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Performance Limitations of'Joint Variable-Feedback 
_ Controllers-_Dlle' to_~-Maiiiplllafor -. Structural 

. Flexibility 
SABRI CETINKUNT AND WAYNE J. BOOK, MEMBER, IEEE 

Abstract-The performance limitations of manipulators under joint 
wriable feedback contrQI are studied as a function of the mechanical 
flexibility inherent in the manipulator structure. A finite dimensional time 
domain dynamic model of a two-link, two-joint planar manipulator is 
used in the study. Emphasis is placed on determining the limitations of 
control algorithms that use only joint variable feedback information in 
calculations of control decision since most motion control systems in 
practice are of this kind. Both fine and gross motion cases are studied. 
Fine motion .results agree well with previously reported results in the 
literature and are also helpful in explaining the performance limitations 
in fast gross· motions. 

NOMENCLATURE 

Wi(Xi, t) elastic deformation of link i at location Xi and 
time t 

() vector of joint angles ([0 1, O2]) 

o vector of flexible-mode generalized coordinates 
OS! . static values of flexible-mode generalizedcoor-. 

dinates' 
u vector of effective torque at joints 
Xo [0,0] . 

. x p -plant fuIl~state vector-
x m reference model state vector ([0, 0 ] desired ) 

x [0,0,0,5] 
u m commanded input vector to the reference model 
e error state vector (x m - X 0 ) 

P filtered error state 
Z output vector of the nonlinear time varying feed

back block of the standard hyperstability prob
lem 

kij ij component of joint angle feedback gain ma
trix 

cij ij component joint velocity feedback gain ma
trix 

K pn nominal joint variable (position and velocity) 
feedback gain matrix 

K un nominal feedforward gain ma'trix 
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adaptive state feedback gain matrix 
adaptive feedforward gain matrix 

P pi. Pui positive scalar constants of integral gain adapta
tion algorithm 

w:t -----. _ lowest natural frequency -of the arm with all 
joints clamped 

Wbw closed-loop bandwidth of the feedback-con-
."." '-=-~=trolled flexible arm 

.Wmi 

~i 
Rn 

E 
:3 
{P} 

LTI 
NLTV 
FFB 
FBB 
AMFC 
CLS 

closed-loop bandwidth of the feedback~con
trolled equivalent rigid arm - c.=:~.OC~. : - -";;-::=:'~~:: . 

. desired-'motion . bandwidth'· (the natural fre:: 
quency of the reference model that has step com
mand input) 
damping ratio of mode i 
n-dimensional real vector'space --

.. belongs to symbol 
there exists symbol 

dynamic systems defined by Popoy-class 
approaches symbol 

.... linear time invariant-
. nonlinear time varying 

feedforward block 
feedback block 
adaptive model following control 
closed-loop system 

- I. INTRODUCTION 
I D OBOTIC manipulators have compliance that is inherent 
~n their links and joints. The compliance becomes signif
icant especially at high manipulation speeds and/or large pay
load conditions. Today, there is an increasing demand for ma
nipulators with high speed, precision, and payload-handling 
capabilities' as a result of higher productivity needs. Hence, 
manipulator flexibility and control has become an important 
problem. In some cases, structural flexibility in manipulators 
may be desirable. For instance, a manipulator cleaning del
icate surfaces or handling household jobs needs to have sig
nificant structural flexibility so that errors in position control 
do not generate large forces that may damage the surface or 
become dangerous for the people in the house in case of ac
cidents. 

Regardless of the reason that the flexibility becomes sig
nificant (i.e., due to high speeds, large payloads, inherently 
very soft links for household services), precision control of the 
manipulator tip is necessary to accomplish the desired task. 
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Manipulator motions may be divided into two groups in terms '[19]. Independent joint variable control of multilink manipu- --
of the range of motion: 1) fine motion and 2) gross motion.lators, that is, each joint control action is based on the ~()cal __ ~ 

In fine motion, the manipulator Jip moves in a small region _ measurement information of .that joint orily (coloc:ated con- ~=~ 
of workspace. D~spite high closed-loop bandwidth, absolute "iro!); does not have this problem since spillover neverdrives_--, 

,::'_==~~=~yeIQcities do not become very large since the motion occurs-::: :ilie system unstable in colocated contrbr[19]: This conc1u-sion;=:'-~ 
",,,~_ in a small region. Therefore, the nonlinear dynamic forces 'however, cannot be extended to the class of joint variable con- -:..=~ 

"'" (Coriolis and centrifugal) are generally negligible. Iniross --~ trollers where intrajoint feedback is used to achieve decoupled -
- motion, the manipulator tip makes large rotational maneuvers joint response [5]., 

in workspace. The large rotations of joints relative to each In short, joint variable feedback controllers require fewer 
other are the main source of complicated nonlinear dynamic sensors, have better stability robustness against spillover and 
coupling between the generalized coordinates [39], [45], [46]. _ unmodelled dynamics, and are widely used in practice.- There-

, Absolute velocities may become large during the fast, large fore, it is worthwhile fo study their potential use in fine and 
maneuvers to the point that the nonlinear dynamic forces be- gross motion control of flexible manipulators, even though' 
come very dominant [28]. their upper limit of closed-loop bandwidth is in general con

A. Review oj the State oj Art 

, The majority of work in control of robotic manipulators-ig
nores the flexibility of the manipulator in the analysis. There
fore, no reference is made to the effect and/or limitations 
offlexibilit)i in control system performance [2], [15], [16]~ 
[23]. In order to avoid the flexibility problem, very conserva-

siderably smaller than that of non co located controllers.I,n par-"-
ticular, the adaptive joint variable feedback controllers should 
be -analyzed since they receive increasing interest due to the·'-~ 
adaptability -of feedback gains as a function of the changing -
task conditions.'-

_. ~-"",",-. 

B. Characterization oj the Problem and Definitions -, 

'~::---- tive controller design rules are suggested [28], [35]. At a time -=-: 'The significance of structural flexibilitY In motion cOlltrol oL=_ 
when researchers are striving to design high-performance con-~"~ it manipulittoris a function of the task -conditions. Any given -,: 
trollers, it is logical to explicitly study the limitations imposed manipulator can be moved slowly enough so that the structural 
by the manipulator flexibility instead of taking conservative de- flexibility will not cause any significant deviation from the 
sign measures. Closed-loop bandwidth limitations ofnonadap- intended motion. Similarly, it can also be moved fast enough 
tive joint variable feedback controllers were studied explicitly -- so that the structural flexibility will become very apparent in 
as function of arm flexibility in fine motion [5]. However, the response of the manipulator (presuming the availability of ' 
the results,cannot be generalized tofas,t gross motions where:-:::A£tuatorsthatcan deliver sufficiently high torque/force levels). ",.,z 

dynamic nonlinear effects become significant. The dynamics Physically, every robotic manipulator has structural flex- " 
of flexible manipulators are described by infinite dimensional ibility. The question of whether the controller needs to be c~~, 
mathematical models due to their distributed flexibility ,[4], concerned with it or not varies from task to task. At this 
[27J, yet the controllers are designed based on truncated finite-"point, one must quantify the term slow enough motions such 
dimensional models. The discrepancy between the designed that flexibility does not present any problem; we also must 
,performance and the actual performance achieved as a result quantify the term fast enough motions, where the flexibility 
of model truncation for the purpose of controller design is does present a problem. 
studied, and an iterative design procedure is suggested in [6]. The speed.of motion is quantified as slow or fast (low, -, 
Mathematical modelil1g of dynamics of flexible manipulators, medium, or high speed) with respect to the structural flexi--'::' 
(flexible multibody systems) is studied by many different rp- , bility of a manipulator using the lowest structural frequency 
searchers using a variety of methods [7], [10], [21], [33], of the manipulator when all joints are locked (w;/) as the 
[43]. reference. 

The class of control algorithms studied here, that is, algo- Book et al. [5] quantified the speed of a given fine m?-
rithms that use only joint variable measurements, are particu- tion relative to the structural flexibility using the ratio of nec

.larly important since most industrial robots and mechanisms essary closed-loop bandwidth (Wbw) to the lowest structural 
are controlled that way. Tip position measurements [8], [41], frequency of the system (Wbw/W;/). Given a manipulator and 
strain measurements along the flexible link [20], and tip accel- a desired fine motion, one can predict whether the structural 
eration measurements [24] are examples of attempts to design flexibility will be significant or not during that motion using 
so-called noncolocated controllers that would achieve perfor- the ratio of (Wbw/W;/). 
mance beyond the traditional limitations of co located con- In fast gross motion, where dynamic nonlinearities are dom
trollers. Gebler [18] included flexible dynamic considerations inant due to high joint speeds and large angular rotations, the 
in the trajectory tracking control of a two-link, two-joint ma- notion of bandwidth is no longer a well-defined characteristic 
nipulator. A similar, but more general three-stage control al- of the control system. However, in the context of model ref
gorithm, is presented in [37]. Their experimental results have erence control, the speed of gross motion may be quantified 
shown that the tip position trajectory tracking of a flexible using the bandwidth of the reference model (w m) with a step 
manipulator can be improVed by taking the flexible behavior input. Here, the (wm)w;/) ratio is proposed to quantify the 
of the manipulator into account in the control algorithm. speed of gross motions relative to the structural flexibility. 

A major problem associated with noncolocated control is The essential difference between this work and other works 
the destabilizing effect of observation and control spillover [1], in control of the single link flexible arm is that in the case of 
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mUltiple joints (two-joint, two-liIik example used in this study), 
there are many-nonlinear couplings between the generalized_ 
coordinates of different links as a result of large angular ro
tations of joints. Most of these couplings do not exist in the 

'single link case. Book et al. [5] and Book and Majette [6] 
studied the control aspects of the two-link, two-joint flexible 
manipulator example in fine motion using infinite-dimensional 
linear frequency domain models based on transfer matrices. 
Here, both fine and gross motion control aspects are studied 
using a finite-dimensional nonlinear time domain model. 

The remainder of this paper is organized as follows: The 
mathematical model of a two-link, two-joint flexible manipu
lator is briefly described in Section II. Fine and gross motion 
control under joint variable feedback controllers are analyzed 
in Section III, and results are discussed in Section IV. The' 
conclusions of this work are summarized in Section V. Design 
details of the proposed adaptive model following controIIer are 
presented in the Appendix. 

n. DYNAMIC MODEL OF A Two-LINK FLEXIBLE MANIPULATOR 

Symbolic derivation details of dynamic models for flexible 
manipulators are described in [10]. The differences between 
the different Lagrangian-assumed mode-based modeling ap
proaches come from the kinematic descriptions. Here, the 
kinematic description will be summarized, and a derivation 
using the Lagrangian-assumed mode approach will be skipped 
since it is a well-known standard procedure. _ 

Yo 

0 1 

Fig. 1. Two-link flexible manipulator kinematic description. 

TABLE I 
MANIPULATORS DYNAMic MODEL PARAMETERS USED IN THE ANALYSJ.S- -

Manipulator model parameters 

Geometric properties of uniform, slender links' 

(link 1 and 2 are identical) 

Length of link i (Ii) 

Cross-section area of link i (Ai) 

Cross·section area moment of inertia about z·axis (I'i) 

Link material properties (Aluminum) 

Mass density (Pi) 

Young's modulus of elasticity (Eo) 

"Value 

2.0 m. 

7.224xlO-< m' 
7.6190xlO-' m' 

2768.8 kg /m3 

7.0xlO+lO Nt/m' 

. Resultant link inertial and structural properties 
Let (OoX oY 0) be the inertial coordinate frame (Fig. 1). Mass per unit length (piAi) . _2.0kg/m _________ _ 

Assign two coordinates for each flexible link; one is fixed to Mass of link i 4.0 kg 

the base (e.g., OIXIYd, and the other is fixed to the tip of Flexuralrigidityoflinki(EiI,i) 533.33 and 5333.33 Nt.m' 

the link (e.g., 02X;YD. In order to describe the absolute Lowest natural frequency of the arm (W"I), .. ---- -- 3.59 and 11.35 rad/sec 

position of any differential element on the links, let ()l and-'.. (both JOInt are locked, and 8, = 0) ~~_ 

() 'b . . I d I () d Joint inertial parameters 2descn ethejomtanges,an etwI(XI,t),W2X2,t e-
scribe the elastic deformations of links from the undeformed 
positions. . 

The spatial variable dependence of the deformation coordi
nates leads to a mathematical dynamic model that is of partial 
integro-differential equation form [27]. In order to simplify 
the model, the deformation coordinates are approximated by 
a finite series that consists of shape functions multiplied by 
time-dependent generalized coordinates: 

ni 

Wi(Xi, t) = L ¢ij(Xi)Oij(t); 
j=1 

i = 1,2 

j = 1" ",ni 

where nr is the number of mode shapes considered in the 
approximation describing the elastic deformation of link i. 

This results in a finite-order dynamic model. Since the spa
tial variable dependence is already specified through the shape 
functions, the mathematical model is of ordinary differential 
equation form. Let us order the generalized coordinates as 
q = [0,0], where 0 = [()I, ()2] (the joint coordinates), and 
o = [(011.";, Olnl )], (021,"', 02n2)] (the deformation coor
dinates). Having uniquely established the kinematic descrip
tion of the manipulator, the derivation steps of the equations 
of motion via Lagrangian formulation is straightforward [4], 
[10}. The dynamic model of a flexible manipulator may be' 

Joint 1 and 2 masses (mj I, ml' ) 

J?int 1 and 2 mass moment of inertia about the joint 

center of mass ( Jj I. Jj, ) 

Payload inertial propeities-

Mass (mp) 

Mass moment of inertia about the center of mass (Jp) 

expressed in the form 

[ 

mr((), 0) 

m~j(()' 0) 

0.0 

0.0 

0.0 to 2.0 kg. 

0.0 

(1) 

where mr((), 0), mrj((), 0), and mj((), 0) are partitioned el
ements of the generalized inertia matrix, which is always 
positive definite and symmetric, !r((), e, 0, 5), !j((), e, 0, 5) 
are Coriolis and centrifugal terms, which are quadratic in 
the generalized coordinate velocities (0,6), g r<o, 0), g j(O, 0) 
are gravitational terms, [K] is the structural stiffness ma
trix associated with arm flexibility and mode shape func
tions, and u represents the effective torque (or force) vector 
at the joints. For the two-link arm example considered here, 
o = [() I, ()2], and since two mode shapes are used per link, 

·0 = [(011, (12), (021, (22)]. 



--- Equation (1) is a highly nonlinear and coupled ordinary :where ".:.~~ -"---.------. -
differential equation set. This makes the controller synthesis . • 

:'~~"~':.' .. ~.::~~=::. ~ ~:~I;~i~~~i~;:.i!~~~~;e~d;U.ca:h!;~o~~~ .. e~~~r.~~~~:~~2~~.;;~::.~;:.~·[:,·~:2=~;·,.·.::~.· .. ~·tl. ~~~.~:. ~:~~ [M-'O -1 ]'-_ .. ,:, .: .;~...:~ .. :.·_.!.he lInks qUickly .c~nve~g~ to thel1)ocieshape1iof clamped-:..:-c~;:;·,,:::,::,:~.. .:.::;Meff.!-.ef.[:.,...:.O .. =-=~ c.'·· . efL~ o=~ -.. ~--
,,~, base beam under.Jomt vanable feedback control for even low'~"'" .. ,0'''';'''' .... ,. .. 

values of feedback gains of interest. All mode shapesofi!' "~., .. ':.' 
(5) ."= 

clamped-base beam have zero slope at the base; therefore,' The closed-loop eigenstructure Of the linear model under lin
B m = 0 for the dynamics of flexible manipulators under feed- ear joint variable feedback controllers is studied as a function 
back control. That means the joint variable controller effects' the feedback gains. The linear joint variable feedback control 
the flexible variables through coupling from joint variables but has the general form 
not directly through the input matrix. The dynamic model of 
a rigid manipulator, in general, has the form 

[M(8)](j' +/(8, in +g(8) =U. (2) 

-.D.u = -[Kij]Ll8 -:- [Cij]LlO. , .. (6) 

For independent joint contr~i 

·, ...... The structural difference between the dynamics of rigid and .:,:.:., ..... JK.ij]==~iag {kii } _'" 
flexible manipulator is displayed by (1) and (2):- .' '-~~=-=-".~= .. ' 

[Cij] = diag {('u}. 
III. FINE AND GROSS MOTION CONTROL WITH JOINT VARIABLE - . . .~. 

. ... 'FEEDBACK.· ..... ··...... . "."--' .. Fordecoupled joint c0I1tr'ol~ .... '. 

The question of when the arm flexibility becomes significant_; .. ~.-=.::.. [Kij] =mr (8niunin(i{;'O)diag {kii }"':".).~.~.".~.:.:.'.::"". ~_' .... '._ ..... 
.. and what limitations it imposes on the performance of joint~:;::~:·.~... - .. :.~. __ "'",,"" 
. variable' controllers are first studied in fine motion. The results 
are valid only when the dynamic nonlinearities are.negligible. 
In order to determine the effect of dynamic nonlinearities, the 
linear and nonlinear control algorithms are simulated on the 
nonlinear model (1). 

A. Fine Motion Control 

The nonlinear model (1) is linearized about a nominal con
figuration Xn = [0,0, O~] = [0 nominal, 0, 0, 0] and nominal 
input Unominal, which compensates for the nominal gravita
tionalloading. Notice that the mahipulator is assumed to move 
in a small region of workspace where manipUlation speed does 
not reach large values. However, in extreme situations where 

. the input torque switches sign ai high frequencies;ihis lin
earization assumption may no longer hold. Since nonlinear 
Coriolis and centrifugal terms are quadratic in 0, Ii, they 
have no contribution to the model that is obtained by l~n~ 

earizing about a nominal configuration where nominal values 
of velocities are zero (0 = ~ = 0). Let 0= 8 nominal + ~O, 
o = 0 nominal + Llo, and u = U nominal + ~u; then, the linear 
dynamic model about the nominal configuration Xnominal = 
[8 nominal, 0, 0, 0] is given by (3): . 

[
mr mrf] {~(j} [Ogr/08 

. ~ ~t;. +, ogf/o8 

'ogr/OO ] .. 

ogf/oO + [K] 
v .f 

Meff Keff 

(3) 

In compact form, let Ax = [~8, ~o, ~O, ~~]. The linear 
dynamic model about the given nominal configuration can be 
expressed as 

t:U =A~x +BLlu (4) 

Independent joint coI1~~~1 resu!ts are presented here so Jhat 
they can be .compared with the previously reported ones. Po- .. 
sition and velocity feedback gains of joint 1 (k 11, ell) are set 

. t6 very high values in order to force joint 1 behave"like a' ". 
clamped base . .The loci of closed~loop eigenvalues: are .studied ".~' 
as a function of joint 2 feedback gains k 22 , C22. The finite- . 
dimensional linear model should be able to predict at least the 
dominant behavior Of the closed-loop dynamics of the infinite~ -,
dimensional actual system, despite the errors' introduced due 
to truncated dynamICs. Otherwise, the truncated finitedimen
sional model would be of no value. 

By comparing the root locus behavior of a given flex'i'-
ble manipulator with that of an equivalent rigid manipulator, 
the conditions at which flexibility becomes significant and the 
range of conditions where the flexibility can be ignored can be 

. determined and compared with reported results. The study of 
dominant behavior of closed-loop eigenvalues will determine 
the best possible performance in fine motion. 

B. Gross Motion-Adaptive Model Fol/owing Control 

The fundamental challenge in the control of industrial and 
space robots is to provide high-speed, high-precision motion, . 
despite large variations in payload and other task conditions. 
Extensive research over the past decade has shown that adap
tive control methods are more likely to meet that change than 
are nonadaptive control methods. It is desirable to have an 
adaptive controller that will achieve the following performance 
criteria: 

1) Good transient and steady-state tracking of desired mo
tion trajectory 

2) high-speed and precision manipUlation in gross and fine 
motion (high closed-loop bandwidth) relative to struc
tural flexibility 

--~~ 
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Fig. 2. Generalized inertia mairix-based AMFC. 

3) good performance and stability _ robustness against un
known task condition variations.·· ._.- ---

An adaptive model following control (AMFC) algorithm 
is developed based on the hyperstability approach [9]. The 
design details are presented in the Appendix in order to keep 
the essential points of this paper in focus. Let us call x 0 = 
[8,0]. The adaptive control algorithm is given by (F~g. 2) 

U = -Kpnxe +Kunum + I::1Kp(e, t)xe + I::1Ku(e, t)u m 

(7) 

where 

dynamics affects the control through (8a), (8c), and (8d). Us
ing os/ in the control algorithm does not require real-time 
feedback information about the flexible states. Therefore, the 
controller is still a joint variable feedbackcon~rol.algorithm. 
The use of os/ as opposed to 0 (zero) for the flexible modes is 
more accurate and improves the decoupled control of the flex
ible manipulator without imposing any significant implemen
tation difficulty. The P is the filtered tracking errore (Fig. 2). 
P pi and Pui are arbitrary positive scalar adaptive controller de
sign parameters effecting the convergence rate of the adaptive 
control system and the transient response of the closed-loop 
system. 

The specific dynamic characteristics of manipulators are 
utilized in the general context of hyperstability-based design 
so that the resultant controller is particularly suitable for the 
control of manipulators by exploiting their specific dynamic 
characteristics as .opposed to treating them as a black box 
dynamic system. Following that philosophy, the generalized 
inertia matrix plays a significant role in the adaptation algo
rithm (8c), (8d) and in the nO!'l1inal control (8a)-(8d). First, 
the feedback gains are naturally adapted in a manner that 
preserves the decoupled joint control. Second, arbitrary pa
rameter selection that is generally required in Lyapunov and 
hyperstability-based designs is reduced to the selection of only 
two scalar parameters,no matter how many joints the manip
ulator has, as opposed to the usual requirement for selection 
of two arbitrary positive definite matrices [23]. Notice that 
the gain adaptation is of integral type (8c), (8d), which is a 
commonly· used adaptation type in model referenceadapiive 
control. Finally, the referenc~ model used here is linear-time 

Kpn = mr(O, os,)[[kii ], [Cii]] . (8a) invariant. The use of other types of reference models involv-
.. ing dymimic nonlinearities may provide further performanc·e- . 

Kun = mr(O, 5;,f-- -- (8b) improvements. 

.(8c) 

[' . T 
I::1K u = Jo Puimr(OO, os/)pu m d7. (8d) 

[kii] and [Cii] are the reference model dynamic components 
chosen by the designer, and os/ is the static deflection values 
of flexible modes. These are obtained from the dynamic model 
(1) by setting the velocity and acceleration of state variables 
to zero and calculating the values of the mode shape vari
ables (which correspond to static deflection values) as a func
tion of static loading (gf(O, 0», structural flexibility ([K]), 
and joint configuration (0 vector). Note that as a result of 
these approximations, the control algorithm requires neither 
the real-time measurement nor the estimation of the flexible-
mode variables. 

Here, the reference model is chosen as a decoupled linear 
system of the form 

The response of the reference model 8 111 (t) to the commanded 
inputum(t) is the desired joint response. The reference model 

IV. RESULTS AND DISCUSSION 

A. Fine Motion Control Results and Discussion 

Let w;/ be the lowest _structural frequency of the manip
ulator when both joints are clamped and extended (k II and 
k~2 -t 00, CII and C22 = 0) (Fig. 3). Consider an equivalent 
rigid manipulator with the same inertial and geometric prop
erties of the flexible manipulator. The rigid system with the 
first joint clamped (k ll -t 00) will be a second-order mass
spring system with feedback gains (k22' C22 =I- 0). Let Wrl be 
the undamped natural frequency of the rigid system for a set 
of feedback gains k22 and C22. 

In fine motion, the W r I /w;/ ratio determines the signifi
cance of flexibility and the dominant behavior of the closed
loop system. In the rigid manipulator case, it is possible to 
achieve an arbitrary large closed-loop bandwidth by increas
ing k22 and C22 for Wrl = k22/(J02)eff and damping ratio 
~rl = c22/(2.0 x (J02)eff x k 22 ), where (J02)eff is the ef
fective moment of inertia of both the link 2 and the payload 
about the joint 2 axis of rotation. 

However, when the same controller is applied to the flexible 
manipulator, the closed-loop bandwidth Wbw will definitely 
be smaller than w;/ because as k22 -t 00, IWbw I -t w;/ with 
very little damping ratio (Fig. 3). If the servo stiffness is low 
relative to the structural flexibility, that is, Wrl/W;/ « 1/2, 
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Low servo 
stiffness 

< 1/2 

·16 

. -5. 

x 

.. "",.........-
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.. ~._ .... _Fig. 3.. Dlustration of performance limitations of joint yariable feedback .-~. • )(')( 

controller due to arm structural flexibility. ' .. __ --- ... ____ ~~Il-~LIl-. ---__ ...L
8
-. ---.. ---'-6 .---.--1-.-"-.... ·'-· -" ..... -..... 2-. ---......... " .11--- ---: 

-··~(a) 
the locus of closed-loop eigenvalues is indistinguishable from 
those of the rigid case as C22 increases. However, if the ve7 .: 
locity feedback gain C22 is further increased to large- values:--- s. ~---,----""'---"-!----r--"""" 
the effective result is a stiffening of the joint. One dominant .. c. '. . . 

eigenvalue meets with another on the negative real axis'an~ ·-,-::·-oc·r 0!a0pmI B.aiio 

breaks away from the real axis converging to the w;tmagni- ., 3. 

tude on the imaginary axis as C22 increases (seecyrve (a) of 
Fig. 3 and Fig. 4(a». In the rigid case, this phenomenon does 2. 

not exist for any value of feedback gains. The root locus anal-

-=---- ---:; .. -

2." 
2 .• 

ysis of fine motion is done as a function of C22 for many other 
values ofwrJ/w;t. The basic outcome of this analysis is illus-

1.~-=2.~=-~~~ ______ ~ __ ~ __ ~~~ .... ~ 

--.. trated in Figs. 3_ and 4, where only the dominant regions of :--1;-

-·=-the root locus are shown. It is seen from Fig. 4(b) and (c) that 
above certain values of the W rl /w;t ratio, the dominant eigen- . -2. 

values are no longer able to reach the real axis. Physically, . -i. 

that means that if joint position control is too stiff relative to 
the arm flexibility, it is not possible to provide well-damped . -1 • 

-/ 
:-:-:.:: :-- 3nL- .......... ~--~~-~ ----- --I 

e . .• 10 11 12 

ilill , 10 2 .. , __ __ . , _clampiac_ > 1. 0 _x 

--'---- ---- ~ 

I JII, X xxx.x 

________ -:-:--. --~:::~- ----_---,_x x ~ _, __ _ 

.... ~ 

dominant modes· no matter how large the velocity feedback -s.~----~------~----~~----~~----~ 
. gain. ~5'- __ -- - ... -3 . -2. iii. 

(b) 

s.~----~------~------,-------r------, 

3. 

C.~10 : 
3.72 .... 1-:: ltIool----
3,6 .... /_ 

For a given manipulator and payload, W;t is determined 
by the geometric, inertial, and structural flexibility properties 
of the manipulator. if a joint-variable controller attempts1a 
closed~loop bandwidth that is larger than (1 /2)w;1' the flexi
bility of the manipulator will be a significant factor during the 
fine motions. Otherwise, the structural flexibility may be ig
nored, and the controller may be designed based on rigid ma
nipulator assumptions (see curve (a) of Fig. 3 and Fig. 4(a). 
The best performance of a joint variable feedback controller 
is defined here as the highest possible closed-loop bandwidth 
(that is, the largest dominant eigenValue magnitudes with suf
ficient damping ratios, i.e., 0.707 or more). As shown in Fig. 
4(b), an approximately (2/3)w;t closed-loop bandwidth can 
be achieved by the appropriate choice of feedback gains. It is 
equally important, however, to note that the dominant eigen
values are very sensitive to the variations in feedback gains 
in the best performance region. In locations 8, 9, and 10 of 
Fig. 4(b). between each point, the velocity feedback gain is 
incremented by a constant amount. In practice, it may not be 
easy to realize that performance due to modeling errors. 

-- ---'-'--"" 

The results concerning the effects of structural flexibility in 
closed-loop performance agree very w~ll with the previously 

-1. 

-3. 

-s.~----~------~----~-------~--------5. -1. -3. -2. -20 e. 
(c) 

Fig. 4. Locus of closed-loop eigenvalues as a function of joint 2 veloc
ity position and velocity feedback gains: (a) low servo stiffness case; (b) 
medium servo stiffness case; (c) high servo stiffness case. 

",_. 
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Fig. 5. Relative importance of (a) nonlinear (Coriolis and centrifugal) forces 

and (b) gravitational forces along different speeds of motion. 

, reported results based on infinite-dimensional frequency do
main results [5], [6]. 

B. Gross Motion Control Results and Discussion 

In order to see the effect of dynamic nonlinearities, the 
closed-loop system is simulated for two classes of motion: 
slow motion, where nonlinear forces are small (see curve a 
of Fig. 5(a) and (b» and fast motion, where nonlinear forces 
are significantly larger or of the same magnitude as the other 
dynamic forces (see curve b of Fig. 5(a) and (b». 

Fig. 6 shows the response of the manipulator with the adap
tive controller to the desired slow motion. Two different adap
tive control results are shown for slow and fast adaption, which 
refers to the small and large values of the adaption param
eters Ppi and Pui, respectively. The appropriate values for 
these parameters are found by trial and error. This motion 
has two properties: 1) Dynamic nonlinearities are ,not signif
icantly large (see curve a of Fig. 5), and 2) the bandwidth of 
the desired motion'is about one-fourth of the lowest natural 
frequency of the arm. The bandwidth of the desired motion 
Wmi is defined as the bandwidth of the reference model, which 

generates the desired motion in response to a step input com
mand (Fig. 2). 

Since' the adaptive controller esseiltially tries to make the 
closed-ioop dynamic behavior match that of the reference 

-model, the function of W~i in-the nonlinear analysis content 
is similar to the function of the Wrl in the linear analysis. 
Clearly, Fig. 6(a)-(e) show that flexibility of the arm is not 
significant in terms of the joint tracking and the setting time 
of flexible vibrations at the end of motion, which is in agree
ment with the linear analysis results. When the same system 
is simulated for motion (b), where Wmi IWccl = 1/2 and non
linearities are significant (curve b in Fig. 5(a) and (b», the 
response deteriorates. Persistent, lightly damped oscillations 
occur in joint and flexible-mode variables (Fig. 7(a)-(e». 
The difference between the two simulations (Figs. 6 and 7) 
is the magnitude of nonlinear .forces (curves a and b ill,Fig. 
5). When the nonlinear forces are significant compared with 
other dynamic forces, the performance is unacceptably poor. 
Therefore, the nonlinear effects during fas~ Bross motions im
pose further restrictions on the performance of adaptive joint 
variable feedback controllers with integral gain adaptation. 

The mechanism' through which the nonlinear forces affect 
the joint controller performance can be described as follows 
with the help of the insights gained from the fine motion anal
ysis: If the nonlinearities are significant, the adaptive con
troller automatically adjusts its feedback gains through inte
gral adaptation (8c), (8d) to compensate for the tracking er- . , 
rors caused by the nonlinear forces. Increasing the controller ,
gains through the adaptation rule eventually leads-iavery stiff ' 
joints. Linear analysis has shown that very high joint stiffness 

, relative to the flexibility of a given arm results in very lightly 
damped dominant modes (see curve (c) of Fig. 3 and Fig . 
4(c». Thus, lightly damped dominant modes are generated by 
the adaptive controller while it is trying to compensate for the 
joint tracking errors caused by the large nonlinear forces. It is 
important to note that this mechanism is valid for the class of 
adaptive controllers that us~ integral-type gain adaptation. 

V. CONCWSION 

In fine and slow gross motions, where Coriolis and cen
trifugal nonlinear forces are negligible, a given manipulator 
can be considered to be rigid if the controller does not attempt 
to reach a closed-loop bandwidth of more than half of the low
est structural frequency of the manipulator when all joints are 
locked (w;t). In fine motion, the best possible performance 
of joint-variable feedback controllers may be up to two thirds 
of W;t with damping ratios greater than 0.707. However, it, 
is equally important to note that the sensitivity of the domi
nant eigenvalues to the variations of joint feedback gains are 
highest in the best performance region (locations 8, 9, and 
10 of Fig. 4(b». Therefore, it may be difficult to achieve a 
(2/3)w;t closed-loop bandwidth in a practical situation due 
to the modeling errors. The fine motion analysis results ob
tained here based on a finite-dimensional time domain model 
agree very well with the previously reported results based on 
infinite-dimensional frequency domain models [5], [6]. 

The performance of an adaptive controller with integral gain 
adaptation is also shown to be limited by the structural flex-
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Fig. 6. Joint and flexible mode responses along the motion (a) of Fig. 5 
under the AMFC controller. 

ibility. Although the adaptation algorithm increases the feed
back gains to provide good tracking in joint variables against 
the large nonlinear forces (curve b of Fig. 5), the same in
crease in feedback gains will result in very stiff joints, hence, 
persistent structural vibrations. Through that mechanism, the 
manipulator flexibility presents potential problems and limi
tations to the utilization of adaptive controllers with integra/
type gain adaptation. The conclusions reached here are based 
on numerical results obtained by using a two-link, two-joint 
manipulator dynamic model. The general nature of dynamic 
coupling of multi link manipulators is observed in the model 

used here. The only exception is that torsIonal vibrations may 
become significant in spatial manipulators. Therefore, it is 
expected that the conclusions of this work hold for other mul
tilink manipulators with the provision on the significance of 
torsional vibration effects. 

ApPENDIX A 

AMFC HYPERSTABILITY-BASED DESIGN 

The basic idea of AMFC comes from the linear perfect 
model following control (LPMFC) problem of Erzberger [17J. 
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under the AMFC controller. 

AMFC attempts to asymptotically realize the same objective 
of LPMFC for time-varying systems. 

Let the reference model be 

Xm =Amxm +Bmum (10) 

and the plant dynamics be in time-varying (quasilinear) form 

Xp =Ap(xp , t)xp +Bp(xp, t)u p 

with the control algorithm of the form 

(11) 

(12) 

Clearly, as the plant dynamics (Ap(xp, t), Bp(xp, t)) vary, 
the feedback gains must also vary in order to match the dy
namics of the plant to that of the reference model. 

There are two basic assumptions associated with the current 
AMFC designs [25]: 

1) There exist K p, K u, K m for every (Ap(x p, t), 
Bp(xp, t)) and the given (Am, Bm) so that at any in
stant, LPMFC conditions of Erzberger are satisfied. 

2) Variations of Ap(xp, t), Bp(xp, t) are slower than the 
speed of adaptation. 

r 
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Assumption 1) is an expected existence condition. AMFC 
attempts to converge to the ideally correct values of feed
back gains through adaptation as the plant dyn?mics vary: Ex- __ 

FFB 

,','~ ~ ~,_ :~: istelice of such limit values is the first requirement for the :~_~_: ___ ~:_ 
. convergence, let alone whether the adaptation algorithm will 

converge or not. 
Assumption 2) is commonly made in--most-AMFC de

sign methods. During adaptation intervals, it is assumed that 
time-invariant approximations of the plant model are accurate 
enough. Therefore, robot motions must be slow compared 
with the adaptation speed of the adaptive controller. Let us 
look at the origin of this assumption by going through the 
derivation steps of hyperstability-based AMFC design. 

Letting Krn = 0, without loss of generality [25], the error 
dynamics are described by 

Fig, 8, Problem of hyperstability, 

!:1K p(e, t) = 11 ~I (v, t, 7) d7 + ~2(V, t) +!:1K p(O) 
o , 

(17a) 

~!:1Ku(e, t) = 111/IJ(V, t, 7)d7 +lh (V,? +!:1Ku(O) 

(17b) 

'where the most general ~onditions on ~I, ~2, 1/;10 1/;2 are dis
cussed in [25], and more specific forms are discussed in Ap- _ 

---':=--::--Fore(i)-~O ast~-09-f()r all x; , u~ that belong to a piece:-:-pendix B.-!:1Kp(O), !:1Ku(O) can be chosen as zeros without~=:.~ 
wise continuous bounded class of functions, the coefficients loss of generality since any nonzero values of them can be 
ofxp, Urn must be zero. By assumption 1), there exist K;, included in K pn , Kun nominal gains. Substituting (17) into 
K~ such that (16c) . 

(14a) __ z = -z I = ['l ~~ (v, t, 7~ d7 + cP2(V, t) + !:1K~ ] x p __ _ 

(14b) 

.. __ The goal is to develop adaptive control algorithms for K p , K u 

- _such that K p, K u converge to K;, K~. Convergence must be 
fast enough for assumption 2) to hold. Let the feedback gains 
be 

(15a) 

Ku =Kun +!:1Ku(e, t) (15b) 

where K pn , Kun are nominal, and !:1Kp, !:1Ku are adap
tive feedback gain matrices. Following the standard steps of 
hyperstability-based design [25], it can be shown that the 
equivalent hyperstable closed-loop system representation of 
the error dynamics can be expressed as (see Fig. 8) 

(l6a) 

v =De (16b) 

Z = -ZI = [K; -Kpn + !:1Kp]xp 

+[Kun +!:1Ku -K~]um (16c) 

where D is determined by using the Kalman-Yakubovich
Popov lemma. In order to guarantee the hyperstability of the 
closed-loop system (CLS), the !:1K p, !:1K u selection as fol-
lows is sufficient (not necessary): ' 

,-~--- - -_. 
- 1 -t[ia 1/;1(V,t, 7)d7+1/;2(V, t)+!:1K~Jum ,(18) ___ _ 

-where 

(19a) 

(19b) 

The hyperstability of the feedback block (hence, the CLS 
using Kalman-Yakubovich-Popov lemma) is proven for the 
!:1K~, !:1K~ constant case. That is where assumption 2) comes 
from. 

The !:1K~, !:1K~ constant requirement implies that (K; -
Kpn) and (K~ -Kun) are constants. If K pn , Kun are chosen 
to be constant nominal gains, K;, K~ must be constant at 
least during the adaptation intervals. From (14), this implies 
that (Ap(xp, t), Bp(xp, t» must be constant during the adap
tation process. Equivalently, (Ap(x p, t), B p(X p, t» must vary 
slower than the speed of adaptation (which is assumption 2». 

Notice that the condition imposed by the hyperstability is 
not that K;, K~ should be constant but that (K; - K pn) and 
(K ~ - K un) should be constant. If nominal feedback gains are 
not constant but are somewhat better in helping the plant track 
the reference model, then assumption 2) would not have been 
so restrictive. Choosing variable K pn, K un nominal gains 
based on the decoupled joint control algorithm [49] where 
generalized inertia matrix plays a significant role, assumption 
2) may be relaxed as follows: The previous assumption 2) 
was that the difference between the reference model and the 
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closed-loop plant dynamiccs under constant linear nominal The nominal gains for the adaptive model following control 
'control should vary more slowly than the speed of adapta- algorithm based on the generalized inertia matrix is given by 
-tion. The new assumption 2) is that thediffen::nce betweeD_._-___ _ ---- -- -- - -- --- - -

the reference model and the closed-loop plant dynamics un
der variable nonlinear nominal control should vary more 
slowly that the speed of adaptation. 

ApPENDIX B 

GENERALIZED INERTIA MATRIX-BASED AMFC: ApPLICATION TO 
FLEXIBLE MANIPULATORS 

Consider the flexible manipulator model 

---, 

----- mr(~, oij =U - [mrf~· +Jr:..±gr] (21) 

U =ir +up (22) 

mr(8, 0)0· =up + [mrf 5· +Jr + (gr -ir )] (23) 

where gr is gravity compensation (feedforward). During the 
gross motion, nonlinear terms and -coupling from the flexible 
modes to the joint variable dynamics are treated as a distur
bance and are to be taken care of by the closed-loop system 

--robustness. -. ------ - -.-

Under the influence of a gravitational field, a ijexible arm 
will deflect. Designing a control system that uses the static 
deflections as the nominal value for flexible states as opposed 
to zero would be more accurate. 

Let the desired reference model be 

and the control law 

= -Kpnxp +K unUm +.6.K p(e, t)xp +.6.K u(e, t)U m . 
" f " .; V 'V" 

Nominal control Adaptation algorithm control action 

(25) 

The nominal control can be chosen in the form (as is used by 
the computed torque method) [9], [29] 

. [[Cjj - AdO m + [kii - Ao]O m + [kii]O 0] 

- mr ((), aS! )[[Cii]O + [kjj]O]. (26) 

- (27a) 

(27b) 

Kmn_ = mr(8, OS! )[[kii ] - Ao], [Cii] - All]. (27c) 

If error dynamics eigenvalues are equal to those of the refer-
-nece model, k ii = Ao, Cii = Al ::::} Km = O. The mr((J, aS!) 
term in the control algorithm is the key for decoupled control 
of joints. The adaptation algorithm should be designed such 
that when it is added to the nominal control vector U pn, the 
decoupled-Ilature of the control is preserved. The adaptive part 
of the control is 

.6.l{P _~ lol ~ Plv[Gp~;pf dr + ___ ~ 
. ." " 

'V Proportional adaptation; -fl.K pp . 
integral adaptation; .6.K pi 

(28a) 

.6.Ku = t F UIV[GuIUmf dr + F U2V[Gu2Umf Jo - ________ 
- -- -' "v'.. "K ---r=:::Pr~~rtional adaptation; fiK up --- -

Integral adaptatIOn, Ll ui - -- --

(28b) 

Any positive definite matrix of appropriate dimension for F pi, 
F p2, G pl , G p2, F ul, F u2, Gul , Gu2 would be sufficient 
(but is not neccessary) to guarantee the global asymptotic 
stability of the control system with an appropriate output fil
ter. For an n-degree-of-freedom system with m number of 
inputs F pi, F p2, F ul, F u2, Gui, Gu2 E Rmxm, and Gpl , 
G/12 E Rnxn. There are tdo many design parameters that can 
be chosen arbitrarily from a large admissible class. Neither 
the hyperstability-based design nor Lyapunov methods give 
any guidelines for the selection of the elements of these ma
trices. As the system dimension increases, finding appropriate 
adaptation algorithm parameters becomes a more serious de
sign problem. 

The proposed AMFC design method solves that problem 
to a great extent. Since decoupled control calls for the use of 
the generalized inertia matrix, one should utilize this fact in 
the adaptation algorithm to direct the adaptation algorithm in 
the right direction. The following adaptation algorithm, which 
uses the generalized inertia matrix, will guarantee the global 
asymptotical stability of the closed-loop system: 

.6.K p = .6.K pi + .6.K pp 

(29a) 
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t::..Ku = t::..Kui +f:lKup 

t . 

body systems," .Comput. Structures, vol. 25, no. 6, pp. 831-844, 
1987. . 

.£15J . J . .J, Craig, P. Hsu, and S. S. Sastry, "Adaptive control of mechan
ical manipulators,".in Proc. IEEE Robotics Automat.Conf. (San 

'Francisco, CA);-1986, pp. 190-195. .' = 10 _~~!ffzr(()o, Ost)VU: d7+PUl!ffzr (() 0, Ost)_V~~: 
'TI6] oS. DubowsJcy 'and D: E. DesForges, "The application of model-

(29b) 

The generalized inertia matrix-based AMFC algorithm de
scribed by (25), (27), and (29) has the following advantages 
over previous algorithms: 

1) The use of the generalized inertia matrix immedia~ely 
solves the magnitude selection problem of the adaptation 
algorithm because it is naturally compatible with the 
problem in the sense that it preserves the decoupled joint 
control. 

2) The number of design parameters for integral adaptation 
is only 2, for integral plus proportional adaptation is 4, __ . 
no matter how many degrees of freedom the system has. 
Thus, the design problem of finding the good adaptation 
parameters becomes much simpler. 

3) Utilizing the generalized inertia matrix '-as an integral 
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