
Software Behavior: Automatic Classification and its Applications

James F. Bowring James M. Rehg Mary Jean Harrold

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

{bowring, rehg, harrold}@cc.gatech.edu

Abstract

A program’s behavior is ultimately the collection of all
its executions. This collection is diverse, unpredictable, and
generally unbounded. Thus it is especially suited to sta-
tistical analysis and machine learning techniques. We ex-
plore the thesis that1st- and2nd-order Markov models of
event-transitions are effective predictors of program behav-
ior. We present a technique that models program executions
as Markov models, and a clustering method for Markov
models that aggregates multiple program executions, yield-
ing a statistical description of program behaviors. With this
approach, we can train classifiers to recognize specific be-
haviors emitted by an execution without knowledge of inputs
or outcomes. We evaluate an application of active learning
to the efficient refinement of our classifiers by conducting
three empirical studies that explore a scenario illustrating
automated test plan augmentation. We present a set of po-
tential research questions and applications that our work
suggests.

1. Introduction

Software engineers seek to understand software behav-
ior at all stages of development. For example, during re-
quirements analysis they may use formal behavior models,
use-case analysis, or rapid prototyping to specify software
behavior [3, 15]. After implementation, engineers aim to
assess the reliability of software’s behavior using testing
and dynamic analysis. A program’s behavior is ultimately
the collection of all its executions. This collection is di-
verse, unpredictable, and generally unbounded. Thus it is
potentially suited to statistical analysis and machine learn-
ing techniques.

One challenge is to find productive applications of sta-
tistical analysis techniques to leverage this collection of ex-
ecutions for the solution of software engineering problems.

A basic question is whether aggregate statistical measures
of program execution, such as branch profiles, are accurate
predictors of program behavior. If they are, then a broad
range of statistical machine learning techniques could be
used in dynamic analysis tasks, including automated-oracle
testing, the evaluation of test plans, the detection of behav-
ior profiles in deployed software, and reverse engineering
tasks.

Many researchers have explored these questions (e.g.,
[1, 4, 6, 7, 10, 11, 12, 13, 14, 16, 18, 20, 21]). For exam-
ple, Dickinson, Leon, and Podgurski demonstrate the ad-
vantage of automated clustering of execution profiles over
random selection for finding failures [7], and Podgurski and
colleagues show the efficacy of automated classification of
failure reports [18]. As another example, Harder, Mellen,
and Ernst use their operational difference technique to au-
tomatically extract abstractions of software behavior from
statistical summaries of program executions [11].

Other researchers have employed a stochastic approach
to behavior classification that uses the sequences of events
in program executions. For example, Munson and Elbaum
posit that event-transitions in actual executions are the final
source of reliability measures [16]. This research demon-
strates the ability of stochastic models to summarize the dy-
namic aspects of program executions, but does not address
their use in directly classifying behaviors.

We explore the thesis that1st- and2nd-order Markov
models of event-transitions are effective predictors of pro-
gram behavior. Branch profiles, for example, have been
used extensively in dynamic analysis (e.g., [12, 20]) and are
equivalent to1st-order Markov models.2nd-order Markov
models can encode branch-to-branch transitions and have
the potential for greater predictive power at a modest addi-
tional cost.

Previous works such as [7, 18] have demonstrated the
power of clustering techniques in developing aggregate de-
scriptions of program executions. In this paper, we present a
clustering method for Markov models that aggregates multi-

w/ Behavior Labels

Training Instances =
Classifiers

Cb1,…,Cbn
Profiles

 Behavior Groups

b1,…,bn

Event Transition

Program
P

Instrument P
to profile

event
transitions

Test Plan
w/ Behavior

Oracle

Execute &
Label

Behaviors
P̂

Stage 1. Prepare Training Instances

Train one
Classifier
per Group

Group by
Behavior
Labels

Assemble
Classifier

C for P

Classifier
C

Stage 2. Train Classifier

Figure 1. Building Classifier: Stage 1 - Prepare Training Instances; Stage 2 - Train Classifier.

ple program executions, yielding a statistical description of
program behaviors. With this approach, we can train clas-
sifiers to recognize specific behaviors emitted by an execu-
tion without knowledge of inputs or outcomes. In particu-
lar, these classifiers do not require a distinct failure state to
detect failure.

A key question is whether these statistical models can
characterize a set of behaviors, such as those induced by
a test plan. If they can, then a useful application would be
the automatic discovery of new behaviors that were not cap-
tured in the test plan. In our application, a classifier iden-
tifies program executions with unknown behaviors. These
executions are then evaluated and labeled so that they can
be used to refine the classifier. This process is known as
bootstrapping, and is an example of a class of techniques
known as active learning [5]. The ability to identify execu-
tions whose behavior is recognized allows us to then char-
acterize a set of executions by evaluating only the subset
containing unknown behaviors.

The contributions of this paper are:
• A technique that models program executions as

Markov models and automatically clusters them to
build classifiers.

• An application of our technique that efficiently re-
fines our classifiers using active learning (bootstrap-
ping) and a demonstration of its advantages with an
example of automated test plan augmentation.

• A set of empirical studies that demonstrate that
Markov models are good predictors of program behav-
ior and that by clustering Markov models we can train
classifiers to recognize unknown behaviors.

2. Software Behavior Classification

Our technique builds a software behavior classifier in
two stages. We describe the basic flow of the technique and
then we detail and illustrate the algorithms.

2.1. Overview

Figure 1 shows a data-flow diagram of our technique,
which takes as inputs a subject programP , its test plan, and
its behavior oracle, and outputs a ClassifierC. P ’s test plan
contains test cases that detail inputs and expected outcomes.
Thebehavior oracleevaluates an executionek of P induced
by test casetk and outputs a behavior labelbk, such as, but
not restricted to, “pass” or “fail.”

In Stage 1, Prepare Training Instances, the technique
instrumentsP to get P̂ so that asP̂ executes, it records
event-transition profiles. Anevent-transitionis a transi-
tion from one program entity to another; types of1st-order
event-transitions include branches (source statement to sink
statement), method calls (caller to callee), and definition-
use pairs (definition to use); one type of2nd-order event-
transition is branch-to-branch. Anevent-transition profileis
the frequency with which an event-transition occurred. For
each executionek of P̂ with test casetk, the behavior ora-
cle uses the outcome specified intk to evaluate and labelek.
This produces atraining instance—consisting ofek ’s event-
transition profile and its behavior label—that is stored in a
database.

In Stage 2, Train Classifier, the technique first groups the
training instances by the distinct behavior labelsb1, . . . , bn

generated by the behavior oracle. For example, if the be-
havior labels are “pass” and “fail,” the result is two behavior
groups. Then, the technique converts each training instance
in each group to a1st-order discrete-time Markov model
(hereafter referred to as a Markov model). Markov models
can encode any order event-transitions, such as our1st and
2nd-order event-transitions. The technique uses a machine-
learning paradigm, called passive training, to train one clas-
sifier Cbk

per behavior groupbk. (In passive training, the
classifier trains on all instances with which it is presented.)
Finally, the technique assembles the behavior group classi-
fiers,Cb1 , . . . , Cbn

to assemble the classifierC for P . Be-

2

F

 T

T F

Entry p0 s0 s1 s2 Exit B1 B2 B3 B4 Exit
Entry 0 1 / 1 0 0 0 0 0 9 / 10 1 / 10 0 0 0

p0 0 0 9 / 10 0 0 1 / 10 B1 0 0 0 3 / 9 6 / 9 0

s0 0 0 0 3 / 9 6 / 9 0 B2 0 0 0 0 0 1 / 1
s1 0 0 0 0 0 0 B3 0 3 / 3 0 0 0 0

s2 0 0 0 0 0 0 B4 0 5 / 6 1 / 6 0 0 0

Exit 0 0 0 0 0 1 Exit 0 0 0 0 0 1

Markov Model of Branches
Markov Model

of Branch-to-Branch
(2nd-order event-transitions)

EntryArc

Entry
Arc

(1st-order event-transitions)

Exit

s1

s0

s2

Branch B3
Profile = 3

Branch B4
Profile = 6

Entry

p0

s3

Branch B1
Profile = 9

Branch B2
Profile = 1

Entry Arc
Profile = 1

Profiled arcs for
execution e
are shown with
solid arrows.

1

Figure 2. Markov models from profiles.

fore exploring the algorithm TRAINCLASSIFIER, shown in
Figure 4, we discuss Markov model building.

2.2. Building Markov Models

Central to our technique is the use of Markov models to
encode the event-transition profiles produced byP̂ . Markov
modelscapture the time-independent probability of being in
states1 at time t+1 given that the state at time t wass0.

The event-transition profiles of an execution represent
the probability of being in state or events1 at time t+1 given
that the state or event at time t wass0. As an example, con-
sider a control-flow graph1 (CFG). The arcs of a CFG are
event-transitions (e.g., branches, loop backedges, or con-
nections to join points). If a node has two branches leaving
it and each has an associated profile (or frequency) from an
executione of P̂ , then the probability that each branch was
taken ine is a function of their relative frequencies.

To illustrate, consider Figure 2 and its CFG. The branch
profiles for an executione1 are shown in the labels for
each branch. For example, branchB1’s profile denotes that
it was exercised nine times. A Markov model built from
branch profiles is simply the adjacency matrix of the CFG
with the the profiles as entries and then normalized by row,
as shown in the “Markov Model of Branches” in Figure

1A control-flow graphis a directed graph in which nodes represent
statements or basic blocks and edges represent the flow of control.

Algorithm BUILD MODEL(S, D, b)
Input: S = {s0, s1, . . . , sn}, a set of states,

including a final or exit state,
D = ((sfrom, sto, profile), . . .),a list of

ordered triples for each transition and its profile
b = a string representing a behavior label

Output: (M, D, b), a Markov model,D andb

(1) M ← new Array[|S|, |S|]
(2) foreach{sfrom, sto, profile} ∈ D, each s ∈ S
(3) M [i, j]←M [i, j] + profile
(4) for i← 0 to (|S| − 1)

(5) rowSum←
∑|S|−1

j=0
M [i, j]

(6) if rowSum > 0
(7) for j ← 0 to (|S| − 1)
(8) M [i, j]←M [i, j]/rowSum
(9) return (M, D, b)

Figure 3. Algorithm to build model.

2. A Markov model of one possibility for the2nd-order
branch-to-branch transitions is also shown in Figure 2. For
example, in the “Markov Model of Branch-to-Branch”,B4
is followed byB1 five times and byB2 one time for a total
of six branch-to-branch transitions emanating fromB4.

We present algorithm BUILD MODEL, shown in Figure
3 as an example implementation of this transformation.
BUILD MODEL constructs a behavior modelM as a matrix
representation of a Markov model from execution profiles.

BUILD MODEL has three inputs:S, D, b. S is a set of
states that identify the event-transitions.D contains the
event-transitions and their profiles stored as ordered triples,
each describing a transition from a statesfrom to a state
sto with the corresponding profile:(sfrom, sto, profile). b
is the behavior label for the model. The output(M,D, b)
is a triple of the model, the profile data, and the label. In
line (1), the matrixM for the model is initialized using the
cardinality ofS. In lines (2-3), each transition inD that in-
volves states inS is recorded inM . In lines (4-8) each row
in matrix M is normalized by dividing each element in the
row by the sum of the elements in the row, unless the sum
is zero.

For the executione1 shown in Figure 2, the inputs to
BUILD MODEL for 1st-order event-transitions are then:
• S = {Entry, p0, s0, s1, s2, exit}
• D = ((Entry, p0, 1), (p0, Exit, 1), . . . , (s0, s2, 6))
• b = “pass”, for instance

The inputs to BUILD MODEL for 2nd-order event-
transitions are:
• S = {EntryArc, B1, B2, B3, B4, exit}
• D = ((EntryArc, B1, 9), . . . , (B4, B2, 1))
• b = “pass”, for instance

In each case, the output componentM is the corresponding
Markov model shown in Figure 2.

3

Algorithm TRAINCLASSIFIER(S, T, SIM)
Input: S = {s0, s1, . . . , sn}, a set of states,

including a final or exit state,
T = ((testcasei, Di, bk), . . .), a list of ordered triples ,

whereD = ((sfrom, sto, profile), . . .),
andb = a string representing a behavior label,

SIM , a function to compute the similarity of
two Markov models

Output: C, a set of Markov models, initially∅
(1) foreach (testcasei, Di, bk) ∈ T ,
(2) 0 < i <= |D|, 0 < k <= # behaviors
(3) Cbk ← ∅, initialize Classifier for behavior k
(4) foreachCbk , 0 < k <= # behaviors
(5) foreach (testcasei, Di, bk) ∈ T
(6) Cbk ← Cbk ∪BuildModel(S, Di, bk)
(7) Deltas← ∅, to collect pair-wise deltas
(8) Stats← new Array[|Cbk |], cluster statistics
(9) while |Cbk | > 2
(10) //agglomerative hierarchical clustering [9]
(11) foreach (Mi, Di, bk) ∈ Cbk , 0 < i < |Cbk |
(12) foreach (Mj , Dj , bk) ∈ Cbk , i < j <= |Cbk |
(13) Deltas← Deltas ∪ SIM(Mi, Mj)
(14) Stats[|Cbk |]← StandardDeviation(Deltas)
(15) if KNEE(Stats) then break
(16) else
(17) (Mx, My)←Min(Deltas)
(18) Dmerged ← Dx ∪Dy

(19) Mmerged ← BUILD MODEL(S, Dmerged, bk)
(20) C ← (C −Mx −My) ∪Mmerged

(21) C ← C ∪ Cbk , add behavior k’s models to C
(22)return C

Figure 4. Algorithm to train classifier.

2.3. Training the Classifier

Algorithm TRAINCLASSIFIER, shown in Figure 4, trains
a classifier from models generated by BUILD MODEL.
TRAINCLASSIFIER has three inputs:S, T, SIM . S is a
set of states that are used to identify the event-transitions
when BUILD MODEL is called. T is a list of triples, each
containing a test case index, a data structureD as defined in
BUILD MODEL, and a behavior labelbk. SIM is a function
that can be tailored to the specific program and behavior set
under study.SIM takes two Markov models as arguments
and returns a real number that is the computed difference
between the models. We define ourSIM in our empirical
study (Section 4.2).

In lines (1-3), an empty classifierCbk
is initialized for

each discrete behaviorbk found in T . Line (4) begins the
processing for eachbk. In lines (5-6), the classifierCbk

is
populated with models built by applying BUILD MODEL to
each training instance exhibitingbk. Lines (7-8) initialize
Deltas andStats, explained below.

The remainder of the algorithm clusters the models in
eachCbk

to reduce their population and to merge simi-
lar and redundant models, usingSIM . The approach is
an adaptation of agglomerative hierarchical clustering [9].
Clustering proceeds as follows. The algorithm usesSIM
to calculate the pair-wise difference for all pairs of mod-
els inCbk

and selects the pair of models with the smallest
difference. This pair of models is merged, reducing the car-
dinality of Cbk

by one. The process repeats with a stopping
criterion.

In lines (11-14),SIM is used to calculate these pair-
wise differences and accumulate them inDeltas at line
(13). At each iteration, the algorithm calculates the stan-
dard deviation for the values inDeltas and stores it in
Stats[|Cbk

|] at line (14). Because the cardinality ofCbk

decreases by one per iteration, it serves as an index into
Stats[]. KNEE checks the set of standard deviations ac-
cumulating inStats[] at line (15) to determine the rate of
change in the slope of a line fit to them. This knee detection
could be done by hand, but for the purposes of our empir-
ical evaluations, we detect a “knee” when the sum of stan-
dard error (SSE) in a linear regression of the data points in
Stats[] increases by a factor of ten or more between itera-
tions.

If a knee is detected, the clustering stops for that behav-
ior group and the models inCbk

are added toC, the final
classifier. In the absence of a knee, the process stops with
one model, per the constraint in line (9). Otherwise, the two
closest modelsM1 andM2 are merged in lines (17-20), by
calling BUILD MODEL with the union of the corresponding
profile setsD1 andD2. Note that the clusters are formed
into new models, each of which contains the profiles of all
the training instances contributing to the cluster.

At line (21), the clustered models inCbk
are added to

C, the classifier. After all the behavior groups have been
processed, the finalC is returned.

2.4. Using the Classifier

We can use the classifierC to label new executions of̂P .
To classify a new executionek of P̂ , each of the constituent
models ofC ratesek with a probability score. The model
with the highest probability score provides the behavior la-
bel forek.

The probability scoreis the probability that the model
M produced the sequence of event- or state- transitions in
the executionek. As an example, refer to Figure 2, and
consider another executione2 of the program with the fol-
lowing execution trace of branches, including the entry arc:
{Entry Arc, B1, B3, B1, B3, B2}. To calculate the probabil-
ity score that the Markov modelM in Figure 2 produced
e2, we compute the product of the successive probabilities
of the transitions inM : P = P (Entry Arc) ∗ P (B1) ∗

4

P (B3) ∗ P (B1) ∗ P (B3) ∗ P (B2). Thus P = 1.0 ∗ 0.9 ∗
0.333 ∗ 0.9 ∗ 0.333 ∗ 0.1 = 0.008982. The profile of each
of branchesB1 andB3 in our trace is two. The probability
can be directly calculated using the profiles as exponents:
P = 1.01 ∗ 0.92 ∗ 0.3332 ∗ 0.11. A model will return a
probability score of zero, meaningunknown, if any event-
transition in the execution it is scoring has a zero probability
in the model.

Note that since probabilities calculated by multiplication
become very small, for ease of computation we use the stan-
dard transformation to the sum of the logarithms of each
probability.

2.5. Bootstrapping the Classifier

There are a number of learning strategies for training
classifiers in addition to the passive learning technique
(used in TRAINCLASSIFIER) [9]. We concentrate on a type
of active learning [5] called bootstrapping. Our applica-
tion of bootstrappingfirst uses the classifier to score new
executions and to collect only those executions that remain
unknown. Then these unknown executions are considered
candidates representing new behaviors and each is evalu-
ated, given a behavior label, and identified as a new training
instance for the classifier. The classifier is retrained using
the expanded set of training instances.

We explore an application of bootstrapping to classifier
training in the scenario presented in the next section. We
use this scenario to inform our empirical studies in the sub-
sequent section.

3. Scenario

In this section we present a scenario that illustrates the
use of our technique to aid a developer in extending the
scope of an existing test plan.

A developerDev has designed and implemented a ver-
sion of a programP . Dev has developed a test plan to use
with P and plans to expand it to test future releases ofP .
Dev is also interested in measuring the quality of the test
plan in terms of its coverage ofP ’s requirements. Test plan
development and testing are expensive and often developers
release software that has been tested and accepted only for
some core functionality [17, 19]. By using a measure of test
plan quality,Dev can estimate some of the risks involved in
releasingP with the current test plan.

The goal of creating new test cases for a test plan is to
test additional behaviors. The design of a test case involves
selecting test data that will induce new behavior and then
evaluating the outcome of executingP with the test data.
Dev wants to augment the test plan forP with new test
cases but seeks a way to reduce the cost of doing so.Dev

has an automated test data generator forP , but still relies
on employees to evaluate each execution.

We provide a solution toDev as an application of boot-
strapping to refine the classifier built with our technique.
Figure 5 is a data-flow diagram of our application. In the

Training Instances

Unknown Behaviors

Evaluate
& Label

Outcome

Test Plan

Building
Classifier
Stage 1.

Test Data
Generator

Execute
and

Classify

^
P

Building
Classifier
Stage 2.

C

See Figure 1.
for Building
Classifier
Stages 1 & 2.

Figure 5. Automating test case selection.

diagram, Stage 1 of our technique from Figure 1 produces
the instrumented̂P and the set of training instances from
the initial test plan. Stage 2 of our technique from Figure 1
produces the classifierC. Our application executeŝP with
test data produced by the test data generator and classifies
each execution usingC. For the bootstrapping process, our
application selects as candidates only those executions that
remain unknown. These candidates are evaluated and given
a behavior label. They are then stored as new training in-
stances for refiningC. The corresponding test case for each
candidate is generated and added to the test plan. Our ap-
plication retrainsC at certain intervals using the augmented
set of training instances, stopping when the rate of detection
of unknown executions falls below some threshold.

Our application provides at least two economic benefits
to Dev. First, by guaging the rate at which unknown exe-
cutions are produced,Dev can estimate the risks associated
with the current test plan. Secondly, using our application,
Dev can improve the efficiency with which new test cases
for new behaviors are generated compared to simply evalu-
ating all new executions. We explore this gain in efficiency
in our empirical Study 3 (Section 4.5).

5

4. Empirical Studies

To validate our technique and to explore its use in the
described scenario, we performed three empirical studies.

4.1. Infrastructure

The subject for our studies is a C program, SPACE,
that is an interpreter for an antenna array definition lan-
guage written for the European Space Agency. SPACE con-
sists of 136 procedures and 6,200 LOC, and it has 33 ver-
sions, each containing one fault discovered during develop-
ment, and a set of 13,585 tests cases. In these studies, we
chose both1st-order method calls and2nd-order branch-
to-branch transitions as the event-transitions for our mod-
els. We used the ARISTOTLE analysis system [2] to instru-
ment each of fifteen randomly chosen versions of SPACE to
profile these transitions, executed each version with all test
cases, and stored the results in a relational database. We
built a tool, ARGO, using C#, that implements our algo-
rithms, technique, and application.

4.2. Empirical Method

Our empirical method evaluates the classifiers built by
our technique and by our application of bootstrapping. For
these studies, we chose the two behavior labels “pass” and
“fail”. The method has four steps using our database of pro-
files of branch-to-branch and method call event-transitions
for SPACE:

1. Select a version of SPACE

2. Select a set of test cases for training
3. Build a classifier.
4. Evaluate the classifier on the remaining test cases.
For these evaluations, we define two metrics: Classifier

Precision and Classifier Safety.Classifier Precisionis the
ratio of the number of unknown executions to the number
of classifications attempted.Classifier Safetyis the ratio of
the number of executions correctly classified to the differ-
ence between the number of classifications attempted and
the number of unknown executions. Classifier Precision
measures the ability of the classifier to recognize behaviors
with which it is presented. Classifier safety measures the
behavior detection rate. As an example, supposeC scores
a total of 100 executions and correctly classifies 80 and in-
correctly classifies 2, leaving 18 unknown. Then Classifier
Precision= 18

100 = 0.18 and Classifier Safety= 80
100−18 =

0.976. Note that it is possible for a classifier to recognize
all executions incorrectly, yielding maximum precision and
zero safety.

Our technique requires a definition for the similarity
functionSIM . SIM has two inputs:M1 andM2, the two
models to be compared.SIM manipulates the models but

does not permanently alter them. We developed our def-
inition of SIM for SPACE by trial and error, discovering
that agglomerative clustering using abinary metric[7] per-
formed better when the2nd-order branch-to-branch event-
transitions were excluded. It follows these steps:

1. Set all entries for branch-to-branch transitions to0,
keeping only method transitions

2. Set all non-zero entries to1
3. Calculate the binary matrix difference

SIM(M1,M2) =
k∑

i=1

k∑
j=1

|M1ij
− M2ij

|

4.3. Study 1: Evaluating the Classifiers

The goal of our first study was to evaluate our technique
for passively training classifiers in terms of Classifier Pre-
cision and Classifier Safety. For each of the15 selected
versions of SPACE, we repeated the following process10
times:

1. Select random training sets of sizes 100, 150, 200, 250,
300, and 350.

2. Build a classifier from each training set.
3. Evaluate the classifiers.

Figure 6 summarizes the results for all classifiers evalu-
ated. The graph’s horizontal axis represents the size of the
training set and the vertical axis represents Classifier Preci-
sion. In the graph, a box-plot summarizes the distribution
of results for classifiers built using each training set size.
The top and bottom of the box represent the third and first
quartiles respectively, while the additional horizontal line
in each box locates the median. For instance, at training set
size200, the median is0.298, the first quartile is0.278, and
the third quartile is0.332. The “whiskers” above and below
the box mark the extent of1.5 ∗ IQR, whereIQR is the
inter-quartile range (i.e., the vertical dimension of the box).
The individual points above and below the whiskers (shown
using a ”+”) are the outliers. The trend-line fit through the
medians shown in the graph is quadratic.

The table in Figure 6 summarizes the parametric statis-
tics. For each training set size listed in the left column,
the table shows the number of classifiers, the mean, stan-
dard deviation, and the95% confidence interval of the
mean. As the size of the training set increases, Classi-
fier Precision improves, until at a size of350, the mean is
0.184. This mean represents2435 unknown test cases (i.e.,
0.184 ∗ (13585− 350)). Likewise, the standard deviation at
350 represents356 test cases (i.e.,0.0269∗ (13585−350)).

The quadratic trend-line and the decreasing variation in
the distribution of Classifier Precision values with increas-
ing training set size suggest that the rate of improvement
will continue to decrease. This result is a property of both

6

Test Comparative descriptives
 Passive

Variables Training Set Size: 100, 150, 200, 250, 300, 350

Performed by jim

Training Number of Standard
Set Size Classifiers Mean Deviation Interval of Mean

100 150 0.486 0.0571 0.477 to 0.495
150 150 0.379 0.0473 0.371 to 0.386
200 150 0.304 0.0423 0.297 to 0.311
250 150 0.258 0.0370 0.252 to 0.264
300 150 0.217 0.0319 0.212 to 0.222
350 150 0.184 0.0269 0.179 to 0.188

95% Confidence

Classifier Precision using Passive Learning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 150 200 250 300 350
Training Set Size

C
la

ss
ifi

er
 P

re
ci

si
on

Page 1 of 1

Figure 6. Study 1: Classifier Precision.

SPACEand the distribution of behaviors in its test suite. The
results also indicate that the classifier model is able to learn
and continuously improve with these data, albeit at a slow-
ing rate.

The table in Figure 7 summarizes the parametric statis-
tics for Classifier Safety. The means are uniformly high. It
is possible that larger training set sizes could reveal a trend
for Classifier Safety, but given its current high value, there
is not much room for improvement. The mean value for
training set size350 is 0.977, which represents304 wrongly
classified behaviors (i.e.,(1 − 0.977) ∗ (13585 − 350)).

4.4. Study 2: Bootstrapping the Classifiers

The goal of our second study was to evaluate our appli-
cation of bootstrapping to refining the classifiers built by
our technique. In order to compare our results with those of
Study 1, we chose an approach to bootstrapping that gives
the classifier new executions until the number of unknown
executions reaches a threshold. In this study, we set the
threshold at50. We then labeled these50 executions using

ve descriptives

t Size: 100, 150, 200, 250, 300, 350

Training Number of Standard 95% Confidence
Set Size Classifiers Mean Deviation Interval of Mean

100 150 0.975 0.0448 0.968 to 0.983
150 150 0.977 0.0406 0.971 to 0.984
200 150 0.977 0.0353 0.971 to 0.983
250 150 0.979 0.0326 0.973 to 0.984
300 150 0.978 0.0342 0.973 to 0.984
350 150 0.977 0.0319 0.972 to 0.982

Page 1 of 1

Figure 7. Study 1: Classifier Safety.

Test Comparative descriptives
 Active

Variables Training Set Size: 100, 150, 200, 250, 300, 350

Performed by jim

Training Number of Standard
Set Size Classifiers Mean Deviation Interval of Mean

100 150 0.486 0.0572 0.476 to 0.495
150 150 0.308 0.0473 0.300 to 0.316
200 150 0.189 0.0385 0.183 to 0.195
250 150 0.104 0.0351 0.098 to 0.110
300 150 0.047 0.0300 0.042 to 0.052
350 150 0.015 0.0105 0.013 to 0.017

Classifier Precision using Bootstrapping

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 150 200 250 300 350
Training Set Size

C
la

ss
ifi

er
 P

re
ci

si
on

Page 1 of 1

Figure 8. Study 2: Classifier Precision.

a database lookup, and added them to the training set for the
classifier. Finally, we retrained the classifier using the aug-
mented set of training instances, and repeated the search for
unknown executions. Thus, beginning with a training set
size of100, the increments of50 parallel those in Study 1.
In each instance of this study, the exact initial training set of
size100 used in Study 1 is used again.

Figure 8 summarizes the results for all the classifiers
evaluated with a graph and table similar to those in Fig-
ure 6. Here, the variation in the distribution of Classifier
Precision values also decreases with increasing training set
size. The Classifier Precision approaches0 at training set
size350, where the mean of0.015 represents198 unknown
executions (i.e.,0.015∗(13585−350)). Here, the quadratic
trend-line fit to the medians in the graph is asymptotic to a
Classifier Precision of0. This result is a property of both
SPACEand the distribution of behaviors in its test suite. The
results also indicate, as in Study 1, that the classifier model
is able to learn and continuously improve with these data,
albeit at a slowing rate.

The table in Figure 9 summarizes the parametric statis-

ve descriptives

t Size: 100, 150, 200, 250, 300, 350

Training Number of Standard 95% Confidence
Set Size Classifiers Mean Deviation Interval of Mean

100 150 0.976 0.0449 0.968 to 0.983
150 150 0.974 0.0435 0.967 to 0.981
200 150 0.975 0.0416 0.968 to 0.982
250 150 0.976 0.0399 0.970 to 0.983
300 150 0.977 0.0353 0.971 to 0.983
350 150 0.976 0.0321 0.971 to 0.982

Page 1 of 1

Figure 9. Study 2: Classifier Safety.

7

tics for Classifier Safety. As in Study 1, the means are
uniformly high. It is possible that larger training set sizes
could reveal a trend for Classifier Safety, but given its
current high value, there is not much room for improve-
ment. The mean value for training set size350 is 0.976,
which represents317 wrongly classified behaviors (i.e.,
(1 − 0.976) ∗ (13585 − 350)). This mean value is slightly
less than that in Study 1, but a comparison is not appropriate
again because of the small size of the training set.

4.5. Study 3: Passive Learning vs. Bootstrapping

The goal of our third study was to compare the rates of
growth in Classifier Precision between passive learning and
bootstrapping. It is this comparison that motivates our pre-
sented scenario. The comparison of the results of Study
1 and Study 2 are shown in Figure 10. The dotted curve

Passive Learning vs. Bootstrapping

0

0.1

0.2

0.3

0.4

0.5

100 150 200 250 300 350
Training Set Size

C
la

ss
ifi

er
 P

re
ci

si
on

Figure 10. Study 3: Comparison of learning
techniques.

shows the means from Study 1 and the solid curve shows
the means from Study 2. The two sets of classifiers were
initialized with the same training set at size100.

As the training set size increases, so does the gain in
Classifier Precision of bootstrapping over passive learning.
As an example, consider size200, where the difference is
1525 executions (i.e.,(0.304 − 0.189) ∗ (13585 − 200)).
Imagine that developerDev in our scenario, using SPACE

asP , built an initial classifierC with the100 test cases in
P ’s test plan. Now for an additional investment in eval-
uations of100 more executions, giving a training set size
of 200, the classifier in Study 1 yields, on average,4069
unknown executions (i.e.,0.304 ∗ (13585− 200)). The cor-
responding classifier from Study 2 yields, on average,2529
unknown executions (i.e.,0.189∗ (13585−200)). The ben-
efit of the application of bootstrapping over passive learn-
ing is 1540 classified executions or38% for the same in-
vestment in evaluating100 executions. From the graph, it
is clear that the rate of improvement continues to increase
through training set size350.

The second economic benefit forDev is an estimation of
the risks involved in releasingP with its current test plan.
By simply using our technique to build a classifier from the
test plan and then measuring the rate of unknown executions
it produces from additional test data,Dev can rate the qual-
ity of the test plan. For instance, if after a fixed time, no
new test data produce unknown executions, thenDev has
confidence in the test plan. On the other hand, a high rate
of detection of unknown behaviors, expressed as Classifier
Precision, signals a risk to deployment.

5. Related Work

The previous work that is closest in spirit and method to
this paper is that of Podgurski and colleagues [18, 7]. This
work uses clustering techniques to build statistical models
from program executions and applies them to the tasks of
fault detection and failure categorization. The two primary
differences between our technique and this previous work is
the central role of Markov models in our approach and our
use of active learning techniques to improve the efficiency
of behavior modeling.

Dickinson, Leon, and Podgurski demonstrate the advan-
tage of automated clustering of execution profiles over ran-
dom selection for finding failures [7]. They use various
profiles, including branch profiles, as the basis for cluster
formation. We focus on the utility of2nd-order Markov
models as predictors of program behavior. In Podgurski et
al. [18], clustering is combined with feature selection, and
multidimensional scaling is used to visualize the resulting
grouping of executions. In both of these works, the cluster-
ing methods are passive in the sense that clusters are formed
from a batch of data and then used for subsequent analysis.
In contrast, we explore an active learning technique that in-
terleaves clustering with evaluation for greater efficiency.

Another group of related papers share our approach of
using Markov models to describe the stochastic dynamic
behavior of program executions. Whittaker and Poore use
Markov chains to model software usage from specifications
prior to implementation [21]. In contrast, we use Markov
models to describe the statistical distribution of transitions
measured from executing programs. Cook and Wolf con-
firm the power of Markov models as encoders of individ-
ual executions in their study of automated process discovery
from execution traces [6]. They concentrate on transform-
ing Markov models into finite state machines as models of
process. In comparison, our technique uses Markov models
to directly classify program behaviors. Jha, Tan, and Max-
ion use Markov models of event traces as the basis for in-
trusion detection [14]. They address the problem of scoring
events that have not been encountered during training, when
we focus on the role of clustering techniques in developing
accurate classifiers.

8

The final category of related work uses a wide range of
alternative statistical learning methods to analyze program
executions. Although the models and methods in these
works differ substantially from ours in detail, we share a
common goal of developing useful characterizations of ag-
gregate program behaviors. Harder, Mellen, and Ernst au-
tomatically classify software behavior using an operational
differencing technique [11]. Their method extracts formal
operational abstractions from statistical summaries of pro-
gram executions and uses them to automate the augmenta-
tion of test suites. In comparison, our modeling of program
behavior is based exclusively on the Markov statistics of
events. Gross and colleagues propose the Software Depend-
ability Framework, which monitors running programs, col-
lects statistics, and, using multivariate state estimation, au-
tomatically builds models for use in predicting failures dur-
ing execution [10]. In comparison, we use Markov statistics
of events to model program behavior.

Munson and Elbaum posit that actual executions are the
final source of reliability measures [16]. They model pro-
gram executions as transitions between program modules,
with an additional terminal state to represent failure. They
focus on reliability estimation by modeling the transition
probabilities into the failure state. We focus on behavior
classification for programs that may not have a well-defined
failure state. Ammons, Bodik, and Larus describe specifi-
cation mining, a technique for extracting formal specifica-
tions from interaction traces by learning probabilistic finite
suffix automata models [1]. Their technique recognizes the
stochastic nature of executions, but it focuses on extracting
invariants of behavior rather than mappings from execution
event statistics to behavior classes.

6. Discussion, Conclusions and Future Work

We have presented our technique for the automated mod-
eling and classification of software behaviors based on the
equivalence of Markov models to1st- and2nd-order event-
transition profiles in program executions. We have pre-
sented an application of our technique that efficiently refines
our classifiers using bootstrapping, and we illustrated with
a scenario how our application could reduce the costs and
help to quantify the risks of software testing, development,
and deployment.

We performed three empirical studies that validate both
the technique and the application as well as support the
presented scenario. However, there are several threats to
the validity of our results. These threats arise because we
used only fifteen versions of one medium-sized program
and its finite set of13, 585 test cases. However, SPACE is a
commercial program and the versions contain actual faults
found during development. Furthermore, the specific struc-
ture of SPACE may be uniquely suited to our technique.

Nevertheless, our empirical studies of fifteen versions of
SPACE demonstrated that the application of our technique
is effective for building and training behavior classifiers for
SPACE. The work suggests a number of research questions
and additional applications for future work.

First, we discovered that agglomerative hierarchical
clustering was sensitive to the granularity of the similarity
metric used. We will investigate ways to tune this and other
metrics suggested by reference [7] as well as explore addi-
tional clustering algorithms.

Second, we found that1st- and 2nd-order event-
transitions were powerful for the modeling and classifica-
tion of behaviors. We plan to explore models of order3 and
higher to determine the most effective granularity for mod-
eling dependencies. We will investigate uses of these mod-
els to detect sub-behaviors such as inside individual mod-
ules, and to detect more abstract behaviors such as those
modeled by operational profiling.

Third, whereas our empirical studies demonstrate the ef-
fectiveness of the behavior labels “pass” and “fail”, we saw
that the classifiers for each of these behaviors were com-
posed of several models. This suggests that we may be able
to automatically identify more fine-grained behaviors. We
are interested in the relationship between the Markov mod-
els for specific behaviors and their representation in the re-
quirements and specifications for a program. If there is a
demonstrable relation, it may lead to techniques for eval-
uating the quality of a test plan or to tools to aid reverse
engineering.

Fourth, our empirical studies show that for our sub-
ject, bootstrapping improves the rate at which the classifier
learns behaviors. We will investigate other machine learn-
ing techniques and their possible application to the training
of behavior classifiers. Of particular interest is determining
the best set of event-transitions or, as Podgurksi and col-
leagues suggest, the best set of features [18] with which to
train classifiers.

Fifth, our empirical studies show the effectiveness of
our application for classifying the behavior of our subject.
We need to determine how the application will perform for
other programs. We will formulate and explore additional
applications of our techniques, such as the detection of be-
havioral profiles in deployed software, anomaly and intru-
sion detection, and testing non-testable programs. We will
also explore ways to provide for programs to be self-aware
of their behaviors by having access to models of behavior.

Finally, we plan to explore the use of Hidden Markov
models (HMM) to extend our behavior modeling technique.
An HMM augments a standard Markov model with a set
of variables known as the observations. The state of the
Markov model becomes a hidden variable, accessible only
through the observations emitted by the Markov model.
HMMs are interesting from two perspectives. First, simple

9

1st- or 2nd- order Markov models over the hidden state in
an HMM induce more complex distributions over the set
of observations through marginalization. If the observa-
tions are event-transitions, then the hidden states could cor-
respond to higher-level categories of transitions. In compar-
ison to the Markov models used in this paper, significantly
more complex distributions over events could be modeled
while retaining the attractive complexity properties of our
current technique. Second, advanced HMM models such
as input-output HMMs and conditional random fields [8]
support more complex coupling between execution events
and associated data such as program inputs and outcomes.
These advanced tools may enable more powerful predic-
tions about program behaviors.

Acknowledgements

This work was supported in part by National Science
Foundation awards CCR-9988294, CCR-0096321, CCR-
0205422, SBE-0123532 and EIA-0196145 to Georgia Tech,
and by the State of Georgia to Georgia Tech under the
Yamacraw Mission, and by the Office of Naval Research
through a National Defense Science and Engineering Grad-
uate (NDSEG) Fellowship. William Ribarsky provided key
insights and support. Alberto Pasquini, Phyllis Frankl, and
Filip Vokolos providedSpace and many of its test cases.
Gregg Rothermel provided additional test cases and advice
on experimental protocols.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining spec-
ifications. In Proceedings of the 2002 ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL’02), pages 4–16, January 2002.

[2] Aristotle Research Group. ARISTOTLE: Software engi-
neering tools, 2002.http://www.cc.gatech.edu/
aristotle/ .

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified
Modeling Language User Guide. Addison-Wesley, Boston,
1998.

[4] J. Bowring, A. Orso, and M. J. Harrold. Monitoring de-
ployed software using software tomography. InProceedings
of the ACM Workshop on Program Analysis for Software
Tools and Engineering, pages 2–9, November 2002.

[5] D. A. Cohn, L. Atlas, and R. E. Ladner. Improving general-
ization with active learning.Machine Learning, 15(2):201–
221, 1994.

[6] J. E. Cook and A. L. Wolf. Automating process discovery
through event-data analysis. InProceedings of the 17th In-
ternational Conference on Software Engineering (ICSE’95),
pages 73–82, January 1999.

[7] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. InProceedings of

the 23rd International Conference on Software Engineering
(ICSE’01), pages 339–348, May 2001.

[8] T. G. Dietterich. Machine learning for sequential data: A
review. In T. Caelli, editor,Structural, Syntactic, and Statis-
tical Pattern Recognition, volume 2396 ofLecture Notes in
Computer Science, pages 15–30. Springer-Verlag, 2002.

[9] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. John Wiley and Sons, Inc., New York, 2001.

[10] K. C. Gross, S. McMaster, A. Porter, A. Urmanov, and
L. Votta. Proactive system maintenance using software
telemetry. InProceedings of the 1st International Confer-
ence on Remote Analysis and Measurement of Software Sys-
tems (RAMSS’03), pages 24–26, May 2003.

[11] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InProceedings of the 25rd In-
ternational Conference on Software Engineering (ICSE’03),
pages 60–71, May 2003.

[12] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between fault-
revealing test behavior and differences in program spectra.
Journal of Software Testing, Verifications, and Reliability,
10(3), September 2000.

[13] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition
analysis: A rule-based intrusion detection approach.Soft-
ware Engineering, 21(3):181–199, 1995.

[14] S. Jha, K. Tan, and R. A. Maxion. Markov chains,
classifiers, and intrusion detection. InProceedings of
the 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 206–219, June 2001.

[15] J. A. Kowal. Behavior Models: Specifying User’s Expecta-
tions. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[16] J. C. Munson and S. Elbaum. Software reliability as a func-
tion of user execution patterns. InProceedings of the Thirty-
second Annual Hawaii International Conference on System
Sciences, January 1999.

[17] J. Musa. Software Reliability Engineering: More Reliable
Software, Faster Development and Testing. McGraw-Hill,
New York, 1999.

[18] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying
software failure reports. InProceedings of the 25rd Inter-
national Conference on Software Engineering (ICSE’03),
pages 465–474, May 2003.

[19] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, Mass., 1999.

[20] T. Reps, T. Ball, M. Das, and J. Larus. The use of pro-
gram profiling for software maintenance with applications to
the year 2000 problem.ACM Software Engineering Notes,
22(6):432–439, November 1997.

[21] J. A. Whittaker and J. H. Poore. Markov analysis of software
specifications.ACM Transactions on Software Engineering
and Methodology, 2(1):93–106, January 1996.

10

