
10:24:36 OCA PAD A~1END~1ENT - PROJECT HEADER INFOR~fi\TION 03/08/91

Project #: C-36-611
Center # : R6688-0AO

Cost share #:
Center shr fJ:

Rev fJ: 6
OCA file IJ:

Active

Contract#: AGR DTD 890216
Prime IJ: F49620-88-C-0058

~1od II: 5
Work type : RES
Document AGR
Contract entity: GTRC

Subprojects ? : N
~lain project IJ:

Project unit: COHPUTING Unit code: 02.010.300
Project director(s):

KOLODNER J L CONPUTING (404)894-3285

Sponsor/division names: COGNITIVE SYSTEMS INC
Sponsor/division codes: 202

/ NEW HAVEN, CONN.
I 066

Award period: 880401 to 910831 (performance) 910831 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
0.00
0.00

Does subcontracting plan apply?: N

Title: CASE-BASED REASONING

Total to date
669,291.00
669,291.00

0.00

PROJECT ADMINISTRATION DATA

OCA contact: E. Faith Gleason

Sponsor technical contact

DR. ROGER SCHANK
(203)773-0726

COGNITIVE SYSTEMS

894-4820

Sponsor issuing office

~1S. RUTH A. NELSON
(203)773-0726

COGNITIVE SYSTE~1S, INC.
234 CHURCH STREET
NEW HAVEN, CT 06510

I ;_~ . .

Sec.urity class (U,C,S,TS) : U ONR resident rep. is ACO (Y/N)/~ · ., , . -.) ' .
~

i .

Defense priority rating .. DO-C9 GOVT supplemental sheet ~· . · . ~t~:~~·. · - ~, /-,.~·;:,·
Equipment title vests with: Sponsor X GIT <·

~ ·· ~ !\
HOWEVER, NO EQUIPMENT CAN BE PURCHASED \tliTHOUT SUBCONTRACT ~10DIFICATION~ .. _

1~~~i~1~:~i~~B~~~~;n~~' -1991 PROVIDES A NO-COST EXTENSION TO AUGUST 31, 1~: .

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 05/19/92

Project No·. C-36-611 _____ _ Center No. R6688-0AO ____ _

Project Director KOLODNER J l ________ ___ School/Lab COMPUTING __ _

Sponsor COGNITIVE SYSTEMS INC/NEW HAVEN, CONN. ___________ _

Contract/Grant No. AGR DTD 890216 ___________ ___ Contract Entity GTRC

Prime Contract No. F49620-88-C-0058 _______ ___

Title CASE-BASED REASONING ___________________________ ___

Effective Completion Date 910831 (Performance) 910831 (Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

Date
Y/N Submitted

y 920229
y
y

N
y

N

Comments ___ ___

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment
Research Security S~rvices
Reports Coordinator COCA)
GTRC
Project File
Other

NOTE: Final Patent Questionnaire sent to PDPI.

y
y
y
y
y

N
y
y
y

N
N

C-2~ -fol I

Case-Based Reasoning at Georgia Tech
Annual Report

Sept., 1988 - March, 1989

Janet L. Kolodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

jlk@gatech.edu

April 17, 1989

During the past year, work on this project has been in 6 areas: case
selection, index selection, cbr for design problem solving, general purpose
adaptation heuristics, cbr for learning a scheduling problem, and develop
ment of a cbr shell.

1 Case Selection

The most important support process a case-based reasoner needs is a memory
for cases. The memory must make cases accessible when retrieval cues are
provided to it and it must incorporate new cases into its structures as they
are experienced, in the process maintaining accessibility of the items already
in the memory. It must be able to handle cases in all of their complexity,
and it must be able to manage thousands of cases in its memory. But most
importantly, it must be able to select out the most appropriate cases for the
case-based reasoner to use at any time.

While much work in the past has gone into organizing cases in a memory
and retrieval algorithms for recalling them, little has gone into the problem

1

of choosing the best case from among the many partial matches that are
retrieved. Our work, summarized in the attached paper by Janet Kolodner
entitled "Selecting the Best Case for a Case-Based Reasoner," addresses this
problem. It is implemented in a program called PARADYME (PARAllel DY
namic MEmory), which is designed to work alongside a case-based reasoner.
PARADYME's memory is hierarchical, but there are no indexes in the mem
ory. Instead a parallel retrieval mechanism (implemented on the Connection
Machine) retrieves all cases that partially match the retrieval probe. In a
second step, selection heuristics choose the best from among those partial
matches.

PARADYME's selection method is based on many of the same principles
guiding the selection of indexes and retrieval algorithms used in other case
memories. However, it differs from those memories in several ways. First,
P ARADYME's parallel retrieval method allows us to do away with the re
strictions indexes put on retrieval in other memory systems. Instead, what
would have been indexes in those systems are found as annotations on cases
called salient feature sets. Cases whose full salient feature set matches a re
trieval probe are preferred over others, but cases without full sets of matching
salient feature sets can also be retrieved. In this way, indexes are allowed to
act as selectors rather than restrictors. PARADYME does not get hurt by
the inability to predict every important part of a case at the time it hap
pens. PARADYME prefers cases whose salient features (indexes) match the
retrieval probe but if no cases with indexed features match, it will recall a
case with other matching features.

Second, PARADYME's emphasis when ranking cases is on usefulness.
Using this criterion for ranking means that PARADYME takes the reasoner's
goals into account in selecting out a "best" case. Rather than choosing a most
similar case, it chooses the most similar of those cases that are first judged
most useful.

PARADYME's selection procedure is based on a set of preference heuris
tics. These heuristics are applied to the set of partially-matching cases to
choose a small set of "best" cases. PARADYME uses six different types of
preference for this task.

• Goal-Directed Preference

• Salient-Feature Preference

2

_ • Specificity Preference

• Frequency Preference

• Recency Preference

• Ease-of-Adaptation Preference

The first preference, goal-directed preference is based on the principle of
utility. That is, since the memory is working in conjunction with a reasoner
that has goals, it makes sense to prefer those cases that can help in achieving
the problem solver's goals. Thus, when the problem solver is trying to come
up with a main dish, those cases that match on main dish constraints will be
preferred over others. When it is trying to evaluate the goodness of a solution,
those cases that predict success or failure under similar circumstances are
preferred. We state this heuristic as follows:

Goal-Directed Preference: Prefer cases that can help address
the reasoner's current reasoning goal, and of these, prefer those
that share more constraints over those that share fewer.

The second preference heuristic, salient-feature preference, is based on
the principle that we should use experience to tell us which features of a
new situation are the ones to focus on. If memory has done a good job
of recording its experiences, they can be used to tell us which features of
previous events led to the choice of particular solutions or solution methods
and which features of previous events were responsible for success or failure in
those cases. These features are the salient features of previous cases, and in
indexed memories, they form the indexes. When salient features of previous
cases exist in a new situation, they can be used to suggest solutions and
predict outcomes for the new case. A case where a friend named Anne didn't
eat what was served for dinner, for example, has a salient feature set that
predicts failure and includes the following facts: Anne was a guest, fish was
served, preparation style of the fish was grilled. When all of these features
are present in a probe, we can predict that Anne won't eat. PARADYME
prefers cases that share full sets of salient features with the new problem over
other cases whose full salient feature sets are not in the probe. We state this
preference as follows:

3

Salient-Feature Preference: Prefer cases that match on salient
features over those that match on other features, and prefer those
that match on a larger subset of salient features over those match
ing on a smaller subset.

The third preference heuristic is based on the principle that a more specific
match can be more predictive than a less specific match. Thus, all other
things being equal, cases that match more specifically are preferred over less
specific matches. PARADYME has several ways to judge specificity. First,
according to PARADYME's definition of specificity, a case is more specific
than another if the features that match in the less specific case are a proper
subset of the features that match in the more specific case. Thus, a probe
is more specifically matched by a case that matches all of its features than
one that matches only a subset. Second, a case matches more specifically
than one of its ancestors in memory's generalization hierarchy. For example,
a particular Italian meal is more specific than a generic Italian meal. Third,
a case matches more specifically if the probe matches features in more of its
parts. The specificity preference follows:

Specificity Preference: Prefer cases that match more specifi
cally over less specific matches.

The fourth and fifth heuristics are based on two principles psychologists
have discovered - that items that are referenced more frequently are more
likely to be recalled than other similar items and that items that have been
referenced more recently are more likely to be recalled than other similar
items (all else being equal). This gives rise to two preference heuristics:

Frequency Preference: Prefer cases that have been accessed
more frequently over less frequently-accessed cases.
Recency Preference: Prefer cases that have been accessed
more recently over less recently-accessed cases.

A sixth preference heuristic is also based on the principle of utility, and
is specific to case-based reasoning. Some adaptations of previous solutions
are easier to make than others. This heuristic says to prefer cases whose
solutions are easier to adapt than those whose solutions are harder to adapt.

4

Ease-of-Adaptation Preference: Cases that match on fea
tures that are known to be hard to fix should be preferred over
those that match on easy-to-fix features.

The application of preference heuristics is complicated. Each preference
heuristic attempts to select out a set of better matches. When a heuristic
does this, that set is sent on to the next heuristic for pruning. When no
subset of cases is better than the rest using some heuristic, however, the
entire set it was selecting from is selected. In this way, the preferences act as
selectors rather than restrictors. We prefer to recall a case that can address
the reasoner's current goal but we don't require it. We prefer to recall a
case that matches on salient features, but if there are none, the preference
heuristics allow recall of a case that matches on a random set of features.

The heuristics are also ordered. Goal-directed preference is applied first,
then salience, then specificity, and then frequency and recency. This way,
the set of cases that can be used to achieve the reasoner's current goal is
selected out first, then any that match on a full set of salient features (of the
right kind) are selected from those, the most specific of those are chosen (if
some are more specific than others), and then the more frequently or recently
recalled cases are selected from those.

Our current work is addressing the issue of interactions between these
heuristics. We are implementing a testbed in which we can apply the heuris
tics varying their orderings and precedence, in order to judge how they ought
to be applied as a group. The test system is working with cases from JULIA,
our design problem solver that plans meals.

2 Index Selection

Our analysis of what goes into choosing a best case has led us to several
conclusions about what kinds of indexes are useful ones for a case to have.
We have found three kinds of indexes useful for problem solving. The first
contain features that predict the applicability of some method for achieving
a goal (goal-achievement sets). Second are those that predict the success of
failure of a solution (solution-evaluation sets). Third are those that describe
unusual outcomes (outcome-achievement sets).

5

Goal-Achievement Sets are generally conjunctions of goals, constraints
on these goals, and problem and environmental features that predict the
method or solution for achieving the goal or goal set. If the features of a
goal-achievement set are all present in a new situation, and if the problem
solver's current goal matches the goal achieved by the salient feature set, then
the method of reaching the goal or the solution to the goal can be predicted
from the previous case. Cases that match on the basis of goal-achievement
sets are most helpful during problem solving when the problem solver knows
what goals it is trying to achieve and knows the environment in which it
needs to achieve those goals.

These sets of features may include one or several goals. They include one
if the solution that was chosen for that goal did not involve other goals. They
include several if solutions to several goals were integrated. Constraints and
descriptors on these goals are also included, as are features of the world or
features of the problem that determined which of several possible solutions or
solution methods was chosen. If all of the features in one of these conjunctive
feature sets is designated in a retrieval probe, the solution or solution method
used in the previous case can be predicted.

Solution-Evaluation Sets are conjunctions of features predicting un
usual outcomes - in general, failures, unexpected successes, and unexpected
side effects. If the features of a goal-achievement set are all present in a new
situation, the unexpected result from the previous case can be predicted in
the new case. Cases that match on the basis of solution-evaluation sets are
most helpful when a reasoner has proposed a solution and needs to evaluate
it.

Outcome-Achievement Sets are conjunctions of features describing
unusual outcomes. If the features of an outcome-achievement set are all
present in a new situation, the previous case that is recalled can be used to
help explain why the unusual outcome arose. In addition, if these features
are all present in a new situation and the reasoner is attempting to figure
out how to achieve such an outcome, the method by which it was achieved
previously can be suggested by the recalled case. These are thus useful in
two situations: when the reasoner is trying to explain an anomalous situation
and when the reasoner knows the shape of a solution but not how to achieve
it.

Any particular case may have several conjunctive feature sets associated

6

with it. For example, it could have one for each goal that was achieved in the
course of reasoning about the case. It might also have several associated with
outcome and several associated with solution evaluation. When attempting
to choose best cases, preference heuristics prefer those cases that have one
or more salient feature sets of the right kinds that are fully matched by the
new situation. That is, if the reasoner is attempting to evaluate the potential
for success of a plan, it prefers cases with fully matching solution-evaluation
feature sets. If it is trying to achieve a goal, it prefers cases with fully
matching goal-achievement feature sets whose goals match its current goal.
If it attempting to explain an anomolous situation, or if it is attempting to
find out how to achieve a state of affairs, it prefers cases with fully matching
outcome-achievement feature sets.

Note that while many case memories index on one feature at a time, our
concern here is with conjunctions of features. Any feature of one of these
sets might not be a good index by itself. It is the conjunction of features that
is important, and the particular conjunctions of features that are important
enough to serve as indexes are those that serve useful purposes in reasoning.

Currently, we are testing out these hypotheses by using the set of cases
in our JULIA system, hand-coding indexes for those cases, and evaluating
as we go along, whether there are any other sets of features we would also
like to index on. This enterprise is designed to allow us to test the indexing
scheme just presented and to judge whether or not it is complete. Of course,
it must also be tested in some other reasoning domain in addition to problem
solving for us to be sure about its completeness.

3 Case-Based Design

Much of our work in the past several years at Georgia Tech has gone into
the design of case-based reasoning systems for complex real-world domains.
In the past several years, we have become particularly interested in design
problems. Design is distinguished from other problem solving tasks in several
ways:

• Problems are underconstrained. There are in general many ways to
solve a problem. There is also, however, a large space to search to find
these many possible solutions.

7

• Problems have many parts, requiring a representational system to man
age the interactions between the many parts. Constraints are one way
to do this.

• Unlike most problem-solving tasks AI researchers have worked on, in
general, design problems are not nearly decomposable. In nearly
decomposable problems, you can work on the parts separately and then
with only a little more effort, put the parts together to create a whole.
In design, however, solving each of the parts is, in general, easy, but
putting the pieces together to form a whole is hard. Problems cannot
be solved by simple decomposition techniques.

All of these features of design make it a fully appropriate task for case
based reasoning. Case-based reasoning can be used to provide suggestions in
solving underconstrained problems without utilizing search to achieve each
of the parts of the problem. And since case-based reasoning can provide
fully-solved problems to work with, the problem of dealing with a task that
is not nearly-decomposable is made easier. Cases provide a solution with
the "glue" that holds the parts together. The parts themselves can then be
tweaked to get a solution that fits a new problem well.

On the other hand, using case-based reasoning for design requires us to
rethink several of the assumptions made in early case-based reasoning sys
tems, the most important of which is that we can't think of a case-based
reasoner working by itself. It must be able to work in tandem with other
reasoners. In particular, when problems have parts, some bookkeeping sys
tem is necessary to keep track of the relationships between the parts and
the constraints put on parts by other decisions that have been made. In our
design system, called JULIA, we take care of this problem by integrating the
case-based reasoner with a constraint propagator. The constraint propaga
tor has several responsibilities: (1) It propagates constraints from a problem
specification into the solution specification. (2) It propagates constraints to
the rest of the solution specification after some part of a suggested solution
has been adapted.

Constraints allow us to keep track of the relationships between the parts
of a problem. This allows later parts of a problem to be solved taking earlier
decisions into account. In addition, we also need a system that can notice

8

inconsistencies. This is necessary for several reasons: (1) So that the incon
sistencies between a problem specification and the recalled solution can be
identified. (2) So that the side-effects of adaptations can be noticed. (3)
So that later decisions can be forced not to violate constraints posted by
earlier ones. In JULIA, a reason maintenance system that reasons based on
constraints does this.

JULIA's three modules interact with each other in novel ways. JULIA
uses its case-based reasoner and adaptation heuristics to suggest means of
achieving goals and uses its constraint propagator to propagate the effects
of its decisions to the rest of the problem. The reason maintenance system's
job is to point out inconsistencies. The adaptation heuristics are used to fix
those problems. While a standard reason maintenance system would call a
dependency directed backtracker whenever it noticed an inconsistency, JU
LIA uses its reason maintenance system to point out inconsistencies but not
to fix them. It relies on its adaptation strategies to fix problems. The philos
ophy of dependency directed backtracking is to undo reasoning that led to a
faulty answer. Within the case-based reasoning paradigm, the philosophy is
to preserve the reasoning, which was sound, and to fix the answer by either
transforming it to fit the additional constraints of the problem or substitut
ing something that works. Backtracking is reserved only for those situations
in which adaptation won't work.

This work is reported in the attached paper by Tom Hinrichs entitled
"Strategies for Problem Solving in Open Worlds." The paper has been sub
mitted to the Cognitive Science Conference. Tom is approximately one year
from finishing his Ph.D. thesis.

4 General Purpose Adaptation Heuristics

Another topic we are addressing in the context of JULIA, our design problem
solver, is whether or not there is a set of general purpose adaptation heuris
tics. Most case-based reasoning systems have done adaptation through the
use of special-purpose critics. We are attempted to design adaptation heuris
tics that are general in purpose and can be built in to the architecture of
a case-based reasoning system. In that way, the designer of a case-based
reasoning system would have to add only the knowledge necessary for the

9

Value selection

Structure modification

Local search [
Specialization
Generalization

[
by Secondary Components

Transformation
by Primary Components

[
Function sharing
Function splitting

Figure 1: Adaptation strategies

adaptation heuristics to work rather than having to add adaptation heuris
tics specific to the domain of his case-based reasoner. At this time, we have
identified four heuristics, each of which is built into JULIA's architecture.

Figure 1 shows a partial taxonomy of adaptation strategies in JULIA.
These are broadly divided into value selection strategies, which manipulate
the contents of a concept, and structure modification strategies, which manip
ulate the internal structure. The strategies are domain independent because
they are directly related to the form of the representation of a concept rather
than to higher level domain concepts. This is especially important for design
tasks, because the range of designs achievable is determined by the coverage
of the strategies.

Local Search

When a value violates constraints, an acceptable alternative is often 'nearby'
in the search space. Rather than retracting the value and searching over
again, we can tweak it by looking for specializations and generalizations of
the value that will satisfy constraints. This is called local search. Two benefits
accrue from this strategy: 1) the semantic hierarchy provides a limited and
well-defined search space in lieu of the problem search space, which may
be unlimited and ill-defined, and 2) if many subsequent decisions depend
on the previous value, they may not need to be retracted if the new value
is sufficiently similar. For example, in a meal planning scenario, a caterer
can specialize lasagne to vegetarian-lasagne after learning that there will be
vegetarians coming to dinner. The local search strategy saves the problem
solver from having to search through the space of Italian dishes, and also

10

makes it unnecessary to retract any other feature of the meal that might
have depended on lasagne.

Transformation

For problems that are less routine, local search may fail. When this happens,
it is sometimes possible to use transformation strategies to modify the incon
sistent value by adding, deleting, or substituting its components. Because
there are an unlimited number of concepts that may be created in this way, it
is crucial to limit the transformations that are applied. In JULIA, we do this
by first determining that it is in fact the components of the value that violate
constraints, as opposed to other descriptive features, and second, that the
components do not by themselves define the concept to be transformed. To
enable this, JULIA's representation of objects distinguishes between compo
nents that cannot be changed (eg, main-ingredients), and those that are
'easy to change' (eg, secondary-ingredients). While our current imple
mentation does not support additions and substitutions, the ability to delete
components greatly increases JULIA's flexibility. For instance, in the pre
vious lasagne example, if JULIA had no concept of vegetarian lasagne, it
would construct one by eliminating meat as a secondary ingredient. In fu
ture problems, the concept of vegetarian lasagne would be available by both
locally searching the semantic hierarchy, and being reminded of this case.

When a constraint is violated by the primary components of an object,
transformation becomes more difficult. Because the primary components
effectively define an object, it is not possible to add or delete them, and
substitution must be guided in some fashion. There are basically two ways to
do this. First, a substitute may be found that is functionally identical to the
original. For instance, a recipe for chicken a la king can be transformed in to
a vegetarian recipe by substituting Vegetarian Chicken Substitute, a canned
substance that is designed to function as chicken in recipes. The second
technique for transforming by primary components is to exploit constraints
on the internal structure of the object. For instance, a recipe for shish kebab
might include the constraint that objects to be skewered must be cohesive
solids. In the extreme, such internal constraints would permit simulation of
the behavior of the artifact in order to predict failures in much the same way
as in CHEF (Hammond, 1986).

11

Function Sharing

When a problem is relatively novel, experience may suggest a solution whose
structure is almost, but not quite, adequate. In this case, the problem solver
must adapt not just the specific values, but the structure of the problem as
well. Function sharing, in particular, is a strategy that is applicable when
economic or aesthetic considerations encourage using a single mechanism or
action to serve multiple functions. It modifies the structure of a problem
by combining those variables that are functionally equivalent. For example,
in a meal planning scenario, if a caterer planned to serve lasagne as a main
course of an Italian meal, it would be appropriate to rule out the traditional
pasta course of an Italian meal, since lasagne can serve the function of both
main dish of a main course and a pasta course. In JULIA, function sharing
is implemented as a constraint that relates two slots or scenes such that one
is eliminated if its default function is subsumed by the other.

Function Splitting

When constraints conflict, it is sometimes possible to partition them and
solve for them independently. Function splitting is a general strategy that
increases the number of variables in a problem for the purpose of simplifying
constraint satisfaction. For example, if a design must satisfy many people,
then it may be advantageous to solve for each person independently, rather
than all at once. One way JULIA uses function splitting is to increase choice
of dishes when eaters have conflicting dietary constraints. As an example in
another domain, function splitting might be used to gain reliability through
redundant mechanisms.

Essential to this strategy are the criteria for determining when a variable
may be split. These criteria fall into three basic categories:

1. Nature of the variable. The variable must represent a group or set
of elements so that it can be divided into sub-groups.

2. Source of conflicting constraints. The conflicting constraints must
derive from a common feature, such as the characters of an episode.

3. Independence of constraints. It must be possible to partition the
constraints by source such that each partition is satisfiable.

12

When the criteria are met, the variable can be divided into two new variables
which are then re-constrained and solved for independently.

4.1 Remarks

Two main points bear emphasizing: First, because the strategies we have
presented are domain independent, the knowledge representation must sup
port the process of adaptation. In JULIA, for example, the representation
distinguishes between primary and secondary components of objects, and
makes the structure of concepts explicit in terms of variables which can be
reasoned about like any other value. Second, adaptation strategies may serve
more than one function. In addition to adapting previous cases, they can be
used to adapt previous decisions, in order to recover from errors. For more
detail on these heuristics, see the two attached papers by Tom Hinrichs.

5 CBR Shell Development

Based on our experience with JULIA, we are attempting to design a generic
case-based reasoning shell that can be used for design problem solving and
other problem solving tasks requiring constraint propagation. It is based on
the principles outlined in the two sections above. It is currently in the design
stage. We hope to report more about its development in the next report.

6 Learning to Schedule

Our final research activity is in the area of learning. The particular problem
we are looking at is scheduling a flexible manufacturing system. Operators of
such systems start out doing fairly poorly at scheduling, and, in general, there
are no teachers or manuals around to give them instruction. With a small
amount of experience, however, they begin to get quite a bit better. Our
interpretation is that this is a case-based activity- that they are explaining
the failures that arise, figuring out which of their actions are responsible for
those failures, figuring out which features of the environment can predict
those failures, and ind~xing their experiences and new knowledge based on
all that.

13

We have been involved in several endeavors in our investigation of these
processes. First, we have been working on a representational vocabulary
that can be used to describe scheduling problems. Our emphasis has been
in two areas necessary for representing problems in this domain. First, there
is another agent involved - a "dumb" scheduler that "helps" the operator
schedule the system. In reality, the operator monitors and cleans up after
this "dumb" scheduler. It turns out to be good for mundane scheduling,
allowing the operator to do the tasks that require attention. Second, items
in the system move around from container to 'container. They start out in a
start buffer, move to a work-in-progress buffer, move to the input for some
machine, back to the work-in-progress buffer, and in some cases, move to
an overflow buffer. We have worked on dimensions of a vocabulary that can
represent agents and containers. The attached paper entitled "A General
Vocabulary for Indexing Cases in Multi-Agent Domains" by Robinson and
Wood gives more detail. The next step in this endeavor is to represent
scheduling problems themselves.

Our second endeavor has been to understand better how people actually
learn this task. We are working along with people in Georgia Tech's School
of Industrial and Systems Engineering (ISyE) and School of Psychology to do
this. Chris Mitchell and her students in ISyE have developed a simulator for a
real flexible manufacturing system, a "dumb" scheduler, and an interface that
allows the operator to view the system. We are observing people learning to
operate the manufacturing system. Richard Catrarnbone, a faculty member
in Psychology, is aiding us with carrying out these experiments. To now, we
have collected five to six hours of protocols (using videotape) on each of six
subjects, and we are in the process of analyzing them. A paper submitted
to Cognitive Science entitled "Changes in Information Use and Strategy on
a Complex Task as a Function of Practice" gives an initial summarization.
It is quite abstract rather than getting at the details of what knowledge
changed over time and how. We are currently working on extracting from
the protocols what knowledge the subjects started with, what strategies they
started with, what changed over time, and how that could have happened.

The scheduling activity we are investigating in this project is important
for several reasons. First, as pointed out above, we hope to discover how
case-based reasoning functions in early learning of a task. This might al
low us to build expert systems that start with little skill and through the

14

analysis of their experience become more skillful. Second, this particular
planning activity combines reactive planning, execution, case-based reason
ing, and learning. It is a good task in which to study reactive planning, and
gives us the opportunity to learn how a reactive planner might get better.
Third, this task provides the bottom end of logistics planning. Logistics re
quires strategies and use of principles in scheduling. At some point, those
strategies and principles have to be put to use. That is, the scheduling has to
happen. As in other cases of logistical planning, this scheduler has to adhere
to principles and strategies and figure out how to deal (within the guidelines
of those principles) with the world as it actually is.

7 Other Activity

This summer at IJCAI, Janet Kolodner and Chris Riesbeck will be present
ing a tutorial on case-based reasoning. Much time in the past months has
been spent in making the slides for that tutorial. Our approach is to present
techniques, using examples from particular systems to illustrate those tech
niques.

Janet Kolodner will be giving the keynote address at the DARPA Case
Based Reasoning Workshop in Pensacola in May. JULIA will be dernoed, as
will a system called MECH that combines case-based reasoning with EBL
and learning from an instructor's explanations. Georgia Tech will also be
contributing several papers to the poster sessions.

We have submitted several papers to the Cognitive Science Conference:
"Selecting the Best Case for a Case-Based Reasoner" by Janet Kolodner,
"Strategies for Problem Solving in Open Worlds" by Torn Hinrichs, and
"Changes in Information Use and Strategy on a Complex Task as a Func
tion of Practice" by Steve Robinson, David Wood, and Richard Catrambone.
Torn Hinrichs also submitted an abstract to the Case-Based Reasoning Work
shop entitled "Strategies for Adaptation and Recovery in a Design Problem
Solver." In addition, Steve Robinson and David Wood have had their paper
"A General Vocabulary for Indexing Cases in Multi-Agent Domains" pub
lished in the Proceedings of the Southeast ACM Conference. David Wood
presented the paper, which won a student award.

15

Case-Based Reasoning at Georgia Tecl1
An11ual Report

Marci1, 1989 - March, 1990

Janet L. I(olodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332
jlk@ics.gatech.ed u

1v1arch 21, 1990

During the past year, work on this project has been in 6 areas: case
selection, index selection, cbr for design problem solving, cbr for creative
problem solving, cbr for learning a scheduling problem, and a framework for
case-based decision aiding.

1 Case Selection

The most important support process a case-based reasoner needs is a memory
for cases. The memory must make cases accessible when retrieval cues are
provided to it and it must incorporate new cases into its structures as they
are experienced, in the process maintaining accessibility of the items already
in the men1ory. It n1ust be able to handle cases in all of their complexity,
and it n1.ust be able to n1ana.ge thousands of cases in its memory. But 1nost
i1nporta.ntly, it must be able to select out the n1.ost appropriate cases for the
case-based reasoner to use at any time.

In the first year of the contract, we worked on methods for selecting the
best case fro1n memory. Our work concentrated on heuristics for selection

1

and the indexing content necessary to make selection work appropriately.
\Ve presented 6 heuristics for choosing useful cases: goal-directed preference,
salient-feature preference, specificity, frequency, recency, and ease-of-use. \Ve
hypothesized that the heuristics were ordered such that goal-directed prefer
ence is applied first, then salience, then specificity, and then frequency and
recency. This way, the set of cases that can be used to achieve the rea
soner's current goal is selected out first, then any that match on a full set of
salient features (of the right kind) are selected fron1 those, the n1ost specific
of those are chosen (if some are more specific than others), and then the more
frequently or recently recalled cases are selected fron1 those.

Our work in the second year on this issue addressed the issue of interac
tions between these heuristics. Vve implemented a test bed in which we can
apply the heuristics varying their orderings and precedence, in order to judge
how they ought to be applied as a group. The testbed is now complete, and
we are designing the experiments to be carried out and choosing the issues
to address. In addition to looking at the interactions between heuristics, we
will also be looking at the effects of differing amounts of information about a
case on its selection. Some cases (those a system has reasoned through itself)
have considerable information associated \vith them concerning the reasons
why they were solved in certain ways. This means they can be indexed ex
tensively by 1nany different sets of features. Other cases are just examples
of things that worked and didn't work. Their indexes are much less embel
lished. Using this testbed we will be able to look at the relationship between
the richness of indexing and retrievability. The test system is working \Vith
cases from JULIA, our design problem solver that plans meals.

2 Index Selection

Our analysis of what goes into choosing a best case has led us to several
conclusions about what kinds of indexes are useful ones for a case to have.
\Vhile n1ost efforts look at algorithn1S for retrieval, this endeavor looks at
the content of indexes. \Ve reported in papers at the 1989 DARPA Case
Based Reasoning \Vorkshop and the 1989 Cognitive Science Conference that
\Ve have found three kinds of indexes useful for problem solving. The first
contain features that predict the applicability of so1ne n1ethod for achieving
a goal (goal-achieven1en t sets). Second are those that predict the success

2

of failure of a solution (solution-evaluation sets). Third are those that
describe unusual outcomes (ou tcon1e-achieve1nent sets).

Goal-Achieven1ent Sets are generally conjunctions of goals, constraints
on these goals, and problen1 and environn1ental features that predict the
method or solution for achieving the goal or goal set. If the features of a.
goal-achievement set are all present in a new situation, and if the problem
solver's current goal1na.tches the goal achieved by the salient feature set, then
the 1nethod of reaching the goal or the solution to the goal can be predicted
from the previous case. Cases that match on the basis of goal-achievement
sets are most helpful during problen1 solving when the problen1 solver knows
what goals it is trying to achieYe and knows the environn1ent in which it
needs to achieve those goals.

These sets of features may include one or several goals. They include one
if the solution that was chosen for that goal did not involve other goals. They
include several if solutions to several goals were integrated. Constraints and
descriptors on these goals are also included, as are features of the \vorld or
features of the problem that detern1ined which of several possible solutions or
solution methods was chosen. If all of the features in one of these conjunctive
feature sets is designated in a retrieval probe, the solution or solution method
used in the previous case can be predicted.

Solution-Evaluation Sets are conjunctions of features predicting un
usual outcomes - in general, failures, unexpected successes, and unexpected
side effects. If the features of a. goal-achievement set are all present in a. new
situation, the unexpected result from the previous case can be predicted in
the new case. Cases that match on the basis of solu tion-eva.lua.tion sets are
most helpful when a. reasoner has proposed a. solution and needs to evaluate
it.

Ou tcon1e-Achieven1ent Sets are conjunctions of features describing
unusual outcomes. If the features of an outcome-achievement set are all
present in a. new situation, the previous case that is recalled can be used to
help explain why the unusual outcome arose. In addition, if these features
are all present in a new situation and the reasoner is attempting to figure
out how to achieve such an outcome, the method by which it was achieved
previously can be suggested by the recalled case. These are thus useful in
two situations: when the reasoner is trying to explain an anomalous situation
and when the reasoner knows the shape of a solution but not how to achieve
it.

3

Any particular case may have several conjunctive feature sets associated
with it. For exan1ple, it could have one for each goal that was achieved in the
course of reasoning about the case. It might also have several associated with
outcome and several associated with solution evaluation. \.Vhen attempting
to choose best cases, preference heuristics prefer those cases that have one
or more salient feature sets of the right kinds that are fully matched by the
new situation. That is, if the reasoner is atte1npting to evaluate the potential
for success of a plan, it prefers cases with fully n1atching solution-evaluation
feature sets. If it is trying to achieve a goal, it prefers cases with fully
1natching goal-achieven1ent feature sets '''hose goals match its current goal.
If it atte1npting to explain an anon1olous situation, or if it is atten1pting to
find out how to achieve a state of affairs, it prefers cases with fully n1atching
outcome-achievement feature sets.

Note that while many case me1nories index on one feature at a time, our
concern here is with conjunctions of features. Any feature of one of these
sets might not be a good index by itself. It is the conjunction of features that
is important, and the particular conjunctions of features that are important
enough to serve as indexes are those that serve useful purposes in reasoning.

Currently, we are testing out these hypotheses by using the set of cases
in our JULIA systen1, hand-coding indexes for those cases, and evaluating
as we go along, \Vhether there are any other sets of features we would also
like to index on. This enterprise is designed to allow us to test the indexing
scheme just presented and to judge whether or not it is complete. Of course,
it must also be tested in some other reasoning domain in addition to problem
solving for us to be sure about its con1pleteness.

3 Case-Based Desig11.

l\1 uch of our work in the past several years at Georgia Tech has gone in to
the design of case-based reasoning systems for complex real-world domains.
In the past several years, vve have become particularly interested in design
proble1ns. Design is distinguished from other problen1 solving tasks in several
ways:

• Problel11S are underconstrained. There are in general 1nany ways to
solve a proble1n. There is also, however, a large space to search to find
these 1nany possible solutions.

4

• Problems have many parts, requiring a representational system to man
age the interactions between the many parts. Constraints are one way
to do this.

• Unlike n1ost proble1n-solving tasks AI researchers have worked on, in
general, design proble1ns are not nearly decon1posa.ble. In nea.rly
decoinposable problems, you can work on the parts separately and then
with only a. litt]e more effort, put the parts together to create a whole.
In design, howeYer, solving each of the parts is, in general, easy, but
putting the pieces together to fonn a whole is hard. Problen1s cannot
be solved by sin1ple decomposition techniques. \Ve call these problen1S
hardly-decon1posable.

All of these features of design make it a fully appropriate task for case
based reasoning. Case-based reasoning can be used to provide suggestions in
solving underconstrained problems without utilizing search to achieve each
of the parts of the problen1. And since case-based reasoning can provide
fully-solved problems to work with, the problem of dealing with a task that
is hardly-decomposable is made easier. Cases provide a solution with the
"glue" that holds the parts together. The parts themselves can then be
tweaked to get a solution that fits a new problem well.

Concentration in year 2 of this contract has been in two areas: the types
and uses for adaptation strategies and criteria for evaluating the results of
design problem solving.

\Vhile most work in CBR has been on the use of adaptation strategies
for adapting an old solution to fit a nevl problen1, we find that adaptation
strategies have at least three uses:

• adapting an old solution to fit a new problem

• patching an aln1ost-right solution to n1ake it better

• adapting a problem specification to fit the possible solutions

Using adaptation these three ways in solving design problems has the poten
tial for solving n1any design issues.

• Adaptation facilitates 1naking decision in under-constrained situations
by allowing the proble1n solver to re-use an 'aln1ost-right' plan rather
than re-solving fron1 scratch.

5

• Adaptation resolves over-constrained problems by serving as an alter
native to retraction.

• Adaptation relaxes preference constraints by minimally vveakening the1n.

• Adaptation extends the vocabulary of a problen1 solver by creating new
components as variations of known ones.

Using adaptation for all of these tasks allo\YS four different kinds of design
processes - selection, configuration, para.n1eter fixing, and construction - to
be integrated \Yithin one design architecture. And it provides a coinputation
ally efficient and pa.rsin1onious vvay of dealing with the introduction of new
constraints during problen1 solving, a con1mon design delemma. A paper en
titled "The Integrative Role of Adaptation in Design" by Tom Hinrichs and
J arret Kolodner give more details of this work. The paper was subn1itted to
AAAI-90.

An in1portant part of any problen1 solving endeavor is to evaluate the
solutions that are created. This is particularly problematic when the problem
is under-specified, as is almost always the case in conceptual and prelin1inary
design. Com.parison to other cases provides a way of evaluating solutions in
these situations, but we must know on vd1at dimensions to do the evaluation.
Solutions must be evaluated on consistency and completeness. The enclosed
paper by Tom Hinrichs entitled "Some Criteria for Evaluating Designs" give
the details of this work. It was submitted to the 1990 Cognitive Science
Conference.

4 Creative Problem Solving

In case-based reasoning, and in 1nuch of the problem solving people do, so
lutions are created for new proble1ns by adapting and con1bining knovvn so
lutions to sin1ilar proble1ns. Son1etimes a new solution can be created by
1nerely t\veaking or adapting son1e old one in routine ways. Often, however,
problem solving is less routine, requiring exploration of several alternatives,
perhaps adapting and merging several possibilities gleaned from experience.

The case-based reasoning projects that are concentrating on problen1 solv
ing have, for the most part, been looking at routine problen1 solving. That

6

is, problems are solved by recalling similar cases and adapting them by \veil
known procedures to fit the new situation. Our problem solvers come up
with good, but boring solutions.

Previous experience seen1s to play a large role in the creative problem
solving people do. It is ti111e to n1ake our case-based problem solvers 111ore
creative. Son1e investigations are doing this by looking at vocabularies that
transcend several types of problems on the premise that creativity can emerge
by transferring the abstract solution fron1 those far-av .. •ay proble1ns and spe
cializing it to the new problem (e.g., Kass, Owens, Birnbaun1 & Collins). In
our invest]gation, we are looking at the creativity that e1nerges by con1bining
the solutions to seYeral cases in novel vvays.

There are four processes we've found that extend basic case-based rea
soning methodology to provide creativity in problem solving.

• Problen1 specification elaboration: In almost all AI investigations
of problem solving to date, researchers have assumed that the prob
lem specification would define the problem succinctly. Yet interesting
proble111 solving domains have as their hallmarks the fact that problem
specifications are rarely well defined. In general, they are incon1plete,
leaving n1any different ways to solve a problem. Sometimes, they are
unnecessarily constrained. An important part of solving problems in
these cases is redefining the problem spec. This includes elaboration,
problem restructuring, and negotiating problem space boundaries (Goel
& Perolli, 1989).

• Exploration of solution alternatives: In general, in problem solv
ing in ill-structured domains, there are many different ways a problem
could be solved, some better than others, some with different trade-offs
than others. 1\1any possible solutions n1ust often be considered during
problem solving. In addition, because problem specifications are often
incon1plete, the proble111 solver might need to incrementally converge
on a. good solution by following a cycle of starting with whatever con1es
to n1ind, critiquing that, and based on the critique, adding appropri
ate details to the problen1 specification. Alternatively, the proble1n
solver IUight elaborate the original problen1 specification several dif
ferent \vays, using each to generate an alternate specification. This
process includes both search of the solution space and evaluation of
al terna ti ves.

7

• l\1erging of possibilities: In routine problen1 solving, parts of several
solutions are often n1erged, but in general, the parts do no overlap (e.g.,
dessert fr01n one meal n1ight be used with a main dish from another
meal). In less routine proble1n solving, several suggestions for solving
the same part of a. problem 1night be merged to come up with a solution
(e.g., in deciding to have sahnon fettucine and salad for dinner, a meal
planner 1nigh t ha. ve re1ne1nbered three previous cases, a. 1neal with fish,
a pasta 1neal, and a one-dish 111eal, and n1erged desirable features fro111
each).

• Non-routine adaptation: Previous ,work has looked at adapting old
solutions to fit new problems. In creative problem solving, it some
tin1es n1akes sense to adapt one's goals to fit an old solution rather than
changing the old solution to fit the new problem. Previous work has
looked at routine adaptation strategies (e.g., deletion, addition, su bsti
tution) but not at use of "off-the-cuff" ones (i.e., those developed in
response to a. particular problem). Some of these arise fro1n examining
a. causal model, some from adapting well-known adaptation strategies,
son1e from applying \Veil-known adaptation strategies in novel ways.
There may be other '"rays non-routine adaptations arise.

Our investigation of these processes has started with i1nplementation of a
program that addresses the second problem above: creative problem solving
by exploring the case base. Our program is based on a. protocol of a. person
doing creative design. In this case, the person was trying to come up with a.
dinner dish to use up some leftover white rice. The program, like our subject,
retrieves an initial set of instances of using white rice, and evaluates each.
Based on the evaluation, it alters the problem specification. Features that it
doesn't have but needs; it adds from the case. Those features that it finds
unacceptable in any case it remembers, it rules out. It then it takes this new
problem specification and probes the 1nemory again. It continues this cycle
until it derives a solution that can be easily adapted to n1ake a good solution,
or until it retrieves a case that can be adapted to fit the new situation. \\Then
it ren1en1bers a Chinese dish, for example, the progra.n1 rules out Chinese as a
cuisine since it has just had Chinese food the day before. \\Then it remembers
a bread recipe that uses rice, it adds the specification that the redpe it con1es
up with should be easy to n1ake, since the work involved in n1aking bread
is n1ore than it wants to do. \Vhen it re111en1bers a breakfast dish that uses

8

rice, it changes its goals con1pletely and decides that n1aybe a dinner dish
isn't necessary - breakfast would do just as nicely.

The process of creative problem solving through exploration of the case
base, as we've defined it so far, has the following steps:

1. Retrieve an initial set of cases, using the initial problem specification

2. For each case:

3. Evaluate the case for its applicability or adaptability to the problen1

4. Ten1porarily alter the set of goals, based on the current source case

5. Use the altered set of goals to retrieve an additional set of cases

6. go back to step 1

The ability to con1e up '"rith creative, rather than routine, solutions to
proble1ns would help many of our case-based problem solvers (e.g., CHEF,
JULIA, PERSUADER). The most obvious application of creativity in case
based reasoning is in those domains that are seen as inherently creative:
design, for exan1ple, or 1neal planning, or architecture, and so on. But the
approach -vve have introduced here can help case-based reasoners in many
domains.

Any problem solver can reach an impasse as it works to solve a problem.
Creative case-based reasoning provides techniques to breach such an impasse.
By elaborating the original problem specification in more than one way, a
creative problem solver can find different paths to solutions.

In a do1nain where the problem may be poorly defined, perhaps incoln
plete or overconstrained, the creative process can help elaborate the spec
ification of the problem, and provide a more complete basis for problem
solving.

Creative techniques can help a case-based reasoner produce variety in its
solutions. Rather than using disjoint parts of different cases as the basis for
a new solution, for exan1ple, a creative approach would n1erge corresponding
parts of ~ifferent cases to come up with a novel solution.

An understanding of creative problen1 solving processes has several inl
portant in1plications. If we understand creative processes, which parts are
hard and which are easy, we will be able to create the right kincls of tools to

9

help problen1 solvers with their tasks. \Ve will find out which processes can
be relegated to a machine and which will need to continue to be done by peo
ple. This understanding will also help us in building the kinds of tools and
developing the kinds of curriculums that can best be used to train creative
problem solvers of the future.

The paper entitled "A Case-Based Approach to Creativity in Problem
Solving" by Janet Kolodner and Louise Penberthy describes more about this
project. It was subn1ittcd to the 1990 CognitiYe Science Conference.

5 Lear1~i1~g to Scl~edule

In the first year of this contract, '~' e spent considerable time investigating
scheduling in the d01nain of flexible n1anufacturing. Operators of such sys
tems start out doing fairly poorly at scheduling, and, in general, there are no
teachers or manuals around to give them instruction. \Vith a small amount of
experience, however, they begin to get quite a bit better. Our interpretation
is that this is a case-based activity- that they are explaining the failures that
arise, figuring out which of their actions are responsible for those failures, fig
uring out which features of the environment can predict those failures, and
indexing their experiences and new knowledge based on all that. Related to
this project, 've began work on a representational vocabulary for describing
scheduling, and we observed people learning the task. \Ve found that we
couldn't learn enough from these observations for an interesting project.

As a result, we have switched to a different task don1ain, that of schedul
ing the time of a busy single working parent. As in the flexible 1nanufacturing
domain, the planner must be reactive and opportunistic. Also as in that do
main, we can assume that the planner begins by knovving how to achieve
goals in isolation and learns over time how to integrate the a.chieven1ent of
several goals in tandem. Our work thus far has centered on a representation
for plans that allows fast execution, supports noticing and acting upon ex
pectation failures, evolves easily, and supports partial planning, reactivity,
and opportunistic action. The paper entitled "Representing Routine Plans:
Issues In1portant to Acting, Planning, and Learning in the Real \Vorld" by
Stephen Robinson and Janet Kolodner addresses these issues.

In the next year, we expect to create a progran1 tha.t begins as a novice
scheduler and becon1es able to interleave tasks with ease. Currently the

10

program, called SUPERl\101\1, contains cases, plans, scripts and goals per
taining to its weekday n1orning routine. It can be interrupted by events such
as running out of 1nilk or discovering that one of the kids is sick. It has mech
anisms for devising alternative plans, executing those plans, and storing and
indexing the experiences int its memory, and it can follow those indexes in
later situations when it runs into similar proble1ns.

The scheduling activity we are investigating in this project is in1portant
for se\·eral reasons. First, as pointed out above, \ve hope to discover ho\v case
based reasoning functions in early learning of a task. This 1night allow us to
build expert systen1s that start \\'ith little skill and through the analysis of
their experience becon1e n1ore skillful. Second, this activity con1bines reactive
planning, execution, case-based reasoning, and learning. It is a good task in
which to study reactive planning, and gives us the opportunity to learn how
a reactive planner might get better. Third, this task provides the bottom
end of logistics planning. Logistics requires strategies and use of principles
in scheduling. At some point, those strategies and principles have to be put
to use. That is, the scheduling has to happen. As in other cases of logistical
planning, this scheduler has to adhere to principles and strategies and figure
out how to deal (within the guidelines of those principles) with the world as
it actually is.

Our plan is to do our investigation in the common-sense scheduling do
tnain and to reimplen1ent it in the flexible manufacturing do1nain as a later
step.

6 Case-Based Decision Aidi11g

\Vhile n1uch of the research work on this contract has been addressing issues
in fully auto1nating case-based reasoning, this part of the endeavor looks at
the use of a case memory to aid people in decision making. Psychologists tell
us that if people have the right cases available, then they are able to make
case-based inferences accurately and easily. Ho\vever, people often don't have
the right cases available to then1, either because they have not experienced
the1n or because they did not re1nember the1n at the right times (due to
indexing the1n wrong, bias of various kinds, etc.). A case- based decision
aiding tool helps a person solve problems by augmenting his/her me1nory.

\Ve are at the very beginning of a project in this area., joint with faculty

11

from Georgia Tech's College of Architecture. \Ve have also discussed such
systems with faculty at Georgia State's ~1anagement School, and we are
hopeful about starting several projects in this area. \Ve have already given
several talks about such s:ysten1s: at Georgia State, NRL, Bellcore, and as a
keynote address to the J udg1nent and Decision ~1aking Society.

7 Otl1er Activity

\Ve added two new faculty 111e111bers to the AI group a.t Georgia Tech who
do research in case-based reasoning. Ashok Goel, fr01n 0 hio State, studies
the integration of n1odel- based and case-based 1nethods for design problen1
solving. Ashwin Ra111 vvorks on learning from cases.

During IJCAI-89, Janet Kolodner and Chris Riesbeck presented a tuto
rial on case-based reasoning. Our approach is to present techniques, using
exa.n1ples fron1 particular systems to illustrate those techniques. Our ma
teria.ls have been updated for the 1990 AAAI, where we will be presenting
another tutorial. The tutorial is also being given as part of Georgia Tech's
Education Extension's two \Veek course on expert systems building.

Janet Kolodner gave the keynote address at the DARPA Case-Based Rea
soning \Vorkshop in Pensacola in 1v1ay, 1989. JULIA was be demoed, as well
as a system called ~1ECH that combines case-based reasoning with EBL and
learning from an instructor's explanations. Georgia Tech contributed several
papers to the poster sessions. Georgia Tech is also well-represented at the
1990 AAAI Spring Symposium on Case-Based Reasoning. Janet Kolodner
will be on two panels, Tom Hinrichs will give a talk and be on a panel, and
Ashok Goel will present his work.

12

Case-Based Reasoning at Georgia Tech
Fin.al Technical Report

Janet L. Kolodner
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

jlk@cc.gatech.edu

May 7, 1992

In the three years of this DARPA-funded project, case-based reasoning
work has been in a wide variety of areas: case selection, index selection, cbr
for design problen1 solving, general purpose adaptation heuristics, cbr for
learning to schedule, case representation, and case-based tools for designers.
\Ve brif'fly describe each effort here and refer to published theses and confer
ence proceedings papers for more in-depth descriptions of the work and its
contributions.

1 Case Selection

The most important support process a case-based reasoner needs is a memory
for cases. The memory n1ust make cases accessible when retrieval cues are
provided to it and it must incorporate new cases into its structures as they
are experienced, in the process maintaining accessibility of the items already
in the memory. It must be able to handle cases in all of their complexity,
and it must be able to manage thousands of cases in its memory. But most
in1portantly, it must be able to select out the most appropriate cases for the
case- based reasoner to use at any time.

1

\Vhile much work in the past has gone into organizing cases in a memory
and retrieval algorithn1s for recalling them, little has gone into the problem
of choosing the best case from among the many partial matches that are
rf't rieved. Our work, sumrnarized in the attached paper by Janet Kolodner
entitled 'lSelecting the Best Case for a Case-Based Reasoner," addresses this
problern. It is irnplen1ented in a program called PARADYME (PARAllel DY
narnic J\llEmory), which is designed to work alongside a case-based reasoner.
PARADYME's memory is hierarchical, but there are no physical indexes in
the rnen1ory. Rather, cases are annotated or labeled by their important fea
tltres. Retrieval is a two step process. First, a parallel retrieval mechanism
(implen1ented on the Connection l\1achine) retrieves all cases that partially
n1atch the retrieval probe. In a second step, selection heuristics use the labels
associated with cases to choose the best from among those partial matches.

PARAD'{l\'1E's selection method is based on many of the same principles
guiding the selection of indexes and retrieval algorithms used in other case
n1ernories. However, it differs from those memories in several ways. First,
PARADYME's parallel retrieval method allows us to do away with the re
strictions indexes put on retrieval in other memory systems. Instead, what
would have been indexes in those systems are found as annotations on cases
called salient feature sets. Cases whose full salient feature set matches a re
trieval probe are preferred over others, but cases without full sets of matching
salient feature sets can also be retrieved. In this way; indexes are allowed to
act as selectors rather than restrictors. PARADYME does not get hurt by
the inability to predict every important part of a case at the time it hap
pens. PARADYME prefers cases whose salient features (indexes) match the
retrieval probe but if no cases with indexed features match, it will recall a
case with other matching features.

Second, PARADYME's emphasis when ranking cases is on usefulness.
Using this criterion for ranking means that PARADYME takes the reasoner's
goals into account in selecting out a "best" case. Rather than choosing a most
similar case, it chooses the most similar of those cases that are first judged
most useful.

P ARADYME's selection procedure is based on a set of preference heuris
tics. These heuristics are applied to the set of partially-matching cases to
choose a small set of ''best" cases. PARADYME uses six different types of
preference for this task.

2

• Goal-Directed Preference

• Salient-Feature Preference

• Specificity Preference

• Frequency Preference

• Recency Preference

• Ease-of-Adaptation Preference

The first preference, goal-directed preference is based on the principle of
utility. That is, since the memory is working in conjunction with a reasoner
that has goals, it makes sense to prefer those cases that can help in achieving
the problem solver's goals. Thus, when the problem solver is trying to come
up with a main dish, those cases that match on main dish constraints will be
preferred over others. When it is trying to evaluate the goodness of a solution,
those cases that predict success or failure under similar circumstances are
preferred. \Ve state this heuristic as follows:

Goal-Directed Preference: Prefer cases that can help address
the reasoner's current reasoning goal, and of these, prefer those
that share more constraints over those that share fewer.

The second preference heuristic, salient-feature preference, is based on
the principle that we should use experience to tell us which features of a
new situation are the ones to focus on. If memory has done a good job
of recording its experiences, they can be used to tell us which features of
previous events led to the choice of particular solutions or solution methods
and which features of previous events were responsible for success or failure in
those cases. These features are the salient features of previous cases, and in
indexed memories, they form the indexes. When salient features of previous
cases exist in a new situation, they can be used to suggest solutions and
predict outcomes for the new case. A case where a friend named Anne didn't
eat what was served for dinner, for example, has a salient feature set that
predicts failure and includes the following facts: Anne was a guest, fish was
served, preparation style of the fish was grilled. When all of these features
are present in a probe, we can predict that Anne won't eat. PARADYME

3

prefers cases that share full sets of salient features with the new problem over
other cases whose full salient feature sets are not in the probe. We state this
preference as follows:

Salient-Feature Preference: Prefer cases that match on salient
features over those that rnatch on other features, and prefer those
that rr1atch on a larger subset of salient features over those match
ing on a srnaller subset.

The third preference heuristic is based on the principle that a more specific
111atch can be n1ore predictive than a less specific match. Thus, all other
thjngs bPing equaL cases that match more specifically are preferred over less
specific n1atches. PARADYME has several ways to judge specificity. First,
according to PARADYrvlE's definition of specificity, a case is more specific
than another if the features that match in the less specific case are a proper
subset of the features that match in the more specific case. Thus, a probe
is tnore specifically n1atched by a case that matches all of its features than
one that matches only a subset. Second, a case matches more specifically
than one of its ancestors in memory's generalization hierarchy. For example,
a particular Italian rneal is more specific than a generic Italian meal. Third,
a case 1natches more specifically if the probe matches features in more of its
parts. The specificity preference follows:

Specificity Preference: Prefer cases that match more specifi
cally over less specific matches.

The fourth and fifth heuristics are based on two principles psychologists
have discovered - that items that are referenced more frequently are more
likely to be recalled than other similar items and that items that have been
referenced more recently are more likely to be recalled than other similar
iterns (all else being equal). This gives rise to two preference heuristics:

Frequency Preference: Prefer cases that have been accessed
more frequently over less frequently-accessed cases.
Recency Preference: Prefer cases that have been accessed
more recently over less recently-accessed cases.

A sixth preference heuristic is also based on the principle of utility, and
is specific to case- based reasoning. Some adaptations of previous solutions

4

are easier to rnake than others. This heuristic says to prefer cases whose
solutions are easier to adapt than those whose solutions are harder to adapt.

Ease-of-Adaptation Preference: Cases that match on fea
tun·s that are known to be hard to fix should be preferred over
those that match on easy-to-fix features.

The application of preference heuristics is complicated. Each preference
heuristic attempts to select out a set of better matches. When a heuristic
does this, that set is sent on to the next heuristic for pruning. When no
subset of cases is better than the rest using some heuristic, however, the
entire set it was selecting from is selected. In this way, the preferences act as
.selectors rather than restrictors. \Ve prefer to recall a case that can address
the reasoner's current goal but we don't require it. We prefer to recall a
case that matches on salient features, but if there are none, the preference
heuris t i · -~ allow recall of a case that matches on a random set of features.

The heuristics are also ordered. Goal-directed preference is applied first,
then salience, then specificity, and then frequency and recency. This way,
the set of cases that can be used to achieve the reasoner's current goal is
selected out first, then any that match on a full set of salient features (of the
right kind) are selected from those, the most specific of those are chosen (if
sorne are more specific than others), and then the more frequently or recently
rf.'called cases are selected from those.

Appendix A holds papers related to this effort.

2 Index Selection

Our analysis of what goes into choosing a best case has led us to several
conclusions about what kinds of indexes are useful ones for a case to have.
vVe have found three kinds of indexes useful for problem solving. The first
contain features that predict the applicability of some method for achieving
a goal (goal-achievement sets). Second are those that predict the success of
failure of a solution (solution-evaluation sets). Third are those that describe
unusual outcomes (outco-me-achievement sets).

Goal-Achievement Sets are generally conjunctions of goals, constraints
on these goals, and problem and environmental features that predict the
method or solution for achieving the goal or goal set. If the features of a

5

goal-achievernent set are all present in a new situation, and if the problem
solver's current goal matches the goal achieved by the salient feature set, then
the method of reaching the goal or the solution to the goal can be predicted
frorn the previous case. Cases that match on the basis of goal-achievement
sets are rnost helpful during problem solving when the problem solver knows
what goals it is trying to achieve and knows the environment in which it
needs to achieve those goals.

These sets of features may include one or several goals. They include one
if t.he solution tha.t wa.s chosen for that goal did not involve other goals. They
include st:'veral if solutions to several goals were integrated. Constraints and
descriptors on these goals are also included, as are features of the world or
features of the problern that determined which of several possible solutions or
solution n1ethods was chosen. If all of the features in one of these conjunctive
feature sets is designated in a retrieval probe, the solution or solution method
used in the previous case can be predicted.

Solution-Evaluation Sets are conjunctions of features predicting un
usual outcomes - in general, failures, unexpected successes, and unexpected
side effects. If the features of a goal-achievement set are all present in a new
situation, the ltnexpected result from the previous case can be predicted in
the new case. Cases that match on the basis of solution-evaluation sets are
n1ost helpful when a reasoner has proposed a solution and needs to evaluate
it.

Outcome-Achievement Sets are conjunctions of features describing
unusual outcomes. If the features of an outcome-achievement set are all
present in a new situation, the previous case that is recalled can be used to
help explain why the unusual outcome arose. In addition, if these features
are all present in a new situation and the reasoner is attempting to figure
out how to achieve such an outcome, the method by which it was achieved
previously can be suggested by the recalled case. These are thus useful in
two situations: when the reasoner is trying to explain an anomolous situation
and when the reasoner knows the shape of a solution but not how to achieve
it.

Any particular case may have several conjunctive feature sets associated
wit~ it. For example, it could have one for each goal that was achieved in the
course of reasoning about the case. It might also have several associated with
outcon1e and several associated with solution evaluation. When attempting
to choose best cases, preference heuristics prefer those cases that have one

6

or rnore salient feature sets of the right kinds that are fully matched by the
rH'\V sit nation. That is, if the reasoner is attempting to evaluate the potential
for success of a plan, it prefers cases with fully matching solution-evaluation
feature sets. If it is trying to achieve a goal, it prefers cases with fully
!llatching goal-achievcntent feature sets whose goals match its current goal. ·
If it. atternpting to explain a.n anomalous situation, or if it is attempting to
ftnd out. how to achieve a state of affairs, it prefers cases with fully matching
outconte-ac hievenwn t feature sets.

Note that while n1any case mernories index on one feature at a time, our
concern here is with conjunctions of features. Any feature of one of these
sets might not be a good index by itself. It is the conjunction of features that
is i1nporta.nt. and the particular conjunctions of features that are important
enough to Sf'rve as indexes are those that serve useful purposes in reasoning.

Appendix A holds papers related to this effort.

3 Case-Based Design

~[uch of our work in the past several years at Georgia Tech has gone into
the design of case-based reasoning systems for complex real-world domains.
In the past several years, we have become particularly interested in design
prohlerns. Design is distinguished from other problem solving tasks in several
wa..ys:

• Problerns are underconstrained. There are in general many ways to
solve a problern. There is also, however, a large space to search to find
these n1any possible solutions.

• Problen1s have n1any parts, requiring a representational system to man
age the interactions between the many parts. Constraints are one way
to do this.

• Unlike most problern-sol ving tasks AI researchers have worked on, in
general, design problems are not nearly decomposable. In nearly
decomposable p~oblems, you can work on the parts separately and then
with only a little more effort, put the parts together to create a whole.
In design, however, solving each of the parts is, in general, easy, but
putting the pieces together to form. a whole is hard. Problems cannot
be solved by sin1ple decomposition techniques.

7

All of these features of design make it a fully appropriate task for case
based reasoning. Case- based reasoning can be used to provide suggestions in
soh·ing underconstra.ined problems without utilizing search to achieve each
of the parts of the rroblem. And since case- based reasoning can provide
f11lly-solv<"'d problen1s to \vork with, the problem of dealing with a task that
is uot Hearly-decoutposable is made easier. Cases provide a solution with
the ~'glue"' that holds the parts together. The parts themselves can then be
t wf'a.ked to get a solution that fits a new problem well.

On the other hand, using case-based reasoning for design requires us to
rethink several of the assurnptions made in early case-based reasoning sys
terns, the n1o~t irnportant of which is that we can't think of a case-based
reasoner working by itself. It must be able to work in tandem with other
reasoners. In particular, when problems have parts, some bookkeeping sys
tenl is necessary to keep track of the relationships between the parts and
the constraints put on parts by other decisions that have been made. In our
df.'sign systen1, called JULIA, we take care of this problem by integrating the
case- based reasoner with a constraint propagator. The constraint propaga
tor has several responsibilities: (1) It propagates constraints from a problem
specification into the solution specification. (2) It propagates constraints to
the rest of the solution specification after some part of a suggested solution
has been adapted.

Constraints allow us to keep track of the relationships between the parts
of a probletn. This allows later parts of a problem to be solved taking earlier
decisions into account. In addition, we also need a system that can notice
inconsistencies. This is necessary for several reasons: (1) So that the incon
sistencies between a problern specification and the recalled solution can be
identified. (2) So that the side-effects of adaptations can be noticed. (3)
So that later decisions can be forced not to violate constraints posted by
earlier ones. In JULIA, a reason maintenance system that reasons based on
constraints does this .

.JULIA's three modules interact with each other in novel ways. JULIA
uses its case-based reasoner and adaptation heuristics to suggest means of
achieving goals and uses its constraint propagator to propagate the effects
of its decisions to the rest of the problem. The reason maintenance system's
job is to point out inconsistencies. The adaptation heuristics are used to fix
those problems. vVhile a standard reason maintenance system would call a
dependency directed backtracker whenever it noticed an inconsistency, JU-

8

LIA uses its reason maintenance system to point out inconsistencies but not
to fix t.lwnl. It. relies on its adaptation strategies to fix problerns. The philos
oplty of dependency directed backtracking is to undo reasoning that led to a
faulty answer. Within the case-based reasoning paradigm, the philosophy is
to preserve the reasoning, which was sound, and to fix the answer by either
trausfonning it to fit. the additional constraints of the problen1 or substitut
ing son1et hing that works. Backtracking is reserved only for those situations
in which adaptation won·t \Nork.

3.1 Adaptation

\Vi thin the context of design, a particular topic we have addressed is the com
pilation of a set of general purpose adaptation heuristics. l\1ost case-based
rra.soni ng systen1s have done adaptation through the use of special-purpose
critics. \Ve are atten1pted to design adaptation heuristics that are general
in purpose and can be built in to the architecture of a case-based reasoning
system. In that way, the designer of a case-based reasoning system would
have to add only the knowledge necessary for the adaptation heuristics to
\Vork rather than having to add adaptation heuristics specific to the domain
of his case- based reasoner.

The list below sho\vs a taxonomy of adaptation strategies in JULIA. Some
(the first cl sets) manipulate the contents of concepts, some manipulate the
internal structure of solutions, and some modify the constraints defining a
problem specification. The strategies are domain independent because they
are directly related to the form of the representation of a concept rather
than to higher level domain concepts. This is especially important for design
tasks, because the range of designs achievable is determined by the coverage
of the strategies.

• Concept substitution strategies; including specialize, generalize, sub
stitute sibling, and substitute by function

• Set transformation strategies; including insert and delete

• Quantity substitution strategies; including increase quantity and de
crease quantity

• Logical substitution strategies; including invert

9

• Structure modification strategies; including share function, split func
tion, and transpose

• Con~traint n1odification strategies; including enlarge domain, reduce
dontain ? generalize range, and diminish range

\'Vhile rnost work in CBR has been on the use of adaptation strategies
for adapting an old solution to fit a new problem, we find that adaptation
strategies have at least three uses:

• adapting an old solution to fit a new problem

• patching an alrnost-right solution to make it better

• adapting a problem specification to fit the possible solutions

Using adaptation these three ways in solving design problems has the poten
tial for solving n1any design issues.

• Adaptation facilitates making decision in under-constrained situations
by allowing the problem solver to re-use an 'almost-right' plan rather
than re-solving from scratch.

• Adaptation resolves over-constrained problems by serving as an alter
native to retraction.

• Adaptation relaxes preference constraints by minimally weakening them.

• Adaptation extends the vocabulary of a problem solver by creating new
components as variations of known ones.

Using adaptation for all of these tasks allows four different kinds of design
processes - selection, configuration, parameter fixing, and construction - to
be integrated within one design architecture. And it provides a computation
ally efficient and parsimonious way of dealing with the introduction of new
constraints during problem solving, a common design delemma. A paper
entitled "The Integrative Role of Adaptation in Design" by Tom Hinrichs
and Janet Kolodner give more details of this work. It was printed in the
Proceedings of AAAI-91.

10

3.2 Evaluating results of case-based design

r\11 i1nporte1nt part of a.n.Y problern solving endeavor is to evaluate the solu
tions that are crea.ted. This is particularly probletnatic when the problem is
under-sp(xiflecL as is alrnost always the case in conceptual and preliminary
design. C01npa.rison to other cases provides a way of evaluating solutions in
these situations, but vve must know on what dimensions to do the evaluation.
Solutions n1ust be evaluated on consistency and completeness.

The attached pa}_)er by Tom Hinrichs entitled "Some Criteria for Evalu
ating D("signs, ,, (in A p[->endix B), reports on this work.

Auditioual det.ail about all of these design topics can be found in the
papers in r\p[->endix 8 and in Tom Hinrich's Ph.D. thesis, "Problem Solving
in Open \Vorlds: A Case Study in Design," included with this report.

4 Learning to Schedule

A not her research acti vi t.Y was in the area of learning, particularly learning
to ::;chcdule plan steps. \Ve began by looking at scheduling a flexible man
ufacturing s.ystern. Operators of such systems start out doing fairly poorly
at scheduling, and, in general, there are no teachers or manuals around to
give them instruction. With a sn1all amount of experience, however, they
begin to get quite a bit better. Our interpretation is that this is a case-based
activity- that they are explaining the failures that arise, figuring out which
of their actions are responsible for those failures, figuring out which features
of the environment can predict those failures, and indexing their experiences
and new knowledge based on all that.

\Ve chose to continue by working in an analogous domain, but one that
was rnore accessible: scheduling the time of a busy single working parent.
As in the flexible manufacturing domain, the planner must be reactive and
opportunistic. Also as in that domain, we can assume that the planner
begins by knowing how to achieve goals in isolation and learns over time
how to integrate the achievement of several goals in tandem. Our work thus
far has centered on a representation for plans that allows fast execution,
supports noticing and acting upon expectation failures, evolves easily, and
supports partial planning, reactivity, and opportunistic action. The papers
in Appendix C address these issues.

11

Our prograrn, called EXPEDITOR, begins as a novice scheduler and in
crf'a.scs its perforrnance in three ways. It becomes able to interleave tasks
vrith ease it becorucs able to <leal with common failures as they arise, and
it learns new plans that help it carry out the activities that are necessary so
t l1 at those failures will occur less often. The program contains cases, plans,
scripts and goals pertaining to its weekday morning routine. It can be inter
ntptecl by events such as running out of milk or discovering that one of the
kids is sick. It has mechanisn1s for devising alternative plans, executing those
plans, and storing and indexing the experiences int its memory, and it can
follovv those indexes in later situations when it runs into similar problems.

The scheduling activity we are investigating in this project is important
for several reasons. First, it will help us to discover how case-based reasoning
functions in early learning of a task. This might allow us to build expert
systerns that start with little skill and through the analysis of their experience
bec0111e rnore skillful. Second, this particular planning activity combines
reactive planning, execution, case-based reasoning, and learning. It is a
good task in which to study reactive planning, and gives us the opportunity
to learn how a reactive planner might get better. Third; this task provides
the bot.torn end of logistics planning. Logistics requires strategies and use of
principles in scheduling. At some point, those strategies and principles have
to be put to use. That is, the scheduling has to happen. As in other cases of
logistical planning, this scheduler has to adhere to principles and strategies
and figure out how to deal (within the guidelines of those principles) with
the world as it actually is.

5 Creative Problem Solving

In case-based reasoning, and in much of the problem solving people do, so
lutions are created for new problems by adapting and combining known so
lutions to similar problems. Sometimes a new solution can be created by
n1erely tweaking or adapting some old one in routine ways. Often, however,
problem solving is less routine, requiring exploration of several alternatives,
perhaps adapting and merging several possibilities gleaned from experience.

The case-based reasoning projects that are concentrating on problem solv
ing have, for the most part, been looking at routine problem solving. That
is, problerns are solved by recalling similar cases and adapting them by well-

12

known procedures to fit the new situation. Our problem solvers come up
with good. but boring solutions.

Previous experience seerns to play a large role in the creative problem
soh·i ng people do. It is tin1e to make our case- based problem solvers rnore
creative. Sorne investigations are doing this by looking at vocabularies that
t. ransc~nd several types of problems on the premise that creativity can emerge
hy transferring the abstract solution from those far-away problems and spe
cializing it to the new problem (e.g., Kass, Owens, Birnbaum & Collins). In
our iuvestiga.tion, we are looking at the creativity that emerges by combining
t.he solutions to several cases in novel ways.

There are four processes we've found that extend basic case- based rea
soning rncthodology to provide creativity in problem solving.

• Problem specification elaboration: In almost all AI investigations
of problern solving to date, researchers have assumed that the prob
lern specification would define the problem succinctly. Yet interesting
problen1 solving domains have as their hallmarks the fact that problem
specifications are rarely well defined. In general, they are incomplete,
leaving n1any different ways to solve a problem. Sometimes, they are
unnecessarily constrained. An important part of solving problems in
these cases is redefining the problem spec. This includes elaboration,
problen1 restructuring, and negotiating problem space boundaries (Goel
& Perolli, 1989).

• Exploration of solution alternatives: In general, in problem solv
ing in ill-structured domains, there are many different ways a problem
could be solved, some better than others, some with different trade-offs
than others. Many possible solutions must often be considered during
problem solving. In addition, because problem specifications are often
incomplete, the problem solver might need to incrementally converge
on a good solution by following a cycle of starting with whatever comes
to mind, critiquing that, and based on the critique, adding appropri
ate details to the problem specification. Alternatively, the problem
solver might elaborate the original problem specification several dif
ferent ways, using each to generate an alternate specification. This
process includes both search of the solution space and evaluation of
alternatives.

13

• Merging of possibilities: In routine problem solving, parts of several
sollltions are often n1erged, but in general, the parts do no overlap (e.g.,
dcssf'rt fron1 one tneal might be used with a main dish from another
1neal). In less routine problem solving, several suggestions for solving
thE' s;:une part of a. probletn might be merged to come up with a solution
(e.g., in deciding to have saln1on fettucine and salad for dinner, a n1eal
planner n1ight have remembered three previous cases, a rneal with fish,
a pasta n1eal, and a one-dish n1eal, and n1erged desirable features from
each).

• Non-routine adaptation: Previous work has looked at adapting old
solutions to fit ne\v problerns. In creative problem solving, it sorne
t.irncs rnakes sense to adapt one's goals to fit an old solution rather than
cha.ngiug the old solution to fit the new problem. Previous work has
looked at routine adaptation strategies (e.g., deletion, addition, substi
tution) but not at use of "off-the-cuff" ones (i .e., those developed in
response to a. particular problem). Some of these arise from examining
a. causal tnoclel, some fron1 adapting well-known adaptation strategies,
son1e frorn applying well-known adaptation strategies in novel ways.
There rna.y be other ways non-routine adaptations arise.

Our investigation of these processes has started with implementation of a
progran1 that addresses the second problem above: creative problem solving
by exploring the case base. Our program is based on a protocol of a person
doing creative design. In this case, the person was trying to come up with a
dinner dish to use up son1e leftover white rice. The program, like our subject,
retrieves an initial set of instances of using white rice, and evaluates each.
Based on the evaluation, it alters the problem specification. Features that it
doesn't have but needs, it adds from the case. Those features that it finds
unacceptable in any case it remembers, it rules out. It then it takes this new
problem specification and probes the men1ory again. It continues this cycle
until it derives a solution that can be easily adapted to make a good solution,
or until it retrieves a case that can be adapted to fit the new situation. When
it remembers a Chinese dish, for example, the program rules out Chinese as a
cuisine since it has just had Chinese food the day before. When it remembers
a bread recipe that uses rice, it adds the specification that the recipe it comes
up \vith should be easy to n1ake, since the work involved in making bread
is tnore than it wants to do. vVhen it remembers a breakfast dish that uses

14

rice, it changes its goals completely and decides that maybe a dinner dish
isn't necessary - breakfast would do just as nicely.

The process of creative problem solving through exploration of the case
base, as \Vt'\:e defined it so far, has the following steps:

l. Retrieve an initial set of cases, using the initial problem specification

2. For each case:

• Evaluate the case for its applicability or adaptability to the prob
lem

• Temporarily alter the set of goals, based on the current source
case

• Use the altered set of goals to retrieve an additional set of cases

3. go back to step 1

The ability to come up with creative, rather than routine, solutions to
probletns would help many of our case-based problem solvers (e.g., CHEF,
JULIA, PERSUADER). The most obvious application of creativity in case
based reasoning is in those domains that are seen as inherently creative:
design, for example, or meal planning, or architecture, and so on. But the
approach we have introduced here can help case-based reasoners in n1any
don1ains.

Any problem solver can reach an impasse as it works to solve a problem.
Creative case-based reasoning provides techniques to breach such an impasse.
By elaborating the original problem specification in more than one way, a
creative problem solver can find different paths to solutions.

In a domain where the problem may be poorly defined, perhaps incom
plete or overconstrained, the creative process can help elaborate the spec
ification of the problem, and provide a more complete basis for problem
solving.

Creative techniques can help a case-based reasoner produce variety in its
solutions. Rather than using disjoint parts of different cases as the basis for
a new solution, for example, a creative approach would merge corresponding
parts of different cases to come up with a novel solution.

An understanding of creative problem solving processes has several im
portant implications. If we understand creative processes, which parts are

15

hard and which are easy, we will be able to create the right kinds of tools to
help problen1 solvers with their tasks. We will find out which processes can
he relt'gat.ed to a. ntachine a.nd which will need to continue to be done by peo
ple. This understanding will also help us in building the kinds of tools and
dt'vcloping the kinds of curriculums that can best be used to train creative
problen1 soh·ers of the future.

The paper entitled "A Case-Based Approach to Creativity in Problem
Solving" by .Janet Kolodner and Louise Penberthy, in Appendix 0, describes
n1ore about this project.

6 Case Representation

Cases can be large, and it is clear, from talking to people about how they
use cases to solve problems, that people access and use pieces of cases even
\vhen a case as a whole seems far from the new case. For example, one
physician interviewed in a protocol study remembered six different case pieces
in the course of slving one complex problem: one helped him evaluate the
an1biguous results of a test, another helped him evaluate the potential for
growt.h of an aneurism, another warned of the potential for problems with
a particular n1edical procedure he was considering, and three helped him
detennine if a set of symptoms that were present were important to take
into account in solving the major problem. Each of these was only part of a
larger case, and none of the larger caes were very good matches themselves
to the new situation when taken as a whole. Designers also use pieces of
cases as they solve problems. As they break large design cases into smaller
parts to solve them, they recall similar smaller parts of old cses they help
with the design.

There are two requirements for enabling recall of case parts.

• The representational scheme must make parts of cases easily accessible.

• The indexing scheme must index case parts as if they are independent
units.

If \Ve think of pieces of cases as cases themselves, then the representational
problem boils down to a means of organizing related cases in such a way that
they can be accessed in clusters as needed. That is, a whole case (consisting

16

of srna.ller pieces) must be as accessible as any of the parts of the case. There
are two ways t.o do this:

• RPpreseut cases nwnolithically with large cases containing their pieces
as parts. This requires a scheme for locating appropriate case pieces
within a larger case and an indexing scheme by which the whole case
has as indexes both its own indexes and those of its pieces.

• Represent the pieces of large cases as cases and provide links allowing
full ca.ses to be reconstructed.

l\lost current ca.se-ba.secl reasoners use the first method. One of our aims
in CELIA~ a case-based troubleshooter, has been to explore the second. Re
ports in Appendix E describe CELIA's scheme. In short, it adheres to the
principles below.

• Cases are divided into subparts, called snippets.

• Each snippet represents pursual of some reasoning goal (or set of goals
pursued in conjunction with each other).

• Each snippet contains information pertaining to pursuit of its goal(s).
This includes the snippet's problem description, actions taken in pur
suit of its goal(s) (real actions or mental actions), and pointers to re
lated snippets.

• Links between snippets preserve the structure of the reasoning. Each
snippet is linked to the snippet for the goal that suggested it and to
the snippets for the goals it suggests.

• A full case is represented by a header that holds global information
about eh case and a set of causally-connected case snippets.

• Each snippet is independently indexed by a combination of global in
formation (i.e., pertenant features of the larger case it is embedded
in) and local information (i.e., pertenant features of the snippet itself).
Full cases are also indexed.

A snippet's problem description includes a pointer to the case header, the
goal being pursued, and the problem solving context surrounding pursual of

17

the goal. The problem solving context describes the problem solving that
has gone on previous to pursuing the snippet's subgoal, including relevant
subgoals that have been pursued and the results of actions taken so far.

This representational scheme supports generalizations of episode pieces
across different kinds of episodes. When cases are represented in individual
parts, a rnemory can notice similarities between parts of cases and has the
potential to make generalizations about case parts. For example, a system
that r~presents meals in pieces has the potential to make generalizations
about autumn desserts, vegetarian main course, or appetizers with cheese.
It is rnuch harder to n1ake generalizations about similar pieces of dissimilar
cases ina system that represents cases as monolithic wholes. Indeed, this is
the rationale behind Schank's rviOPs, a predecessor of case-based reasoning.

An issue that arises is how we break cases into their snippets. CELIA
divides its cases according to reasoning goals because it is a reasoner whose
purpose is to learn the reasoning goals associated with diagnosis. More re
cently, as builders of case-based reasoning systems have begun to attempt
to represent cases of considerable size, a consensus has been developing that
cases should be divided according to the lessons they teach. Above I men
tioned a physician who remen1bered six different case pieces as he was solving
a problem. Each was associated with some constellation of subgoals associ
ated with an old problem and also present in the new situation, and each
had a lesson to teach relevant to the subgoals it addressed.

Appendix E holds papers about case representation. Papers in Appendix
F by Don1eshek and Kolodner also address this issue.

7 Case-Based Design Tools

vVhile much of the research work on this contract has been addressing issues
in fully automating case-based reasoning, this part of the endeavor looks at
the use of a case memory to aid people in decision n1aking. Psychologists tell
us that if people have the right cases available, then they are able to make
case- based inferences accurately and easily. However, people often don't have
the right cases available to them, either because they have not experienced
them or because they did not remember them at the right times (due to
indexing them wrong, bias of various kinds, etc.). A case- based decision
aiding tool helps a person solve problems by augmenting his/her memory.

18

The ARCHIE project addresses the creation of case-based decision aids
for designers. ARCHIE is an architect's associate. Work on this project is
based on our experience with JULIA and on Ashok Goel's experience with
I'\ H lT IK, a case- based designer of small mechanical devices that uses a causal
ntodel to aid with adaptation and evaluation.

The first version of ARCHIE is implemented using Cognitive Systems
C B R Shell. It holds a handful of arc hi teet ural cases. The tool provided
a fra1nework for us in setting up the case representations, and provided a
vehicle for representing some of the causal models needed to analyze how
closely two cases ntatch each other.

The rnajor issues we grappled with in designing ARCHIE were case rep
resentations for complex design and guidelines for dividing a case into useful
parts. Because design cases are so complex, designers work on part of a case
at one ti1ne keeping other parts of the case in mind but not concentrating on
them. The representations we devise need to support that kind of reasoning.
In addition, we looked at the ways causal models need to be integrated with
cases to support design and we tried to. make case representations support
that integration. Just as cases need to be divided into parts, causal models
also exist at several levels of detail that need to be connected to each other
appropriately and also connected to the general case framework in a useful
way. \Ve also looked at the knowledge that is necessary in order to focus a
presentation of a case appropriately for a designer, and at ways to get that
knowledge from the designer without too much intrusion.

The papers in Appendix F discuss ARCHIE, both what it has shaped up
to be and the problems we discovered as we continued building it . In short,
ARCHIE was failure in terms of being a general purpose framework for a
case-based advisory system. Analysis of its failures, however, has been most
enlightening, and is pointing the way toward more tools. ARCHIE-2 deals
with knowledge representation and knowledge presentation issues that our
experience with ARCHIE pointed out as important.

19

Appendix A
The Indexing Problem

1. Kolodner, Janet L. (1988). Retrieving Events from a Case Memory: A Parallel
Implementation. Proceedings of the DARPA Workshop on Case-Based
Reasoning, May, 1988, Morgan Kaufmann Publishers, San Mateo, CA.

2. Kolodner, Janet L. (1989). Judging Which is the "Best" Case for a Case-Based
Reasoner. Proceedings of the DARPA Workshop on Case-Based Reasoning, May,
1989, Morgan Kaufmann Publishers, San Mateo, CA.

3. Kolodner, Janet L. (1989). Selecting the Best Case for a Case-Based Reasoner.
Proceedings: 11th Annual Conference of the Cognitive Science Society, August,
1989, Lawrence Erlbaum Assoc., Hillsdale, N.J.

Appendix B
Design

1. Hinrichs, Thomas R., (1988). Towards and Architecture for Open World Problem
Solving. Proceedings of the DARPA Workshop on Case-Based Reasoning, May,
1988, Morgan Kaufmann Publishers, San Mateo, CA.

2. Hinrichs, Thomas R., (1989). Strategies for Adaptation and Recovery in a Design
Problem Solver. Proceedings of the DARPA Workshop on Case-Based
Reasoning, May, 1989, Morgan Kaufmann Publishers, San Mateo, CA.

3. Hinrichs, Thomas R., (1990). Green Eggs and Kosher Ham, Some Neglected
Issues in Adaptation. Proceedings: AAAI Spring Symposium on Case-Based
Reasoning, 1990.

4. Hinrichs, Thomas R., (1990). Some Criteria for Evaluating Designs, Proceedings:
12th Annual Conference of the Cognitive Science Society, July, 1990, Lawrence
Erlbaum Assoc., Hillsdale, NJ.

5. Hinrichs, Thomas R. and Janet L. Kolodner, (1991). The Roles of Adaptation in
Case-Based Design, Proceedings: Ninth National Conference on Artificial
Intelligence, July, 1991 (Also printed in Proceedings of the Case-Based Reasoning
Workshop, May, 1989).

6. Goel, Ashok K. and Eleni Stroulia, (1991). Model-Based Repair in Experience
Based Design, Proceedings of the Model-Based Reasoning Workshop, Ninth
National Conference on Artificial Intelligence, AAA/-91.

Enclosed separately:

Hinrichs, Thomas R., (1991) Problem Solving in Open Worlds: A Case Study in
Design. Ph.D Thesis, Report# GIT-CC-91-36. College of Computing, Georgia
Institute of Technology, Atlanta, GA.

Appendix C
Learning to Schedule

1. Robinson, Stephen M., and David W. Wood, (1989). A General Vocabulary for
Indexing Cases in Multi-Agent Domains. Proceedings: 27th Annual Southeast
Region ACM Conference, 1989.

2. Robinson, Stephen M., and Janet L. Kolodner, (1991). Learning to Schedule
Tasks in Complex, Everyday Environments. Presented at the Symposium on
Learning Methods for Planning and Scheduling, Stanford, January, 1991.

3. Robinson, Stephen M. and Janet L. Kolodner, (1991). Indexing Cases for
Planning and Acting in Dynamic Environments: Exploiting Hierarchical Goal
Structures. Proceedings of the 13th Annual Conference of the Cognitive Science
Society, July, 1991, Lawrence Erlbaum Associates, Hillsdale, NJ.

Appendix D
Creative Problem Solving

1. Kolodner, Janet L. and Theresa L. Penberthy, (1990). A Case-Based Approach to
Creativity in Problem Solving. Proceedings: 12th Annual Conference of the
Cognitive Science Society, July, 1990, Lawrence Erlbaum Associates, Hillsdale,
NJ.

Appendix E
Case Representation

1. Redmond, Michael, (1990). What Should I Do Now? Using Goal Sequitur
Knowledge to Choose the Next Problem Solving Step. Proceedings: 12th Annual
Cognitive Science Conference, July, 1990, Lawrence Erlbaum Associates,
Hillsdale, NJ.

2. Redmond, Michael, (1990). Distributed Cases for Case-Based Reasoning;
Facilitating Use of Multiple Cases. Proceedings of AAAI 90.

3. Redmond, Michael, (1991). Improving Case Retrieval Through Observing Expert
Problem Solving. Proceedings: 13th Annual Cognitive Science Conference, 1991,
Lawrence Erlbaum Associates, Hillsdale, NJ.

4. Redmond, Michael, (1991). What Should I Do Now? Using Goal Sequitur
Knowledge to Choose the Next Problem Solving Step. Proceedings of AAA/-91.

Appendix F
Case-Based Design Aiding

1. Kolodner, Janet L. (1991). Improving Human Decision Making Through Case
Based Decision Aiding. AI Magazine, Volume 12, No. 2., pp. 52-68.

2. Goel, Ashok K., Janet L. Kolodner, Michael Pearce, Richard Billington and Craig
Zimring (1991). Towards a Case-Based Tool for Aiding Conceptual Design
Problem Solving. Proceedings of the DARPA Case-Based Reasoning Workshop,
1991, Morgan Kaufmann Publishers, San Mateo, CA.

3. Goel, Ashok K., Janet L. Kolodner, Michael Pearce, Richard Billington and Craig
Zimring (1991). An Experience-Based Approach to Cooperative Design.
Proceedings: AAAI Spring Symposium on Design of Composite Systems, March,
1991.

4. Pearce, Michael, Ashok K Goel, Janet L. Kolodner, Craig Zimring, Lucas Sentosa
and Richard Billington (1992). Case-Based Decision Support: A Case Study in
Architectural Design. Submitted to IEEE Expert, Special Track on Case-Based
Reasoning.

5. Domeshek, Eric A. and Janet L. Kolodner (1991). Toward a Case-Based Aid for
Conceptual Design. To appear in The International Journal of Expert Systems, JAI
Press.

6. Domeshek, Eric A. aqd Janet L. Kolodner (1992). A Case-Based Design Aid for
Architecture. To appear in Proceedings: AI and Design Conference, 1992.

