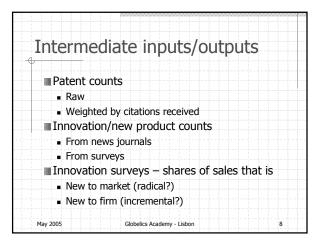
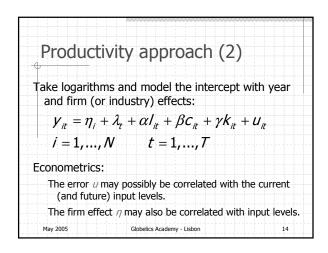

	g the returns to
innovatio	n (1)
Prof. Bronwy	n H. Hall
Globelics Aca	demy
May 26/27 20	005

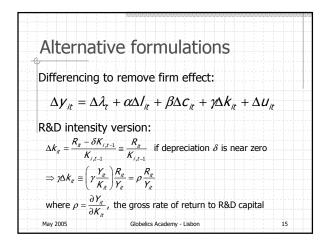
 This morning Overview – measuring the returns to innovation Measuring the returns to R&D using productivity regressions 	
innovation 2. Measuring the returns to R&D using productivity regressions	
productivity regressions	
3. Measuring the private returns to R&D us market value equations	sing
This afternoon 1. Patent data	


	his an interesting	
problem		
Economist	S	
 Models o 	f innovation and growth	
Managers		
 Allocation 	n of resources for invention	
Measure	results of innovation	
Accountant	its	
 Accurate Policy mak 	reporting of intangible value in company accorders	ounts
	ch to spend on innovation? what policy instrur w to choose the level of subsidy?	ment to
 Evaluation 	on of results	
May 2005	Globelics Academy - Lisbon	3

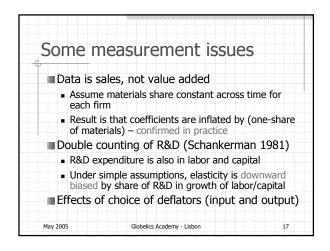
Fran	nework for analysis	
Inves lice	stment in innovation (R&D, traini enses) creates an asset that pays the future	
	nterprise level: asset tends to becom productive over time (it depreciates)	ne less
ii	ndustry/country/world level: investment innovation by many agents create ggregate "knowledge" asset * depreciates more slowly - when private fi longer earn returns from an innovation, t knowledge they have created remains us	rms no he
May 2005	Globelics Academy - Lisbon	4

Input n	neasures	
R&D sper		
 within fi 	rm	
	and joint venture participation	
Purchase	of new capital equipment	
Technolog	gy purchases/licensing	
Marketing	related to new products	
	and education of workers	
Spillover	variables	
 Based o 	n geography or technology	
	n survey variables	
 Whether 	r a firm is "innovative"	
 Sources internal 	of knowledge – suppliers, partners, consume	rs,
May 2005	Globelics Academy - Lisbon	7


Output m	easures
 Individual in Licensing f 	
	ewals as a function of fee schedule man-Pakes)
Surveys (⊢ Firm level	larhoff, Scherer, PATVAL)
 Profits or r 	evenue productivity
range of te	nancial market value - covers a broad echnology & industry, but requires active ket (Griliches, Hall, etc.)
Economy le	vel (social returns)
 Consumer 	willingness-to-pay (Trajtenberg)
May 2015 Aggregate	productivity growth

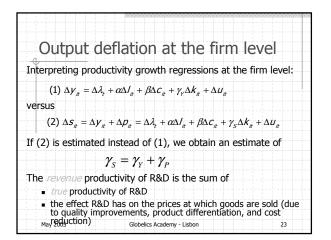

Re	lating inputs and outputs
1.	Production function approach – private and/or social returns
2.	Market value approach – private returns
3.	Patents as indicators of innovation activity
4.	Using innovation surveys

1.	Production function framework
	Cobb-Douglas production
	 first order log approximation to production function
	 general tool to relate quant measures of output to input
	Line of business, firm, industry, or country leve
	Variety of estimating equations:
	 Conventional production function
	 Partial or total factor productivity function
	 R&D intensity formulation
	 Semi-reduced form (add variable factor demand equations)


COLIC	eptual issues
🔳 Wha	t is output?
	ual measures exclude benefit of government ending on R&D – defense, environment, health
∎ Ur	measured quality change and new goods
■ Re	venue or output?
🔳 Wha	t is knowledge capital?
∎ Va	rying lags in producing knowledge
∎ De	preciation is endogenous at the firm level
	vn capital depends on the efforts of others as w the firm itself (spillovers)
May 2005	Globelics Academy - Lisbon 12

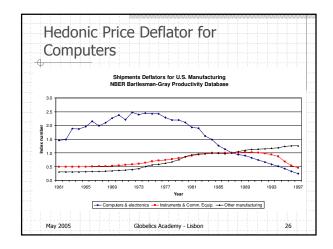
Produc	tivity approach (1)	
	$Y = AL^{\alpha}C^{\beta}K^{\gamma}e^{\nu}$	
L = lat	por	
C = ca	pital	
<i>u</i> = ra	ndom shock	
	search or knowledge capit ucted from investments <i>R</i> .	
	$K_t = (1 - \delta)K_{t-1} + R_t$	
May 2005	Globelics Academy - Lisbon	13

Alteri	native formulations
Partial o	or total factor productivity version:
Partial:	$\Delta \boldsymbol{y}_{it} - \hat{\boldsymbol{\alpha}} \Delta \boldsymbol{I}_{it} = \Delta \lambda_t + \beta \Delta \boldsymbol{C}_{it} + \gamma \Delta \boldsymbol{k}_{it} + \Delta \boldsymbol{U}_{it}$
Total: 🛽	$\Delta \boldsymbol{Y}_{it} - \hat{\boldsymbol{\alpha}} \Delta \boldsymbol{I}_{it} - \hat{\boldsymbol{\beta}} \Delta \boldsymbol{C}_{it} = \Delta \lambda_t + \gamma \Delta \boldsymbol{K}_{it} + \Delta \boldsymbol{U}_{it}$
	β may be estimated using factor shares at firm level (when available).
	combined with the R&D intensity roach.
	change in the assumptions on <i>u</i> required consistent parameter estimates.


Simu	Iltaneity	
Sou	rces of endogeneity:	
∎ In pr ef	puts and output chosen simultaneously - oductivity/profits experience leads to incr fort in the future	favorable eased R&D
■ Fi cł	rm knows its efficiency level (fixed effect) noosing inputs	when
In In	puts measured with error	
Solu	tions	
	ifference to remove fixed effect, exacerba easurement error bias	tes
∎ To ha	otal or partial productivity moves some in and side	outs to left
 In May 2005 	strumental variables, GMM for panel data Globelics Academy - Lisbon	18

	S	ales vs Value	added
Dep var	Log S	Log VA	(174)*VA Coeff
Log C	.043 (.002)	.193 (.008)	
Log K	.024 (.001)	.092 (.004)	.024
Log L	.193 (.005)	.699 (.012)	.183
Log M	.735 (.004)		
Sum	0.995	0.984	0.257
R ²	.993	.926	
s.e.	.115	.349	

,	Pool	ed OLS es	timates	
	Double o	ounting	Partial Pr	oductivity
	Unadjusted	Adjusted	Labor share = 0.67	Labor share estimated
Log(C/L)	.21 (.01)	.20 (.01)	.11 (.01)	05 (.02)
Log(K/L)	.18 (.01)	.25 (.01)	.22 (.01)	.49 (.02)
logL	03 (.01)	04 (.01)	00	.10
R ²	.996	.996	.998	.974
s.e.	.336	.344	.347	1.234


Log C/L .20 (.01) .17 (.06) .20 (.13) .23 (.01) Log K/L .25 (.01) .07 (.03) .13 (.03) .05 (.01)		Dep Var = log(Y/L)			
Log K/L .25 (.01) .07 (.03) .13 (.03) .05 (.0		Total	Within	Long diff.	First diff
	Log C/L	.20 (.01)	.17 (.06)	.20 (.13)	.23 (.09
	Log K/L	.25 (.01)	.07 (.03)	.13 (.03)	.05 (.07
LOG L	Log L	04 (.01)	06 (.05)		60 (.10
R ²	R ²	.996	.103		
s.e344 .186 .051 .193	s.e.	.344	.186	.051	.193

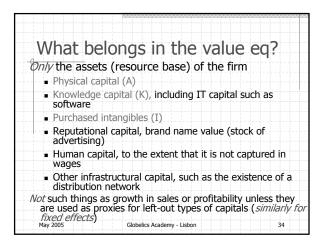
Approximate g	ross	rate o	r retl	Irn
<i>o</i> =	$\frac{\partial Y}{\partial R} = \gamma \frac{Y}{R}$	· · · · · · · · · · · · · · · · · · ·		
P	∂R ′ ƙ	2		
Large R&D-do	oing ma	nufacturi	ng firm	IS
Country	Y	R/Y	γ	dY/dF
France (1981-1989)	VA	4%	.069	1.72
UK (1988-1996)	Sales	2.42%	.065	3.30
Germany (1988-96)	Sales	5.84%	.079	1.35
US (1990-1998)	Sales	8.00%	.118	1.48
Chile (1998)	VA	1.5%	.131	8.7

Interp	retation	
	ue productivity is a determinant returns	t of
output	roductivity (more constant qual for a given set of inputs) is rel- ial returns	
The dif	fference represents pecuniary alities	
	fits received by downstream product consumers in the form of lower price	
∎ in so	me cases, these can be large	
May 2005	Globelics Academy - Lisbon	24

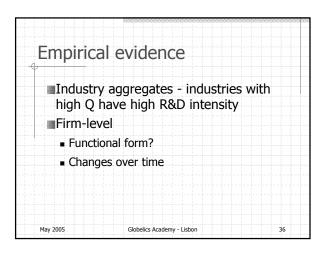
Illustration	
Some deflators at the industry level are hedonic (in the US and some OECD data)
 e.g., for the computer industry and the communications equipment industry 	
Deflate firm sales by 2-digit deflators inst of one overall deflator	ead
 true productivity is substantially higher than revenue productivity, because of price declin these R&D-intensive industries 	es in
■ innovation investments largely directed a product improvement (~2/3 of R&D) Globelics Academy - Lisbon	25

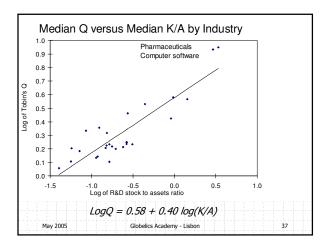
Dep. Var = Log Sales (S)	Dep. Var = Log Sales, 2-digit deflators (Y)	Difference ("price effect' (P)
003 (.025)	.102 (.035)	-0.099
.035 (.030)	.131 (.049)	-0.096
.118 (.031)	.283 (.041)	-0.165
	Sales (S) 003 (.025) .035 (.030) .118 (.031) imation is GMM-sys	Dep. Var = Log Sales, 2-digit Sales (S) deflators (Y) 003 (.025) .102 (.035) .035 (.030) .131 (.049)

Firm sto	ock market value	
	nent of <i>private</i> returns t ient in innovation	0
May 2005	Globelics Academy - Lisbon	28


Why ma	arket value?	
	nnovation are the profits earned nents made today	in the future
	king measure, allows intertempoi of innovations	ral
value of th	fficient markets assumption, equal to the e discounted cash flows that will be reco the assets of the firm	
	for a wide range of firms and cou ot as wide as we would like)	Intries
	ntangible assets a present-day pr and accountants	oblem for
	his methodology helps our understandir movation assets	ng of how to
May 2005	Globelics Academy - Lisbon	29

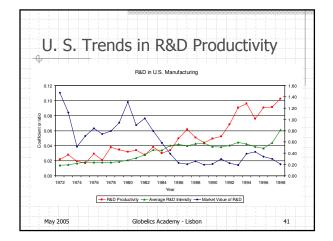
IIIe	oretical framework
as dy	easured market value = value function sociated with firm's profit-maximizing namic program ferences
	Hayashi (Econometrica 1982) – conditions under which marginal = average Q (including taxes)
	Wildasin (AER 1982) – same thing for multiple capitals
	Hayashi & Inoue (Econometrica 1991) – same model with capital aggregator function

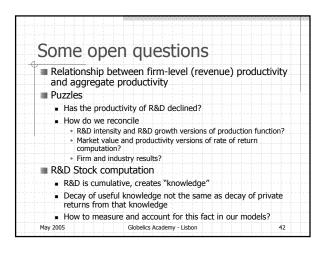

Theoret	ical Q model
■ Tobin's or of a (uniq	iginal Q = ratio of the market value V ue) asset to its replacement cost A
■ <i>Q>1</i> =>	invest to create more of the asset
■ Q<1=>	disinvest to reduce asset
■ <i>Q=1</i> in e	equilibrium
Hayashi (1982) - the asset is a firm
 derived 	Q from the firm's dynamic program
 gave cor equal to 	nditions under which marginal <i>Q (dV/dA)</i> average (<i>V/A</i>)
🔳 Hayashi-I	noue (1991) and Wildasin (1984)
 develope 	ed the theory with more than one capital


Practice	: hedonic regression
	$V_{it}(A_{itr}K_{it}) = b_t \left[A_{it} + \gamma K_{it}\right]$
Linear approx:	$\log V_{it} - \log A_{it} = \log Q_{it} = \log b_t + \gamma K_{it} A_{it}$
Non linear: log	$Q_{it} = \log b_t + \log(1 + \gamma_t K_{it}/A_{it})$
$Q_{it} = V_{it} / A_{it}$ is Tobin'	S q
$b_t = \text{overall market}$	level (approximately one)
K /A - ratio of inta	angible innovation assets to tangible
$R_{ij} A_{it} = 1000011100$	
γ_t = relative shadov	v value of K assets
γ_t = relative shadov	eciation correct, investment strategy optimal, and no

Assets (denominator)	Liabilities (numerator)		
Property, plant, & equipment	Common stock Preferred stock		
Inventories			
Investments in other firms	Long term debt; bonds		
Short term financial assets; cash; receivables	Short term debt; bank loans; payables		
Good will; booked investment in intangibles	Subordinated debt; other financial claims		
Intangibles not on balance sheet	Owner's equity (residual)		
May 2005 Globelics Acad	emv - Lisbon 3		

construct	ing in	πονατισι	n stocks
	$K_t = (1$	$(1-\delta)K_{t-1} + R_t$	
$\delta = \text{depre}$	ciation rat	on investment e of <i>K</i> , usually	/ = 15%
$\delta = depression depression for R grows at a co$	f innovation ciation rat	e of <i>K</i> , usually te <i>g</i> over time	/ = 15% , then
$\delta = depre$	f innovation ciation rat	te of <i>K</i> , usually te <i>g</i> over time Used	/ = 15%





ustries in US	K/A	O=V/A
Pharmaceuticals	3.39	8.92
Computer software	2.92	8.61
Computing equipment	1.44	3.68
Medical instruments	0.96	3.81
Autos	0.18	1.65
Printing and publishing	0.15	2.08
Rubber & plastics	0.15	1.61
Telecommunication services	0.12	2.27
Food & tobacco	0.09	2.16
Primary metals	0.06	1.28
Lumber & wood	0.04	1.14

	ızzle?
C	ompare changes 1972-1999
1.	Market value of R&D capital using hedonic model
2.	Revenue productivity of R&D capital
₃. ■ R	Average R&D to sales ratio esults
1.	Market value declines during 1980s from 1 to around .2
2.	R&D productivity increases steadily from .02 to .10
3.	Firms investment rate jumps during 1980s from .02 to .04.

