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SUMMARY

The objective of the dissertation research is to understand the complex in-

teraction between the algorithm and hardware aspects of symbol detection that is

enhanced by lattice reduction (LR) preprocessing for wireless MIMO communication

systems. The motivation for this work stems from the need to improve the bit-error-

rate performance of conventional, low-complexity detectors while simultaneously ex-

hibiting considerably reduced complexity when compared to the optimal method,

maximum likelihood detection. Specifically, we first develop an understanding of the

complex Lenstra-Lenstra-Lovász (CLLL) LR algorithm from a hardware perspective.

This understanding leads to both algorithm modifications that reduce the required

complexity and hardware architectures that are specifically optimized for the CLLL

algorithm. Finally, we integrate this knowledge with an understanding of LR-aided

MIMO symbol detection in a highly-correlated wireless environment, resulting in a

joint LR/symbol detection algorithm that maps seamlessly to hardware. Hence, this

dissertation forms the foundation for the adoption of lattice reduction algorithms in

practical, high-throughput wireless MIMO communications systems.
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CHAPTER I

INTRODUCTION

Researchers and engineers in industry alike see multiple-input multiple-output (MIMO)

communication systems as a possible solution to the increasing demand for high data

rate, power-efficient, wireless communication systems. MIMO communication sys-

tems achieve higher data rates than single antenna systems by using multiple anten-

nas to transmit and to receive multiple independent data streams simultaneously over

a communication channel. Each receiving antenna acquires a superposition of these

transmitted streams. The process of separating out each independent data stream

is called MIMO detection. Although the optimal solution to the MIMO symbol de-

tection problem, maximum-likelihood (ML) detection, is known, a brute-force ML

detector implementation involves an exhaustive search over all possible transmitted

symbol vectors. This approach is infeasible for hardware implementation when ei-

ther a large signal constellation or large number of antennas is employed. Hence, the

challenge in designing hardware for MIMO symbol detection is to achieve compara-

ble bit-error-rate (BER) performance to the ML detector while having low hardware

complexity and meeting throughput and latency requirements.

In many practical MIMO communication systems, detection is enabled by peri-

odically characterizing the relative contribution of each signal transmitted on each

antenna to the signal received on each antenna. This process is referred to as channel

estimation and is accomplished by transmitting known training signals at the start

of each packet. A variety of low-complexity methods such as zero-forcing (ZF) and

successive interference cancellation (SIC) detection involve a preprocessing step that
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transforms knowledge about the channel behavior into a form suitable for symbol de-

tection. This preprocessing result is then reused for each symbol detection until the

channel is characterized again, which usually occurs when the next packet is received.

The symbol detection step exhibits considerably lower complexity and involves either

matrix multiplication or straightforward linear system solving. These low-complexity

methods map well to hardware but have greatly reduced BER performance compared

to the ML detector.

Enhancements that improve the BER performance of symbol detection, such as

sphere decoding (SD) [25, 67, 2], significantly increase the overall complexity of the

packet processing because the complexity of each symbol detection is greatly in-

creased. Instead, it is clearly desirable to explore detection algorithms that achieve

ML or near-ML performance at the cost of increased preprocessing complexity as op-

posed to increased symbol-rate processing complexity. Lattice reduction (LR)-aided

detectors, which can incorporate lattice reduction algorithms into the preprocessing

part of ZF or SIC detectors and only increase the symbol-rate processing complexity

slightly, fit naturally into this observation.1 Variants of the complex Lenstra-Lenstra-

Lovász (CLLL) LR algorithm [36] have been considered almost exclusively for hard-

ware implementation as a result of both the low average complexity and desirable

numerical properties that are exhibited by the algorithm. The iterative nature and

high hardware complexity that is required to implement certain operations of the

CLLL algorithm, however, has remained a challenge for hardware realization.

The purpose of the dissertation research is to understand the complex interaction

between CLLL algorithm and hardware considerations and then apply this knowledge

toward the development of new CLLL-aided symbol detection algorithms and archi-

tectures. The culmination of the dissertation is a hardware realization of a specific

1LR algorithms can also be incorporated into the preprocessing part of SD algorithms to improve
the BER performance and to reduce the overall complexity [45, 50, 80, 60].
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modified LR algorithm and demonstration of this hardware realization in a practical

wireless communication system. The contributions of this dissertation, however, are

not limited only to this specific hardware realization. Throughout the dissertation,

we focus on providing general analytic justification or extensive empirical justifica-

tion for all algorithm modifications considered. Therefore, different combinations of

the dissertation contributions can be applied to develop other LR-aided detection

algorithms and architectures.

We begin this exploration in Chapter 2 by providing background knowledge about

MIMO detection. The purpose of this chapter is to provide a foundation of under-

standing for subsequent algorithm modifications and architecture development. We

accomplish this task by introducing a model for the channel behavior, defining the

MIMO detection problem, reviewing metrics used to characterize MIMO detection

algorithms, and reviewing existing detection methods. Concurrent with the presen-

tation of this information, we gradually build the motivation for LR-aided detection

hardware realizations.

In the next two chapters, we examine modifications to the CLLL algorithm from

two perspectives. In Chapter 3, we explore modifications that reduce the complexity

of the CLLL algorithm while preserving the desirable numerical behavior inherent in

the CLLL algorithm. In Chapter 4 we examine how the more complex operations in

the CLLL algorithm can be modified for streamlined hardware operation. Specifically,

we develop optimized hardware modules for completing the division and inverse square

root operations required by the CLLL algorithm.

We next explore hardware realization of this modified CLLL algorithm in Chapter

5. This exploration involves first applying the analysis from Chapter 3 to establish a

set of design parameters. We then develop an architecture based on these parameters

and the optimized hardware modules from Chapter 4. Finally, we evaluate the pro-

posed architecture along the metrics of throughput, packet-processing latency, and

3



hardware resource usage.

In the final three chapters we consider additional modifications to the CLLL-

aided detection algorithm utilized in the preceding chapters. Motivation for these

additional modifications stems from an evaluation of the proposed architecture using

a more realistic model channel model in Chapter 6. We discover that additional

instances of the proposed architecture are required to maintain the packet-processing

latency observed in Chapter 5. To solve this problem, we propose a merging of the LR

processing and symbol-rate processing of LR-aided detection algorithms in Chapter

7. The utility of this merged algorithm is then clearly demonstrated in Chapter 8.

Upper-case, bold-face letters Lower-case, bold-face letters Superscript H Superscript T

Superscript ∗ Superscript −1 | · | ‖·‖ d·e b·c b·e E [·] det [·] Xm,n xn IN 1M×N 0M×N

< [·] = [·] P {A} Q (a)

4



CHAPTER II

FUNDAMENTALS OF MIMO DETECTION

Considerable research has been completed by researchers in the area of efficient im-

plementation of ML detection and suboptimal methods that map well to hardware.

In this chapter, we first formalize the MIMO symbol detection problem and formally

define concepts that we utilize throughout the dissertation. We then review detection

methods and corresponding hardware realizations that have been explored by other

researchers. An understanding of the deficiencies of these detection methods natu-

rally leads to consideration of the dissertation focus, LR-aided detection algorithms.

After developing a detailed understanding of the computations required for LR-aided

detection algorithms, we are able to identify deficiencies in existing LR algorithm

hardware realizations.

2.1 Formulation of MIMO Detection Problem

Consider a flat-fading system with Nt transmit antennas and Nr receive antennas. For

MIMO transmissions, the data stream is divided into Nt sub-streams and transmitted

through Nt antennas. Let s = [s1, s2, . . . , sNt
]T ∈ SNt represent the Nt×1 transmitted

data vector at one time slot, where S is the constellation set of each element in s, let

H be the Nr ×Nt channel matrix, and let y = [y1, y2, . . . , yNr
]T denote the received

signal at one time slot from Nr receive antennas. The input-output relationship for

one time slot is

y = Hs + ηw, (1)

where η =

√

E[sHs]
Nt

and w = [w1, w2, . . . , wNr
]T is a white Gaussian noise vector

that has zero mean and covariance matrix E
[

wwH] = σ2
wINr

. We can then define

5



the signal-to-noise-ratio (SNR) in decibels (dB) as the following:

Definition 1 (Signal-to-Noise-Ratio) Given the w and η in the system model in

(1), the per-antenna signal-to-noise-ratio (SNR) is

SNR = −10 log10 σ
2
w. (2)

We assume that the elements of H are independent identically distributed (i.i.d.)

complex Gaussian distributed coefficients with zero mean and unit variance. We also

assume that the noise variance σ2
w is known at the receiver and H is known at the

receiver but unknown at the transmitter. Given this system model, detection is the

process of determining an estimate ŝ of the symbol vector s that was sent based on

knowledge of H , y, and σ2
w.

The BER performance of detection is characterized by both coding gain and di-

versity order. Coding gain refers to the signal-to-noise-ratio (SNR) gap between two

different detection methods at equal BER performance. Diversity order refers to the

asymptotic negative logarithmic slope of the BER versus SNR curve:

Definition 2 (Diversity) Suppose that the error probability Pe = P {ŝ 6= s} and

the signal-to-noise ratio is SNR. The diversity order of a given system is defined as

Gd = lim
SNR→∞

− logPe
log SNR

. (3)

From this definition it is clear that when two detection methods exhibit different di-

versity, the coding gain between these two detection methods increases with increasing

SNR.

2.2 Optimal Detection Method

When all s ∈ SNt are equally likely to be transmitted, the symbol detection method

that minimizes Pe in Definition 2 for the system model in (1) is the ML detector.
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This detector produces an estimate ŝML that is based on an exhaustive search over

all possible transmitted (Nt × 1)-sized symbol vectors in SNt :

ŝML = arg min
s̃∈SNt

‖y − Hs̃‖2. (4)

The complexity of this detection method is exponential in the number of trans-

mit antennas (O
(

|S|Nt

)

). Hence, the exhaustive search method is not feasible for

hardware realization when either a large signal constellation is employed (large |S|)

or large number of transmit antennas is employed. Instead, SD algorithms can be

used to intelligently reduce the search space of the exhaustive method using a tree-

search and can achieve ML or near-ML BER performance. SD algorithms based

on best-first, depth-first, and breadth-first search methods have been considered for

hardware implementation [5, 27, 3, 76]. These implementations, however, suffer from

variable complexity as the result of changing channel conditions [5, 27], prohibitively

large hardware requirements [3], or greatly reduced BER performance as the result

of degraded diversity [76]. We also note that for all these methods the tree-search

must be executed for each received y even when the channel matrix is unchanged

over multiple received y.

2.3 Low-Complexity Detection Methods

A variety of low-complexity MIMO detection methods have been explored, including

minimum mean squared error (MMSE) and MMSE-assisted SIC methods. These

methods usually involve preprocessing H and reusing this preprocessing result when

H does not change over multiple received symbol vectors.

Based on the model in (1), the linear MMSE equalizer equation is

x(MMSE) =
(

HHH + σ2
wINt

)−1
HHy. (5)

The subsequent symbol detection step involves application of the quantization func-

tion QS , which quantizes each vector element to the closest symbol in S. This gives

7



a detection result of ŝ(MMSE) = QS
[

x(MMSE)
]

. Note that x(MMSE) can also be found

by defining

H̄ =







H

σwINt






ȳ =







y

0Nt×1






(6)

and then computing the least-squares solution to the (over-constrained) extended

system H̄x(MMSE) = ȳ [24, 75]

x(MMSE) =
(

H̄
H
H̄
)−1

H̄
H
ȳ. (7)

We can determine the MMSE-SIC “solution” ŝ(MMSE-SIC) by first finding the QR-

decomposition H̄ = Q̄R̄, where Q̄ is an (Nr +Nt)×Nt matrix and R̄ is an Nt ×Nt

upper triangular matrix. Then we substitute this factorization into (7) and obtain

the following:

R̄x(MMSE) = Q̄
H
ȳ. (8)

Lastly, we let b̄ = Q̄
H
ȳ and use

ŝ(MMSE-SIC)
n = QS

[

b̄n −
∑Nt

j=n+1 R̄n,j ŝ
(MMSE-SIC)
j

R̄n,n

]

(9)

to complete the MMSE-SIC detection.

The above detection methods simplify to zero-forcing and SIC detection, respec-

tively, when the noise variance is not utilized in the detection process (σ2
w = 0).

As a result of the regular structure of these algorithms, these low-complexity

methods are attractive for hardware realization, especially for the challenging 4 × 4

H case. Hardware realizations of the preprocessing part of these algorithms include

the QR-decomposition implementations in [40, 61, 8, 63] and Direct Matrix Inver-

sion (DMI) implementations in [31, 13]. Complete implementations of the MMSE and

MMSE-SIC detection algorithms, including both the preprocessing and symbol vector

processing, can be found in [52, 33, 6]. We note, however, that these hardware real-

izations are fundamentally limited by the achievable diversity of these low-complexity

methods, which is only Nr −Nt + 1 [22, 43].
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2.4 Lattice-Reduction-Aided Detection

Given that these low-complexity methods are attractive for hardware realization,

it is desirable to explore modifications to these methods that restore full diversity

order Nr. To achieve this goal, LR algorithms have been incorporated with these

low-complexity methods [14, 43, 70, 75, 77, 64]. The utility of LR-aided detection

algorithms compared to other detection methods is evident in BER simulation re-

sults of the system model in (1) for 4×4 64-QAM transmissions, which are contained

in Figure 1. Examining this figure, we observe a concrete demonstration that LR-

aided detection algorithms achieve the same diversity as the ML detector and exhibit

superior BER performance compared to low-complexity detection methods. Hence,

we are motivated to develop a detailed understanding of LR-aided detection meth-

ods such that we can achieve this desirable BER performance in practical hardware

realizations.

2.4.1 High-level Description of LR-aided Detection

LR techniques involve preprocessing H to produce a reduced-lattice basis H̃ = HT ,

where T is a unimodular matrix. This factorization allows us to rewrite the system

in (1) as

y = HT (T−1s) + ηw = H̃z + ηw. (10)

The LR-aided detection process involves first finding an estimate ẑ of the transmitted

symbol vector in the z-domain using linear detection or SIC. Then we determine ŝ

by transforming each element of ẑ back to the original signal constellation using

ŝ = QS [T ẑ].

To compute this reduced-lattice basis, a variety of LR algorithms can be employed,

including Brun’s algorithm [55], Seysen’s algorithm [58] and the LLL algorithm [36].

The complex-valued QR-decomposition formulation of the LLL algorithm, the CLLL
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Figure 1: BER to SNR simulation results for 4 × 4 64-QAM transmissions and the
system model in (1). A sufficient number of channel realizations is employed such
that 8000 bit errors are generated per SNR value.

algorithm [14, 75], however, has been considered most frequently for hardware real-

ization. Therefore we focus on understanding CLLL-aided detection algorithms.

The CLLL algorithm operates on the QR-decomposition of H to produce T and

the QR-decomposition of H̃ . The H̃ = Q̃R̃ factorization returned by the CLLL

algorithm satisfies the complex size reduction condition (11) and complex Lovász

condition (12):

|<[R̃n,k]| ≤
1

2
|R̃n,n|, |=[R̃n,k]| ≤

1

2
|R̃n,n|, ∀ 1 ≤ n < k ≤ Nt, (11)

δ|R̃k−1,k−1|2 ≤ |R̃k,k|2 + |R̃k−1,k|2, ∀ k ∈ [2, Nt], (12)

where δ is a relaxation parameter that can be arbitrarily chosen from (1
2
, 1]. To reduce
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the complexity of the CLLL algorithm, the complex Lovász condition can be replaced

with the Siegel condition [10, 1]:

|R̃k−1,k−1|2 ≤ ζ |R̃k,k|2, ∀ k ∈ [2, Nt], (13)

where ζ is chosen from [2, 4].

Table 1 describes the operation of the original CLLL algorithm or the Siegel

condition variant of the CLLL algorithm, depending on whether the complex Lovász

condition or Siegel condition is used in Line 9, respectively. This listing forms the

starting point for our algorithm modifications in Chapter 3.

2.4.2 Low-level Description of CLLL-aided Detection for QAM Constel-
lation

Absent from the high-level description of LR-aided detectors are the details about

how we determine ẑ when we utilize a given low-complexity method and signal con-

stellation set. In this section, we consider the specific detection steps when the CLLL

algorithm is utilized with the MMSE-SIC detector (CLLL-MMSE-SIC detection).

If the original signal constellation set consists of the infinite complex integer plane,

then the signal constellation set in the z-domain also consists of the infinite complex

integer plane. Therefore, during the initial detection step in the z-domain, the QS

function in (9) can be replaced with the element-wise integer-rounding operation. The

signal constellation set for M-ary QAM, however, is S = {s | <[s],=[s] ∈ A}, where

A = {−
√
M + 1, ...,−1, 1, ...

√
M − 1}. We are therefore motivated to reformulate

(8) such that detection is carried out as if the real and imaginary parts of the original

constellation set are drawn from the consecutive integers.

We define a new constellation set Ṡ = {ṡ = 1
2
(s+ 1 + j) |s ∈ S}. The symbol

vector in (1) can then be thought of as a symbol vector ṡ ∈ ṠNt that has been

transformed by 2ṡ − (1 + j)1Nt×1. We can apply this idea to (8) by making the
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substitution x(MMSE) = 2ẋ(MMSE) − (1 + j)1Nt×1 and simplifying:

R̄ẋ(MMSE) =
1

2
Q̄

H (
ȳ + H̄ (1 + j)1Nt×1

)

. (14)

This equation allows us to utilize the CLLL algorithm with the MMSE-SIC detector

in (9). The CLLL algorithm returns the factorization H̄T = Q̃R̃, where Q̃ is an

(Nr +Nt) ×Nt matrix. Applying this relation to (14), we obtain the following:

R̃T −1ẋ(MMSE) =
1

2

(

Q̃
H
ȳ + R̃T−1 (1 + j) 1Nt×1

)

. (15)

Using the substitution z = T −1ẋ(MMSE) and partitioning Q̃ into an Nr × Nt matrix

Q̃
(1)

and Nt × Nt matrix Q̃
(2)

such that Q̃ =

[

(

Q̃
(1)
)T (

Q̃
(2)
)T
]T

, we obtain the

following:

R̃z =
1

2

(

(

Q̃
(1)
)H

y + R̃T −1 (1 + j) 1Nt×1

)

, (16)

which is in the same form as (8). We complete detection in the z-domain by first

computing ẑ using (9) with the QS function replaced with the integer-rounding

function.1 Then we determine the estimated symbol vector by computing ŝ =

QS [2T ẑ − (1 + j) 1Nt×1]. Hence, CLLL-MMSE-SIC detection for QAM requires that

the CLLL algorithm generates the vector T−1 (1 + j)1Nt×1 in addition to Q̃
(1)

, R̃,

and T .

2.4.3 CLLL Algorithm Operation

To generate these required matrices and the required T−1 (1 + j) 1Nt×1 vector (g in

Table 1), the CLLL algorithm operates by satisfying conditions (11) and (12) or (13)

for progressively larger upper-left square sub-matrices of R̃, iteratively updating the

matrices and g as needed. The k variable in Table 1 indicates the size of the currently

1This is a sub-optimal detection step because the signal constellation in the z-domain does not
consist of the infinite complex integer plane for (finite) M-ary QAM. The resulting estimate in the
z-domain may not correspond to a valid signal constellation, causing error propagation during the
SIC detection process.
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Table 1: Complex LLL Algorithm [43]

(1) [Q̃, R̃,T ] = sorted QR (H̄); k = 2; g = (1 + j) 1Nt×1;
(2) while k ≤ Nt

(3) for n = k − 1 : −1 : 1

(4) u = round(R̃n,k/R̃n,n)














size reduction
(5) R̃1:n,k = R̃1:n,k − u · R̃1:n,n

(6) T :,k = T :,k − u · T :,n

(7) gn = gn + u · gk
(8) end

(9) if Cond. Fail

〈 |R̃k−1,k−1|2 > ζ |R̃k,k|2 Siegel condition

δ|R̃k−1,k−1|2 > |R̃k,k|2 + |R̃k−1,k|2 Lovász cond.

(10) Θ = 1
‖R̃k−1:k,k‖

[

R̃∗
k−1,k R̃k,k

−R̃k,k R̃k−1,k

]























basis update

(11) R̃k−1:k,k−1:Nt
= ΘR̃k−1:k,k−1:Nt

(12) Q̃:,k−1:k = Q̃:,k−1:kΘ
H

(13) Swap (k − 1)-th and k-th columns in R̃ and T

(14) Swap (k − 1)-th and k-th rows in g

(15) k = max(k − 1, 2);
(16) else
(17) k = k + 1
(18) end
(19) end

active upper-left square sub-matrix. When the CLLL algorithm is operating on a k×k

sub-matrix, the size reduction condition is first forced true for the k-th column of R̃

(Line 3-8). Each inner-loop iteration (Line 4-7) forces the size reduction condition

true for a single element of this column and updates T , the g vector (as shown in

[54]), and the other elements of R̃. Next, the Lovász condition or Siegel condition is

checked in Line 9. If the condition is true, then the CLLL algorithm progresses to

the (k+ 1)× (k+ 1) upper-left sub-matrix. If the condition is not satisfied, however,

then a basis update (Line 10-14) is completed. The CLLL algorithm then restarts

at the (k − 1) × (k − 1) upper-left sub-matrix. This process of incrementing and

decrementing the active sub-matrix size continues until the entire R̃ matrix satisfies
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(11) and (12) or (13).

2.4.4 Existing Hardware Realization of LR Algorithms

The first implementation of an LR algorithm reported in literature is the Brun’s

LR algorithm implementation for MIMO precoding in [7]. This implementation fea-

tures impressive throughput as the result of algorithm simplifications that reduce

the complexity of the algorithm and make the algorithm more suitable for hard-

ware realization. These simplifications, however, also reduce the BER performance

considerably (5 dB gap in coding gain compared to when the CLLL algorithm is

utilized [19]). Furthermore, the diversity under these simplifications has not been

proven. The first implementations of LR algorithms that do not compromise BER

performance include the CLLL algorithm field programmable gate array (FPGA) im-

plementations in [19, 82] and a software implementation of Seysen’s LR algorithm

on a reconfigurable baseband processor in [72]. These implementations were then

followed by implementations of CLLL algorithm variants in [1, 62, 69].

Lacking from these LR hardware contributions is a discussion of the complex inter-

action between LR algorithm and hardware considerations. As a result, LR algorithms

have been modified without sufficient analytic justification. Instead, only system sim-

ulations have been used to justify design decisions. Additionally, the scalability of

a subset of these implementations is not certain given that the implementations in

[7, 72] require DMI as a preprocessing step and the algorithm implemented in [62]

does not scale past 4×4 systems [66]. Hence, an open problem in LR research is how

algorithm modifications to LR algorithms affect BER performance, operation under

various channel conditions, and scalability for future generation wireless systems.
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CHAPTER III

MODIFYING THE CLLL ALGORITHM FROM A

FIXED-POINT PERSPECTIVE

Often algorithms, such as the LLL algorithm, are originally developed under the as-

sumption that the variables involved in an algorithm are from an uncountable set of

numbers or from an infinitely countable set of numbers. In a hardware or software

realization of an algorithm, however, only finite hardware resources are available for

both computing operations and storing algorithm variables and parameters. There-

fore, a suitable finite-bit number representation must be chosen such that algorithm

operation for a given target application under this number representation is not ad-

versely affected. These finite-bit number representations are often classified as either

fixed-point or floating-point, referring to the fixed or variable location of the decimal

point.

Comparison of the specific details of fixed-point number representation to floating-

point number representation reveals why fixed-point implementations are more amend-

able to hardware realization. A (w + f)-bit 2’s complement fixed-point number xfix

having w bits for representing the integer part and f bits for representing the frac-

tional part can be written as

xfix = −2w−1bw+f−1 +
w−2
∑

i=0

2ibi+f + 2−f
f−1
∑

i=0

2ibi (17)

= 2−f

(

−2w+f−1bw+f−1 +

w+f−2
∑

i=0

2ibi

)

, (18)

where bi is the i-th bit of xfix. As equation (18) suggests, we can implement fixed-point

operations using digital hardware that operates on integers directly. This straight-

forward implementation is a natural consequence of the fixed location of the decimal
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point.

Conversely, in floating-point number representation, the variable location of the

decimal point naturally leads to additional hardware complexity. To observe this

more concretely, we consider the form of a floating-point number. Often floating-

point numbers are formed as a product of a sign term, a normalized mantissa term,

and a power-of-two scaling term. For example, consider the case when the exponent

of the scaling term is an M-bit 2’s complement number E and mantissa term is a

B-bit unsigned fixed-point number having 1 bit to represent the integer part and

B − 1 bits to represent the fractional part. A floating-point number xfloat under this

example can then be written as

xfloat = (−1)s ×
(

1 + 2−B+1
B−2
∑

i=0

2ibi

)

× 2E , (19)

where s is either 0 or 1 and bi is the i-th bit of the mantissa term. From this

equation, it is apparent that we cannot use an integer datapath immediately for

computations on two numbers represented in this form. To illustrate this idea more

concretely, we consider addition operations. The decimal points of the mantissa

terms must first be aligned such that the exponents of the scaling terms are equal.

The possibly shifted mantissas can then be added together using an integer datapath.

Additional normalization steps are then required such that the result can be put back

into the form of (19). Compared to fixed-point computations, both the alignment and

normalization steps inherent in floating-point operations leads to additional hardware

overhead in the form of barrel shifters. Additionally, the extra exponent term must

be stored and updated accordingly, again leading to additional hardware overhead.

Given this qualitative comparison of fixed-point to floating-point number repre-

sentations, we naturally desire to realize the CLLL algorithm in fixed-point hardware

or software. Towards this goal, we first examine both the Lovász condition and

Siegel condition variants of the CLLL algorithm from a fixed-point perspective. After

finding that both CLLL variants exhibit desirable numerical properties, we consider
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algorithm modifications that reduce the algorithm complexity and preserve these

properties. Finally, after examining possible side-effects of these algorithm modifica-

tions for both CLLL variants, we conclude that the Siegel condition variant is more

amendable for hardware realization given complexity considerations. Rigorous fixed-

point magnitude analysis of the Siegel condition variant of the CLLL algorithm then

forms the foundation for realizing the modified algorithm in hardware.

3.1 Numerical Properties of the CLLL Algorithm in MIMO

Detection

3.1.1 Practical Bounds Inherent in the System Model

Based on the system model in (1) and extended system definition in (6), we can model

the energy of the i-th H̄ column for a constant σw = σmax using the following:

‖h̄i‖2 = ‖hi‖2 + σ2
max, (20)

where 2‖hi‖2 is Chi-square distributed with degrees of freedom 2Nr and σmax is the

maximum value of σw.

Using the system model in (1) in a communication system simulation involves

repeated i.i.d. trials of the random variable in (20). From an implementation per-

spective, it is instructive to consider how often this variable exceeds a particular

magnitude when these variables are generated at a particular rate. We consider a

general exercise that involves an IEEE 802.11n system that requires the processing

of 128 MIMO channel matrices every 4 µs [23]. The results of this experiment are

plotted in Figure 2 for the case σmax = 0 and a variety of channel matrix sizes.1 Here

we examine the expected time between overflow events when we adopt a particular

number of integer bits (w in (18)) for fixed-point number representation of ‖h̄i‖.

From this figure, it is clear that only a small number of integer bits is sufficient to

1We note here that for illustration purposes we also include results for channel matrix sizes larger
than those specified in the 802.11n standard.
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Figure 2: Expected number of years between overflow events when a particular
number of integer bits is used to represent the square-root of the column energy of
the extended channel matrix.

guarantee (practically) no occurrence of overflow events.

3.1.2 Application of Practical Bounds to CLLL

The QR-decomposition preprocessing step in Line 1 of Table 1 preserves the column

energy of H̄ . Additionally, the squared magnitudes of the R̃ elements in the i-

th column before the start of the CLLL algorithm are upper bounded by ‖h̄i‖2.

Therefore, to determine an upper bound Binit for the magnitudes of the R̃ elements,

we can consider the exercise in Section 3.1.1. For the case Nr = Nt = 4 and σmax =

0.62 (4.15 dB)2, a choice of Binit = 22.82 yields one overflow event every 22.7 years.

2Below this SNR, the BER performance of MMSE-SIC is nearly identical to the BER performance
of CLLL-MMSE-SIC for BPSK and 4/16/64-QAM.
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Assuming that we adopt saturation quantization at the receiver, Binit safely upper

bounds the elements of R̃ at the start of the CLLL algorithm.

As a consequence of Lemma 1, the magnitudes of the R̃ diagonal elements are

upper bounded by Binit during operation of the CLLL algorithm. Lastly, recall that

size reduction operations force the size reduction condition (11) true. It therefore

follows that after size reduction on the k-th R̃ column, the magnitudes of the real

and imaginary parts of the off-diagonal elements in this column are upper bounded

by 1
2
Binit.

Lemma 1 During execution of the Lovász condition or Siegel condition variants of

the CLLL algorithm, the maximum magnitude of the R̃ diagonal elements does not

increase.

Proof: Notice that the CLLL algorithm only updates the diagonal elements of R̃

when a basis update is required. Letting R̃
′
be the updated R̃ matrix after the basis

update and column swap, we can write the updated (k − 1)-th and k-th diagonal

elements as

|R̃′
k−1,k−1|2 = |R̃k−1,k|2 + |R̃k,k|2, (21)

|R̃′
k,k|2 =

|R̃k,k|2
|R̃k−1,k|2 + |R̃k,k|2

|R̃k−1,k−1|2. (22)

For the case of the Lovász condition CLLL algorithm variant, it follows that

|R̃′
k−1,k−1|2 = |R̃k,k|2 + |R̃k−1,k|2 < δ|R̃k−1,k−1|2 < |R̃k−1,k−1|2 (23)

because 1
2
≤ δ < 1.

For the case of the Siegel condition CLLL algorithm variant, it follows that

|R̃′
k−1,k−1|2 ≤

1

2
|R̃k−1,k−1|2 + |R̃k,k|2 <

(

1

2
+

1

ζ

)

|R̃k−1,k−1|2 (24)

because ζ ≥ 2 and at Line 11 the R̃k−1,k element satisfies the size reduction condition

(11).
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For either CLLL algorithm variant, it is clearly apparent from equation (22) that

|R̃′
k,k|2 ≤ |R̃k−1,k−1|2. �

3.2 Modifying the CLLL Algorithm

These numerical properties—tightly bounded R̃ diagonal elements and tightly bounded

size reduction operation results—exhibited by the CLLL algorithm are desirable in

fixed-point hardware realization. Modifications to the CLLL algorithm should there-

fore be evaluated on both algorithm complexity reduction and preservation of these

numerical properties in addition to BER performance.

3.2.1 Motivation

An algorithm modification in [37] resulted in the Effective LLL algorithm. Essen-

tially, only the first inner-loop iteration (Line 4-7) is executed during each outer-loop

iteration. For LLL-SIC detectors it is asserted in [37] that the symbol vector estimate

is unchanged by this modification. Given that only an intuitive explanation is given

in [37], we consider the following proposition:

Proposition 1 Let R̃, T , and Q̃ be the matrices obtained when the CLLL algorithm

is run to completion or early terminated on any iteration. Let ŝ be the symbol vector

estimate when these matrices are used for CLLL-MMSE-SIC detection. If full size

reduction is completed on the R̃ matrix, then the symbol vector estimate when Q̃ and

the updated R̃ and T matrices are used for CLLL-MMSE-SIC detection is also ŝ.

Proof: See Appendix A.

In addition to providing justification of the Effective LLL algorithm, this propo-

sition also indicates that the symbol vector estimate is unaffected by size reduction

operations on the R̃k−1,k elements for 2 ≤ k ≤ Nt.

Although the Effective LLL algorithm has lower complexity than the original

CLLL algorithm, the R̃ elements that are not size reduced are allowed to increase
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uncontrollably. Since this behavior is unacceptable in a fixed-point hardware imple-

mentation, we are motivated to modify the Effective LLL algorithm.

3.2.2 Relaxing the Size Reduction

Instead, we propose to relax the size reduction condition on all elements by associating

a size reduction parameter φn,k ≥ 1
2

with each of these elements:

Definition 3 (Relaxed Size Reduction Condition) The R̃n,k element for n < k

satisfies a relaxed size reduction condition, which is defined by φn,k ≥ 1
2
, if |<[R̃n,k]| ≤

φn,k|R̃n,n| and |=[R̃n,k]| ≤ φn,k|R̃n,n| is satisfied.

We therefore modify the CLLL algorithm such that during each k iteration, size

reduction is performed on entries R̃n,k for n < k − 1 (Line 4-7) only when this

definition is not satisfied. By choosing larger φ’s we can decrease how often size

reduction is performed on these elements, decreasing the algorithm complexity while

maintaining bounded size reduction results.

The motivation for the relaxation on the size reduction conditions for n = k − 1

is not necessarily reduction of algorithm complexity. Instead, later in Section 4.1.1.3

we utilize relaxation of these elements to simplify the design requirements for the

integer-rounded divider. Since the R̃k−1,k elements influence the behavior of the R̃

diagonal elements, we must examine this relaxation more carefully.

3.2.3 Effect of Relaxation on Lovász Condition CLLL Algorithm Variant

We consider operation of the CLLL algorithm in Table 1 when a relaxed size reduction

condition, defined by the φn,k’s, is adopted. Specifically, we only execute Line 4-7

if the R̃n,k element does not satisfy Definition 3 and run the modified algorithm to

completion. Since the resulting R̃ matrix satisfies Definition 3 and (12), the following

is true for 2 ≤ k ≤ Nt:

(

δ − 2φ2
k−1,k

)

|R̃k−1,k−1|2 ≤ |R̃k,k|2. (25)

21



To produce an upper-triangle matrix R̃
�

that satisfies the full size reduction con-

dition in (11), we can execute the full size reduction procedure used in Lemma 6 (see

Appendix A) on R̃. If during this procedure the R̃k−1,k element requires size reduc-

tion (on either the real or imaginary part), then the magnitude of the R̃k−1,k element

will decrease. Hence, the state of the Lovász condition will become uncertain. We

therefore consider the worst case when all R̃k−1,k elements for 2 ≤ k ≤ Nt require size

reduction. For this case the following is true (likewise for |=[R̃k−1,k]|):

1

2
|R̃k−1,k−1| < |<[R̃k−1,k]| ≤ φk−1,k|R̃k−1,k−1|. (26)

Assuming that we choose φk−1,k’s less than 1, we see that |<[R̃�
k−1,k]| satisfies

(likewise for the |=[R̃�
k−1,k]|)

|<[R̃�
k−1,k]| = |R̃k−1,k−1| − |<[R̃k−1,k]|. (27)

Combining this result with the inequalities in (26), we obtain

2(1 − φk−1,k)
2|R̃k−1,k−1|

2 ≤ |R̃�
k−1,k|

2
. (28)

Finally, by adding the inequality in (28) to the inequality in (25), observing that

the diagonal elements of R̃ are unchanged by full size reduction, we see that

(

δ − 4

(

φk−1,k −
1

2

))

|R̃�
k−1,k−1|

2 ≤ |R̃�
k,k|

2
+ |R̃�

k−1,k|
2
. (29)

Hence, R̃
�

satisfies both the full size reduction condition in (11) and the Lovász

condition in (12) that has the δ parameter replaced with δ� = δ − 4
(

φk−1,k − 1
2

)

.

If we choose the φk−1,k’s such that δ� is greater than 1
2
, then the diversity proof

in [43] remains valid under this size reduction condition relaxation. Additionally, the

δ parameter in the CLLL algorithm controls the BER performance for CLLL-aided

detectors [43]. Specifically, as the δ parameter is increased, the BER performance

improves while the complexity increases. Therefore when we use R̃
�

(with the corre-

sponding T �) in CLLL-MMSE detection, BER performance degradation will come in
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Figure 3: Effect of relaxation of the φk−1,k’s size reduction conditions on the Lovász
condition CLLL algorithm variant. For all simulations, a 4 × 4 64-QAM system is
considered and a choice of δ = 3

4
is used for the CLLL-MMSE-SIC algorithm. A

sufficient number of channel realizations is considered to generate a minimum of 3000
bit errors per SNR value.

the form of an increase in the coding gain gap to ML BER performance. Based on the

conclusion in Appendix A, this result is also true when we use R̃ in CLLL-MMSE-SIC

detection.

To demonstrate that simulation results are consistent with this analytic result,

we simulate a 4 × 4 64-QAM system with a choice of δ = 3
4

for the CLLL-MMSE-

SIC algorithm. The result of this experiment for various choices of uniform φk−1,k’s

is shown in Figure 3. From this figure we see that for φk−1,k = 9/16, full-diversity

detection is achieved and negligible reduction in BER performance occurs. When the

CLLL-MMSE-SIC algorithm is run for larger φk−1,k’s, however, the BER performance
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degrades rapidly.

3.2.4 Effect of Relaxation on Siegel Condition CLLL Algorithm Variant

We again consider operation of the CLLL algorithm in Table 1 when a relaxed size

reduction condition, defined by the φn,k’s, is adopted. In this exercise, however, we

consider the behavior of the Siegel condition variant of the CLLL algorithm.

During a basis update the R̃k,k−1 element, which becomes the k-th R̃ diagonal

after the column swap in Line 13, is updated at Line 11 such that the magnitude of

this element is less than or equal to the magnitude of the R̃k−1,k−1 element (Lemma

1). The R̃k−1,k element, which becomes the (k − 1)-th R̃ diagonal after the column

swap, is updated such that the squared magnitude is equal to |R̃k,k|
2

+ |R̃k−1,k|
2
.

Applying the failed Siegel condition and the relaxed size reduction condition, we see

that the following is true:

|R̃k,k|
2
+ |R̃k−1,k|

2
<

(

1

ζ
+ 2φ2

k−1,k

)

|R̃k−1,k−1|
2
. (30)

Given that the size reduction condition on the R̃k−1,k element is relaxed, it is now

possible that a basis update could increase the maximum squared magnitude of the R̃

diagonal elements by a factor of
(

1
ζ

+ 2φ2
k−1,k

)

. Assuming that the maximum number

of basis updates is G and that all φk−1,k’s are the same, we define a new upper bound

for the magnitude of the R̃ diagonal elements:

B =















Binit
1
ζ

+ 2φ2
k−1,k ≤ 1,

(

1
ζ

+ 2φ2
k−1,k

)
G
2
Binit

1
ζ

+ 2φ2
k−1,k > 1.

(31)

3.2.5 Bounding the Intermediate Size Reduction Result for Hardware
Implementation

Given that the Siegel condition variant of the CLLL algorithm exhibits reduced com-

plexity compared to the Lovász condition variant [10, 1], we focus on examining the

behavior of the size reduction operations for the Siegel condition variant. To utilize

24



Definition 3 in the CLLL algorithm, we must have an understanding of how large

intermediate size reduction results can grow during size reduction on an R̃ column

(Line 5).

In the modified CLLL algorithm with a relaxed size reduction condition, a size

reduction operation is required for each inner-loop iteration (Line 4-7) only if the

R̃n,k element in Line 5 does not satisfy Definition 3. As an additional modification

toward a fixed-point hardware implementation, we force a size reduction operation

each inner-loop iteration when the magnitude of the real or imaginary part of the

R̃n,k element in Line 5 exceeds 1
2
B. For simplicity we also assume that all φn,k’s for

n = k − 1 in Definition 3 are equal.

We now examine how the R̃ elements can increase during a relaxed size reduction

process that includes the enforcement of the absolute 1
2
B upper bound. Here, we

simultaneously generalize and simplify our original analysis in [20] to accommodate

Definition 3. We also note that for fixed B, the following analysis is independent of

the channel model.

For size reduction operations on the k-th column, we let R̃′
n,k represent the inter-

mediate value of R̃n,k after the first (k − n− 1) inner-loop iterations but before size

reduction on the n-th row element of the k-th column. We also let ul,k be equal to 0

when execution of the (k − l)-th inner-loop iteration is not required (R̃n,k at Line 4

satisfies Definition 3 and the 1
2
B upper bound) and be equal to the u value in Line

4 at the (k − l)-th inner-loop iteration when execution of this inner-loop iteration is

required. We can then write the intermediate size reduction result as

R̃′
n,k = R̃n,k −

k−1
∑

l=n+1

ul,kR̃n,l. (32)

The summation on the righthand side involves R̃n,l elements, which are the results of

size reduction operations during previous outer-loops (when the CLLL algorithm was

operating on upper-left square matrices smaller than k × k). By applying Definition
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3 to these R̃n,l elements, we can upper bound the magnitude of the real component

of R̃′
n,k in (32) by

∣

∣

∣
<[R̃n,k]

∣

∣

∣
+

k−1
∑

l=n+1

(|<[ul,k]| + |=[ul,k]|)φn,l
∣

∣

∣
R̃n,n

∣

∣

∣
. (33)

To remove the dependence of (33) on the ul,k’s, we notice that given our definition

of the R̃′
n,k elements, the enforcement of the absolute 1

2
B upper bound results in the

following relation:

∣

∣

∣
<[R̃′

l,k] −<[ul,k]R̃l,l

∣

∣

∣
<

1

2
B. (34)

Using signed-magnitude techniques, we can write this as

|<[ul,k]|
∣

∣

∣
R̃l,l

∣

∣

∣
<

1

2
B +

∣

∣

∣
<[R̃′

l,k]
∣

∣

∣
. (35)

To remove the dependence of (35) on R̃l,l, we notice that the induction proof

found in [43, Appendix B] that has been slightly altered to accommodate the Siegel

condition (13) results in

∣

∣

∣
R̃n,n

∣

∣

∣
< ζ

l−n
2

∣

∣

∣
R̃l,l

∣

∣

∣
. (36)

Finally, substitution of (36) into (33) followed by substitution of (35) results in the

following:

∣

∣

∣
<[R̃′

n,k]
∣

∣

∣
<
∣

∣

∣
<[R̃n,k]

∣

∣

∣
+ (37)

k−1
∑

l=n+1

ζ
l−n
2 φn,l

(

B +
∣

∣

∣
<[R̃′

l,k]
∣

∣

∣
+
∣

∣

∣
=[R̃′

l,k]
∣

∣

∣

)

.

We obtain a similar upper bound on the magnitude of =[R̃′
n,k] by repeating steps

(33)-(37).

We can first trivially determine these upper bounds for n = k − 1 and then

recursively substitute as we determine these upper bounds for smaller n. Assuming
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that the φn,k’s do not change during execution of the algorithm, we obtain

∣

∣

∣
<[R̃′

n,k]
∣

∣

∣
< γn,kB +

∣

∣

∣
<[R̃n,k]

∣

∣

∣
+ (38)

k−1
∑

p=n+1

αp,k

(∣

∣

∣
<[R̃p,k]

∣

∣

∣
+
∣

∣

∣
=[R̃p,k]

∣

∣

∣

)

,

where the αp,k’s and γn,k’s are determined during the recursive substitution process.

Note that at the end of an outer-loop for a particular k,
∣

∣

∣
R̃p,k

∣

∣

∣
is upper bounded

by B for p = k − 1 as a result of possible basis updates3 and by B/
√

2 for p 6= k − 1.

Therefore, the maximum energy that could be re-distributed among the R̃1:k−1,k sub-

vector elements as the result of subsequent basis updates (as Siegel conditions fail

and the CLLL algorithm operates on smaller matrix sizes) is the following:

k−1
∑

p=1

|R̃p,k|2 ≤ B2

(

1 +
k − 2

2

)

. (39)

To maximize the righthand side in (38), we assume that subsequent basis updates

distribute the energy among the sub-vector elements to maximize the upper bound.

Solving this constrained maximum problem (see Appendix B), we obtain

∣

∣

∣
<[R̃′

n,k]
∣

∣

∣
< B



γn,k +

√

√

√

√k

(

1

2
+

k−1
∑

p=n+1

α2
p,k

)



 (40)

and reach a similar upper bound for the imaginary components. By designing hard-

ware around these upper bounds, we can safely utilize variants of the Effective CLLL

algorithm in fixed-point implementations.

3The magnitude of R̃k−1,k is upper bounded by B/
√

2 when no basis update occurs. If a basis
update occurs, then this upper bound is B.
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CHAPTER IV

MODIFYING THE CLLL ALGORITHM BASED ON

DATAPATH CONSIDERATIONS

In the previous chapter we focus on fixed-point modifications that are relevant for

both software and hardware implementations. In this chapter, however, we consider

more hardware-focused CLLL algorithm modifications. Specifically, we develop and

analyze a hardware datapath for the division operation required by the size reduction

operation and a hardware datapath for handling the basis update operation. Although

these two datapath exercises appear to be disparate, we reach the same conclusion

about either datapath exercise: Applied understanding of the CLLL algorithm nat-

urally leads to additional algorithm modifications that we can use to simplify the

seemingly complex datapaths requirements.

4.1 Handling the Size Reduction Condition

Each size reduction operation requires the computation of an integer-rounded quo-

tient (Line 4). This computation, however, can often be avoided by noticing that

|<[R̃n,k]| < 1
2
|R̃n,n| implies <[u] = 0 and 1

2
|R̃n,n| ≤ |<[R̃n,k]| < 3

2
|R̃n,n| implies

|<[u]| = 1. We handle the case |<[u]|, |=[u]| > 1 in [16] using an integer-rounded

divider based on a single Newton-Raphson (NR) iteration, taking advantage of the

divisor reuse inherent in the CLLL algorithm. Assuming reciprocals are buffered,

this reciprocation-based approach is also useful for the subsequent SIC detection step

because the stored reciprocals can be used for the SIC recursion in (9). Here we adopt

our original basic architecture but alter it slightly based on our algorithm modifica-

tions in Chapter 3.
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4.1.1 Single Newton-Raphson Iteration for Integer-rounded Division

We first consider a more formal description of the Newton-Raphson iteration-based

division method. To compute n/d for n > 0 and d > 0, we first normalize d such that

d2ψ = dn, where 1 ≤ dn < 2. An estimate r′n of the reciprocal of dn is then computed

from an initial estimate rn + ε, which is often obtained from a look-up table (LUT),

using the following equation:

r′n = (rn + ε) (2 − dn (rn + ε)) , (41)

where rn = 1/dn and ε is the error of the initial estimate.

4.1.1.1 Fixed-Point Formulation

To alter this expression for a fixed-point hardware implementation, we first introduce

the notation {w.f} to indicate an unsigned number representation having w inte-

ger bits and f fraction bits, let the function Q1 indicate truncation quantization to

{2. (f + 1)}, and let the function Q2 indicate truncation quantization to {2.f}. We

also allow an additional LUT for (rn + ε)2. Assuming that n has {wn.f} representa-

tion, d has {w.f} representation, and the (rn + ε) LUT has {1.a} representation, we

then update (41) to the following:

r′n = 2 (rn + ε) −Q2

[(

Q1

[

dn + 2−(f+1)
])

(rn + ε)2]− 2−f . (42)

Given that dn has {1.f + w − 1} representation, the Q1 function and 2−(f+1) term

together introduce an error ε1 bounded by 2−(w+f−1) ≤ ε1 ≤ 2−(f+1). Given that

(rn + ε)2 has {1.2a} representation, the Q2 introduces an error ε2 bounded by −2−f +

2−(f+1+2a) ≤ ε2 ≤ 0. These observations allow us to rewrite (42) as

r′n = 2 (rn + ε) −
(

(dn + ε1) (rn + ε)2 + ε2
)

− 2−f

= rn + ε′, (43)

where ε′ = −
(

dnε
2 + ε1(rn + ε)2 + ε2 + 2−f

)

. By considering the bounds of ε1 and ε2,

we see that for this particular fixed-point formulation ε′ < 0.
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Figure 4: Enlarged view of the dn values that map into the i-th entry of the (rn + ε)
LUT. The function Q3 represents truncation quantization to {1.a}.

4.1.1.2 Relative Error Analysis

The magnitude of the relative error, which is the absolute value of the ratio of the

absolute quotient error to the quotient, can be upper bounded by setting each fixed-

point error term in ε′ to the maximum possible value:

∣

∣

∣

∣

nε′2α

nrn2α

∣

∣

∣

∣

= dn|ε′| < dn

(

dnε
2 + 2−f +

(

1

dn
+ ε

)2

2−(f+1)

)

. (44)

Assuming f is constant, the maximum value of this upper bound is only a function

of LUT length N and LUT entry number representation {1.a}. A standard method

for indexing into a LUT of length N = 2γ involves using the first γ fraction bits of dn

as the index i into the LUT. Each LUT entry Ti is then d′n
−1 quantized to {1.2a} by

the function Q3, where d′n is equal to the midpoint value of the dn values that map

to index i [11]. Figure 4 illustrates this convention.

Adopting this convention, we may express the upper bound of (44) as a piece-wise

function of dn consisting of N functions fi(dn), where

fi(dn) = dn
2

(

Ti −
1

dn

)2

+ dn
(

2−f + Ti
22−(f+1)

)

. (45)

Since the second derivative of fi with respect to dn is always positive, it follows

that the limit of the maximum value of fi must occur at dn = 1 + i
N

or dn = 1 + i+1
N

.
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Therefore, to compute an upper bound Mγ,a for (44) given a table length N = 2γ and

LUT number representation {1.a}, we evaluate

Mγ,a = max
i=0...2γ−1

(

max

(

fi

(

1 +
i

2γ

)

, fi

(

1 +
i+ 1

2γ

)))

. (46)

We demonstrate the utility of the Mγ,a upper bound for an example system in Ap-

pendix C. An additional optimization not considered here then involves simultane-

ously increasing the number of dn truncated bits and the corresponding bias term in

(42).

4.1.1.3 Integer-Rounding Considerations

The inherent assumption of the relative error analysis is that we compute n2ψr′n to

full precision. Since we only concern ourselves with the integer-rounded quotient, this

precision is unnecessary. The product nr′n requires wn integer bits and 2f fraction bits

for full-precision representation. We round up n2ψr′n when the following inequality is

satisfied:

2f−ψ−1
∑

i=0

bi2
(−2f+i+ψ) ≥ 1

2
, (47)

where bi is the i-th bit of the nr′n product. Conversely, we return the integer part of

n2ψr′n when the condition in (47) is not satisfied.

We can use the condition of b(2f−ψ−1) to determine the state of the condition in

(47). When b(2f−ψ−1) = 1 we have the following:

2f−ψ−1
∑

i=0

bi2
(−2f+i+ψ) =

1

2
+

2f−ψ−2
∑

i=0

bi2
(−2f+i+ψ) ≥ 1

2
, (48)

indicating that (47) is true. When b(2f−ψ−1) = 0 we have the following:

2f−ψ−1
∑

i=0

bi2
(−2f+i+ψ) =

2f−ψ−2
∑

i=0

bi2
(−2f+i+ψ) ≤

(

1

2
− 2−2f+ψ

)

<
1

2
, (49)

indicating that (47) is false.
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Since 2ψ normalizes d, which has {w.f} representation, the maximum value of ψ

is f . Therefore we only need compute the first f + 1 fraction bits (to the right of the

decimal point) of nr′n.

4.1.2 Exploiting the Relaxed Size Reduction Condition

Before utilizing the upper bound Mγ,a to exploit the relaxed size reduction condition

in Chapter 3, we prove a necessary lemma. Letting q = n/d and q′ = n2ψr′n, we

consider the following:

Lemma 2 For the fixed-point Newton-Raphson formulation given in (42), the fol-

lowing is true:

−
(

1

2
+ εq

)

< ξ <
1

2
, (50)

where εq = q − q′ and ξ = bq′e − q.

Proof: Since ε′ < 0, it follows that εq > 0. We see that bq′e satisfies q′ − 1
2
< bq′e ≤

q′ + 1
2
, which can be rewritten as −

(

1
2

+ εq
)

< ξ ≤ 1
2
− εq. Since the upper bound of

this interval is 1
2
, ξ satisfies (50). �

Then as an initial step toward exploiting the relaxed size reduction in the integer-

rounded divider, we consider the following lemma, which concerns the integer-rounded

quotients computed from full-precision quotients:

Lemma 3 Given that the fixed-point Newton-Raphson in (42) that has maximum

relative error Mγ,a is used to compute the u for size reduction on the R̃n,k entry (Line

4, Table 1), the relaxed size condition for this entry will always be satisfied if the

following is true:

∣

∣

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

=[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

<
φn,k − 1

2

Mγ,a

, (51)

where φn,k ≥ 1
2

is the relaxed size condition factor associated with the R̃n,k entry.
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Proof: Let u′ be the integer-rounded quotient produced by using the fixed-point

Newton-Raphson formulation. If we set n = |<[R̃n,k]| and d = |R̃n,n|, then |<[u′]| =

bq′e. We see that Lemma 2 implies the following:

−
(

1

2
+ εq

)

+

∣

∣

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

< |<[u′]| <
∣

∣

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

+
1

2
. (52)

The absolute error εq is upper bounded by
∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣
Mγ,a, which according to (51) is

upper bounded by
(

φn,k − 1
2

)

. By applying this result to the lower bound in (52) and

additionally applying the φn,k ≥ 1
2

assumption to the upper bound in (52), we obtain

the following:

−φn,k +

∣

∣

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

< |<[u′]| <
∣

∣

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣

∣

∣

+ φn,k. (53)

This inequality shows that if we use |<[u′]| for the magnitude of the real part of u

in Line 5, then the real part of the updated R̃n,k entry will satisfy the φn,k relaxed

size reduction condition. Identical arguments can be used to prove this lemma for

the imaginary part of R̃n,k. �

This lemma is not immediately useful because the integer-rounded divider does

not produce the actual quotient. Instead, we consider an additional lemma.

Lemma 4 Given the fixed-point Newton-Raphson in (42) that has maximum relative

error Mγ,a, (51) is satisfied if the following is true:

|<[u′]| , |=[u′]| < 1 −Mγ,a

Mγ,a

(

φn,k −
1

2

)

− 1

2
. (54)

Proof: Application of Lemma 2 and εq <
∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣
Mγ,a together imply that −1

2
+

∣

∣

∣

<[R̃n,k]

R̃n,n

∣

∣

∣
(1 −Mγ,a) < |<[u′]|. This inequality when reconciled with (54) implies that

(51) is true. We can use identical arguments to prove this lemma for |=[u′]|. �

According to this lemma, the extra rounding error detection and correction pro-

posed in [16] is not necessary when (54) is satisfied. When (54) is not satisfied, this

extra logic remains unnecessary if we allow repeated CLLL iterations. In other words,
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Figure 5: Proposed single Newton-Raphson iteration-based integer-rounded divider.
A single multiplier is shared between the reciprocation and dividend datapaths. A
collection of comparators and straightforward logic are used to evaluate the relaxed
size reduction conditions and detect trivial integer quotients.

we simply repeat a CLLL iteration until all u′ values generated during an iteration

satisfy (54) and all off-diagonal elements in the k-th column of R̃ satisfy the 1
2
B abso-

lute upper bound after the size reduction operation for that iteration. Since computed

u′ component magnitudes are always less than or equal to the actual u component

magnitudes, the analysis in Chapter 3 remains valid.

4.1.3 Integer-Rounded Divider Architecture

Application of the ideas described in Section 4.1.1 for a CLLL system that processes

4 × 4 R̃ matrices results in the straightforward architecture illustrated in Figure 5.

The d input (|R̃n,n|) input is in signed-magnitude form, while the n inputs (<[R̃n,k]
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and =[R̃n,k]) are both in 2’s complement form. The integer quotient outputs are also

in 2’s complement form. The two LUTs are implemented with a single 32 × 18-bit

ROM. The reciprocal computation begins at the normalize module and requires 4

cycles, while a reciprocal-reuse division only requires 4 cycles. Both the shift amount

ψ and the computed r′n are stored in a three entry buffer. We accomplish the intro-

duction of the −2f term found in (42) by computing the one’s complement of the

truncated
(

dn + 2−(f+1)
)

(rn + e)2 product. Another 2 cycles are then required to

multiply the reciprocal by the dividend, shift the truncated product by the stored

ψ value, integer-round the result, and finally restore the sign. The architecture also

contains straightforward logic for detecting trivial u values and evaluating the relaxed

size reduction conditions.

4.2 Handling the Siegel Condition

Evaluation of the Siegel condition (Line 9) is straightforward, while computation of

Θ (Line 10) requires the inverse square-root operation, which has high hardware

complexity. A numerically stable and efficient method, however, becomes apparent

by forming the vector

v =
[

|R̃k,k| <[R̃k−1,k] =[R̃k−1,k]
]T

(55)

and viewing these computations as a vector normalization problem [20]. Then Θ can

be formed from the elements of v/‖v‖, and the updated (k − 1)-th diagonal after the

Θ multiplication in Line 11 and column swap in Line 13 is ‖v‖.

4.2.1 Traditional Householder CORDIC Architecture Solution

We can solve this vector normalization problem by applying the Householder CORDIC

algorithm [26]. Similar to classic CORDIC algorithms, vectoring (rotating a vector

to an axis) and rotation (rotating a vector around an arbitrary axis) operations are

computed using iterative application of low hardware complexity shifts and additions.
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Figure 6: Single-iteration-per-cycle Householder CORDIC architecture.

A sequence of J Householder vectoring iterations can be used to compute ‖v‖ to a

certain precision within a constant CORDIC gain factor, C =
∏J

i=1 (1 + 2−2i+1) [26]:

C (‖v‖ + ε) e1 = A(J) · · ·A(1)v, (56)

where A(i) is determined from the sign of the vector elements at the end of each

vectoring iteration and (A(i))TA(i) = (1 + 2−2i+1)
2
I, e1 = [1 0 0]T , and ε is an error

term introduced by the finite number of vectoring iterations (for simplicity we neglect

the error terms in the second and third elements). Conveniently, multiplication by

A(i) can be implemented with bit-shifts of length i and 2i (easily realized on an

FPGA using J :1 multiplexers) and addition operations. We can then compute v/‖v‖

by rotating the vector (1/C)e1 using the transpose of the A(i) matrices in the opposite

order:

(A(1))T · · · (A(J))T
(

1

C
e1

)

=
v

‖v‖ + ε
. (57)

We can use the single-iteration-per-cycle Householder CORDIC architecture in

Figure 6 to implement both (56) and (57). Here, all buses are in 2’s complement

format and the evolving vector elements are stored in the x1, x2, and x3 registers.
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Additionally, the negation blocks (“+/-”) output the 2’s complement of the input

when the control input is “1” and the input when the control input is “0.” The

shifting and negation blocks essentially implement the multiplication of the vector

elements by the elements of the A(i) or
(

A(i)
)T

matrices. The three adders (toward

the bottom of the figure) implement the summation part of this matrix multiplication.

During vectoring iterations, the signs of the vector elements control the negation

blocks. During rotation iterations, the signs of the vector elements stored from a

previous sequence of vectoring iterations control the negation blocks.

4.2.2 Modified Householder CORDIC Architecture Solution

As a result of the reversed order that the (A(i))T matrices are applied in (57), the

normalized v vector computation must begin after these matrices are determined.

Therefore for a single-iteration-per-cycle Householder CORDIC architecture, 2J cy-

cles are required for the Θ matrix computation. It is clearly desirable to overlap the

computation of ‖v‖ and v/‖v‖. Towards this goal, we consider a slight manipulation

of (56):

vi
‖v‖ + ε

= eT1 A(J) · · ·A(1)

(

1

C
ei

)

, (58)

where vi is the i-th element of v and ei is the i-th standard Euclidean basis vector.

This formulation shows that we can compute the i-th element of v/‖v‖ by rotating

ei/C using the A(i) in the same order as applied in the vectoring iterations.

We can implement (56) and (58) by employing a single-iteration-per-cycle House-

holder CORDIC architecture that has been unrolled and pipelined by a factor of four

such that a vectoring iteration and three rotation iterations can be executed concur-

rently. A schematic of this unrolling scheme, which we originally propose in [20], is

shown in Figure 7. Each pipeline stage can either operate in vectoring mode (com-

pute an A(i) and then apply the A(i) on the input vector) or rotation mode (apply

a previously computed A(i) on the input vector). The pipeline is initially filled by
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inputting v into stage-0 in vectoring mode during the first cycle of initialization and

inputting e1/C, e2/C, and e3/C in rotation mode during the next three cycles, re-

spectively. The results of these vectoring and rotations proceed through the pipeline,

feeding back to stage-0 when the end of the pipeline is reached. After J cycles the

computed C (‖v‖ + ε) exits the pipeline, and the computed elements of v/ (‖v‖ + ε)

exit the pipeline in the following three cycles. Hence, if we adopt this architecture,

then J + 3 cycles are required to compute the Θ matrix.

This improvement over the original approach in (57) comes at the cost of four times

as many adders and shifters. The complexity, however, of the individual shifters is

39



considerably decreased. Since the unrolling allows part of the shifting operations to

be performed with wire shifts, each stage only requires dJ/4e:1 multiplexers. Given

that large multiplexers map poorly to FPGAs (resource intensive and long critical

path through LUTs), this is a desirable result. In addition, the unrolling allows

more effective register re-timing because automated synthesis tools can move registers

across the stages to improve the critical path.

As we demonstrate in Figure 8 for a 12-iteration single-iteration-per-cycle House-

holder CORDIC with an {8.13} fixed-point datapath, unrolling by a factor of four

approximately doubles the FPGA hardware resource requirements. The clock rate,

however, is increased by approximately 20%. More generally, the figure demonstrates

the general trend of increasing clock rate with increasing unrolling factor.

4.2.3 Modifications that Prevent Unnecessary Computation

Since the Θ matrix is only needed when the Siegel condition is false and basis updates

are infrequent [1], we desire not to speculatively compute Θ. We therefore require

a low-complexity method for evaluating the Siegel condition. Towards this goal, we

notice that evaluating

∣

∣

∣
R̃k−1,k−1

∣

∣

∣
≤
(

1 + 2−1 − 2−4
)

∣

∣

∣
R̃k,k

∣

∣

∣
(59)

is equivalent to evaluating the Siegel condition for ζ = 2.06640625. Clearly, we can

implement this inequality evaluation in hardware using only a comparator and two

adders. Later in Section 5.3 we demonstrate that running the CLLL algorithm with

this choice of ζ introduces a negligible degradation in BER performance.

The ability to quickly evaluate Siegel conditions allows us to incorporate easily the

re-evaluation of Siegel conditions after basis updates into the Householder CORDIC

architecture. We note that after a basis update for k = k′, the state of the Siegel con-

dition becomes uncertain for max (2, k′ − 1) ≤ k ≤ min (k′ + 1, Nt). We can utilize

40



this observation in a collection of two-state state machines, one for each Siegel condi-

tion, that track the condition of each Siegel condition. Each state machine indicates

either “satisfied” or “uncertain” for each Siegel condition. When all state machines

indicate “satisfied,” then the CLLL algorithm can be terminated immediately be-

cause the CLLL-MMSE-SIC symbol vector estimate is unaffected by size reduction

operations (as shown in Appendix A).

Figure 7 contains a secondary datapath for evaluating the Siegel condition using

the proposed method. The secondary datapath also interfaces to an external data

bus such that Siegel conditions can be evaluated as the R̃ matrix memory is being

filled. Lastly, the secondary datapath operates independently from the multiplier in

the Householder CORDIC architecture, which is used for both Householder CORDIC

gain compensation (multiplication of C (‖v‖ + ε) by 1/C) and partial computation

of basis updates (Section 5.2).
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CHAPTER V

HARDWARE REALIZATION OF MODIFIED CLLL

In the previous chapters, we focus on analyzing both modifications of the CLLL algo-

rithm and sub-modules for computing the more hardware-complex operations of the

CLLL algorithm. In this chapter we apply this developed theory toward designing a

hardware architecture of the modified CLLL algorithm from Chapter 3. After real-

izing the proposed architecture using a hardware description language and hardware

synthesis tools, we are able to evaluate the proposed architecture along the metrics of

hardware resources, throughput, and latency in a practical wireless communication

system.

5.1 Establishing Design Parameters

Specifically, we can now apply the analysis in the previous sections, fixed-point sim-

ulation results, and the design parameters established in [42] to the design of a

CLLL hardware architecture for 4 × 4 CLLL-MMSE-SIC detection. We assume that

ζ = 2.06640625 and that the communication channel can be approximated by the

system model in (1). For the fixed-point simulations, we utilize hardware models of

the Householder CORDIC and integer-rounded divider architectures for the CLLL al-

gorithm. We also utilize the reciprocals computed during the execution of the CLLL

algorithm for the SIC detection step. Lastly, we note that the design procedure in

this section can also be used for other channel model assumptions once a suitable B

is determined for a particular channel model.
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5.1.1 Analytical

We first consider how to choose the relaxed size reduction parameters. By choosing

φn,k = 3
2

for all R̃ elements except those on the first off-diagonal, we can share one of

the comparators required in the trivial u value detection (Figure 5). CLLL simulations

consisting of 1.2 million channel realizations reveal that on average size reduction on

these elements is then required only approximately 6.6% of all 1 ≤ n ≤ k−2 inner-loop

iterations (Line 4-7). Additionally, the maximum encountered <[u],=[u] magnitude

during these simulations is 10. A choice of φk−1,k = 0.51 under the assumption

that G = 15 guarantees that B is upper bounded by 7.31 (Application of (31)).

Assuming that the maximum <[u],=[u] magnitude that can be handled during a

single iteration is 10 and that φk−1,k = 0.51, we see that the integer-rounded divider

should be designed such thatMγ,a < 0.001 (Application of Lemma 3). By representing

u with 11 bits and allowing a CLLL algorithm iteration to be repeated when any u

component magnitude exceeds 10, we can also safely handle size reduction operations

for |<[u]|, |=[u]| > 10 efficiently. Simulations of the CLLL algorithm with this choice

of relaxed size reduction conditions reveal that only 9.6% of all inner-loop iterations

produce a u that has non-zero real and imaginary parts.

Given the φn,k’s and computed B above, we are now able to determine the following

integer bit parameters:

• Since the diagonal elements of R̃ are upper bounded by B, the NR-based re-

ciprocation datapath only requires 3 (unsigned) integer bits.

• The dividends in Line 4 are the components of the R̃′
n,k elements defined in

Section 3.2.5. Evaluation of the upper bound in (40) reveals that given our cho-

sen relaxed size reduction conditions, all the dividend magnitudes are bounded

above by 26.60 (8 dividend integer bits).

• After the size reduction operation of a particular k outer-loop iteration, the
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magnitude of each off-diagonal element in the k-th column is upper bounded by

B√
2
, but subsequent basis updates could increase the magnitude of these matrix

elements. In the worst case the maximum energy of 22(3.37) (Evaluating (39) for

k = 4) could be redistributed to the real or imaginary component of a single

matrix element. Therefore, at the beginning of a size reduction process, at most

5 integer bits are required to represent each real and imaginary component of

R̃.

• The output of the Householder CORDIC datapath is only utilized when the

Siegel condition is not true. In this case, the magnitude of v in (55) is upper

bounded by B. It follows then that the righthand side in (56) is upper bounded

by CB. Therefore, the internal Householder CORDIC datapath requires 5

integer bits.

5.1.2 Empirical

The orthogonality deficiency threshold εth design parameter in [42] affects how often

CLLL preprocessing must be completed on the channel matrices to maintain BER

performance. Linear detection is utilized when the orthogonality deficiency (od1) of

R̃ is below εth and sphere decoders are utilized otherwise. The εth parameter can be

used to trade off how often sphere decoding is executed with the coding gain gap to

ML detection. Since CLLL-aided detection is a full-diversity detection scheme, we

can apply this idea to the CLLL-MMSE-SIC detection of interest in this paper by

employing a hybrid MMSE-SIC/CLLL-MMSE-SIC detector. If we set εth = 0.955,

then on average only 40% of all channel matrices need be processed with the CLLL

algorithm to achieve a 0.2 dB gap to ideal CLLL-MMSE-SIC detection.

When choosing design parameters that affect the computation precision of the

1The orthogonality deficiency od satisfies 0 ≤ od ≤ 1. An orthogonal matrix has od = 0, while a
singular matrix has od = 1 [42].
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hardware implementation, we first notice that no loss of precision can occur during

the size reduction process because there is no expansion in the number of fraction bits.

An expansion of fraction bits only occurs when a basis update occurs, which involves

computation of Θ and application of this matrix on R̃ and Q̃. Assuming εth = 0.955,

we utilize additional fixed-point simulations of the hybrid detector to verify that BER

performance is maintained with a choice of 13 fraction bits to represent the R̃ and Q̃

matrices, 9 Householder CORDIC iterations, and a maximum of 15 CLLL iterations

We can then determine the integer-rounded divider LUT requirements based on the

R̃ fraction bit choice. Using the procedure in [16] and the Mγ,a < 0.001 condition

determined in Section 5.1.1, we find that γ = 5 and a = 6.

Lastly, we use 9 integer bits to represent the elements of T per real and imaginary

part, which was verified in [1] with a real-time prototyping system.

5.2 Proposed Architecture

Developing a suitable top-level architecture for the CLLL algorithm is complicated by

the fact that the dataflow of the CLLL algorithm is dynamic—each random channel

matrix results in a different sequence of memory accesses and operations. We first

notice, however, that operations on T and g only depend on the generated u values

from size reduction operations and operations on Q̃ only depend on the Θ’s generated

from basis updates. This suggests an architecture where an R̃ Processor generates u’s

and Θ’s, and a T Processor and a Q̃ Processor are slaves, consuming these operands.

We can adopt First-in-First-Out (FIFO) structures to store these operands and have

each processor track the CLLL algorithm state separately. Then the slave processors

need not consume these operands at the same rate as the R̃ Processor.

We could adopt separate multiplier pipelines for each processor, but given our

observations in Section 5.1.1 we consider a different approach. Since the generated

u values are sparse when the relaxed size reduction condition is adopted and only a
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fraction of all CLLL iterations require basis updates [1], it is advantageous toward

high multiplier utilization to choose a shared multiplier/accumulator structure with

arbitration. Furthermore, we can use a multiplier pipeline that implements complex

multiplication via separate real and imaginary component multiplication to exploit

the low frequency of fully complex u values (as shown in Section 5.1).

A detailed block diagram of the proposed architecture is shown in Figure 9. The

“R̃ Processor” effectively consists of the shared Multiplier Pipeline, Column

Accumulator, and all remaining modules except the T and Q̃ processors. In the

remaining sub-sections we consider the individual operation of each processor and how

we can use a straightforward double-buffering scheme to overlap the CLLL processing

of different channel matrices.

5.2.1 R̃ Processor

The CLLL algorithm operates heavily on a single column during the size reduction

process each iteration. We therefore base the R̃ Processor around a partial column

buffer that stores the R̃1:k−1,k intermediate size reduction results. This choice also

naturally follows from the analysis results in Section 5.1.1, which demonstrate that

the R̃ elements magnitude upper bound during the size reduction process is greater

than the R̃ elements magnitude upper bound at both the start and end of the size

reduction process. Therefore, in the partial column buffer architecture, the R̃ memory

need only be sufficiently wide to represent R̃ at the start of the size reduction process.

The R̃ Processor is additionally based around a single-port, single complex entry

memory for storing R̃. Address mapping is employed for column swapping. The dat-

apath modules include the shared Multiplier Pipeline, Int-Rounded Divider

that is designed according to the results in Section 5.2, and the proposed House-

holder CORDIC architecture that has been partitioned into CORDIC Pipeline

Support (secondary datapath) and CORDIC Pipeline. Parallel operation among
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these modules is enabled through a combination of forwarding paths, speculative ex-

ecution, and slight reordering of the original CLLL algorithm. At the beginning of

each CLLL iteration, Main Controller directs the following:

• The R̃1:k−1,k buffer in Column Accumulator is loaded either from the R̃

memory, or the current contents of the buffer from the previous CLLL iteration

are reused (If during the previous iteration k 6= 2 and a basis update was

required). The R̃k−1,k element is also speculatively sent to CORDIC Pipeline

Support.

• The R̃k−1,k−1 element is sent to CORDIC Pipeline Support from either the

R̃ memory or a forwarding path. Int-Rounded Divider either receives this

element and begins reciprocation, or it reuses a stored reciprocal.

• The R̃k,k element is sent to CORDIC Pipeline Support from either the R̃

memory or a forwarding path. This module then begins evaluating the Siegel

condition according to (59).

5.2.1.1 Size Reduction

The R̃k−1,k element is then forwarded from the R̃1:k−1,k buffer to the dividend input

of Int-Rounded Divider, and the size reduction condition evaluation is initiated

in this module. The real and imaginary components each require 1 cycle for this

evaluation operation. The results of the evaluation are written into a small table

that R̃ Execution accesses. When this table indicates that a nonzero u has been

generated, R̃ Execution begins fetching the required R̃ column from the R̃ mem-

ory and simultaneously issues single u component multiplications to Multiplier

Pipeline, starting with the (k − 1)-th row. The multiplier results are then sequen-

tially added via ADD-1 to their corresponding elements in the R̃1:k−1,k buffer as

they exit Multiplier Pipeline, and the buffer is updated with these new values.
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As the updated R̃k−1,k element is written to the buffer, it is simultaneously forwarded

to Int-Rounded Divider. Since Int-Rounded Divider already contains the re-

quired diagonal element and reciprocal (stored in caches), size reduction on the next

R̃ element can then begin as the remaining elements complete. This process contin-

ues until size reduction on the k-th column is complete. The gradual write-back of

the R̃1:k−1,k buffer elements to the R̃ memory is overlapped with this operation.

5.2.1.2 Siegel Condition and Basis Updates

Concurrent with this size reduction process is operation of CORDIC Pipeline Sup-

port and CORDIC Pipeline. If CORDIC Pipeline Support indicates that the

Siegel condition is true, then Main Controller is signaled that k can be incre-

mented (and the next iteration initiated once the size reduction process is complete or

the entire CLLL processing terminated if all Siegel conditions are now satisfied). If the

Siegel condition is false, then CORDIC Pipeline waits until either the size-reduced

R̃k−1,k element is forwarded or Int-Rounded Divider indicates that size reduction

on this element is not required. The Θ (Line 10) calculation can then begin because

the necessary operands have already been speculatively loaded at the start of the it-

eration. Once the specified number of CORDIC iterations have been completed, the

uncompensated C‖v‖ result (56) streams out of CORDIC Pipeline to CORDIC

Pipeline Support for gain compensation. This is followed by three cycles of the Θ

elements streaming out to CORDIC Pipeline Support, R̃ Update, and the Q̃

Processor. As these elements input into CORDIC Pipeline Support, the elements

are appropriately signed and multiplied by the buffered R̃k−1,k−1 element to form the

updated elements of the (k − 1)-th column (due to a required basis update) in Line

11. These elements and the computed ‖v‖ are then sent to Main Controller

for writeback. If there are remaining R̃ elements that must be updated, then Main
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Controller marks these elements as “pending” in the scoreboard structure, trig-

gers R̃ Update to compute these remaining updates, immediately decrements k, and

effectively swaps the R̃ columns by updating the address mapping register. Concur-

rent with this operation is the reevaluation of affected Siegel conditions (as described

in Section 4.2.3).

As Main Controller initiates the next iteration, R̃ Update gradually fetches

required elements from the R̃ memory and issues two multiplications to Multiplier

Pipeline when access is granted by the multiplier arbitration module. Hence, each

R̃ element updated by a Θ multiplication requires 3 accesses to this module. The

R̃U register and complex ADD-1 adder in Column Accumulator accumulate

the partial Θ multiplication results from Multiplier Pipeline. Upon the final

accumulation for a particular element, the ADD-1 output is immediately written

back to the R̃ memory, and the corresponding scoreboard entry is updated.

5.2.1.3 Memory Contention

Given that multiple modules access the R̃ memory and basis updates on R̃ are

overlapped with subsequent CLLL iterations, a memory arbiter is included in Main

Controller. If no data dependency is present, then the highest priority is assigned

to memory reads associated with size reduction and lowest on memory read requests

from R̃ Update. If instead the scoreboard indicates that a currently requested

element is “pending,” then the R̃ Processor stalls and R̃ Update read requests are

promoted to highest priority. The processor remains in this “priority inversion” state

until the dependency is resolved.

5.2.2 T Processor and Q̃ Processor

We base the T Processor on the hardware structures in the R̃ Processor that handle

the size reduction. The T Processor issues operations to Multiplier Pipeline to

implement Line 6-7. It contains a single-port memory to store an augmented matrix
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that consists of T concatenated with g (If MMSE processing is desired). The FIFO

that the T Processor utilizes contains both non-zero u values and control flags that

indicate the state of the R̃ Processor when a u was generated. These include flags

that indicate if the currently retrieved u was the last u generated for that CLLL

iteration and if k was incremented or decremented during that iteration. These flags

when combined with internal address mapping for column swapping, independent

tracking of k, and the separate single-port memory, allow the T Processor to operate

independent of the R̃ Processor state. In addition, each FIFO entry contains flags

that indicate if the currently retrieved u has real or imaginary components equal to

±1. Hence, the T Processor can either issue single u component multiplications or

utilize the trivial ±1 multiplication path in Multiplier Pipeline.2 Results of these

integer operations are accumulated using ADD-2 and a straightforward shift register

(T k buffer) in Column Accumulator.

The Q̃ Processor is nearly identical to R̃ Update except that the Θ parameters

are retrieved from a FIFO. The FIFO also contains an entry for the value of k associ-

ated with the currently accessed Θ. Since the Q̃ Processor also contains a separate,

single-port memory for Q̃, it can complete Q̃ basis updates independently of the R̃

Processor state. Partial Θ multiplication results are accumulated in the Q̃U register

located in Column Accumulator.

To prevent the T Processor or Q̃ Processor FIFO entries from being overwritten

before being processed, we include “nearly full” status flags in these FIFOs. For the

T Processor, this flag is first asserted when the FIFO only has a sufficient number of

empty entries to store the maximum number of possible non-zero u values generated

during a single CLLL iteration. For the Q̃ Processor, this flag is first asserted when

the FIFO only has a sufficient number of empty entries to store one additional Θ.

2We do not use this ±1 multiplication path for operations issued by R̃ Execution because
additional multiplexing is required.
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When either of these flags is asserted, the Main Controller is signalled to stall

the R̃ Processor during the next CLLL iteration.

5.2.3 Arbitration and Overlapped Processing

It is apparent from the above architecture description that arbitration is required to

handle contention for access to Multiplier Pipeline among the various modules.

Clearly, in general an arbitration scheme should be adopted such that the R̃ Processor

can progress through CLLL iterations as quickly as possible. Therefore, when no data

dependency exists the multiplier arbitration module assigns highest priority to R̃

Execution followed by the T Processor, R̃ Update, and the Q̃ Processor. When a

data dependency exists (“priority inversion”), requests from R̃ Update are promoted

to highest priority, and requests from R̃ Execution are demoted to lowest priority.

As a final addition to the proposed architecture, we consider overlapped execution

of the CLLL algorithm on multiple channel matrices among the three processors.

This can be accomplished by employing two banks of memory in each processor.

As a processor is operating on one memory bank, the other memory bank can be

simultaneously filled with the next matrix/vector associated with the next channel

matrix to process. Then once the processor completes operations on the current

memory bank, it can simultaneously output the current memory bank contents and

immediately begin processing on the other memory bank (Assuming the FIFOs are

not empty in the T and Q̃ Processor case).

5.3 Experimental Results

5.3.1 Performance of the Proposed Architecture

To evaluate the proposed architecture, we first implemented the CLLL processor in

Verilog. Through functional simulations of the architecture, we determined that the

Q̃ Processor and T Processor FIFO depth should be 9 and 16, respectively, such

that the R̃ Processor stalls infrequently. We verified the design using the fixed-point
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Q̃ Processor (6%)

Figure 10: Distribution of the required XC4VLX80-12 FPGA slices for the proposed
architecture. Although CORDIC Pipeline occupies the most slices compared to
the other modules, it can be shared among additional CLLL processors.

model employed in Section 5.1.1 and a co-simulation environment that we developed

(see Appendix E). Hardware realization was then completed by using an FPGA flow

consisting of Synplify Pro for synthesis and Xilinx ISE 9.1 for place-and-route (PR).

The proposed architecture hardware realization results for a variety of FPGA targets

is summarized in Table 2. The approximate contribution of each module to the total

required number of slices for the XC4VLX80-12 FPGA target is contained in Figure

10.

The average processing cycles per channel matrix under the assumption of the

system model in (1) is included for both εth = 0 (CLLL always applied) and εth =

0.955 (system average). An estimate for the maximum cycles required by the proposed

architecture to process a channel matrix is obtained by considering one million channel

matrices with od > 0.9999, i.e., close to singular.

The 64-QAM hard detection BER simulation results of the proposed hybrid MMSE-

SIC/CLLL-MMSE-SIC detector and previously implemented algorithms are contained
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Figure 11: 64-QAM simulation results for proposed architecture and previously im-
plemented algorithms. It is assumed that εth = 0.955 and the maximum number of
CLLL iterations is 15 for BER simulations of the proposed CLLL-MMSE-SIC. For
each SNR a sufficient number of channel realizations are simulated to generate a
minimum of 3000 bit errors.

in Figure 11. We obtain the proposed detection simulation results by employing a

bit accurate model of the proposed architecture. The BER performance of previ-

ously implemented algorithms is obtained from ideal algorithm models (unlimited

iterations and floating-point precision). From the figure we see that by completing

CLLL processing on only 40% of all channel matrices on average, a considerable BER

performance improvement is achieved over the MMSE detection in [33]. We also see

that the proposed architecture achieves a 5 dB improvement in BER performance

compared to the work in [7] and is within 1.5 dB of optimal ML detection.

We evaluated the proposed architecture from a system perspective by simulating
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the packet structure of an 802.11n system in Mixed Mode [23]. The OFDM symbol

length in this case is 4 µs, and there are 52 sub-carriers. We assumed that the sorted

QR-decomposition of the channel matrix for each sub-carrier is completed just as

the corresponding symbol vector associated with that sub-carrier in the first OFDM

symbol is received. We measured the latency at the end of the first transmitted

OFDM symbol, use the Virtex5 synthesis results, and set εth = 0.955. Simulations of

this system configuration indicate that the probability of the latency exceeding 12.08

µs (3.02 OFDM symbols) is 0.5%, and the average latency is 5.7 µs. Hence, a single

CLLL processor with an OFDM symbol buffer is sufficient to handle medium to large

size packets (10-100 OFDM symbols).

5.3.2 Comparison to Existing Work

Since BER performance is always relative to complexity (and therefore hardware

resources), we compare the proposed architecture to previously proposed architectures

that achieve full diversity and are within 1 dB - 2 dB of the proposed architecture

BER performance.

5.3.2.1 Sphere Decoding

The work in [76] achieves 4×4 ML diversity but requires an 8×8 system with repeti-

tion coding. In the sphere decoding FPGA implementation domain we therefore only

consider the implementations in [27] and [3], which achieve “native” ML BER perfor-

mance. Direct comparison of these two implementations to the proposed architecture

is not possible because we focus on efficient implementation of an enhancement for

channel matrix preprocessing, not a symbol processing enhancement. Instead, we

consider the relative hardware required for an example MIMO system using both

approaches under the assumptions present in the prior work.

The 16-QAM SD algorithm implementation with Schnorr-Euchner (SE) enumer-

ation for 4×4 systems in [27] achieves ML detection BER performance at an average
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throughput of 5.1M symbol-vector/s. Hence to reach the throughput of 802.11n, at

least three sphere decoding cores must be utilized (More may be needed to handle

the large variance of this SD algorithm). Given the preprocessing assumptions in

[27], channel coherence time on the order of milliseconds and transmission frames on

the order of 100 milliseconds, a single CLLL processor is sufficient to support the

preprocessing in the example system. From Table 2 we see that compared to the

three sphere decoding cores the required CLLL processor is only 30% of the slices

and 3.7% of the multipliers. We also note that this SD implementation requires both

sorted QR-decomposition and R inversion preprocessing, while the CLLL processor

only requires sorted QR-decomposition preprocessing.

The fixed sphere decoding (FSD) implementation in [3], which appears to be

the only 64-QAM sphere decoding FPGA implementation published, achieves ML

detection BER performance at a fixed throughput of 18.75M symbol-vector/s. By

adopting four CLLL processors we can achieve a CLLL latency of 2.31 µs on average

and 6.20 µs system-worst-case.3 From Table 2 it is apparent that compared to the

FSD implementation, the four CLLL processors require 56%4 of the slices and 6.4% of

the multipliers. We also note that the FSD implementation requires DMI, Cholesky

decomposition, and the FSD ordering of the channel matrix as preprocessing steps,

which are not part of the FSD implementation.

5.3.2.2 Lattice Reduction

We are not able to compare the proposed architecture in detail to the work in [62] and

[69], which do not contain hardware resource requirements. Additionally, comparison

to the Seysen’s algorithm implementation in [72] is complicated by the fact that a 65

3We compute these latencies using the 802.11n packet simulation results adjusted for a Virtex2-
Pro and assuming pessimistically that parallelization is only possible at the end of the first OFDM
symbol.

4Here we have conservatively not included CORDIC Pipeline sharing, which is possible with
the proposed architecture.
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nm application specific integrated circuit (ASIC) is the target hardware platform. To

conduct a conservative comparison, however, we consider the proposed architecture

synthesis results for a Virtex5 target, which is fabricated in a 65 nm process. Using

the posted clock frequency and worst-case processing cycles in Table 2, we see that the

channel matrix processing latency is 2.17 µs for the proposed architecture and 3.42

µs for the Seysen’s algorithm implementation. Only half the number of multipliers is

required to achieve this nearly 37% reduction in worst-case latency, which could be

further improved with adoption of a 65 nm ASIC design flow.

From Table 2 we see that the proposed architecture achieves considerable im-

provement in all hardware resource metrics and requires less than an eighth of the

processing cycles compared to the Clarkson’s algorithm implementation in [1]. An

examination of the differences between these two architectures demonstrates that the

algorithm modifications and design decisions taken in our work contribute signifi-

cantly to this improvement:

• The architecture in [1] utilizes a shared division unit for both computing u

values (via reciprocation multiplication) and computing Θ matrices. We instead

choose to utilize a reduced-precision reciprocation unit in addition to a collection

of comparators for detecting trivial u values. In addition, the reciprocals are

sufficiently accurate for use in the subsequent SIC detection step.

• We choose to relax the size reduction condition on the R̃ elements as opposed

to eliminating size reduction operations (as done in [37] and implemented in

[1]). This allows us to upper bound the R̃ elements during the CLLL pro-

cessing. The slight increase in the number of size reduction operations is more

than compensated by the efficient utilization of Multiplier Pipeline in the

proposed architecture, which is over 81% for the system simulation described

in Section 5.3.1.
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• The 3-dimension Householder CORDIC algorithm employed in the proposed

architecture requires only one sequence of vectoring iterations, while the 2-

dimension Givens rotation-based CORDIC unit in [1] requires two sequences

of vectoring iterations. The unrolling inherent in the proposed Householder

CORDIC architecture, which is required to support the concurrent Θ com-

putation, results in CORDIC Pipeline requiring the largest percentage of

hardware resources (as shown in Figure 10). We note, however, that the critical

path of CORDIC Pipeline, which limited the achievable clock frequency in

[19], is improved by over 20% and that this module can now be easily shared

among CLLL processors.

• The proposed architecture does not compute the Siegel condition exactly as

done in [1]. Instead, a low-complexity approximation is employed that results

in a negligible degradation in BER performance. As a result, the proposed ar-

chitecture is able to re-evaluate Siegel conditions rapidly without multiplication

and use this information to terminate the CLLL algorithm earlier (as justified

in Appendix A).
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Table 2: VLSI implementation results

Proposed Architecture Lattice Reduction Sphere Decoding

(CLLL-MMSE-SIC) [1] [72] [3] [27]

Platform XC4VLX80-12 XC5VLX110-3 XC2VP30-7 XC2VP30-7 0.65 nm ASIC XC2VP70-7 XC2VP30-7

Multipliers 4 4 4 24 8 252 36

Hardware Usage 3,640 slices 1,758 slices 3,571 slices 7,349 slices 67,000 gates 24,815 slices 3,880 slices

Clock (MHz) 173 206 140 100 † 400 150 251

cycle/matrix 49 avg., 96 system avg., 447 worst-case 420 avg. 1368 worst-case NA NA

symbol-vector/s NA NA NA NA NA 18.75M 5.1M

Modulation * * * * * 64-QAM 16-QAM

* BPSK, 4/16/64-QAM † Clock frequency fixed by development board
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CHAPTER VI

BEHAVIOR OF LR WHEN SPATIAL CORRELATION

EXISTS

The inherent assumption of the channel matrix model in (1) is that no spatial cor-

relation exists at the receiver and transmitter. This assumption is only relevant for

a rich-scattering environment and sufficient antenna spacing. This channel matrix

model, which is often referred to as the canonical channel matrix model, is often

adopted because it enables tractable analysis of communication systems. Clearly, the

channel matrix model can significantly affect the behavior of communication system

simulations. For example, in [2] the authors use the channel matrix model in [32] to

demonstrate that the complexity of sphere detection increases rapidly with increasing

spatial correlation at the receiver or transmitter. We are therefore motivated to un-

derstand how spatial correlation is modeled and to examine how spatial correlation

affects the complexity of LR processing. We then find that the apparent increase in

LR complexity is unnecessary when we examine LR in the context of MIMO detection.

6.1 Channel Model with Spatial Correlation

In [32] the effects of correlation at both the transmitter and receiver are modeled by

pre-multiplying and post-multiplying the channel matrix in (1) with the matrix square

root of covariance matrices. We let Σrx and Σtx be the positive definite complex

receive and transmit covariance matrices with dimensions Nr × Nr and Nt × Nt,

respectively. We also let H ′ be an Nr × Nt complex matrix having independent

identically distributed (i.i.d.) complex Gaussian distributed elements with zero mean
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and unit variance. Then we can define the correlated channel model as follows:

y = Hs + ηw, (60)

H = Σ
1
2
rxH

′Σ
1
2
tx, (61)

where η, w, y, and s are defined as in (1). Conveniently, a software implementation of

this channel model for a linear array of antennas is available at [12], which is part of the

IST-2000-30148 I-METRA project [65]. A top-level function in this implementation

allows the user to generate the covariance matrices based on the relative antenna

spacing, angle of arrival (AoA), and angular spread (AS) parameters.

6.2 Effect of Correlation on CLLL-MMSE-SIC

We now apply our understanding of both the channel model and the CLLL-MMSE-

SIC detection algorithm to examine how spatial correlation at the receiver and trans-

mitter affects the complexity of LR processing. We assume that the carrier frequency

is 5 GHz [23], AoA is 45 degrees, the AS is 40 degrees, and the antennas at the receiver

and transmitter are spaced uniformly in a linear array. Under this configuration, we

let ρtx and ρrx be the adjacent-antenna correlation coefficients at the transmitter and

receiver, respectively. Additionally, we let Nt = Nr = 4, and we use the worst-case

σw = 0 choice for the augmented channel matrix in (6). We choose this worst case

such that we do not benefit from the complexity reduction normally achieved by in-

corporating a noise estimate into the detection algorithm. For simplicity we assume

that the spatial correlation at the transmitter and receiver is identical.

Using the software implementation in [12], we generate 4× 4 H matrices for var-

ious spatial correlations between adjacent antennas (achieved by varying the relative

antenna spacing) and execute the CLLL algorithm for each channel matrix realiza-

tion. Figure 12 shows the results of this initial experiment in terms of both algorithm

complexity measures and hardware cycles of the proposed architecture in Chapter 5.

In addition to the average number of CLLL algorithm iterations, we also consider
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the average number of basis updates as a relevant measure of algorithm complexity

(executions of Lines 10-12 in Table 1). The results in Figure 12 demonstrate that

the average complexity of the CLLL algorithm increases rapidly as the spatial corre-

lation increases, resulting in a similar increase in hardware latency. From this initial

experiment we also conclude that without additional algorithm enhancements to the

modified CLLL algorithm in Chapter 3, additional CLLL processors will need to be

utilized to maintain the throughput and latency reported for the uncorrelated channel

case in Chapter 5.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Correlation coefficient magnitude |ρtx| = |ρrx|

A
lg

o
r
it
h
m

co
m

p
le

x
it
y

m
ea

su
r
e

 

 

0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

140

160

180

200

C
y
cl

es

Number of basis
updates

Number of iterations

Hardware latency

Figure 12: Effect of spatial correlation on the algorithm complexity of the CLLL al-
gorithm for 4×4 H matrices and hardware latency of the proposed CLLL architecture
in Chapter 5. The average number of basis updates and iterations for each spatial
correlation case is obtained from simulations of one million channel realizations.
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6.3 Ideal Early Termination

We are therefore motivated to determine if these additional CLLL iterations and basis

updates are necessary when spatial correlation is present. More importantly from a

communication system perspective, we desire to determine if the observed increase in

hardware latency in Figure 12 is necessary in the context of MIMO detection.

Towards this goal, we consider a hypothetical experiment. Suppose that for a given

H̄ and y we first run the CLLL algorithm to completion, obtaining an estimate ŝ of

the transmitted symbol vector. We refer to this estimate as the actual ŝ. Now imagine

rerunning the CLLL algorithm again on H̄ . At the end of each iteration, however,

we complete the CLLL-MMSE-SIC detection process (using the intermediate R̃, Q̃,

and T ) to obtain a symbol vector estimate for each iteration. We early terminate the

CLLL algorithm when the symbol vector estimate at the end of an iteration exactly

matches the actual ŝ. This experiment therefore provides us with information about

the required number of CLLL basis updates.

We run this experiment under the same assumptions as the experiment in Section

6.2 except that we vary 1/σw
2 (SNR values). For each spatial correlation and SNR

case, we record the average number of basis updates for both the CLLL algorithm

(no early termination) and the CLLL algorithm with ideal early termination (required

basis updates). Figure 13 contains the results of this experiment for 64-QAM trans-

missions. We report the average number of required basis updates as a fraction of

average number of CLLL algorithm basis updates. Even when the spatial correlation

is high, i.e., |ρtx| = |ρrx| = 0.7, on average most CLLL algorithm basis updates are

unnecessary for reasonable SNR values.

Hence, early termination of the CLLL algorithm appears fundamentally possible in

the context of MIMO detection. Given that Figure 12 indicates that the latency of the

proposed CLLL architecture is roughly proportional to the number of basis updates,

it also should be possible to reduce the latency of the proposed CLLL architecture.
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Figure 13: Fraction of average number of original CLLL algorithm basis updates
that are required when the ideal early termination scheme in the genie experiment
is employed for CLLL-MMSE-SIC detection. Under the assumptions in Section 6.3,
the correlation coefficient magnitudes of 0.3, 0.5, and 0.7 correspond to 6.6 cm, 3.9
cm, and 2.1 cm antenna spacings, respectively. For each SNR a sufficient number of
channel realizations is simulated to generate a minimum of 4000 bits errors.
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CHAPTER VII

DEVELOPING INCREMENTAL LR

Given that the results in the preceding chapter demonstrate that early termination

of LR algorithms is possible, we are motivated to develop a practical early termina-

tion scheme for LR-aided detectors. We base this early termination scheme on the

hybrid detector concept in [68]. After reviewing this work, we present novel analyt-

ical results that are based on the spatial correlation channel model in the preceding

chapter. Application of these analytical results then leads us to introduce and to de-

velop incremental LR (ILR), which achieves full-diversity detection and enables early

termination of LR algorithms. As a final step, we integrate the utilized early termi-

nation condition computation with both the LR and symbol detection computations,

resulting in the proposed incremental CLLL-MMSE-SIC algorithm.

7.1 Hybrid Detectors

As a step toward early termination in the CLLL algorithm, we examine the hybrid

detector in [68], which is a combination of a low-complexity detection algorithm and

a high-complexity full-diversity detection algorithm. In this section we rigorously

analyze this hybrid detector and demonstrate that it enables full-diversity detection,

forming the foundation for its subsequent application to CLLL algorithm early ter-

mination.

7.1.1 General Description

The hybrid detector in [68] employs a reliability assessment (RA) to determine if the

initial symbol vector estimate generated by a low-complexity detection algorithm is

reliable enough to maintain ML BER performance. If the symbol vector estimate is
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not sufficiently reliable, then a high-complexity algorithm is employed that exhibits

ML BER performance. To formalize and to generalize this method we let ŝinit be a

symbol vector estimate obtained from any low-complexity detection method and ŝsec

be the symbol vector estimate obtained from a higher-complexity detection method

that exhibits improved BER performance. Then we can define the general hybrid

detector as

ŝ =















ŝinit ‖y − Hŝinit‖ ≤ Aσw,

ŝsec otherwise,

(62)

where A is a positive, fixed threshold parameter. The authors in [68] demonstrate

through simulations that they achieve full-diversity detection when they determine

ŝsec using a full-diversity detection method.

7.1.2 Full Diversity Detection

Before adopting this hybrid detector, however, it is instructive to understand why

this hybrid detector can collect full diversity for the system model in (60). We first

define the random vector d = y − Hŝ. Then we can condition the probability of

error P{ŝ 6= s} on d:

P{ŝ 6= s} = P{ŝ 6= s | ‖d‖ ≤ Aσw}P{‖d‖ ≤ Aσw}+

P{ŝ 6= s | ‖d‖ > Aσw}P{‖d‖ > Aσw}.
(63)

Assuming that we employ a full-diversity detection method for the case when

‖d‖ > Aσw, we need only examine the first term in (63). Since this first term can

be written as P{‖d‖ ≤ Aσw, ŝ 6= s}, we need only consider the joint pairwise error

probability P{‖d‖ ≤ Aσw, s → ŝ}, where s 6= ŝ. This task is simplified by noticing

that because P{s → ŝ} ≤ 1 it follows that P{‖d‖ ≤ Aσw, s → ŝ} ≤ P{‖d‖ ≤ Aσw |

s → ŝ}. Finally, after consideration of the following lemma, it is clear that the hybrid

detector exhibits full diversity for the system model in (60):
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Proposition 2 Given the system model in (60), it follows that P{‖d‖ ≤ Aσw | s →

ŝ} is upper bounded by the following:

(2ηMA)2NrBe

(

1

σ2
w

)−Nr

, (64)

where

Be =
1

(

π
∥

∥

∥
Σ

1
2
tx (s − ŝ)

∥

∥

∥

2
)Nr

|det (Σrx)|
, (65)

MA = max

(

16

3η
A, 4

√
πQ

(

8A

3η
√

2

))

. (66)

Proof: See Appendix D.

7.1.3 Using CLLL-MMSE-SIC Detection in a Hybrid Detector

We can form the hybrid detector in (62) by using the MMSE-SIC detection result for

ŝinit and the CLLL-MMSE-SIC detection result for ŝsec. To determine the reduction

in average number of basis updates that this CLLL-MMSE-SIC-based hybrid detector

achieves, we utilize system simulations under the assumptions in Section 6.3. Since

the main idea here is to determine the ideal best-case performance of this hybrid

detector, we manually choose the A threshold parameters. More specifically, for each

correlation case, we first run multiple simulations to determine an A that results in

10% higher BER than if the simulation is run with A = 0. Then we record the

number of basis updates executed when the chosen A is used.

The results of this experiment are contained in Figure 14. We plot the ratio of

the average number of basis updates for the hybrid detector to the average number

of basis updates when we employ the ideal early termination in Section 6.3. Since

the majority of the plotted ratios are greater than unity, it is clear that the hybrid

detector alone does not realize the full early termination potential demonstrated in

Section 6.3. Consequently, we seek additional modifications to the CLLL algorithm.
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Figure 14: Effectiveness of a CLLL-MMSE-SIC-based hybrid detector at reducing
the average number of executed basis updates. This is demonstrated by plotting
the ratio of the average number of basis updates when the hybrid detector is used
to the average number of basis updates when the ideal early termination condition
from Section 6.3 is used. For each SNR a sufficient number of channel realizations is
simulated to generate a minimum of 4000 bits errors.

7.2 Incremental Lattice Reduction

A natural progression from the CLLL-MMSE-SIC-based hybrid detector is the re-

peated application of this hybrid detector during the CLLL algorithm execution.

More specifically, after each CLLL iteration, we complete the CLLL-MMSE-SIC de-

tection process (using the intermediate R̃, Q̃, and T ) to obtain a symbol vector

estimate ŝint. Then the next iteration of the CLLL algorithm is only initiated when

‖y − Hŝint‖ > Aσw. We refer to this simultaneous process of symbol detection and

LR as incremental LR (ILR) because the lattice is gradually reduced over multiple
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received vectors in a packet. In this section we formulate incremental LR specifically

for CLLL-MMSE-SIC detection by considering practical modifications to this general

idea.

7.2.1 Modifications for CLLL-MMSE-SIC

It is beneficial from a complexity perspective (and hardware perspective) to modify

and to integrate the RA calculation with the matrices involved in the CLLL-MMSE-

SIC detection process. Towards this goal we first consider an RA based on the

extended system:

‖ȳ − H̄ŝint‖ ≤ Āσw, (67)

where ȳ = [yT , 01×Nt
]
T

and Ā is a positive, finite threshold parameter. Starting with

the lefthand side of (67), we see that the following is true:

‖ȳ − H̄ŝint‖2
= ‖y − Hŝint‖2 + σ2

w‖ŝint‖2 > ‖y − Hŝint‖2,

which demonstrates that the RA in (67) is sufficient to guarantee full-diversity detec-

tion. Additionally, since ŝint only changes when a basis update occurs [21, Appendix

A], the RA in (67) need only be reevaluated after each basis update (After the ini-

tial RA evaluation that occurs before the beginning of the LR processing). We then

consider the following observations:

The RA can be evaluated in the z-domain. Assuming that no symbol quanti-

zation error occurs during the application of the QS function in the CLLL-MMSE-SIC

detection process, i.e., ŝ = 2T ẑ− (1 + j)1Nt×1, we can use the factorization returned

by the CLLL algorithm to express the relation in (67) as

∥

∥

∥

∥

R̃ẑ − 1

2

(

(

Q̃
(1)
)H

y + R̃T −1 (1 + j) 1Nt×1

)∥

∥

∥

∥

2

≤ 1

4

(

Āσw
)2
. (68)

Hence, we can evaluate the RA in (67) in the z-domain and integrate this evaluation

with the SIC computation that we use to find ẑ in (16).
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The SIC and RA computation often need only be partially (re)computed.

The fully-populated ẑ is only required for the final computation of ŝ. Therefore, the

complexity of both the intermediate SIC and RA computation can be reduced by

terminating the SIC detection in the z-domain when the RA is not satisfied. We

can implement this termination efficiently by evaluating the RA as the SIC detection

proceeds. We also notice that when a basis update occurs during an iteration of the

CLLL algorithm for a particular k in Table 1, the subsequent SIC detection result is

unaffected in dimensions higher than k (compared to SIC detection before the basis

update). Therefore, we store and reuse the partially computed ẑ and partially com-

puted lefthand side of (68). This modification allows us to start the joint SIC/RA

computation required after each basis update at a ẑ element having an index that is

possibly less than Nt.

The SIC and RA computation can be decoupled from basis updates

on Q̃. Clearly, the Nt × 1 vector in the righthand side of (16) must be computed

before any SIC computation may proceed. After a basis update, this vector must be

recomputed before the updated R̃ can be used on the lefthand side of (16) in the SIC

and RA computation. Careful examination of (16) reveals that during an iteration

of the CLLL algorithm for a particular k, only the (k − 1)-th and k-th rows of this

vector are affected by a basis update. We treat these two elements as a 2× 1 vector.

It is then apparent that the updated row elements can be found by premultiplying

this 2 × 1 vector by the Θ matrix computed at Line 10 of Table 1.

This modification is also utilized in [79] such that basis updates on Q̃ are com-

pletely eliminated. Our motivation for this modification is different, however. We do

not remove the basis updates on Q̃ (and updates on g in Line 7) because then the

righthand side of (16) can be computed efficiently using Q̃ for subsequent received

vectors in a packet. The Q̃ generated during CLLL processing of a received vector is

not required until the next received vector in the packet. As a result, this modification
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essentially decouples the SIC and RA computation from basis updates on Q̃.

7.2.2 Proposed Algorithm

The synthesis of these ideas leads to the joint LR and symbol detection algorithm

listing in Table 3. We partition the code into initialization operations that occur

once per packet (Line 1-2) and operations that occur for each received vector y (Line

3-33). For the first received vector in a packet, the Q̃, R̃, and T from the packet

initialization are used in Line 3-4. For subsequent received vectors in the packet,

the Q̃, R̃, T , and g that is computed during the processing of the previous received

vector in the packet are used in Line 3-4. More generally, the partially-reduced lattice

is used to initialize the received vector processing after the first received vector in the

packet is processed.

The received vector processing consists of repeatedly executing the CLLL iter

function in Line 29, which computes one iteration of the CLLL algorithm (Line 3-18

in Table 1) given the current k and partially-reduced lattice. This function outputs

the updated k and updated input matrices. It also outputs the update variable, in-

dicating if a basis update occurs during that iteration, and the 2 × 2 matrix Θ for a

possible basis update. This matrix is used to update the b̄ vector, which stores the

righthand side of (16). The b̄ vector is used in the partial SIC and RA computation

in Line 15-23. To enable early termination of this computation, we track the current

required starting index of the SIC computation in the l variable and track the par-

tial computation of the lefthand side of (68) in the a vector. Lastly, we note that

this particularly straightforward integration is enabled by incorporating the Siegel

condition reevaluation in Line 7-14, which is easily implemented in hardware [21].
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Table 3: Incremental CLLL-MMSE-SIC based on the Siegel Condition

(1) [Q̃
(1)
, Q̃

(2)
, R̃,T ] = sorted QR(H̄)

}

Packet

Initialization(2) g = (1 + j)1Nt×1; k = 2; Q̃ = Q̃
(1)

(3) b̄ = 1
2

(

Q̃
H
y + R̃g

)

(4) γ = 1
4

(

Āσw
)2

; a(Nt+1) = 0; l = Nt; update = true

(5) while (1)
(6) if update
(7) for n = k : 1 : Nt















































early Siegel

condition

evaluation

(8) if |R̃n−1,n−1| >
√
ζ|R̃n,n|

(9) break;
(10) end
(11) if n == Nt

(12) γ = −1
(13) end
(14) end

(15) for n = l : −1 : 1 





















































partial SIC

and RA

computation

(16) ∆ = b̄n − ΣNt

j=n+1R̃n,j ẑj
(17) ẑn = round(∆/R̃n,n)
(18) l = n− 1
(19) if γ > 0

(20) an = an+1 + |∆ − R̃n,nẑn|
2

(21) if an > γ → break
(22) end
(23) end

(24) if γ < 0 || al+1 ≤ γ
(25) ŝ = QS [2T ẑ − (1 + j) 1Nt×1]
(26) if γ < 0 || ŝ == (2T ẑ − (1 + j)1Nt×1) → break
(27) end
(28) end

(29) [k, update,Θ, R̃, Q̃,T , g] = CLLL iter(k, R̃, Q̃,T , g)
(30) if update
(31) l = max(l, k + 1); b̄k:k+1,1 = Θb̄k:k+1,1

(32) end
(33) end
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CHAPTER VIII

EVALUATING INCREMENTAL LR FROM

ALGORITHM AND HARDWARE PERSPECTIVES

In this chapter we evaluate the effectiveness of the proposed algorithm, incremental

CLLL-MMSE-SIC, at reducing the average number of basis updates. Given that

the proposed algorithm requires additional overhead, we also consider the relative

contribution of the overhead to the the number of arithmetic operations under the

proposed method. Before either evaluation can proceed, however, we must choose

Ā, which clearly affects the operation of the proposed algorithm. When Ā = 0, the

proposed algorithm simplifies to the original CLLL-MMSE-SIC. Conversely, when

Ā = ∞, CLLL processing is never applied and the proposed algorithm simplifies to

MMSE-SIC. We first determine Ā for the single received vector per packet case. Then

we use this Ā to evaluate the proposed algorithm for a variety of spatial correlation

cases and packet sizes.

8.1 Choosing the Ā Parameter

To determine a suitable Ā, we explore the space of spatial correlation cases for the

system model in (1). We apply the assumptions in Section 6.3 but do not restrict

the exploration to the artificial constraint of equal transmitter and receiver spatial

correlation. We determine a general guideline for which spatial correlation cases to

consider by first setting Ā = 0, fixing the |ρtx| parameter and then searching for the

|ρrx| that results in approximately 10−3 BER at an SNR of 33 dB. For each |ρrx|

considered when |ρtx| is fixed, a sufficient number of channel realizations is simulated

to produce 8000 bit errors. In general the SNR required to maintain a given BER
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increases as the degree of spatial correlation increases [2]. Therefore, this correlation

case determination exercise provides us with the largest |ρrx| that we should examine

for a given |ρtx|.

For each spatial correlation case that we consider, we determine an Ā that results

in at most a 10% BER degradation at 10−3 BER. To accelerate this Ā determination

process, a straightforward adaptive and automated search method is employed. For

each Ā parameter value considered in this search, a sufficient number of channel

realizations is simulated to produce a minimum of four million bit errors, reducing

the variance of the BER estimate. Given the large number of channel realizations

simulated, we must utilize a pseudo random number generator (PRNG) that has a

long period. The PRNG in [47], which has a period of 219937 − 1, is a suitable choice.

The determined Ā for a variety of correlation cases is contained in Figure 15.

In addition, the shaded area in the figure indicates the results of the correlation

case determination exercise. We obtain an approximate boundary of this shaded

region by considering each |ρrx| and |ρtx| pair generated during the correlation case

determination exercise. For each of these transmitter and receiver correlation pairs,

we complete the Ā determination process and then plot the determined Ā for each

|ρrx| in this pair.

These results—the Ā determination process and correlation case determination

exercise—when taken together indicate that for practical values of transmitter and

receiver spatial correlation, the Ā parameter does not vary significantly. It is also

apparent that lower Ā values are required for higher spatial correlation. From Figure

15, we observe that the choice Ā = 18.2 is sufficient for the majority of correlation

cases. We further validate this choice by empirically verifying that the BER to SNR

curve of the proposed algorithm with Ā = 18.2 is parallel to the BER to SNR curve

of the original CLLL-MMSE-SIC algorithm for all correlation cases considered. An

example plot that demonstrates this behavior for a variety of correlation cases is
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Figure 15: Determined Ā parameter for a variety of spatial correlation cases under
the assumptions in Section 6.3. These assumptions include a 4 × 4 MIMO system,
64-QAM signal constellation, AoA of 45 degrees, AS of 40 degrees, and a linear array
of antennas at both the receiver and transmitter.

contained in Figure 16.

8.2 Reduction in Average Number of Basis Updates

Setting Ā = 18.2, we are now able to evaluate the effectiveness of the proposed

algorithm at reducing the average number of basis updates. Our evaluation approach

involves comparing the average number of basis updates of the proposed algorithm

and original CLLL algorithm for identical SNR values. Then we utilize additional

simulations of the proposed algorithm to determine the SNR penalty incurred for this

reduction in average number of basis updates. More concretely, under the assumption

of a 4 × 4 system with a 64-QAM signal constellation, we complete the following for
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Figure 16: 4x4 64-QAM BER performance for both the proposed algorithm with
Ā = 18.2 (ICLLL) and the original CLLL-MMSE-SIC algorithm (CLLL).

a given correlation case:

1. Determine the SNR required when Ā = 0 to achieve 10−3 BER;

2. Simulate the proposed algorithm at this SNR with Ā = 18.2 and record the

average number of basis updates;

3. Determine the SNR required when Ā = 18.2 to achieve 10−3 BER.

For each of these tasks, we simulate a sufficient number of channel realizations to

produce a minimum of 8000 bit errors.

The graphs in Figure 17 contain the results of this evaluation for each correlation

case identified in Section 8.1. We additionally include results for |ρtx| = 0.89 with
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Figure 17: Average number of basis updates required by the proposed algorithm
(top) and corresponding SNR penalty for a variety of correlation cases.

|ρrx| between 0.3 and 0.65. These additional results allow us to evaluate the proposed

algorithm for correlation cases that are not identified in Section 8.1 (an SNR greater

than 33 dB is required to achieve 10−3 BER). We examine the ratio of the average
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number of basis updates required by the proposed algorithm to the average number

of basis updates required by the original CLLL algorithm and the increased SNR

penalty incurred by the proposed algorithm relative to the original CLLL algorithm

to achieve 10−3 BER. From these figures it is then apparent that for the correlation

cases in Section 8.1, the proposed algorithm requires only 10% − 25% of the number

of average basis updates, depending on the spatial correlation. The SNR penalty for

this reduction is at most 0.17 dB. Furthermore, the performance of the algorithm

for the high correlation cases appears to be reasonable; a 0.4 dB penalty in SNR is

incurred in exchange for over a 75% reduction in the average number of basis updates

when |ρtx| = 0.89.

In this evaluation, however, the AoA and AS parameters are fixed at 45 degrees

and 40 degrees, respectively. Therefore, we next determine how varying these param-

eters affects these results. In this additional experiment, we fix both |ρtx| and |ρrx|

at 0.7 for a given AoA and AS by adjusting the antenna spacing accordingly. Under

the assumption of a 5 GHz carrier frequency, we choose AoA/AS pairs such that the

smallest antenna spacing required to meet this correlation condition is 1.4 cm. From

the basis update results in Figure 18, it is apparent that the proposed algorithm

achieves a reduction in the average number of basis updates over a range of AoAs

and ASs. We also note that in this experiment we obtain similar SNR penalty results

as in Figure 17. For the AoA/AS pairs examined in this experiment, the proposed

algorithm incurs a 0.2 dB maximum SNR penalty.

8.3 System Evaluation

From these results it is clear that the proposed algorithm effectively reduces the aver-

age number of basis updates when each transmitted packet only contains one symbol

vector. In a communication system, however, packets have varying length depending

on the channel conditions, data rate, and number of antennas at the transmitter and
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Figure 18: Proposed algorithm average number of basis updates as a fraction of
original CLLL algorithm average number of basis updates for a variety of AoA and
AS cases. For this experiment, both |ρtx| and |ρrx| are fixed at 0.7 by adjusting the
antenna spacing accordingly.

receiver. For example, the 802.11n standard enables higher throughput by specifically

supporting larger packet sizes than legacy standards [23]. We therefore examine the

behavior of the proposed algorithm for varying packet sizes in this final evaluation.

8.3.1 Basis Updates

We follow the experimental setup in Section 8.2 but set the packet size to 20, i.e.,

each packet contains 20 received vectors. The processing of each received vector in a

packet is initialized with the possibly partially-reduced lattice (after the first received

vector is processed). As a result of this proposed algorithm feature, it is instructive

to track the average number of additional basis updates executed to further reduce
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the partially-reduced lattice for each received vector position.

The results of this experiment are contained in Figure 19 for a range of correlation

cases.1 From the figure we observe that the proposed algorithm distributes the LR

processing over the length of the packet. For example, consider the |ρtx| = |ρrx| =

0.7 correlation case. For the original CLLL algorithm, the average number of basis

updates is approximately 4.43. For the proposed algorithm, the average number of

basis updates to complete the processing of the first received vector in the packet is

0.56. From the figure we see that the average number of additional basis updates then

decreases rapidly for each subsequent received vector. Simulations of this correlation

case for packet sizes greater than 100 indicate that the sum of these additional basis

update averages actually converges to the average number of basis updates of the

original CLLL algorithm. Through additional simulations, we confirm this behavior

across all correlation cases that we consider in this article.

8.3.2 Overhead Complexity

Although this redistribution of basis update computations is desirable from a hard-

ware realization perspective, the proposed algorithm requires additional overhead.

This overhead includes the partial SIC and RA computation and the b̄ vector up-

date computation (Line 31 of Table 3). To determine the complexity contribution

of this overhead relative to the complexity of the proposed algorithm, we repeat the

packet simulation exercise for various packet sizes and track the number of arithmetic

operations in Line 3-33 of Table 3. We additionally track the number of arithmetic

operations required for the overhead computations of the proposed algorithm. Here

1The SNR penalties that we observe in this experimental are all less than 0.01 dB. This result
suggests that Ā could be optimized for a given packet size. To preserve the generality of our
experiments, we use Ā = 18.2, which is the choice for the single received vector per packet case.
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Figure 19: Average number of basis updates executed for each received vector by
the proposed algorithm. In this evaluation Ā = 18.2, the packet size is 20, and the
experimental setup from Section 8.2 is utilized.

arithmetic operation refers to an addition, a multiplication, a full division, an integer-

rounded division (SIC detection and size reduction operations), or a square-root op-

eration.

The reasonableness of this complexity metric becomes apparent when we consider

the results in Section 8.3.1 and how these operands are used in the proposed algorithm.

Notice that the most hardware-complex operations, full division and square-root, are

only required for basis updates and have the same weight as the remaining opera-

tions for the given complexity metric. Hence, for small packets sizes (less than 5

received vectors), we underestimate the complexity reduction that results from the

large reduction in average number of basis updates. We further note that the integer-

rounded division operation can be viewed as a reduced-precision reciprocation op-

eration followed by a multiplication operation. Therefore assuming reciprocals are

reused, which is clearly possible in the partial SIC computation, it is reasonable to

treat each integer-rounded division as one multiplication.
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Figure 20: Contribution of overhead operations in proposed algorithm to the average
number of proposed algorithm arithmetic operations. In this evaluation Ā = 18.2 and
the experimental setup from Section 8.2 is utilized.

We examine the results of this experiment in Figures 20 and 21. Figure 20 contains

the complexity results of this experiment in terms of the normalized average number

of proposed algorithm overhead arithmetic operations. Specifically, we normalize by

the average number of proposed algorithm arithmetic operations. From the figure

we observe that the overhead is less than 10% of the average number of proposed

algorithm arithmetic operations for the majority of correlation and packet size cases

that we examine. For the high correlation case that we examine, |ρtx| = |ρrx| =

0.7, this overhead is 13.3% when the packet only contains one received vector. The

results in the figure also indicate that the contribution of the overhead increases with

increasing spatial correlation.

Figure 21 contains the complexity results of this experiment in terms of the average

number of proposed algorithm arithmetic operations that is normalized by the av-

erage number of original CLLL-MMSE-SIC algorithm arithmetics operations. From
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Figure 21: Average number of basis updates executed for each received vector by the
proposed algorithm. In this evaluation Ā = 18.2 and the experimental setup from
Section 8.2 is utilized.

the figure we observe that the proposed algorithm achieves a reduction in average

arithmetic operations for packets containing less than 5 received vectors. For packets

containing more than 15 received vectors, the proposed algorithm incurs approxi-

mately less than a 4% increase in average arithmetic operations compared to the

original CLLL-MMSE-SIC algorithm.

For both these figures, however, we note that we have not considered the complex-

ity of the packet initialization operations in Table 3. Inclusion of these operations

would further diminish the relative contribution of the overhead operations to the

complexity of the proposed algorithm.
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8.3.3 Hardware Evaluation

We could realize the proposed algorithm in hardware using a system that consists

of the CLLL processor from Section 5.2 and an additional module to implement the

partial SIC and RA computation. In this system, the CLLL processor outputs the

Θ matrices from basis updates, R̃ matrix elements as they are updated by basis

updates or size reduction operations, and R̃k,k reciprocals as they are computed by

the NR-based integer-rounded divider from Section 4.1.1. The SIC/RA module in

turn outputs a termination signal to the CLLL processor, indicating when the RA is

satisfied for the current symbol vector estimate. Hardware evaluation of the proposed

algorithm could then be carried out by running this system with the 802.11n example

in Section 5.3.1 for various channel correlation cases.

Rather than build this complete system, we consider an abstraction that involves

the CLLL processor and knowledge about when the SIC/RA module would indicate

early termination (instead of the actual SIC/RA module). Specifically, we complete

the following procedure for a given block of sub-carrier channel matrices in a packet

containing one OFDM symbol:

1. Run the proposed algorithm on each channel matrix using the corresponding

sub-carrier received vector for the RA-based early termination. Assume that

the SNR is the value that results in approximately a 10−3 BER. Record the

number of iterations required to process each channel matrix.

2. For the channel matrices that require LR processing, assume that these can be

processed consecutively. Process this updated block of channel matrices using a

cycle-accurate model of the CLLL processor that is set to terminate processing

at the corresponding number of iterations determined in step 1 for each channel

matrix. Record the total number of cycles.

3. Using the XC5VLX110-3 post-PR timing results in Table 2 and the total cycle
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count in step 2, compute the total latency.

We also note here that we can alter step 1 above to accommodate the original

CLLL algorithm (Set the maximum number of iterations to the value determined in

Section 5.1.2) and hypothetical detector in Section 6.3. Hence, we can gather data

about the three CLLL-aided detector types, CLLL, ICLLL, and hypothetical CLLL,

using this extended procedure. For a given channel correlation case and CLLL-aided

detector type, we run this procedure for a sufficient number of packets such that we

can obtain accurate estimates of the average latency, latency where the complemen-

tary cumulative distribution function (CCDF) of the latency is equal to 0.005, and

the latency where this CCDF is equal to 0.0005.

The results of this experiment for the correlation cases considered in Section 6.2

are contained in Table 4. Figure 22 contains a visualization of these results for the

CLLL and ICLLL cases. From this figure, it is apparent that for all three latency

metrics, the proposed algorithm results in a large reduction in required processing

latency compared to the original CLLL algorithm. For example, when no correlation

Table 4: Required CLLL processor (Section 5.2) latency to process 52 channel ma-
trices in example 802.11n system (Section 5.3.1) when each packet contains a single
OFDM symbol.

|ρtx| = |ρrx|
0.0 0.3 0.5 0.7

CLLL
Average 11.66 µs 16.11 µs 23.95 µs 44.89 µs
CCDF = 0.005 17.30 µs 22.22 µs 30.67 µs 52.07 µs
CCDF = 0.0005 19.85 µs 24.85 µs 32.39 µs 55.60 µs

Incremental CLLL
Average 1.82 µs 2.34 µs 3.45 µs 8.43 µs
CCDF = 0.005 4.60 µs 5.96 µs 7.75 µs 15.83 µs
CCDF = 0.0005 5.69 µs 7.91 µs 8.63 µs 17.22 µs

Hypothetical CLLL
Average 1.19 µs 1.80 µs 2.71 µs 7.16 µs
CCDF = 0.005 2.71 µs 4.63 µs 6.74 µs 13.77 µs
CCDF = 0.0005 4.09 µs 5.76 µs 7.69 µs 15.89 µs
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Figure 22: Visualization of experimental results in Table 4.

exists (|ρtx| = |ρrx| = 0.0) the CCDF = 0.0005 latency is reduced by 72%. For the

high correlation case (|ρtx| = |ρrx| = 0.7), the CCDF = 0.0005 latency is reduced by

69%.

Given that the purpose of developing the proposed algorithm was to realize the

early termination potential in Section 6.3, it is instructive to compare the ICLLL

and hypothetical CLLL cases. Figure 23 contains a visualization of this comparison.

In this figure we examine the ratio of the ICLLL latency to the hypothetical CLLL

latency using the data from Table 4. This figure demonstrates that for the high

correlation case, the required CCDF = 0.0005 latency of the proposed algorithm is less

than 10% greater compared to the CLLL-aided detector with ideal early termination.
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Figure 23: ICLLL data from Table 4 that has been normalized by the corresponding
hypothetical CLLL results in this table.

Across all three latency metrics, this figure also demonstrates that as the correlation

decreases, the required latency of the proposed algorithm relative to the hypothetical

CLLL case increases.

These results are consistent with the chosen Ā parameter in the proposed al-

gorithm. Recall that the Ā parameter sets the complexity to BER performance

tradeoff. The choice of Ā = 18.2 maintains BER performance for correlation cases

|ρtx|, |ρrx| < 0.84. Clearly, if we restrict the correlation cases to smaller ranges, we can

choose larger values for Ā while maintaining BER performance (based on the results

in Figure 15). Hence, refining the proposed algorithm to incorporate a variable Ā

parameter that is based on an estimate of the channel correlation should lead to the

proposed algorithm latencies better matching the latencies of the hypothetical CLLL

case.
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CHAPTER IX

CONCLUDING REMARKS

Throughout the dissertation we have alternately examined LR-aided detection from

algorithm and hardware perspectives, resulting in a unique combination of hard-

ware and algorithm contributions. Through an understanding of the channel model

employed and operation of the CLLL algorithm, we proposed, analytically and empir-

ically justified, and implemented modifications to CLLL-aided detection algorithms.

These modifications led to simplifications in the normally hardware-complex opera-

tions of the CLLL algorithm and streamlined the overall architecture development.

After implementing the modified CLLL algorithm, we were then able to consider

the hardware implications of a more realistic wireless channel model. Specifically,

we examined the effect of spatial correlation at the receiver and transmitter on the

processing latency of the proposed architecture. The large latency increase that we

observed then motivated us to solve this problem of increasing latency with increas-

ing spatial correlation. The solution to this problem involved a combination of a

practical early termination condition and an intelligent merging of the LR processing

and symbol detection computations, which we introduced as ILR. Finally, using a

co-simulation environment, we demonstrated that the average packet processing la-

tency can be drastically reduced when the proposed ILR scheme is coupled with the

proposed architecture.

9.1 Contributions

This dual-view hardware/algorithm approach has resulted in the following specific

contributions in a variety of publications:
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• Elementary proof that the CLLL-MMSE-SIC symbol vector estimate is unaf-

fected by size reduction operations until a basis update occurs during execution

of the CLLL algorithm. This result naturally enables early termination of the

CLLL algorithm based on the Siegel condition [21].

• Modified CLLL algorithm with relaxed size reduction condition and correspond-

ing derivation of upper bound analysis for fixed-point implementation. This

work was initially completed based on the Lovász condition [20] and then sub-

sequently refined for the Siegel condition in [21].

• Relative error analysis and development of single Newton-Raphson iteration

architecture for executing size reduction operations [16].

• Development of unrolled and pipelined Householder CORDIC architecture that

enables simultaneous vectoring and rotation operations, reduced multiplexer

complexity, and decreased critical path delay [20].

• Architecture and FPGA hardware realization of CLLL processor for a 4 × 4

CLLL-MMSE-SIC detector. This work resulted in both the first conference

publication [19] and journal publications [82, 21] in the area of CLLL hardware

realization.

• Analytic justification that RA-based hybrid detectors can achieve full diversity

[18].

• Development of incremental CLLL-MMSE-SIC detection and application to re-

ducing the packet processing latency of a system that uses the proposed CLLL

architecture [17, 18].

• Development of a co-simulation environment for rapid hardware development

and verification [15].
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9.2 Suggestions for Future Research

Next generation wireless communication systems will likely exhibit extremely high

spectral efficiency, require detection algorithms that exhibit improved BER perfor-

mance, and require even higher packet-rate and symbol-rate processing throughput.

The following extensions of the dissertation research begin to address these challenges:

• Given the general description (in terms of MIMO system size) of both the

modifications to the CLLL algorithm and the CLLL processor design parameters

and procedures, the analytic and empirical results in the dissertation can be

applied to more complex MIMO antenna configurations, e.g., 8 × 8 systems.

• The proposed CLLL architecture for 4 × 4 systems can be used to develop a

hardware realization of the CLLL-aided soft-output decoder in [81].

• The idea of incremental LR introduced in the dissertation can be applied to the

most recent LR-aided detection research in [41, 38, 39]. Specifically, we note

the following for a given LR-aided detection algorithm:

1. The hypothetical experiment in Section 6.3 can be completed for the given

LR-aided detection algorithm to determine if the potential for early ter-

mination exists.

2. The proof in Appendix D is applicable to any LR-aided detection algorithm

because any detection algorithm can be used for the initial estimate of the

transmitted symbol vector.

3. The correlation case determination exercise and Ā determination process

in Section 8.1 form a straightforward methodology for determining an Ā

given realistic SNR constraints.

4. The final ILR algorithm based on the given LR-aided detection algorithm

can evaluated using both the single symbol vector per packet and multiple
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symbols per packet experiments in Section 8.2 and Section 8.3, respectively.

• Although we demonstrate the utility of ILR using a fixed Ā parameter, the

Ā parameter can alternatively be determined based on the channel estimation

scheme, channel matrix, estimated noise variance, and packet size. Further

reduction in complexity and relaxation of hardware requirements should be

possible. The hypothetical detector in Section 6.3 can be used to evaluate the

effectiveness of any method for determining the Ā parameter.

• To create a low-power and low-latency ASIC implementation, the datapath

modules of the proposed CLLL architecture can be replaced with asynchronous

logic datapaths (employing the embedding technique proposed in [46]). Addi-

tionally, asynchronous logic implementations of the partial SIC and RA com-

putation required for ICLLL-MMSE-SIC can be explored.
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APPENDIX A

PROOF OF PROPOSITION 1: EFFECT OF SIZE

REDUCTION ON CLLL-MMSE-SIC DETECTION

In this appendix we demonstrate that the symbol vector estimate obtained from the

CLLL-MMSE-SIC detection procedure is unaffected by size reduction of the entire

matrix. We first define a matrix A(i) to be a unimodular matrix that has a one on

each diagonal, arbitrary complex integers in the upper-off-diagonal elements of the

i-th column, and zero on the remaining matrix entries. We can then consider the

following lemma under the assumption that QS in (9) is the element-wise integer-

rounding operation:

Lemma 5 Let x̂ be the SIC solution when an arbitrary Nt × Nt invertible upper-

triangular matrix R with complex elements and an Nt × 1 complex vector b are used

in the (9) SIC recursion. The elements of the SIC solution x′ when R′ = RA(i) and

b are used in (9) are then equal to

x′n =















xn i ≤ n ≤ Nt,

xn − a
(i)
n,ixi 1 ≤ n ≤ i− 1.

(69)

Proof: The i-th column of R′ is equal to the following:

R′
i = Ri +

i−1
∑

j=1

a
(i)
j,iRj . (70)

Given that only the i-th column elements of R′ in rows of index less than i are

affected, clearly x′n = xn for i ≤ n ≤ Nt. We use induction to prove the 1 ≤ n ≤ i−1

case of (69).
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Beginning with the base case n = i− 1 we have the following:

x′i−1 =

⌊

bi−1 −
∑Nt

j=iR
′
i−1,jx

′
j

R′
i−1,i−1

⌉

=

⌊

bi−1 −
∑Nt

j=i+1Ri−1,jxj − R′
i−1,ixi

Ri−1,i−1

⌉

. (71)

Using (70) we can apply the substitution R′
i−1,i = Ri−1,i + a

(i)
i−1,iRi−1,i−1 to (71) and

simplify:
⌊

bi−1 −
∑Nt

j=iRi−1,jxj

Ri−1,i−1

⌉

− a
(i)
i−1,ixi = xi−1 − a

(i)
i−1,ixi.

Next, we assume that (69) is true for l ≤ n ≤ Nt and show that (69) is true for

l− 1 ≤ n ≤ Nt, where 2 ≤ l ≤ i− 2. It therefore suffices to show that (69) is true for

n = l − 1. We begin with the SIC solution for the l − 1 element of x′:

x′l−1 =

⌊

bl−1 −
∑Nt

j=lR
′
l−1,jx

′
j

R′
l−1,l−1

⌉

. (72)

Now letting ml−1 be the numerator part of the fraction in (72) such that x′l−1 =

bml−1/R
′
l−1,l−1e, we can write

ml−1 = bl−1 −
i−1
∑

j=l

Rl−1,jx
′
j − R′

l−1,ixi −
Nt
∑

j=i+1

Rl−1,jxj .

Applying (70) and the induction hypothesis, we obtain

ml−1 = bl−1 −
i−1
∑

j=l

Rl−1,j

(

xj − xia
(i)
j,i

)

−
Nt
∑

j=i+1

Rl−1,jxj −
(

Rl−1,i +
i−1
∑

j=l−1

a
(i)
j,iRl−1,j

)

xi.

(73)

Simplifying (73) and substituting back into (72), we obtain the following:

x′l−1 =

⌊

bl−1 −
∑Nt

j=lRl−1,jxj − a
(i)
l−1,ixiRl−1,l−1

Rl−1,l−1

⌉

= xl−1 − a
(i)
l−1,ixi. �

We now use this result to prove the final lemma. Let Q̃R̃ = H̄T be the H̄

(defined in (6)) factorization produced by the CLLL algorithm. Also let ẑ be the SIC

solution to equation (16)

R̃z =
1

2
Q̃

H (
ȳ + H̄ (1 + j)1Nt×1

)

, (74)
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where we write the righthand side in an equivalent form. The symbol vector estimate

(before scaling, shifting, and quantization to the nearest symbol constellation) from

this z-domain solution is then ṡ = T ẑ. Also, let R̃
(i)

= R̃
(i−1)

B(i) and T (i) =

T (i−1)B(i) with R̃
(1)

= R̃ and T (1) = T . Let B(i) be generated by running the

procedure in Table 5 with Ṙ = R̃
(i−1)

initially. We now consider the following

lemma:

Lemma 6 If R̃ is size-reduced to produce a new upper-triangular matrix

R̃
′

= R
(

B(2) · · ·B(Nt)
)

and updated unimodular matrix T ′ = T
(

B(2) · · ·B(Nt)
)

,

then the updated CLLL-MMSE-SIC symbol vector estimate ṡ′ (before scaling, shifting,

and quantization to the nearest symbol constellation) is unchanged, i.e. ṡ′ = ṡ.

Proof: Let ẑ(i) be the SIC solution to (74) that has R̃ replaced with R̃
(i)

and ṡ(i)

be the subsequent symbol vector estimate. Since ṡ′ = ṡ(Nt), we can use induction on

i to prove this lemma. Beginning with the base case i = 2, we use Lemma 5 to show

the following:

ṡ(2) = T (2)ẑ(2) =













| | | |

T 1 T 2 − u1,2T 1 T 3 · · · TNt

| | | |































ẑ1 + u1,2ẑ2

ẑ2
...

ẑNt



















=
Nt
∑

j=1

T j ẑj + T 1u1,2ẑ2 − T 1u1,2ẑ2 = T ẑ = ṡ.
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Table 5: Generation of B(i) matrices for Full Size Reduction on the i-th column of
Ṙ

(1) B(i) = INt
;

(2) for n = i− 1 : −1 : 1

(3) un,i =
⌊

Ṙn,i/Ṙn,n

⌉

;

(4) Ṙi = Ṙi − un,i · Ṙn; B
(i)
i = B

(i)
i − un,i · B(i)

n ;
(5) end

Next, we assume ṡ(i) = ṡ and show that this implies ṡ(i+1) = ṡ. Using Lemma 5

we obtain

ẑ(i+1) =

































ẑ
(i)
1 + u1,i+1ẑ

(i)
i+1

...

ẑ
(i)
i + ui,i+1ẑ

(i)
i+1

ẑ
(i)
i+1

...

ẑ
(i)
Nt

































.

We also have that

T (i+1) =













| | | | |

T
(i)
1 · · · T

(i)
i T

(i+1)
i+1 T

(i)
i+2 · · · T

(i)
Nt

| | | | |













,

where T
(i+1)
i+1 = T

(i)
i+1 −

∑i

j=1 uj,i+1T
(i)
j . We then have

ṡ(i+1) = T (i+1)ẑ(i+1)

=
Nt
∑

j=1

T
(i)
j ẑ

(i)
j +

i
∑

j=1

T
(i)
j

(

ẑ
(i)
i+1uj,i+1 − ẑ

(i)
i+1uj,i+1

)

= T (i)ẑ(i) = ṡ(i) = ṡ. �
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APPENDIX B

SOLVING CONSTRAINED MAXIMUM PROBLEM FOR

UPPER BOUND ON INTERMEDIATE SIZE

REDUCTION RESULTS

In this appendix, we solve the constrained maximum problem that arises in Chapter

3, which is the maximization of (38) subject to the constraint in (39) when k > 2.

Towards this goal, we first define a 2 (k − n) × 1 column vector

x =
[ ∣

∣

∣
<[R̃n,k]

∣

∣

∣
· · ·

∣

∣

∣
<[R̃k−1,k]

∣

∣

∣

∣

∣

∣
=[R̃n,k]

∣

∣

∣
· · ·

∣

∣

∣
=[R̃k−1,k]

∣

∣

∣

]T

, (75)

a 2 (k − n) × 1 column vector

c = [ 1 αn+1,k · · · αk−1,k 0 αn+1,k · · · αk−1,k ]T , (76)

and a constant Emax = B2
(

1 + 1
2
(k − 2)

)

. Next, using these definitions, we write the

righthand side of (38) as

γn,kB +
∣

∣

∣
<[R̃n,k]

∣

∣

∣
+

k−1
∑

p=n+1

αp,k

(∣

∣

∣
<[R̃p,k]

∣

∣

∣
+
∣

∣

∣
=[R̃p,k]

∣

∣

∣

)

= γn,kB + c1x1 +

k−n
∑

p=2

cpxp + ck−n+1xk−n+1 +

2(k−n)
∑

p=k−n+2

cpxp

= γn,kB + cTx. (77)

Defining f (x) =
(

cTx
)2

, we see that the constrained maximum problem in Chapter

3 can be solved by finding the x that maximizes f (x) subject to the constraint

‖x‖2 = Emax. Letting λ be a Lagrange multiplier, we can examine partial derivatives

of f (x) =
(

cTx
)2

+ λ
(

Emax − ‖x‖2) with respect to xi:

∂f

∂xi
= 2cic

Tx − 2λxi = 0 (78)
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Assuming that cTx 6= 0, we see that the solution to this constrained maximization

problem satisfies cixj = cjxi for any xi and xj . We then use this result in the original

constraint equation, obtaining

Emax =

2(k−n)
∑

i=1

x2
i

Emaxc
2
j =

2(k−n)
∑

i=1

(cixj)
2 = x2

j‖c‖2.

Hence, we see that the solution to this constrained maximization problem is

xj =
√
Emaxcj/‖c‖. Substitution of this solution into (77) results in

γn,kB +
√

Emax‖c‖ = γn,kB +B

√

1 +
1

2
(k − 2)

√

√

√

√1 + 2

k−1
∑

p=n+1

α2
p,k

= B



γn,k +

√

√

√

√k

(

1

2
+

k−1
∑

p=n+1

α2
p,k

)



 .
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APPENDIX C

APPLICATION OF NEWTON-RAPHSON RELATIVE

ERROR ANALYSIS IN EXAMPLE SYSTEM

To demonstrate the utility of the Mγ,a upper-bound derived in Section 4, we use this

upper-bound for an integer-rounded divider having parameters of w = 12 and f = 13,

which mirror parameters in the work in [19].

Using the analysis in Chapter 4, we find that a 32-entry (rn + e) LUT of width 6-

bits results in M5,6 < 1/1024. To demonstrate that M5,6 is indeed an upper-bound for

the relative error, we employ random simulations. Generating test cases by sampling

n and d from a uniform distribution results in a quotient distribution that is highly

skewed toward lower values. Instead we first sample a “quotient” q from a uniform

distribution over (0, Umax), and then generate two cases from this quotient. For the

first test case we sample a d from a uniform distribution over (0,min(2w/q, 2w)) and

then generate n = qd. For the second test case we sample an n from a uniform

distribution over (0,min(2wq, 2w)) and then generate d = n/q.

Figure 24 shows the maximum relative error, (q′−q)/q, of 20 million test cases for

each set of test cases that resulted in a particular rounded quotient, where q′ = n2αr′n.

The figure demonstrates that the maximum relative error is strictly less than M5,6

and that M5,6 is within 2% of the overall maximum relative error.
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Figure 24: Maximum relative error for each set of test cases that resulted in a
particular rounded q quotient. The M5,6 bound for a 32-entry, 6-bit wide reciprocal
LUT is less than the 1/1024 constraint and strictly greater than the overall maximum
relative error.
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APPENDIX D

PROOF OF PROPOSITION 2

We first define a random vector v = H (s − ŝ) and a random vector m to be v given

that s → ŝ has occurred. We let m(I) = < [m] and m(Q) = = [m]. We then first

notice the following upper bound:

P{‖d‖ ≤ Aσw | m} ≤
Nr
∏

i=1

(

P
{∣

∣

∣
m

(I)
i + η<[wi]

∣

∣

∣
≤ Aσw

}

·

P
{∣

∣

∣
m

(Q)
i + η=[wi]

∣

∣

∣
≤ Aσw

})

.

(79)

For convenience, we define n =
√

2
σw

w, let σ = ησw, and let Ã = A/η. Then we

focus on establishing an upper bound for one of the product terms

P
{∣

∣

∣
m

(I)
i + η<[wi]

∣

∣

∣
≤ Aσw

}

, which we can write as P
{∣

∣

∣

√
2
σ
m

(I)
i + <[ni]

∣

∣

∣
≤

√
2Ã
}

.

For the case
∣

∣

∣
m

(I)
i

∣

∣

∣
> Ãσ this probability is the area of the shaded region in Figure

25, which we upper bound using the following:

P

{∣

∣

∣

∣

∣

√
2

σ
m

(I)
i + <[ni]

∣

∣

∣

∣

∣

≤
√

2Ã

}

=
1√
2π

∫

√
2Ã−

√
2

σ

∣

∣

∣m
(I)
i

∣

∣

∣

−
√

2Ã−
√

2
σ

∣

∣

∣m
(I)
i

∣

∣

∣

e−
1
2
x2

dx

≤ Q

(√
2

σ

∣

∣

∣
m

(I)
i

∣

∣

∣
−
√

2Ã

)

≤ e
− 1

2

(√
2

σ

∣

∣

∣m
(I)
i

∣

∣

∣−
√

2Ã
)2

≤ e
− 1

2

(

2
σ2

∣

∣

∣m
(I)
i

∣

∣

∣

2
− 4

σ
Ã
∣

∣

∣m
(I)
i

∣

∣

∣

)

. (80)

For the case Ã < 3
8σ

∣

∣

∣
m

(I)
i

∣

∣

∣
, we can apply (80) to establish the upper bound

P

{∣

∣

∣

∣

∣

√
2

σ
m

(I)
i + <[ni]

∣

∣

∣

∣

∣

≤
√

2Ã

}

≤ e−
(m

(I)
i )

2

4σ2 . (81)

We then use this result in the definition of the following function:

P
(

x, Ã, σ
)

=















e−
x2

4σ2 |x| > 8
3
Ãσ,

1 otherwise.

(82)
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(I)
i
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√

2π
e
−

1

2

(

x−
√

2

σ
m

(I)

i

)

2

−
√

2Ã
√

2Ã

P
{∣

∣

∣

√

2
σ

m
(I)
i +<{ni}

∣

∣

∣ ≤
√

2Ã
}

Figure 25: Visualization of P
{∣

∣

∣

√
2
σ
m

(I)
i + <[ni]

∣

∣

∣
≤

√
2Ã
}

when
∣

∣

∣
m

(I)
i

∣

∣

∣
> Ãσ. Specif-

ically, the m
(I)
i > 0 case is shown. As a result of symmetry, however, the illustration

is also useful for visualizing the m
(I)
i < 0 case.

Clearly, we have

P

{∣

∣

∣

∣

∣

√
2

σ
m

(I)
i + <[ni]

∣

∣

∣

∣

∣

≤
√

2Ã

}

≤ P
(

m
(I)
i , Ã, σ

)

, (83)

P

{∣

∣

∣

∣

∣

√
2

σ
m

(Q)
i + =[ni]

∣

∣

∣

∣

∣

≤
√

2Ã

}

≤ P
(

m
(Q)
i , Ã, σ

)

. (84)

We now use these results to establish an upper bound for the expression in (85)

by first finding an upper bound for the pdf of m, f(m). Given the definition of

H ′, it follows that H ′Σ
1
2
tx (s − ŝ) v CN

(

0,
∥

∥

∥
Σ

1
2
tx (s − ŝ)

∥

∥

∥

2

I

)

. It then follows that

m v CN
(

0,
∥

∥

∥
Σ

1
2
tx (s − ŝ)

∥

∥

∥

2

Σrx

)

. Using (65) we obtain f(m) ≤ Be, which we use
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to establish the upper bound in (86):

P{‖d‖ ≤ Ãσw | s → ŝ} =

∫

m(I)∈RNr

∫

m(Q)∈RNr

P{‖d‖ ≤ Ãσw | m}f (m) dm(Q)dm(I)

(85)

≤ Be

∫

m(I)∈RNr

∫

m(Q)∈RNr

P{‖d‖ ≤ Ãσw | m}dm(Q)dm(I)

(86)

Next, we define the following subsets of R
Nr :

T0,i =

{

g ∈ R
Nr

∣

∣

∣

∣

|gi| ≤
8

3
Ãσ

}

, T1,i =

{

g ∈ R
Nr

∣

∣

∣

∣

|gi| >
8

3
Ãσ

}

. (87)

Then we can then split (86) into 22Nr parts:

1
∑

i1=0

· · ·
1
∑

iNr =0

1
∑

k1=0

· · ·
1
∑

kNr =0

Li1,··· ,iNr ,k1,··· ,kNr
, (88)

where Li1,··· ,iNr ,k1,··· ,kNr
is defined as

Li1,··· ,iNr ,k1,··· ,kNr
= Be

∫

mI∈∩Nr
l=1Til,l

∫

mQ∈∩Nr
l=1Tkl,l

P{‖d‖ ≤ Ãσw | m}dm(Q)dm(I).

(89)

Before establishing an upper bound for (89), we also define the following subsets

of R:

U0 =

{

x ∈ R

∣

∣

∣

∣

|x| ≤ 8

3
Ãσ

}

, U1 =

{

x ∈ R

∣

∣

∣

∣

|x| > 8

3
Ãσ

}

. (90)

We can then apply the upper bounds in (79) to obtain the following upper bound for

(89):

Be

(

Nr
∏

l=1

∫

Uil

P
(

x, Ã, σ
)

dx

)(

Nr
∏

l=1

∫

Ukl

P
(

x, Ã, σ
)

dx

)

. (91)

Then we consider integrating P
(

x, Ã, σ
)

over U0:

∫

U0

P
(

x, Ã, σ
)

dx =

∫ 8
3
Ãσ

− 8
3
Ãσ

dx =
16

3
Ãσ (92)
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and U1:

∫

U1

P
(

x, Ã, σ
)

dx = 2

∫ ∞

8
3
Ãσ

e−
x2

4σ2 dx = 4
√
πQ

(

8Ã

3
√

2

)

σ. (93)

Using the definition of MA in (66) we can establish an upper bound for (89) as

follows:

Li1,··· ,iNr ,k1,··· ,kNr
≤ BeM

2Nr

A σ2Nr . (94)

Finally, returning to (86), we obtain the following upper bound:

P{‖d‖ ≤ Aσw | s → ŝ} ≤ (2ηMA)2NrBe

(

1

σ2
w

)−Nr

. �
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APPENDIX E

MODELSIM-MATLAB INTERFACE FOR RTL

DEBUGGING AND VERIFICATION

ModelSim [51] is an optimized simulation engine for SystemC, Verilog, and VHDL

descriptions of hardware systems. It contains powerful waveform viewing and simu-

lation data exporting features that are essential for debugging and verifying digital

hardware design but lacks built-in signal processing functions. Matlab, conversely,

contains a multitude of signal processing functions. Therefore, a cosimulation envi-

ronment that incorporates these tools is useful for both hardware development and

verification. In this appendix we describe a System Verilog/C code creation and com-

pilation system that creates a ModelSim-Matlab shared memory interface optimized

for the input/output specification of the user Verilog or VHDL. This tool enables the

user to indirectly control a ModelSim simulation from a Matlab test script.

ModelSim

System Verilog Testbench

Generated Tester Module

. . .in, out, inout
ports

Clock

DUT (VHDL or Verilog)

MEX DLL

Shared
Memory

Event
Objects

Access Functions

Matlab

User Matlab Test Script

Figure 26: High-level block diagram of the proposed ModelSim-Matlab interface
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E.1 Interface Features Description

The ModelSim-Matlab interface for cycle-accurate functional simulations of Verilog

and VHDL code provides a simple set of access functions such that the communication

and simulation control details are hidden from the user. Figure 26 shows a block

diagram of the ModelSim-Matlab interface. The clock Verilog module in the System

Verilog Testbench generates a DUT clock and a slightly leading and lagging clock

from the DUT clock. The generated tester module drives the DUT inputs at the

positive edge of the leading clock and reads the DUT outputs at the positive edge

of the lagging clock. The tester module communicates with Matlab using shared

memory (similar to Link for ModelSim) for data passing and a simple two-phase

handshake implemented with Microsoft Event Objects for process synchronization.

On the Matlab side, a mex file forms the communication entry point, with the Matlab

Test Script calling this mex file to drive and to control the ModelSim simulation.

The above interface details, however, are not visible to the user. Instead the fol-

lowing simple set of top-level access functions handle these operations transparently:

1. open ModelSim connection - Opens a shared-memory connection with an

open ModelSim process and returns a DUT struct (Matlab struct that has a field for

each input, output, and bidirectional port of the DUT).

2. sendReceive ModelSim connection - Main interface function. The user

sets the DUT (input) struct fields to a decimal number, hexadecimal number, or

signal string (containing any combination of ’Z’, ’X’, ’1’, or ’0’ values). The function

takes this DUT struct as an input, drives the inputs and bidirectional ports of the

DUT using the values specified in this struct, advances the ModelSim simulation by

a single clock, and finally returns a struct containing the updated DUT port states.

3. get ModelSim io - Takes as input a DUT struct and DUT input/output

name string and returns the current value of the DUT input/output as a signal

string, decimal number, or hexadecimal number. There is no apparent advancement
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of the simulation time to the user.

4. pause ModelSim simulation - Returns control to ModelSim such that the

user can use the waveform viewer and other features of ModelSim in the middle of a

simulation. This is equivalent to a $stop Verilog command.

5. close ModelSim simulation - Halts a ModelSim simulation, shuts down

the shared-memory connection, and closes ModelSim. This is equivalent to a $finish

Verilog command.

The interface hides an additional execution detail from the user. If the user does

not need knowledge of the DUT port states every simulation cycle (i.e. the user

does not call get ModelSim io), then the sendReceive ModelSim connection function

does not need to communicate to ModelSim and advance the simulation clock. In-

stead the function accumulates the DUT structs in a buffer until the user calls the

get ModelSim io function. The interface then block transfers the DUT struct buffer

to the ModelSim simulation, clocks the simulation through each DUT struct, and

finally returns a DUT struct updated with the current DUT port states and returns

the specified struct field value, reducing communication overhead.

E.2 Interface Generation

We accomplish automatic generation of this interface through an intelligent partition-

ing of the code base into static skeleton code and generated DUT-specific code, again

shielding the details of this process from the user. We utilize the Direct Programming

Interface (DPI) extension of the System Verilog Language. This language feature al-

lows Verilog tasks to invoke C-functions and allow C-functions to invoke Verilog tasks.

In addition we use the Matlab mex compiler to create a dynamic linked library (DLL)

that the earlier mentioned access functions invoke. For simplicity there is only one

user entry point for this generation process, the DUT I/O File. The user specifies

106



DUT I/O File code generation
dut_io_definitions.c modelsim_connection.c

io_conversion_functions.c

MEX compiler

modelsim_connection.dll

pin groups
queue size

total bits

tester.sv

vlog

gcc

dpi_header.h

matlab_to_modelsim.h
vsim

matlab_connection.o

export.o

gcc matlab_connection.dll

matlab_connection.c

Figure 27: Interface Generation Flow-graph. The user specifies each DUT input,
output, and bidirectional port name and bit-width in the DUT I/O File. The mat-
lab to modelsim header file contains constants used for signaling between Matlab and
ModelSim.

each DUT input, output, and bidirectional port name and bit-width in this configura-

tion file, and then the generation script initially generates a data structure containing

information about the DUT ports. It then uses this data structure to complete the

steps illustrated in Figure 27.

On the ModelSim side the code generation step creates the tester.sv file, which

is the generated tester module shown in Figure 26, using a combination of static

code and generated code. The static Verilog code consists of a concurrent block

that constantly calls two Verilog tasks (that have been mapped to C-functions using

the DPI). One task reads an internal bus of width equal to the total number of DUT

signals (total bits) and sends this data to the shared-memory interface, while the other

task drives this internal bus with data from the shared-memory interface. To complete

these operations, the Verilog tasks call C-functions defined in matlab connection.c

through the System Verilog DPI. Since these functions operate on arrays of size

total bits, these functions need a compile parameter equal to total bits but do not
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need information about the DUT individual bus names or sizes. The dynamic Verilog

code consists of the tester.sv port declaration and a set of port assignments. The

port declaration mirrors the DUT inputs and outputs such that connecting the tester

module to the DUT is straightforward. The port assignments consist of a listing of

assign statements that map the port declaration to the internal bus. In both cases

the generation script creates this code by using the DUT port data structure. The

remaining compilation steps follow the System Verilog DPI compilation process [49]

such that the final result is a DLL that links into a ModelSim simulation, enabling

communication with Matlab.

The interface requirements on the Matlab side are slightly more complex since

the access functions operate on DUT structs. The code generation step uses the

DUT port data structure to create dut io definitions.c, which contains a DUT port

name string array, a DUT port bit-width integer array, and static functions to access

these arrays. This C-file allows the remaining code to be static. The functions

defined in io conversion functions.c convert between the signal array that is sent

over the shared memory link and the DUT structs operated on by the DUT access

functions. It appears that these conversion functions should be DUT-specific, but with

clever use of the information in dut io definitions.c and access to the number of DUT

buses, pin groups, these functions can remain generic. For example the conversion

from signal array to DUT struct requires a nested loop. The outer loop processes

through the listing of DUT ports using the DUT port name access function, while

the inner loops processes through each bit of each port using the DUT port bit-width

access function. As a result the functions in modelsim connection.c provide similar

functionality as the matlab connection.c functions but also complete DUT struct/sign

array conversion without knowledge of the DUT port names and bit-widths. In the

final step the Matlab mex compiler creates a DLL from the above mentioned files.
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