45-degree output coupling were investigated and compared
with the RCWA /LM approach. For both configurations, it was found that the upward
coupling efficiency of TE polarization was much higher than that of TM polarization for
zero-degree output coupling, and thus polarization-dependent couplers were obtained. On
the other hand, the upward coupling efficiency of TM polarization was comparable to that
of TM polarization for 45-degree output coupling. Therefore, the grating coupler could be
polarization-independent if the grating was designed for 45-degree output coupling.
Comparing the results of the FDFD method and the RCWA /LM approach, it was
found that the FDFD method showed that the normalized electric field intensity was not
only an exponential decay, which the RCWA /LM approach assumed, but also had oscillatory
components along the propagation direction. This oscillatory behavior of the FDFD method
resulted from the interference between the incident mode, the higher-order modes (excited in
the waveguide film-grating region), and the radiation fields. In addition, the FDFD results
showed that there was a higher-order waveguide mode excitation and interference with the
fundamental waveguide mode in the case of an output VHGC in the waveguide cover region
and resulted in a non-monotonical decrease of the intensity of the output-coupled field along

the propagation direction, which could be characterized by the beat length.
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8.1.5 Input Volume Holographic Grating Couplers

A finite volume holographic grating coupler (VHGC) normally illuminated by various
incident-beam profiles (including a Gaussian beam, a flat cosine-squared beam, and an
exponential-decay beam) with finite beam-widths for input coupling was rigorously ana-
lyzed by use of the finite-difference frequency-domain (FDFD) method to study the effects
of the incident-beam width, the incident-beam position, and the incident-beam profile on
the input coupling efficiency, and therefore, to determine the optimum conditions for input
coupling. Both a VHGC embedded in the waveguide film region and a VHGC placed in the
waveguide cover region were investigated. Only TE polarization was considered.

For both configurations, both the incident-beam and the incident-beam position
could dramatically affect the input coupling efficiency. In general, for a given VHGC, the
input coupling efficiency decreases as the incident-beam width decreases. On the other
hand, for the incident-position effect, depending on both the output-coupling effect and the
grating region termination effect, an optimum incident-position y, o strongly depending
on the incident-beam width for a given beam could be obtained. For example, the optimum
incident-positions of a VHGC in the waveguide film region illuminated by a Gaussian beam
were Yo,opt = 0.5Ly,0.6L, and 0.8L, as the incident-beam widths were W = Lg,0.5L,, and
W = 0.25L, respectively. The similar results for the optimization of a flat cosine-squared
beam and an exponential-decay beam could also be observed. In summary, the optimum
incident-beam position shifted to the end of a VHGC as the incident beam width decreased.
However, the beam profile did not dramatically affect the input coupling efficiency as well
as the optimization of input coupling.

In addition, the FDFD results showed that there was a higher-order waveguide mode
excitation in the configuration of an input VHGC in the waveguide cover region. A rather
interesting observation was that the input coupling efficiency of TE; mode was much higher

than that of TEg mode, even though the input VHGC was designed to couple the normally
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incident beam into the TEy mode of the waveguide. The reason of this interesting result was
that the effective tangential-component of the grating vector corresponding to the tangential
component of the first diffracted order was closer to the propagation constant of TE; mode

than to that of TEg mode.

8.1.6 Design, Fabrication, and Performance of a Volume Holographic

Grating Coupler

A VHGC in the waveguide cover region for zero-degree output and/or input coupling (6, =
0°) of TEg mode at the operation wavelength of Ao, = 632.8 nm was designed, fabricated,
and tested. The waveguide and the grating were fabricated based on the Avatrel 2000P
polymer and the DuPont OmniDex613 photopolymer respectively, and the thickness of
the waveguide is designed as t,, = 0.5um to support a single mode confined the film
layer. Furthermore, the grating coupler was designed by use of the appropriate Bragg
condition between the incident guided mode and the desired diffracted wave. According to
experimental measurements represented in Chapter 7, the VHGC fabricated in this research
showed that for coupling TEqg mode, the coupling efficiency was C Erg, ~ 39.93%, and the
coupling angle was 6. ezp = —0.28°, which was close to the designed value of 6, = 0°. The
difference between the measured value (8¢ ezp = —0.28°) and the designed value (6, = 0°)
may result from both the fabrication errors and the design rule based on the phase-matching

condition.

8.2 Future Research

Several interesting topics remain to be investigated in the area of grating couplers for further
research. All of the numerical analysis of this thesis is based on the FDFD method to solve
rigorously the Helmholtz equation for finite grating couplers illuminated by finite incident

beams, and the resulting linear algebraic equations are solved iteratively by use of the conju-
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gate gradient method (CGM). Although the FDFD method provides a rigorous solution to
the Helmholtz equation, and the CGM provides a monotonical decrease of its residual error
at each iteration (i.e. convergence is guaranteed), the method is inherently computationally-
intensive. As a result, other iterative methods, such as the bi-conjugate gradient method
(BCGM) [140,143,144] and the alternating-direction-implicit (ADI) method [135,144], can
be applied to solve more efficiently the large sparse linear systems. However, these two
iterative methods generally have the difficulty of the numerical convergence. Therefore,
the further development of the BCGM in conjunction with the preconditioning method is
needed to improve the convergence of the BCGM.

Recently, another finite-difference method, the finite-difference time-domain (FDTD)
method, has been applied to solve rigorously the Maxwell’s equations for finite diffractive
optical elements, such as surface-relief gratings [145], diffractive lenses [146], and photonic
crystals [147]. Similar to the FDFD method, the FDTD method can be used to analyze
inhomogeneous and anisotropic materials. However, in contrast to the FDFD method,
the FDTD method provides both transient and steady-state solutions to the Maxwell’s
equations. Therefore, another possible area of research is to develop the FDTD method
for the rigorous analysis of finite volume holographic gratings and compare to the FDFD
method. In addition, the further development of the finite-difference method for modeling
general 3-D geometries is also an interesting topic in the further research.

In addition to VHGCs, the surface-relief grating couplers can also be used to couple
light into and out of waveguides. In contrast to VHGCs, the surface-relief grating cou-
plers have discontinuous variations (i.e. non-sinusoidal variations) of the refractive index
and higher refractive-index modulations An. However, for most coupling applications, the
preferential-order coupling is needed, and therefore, slanted gratings are required. As has
been discussed in Chapter 5, slanted VHGCs provide high branching ratios (BR > 90 %) for
both TE and TM polarizations. Therefore, it would be interesting to study the diffraction

characteristics of slanted surface-relief grating couplers and compare to those of VHGCs.
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Moreover, there is also a need to develop an optimization processing for the design of
surface-relief grating couplers.

Furthermore, because of the fabrication errors resulting from the holographic record-
ing process (for the fabrication of volume holographic gratings) and the grating etching
process (for the fabrication of surface-relief gratings), both grating periods and slant an-
gles would deviate from their designed values, and therefore, degenerate the performances
of grating couplers. As a result, another interesting research project is to investigate the
sensitivity of grating periods and slant angles of both output and input grating couplers for
optical interconnections. In addition, for input grating couplers, the sensitivity of incident

angles is also of great interest for further research.
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APPENDIX A

THE CONJUGATE GRADIENT METHOD

In order to solve large sparse linear systems

Ax = b, (A.1)

the conjugate gradient method (CGM) is one of the best known iterative technique because
its residual error decreases monotonically at each iteration. In principle, the CGM yields an
exact solution when the number of iterations reaches the number of equation or unknowns,
so the CGM is also referred to as the semi-iterative method.

The CGM algorithm can be derived by applying the standard variational principle to
construct a functional whose minimum corresponds to the solution of Eq. A.1. Multiplying

A'A"=

(Z*)T, where the asterisk denotes complex conjugate and T denotes the transpose
matrix| on the both sides of Eq. A.1 and applying the Gram-Schmidt process, the algorithm

of the CGM with an initial guess xq for the k-th iterative solution xy can be written as:

o = b — ZXO, (A2)
=1
P, = _zt_AI;OT, (A.3)
(A I‘o,A I‘()>
Xk = Xk-1t+ %-1Pr-1, (A.4)
ry = TIkx-—1— a,c_lsz_l, (A5)
=1
Py = Pro1+Gk-1A 1y, (A.6)
1
a1 = —— (A7)

(APy_1, APy )’
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1
Be-1 = ———=7— (A.8)
(A'rg, Ary)

where ry is the residual vector at the k-th iteration, and Py is the conjugate search vector
at the k-th iteration. In addition, (x,y) denotes the inner product of two vectors, which is
defined as (x,y) = x*Ty. The iteration is continued till a termination condition is satisfied.

The form of a termination condition can be written as:

I ric |
<eg
b ="

(A.9)

where || x || = v/(x,x) is the Euclidean norm of the vector x, and £, denotes a small
number, called the tolerance, which specifies the desired accuracy of solution. In general

the values of ¢, used in the literature range from 10™* to 1077 [140].
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APPENDIX B

CALCULATION OF REFRACTIVE -INDEX
MODULATIONS FROM MEASURED

DIFFRACTION EFFICIENCIES

In order to convert the experimentally measured diffraction efficiencies to the corresponding
refractive-index modulations, both Kogelnik’s theory and the RCWA are applied. However,
to avoid the effect of the optically thick glass substrate (with non-optically flat and non-
parallel sides), both methods have to be modified by a correction factor Ry for the Fresnel
reflection power loss of the glass substrate. The configuration for determining the Fresnel
factors is shown in Fig. B.1. Ry was calculated based only on the interface between air and
glass. In addition, since Kogelnik’s theory is valid in the case that the average refractive
index in the grating is equal to those in the input and output regions, additional correction
factors had to be used. Two cases were considered: (1) neglecting multiple interference
effects between photopolymer and Mylar layers and (2) taking into account the multiple
interference effects between photopolymer and Mylar layers. In the first case R/f, R'},
and R;l (shown in Fig. B.1) have to be used to take into account the reflection losses at
each interface. R}, R'f/-, and R;’ are calculated by using the Fresnel equations for a planar
interface between two media. In the second case (with multiple interference effects included)
the correction factor R}”i is used. In this case R;”i was calculated taking into account the

multiple interference between photopolymer/Mylar with glass and air as input and output
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Figure B.1: Configuration for determining correction factors of the Fresnel reflection loss.
The sample consists a glass substrate with thickness t,, a grating with thickness ¢4, and
a Mylar layer with thickness ¢,,. The refractive indices of the glass, the grating, and the
Mylar layer are ng, ng, and n,,, respectively. The incident beam has wavelength Ao, and
incident angle 0y, ,. R indicates the Fresnel reflection coefficient at the interface between air
and the glass, and R # represents the Fresnel reflection coefficient at the interface between
the glass and the grating/Mylar combination.

regions respectively.

As seen in Fig. B.1, the prepared sample consists of a glass substrate with thickness
ts ~ 1.0mm, a photopolymer (grating) with thickness t, = 6.0 um, and a Mylar layer with
thickness ¢,, = 57.83 um (that was measured experimentally using a profilometer). The
refractive indices of glass, photopolymer (grating), and Mylar layer are n, = 1.4567, ny =
1.5, and n,, = 1.6 respectively. The TE-polarized laser beam with freespace wavelength
Ao,r = 632.8 nm is incident from air with an angle 6, 5 = 60.42° to monitor the diffraction

efficiency during exposure. Based on thickness and refractive index of the prepared sample

and monitoring condition, correction factors for the Fresnel reflection loss are Ry = 0.165,
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U

R'f = 5.016 x 1074, R’f’ = 2220 x 1073, Ry = 0.214, and R} = 0.258. Therefore, the
refractive-index modulation estimated by use of modified Kogelnik’s theory An; ko4 can be

represented as:

Ao.r sin 6
Casel : Anykog = —(—)&—B—sin_1 ,DE] 7 s (B.1)
g (l—Rf)(l—Rf)(l—Rf)(l—Rf)
)\orSiII@B ] DE1
Case2: A = ‘ B.2
ase N1, Kog pry sin = R)(1 = ) (B.2)

where 0p is the incident angle inside the grating, and DE) is the measured diffraction
efficiency of the first-diffracted order. For both cases the error of Kogelnik’s theory was
~ 30%. A summary of the estimated An; is shown in Table B.1. Moreover, the refractive-
index modulation of the grating is also determined by use of the RCWA by using the

equation
DE,
1 - Ry

DET = = frowa(Any), (B.3)

where DEY is the diffraction efficiency calculated using the RCWA and frew 4(*) describes

the numerical dependence of the diffraction efficiencies on An;y.

Table B.1: Saturation refractive-index modulations calculated from experimental data using
the RCWA or Kogelnik’s theory with corrections for Fresnel losses

Exposure Irradiance Refractive-Index Modulations, Any
Io(mW/cm?) RCWA Kogelnik!  Error(%)®  Kogelnik?>  Error(%)3
0.043 0.985 x 1072 0.692 x 1072 29.75 0.673 x 10~2 31.68
0.110 1.056 x 1072 0.742 x 1072 29.73 0.721 x 1072 31.72
0.240 1.126 x 1072 0.792 x 10~2 29.66 0.769 x 10~2 31.71
0.368 1.066 x 1072 0.750 x 10~2 29.64 0.728 x 10~2 31.71

1: Neglecting multiple interference effects
2: Taking into account photopolymer/Mylar layer multiple interference effects
3: Error calculated using Eq. (4.27)
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APPENDIX C

DIFFRACTION INTEGRALS FOR FAR-FIELD

CALCULATIONS

In order to calculate the far-field distribution, the diffraction integral [17], relating the far
field at an arbitrary point in space to the near-field profile along a boundary T', is applied. As
shown in Fig. 5.1, the boundary T is defined as the interface between the grating layer and
the cover region. By applying Green’s theorem to Maxwell’s equations and incorporating
the two-dimensional diffraction condition, the integral expression for the total field at an

arbitrary observation point (ro = z,& + y,9) above the boundary I' is [17]

k Y
Ulry) = — Nz g — I P _
(ro) = = [ U)o elwo = ¥ 7, ()

where 1’ = 2’4+ is a source point on the boundary T, |ro—1'| = /(2o — 2/)% + (yo — ¥')?
is the distance between the source point on the boundary I' and the observation point in the
cover region, k. is the wave number in the cover region, and H1(2) is the first-order Hankel
function of the second kind. In addition, the near-field profile U(r’) along the boundary
I is calculated by using both the RCWA/LM approach and the FDFD method. For the
RCWA /LM approach, the normalized near field along the top surface of the waveguide film

layer is given by
exp(—ayz') 0<a'<L,
Urewa/om(z’) = (C.2)
0 else.

For the configuration of the output VHGC in the waveguide film region [as shown in

Fig. 5.1(a)], the field along the top surface of the waveguide film layer [as represented
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in Eq. (C.2)] is also the field along the boundary I". However, for the configuration of the
output VHGC in the waveguide cover region [as shown in Fig. 5.1(b)], the field along the
boundary I is calculated by substituting Eq. (C.2) into Eq. (C.1) with the assumption
that the grating is homogeneous with an average refractive index. However, for the FDFD
method, the near fields Upppp(r’) along the boundary T' for both the output VHGC in
the waveguide film region and the output VHGC in the waveguide cover region are ob-
tained rigorously by solving the corresponding linear algebraic equations of the Helmholtz

equation.
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APPENDIX D

MODAL DECOMPOSITION FOR THE POWER

CALCULATIONS OF WAVEGUIDE MODES

A multilayer slab waveguide, shown in Fig. D.1, consists of a stack of N layers with finite
thickness bounded on either side by two semi-infinite media, denoted as a substrate with
refractive index ng and a cover with refractive index n.. The thickness and the refractive
index of the i-th layer are ¢; and n; respectively. The slab waveguide is infinite in extent in

the zz plane, but finite in the y direction.

ng Cover

y n2 I t;
T " i
» X

ng Substrate

Figure D.1: A configuration of a multilayer slab waveguide consisting of a stack of N
layer with finite thickness bounded on either side by two semi-infinite media, denoted as a
substrate with refractive index ng and a cover with refractive index n.. The thickness and
the refractive index of the i-th layer are ¢; and n; respectively.
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In order to calculate the power of guided modes supported by the multilayer slab
waveguide, the modal decomposition is applied in this research. First, it is assumed that
the polarization is TE (electric field along the y-axis). Based on the modal decomposition,
any field distribution along the y direction, £,(y), of the slab waveguide can be expressed

in terms of guided modes and radiation modes as

Er) = 3 amEmaly) + /ﬁ A(B)E-(v, 5)dB, (D.1)

where Ep.(y) and &,(y, ) represent the field profiles of the TE,, guided mode and the
radiation mode respectively, and a,, and ¢(3) are unknown coefficients. Therefore, the

electric field of the waveguide E,(y) can be represented as

Eo(y) = > améms(y) exp(—jfmz) + /ﬂ 4(B):(y, B) exp(—jbz)ds,  (D.2)

where (3, and 3 are the propagation constants of the m-th guided mode and the radiation
mode respectively. In addition, it is well known that the modes of the waveguide form a

basis and they satisfy the orthogonality conditions of the form

(Ene0)sEns0)) = 2 [ Ema(EL )Y = Prs, b (D.3)

2wpo S0
where w is the angular frequency, 1o is the permeability of freespace, Prg,, the normalized
power of m-th guided mode for TE polarization (per unit length along the z-axis), and §,,
is the Kronecker’s symbol. It is noted that the orthogonality condition holds for radiation

modes as well as between guided modes and radiation modes. Multiplying 25’;10 &), (y) on the

both sides of Eq. D.1 and applying the orthogonality condition, the unknown coefficients

of a, and ¢(B) and be expressed as

_ l 1 By [ .
o = (). ) = g | ewenwa, 04
1 1 "00
08) = F—EW) &) =55 | EWEW A (D)
k 1<} B —00

As a result, the corresponding power Prg for TE polarization of a slab waveguide can be
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expressed as
Pre =3 laml*Prs,, + /ﬁ 14(8)|*Pr5,d8. (D.6)
m

In the other word, the guided power of TE,, mode, Prg,,, can be determined by
Prg,, = |am|*Pre,,. (D.7)

Similarly, for TM polarization, the guided power of TM,, mode, Pryy,,, is given by

Pru,, = |bm|*Pru,, (D.8)
where
bm - pTMm 2&)60 e E(y) Hz(y)Hmz(y)Ch ) (Dg)
Pri, = /oo s (v) Py (D.10)
m 2weg —00 E(y)

€o is the permittivity of freespace, £(y) is the dielectric constant that is function of y, H,(y)
is an arbitrarily magnetic field profile along the y direction, and H,,,(y) is the magnetic

field profile of the TM,,, mode.
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