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Introduction 

This report consists of a review of research accomplished to date and 

plans for further research on the influence of nonlinear joints on the 

dynamics of large flexible space structures. A summary of accomplishments is 

presented first followed by a detailed account of work completed to date. The 

report concludes with an outline of activities planned for the next phase of 

research. 

Summary of Accomplishments 

1. One graduate student has been acquired to aid in the modelling and 

computational work. 

2. A literature review has been conducted to investigate state-of-the-art 

modelling of space structure joints. 

3. A generic model for a sleeve-type joint has been developed. 

4. A component mode analysis technique was chosen as the method by which the 

equations for the three-beam model will be obtained. 

Literature Review 

A wide range of research has been directed recently to the dynamics of 

large flexible space structures. Much of this work has addressed the problems 

of control of large structures and problems of model reduction. See, for 

example, the proceedings of the VPI & SU/AIAA Annual Symposium on Dynamics and 

Control of Large Structures. Most of this work, however, has assumed that the 

structure behaves linearly, and very little material has addressed the 

problems of modelling and analysis of nonlinear joints. 

Several authors have tried to estimate the contribution to a structure's 

overall damping level from joints. Hertz and Crawley have produced a number 
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of papers dealing with the experimental and analytical determination of 

damping in jointed structures [1-4]. This work has dealt with actual joint 

models and with the influence of the joints on the dynamics of structures. 

Reference [1] also provides an analysis on the effects of size (scale) on the 

structure's damping level. Ashley [5] has also studied the effects of size on 

the overall damping of jointed structures, but does not address the problem of 

modelling. Beards, in References [6] and [7], has studied the contribution to 

a structure's overall damping by dry friction in joints. 

The general problem of analyzing structures with dry friction has 

received considerable attention. See, for example, the Ph.D. thesis by Ferri 

[8] and the references cited therein. Many of the analysis techniques 

developed to analyze structures with nonlinear dry friction joints can be 

extended to analyze structures with other types of nonlinear joints. 

The material most closely related to the present research is the 

previously cited research by Hertz and Crawley [1-3]. This work presents a 

number of different types of joint configurations and presents analytical 

models suitable for studying them. Thus, it provides a sound basis for the 

present modelling effort. It is felt that this work can be extended in a 

number of ways. 

1. multi-mode descriptions of the linear portions of the structure can 

be used 

2. multi-harmonic and/or time domain, numerical integrations can be 

used 

3. more advanced models for complex connected systems can be used 

Progress mode in these three areas will be discussed next in the Summary of 

Research section. 
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Summary of Research 

The research to date has focused on the modelling of sleeve-type joints 

connecting beam-type elements. The major joint characteristics that need to 

be modelled in order to develop a general purpose sleeve joint model are: 

Dissipative Effects 

- damping due to impact 

- damping due to dry friction and beam end rotation 

- damping due to dry friction and beam end longitudinal motion 

- material damping due to deformation of the joint 

Geometry and Elastic Effects 

- overall beam/sleeve geometry including possible gaps between 

beam and sleeve 

- hardening spring characteristics due to large deformations of 

the beam and/or sleeve 

An attempt has been made to account for the possibility of any of the 

above effects in the joint models. Although, as pointed out in [3], many of 

these effects are difficult to quantify, it is felt that the qualitative 

effects of each joint characteristic can be studied through parameter 

variation. 

Joint Model 

As mentioned above the type of joint that this study will concentrate on 

is the sleeve type joint which is commonly used to assemble truss 

structures. Often the sleeve joint has a "quick-connect" feature which 
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enables it to be handled easily by astronauts in a space environment. Figure 

1 shows a sketch of two beams joined together by a sleeve joint. For the 

purpose of modelling, it is assumed that the sleeve joint is composed of two 

parts - an outer sleeve which moves with one beam and an inner cylinder that 

moves with the other beam. Fig. 2 shows a close-up of the sleeve joint 

model. Six degrees-of-freedom are identified to describe planar motion of the 

sleeve-joint system. Note that y l , xl, and 0 1  are the lateral deflection, 

longitudinal deflection and rotation of the end of the left hand beam (beam 1) 

and y2 , x 2  and 8 2  represent the corresponding quantities for the right hand 

beam (beam 2). These six degrees of freedom fully describe the interaction of 

the outer sleeve and the inner cylinder. Later it will be explained how these 

local degrees of freedom can be combined with the beam's generalized 

coordinates using the technique of Component Mode Analysis. Three coordinate 
A 	 A. 

	

systems can be identified: 	the i, j coordinate system which remains fixed 

	

A 	 0, 

in inertial space, the 	j 1 	system that is fixed on sleeve 1 and the 

i 2 , j 2 	system that is fixed on inner cylinder 2. 	Note that the three 

systems are related by: 

i
1 

	

cos0 1 sine
1 	

i COSO
2 

sine 2 

j1 - 	[-sine cose 2 	j 

	

L-si no 1 co se 	 2 	 2 	2 

	

l 	 i 	
(1) 

Fig. 3 shows the undeflected position of the sleeve (dotted) together 

with a deflected state (solid lines). It is seen that the distance from point 

E to side BD can be expressed as: 

o f 	ji • r EB 
	 (2 ) 
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where 

r EB = r 12 	r 2 	r E0
2 

- r l 	r BO
1 

and 

r 12 = t 

9. 

r 2 	= x 2  i + y 2  

d 2 - 
r

E02 
= 

2 2 	2 

r 1  =x 1 + y i  j 

d 1 
 rB01 	J ]. 

substituting (1), (3) and (4) into (2) gives: 

S E  = (x 1  - x 2  - 	sine ].  + ( y 2  - y l ) cose l  + 2 2 sin(8 1  - 8 2 ) 

d
2 T- cos(e l  - 0 2 ) + 

(3)  

(4)  

(5)  

or, using small angle approximations: 

(6) 
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Similar expressions exist for the distances from F to side AD, 	from from n to 

side 
FG,D' 

and from C to side EH, 6 C . 

In order to facilitate the determination of contact forces, it is assumed 

that springs exist between the inner cylinder and the sleeve as shown in 

Fig. 4. These springs can be characterized as shown in Fig. 5, where 

d l 	
2 

d2  
x = 	 b. 	Note that each springs can transmit force in one direction 

only, has a dead zone or threshold, and has a cubic stiffness characteristics 

once contact occurs. These springs will allow for the transmission of forces 

and movements from one beam to the other. They also facilitate the 

determination of normal forces which are needed to calculate the friction 

forces. 

The friction force can be modelled as shown in Fig. 6. 	There are two 

coefficients of friction - a static coefficient of friction, 	u s , 	which 

applies when sticking occurs and a dynamic coefficient of friction, 	ud , 

which applies during slipping. The relative velocity of a potential contact 

point can be found using vector relations. For example, the absolute velocity 

of point E of the inner cylinder is given by: 

V
E  = 
	(r

2 
 + r

ED 
 ) T1  

4 	4 
V
E 

= r
2 

+ 6
2 x rED 

2 

' d
2 

V
E = ( x 2 

+
2
z
2 

sine 2 
+ 0 2 -- cose 2 ) i 

• 	• 	 '  
+ (y 2  - 0 22 2cos0 2  + e 2  -2— sine 2 ) j 

2 
(7) 

( 8 ) 
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Similarly, the absolute velocity of point B on the outer sleeve is given by: 

d
1 • 

V B  = (x 1  + -- 6 1  cos6 1 ) i + (y 1  + 	6 1  sin. ) j (9) 

The relative velocity of point E with respect to point B in the direction of 

side BC is: 

V EB 	(V E 	VB)
i1 = (V E 	VB ) • (cose 1 	+ 	j) 

• 

• • 	 • 	•  
V

EB 
= 	(x 2  - x 1 ) 	cose i  + 	(y2  - y i ) 	sine l  + 02 2. 2 	sin(6 2  - e l ) 

 T. 

	 di 

	

+ 6 2  T. cos(e 2  - e l ) 	8 
1 

or, 	using 	small 	angle approximations: 

. 	. 	d
1 	• 	

d
2 	' 	• 	• 	• 

V 	 v 	v 	) 	A 	2. 	(e 	) V EB  = x 	x 
2 	1 - 	2 + '2— 	2 

+ 	( 
—2 - '1' 	- 1 + 	- 2 -22 - 	- 1' 

( 1 1 ) 

(12)  

The friction force of side BC on point E, f E 
could be described by: 

if V
BE 

= 0 

(13)  

f
E 	

- N E p 
d 

sign (V EB ) i 1 	if V EB 	0 

where the normal force, N E , is given by 

(10) 

(14) 
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or 

0 	 6
E 
 ) 0 

N E  = 
	

(15) 

K i l8 E 1 + K3 16 E I
3 

E 
< 0 

Note that K E (x) is the function of x as described by Fig. 5 and not K E  times 

x. Similar other expressions can be found for the relative slip velocities 

and the friction forces at the other potential contact points. 

Once accurate models are found for all the contact "spring" forces and 

friction forces, the overall equations of motion for the beam-sleeve system 

can be found using Component Mode Analysis (CMA). (See, for example, Refs. 

[9] and [10] and Appendix A of Reference [8]). This method basically consists 

of writing expressions for the total kinetic energy, potential energy and 

virtual work for the entire system and then introducing constraints between 

the coordinates. For the two beam system being considered here, the 

constraints would be: 

fl = WL (1 = L 1 
 ,t) - Y1 = ° 

f2 = X L ( 1 = Ll' t)  - x 1 = ° 

f
3 

= W
L,E

(E
1 
= Lt) 	0 1  = 0 
	

(16) 

and 

f4 = WR ( 2 = (3 ' t)  - y2 = 0 

f5  = XR (E 2  = 0,t) - x 2  = 0 

f6 	WR,c ( 2 = O,t) - 62 = 0 
	

(17) 
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where WL  and WR  are the transverse displacement of the left and right beams 

respectively; E l  and E 2  are the length coordinates along the left and right 

hand beams respectively as shown in Fig. 1; and X L  and X R  are the longitudinal 

displacements of the left and right hand beams respectively. Here, we will 

consider X L  and X R  as being composed of rigid-body longitudinal displacements 

and shortening effects from transverse beam deflection. 

Total kinetic energy, total potential ener9y, total virtual work plus the 

constraints and Lagrange multipliers are used to formulate a modified 

Lagrangian, which is then used to find the equations of motion for the entire 

system. This type of approach can be used regardless of the type of 

description used for the beam dynamics - modal description, finite element 

description or both. 

Outline for Future Research 

1. An analytical model for impact energy dissipation will be developed and 

incorporated into the total joint model. 

2. Equations of motion will be found for the three beam model interconnected 

with two sleeve joints. 	These equations will be computer coded for 

numerical integration simulations. 

3. An attempt will be made to simplify the joint model in order to reduce 

computation costs and simplify the analysis. 

4. Frequency domain analysis of the three beam system will be performed. 

One harmonic solutions will be compared with time integration results in 

order to determine the accuracy of the single temporal harmonic solution. 

5. An estimate of the modal damping of the system for the first few modes 

will be determined. 
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Figure 3. Deflected position of sleeve joint 
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Figure 4. Sleeve joint model with nonlinear springs 
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Figure 5. Nonlinear spring characteristic for contact point E 
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INTRODUCTION 

The effort since progress report No. 1 has been directed towards refining the 
sleeve-joint model, and testing the design on a simpler beam-sleeve model. In 
addition, further literature has been examined pertaining to analytical and 
experimental studies of joints with clearances. These activities will be 
detailed below, followed by an outline of future activities. 

SUMMARY OF ACCOMPLISHMENTS 

I. 	The sleeve joint model was modified to account for material damping 
losses due to impact and deformation. 

2. A rigid beam-sleeve joint model was chosen as the first model to be 
simulated. 	The model was chosen on the grounds that it would yield the 
most information about the beam sleeve interaction. 

3. A literature review into analysis of general mechanisms with clearances 
and impact was performed. 

SLEEVE-JOINT DAMPING 

Material damping was introduced into the beam-sleeve model as viscous damping 
elements which are engaged when contact occurs. As seen in Fig. 1, the 
dampers are placed in parallel with the nonlinear springs (described in 
Progress Report 1). The viscous dampers transmit a relative force between the 
beam and sleeve which is proportional to the relative velocity and which is 
zero when the beam and sleeve are not in contact at that point. This approach 
was chosen over the coefficient of restitution approach since employing the 
latter method for eccentric impact is fairly difficult especially when two or 
more points may contact at once. See, for example, [1] and [2]. 

RIGID BEAM-SLEEVE JOINT MODEL 

In order to verify the sleeve-joint model, a simple beam-sleeve model was 
developed (See Fig. 2). The model consists of a rigid beam mated with a 
sleeve which is fixed in inertial space. The beam can be treated as two rigid 
beam segments, (Fig 3), with component mode synthesis used to constrain the 
two segments to move together. Segmenting the beam was done to facilitate the 
extension of the model to the flexible beam case. 

This model serves several purposes. 	First, it isolates the sleeve-joint so 
that an accurate assessment of its effects can be made. 	For example, the 
total damping of this system is due entirely to the dry friction and material 
damping in the joint, hence the damping contribution of the joint to the 
system is easily determined. 	Second, it can be used to determine the amount 
of computation needed for the three-beam/two-joint model. 	Since the rigid 
beam system is essentially three-degree-of-freedom, computer runs will be 
relatively inexpensive to run. 	Effects of different joint variables and of 
different numerical-integration schemes will be studied. 	Third, the results 
of this study will serve to modify the sleeve-joint model, perhaps simplifying 
it, before the large scale computation is performed. For example, if it 
appears that the fine detail of the joint model is not evident in the global 
motion, a simpler joint model will be developed. The response of systems with 



different joint models can be compared to determine their relative accuracy. 
If it turns out that the damping contribution of the sleeve-joint is too 
small, the effects of in-plane slip may be incldued in the flexible beam 
model, or, pin joint structures may be considered. 

LITERATURE SURVEY OF JOINTS WITH CLEARANCES 

In order to accurately model the damping due to impact in the joints, a 
literature 	survey of joints with clearances and impact damping was 
conducted. 	Much of the work in this area was performed in connection with 
mechanical linkages, however, the general modelling techniques and analysis 
techniques are applicable to the present study. 

As mentioned in Progress Report 1, Hertz and Crawley have stated that 
clearances in sleeve and pin joints may be a factor contributing to overall 
structure damping [3,4]. 	However, their analysis of impact damping is much 
too simple for the present study. 	(For example, in [3], a one harmonic 
solution to a single-degree-of-freedom system 	impacting against rigid 
constraints is considered.) 	For this reason, the reserach in the mechanical 
linkages was investigated. 

Dubowsky, et al., has studied the effects of clearances in mechanisms in 
several papers [5-9]. The joints in linkages (mainly pin joints or "revolute 
pairs") have many of the features of the joints proposed for flexible 
spacecraft. Dubowsky and Freudenstein's one DOF model of the "imapct pair", 
developed in [5,6] and shown in Fig. 4, accounts for the effects of 
clearances, nonlinear stiffening after contact is made and damping due to 
material deformation during impact. Numerical simulation results, approximate 
solutions such as those obtained using describing functions, and experimental 
results are given for the impact pair. 	Some of the significant conclusions 
from these two papers are: 	1) The nonlinear stiffening of the joint after 
contact was made did not greatly influence the behavior of the system; linear 
force-deflection relations produced results very close to those obtained with 
the nonlinear stiffness law. 2) Numerical solutons are best performed using 
predictor-convector methods (For example, Gear Method, Wilson's Theta Method, 
etc.) rather than Euler and Runge-Kutta Methods. This was due to differences 
in the natural frequencies of the system depending on whether or not contact 
had occurred. 3) The nonlinear behavior becomes more pronounced as the 
amplitude and/or frequency of the motion decreases. 

In the later papers of Dubowsky et al., the imapct pair model is extended to 
multiple link systems [7,8] and even flexible link systems [9]. However, much 
of this later work in concerned with impact forces and wear in joints with 
clearances. 

OUTLINE FOR FUTURE RESEARCH 

1. Perform numerical simulation sof rigid-beam/sleeve joint model using 
predictor-corrector numerical integration technique (Gear method). 

2. Analyze the local behavior of the sleeve joint and global behavior of the 
rigid beam to determine damping contribution from sleeve and to examine 
joint mechanics. 



3a. Based on results from task 2, determine if simpler models for the joint 
are possible, and if so, compare the simpler joint behavior to the "full" 
joint behavior to determine the relative accuracy of simpler models. 

3b. If damping contribution is too small, consider in-plane slip in the 
flexible beam case, or consider alternate joint types. 

4. 	Extend analysis to the flexible beam case. 



References 

1. Beckett, R. E., Pan, K. C., and Chu, S. C., "A Numerical Method for the 
Dynamic Analysis of Mechanical Systems in Impact," ASME J. of Engineering 
for Industry (August 1977) 665-673. 

2. Hunt, K. H., and Crossley, F. R. E., "Coefficient of Restitution 
Interpreted as Damping in Vibroimpact," ASME J. of Applied Mechanics 
(June 1975) 440-445. 

3. Hertz, T. F. and Crawley, E. F., "The Effects of Scale on the Dynamics of 
Flexible Space Structures," Report #SSL18-83, Space Systems Laboratory, 
Department of Aeronautics and Astronautics, Massachusetts Institute of 
Technology, Cambridge, MA (September 1983). 

4. Hertz, T. F. and Crawley, E. F., "Damping in Space Structure Joints," 
AIAA Dynamics Specialists Conference (17-18 May 1984) Palm Springs, 
California. 

5. Dubowsky, S. and Freudenstein, F., "Dynamic Analysis of Mechanical 
Systems with Clearances, Part 1: Formation of Dynamic Model," ASME J. of 
Engineering for Industry (February 1971) 305-309. 

6. Dubowsky, S. and Freudenstein, F., "Dynamic Analysis of Mechanical 
Systems with Clearances, Part 2: 	Dynamic Response," ASME J. of 
Engineering for Industry (February 1971) 310-316. 

7. Dubowsky, S., "On Predicting the Dynamic Effects of Clearances in Planar 
Mechanisms," ASME J. of Engineering for Industry (February 1974) 317-323. 

8. Dubowsky, S., "On Predicting the Dynamic Effects of Clearances in One- 
Dimensional Closed-Loop Systems," ASME J. of Engineering for Industry 
(February 1974) 324-329. 

9. Dubowsky, S. and Moening, M. F., "An Experimental and Analytical Study of 
Impact Forces in Elastic Mechanical Systems with Clearances," Mechanisms 
and Machine Theory 13 (1978) 451-465. 



--- 

H  

INNE R DiArviETER. 

OF SLEEVE 

FIGURE 1: Sleeve Joint showing Impact Dampers 

I 
FIGURE 2: Rigid-Beam-Sleeve Model 

I 



F2 (t ) 

F1 ( t ) C 

L- kr X i 

 (a) 

CONTACT 
FORCE 

i 

(b) 

r 'i  
(RELATIVE DISPLACEMENT 
BETWEEN M I  AND Ma ) r a.- X2 - Xi 

rrKED SLEEVE 

FIGURE 3: Rigid—Beam—Sleeve Model showing Segmentation of Rigid Beam 

FIGURE 4: a) Impact Pair; b) Force—displacement Characteristic 
of Impact Pair (from [5]) 



The Influence of Nonlinear Joints on the Dynamics 

of Large Flexible Space Structures 

eiv c-vil 

Progress Report Number 3 

June 1986 

Principal Investigator 

Dr. A. A. Ferri 

1 



INTRODUCTION 

This report consists of a review of research accomplished 

to date and plans for future work. A schedule of work for the 

proposed tasks is included. 

SUMMARY OF ACCOMPLISHMENTS 

Computer code entitled "FORCE2" for simulating 1 

inertially fixed sleeve joint together with a rigid 

beam is complete. Some degree of verification of the 

code has been completed, and the code and equations 

appear to be producing reasonable results. 

A second computer code entitled "RIGID2" which models 

the system shown in Figure 1 is almost complete. This 

program will be used to develop simple sleeve joint 

models, based on the actual sleeve joint model. 

OUTLINE FOR FUTURE RESEARCH 

1. Some final checks will be run to complete the verification 

for the computer codes described above. 

2. Simple models for the sleeve joint will be developed. 

3. Parametric studies will be conducted to determine the 

influence of joint geometry and joint material properties 

on the damping of the joint. 
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4. The simple joint models from Task 2 will be incorporated 

into 	a 	three-flexible-beam/two-sleeve-joint 	model. 

Computer code will be developed for this system. 

5. Parametric studies will be conducted to determine the 

overall damping of the three-flexible-beam/two-sleeve-joint 

model. 	In particular, "modal" damping ratios will be 

determined as a function of joint characteristics and 

vibration amplitudes of response. 

6. Use Honeywell supplied data for a truss structure and for 

force-displacement characteristics of the interconnecting 

joints to determine the behavior of the combined truss 

structure. 



Figure 1. Rigid Beam with Nonlinear Springs. 
[Nonlinear dampers in parallel with springs not shown.] 
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INTRODUCTION 

This report consists of a summary of research accomplished since 

the completion of Progress Report 3 and an update of work in progress. 

SUMMARY OF RESEARCH 

Using the "FORCE" computer code (Included as Appendix A), which 

simulates an inertially fixed sleeve together with a rigid beam, a 

number of interesting results have been obtained. Baseline physical 

system parameters are given in Table 1, with nomenclature defined in 

Figure 1. For a 1 in (2.54 cm) diameter beam, a baseline clearance 

with the sleeve was chosen to be D = 0.1 mm. The beam is 1 m long, 

with approximately 1.5 in. (L = 4 cm) of the beam inserted into the 

sleeve. Mass properties have been calculated assuming the beam to be 

aluminum. 

Some sample time histories are shown in Figures 2 through 5. y2 

refers to the transverse displacement of the beam at a point which 

lies just outside the sleeve. 62 is the angular rotation of the beam 

in radians. Figures 2 and 3 show the free response of y2 and 62, 

respective, for the baseline set of parameter values and with K1 = K2 

= K4 = 100 N/m, K3 = K5 = 0, and C1 = C2 = 0. It is seen that each 

motion is dominated by two frequencies, a high frequency motion due to 

translation of the beam's end and a low frequency motion due to net 

rotation of the beam. (A third frequency corresponding to the 

longitudinal motion of the beam is also present, but is much smaller 

in amplitude.) The large difference in the two dominant frequencies 

is responsible for the "stiffness" of the governing equations, making 

• 
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numerical simulations difficult to obtain. 	To maintain accuracy, 

without excessive computer costs, the Gear method of solution (from 

the IMSL subroutine library) was chosen. 

Another noticeable feature of the curves shown in Figures 2 and 

3 is the exponential envelopes of decay. It should be noted that, for 

the case shown, viscous impact damping has been set equal to zero. 

Thus, all damping is due to the dry friction between the sleeve and 

beam. Although classical dry friction damped systems usually exhibit 

linear decay envelopes, here we have exponential envelopes because the 

normal forces (the forces of contact) are proportional to the 

deflection of the sleeve. It can also be seen that the frequency of 

the slow motion is noticeably dependent on the amplitude of the 

response; i.e., as the motion decays, the slow motion gets lower in 

frequency. This is due to the hardening spring effect associated with 

the clearance. (Note that in this case, the cubic spring terms, K3 

and K5, have been set equal to zero; thus, the springs are piecewise 

linear hardening springs.) Using the log decrement approach, the 

damping ratio for the low frequency motion was estimated and was found 

to be amplitude dependent. For example, the high amplitude (y2 - .003 

m) damping ratio was calculated to be C = .146; after the amplitude 

decreased to y2 - .0012 m, the damping ratio was reduced to c = .079. 

Thus, the low amplitude motion is more lightly damped than is the high 

amplitude motion. 
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Figures 4 and 5 show the e 2  motion for two different values of 

impact damping. The physical parameters for Figures 4 and 5 are equal 

to those in Figures 2 and 3 except for the viscous damping 

coefficient; C1 = C2 = 0.1 N•s/m in Figure 2, and C1 = C2 = 100 N•s/m 

in Figure 3. It is seen that the viscous damping has a large effect 

on the overall damping of the beam/sleeve system. However, this 

viscous coefficient is extremely hard to quantify physically. For 

this reason, a baseline value will be chosen based on realistic 

damping ratio values, and parameter studies will be performed to 

determine the effects of this parameter on the system damping. 

The effect of beam/sleeve geometry on the overall damping is 

shown in Figure 6. The quantity D/L is essentially a relative 

clearance, defined as the clearance divided by sleeve length. It is 

seen that the damping ratio is inversely proportional to D/L. Thus, 

small clearances are more beneficial for dry friction damping then 

large clearances. Note that the abcsissa of the graph is the 

amplitude of y2, which is required because the damping ratio is a 

function of the amplitude as well as D/L. Again, it is seen that, for 

a given D/L, c is inversely proportional to amplitude. 

Figure 7 shows the effect of sleeve stiffness on damping ratio, 

r. It is seen that c is relatively insensitive to sleeve stiffness. 

However, increasing the sleeve stiffness increases the system natural 

frequencies, which tends to make the response decay to zero faster. 

Of course, the number of oscillations before settling takes place 

remains the same. 
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A simplified joint model is being developed using the computer 

program "RIGID" (included as Appendix B), which simulates the system 

shown in Figure 8. The nonlinear spring and nonlinear damping 

characteristics are determined by comparing the free response of the 

simplified model with that the actual model for various levels of 

initial disturbances. On physical grounds, one can estimate the 

general form of the stiffness characteristic to be piecewise linear, 

with the threshold displacement depending on O. Preliminary tests of 

this form of stiffness have shown good agreement with the FORCE output 

for the zero damped case. Damping characteristics are in the process 

of being developed. In light of the exponential envelopes of decay 

for the free response, it is likely that a nearly linear  viscous 

damping will be used. It will not be exactly linear, since the 

damping ratio was found to depend on amplitude. 

A computer program which analyzes the 3-flexible-beam/2-sleeve-

joint model is nearly completed. Methodology for the development of 

the equations of motion is shown in Appendix C and a copy of the 

computer code is included as Appendix D. Tasks 5 and 6 previously 

defined in Progress Report 3 will be started after the code has been 

verified. 
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TABLE 1 

Total Beam Length 

Beam Outer Diameter 

Total Beam Mass 

Mass Moment of Inertia of Beam 
about C.G 

Coefficient of Sliding Friction, p 
(Al on Steel) 

1 m 

0.0254 m 

1.3 kg 

.1084 kg-m2  

.47 
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Figure 1. Beam/Sleeve Model 
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Figure 2. y2  in cm vs time in seconds; C 1  = C 2  = 0, K 1  = K2  = K4  = 

100 N/m, K3  = K5  = 0, p = .47, D = .1 mm, L = 4 cm. 
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Figure 3. 02  in radians vs time in seconds; C 1  = C 2  = 0, 

K 1  = K2  = K4  = 100 N/m, K3  = K5  = 0, p = .47, 

D= .1 mm, L = 4 cm. 
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Figure 4. y 2  in cm vs time in seconds; C 1  = C 2  = 0.1 N•s/m, 
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p = .47, 
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Figure 5. y 2  in cm vs time in seconds; C 1  = C 2  = 100 N•s/m, 

K
1 

= K
2 

= K
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= 100 N/ m
, 

K
3 = K5 = 0, p = .47, 

D = .1 mm, L = 4 cm. 



Figure 6. 	Damping ratio, c, vs peak y 2 ; various levels of relative 

clearance, D/L; C 1  = C 2  = 0, K 1  = K2  = K4  = 10 N/m, 

K3  = K5  = 0, u=  .47. 
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Figure 7. Damping ratio, 	vs peak y 2 ; various levels of joint 

stiffness; C 1  = C 2  = 0, K 1  = K 2  = K4  = K, K3  = K5  = 0, 

u= .47, D= .1 mm, L = 4 cm. 



Figure 8. Rigid Beam with Nonlinear Springs. 
[Nonlinear dampers in parallel with springs not shown.] 



APPENDIX A 

"FORCE" COMPUTER CODE 



PROGRAM FORCE(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
COMMON TT(5,5),MA(5,5),MB(5,5),W1(5,5),B(5,5),S1(5,5), 

CO(5,5),C1(5,5),C2(5,5),C3(5,5),C5(5,5) 
,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,CC1,CC2 

REAL MA,MB,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD 
CALL INITIAL 
CALL MATRIX 
STOP 
END 
SUBROUTINE INITIAL 
COMMON TT(5,5),MA(5,5),MB(5,5),W1(5,5),B(5,5),S1(5,5), 

CO(5,5),C1(5,5),C2(5,5),C3(5,5),C5(5,5) 
,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,CC1,CC2 

REAL MA,MB,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,MAA,MBB,IAA,IBB 
READ* ,K1,K2,K3,K4,K5,MAA,MBB 
READ* ,IAA,IBB,L1,L2,L3,D1,D2 
READ* ,UD,CC1,CC2 
READ* ,((B(I,J),J=1,3),I=1,3) 
READ* ,((S1(I,J),J=1,3),I=1,3) 
READ* ,((TT(I,J),J=1,3),I=1,3) 
READ* ,((MA(I,J),J=1,3),I=1,3) 
READ* ,((MB(I,J),J=1,3),I=1,3) 
READ* ,((W1(I,J),J=1,3),I=1,3) 
DO 5 1=1,3 
PRINT*, (W1(I,J),J=1,3) 

5 CONTINUE 

L=3 
M=3 
NN=3 
IA=5 
IB=5 
IC=5 
CALL VMULFF(MB,W1,L,M,NN,IA,IB,CO,IC,IER) 
DO 55 1=1,3 
PRINT * ,(CO(I,J),J=1,3) 

55 CONTINUE 
CALL VMULFF(CO,TT,L,M,NN,IA,IB,C1,IC,IER) 
RETURN 
END 

SUBROUTINE MATRIX 
COMMON TT(5,5),MA(5,5),MB(5,5),W1(5,5),B(5,5),S1(5,5), 

CO(5,5),C1(5,5),C2(5,5),C3(5,5),C5(5,5) 
,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,CC1,CC2 

REAL MA,MB,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,Y(6),WK(103),T,TOL,TEND,H 
,XX(2000),T1(2000),YY(2000),TH(2000) 

INTEGER N,METH,MITER,INDEX,IWK(2),IER,K,BUF(512),BAF(512),BEF(512) 
EXTERNAL FCN,FCNJ 
N=6 
T=0.0 
Y(1)=0.0 
Y(2)=.003 
Y(3)=.0873 
Y(4)=0. 
Y(5)=0. 
Y(6)=0. 
XX(1)=Y(1) 
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C 

YY(1)=Y(2) 
TH(1)=Y(3) 
T1(1)=0. 
TOL=0.00001 
H=0.00001 
METH-1 
MITER=O 
INDEX=1 
NT=1000 
DO 10 K=1,NT 
TEND=FLOAT(K)*0.025 
CALL DGEAR(N,FCN,FCNJ,T,H,Y,TEND,TOL,METH,MITER,INDEX,IWK,WK,IER) 
IF( IER .GT. 128) GOTO 20 
PRINT 100, T,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6) 

100 FORMAT(1X,F10.5,6(2X,F9.6)) 
KP1=K+1 
T1(KP1)=TEND 
XX(KP1)=Y(1) 
YY(KP1)=Y(2) 
TH(KP1)=Y(3) 

10 CONTINUE 
CALL PLOTS(BUF,512,7) 
CALL FACTOR(0.5) 
CALL SCALE(T1,15.,NT+1,1) 
CALL SCALE(XX,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME", -4,15.,0.,T1(NT+2),T1(NT+3)) 
CALL AXIS(0.,0.,"Y(1)",4,15.,90.,XX(NT+2),XX(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(T1,XX,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 

CALL PLOTS(BAF,512,8) 
CALL FACTOR(0.5) 
CALL SCALE(T1,15.,NT+1,1) 
CALL SCALE(YY,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME(SEC)", -9,15.,0.,T1(NT+2),T1(NT+3)) 
CALL AXIS(0.,0.,"Y(2)",4,15.,90.,YY(NT+2),YY(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(T1,YY,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 

CALL PLOTS(BEF,512,9) 
CALL FACTOR(0.5) 
CALL SCALE(T1,15.,NT+1,1) 
CALL SCALE(TH,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME(SEC)",-9,15.,0.,T1(NT+2),T1(NT+3)) 
CALL AXIS(0.,0.,"Y(3)",4,15.,90.,TH(NT+2),TH(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(T1,TH,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 

20 PRINT*, 'TROUBLE' 
RETURN 
END 

C 
C 

SUBROUTINE FCN(N,T,Y,YPRIME) 
COMMON TT(5,5),MA(5,5),MB(5,5),W1(5,5),B(5,5),S1(5,5), 

CO(5,5),C1(5,5),C2(5,5),C3(5,5),C5(5,5) 
,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,CC1,CC2 

REAL MA,MB,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,Y(6),YPRIME(6), • 



& 	T,A(3,3),AINV(3,3),WKAREA(3),FX(3) 
INTEGER N,IA,IDGT,IER 

C 	CALCULATE DISPLACEMENTS 
C 

DELE=Y(2) -L2*Y(3)+(D1-D2)/2. 
DELF=-Y(2)+L2*Y(3)+(D1-D2)/2. 
DELD=Y(1) *Y(3) - (D2*Y(3)**2)/2.-Y(2)+(D1-D2)/2. 
DELC=-Y(1) *Y(3) - (D2*Y(3) **2)/2.+Y(2)+(D1-D2)/2. 
DELI=Y(1)+Ll-L2 

C 	PRINT 30, DELE,DELF,DELD,DELC 
C30 	FORMAT( 1X,4(2X,F9.7)) 
C 
C 	CALCULATE THE DERIVATIVE OF DISPLACEMENTS. 
C 

DELET=Y (5) -L2*Y (6) +D2*Y (6) *Y (3) /2. 
DELFT—Y(5)+L2*Y(6)+D2*Y(6)*Y(3)/2. 
DELDT=1, (4)*Y(3)+y(1) * Y(6)-Y (5)+y(2) *r(6)*y ( 3)-Di*Y(6) ,,y(3 ) /2. 
DELci— y(4) *Y( 3) - 1, ( 1)*y(6)+ y(5)-1, (2)*y(6)*Y(3)-Di *Y(6)*Y (3)/ 2. 

C 
C 	CALCULATE THE RELATIVE VELOCITIES. 
C 

VELHC=Y (4) +Y (5) *Y (3) +D2*Y (6) /2. 
VELGD=Y (4) +Y (5) *Y (3) -D2*Y (6) /2. 
VELEB=Y (4) +L2*Y (6) *Y (3) +D2*Y (6) /2. 
VELFA=Y(4)+L2*Y(6)*Y(3)-D2*Y(6)/2. 

C 
C 
	

CALCULATE THE SPRING FORCES. 
C 

IF(DELC .LT. 0.0) THEN 
FORC1=K1 *ABS(DELC)+K3*(ABS(DELC))**3 

ELSE 
FORC1=0.0 

ENDIF 
IF(DELD .LT. 0.0) THEN 
FORD1=K1 *ABS(DELD)+K3*(ABS(DELD))**3 

ELSE 
FORD1=0.0 

ENDIF 
IF(DELE .LT. 0.0) THEN 
FORE1=K4*ABS(DELE)+K5*(ABS(DELE))**3 

ELSE 
FORE1=0.0 

ENDIF 
IF(DELF .LT. 0.0) THEN 
FORF1=K4*ABS(DELF)+K5*(ABS(DELF))**3 

ELSE 
FORF1=0.0 

ENDIF 
FORI=-K2*Y(1) 

C 
C 	CALCULATE THE VISCOUS FORCES. 

mg 
IF(DELC .LT. 0.0 .AND. DELCT .LT. 0.0)THEN 

FORC2=-CC2*DELCT 
ELSE 

FORC2=0.0 
ENDIF 
IF(DELD .LT. 0.0 .AND. DELDT .LT. 0.0)THEN 
FORD2=-CC2*DELDT 



ELSE 
FORD2=°.0 

ENDIF 
IF(DELE .LT. 0.0 .AND. DELET .LT. 0.0)THEN 
FORE2=-CC1*DELET 

ELSE 
FORE2=0.° 

ENDIF 
IF(DELF .LT. 0.0 .AND. DELFT .LT. 0.0)THEN 

FORF2=-CC1*DELFT 
ELSE 

FORF2=°.0 
ENDIF 

C 
C 	COMBINE THE SPRING AND VISCOUS FORCES TO GET THE 
C 	TOTAL NORMAL FORCE AT EACH POINT. 
C 

FORC=FORC1+FORC2 
FORD=FORD1+FORD2 
FORE=FORE1+FORE2 
FORF=FORF1+FORF2 

C 
C 
	

CALCULATE THE FRICTION FORCES. 
C 

IF(VELEB .EQ. 0.0) THEN 
FRICE=°.0 

ELSE IF(VELEB .GT. 0.0) THEN 
FRICE=-FORE*UD 

ELSE 
FRICE=FORE*UD 
ENDIF 
IF(VELFA .EQ. 0.0) THEN 
FRICF=0.0 

ELSE IF(VELFA .GT. 0.0) THEN 
FRICF=-FORF*UD 

ELSE 
FRICF=FORF*UD 

ENDIF 
IF(VELHC .EQ. 0.0) THEN 
FRICC=°.0 

ELSE IF(VELHC .GT. 0.0) THEN 
FRICC=-FORC*UD 

ELSE 
FRICC=FORC*UD 

ENDIF 
IF(VELGD .EQ.°.°) THEN 
FRICD=°.0 

ELSE IF(VELGD .GT. 0.0) THEN 
FRICD=-FORD*UD 

ELSE 
FRICD=FORD*UD 

ENDIF 
C 
C 	CALCULATE THE VARIABLE MATRIX ELEMENTS. 
C 

B(3,1)=- (0.5) *L2*Y(3) 
S1(3,1)=L3*Y(3) 
L=3 
M=3 
NN=3 



IA=5 
IB=5 
IC=5 
CALL VMULFF(B,S1,L,M,NN,IA,IB,C2,IC,IER) 
CALL VMULFF(C2,C1,L,M,NN,IA,IB,C3,IC,IER) 
DO 70 1=1,3 
DO 60 J=1,3 
A(I,J)=MA(I,J)-C3(I,J) 

60 CONTINUE 
70 CONTINUE 

C 
C 

NM=3 
IA1=3 
IB-3 
IDGT=O 
CALL LINV1F(A,NM,IA1,AINV,IDGT,WKAREA,IER) 
CALL VMULFF(TT,AINV,L,M,NN,IA,IB,C5,IC,IER) 

C 
C 	CALCULATE THE COMPONENTS OF THE F MATRIX. 
C 

FX(1)=FORI+FRICF+FRICE+FORD *Y(3)+FRICD-FORC*Y(3)+FRICC 
FX(2)=FORE-FORF+FRICD*Y(3)+FORC+FRICC*Y(3)-FORD 
FX(3)=((0.5) *L2+(0.5) *D2*Y(3)) *FORF+((0.5)*L2 *Y(3)-(0.5)*D2)*FRICF 

&+(- (0.5) *L2+(0.5) *D2*Y(3)) *FORE+((0.5)*L2*Y(3)+(0.5)*D2)*FRICE+ 
&(0.5) *L2*Y(3) *FORI- (0.5) *L2*FORD- (0.5) *D2*FRICD+(0.5)*L2*FORC+ 
& (0.5) *D2*FRICC 

C 
C 

YPRIME(1)=Y(4) 
YPRIME(2)=Y(5) 
YPRIME (3) =Y (6) 
YPRIME(4)=C5(1,1)*FX(1)+C5(1,2)*FX(2)+C5(1,3)*FX(3) 
YPRIME(5)=C5(2,1) *FX(1)+C5(2,2) *FX(2)+C5(2,3)*FX(3) 
YPRIME(6)=C5(3,1)*FX(1)+C5(3,2)*FX(2)+C5(3,3)*FX(3) 
RETURN 
END 

C 
C 

SUBROUTINE FCNJ(N,T,Y,PD) 
COMMON TT(5,5),MA(5,5),MB(5,5),W1(5,5),B(5,5),S1(5,5), 

CO(5,5),C1(5,5),C2(5,5),C3(5,5),C5(5,5) 
,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,CC1,CC2 

REAL MA,MB,L1,L2,L3,D1,D2,K1,K2,K3,K4,K5,UD,PD(N,N),T 
RETURN 
END 



APPENDIX B 

"RIGID" COMPUTER CODE 



PROGRAM RIGID(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
COMMON KK(3,3),TT(3,3),MA(3,3),MB(3,3),W1(3,3),T1(3,3),B(3,3), 

S1(3,3),C(3,3),C0(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3), 
C5(3,3),CF(3,3),L2,L3,CX,CY,CO,KX,KY,KO,DELC,THC 

REAL KK,MA,MB,L2,L3,KX,KY,KO 
CALL INITIAL 
CALL MATRIX 
STOP 
END 

SUBROUTINE INITIAL 
COMMON KK(3,3),TT(3,3),MA(3,3),MB(3,3),W1(3,3),T1(3,3),B(3,3), 

S1(3,3),C(3,3),C0(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3), 
C5(3,3),CF(3,3),L2,L3,CX,CY,CO,KX,KY,KO,DELC,THC 

REAL KK,MA,MB,L2,L3,MAA,MBB,KX,KY,KO,IAA,IBB 
READ*, KX,KY,KO,L2,L3,MAA,MBB,IAA,IBB,CX,CY,CO 
READ* ,DELC,THC 
READ*, ((B(I,J),J=1,3),I=1,3) 
READ*, ((S1(I,J),J=1,3),I=1,3) 
READ*, ((KK(I,J) ,J=1,3) ,I=1,3) 
READ*, UTT(I,J),J=1,3),I=1,3) 
READ*, ((MA(I,J),J=1,3),I=1,3) 
READ*, ((MB(I,J),J=1,3),I=1,3) 
READ*, ((W1(I,J),J=1,3),I=1;3) 
READ*, ((T1(I,J),J=1,3),I=1,3) 
DO 5 1=1,3 
PRINT*, (W1(I,J),J=1,3) 

5 CONTINUE 
L=3 
M=3 
NN=3 
IA=3 
IB=3 
IC=3 
CALL VMULFF(MB,W1,L,M,NN,IA,IB,CO,IC,IER) 
DO 55 1=1,3 
PRINT*, (CO(I,J),J=1,3) 

55 CONTINUE 
CALL VMULFF(CO,TT,L,M,NN,IA,IB,C1,IC,IER) 
CALL VMULFF(KK,T1,L,M,NN,IA,IB,CF,IC,IER) 
RETURN 
END 

SUBROUTINE MATRIX 
COMMON KK(3,3),TT(3,3),MA(3,3),MB(3,3),W1(3,3),T1(3,3),B(3,3), 

S1(3,3),C(3,3),C0(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3), 
C5(3,3),CF(3,3),L2,L3,CX,CY,CO,KX,KY,KO,DELC,THC 

REAL KK,MA,MB, L2, L3 , Y (6) , WK (103) , T, TOL , TEND,H,XX (2000) , TT1 (2000) , 
YY(2000),TH(2000),KX,KY,K0 

INTEGER N,METH,MITER,INDEX,IWK(2),IER,K,BUF(512),BAF(512),BEF(512) 
EXTERNAL FCN,FCNJ 
N=6 
T=0. 
Y(1)=0.00 
Y(2)=0.003 
Y(3)=0.0873 
Y(4)=0.0 
Y(5)=0.0 
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Y(6)=0.0 
XX(1)=Y(1) 
YY(1)=Y(2) 
TH(1)=Y(3) 
TT1(1)=0.0 
TOL=0.00001 
H=0.00001 
METH=1 
MITER=0 
INDEX=1 
NT-1000 
DO 10 K=1,NT 
TEND=FLOAT(K)*0.025 
CALL DGEAR(N,FCN,FCNJ,T,H,Y,TEND,TOL,METH,MITER,INDEX,IWK,WK,IER) 
IF (IER .GT. 128) GOTO 20 
PRINT 100, T,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6) 

100 	FORMAT(1X,F6.1,6(2X,F9.6)) 
KP1=K+1 
TT1(KP1)=TEND 
XX(KP1)=Y(1) 
YY(KP1)=Y(2) 
TH(KP1)=Y(3) 

10 CONTINUE 
CALL PLOTS(BUF,512,7) 
CALL FACTOR(0.5) 
CALL SCALE(TT1,15.,NT+1,1) 
CALL SCALE(XX,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME", -4,15.,0.,TT1(NT+2),TT1(NT+3)) 
CALL AXIS(0.,0.,"Y(1)",4,15.,90.,XX(NT+2),XX(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(TT1,XX,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 

C 
CALL PLOTS(BAF,512,8) 
CALL FACTOR(0.5) 
CALL SCALE(TT1,15.,NT+1,1) 
CALL SCALE(YY,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME(SEC)", -9,15.,0.,TT1(NT+2),TT1(NT+3)) 
CALL AXIS(0.,0.,"Y(2)",4,15.,90.,YY(NT+2),YY(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(TT1,YY,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 

C 

20 

C 
C 

I 

CALL PLOTS(BEF,512,9) 
CALL FACTOR(0.5) 
CALL SCALE(TT1,15.,NT+1,1) 
CALL SCALE(TH,15.,NT+1,1) 
CALL AXIS(0.,0.,"TIME(SEC)", -9,15.,0.,TT1(NT+2),TT1(NT+3)) 
CALL AXIS(0.,0.,"Y(3)",4,15.,90.,TH(NT+2),TH(NT+3)) 
CALL PLOT(0.,0.,3) 
CALL LINE(TT1,TH,NT+1,1,0,0) 
CALL PLOT(0.,0.,999) 
PRINT*, 
RETURN 
END 

SUBROUTINE FCN(N,T,Y,YPRIME) 
COMMON KK(3,3),TT(3,3),MA(3,3),MB(3,3),W1(3,3),T1(3,3),B(3,3), 

S1(3,3),C(3,3),C0(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3), 



C5(3,3),CF(3,3),L2,L3,CX,CY,CO,KX,KY,KO,DELC,THC 
REAL KK,MA,MB,L2,L3,Y(6),YPRIME(6),T,A(3,3),AINV(3,3),WKAREA(3) 

,KX,KY,KO,FX(3) 
INTEGER N,IA,IDGT,IER 
B(3,1)=L2*Y(3) 
S1(3,1)=-L3*Y(3) 
L=3 
M=3 
NN=3 
IA=3 
IB=3 
IC=3 
CALL VMULFF(B,S1,L,M,NN,IA,IB,C2,IC,IER) 
CALL VMULFF(C2,C1,L,M,NN,IA,IB,C3,IC,IER) 
DO 70 1=1,3 
DO 60 J=1,3 
A(I,J)=MA(I,J) -C3(I,J) 

60 	CONTINUE 
70 CONTINUE 

IDGT=0 
CALL LINV1F(A,NN,IA,AINV,IDGT,WKAREA,IER) 
CALL VMULFF(TT,AINV,L,M,NN,IA,IB,C5,IC,IER) 

DELMC=-DELC 
THMC=-THC 
AY2=ABS(Y(2)) 
AY3=ABS(Y(3)) 
IF (Y(2).GT.DELC) FORCE=-KY*DELC+KY*Y(2) 
IF (AY2.LT.DELC) FORCE=O. 
IF (Y(2).LT.DELMC) FORCE=KY*DELC+KY*Y(2) 
IF (Y(3).GT.THC) XMOM= -KO*THC+KO*Y(3) 
IF (AY3.LT.THC) 	XMOM=0. 
IF (Y(3).LT.THMC) XMOM=KO*THC+KO*Y(3) 
FX(1)=-KX*Y(1)-CX*Y(4) 
FX (2) = -FORCE-CY*Y (5) +L2*CY*Y (6) 
FX (3) =-XMOM-CO*Y (6) 

YPRIME(1)=Y(4) 
YPRIME (2) =Y (5) 
YPRIME(3)=Y(6) 
YPRIME(4)=C5(1,1) *FX(1)+C5(1,2) *FX(2)+C5(1,3)*FX(3) 
YPRIME(5)=C5(2,1) *FX(1)+C5(2,2)*FX(2)+C5(2,3)*FX(3) 
YPRIME(6)=C5(3,1) *FX(1)+C5(3,2)*FX(2)+C5(3,3)*FX(3) 
RETURN 
END 

SUBROUTINE FCNJ(N,T,Y,PD) 
COMMON KK(3,3),TT(3,3),MA(3,3),MB(3,3),W1(3,3),T1(3,3),B(3,3), 

S 1 (3 , 3),C(3 , 3),C0(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3), 
C5(3,3),CF(3,3),L2,L3,CX,CY,CO,KX,KY,KO,DELC,THC 

REAL KK,MA,MB,L2,L3,Y(6),PD(N,N),T,KX,KY,K0 
RETURN 
END 



APPENDIX C 

METHODOLOGY FOR THE DEVELOPMENT OF THE EQUATIONS 

OF MOTION FOR THE THREE-BEAM-TWO-JOINT MODEL 
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APPENDIX D 

COMPUTER CODE FOR THE SIMULATION 

OF THE THREE-BEAM-TWO-JOINT MODEL 



PROGRAM HH(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 

DIMENSION RAMDA(5),RHO(3),AREA(3),Y0D(3) 
DIMENSION OMEGA(5) ,PHID(15) 
REAL LENG(3),M(3),MASS(3),MOI(3) 
COMMON/AA/FO,W,THETA 
COMMON/BB/B(15,4) ,G(8, 15) 
COMMON/CONST/XK1,XK2,XK3,XR4,E1,E2,HNU,RE 
COMMON/DIM/XINV(15),C(15),STIFF(15) 
DATA RAMDA/4.73004074,7.85320462,10.9956078,14.1371655,17.27875971 

RAMDA=ROOT OF CHARACTERISTIC EQN. OF BEAM 
RHO=DENSITY OF BEAM 

WRITE(6,5) 

READ INPUT DATA 
N=NUMBER OG MODES 

READ(5,10) N,KMAX,DT 
READ(5,20) FO,W,THETA 
WRITE(6,25) N,FO,W,THETA 
DO 30 L=1,3 
READ(5,30) RHO(L),AREA(L),YONG(L),MOI(L),LENG(L) 
WRITE(6,40) RHO(L),AREA(L),YONG(L),MOI(L),LENG(L) 

30 CONTINUE 
READ(5,50) XR1,XK2,XK3,XK4,E1,E2 
WRITE(6,55)XK1,XK2,XK3,XK4,E1,E2 
READ(5,56)HNU,RE 
WRITE(6,57) HNU,RE 

READ(5,60) ZETA 
WRITE(6,65) ZETA 

5 FORMAT(1H1,///," ** THREE BEAMS AND TWO JOINTS **",///) 
10 FORMAT(2I5,F10.0) 
20 FORMAT(3F10.0) 
25 FORMAT(//,10X,"NUNBER OF MODES=",I5, 

*//,10X,"MAGNITUDE OF EXCITING FORCE=",F10.5 
*//,10X,"CIRCULAR FREQUENCY=",F10.5,"(RAD/S)", 
*/,10X,"PHASE SHIFT=",F10.5,"(RAD/S)") 

30 FORMAT(5F10.0) 
40 FORMAT(//,5X," PROPERTY OF BEAM ",/, 

*5X,"DENSITY=",F12.5,/, 
*5X,"AREA-",E12.5,"(IN*IN)",/, 
*5X,"YOUNG'S MODULUS=",E12.5,"(PSI)",/, 
*5X,"MOMENT OF INERTIA=",E12.5,"(IN**4)",/, 
*5X,"LENGTH=",E12.5,"(FT)") 

50 FORMAT(5F10.0) 
60 FORMAT(6F10.0) 
55 FORMAT(//,5X,"PHYSICAL CONSTANTS OF JOINTS", 

*//,10X,"LATERAL SPRING CONSTANT=",E12.5,"(LB/IN)", 
*/,10X,"TORSIONAL SPRING CONS.-",E12.5,"(LB-IN/RAD)", 
*/,10X,"LATERAL DAMPING CONST.-",E12.5, 
*/,10X,"TORSIONAL DAMPING CONST.=",E12.5, 
*/,10X,"LATERAL CLEARANCE-",E12.5,"(IN)", 
*/,10X,"TORSIONAL CLEARANCE-",E12.5,"(RAD)") 



56 FORMAT (2F10.0) 
57 FORMAT (// , 10X, "FRICTION COEFF.=" , F10.3 , / , 

*10X , "EQUIVALENT LENGTH FOR TORSIONAL FR ICTION=" E12.5 , " (IN) ") 
65 FORMAT (// , 10X , "MATERIAL DAMPING OF BEAM (PERCENT OF CRITICAL DAMPING 

*)=",F10.4) 

CALCULATE MASS 

DO 80 1=1,3 
80 M(I)=RHO(I)*AREA(I)*LENG (I)  

CALCULATE NATURAL FREQUENCY [DIES 

DO 90 1=1,3 
DO 90 J=1,N 

90 OMEGA (I , = (RAMDA (J) /LENG )**4*(YOD *MOI 	/ (RHO (I) *AREA (I))) 

CALCULATE MASS , 

N3=N*3 
DO 100 I=1 ,N 
MASS (I) =M (1) 
MASS (N+ =M (2) 
MASS (2*N+ I) =M (3) 

CALCULATE C MATRIX 

C (I) =2 .*ZETA*OMEGA (1, I) *M 
C (I+N) =2 . *ZETA*OMEGA (2 , I) *M (2) 
C (I+2*N) =2 . *ZETA*OMEGA (3, I) *M (3) 
R =M (1) *OMEGA (1, I)**2 
K (I+N) =M (2) *OMEGA (2 , I) **2 

100 R(I+2*N) =M (3) *OMEGA (3 , **2 
DO 120 I=1, N3 

120 XINV (I) =1. /MASS (I) 

CALCULATE B MATRIX 

DO 110 I=1 , N3 
DO 110 J=1,4 

110 B(I,J)=0. 
DO 125 J=1 , N 
CALL MODE (1 , J , PHI ,PRIM,1.0) 
B , 1) =PHI 
B , 2) =PHI 
CALL MODE (2 , J PHI ,PRIM,0.0) 
B (J+N , 1) --PHO I 
B (J+N, =-PR IM 
CALL MODE(2,J ,PH; PRIM,1.0) 
B (J+N , 3) =PHI 
B (J+N , 4) =PRIM 
CALL MODE93 J , PHI ,PRIM,0.0) 
B (J+2*N =-PHI 
B (J+2*N , =-PR IM 

120 CONTINUE 
DO 130 J=1 , N 
R-D/LENG (1) 
CALL MODE91 , J , PHI ,PRIM, R) 
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PHID(J)=PHI 
PHID(J+N)=0. 
PHID(J+2*N)=0. 

130 CONTIJNUE 

G MATRAM IX 

DO 140 I=N3 
DO 140 J=1,8 

140 G(I,J)=0. 
DO 150 J=1,N 
G(1,J)=B(J,1) 
G(2,J)=B(J,2) 
G(3,J+N)=-B(J+N,1) 
G(4,J+N)=-B(J+N,2) 
G(5,J+N)-B(J+N,3) 
G(6,J+N)=B(J+N,4) 
G(7,J+2*N)=-B(J+2*N,3) 
G(8,J+2*N)=-B(J+2*N,4) 

150 CONTINUE 

SOLVE 6*N DIFFERENTIAL EQUATIONS 

NN=6*N 
CALL SOLVE(NN,DT,RMAX) 
STOP 
END 

CALCULATE MODE SHAPE AND DERIVERTIVE 

SUBROUTINE MODE(I,J,PHI,PRIM,R,RAMDA,LENG) 
REAL RAMDA(5),LENG(3) 

I=BEAM I 
J=J TH MODE 
PHI=MODE SHAPE OF A FREE-FREE BEAM 
PRIM=FIRST DERIVERTIVE OF A MODE SHAPE 

XI/LENG(I)=R 
RAM=RAMDA(J) 
SIGMA=(COSH(RAM) -COS(RAM))/SINH(RAM) -SIN(RAM)) 
Z=RAM*R 
PHI =COSH(Z)+COS(Z) -SIGMA*(SINH(Z)+SIN(Z)) 
PRIM=(RAM/LENG(I)) * (SINH(Z)-SIN(z)-SIGMA* (COSH(Z)+COS(Z))) 
RETURN 
END 

SOLVE DIFF. EQNS. USING RUNGE RUTTER METHOD 
NN=NUMBER OF EQUATIONS 

SUBROUTINE SOLVE(NN,DT,RMAX) 
INTEGER NN 
DIMENSION ETA(NN),CC(24),W(NN,9) 
COMMON/AA/FO,W,THETA 
COMMON/CONST/XR1,XR2,XR3,XR4,E1,E2,HNU,RE 
COMMON/BB/B(15,4),G(8,15) 
COMMON/DIM/XINV(15),C(15),STIFF(15) 
EXTERNAL FUNC 
NW=NN 
X-0. 



• 
A 	■ 

INITIAL CONDITION 

N2=NN/2 
DO 100 1-1,N2 
ETA(I)-0. 

100 ETA(I+N2)=0.1 
TOL=0.0001 
IND=1 
DO 200 K=1,KMAX 
XEND=DT*K 
CALL DVERR(NN,FUNC,X,ETA,XEND,TOL,IND,CC,NW,W,IER) 
IF(IND.LT.O.OR.IER.GT.0) GO TO 20 
WRITE(6,300) ETA(1) 

300 FORMAT(/,2X,"ETA(1)=",E12.5) 
200 CONTINUE 
20 RETURN 

END 

COMPUTES DERIVERTIVES EPRIME(NN) 

SUBROUTINE FUNC(NN,X,ETA,EPRIME) 
COMMON/DIM/XINV(15),C(15),STIFF(15) 
COMMON/AA/FO/W, THETA 
INTEGER N 
REAL CP(15) ,RP(15) ,BP(15) ,BETA(4) 
DIMENSION ETA(15),EPRIME(NN) 
COMMON/CONST/XK1,XR2,X0,XR4,E1,E2,HNU,RE 
N2=NN/2 
Dp 100 I=1,N2 
EPRIME(I)=ETAM 

CP(II)=C(II)*ETA(II) 
KP(II)=STIFF(II)*ETAM 
CALL NON(BETA,ETA,NN) 
DO 10 L=1,4 

10 BP(II)=B(II,L)*BETA(L) 
FORCE= FO*COS(W*X+THETA) 

100 EPRIME(II)=XINV(II)*(-CP(II) -KP(II)+BP(II)+PHID(II) *FORCE) 
RETURN 
END 

NONLIEAR FUNCTION BETWEEN LAGRANGE MULTIPLIERS BETA AND 
STATE VARIABLE ETA(NN) 

SUBROUTINE NON(BETA,ETA,NN) 
DIMENSION BETA(4),ETA(30),Q(8),QP(8) 
COMMON/BB/B(15,4),G(8,15) 
COMMON/CONST/XR1,XR2,XR3,XR4,E1,E2,HNU,RE 
REAL N1,N2,M1,M2 
NN2=NN/2 
DO 100 I=1,8 
DO 100 J-1,NN2 
Q(I)=G(I,J)*ETA(J) 

100 QP(I)=G(I,J)*ETA(J+NN2) 
CALL CRIT(Q(3) ,Q(1) ,XR1,E1,F1) 
CALL CRIT(Q(4) ,Q(2) ,XR2,E2,M1) 
CALL CRIT(Q(7),Q(5),X.R5,E3,F2) 
CALL CRIT(Q(8),Q(6),M,E4,M2) 
N1-ABS(F1) 



• 	 Pale- I) - 5-  

N2-ABS(F2) 
BETA(1)-Fl+M3* (QP(3)-QP(1))+HNU*Nl*SIGN(1.0,QP(3) -QP(1)) 
BETA(2)-211+XR4 * (QP(4)-QP(2))+HNU*RE*N1*SIGN(1.0,QP(4) -QP(2)) 
BETA(3)-F2+Xlc7* (QP(7)-QP(5))+HNU*N2*SIGN(1.0,QP(7) -QP(5)) 
BETA(4)=M1+XIC8 * (QP(8) -QP(6))+HNU*RE*N2*SIGN(1.0,QP(8) -QP(6)) 
RETURN 
END 

COMPUTES NORMAL FORCES AND MOMENTS 

SUBROUTINE CRIT(Y2,Y1,X1C,E,F) 
IF((Y2-Y1).GT.E) F-XK*(Y2-Y1-E) 
IF((Y2-Y1).LT.-E) F-X0(Y2-Y1+E) 
IF(ABS(Y2-Y1).LE.E) F-0. 
RETURN 
END 
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EXECUTIVE SUMMARY 

Problem Statement: 

One of the major problems remaining in the development of large 

flexible space structures such as the NASA sponsored space station is the 

anticipated low level of passive damping. This low level of damping 

impacts the feasibility of placing large truss structures in orbit because 

of the difficulties in designing shape and attitude controllers. In 

particular, since the open-loop system has low relative stability to begin 

with, it is quite possible that perturbations to the control scheme, such 

as observation spillover or plant uncertainty, can drive the closed-loop 

system unstable. 

Joints play a central role in the development of large, light-weight 

truss structures. It has been suggested that they provide a significant 

source of damping for the structure. Unfortunately, many of the physical 

properties of joints are governed by nonlinear mathematical relations. 

Hence, any accurate structural model of space truss structures must be 

nonlinear if it is to account for the presence of nonlinear joints. 

Main objectives of the current research: 

This research addresses the problems of modelling and analysis of 

large space structures with nonlinear joints. In addition, qualitative 

Information is sought for the dynamic behavior of structures with nonlinear 

joints. Specific objectives are summarized below. 

A primary objective of the present research is the development of a 

generic mathematical joint model. 	A model is developed for a rigid beam 



partially inserted into an inertially fixed sleeve joint. This model is 

used to study parametrically the system dynamics as a function of various 

joint properties. The system is also used to develop simplified sleeve 

joint models to be used in more complex, flexible structures. 

A second objective is to incorporate the simplified sleeve joint 

models into an otherwise linear flexible structure. The equation of motion 

are developed for a system consisting of three linear flexible beams 

interconnected with two nonlinear sleeve joints. This model is studied to 

determine the influence of various joint properties on the overall system 

dynamics and to observe the qualitative behavior of a flexible structure 

with nonlinear joints. 

Finally, a mathematical model is developed for a pin-point joint based 

on actual measured test data. This model is incorporated into a three-beam 

system to determine the behavior of the combined system. 

Conclusions: 

The major conclusions of this study are: 

1. A sleeve joint system damped only with dry friction will exhibit 

envelopes of decay which are largely exponential. 	In other words, the 

damping contributions from dry friction tend to appear like those from 

linear viscous damping. 

2. Much of the behavior associated with systems having nonlinear joints 

is amplitude dependent. 	For example, higher amplitudes produce larger 

damping ratios and higher resonant frequencies than lower amplitudes. 

4 



3. 	The "natural frequencies" of jointed structures are dependent on the 

joint stiffness. 	As 	the 	joint stiffness increases, the "natural 

frequencies" increase but, also, the difference between the highest and 

lowest "natural frequency" grows making numerical integration of the 

equations of motion difficult to perform. 

4. Systems with typical nonlinear joints can exhibit marked hardening 

spring behavior. 	This includes the presence of jump phenomenon and 

multiple steady-state solutions to harmonic excitation. 

5. The systems studied in this report exhibited both sub-harmonic and 

super-harmonic response when forced harmonically. 

Items 2 through 5 may have a significant impact on the design and 

performance of linear control schemes for the shape and attitude control of 

large flexible truss structures. 
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