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SUMMARY

Elevated levels of reactive oxygen species (ROS) cause or aggravate a variety

of pathological conditions such as cardiovascular disease, cancer and rheumatoid arthri-

tis. Despite known links between oxidative stress and disease, years of clinical studies

have failed to show clear benefits of antioxidant therapy. It is now recognized that ROS

such as hydrogen peroxide can act as signaling molecules and are required for physio-

logical functioning of a number of signaling pathways. Therefore, a mechanistic basis of

ROS-mediated regulation of cell signaling must be established to enable rational design of

antioxidant-based therapies.

The challenges in quantification of transient changes mediated by ROS during cell sig-

naling have impeded investigation of redox-regulated signaling. In the present work, com-

putational modeling is used to circumvent these technical challenges and to test competing

hypotheses of redox regulation. Using a quantitative, systems level approach to study inter-

actions between ROS dependent and independent regulatory mechanisms, the most com-

prehensive model of the IL-4 signaling pathway to date has been developed and validated

with experimental data. The model is capable of predicting kinase phosphorylation dynam-

ics under new oxidative conditions, and our analyses suggest that reversible oxidation of

tyrosine phosphatases is the primary mechanism of redox regulation in this pathway. Addi-

tional computational methods have been developed to study ROS as mediators of crosstalk

between signaling pathways, to optimize model parameters, and to interrogate model dy-

namics for the purpose of model selection. Collectively, these modeling tools provide a

new systems-level perspective for investigating reversible protein oxidation as a means of

control over cellular signal transduction.

xvi



CHAPTER I

INTRODUCTION

Even though it is recognized that reactive oxygen species (ROS) can regulate intracellular

signaling in both health and disease [23], the details of this regulation remain to be de-

termined. Binding of several types of extracellular ligands to their receptors can lead to

enzymatic production of ROS. A pertinent example is IL-4, a cytokine that transduces its

signal through the JAK/STAT pathway [130, 97]. The ability of ROS to influence the course

of cell signaling arises from their potential to oxidize thiol groups in cysteine residues of

proteins, leading to altered protein properties [62]. Several classes of proteins, including

kinases and phosphatases, have been identified as targets for reversible oxidation by ROS

with different sensitivities to oxidation [111]. Although several hypotheses are proposed

to explain ROS modulated signaling, their relative importance and systemic consequences

remain to be determined.

Technical limitations of experimental methods in reliably and sensitively measuring

ROS and their effects in cells have been an impediment in evolving a systemic framework

of redox signaling. Even though experimental methods for quantifying intracellular ROS

and oxidation of proteins are quickly developing, quantitative measurement of oxidative

changes in proteins remains a challenge [166, 104, 43]. The present work circumvents

these limitations of experimental techniques with the help of computational modeling based

on experimental data that can be reliably acquired, even though such data may not be

directly indicative of oxidative modifications of proteins. This work addresses the lack

of systems level understanding of redox signaling and helps establish principles of ROS-

mediated regulation of signal transduction.

1



1.1 Research objective and specific aims

The overall objective of this study is to develop a systems level understanding of ROS-

mediated regulatory mechanisms in signal transduction using the IL-4 pathway as a model

signaling system. The overarching hypothesis of this dissertation is that in the absence

of direct measurements on all redox regulatory mechanisms operating in IL-4 signaling,

computational modeling can be used to infer the importance of postulated mechanisms and

to discover the principles of redox regulation in the signaling pathway. Computational

modeling and experimental methods are used in synergy towards the following specific

aims.

Aim 1. Develop a systems model of redox regulation in the IL-4 signaling path-

way. The working hypothesis for this aim is that redox sensitivities at different points in a

signaling network produce non-identical effects, and interactions between redox sensitive

and redox independent mechanisms determine the systemic outcome. This hypothesis is

first tested using a computational model of the mitogen activated protein kinase (MAPK)

pathway with ROS dependent and independent regulatory mechanisms built into it [30].

Hypothetical scenarios with alternative regulatory mechanisms are explored using mathe-

matical models. The results suggest that the interplay of ROS dependent and independent

mechanisms is crucial in determining signaling dynamics (Chapter 2).

Computational modeling is next used to examine putative redox regulatory mechanisms

in the IL-4 pathway (Chapter 3). Time series data on feasibly measurable components

of the IL-4 signaling system have been acquired. The data are used to test alternative

models of redox regulation and the primary mode of redox regulation in the IL-4 pathway

is identified. The most comprehensive model of IL-4 signaling as yet has been developed

and validated as part of this aim.

Aim 2. Develop an optimization algorithm to estimate parameters of the IL-4

model. Since the model envisaged under aim 1 is novel by including mechanisms of reg-

ulation not studied before, a number of parameters of the model are not available in the

2



literature. To estimate such parameters an optimization algorithm based on evolutionary

strategies (ES) has been designed and implemented. The purpose of this aim is to improve

the optimum searching capabilities of ES (Chapter 4). A variant of ES called ES-HM (ES

with hyper-mutation) has been developed to accomplish this aim, and the algorithm was

used to estimate the parameters of the IL-4 pathway model. This algorithm can be applied

more generally to other parameter estimation problems in systems biology models.

Aim 3. Study ROS mediated crosstalk of IL-4 pathway with other cytokine sig-

naling pathways. The working hypothesis for this aim is that the non-specificity of ROS

enables them to act as integrators of otherwise distinct signaling modules. Crosstalk be-

tween IL-4 and erythropoietin (Epo) pathways is studied using theoretical tools previously

developed to study degeneracy in biological networks represented by differential systems

[78]. The ability of ROS to integrate separate signaling modules is examined and functional

consequences of this potential function of ROS are discussed (Chapter 5).

1.2 Motivation and significance

Aerobic life forms require molecular oxygen (O2) as the ultimate electron acceptor in the

process of generating energy from nutrients. A side effect of mitochondrial respiration is

the low-level flux of reactive derivatives of O2 known as reactive oxygen species (ROS),

generated because the electron transport chain may allow “leakage” of electrons to oxygen

[146]. One electron reduction of O2 generates the superoxide anion radical (O−•2 ) which can

be converted to other forms of ROS through a series of reactions. Dismutation of superox-

ide, which may be spontaneous or catalyzed by superoxide dismutase (SOD) converts the

radical into O2 and hydrogen peroxide (H2O2). H2O2 is an uncharged molecule and is not a

highly active ROS. However, reaction of H2O2 with transition metal ions can generate the

hydroxyl radical (•OH), which is a very strong oxidizing agent [29]. Other reactive radical

and non-radical forms such as hydroperoxyl (HO•2) and hypochlorous acid (HOCl) may

also be generated. Uncontrolled levels of these oxidants can be toxic to the cell because
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of their reactivity with DNA, proteins, lipids and carbohydrates [23]. Antioxidant enzymes

like catalases, SODs and peroxidases have evolved to keep the toxic effects of ROS under

control.

Oxidative stress is defined as a condition in which ROS generation overwhelms the an-

tioxidant machinery of the cell and can lead to damage of cellular components. Oxidative

stress is known to be linked with a number of diseases including cancer, cardiovascular

diseases, rheumatoid arthritis and neurological disorders [114, 92, 160, 60]. Clearly estab-

lished association between oxidative stress and disease states, combined with some early

studies showing inverse relation between dietary consumption of antioxidants and heart

disease [37, 54] garnered support for the use of antioxidants as therapeutic agents with

potential to prevent or cure these diseases. However, to date, results from a number of

clinical studies using various types (e.g., vitamin E, vitamin C, β-carotene), combinations

and doses of antioxidants have not shown clear benefits in terms of primary or secondary

prevention of oxidative stress related diseases [92, 148, 12]. A small number of studies

have even found antioxidants to cause adverse effects in some groups of patients [71]. The

current status of antioxidant therapy is partly reflected in the American Heart Association’s

recommendation discouraging the use of antioxidant supplements for prevention of cardio-

vascular disease [71].

The lack of success of antioxidants seems surprising, considering that the connection

between oxidative stress and a number of diseases is well established; especially so, if

one were to look at ROS through a more traditional lens and perceive them as essentially

deleterious byproducts of aerobic respiration and other enzymatic and non-enzymatic pro-

cesses [36]. This picture of ROS, however, is no longer thought to be complete. The

NADPH oxidase (NOX) family of enzymes with specialized subcellular localization pat-

terns and activation mechanisms, serving the lone purpose of ROS generation, has come

to light [75]. Although other enzymes like xanthine oxidase and cyclooxygenase are also

known to produce ROS, it is not the primary function of these enzymes. For instance, the
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main function of xanthine oxidase is purine catabolism, while that of cyclooxygenase is

prostaglandin synthesis; ROS are only produced as byproducts of reactions catalyzed by

these enxymes [63]. Contrary to the incidental production of ROS by these enzymes or

by leakage through the respiratory chain, the superoxide anion radical, a form of ROS, is

the primary product of NOX enzymes. The existence of these enzymes specializing in the

production of ROS is unlikely to be a mere evolutionary accident.

Indeed, it is now well known that controlled enzymatic production of ROS is a feature of

many signaling pathways and ROS, such as hydrogen peroxide, act as signaling molecules

essential in determining the dynamics of these pathways [111, 115, 39]. Because of its

relatively mild reactivity, longer half-life and charge neutrality, H2O2 is considered to be

an important second messenger molecule [115]. Seen in this light, it is perhaps not so as-

tounding that untargeted use of general oxidant inhibitors should not yield specific benefits

in diseases. The clear role of oxidative stress in disease and the importance of ROS in

normal cell signaling are facts that need to be reconciled before antioxidant therapy can be

successfully utilized.

A major reason for the lack of understanding of redox signaling is the limitation placed

by experimental techniques available for measuring oxidative changes in proteins. While

new methods continue to be developed, currently available techniques are not absolutely

quantitative and are affected by many factors in unpredictable ways [64, 43]. Even if meth-

ods that could quantitatively measure temporal changes in protein oxidation were to be

available, the inherent complexity of signaling pathways would make it difficult to infer

how redox regulation is integrated into the rest of the pathway. Protein phosphorylation

serves as an illustration of this point – even though phosphorylation of many proteins in a

signaling pathway can be measured with good quantitative precision, the underlying regu-

latory mechanisms of the pathway are not obvious from the observables alone [124, 123].

Therefore, experimental insight must be complemented by other approaches like biologi-

cal systems modeling, that can help to discover design and operation principles and provide
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directions for future experimental work [38].

With this motivation, the present work is an effort towards developing the current un-

derstanding of the mechanisms by which ROS regulate cell signaling. Not only will this

clarify the role of ROS in physiological signaling, but will also shed light on how oxida-

tive stress contributes to disease. Furthermore, instead of qualitative generalizations that

classify ROS as more or less “evil” [115], or in the same vein, as a class of molecules

with split personalities of Dr. Jekyll and Mr. Hyde [39], a systemic and quantitative view

of the role of ROS in cell signaling is desirable. The term “systemic” is used here in the

sense that instead of focusing on individual components of a signaling pathway that could

be affected by ROS, a more holistic understanding should be sought wherein the emergent

effects of ROS mediated regulation of multiple redox-sensitive components and their inter-

actions with the rest of the signaling pathway are studied. Such a view, apart from being

descriptive and explanatory, could be predictive and enable design of rational intervention

strategies to prevent and cure oxidative stress related diseases. However, even though some

attention has recently been directed towards developing quantitative models of ROS gener-

ation and consumption in the cellular context [1], the understanding of the effects of ROS

on cell signaling remains qualitative in nature.

Mathematical modeling can be an extremely effective method to identify the underly-

ing principles of operation in biological systems [2]. Time series measurements of some

components of biological networks can be very useful for determining the underlying struc-

ture and parameters of the network [19, 149]. Inherent in the construction of mathematical

models is a quantitative description of the modeled biological processes. Additionally, by

appropriately choosing the levels of abstraction and detail to be incorporated in a model,

interactions between elements considered to be important and their emergent properties

can be studied. In the context of redox regulation in cell signaling, where some dynamic

changes such as protein phosphorylation can be reliably measured and others like protein
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oxidation cannot, mathematical modeling promises to be a very useful tool for understand-

ing the mechanistic basis of redox regulation.

Recognizing the need to understand the mechanisms by which ROS regulate cell sig-

naling and the importance of the integrative approach in studying complex biological phe-

nomena, the overall goal of the present work is to enhance a quantitative, systems level

understanding of redox regulation in cell signaling. Giving due consideration to the limita-

tions on the types of experimental data that can be reliably acquired as relates to redox reg-

ulated processes, mathematical and computational approaches are heavily relied on to fill

the gaps in knowledge left behind by intuitive interpretation of observables of the signaling

pathway. It is hypothesized that computational models informed by feasibly measurable

experimental data will be effective at filling these gaps and identifying the mechanisms of

redox regulation in signaling.

As an empirically observable phenomenon, the dependence of a variety of signaling

pathways on ROS has been established [137, 151, 88, 26]. With the assumption that there

must be some common principles of redox regulation applicable across a significant num-

ber, if not all, of these ROS sensitive pathways, the attention in this work has been focused

on select examples. In particular, the mitogen activated protein kinase (MAPK) cascade

and the IL-4 signaling pathway, with greater effort spent on the latter, were chosen. These

choices were driven by two determining factors: i) both these pathways have been shown to

depend on intracellular ROS [137, 130]; and, ii) the ROS-independent layers of regulation

in both these pathways are well characterized [98, 66]. While the first point is an absolute

requirement to study redox regulation of the pathways, the second is based on practical con-

siderations and is an attempt to minimize the number of unknowns. The presence of other

as yet undetermined regulatory mechanisms would only add confounding factors making it

difficult to isolate the effects of ROS on the signaling pathway. It should be noted that both

these pathways are typical examples of larger “families” of signaling pathways; whereas
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the MAPK cascade is commonly activated by growth factor and stress signaling [59], IL-

4 uses the JAK/STAT signaling pathway which is a common theme in cytokine signaling

[100]. Therefore, it is reasonable to expect that mechanisms found to be important in the

MAPK and IL-4 pathways will be applicable across a number of signaling systems.

The following sections cover the background pertinent to redox regulation of cell sig-

naling with focus on the IL-4 and MAPK pathways, and the biological and mathematical

points examined in the rest of this dissertation are highlighted.

1.3 ROS regulate protein function by cysteine modification

Activation of a variety of cell surface receptors including growth factor receptors [137, 99,

27], cytokine receptors [86, 159, 151, 136], hormone receptors [40, 88], B and T cell re-

ceptor [26, 73, 132] among others, causes increase in intracellular ROS. The production

of ROS following activation of signaling receptors is mediated by various enzymes of the

NADPH oxidase (NOX) family [17, 85, 95, 40, 122] . Seven members of the NOX family

(NOX1-5, DUOX1-2) are known[75]. The phagocytic NOX2 was the first NOX enzyme to

be discovered and is known to mediate the “respiratory burst” in phagocytes. It is a mul-

tisubunit enzyme made of the oxidase gp91phox and several cytosolic regulatory subunits.

Phosphorylation of the cytosolic units is required for the assembly of NOX2 [75]. NOX2

and NOX1 activation is also dependent on RacGTP [75, 18]. NOX5, DUOX1 and 2 on the

other hand, are dependent on Ca2+ for activation [76]. NOX assembly and disassembly are

complex process in themselves that are beyond the scope of this dissertation, but have been

previously studied using mathematical modeling [164, 165]. Studies cited above have also

shown that NOX mediated production of ROS in these signaling systems is functionally

important as perturbing normal ROS levels results in altered cell signaling behavior.

That ROS can affect cell signaling has been known for a long time with the discovery of

the ability of H2O2 to “mimick” the action of insulin [21]. Even before the components of

the insulin pathway were discovered, it was hypothesized that this effect must be mediated
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by oxidation of sulfhydryl functional groups on then unknown components of the pathway

[22]. The biochemical basis of ROS mediated regulation of cell signaling is a lot more clear

now and agrees in principle with this early hypothesis. It is now known that thiol (–SH,

also sulfhydryl) groups present in cysteine residues of proteins can be oxidized by ROS to

sulfenic acid form (–SOH) resulting in altered protein functions [166]. However, not all

cysteine thiols are susceptible to oxidation by physiological ROS. The local electrostatic

environment of some cysteine residues can lower their pKa from the typical value of more

than 8 to under 7. Such cysteines are ionized to the thiolate form (–S−) and are able react

readily with ROS to form protein sulfenic acid [158]. Further oxidation of the sulfenic

acid is possible generating the sulfinic acid (–SOOH) and subsequently the sulfonic acid (–

SOOOH) forms [158, 32]. Oxidation to the sulfinic and sulfonic acid forms is irreversible,

but the sulfenic acid can be reduced back to the thiol form by cellular oxidoreductase

enzymes like thioredoxin and glutaredoxin [10]. Mechanisms to protect the sulfenic acid

from further oxidation exist and the relatively unstable sulfenic acid is converted to intra-

or inter-molecular disulfide (or in some cases sulfenyl amide), protecting the cysteine from

further oxidation [141] (Fig. 1).

Based on the thiol chemistry described above, proteins with readily ionizable cysteines

can act as sensors of the cellular redox state. A diverse array of proteins such as transmem-

brane receptors like the epidermal growth factor receptor (EGFR) [104], kinases such as

ATM protein kinase [42], phosphatases like MAP kinase phosphatase 3 (MKP3) [127] and

the GTPase Ras [53], among others, have been shown to be sensitive to cysteine oxidation.

While oxidation of some proteins like MKP3 results in loss of catalytic function, in others

like EGFR, oxidation could enhance activity. This illustrates that utilizing the basic tem-

plate of cysteine oxidation allows ROS to influence the function of a diversity of proteins

in very different ways.
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Figure 1: Thiol groups (-SH) of cysteine residues with low pKa are oxidized by physio-
logical ROS like hydrogen peroxide to form sulfenic acid (-SOH). The sulfenic acid form
may be protected from further oxidation by formation of intra- or inter-molecular disul-
fide bonds (-S–S-). Oxidoreductase enzymes glutaredoxin (Grx) or thioredoxin (Trx) can
reduce the oxidized cysteine restoring the protein to its original reduced state. GSH, glu-
tathione.

1.4 Redox sensitivity in the MAP kinase signaling pathway

MAP kinase cascade is a generalized term for a set of signaling pathways that possess

a similar three-tiered structure. These pathways are characterized by a phosphorylation

cascade in which a MAPK is activated through dual phosphorylation by MAPK kinase

(MAPKK), which in turn is activated following dual phosphorylation by MAPKK kinase

(MAPKKK) [109]. The pathways could be activated by a wide range of stimuli including

growth factors, hormones and stresses to activate different types of MAPK, and could reg-

ulate processes like proliferation, differentiation or apoptosis [59]. Platelet derived growth

factor (PDGF) is an activator of MAPK signaling and can activate the Raf/MEK/ERK cas-

cade [167]. PDGF signaling is also one of the first signaling pathways whose activation

was shown to be accompanied by heightened intracellular oxidation [137]. The specific ex-

ample of PDGF activated Raf/MEK/ERK pathway has been examined in this dissertation

to study redox regulation of this particular MAPK cascade.

The dephosphorylation of Raf/MEK/ERK pathway is regulated by a combination of
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serine/threonine phosphatases, dual specificity phosphatases (DUSP) as well as protein ty-

rosine phosphatases (PTPs) [109]. Members of all three phosphatase families, with known

roles in regulating the ERK signaling cascade, e.g. serine/threonine phosphatase PP2A

[34], tyrosine phosphatase SHP-2 [89], and dual specificity phosphatase DUSP3 [154] have

previously been shown to become inactivated by oxidation. It is likely that different phos-

phatases, especially those belonging to different families, have different rates of reactivity

with ROS [25]. Additionally, each phosphatase targets a different kinase in the MAPK path-

way. Different points of action of phosphatases combined with differential susceptibilities

to oxidation could have important roles in determining the dynamics of the ERK signal-

ing pathway. ROS independent processes, such as distribution of proteins across different

subcellular compartments or crosstalk between pathways, when overlaid with phosphatase

oxidation could affect system dynamics profoundly. These possibilities and their systemic

outcomes have been investigated in Chapter 2.

1.5 Diverse putative mechanisms of redox regulation in the IL-4 signal-
ing pathway

IL-4 is a pleiotropic cytokine with diverse roles in the immune system such as differentia-

tion of antigen-stimulated naive T cells into the TH2 type, immunoglobulin class switching

to IgE isotype in B cells and in regulation of allergy response [97]. IL-4 signals through the

IL-4 receptor α (IL-4Rα) and common γ chain (γC) complex. Receptor activation results in

phosphorylation and activation of receptor-bound Janus Kinase 1 (JAK1) and JAK3 which

then phosphorylate signal transducer and activator of transcription 6 (STAT6) [65]. Several

PTPs including PTP1B, TCPTP, CD45 and SHP-1 have been suggested to be important for

downregulation of IL-4 signaling [131].

The IL-4 pathway has been shown to activate NOX1 in the A549 cell line resulting

in upregulation of intracellular ROS, and perturbation of normal ROS production resulted

in altered STAT6 activation dynamics in these cells [130]. Three different mechanisms

that could potentially be involved in ROS mediated regulation of IL-4 signaling can be
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identified from a survey of the literature. The first of these mechanisms is reversible inac-

tivation of PTP activity by oxidation. Phosphatases of the PTP family carry a conserved

[I/V]HCXXGXXR[S/T] motif in the active site, and the invariant cysteine residue has an

unusually low pKa in the range of 4-6 [143, 103]. As described in Section 1.3, the low pKa

makes this cysteine highly susceptible to oxidation, and oxidation of the cysteine results in

inactivation of the PTP. The oxidation of cysteine thiol can be reversed by oxidoreductase

enzymes and the catalytic activity of the PTP restored (Fig. 1). Such cycles of ROS medi-

ated inactivation and subsequent reactivation of PTPs can modulate the dynamics of protein

phosphorylation. The second mechanism involves direct oxidation of receptor-associated

JAK molecules. Previously published research has shown that oxidation of JAK can re-

sult in loss of catalytic activity [133], which can directly affect the dynamics of processes

downstream of the JAK molecule. The third and final mechanism affects sub-cellular dis-

tribution of phosphatase activity. TCPTP, which is an important nuclear phosphatase of

STAT6 normally distributes evenly between the nuclear and cytosolic compartments; how-

ever, under conditions of oxidative stress it has a tendency to preferentially accumulate

in the cytosol [74]. Combined with the ability of STAT6 to shuttle between the nuclear

and cytosolic compartments, redistribution of phosphatase activity is likely to affect the

dynamics of STAT6 phosphorylation.

These three mechanisms, phosphatase oxidation, kinase oxidation and redistribution

of phosphatase activity across sub-cellular compartments, can affect signaling dynamics

in very distinct and profound ways. In Chapter 3 we investigate how the interaction of

these mechanisms with other redox-sensitive or insensitive mechanisms determines system

dynamics.

1.6 ROS mediated crosstalk and its consequences

An interesting feature of ROS mediated regulation of cell signaling is the relative non-

specificity of the action of ROS. Enzymatic control of signaling pathways through, for
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example, kinases and phosphatases has a great degree of specificity in the way an enzyme

chooses its target. The action of ROS on the other hand, instead of being protein specific,

is amino acid specific (see Section 1.3). This suggests that any protein accessible by ROS

and containing amino acid residues reactive towards ROS could potentially be modified,

irrespective of the source of ROS. In other words, ROS produced due to activation of one

signaling pathway could act as facilitators of pathway crosstalk and influence the dynamics

of another pathway. This type of crosstalk has indeed been observed before [94]. In relation

to the IL-4 pathway, it has been shown that ROS produced by activation of some other

cytokine signaling pathways can influence IL-4 signaling [130].

The potential of ROS to integrate otherwise distinct signaling modules has been given a

brief theoretical examination in Chapter 5. Li et al. have developed a mathematical formal-

ism to study functional integration (ROS mediated crosstalk in the present case) between

structurally distinct modules (the crosstalking pathways) in the context of biological sys-

tems represented by differential equation systems [78]. This formalism has been applied to

study ROS mediated crosstalk of IL-4 pathway with erythropoietin (Epo) signaling and its

implications have been discussed.

1.7 Estimation of parameters of the computational model

The system model of the IL-4 pathway presented in this dissertation incorporates several

novel regulatory mechanisms. The model parameters corresponding to these mechanisms

have neither been determined experimentally, nor have they been estimated in other mod-

eling studies. A variant of the evolutionary strategy ES algorithm [11] has been devel-

oped and utilized to estimate these unknown parameters. The algorithm is presented in

Chapter 4, and its performance is compared against other algorithms. Although developed

and applied as a tool to study the central question of redox regulation in cell signaling, this

algorithm is generally applicable to other problems in parameter optimization.

13



CHAPTER II

SYSTEMIC REDOX REGULATION OF THE MAP KINASE

CASCADE 1

2.1 Introduction

With systems biology maturing as a discipline, it is natural that different approaches have

emerged to study the complexity of biological systems. One sub-discipline that has arisen is

known as cellular information processing. This approach borrows from engineering to treat

the cell as a “black box” with a number of extracellular inputs (e.g. soluble ligands, matrix

interactions) being interpreted, integrated and processed to elicit outputs (e.g. change in

phenotype, apoptosis, transcription). This sub-discipline generally focuses on small to

medium-sized network modeling to enrich understanding of regulatory mechanisms rather

than large genome-wide or proteome-wide data analysis. Redox regulation of the MAP

kinase cascade is studied here using this approach.

Oxidative modifications of protein thiols are emerging as important regulatory mech-

anisms, operating in combination with phosphorylation events to propagate signals. As

more proteins are identified as redox-sensitive, it becomes imperative to ask how thiol

oxidation within a signaling network modulates the interpretation of extracellular cues.

We constructed and analyzed computational models of common kinase/phosphatase motifs

in response to transient cellular oxidation in order to examine the systemic behavior that

emerges due to redox sensitivity of signaling proteins. While we focus on redox control in

the presence of hydrogen peroxide, the dynamic regulation of intracellular oxidants allow

the principles to extend to other reactive oxygen species.

1Modified from [30]
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2.2 Reversible oxidative inactivation of phosphatases

One of the most prevalent, conserved roles of protein thiol oxidation in signaling is the inac-

tivation of active-site cysteines across the protein tyrosine phosphatase (PTP) family [24].

Although the consequences on enzymatic function are uniformly inhibitory, the susceptibil-

ity of PTP isoforms to oxidation varies, as shown by both in vitro kinetic experiments [119]

and cellular studies [41, 105]. Furthermore, some serine/threonine phosphatases, such as

calcineurin [134] and PP2A [35] have cysteine thiols susceptible to oxidation while other

members of this protein family do not. Examination of signaling networks requires ac-

counting for the different degrees of inhibition of phosphatases during receptor-initiated

cellular oxidation.

We investigated general properties of systemic redox regulation through phosphatase

inactivation during dynamic cellular oxidation using a computational model that can ac-

count for previously published data [14]. Chao-Wei Chen et al. reported that PDGF stim-

ulation of human lens epithelial cells (HLE B3) activates the ERK signaling cascade with

concomitant production of hydrogen peroxide [14]. Catalase-mediated scavenging of hy-

drogen peroxide resulted in severely ablated ERK signaling. Furthermore, exogenous addi-

tion of H2O2 was sufficient to activate ERK signaling. We hypothesized that these observa-

tions can be explained by a model of ERK signaling that takes into account ROS-mediated,

reversible oxidative inactivation of phosphatases. The opposing activities of kinases and

phosphatases counterbalance each other in the basal state. When the cells are stimulated

with PDGF, the ERK pathway receives an upstream activating signal originating from the

receptor. Simultaneously, ROS-mediated inactivation of phosphatases skews the enzymatic

balance in favor of the kinases thereby activating the signaling cascade. Over time the input

signal decays and ROS production ceases, allowing the phosphatases to be reduced back

from their reversible inactive state. The signaling pathway is then restored to its basal state.

We adopted the three step Raf/MEK/ERK cascade from [124] and modified it by adding
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Figure 2: Computational model of redox regulation in MAPK cascade. (a) ERK signaling
pathway with two step phosphorylation was modeled. Phosphatases were reversibly inhib-
ited by oxidation. Species highlighted in blue (RasGTP and ROS) were supplied as input
functions to the model. (b) Parameters of the model were optimized to fit experimental
measurements of MEK and ERK phosphorylation following PDGF stimulation of HLE B3
cells. The ROS input function (inset) was obtained by fitting a curve to measured DCF flu-
orescence. P3 was the most susceptible to oxidation and all of it got oxidized very quickly
and remained oxidized for the period of simulation. P2 had the slowest oxidation rate and
less than 1% of total P2 was oxidized throughout the simulation. P1 was maximally oxi-
dized at nearly 30 minutes with 16% of the protein in oxidized form which monotonically
decreased subsequently. (c) Catalase pretreatment was simulated using the model fitted
in b by setting ROS level to 0. The prediction was consistent with measured data. (d)
Exogenous bolus addition of H2O2 was simulated using the fitted model in b with an expo-
nentially decaying ROS curve (inset) and RasGTP was fixed at its basal level. Optimization
of the ROS curve alone was sufficient to fit the experimental data. ERKpp levels failed to
increase substantially if phosphatases P1 and P2 were assumed insensitive to oxidation. All
experimental data were obtained from [14].
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ROS mediated reversible inactivation of phosphatases (Fig. 2a). ROS dynamics were sim-

ulated using a curve fitted to PDGF induced H2O2 time course as measured in [14] (Fig. 2b

inset). A transient RasGTP signal was used an input to the model and was optimized to fit

the data. All three phosphatases (P1, P2, P3) were assumed to be susceptible to oxidation

but with varying sensitivities (Fig. 2a). The oxidation rates were optimized to fit experi-

mentally measured MEK and ERK phosphorylation time courses reported in [14] (Fig. 2b).

The variation in oxidation across the cascade may be representative of a) differences in

proximity to the ROS source and thus the effective concentration of H2O2; b) differences

in oxidation rates of the proteins; c) differences in reduction rates due to structural differ-

ences in oxidized proteins [15] or d) the specificity for a reducing enzyme (glutaredoxin

vs. thioredoxin). Although a prior modeling study demonstrated how inhibition of phos-

phatases is a means to influence MAPK dynamics through both duration and amplitude

of signal [56], the authors considered a flat rate of dephosphorylation for dynamic simu-

lations. Our added description of time-dependent variation in phosphatase activity due to

dynamic oxidative modifications provides regulatory features for fine-tuning the response

to a given input, depending on which phosphatases in a cascade are affected.

The model was able to reproduce experimentally measure ERK and MEK phosphory-

lation levels (Fig. 2b). Catalase pretreatment was simulated in the model by setting ROS

levels to zero at all times. The model predicted attenuated ERK phosphorylation in good

agreement with published data (Fig. 2c). An exogenous bolus addition of H2O2 was simu-

lated using a high initial value followed by a first order decay (Fig. 2d inset). Optimization

of two parameters, H2O2 initial value and decay rate, was enough to capture the experi-

mental observations. We note that the fit in Fig. 2b was obtained with very low oxidation

rates for P1 and P2 and a much higher rate for P3. Interestingly, the model suggests that

the slow oxidation could be physiologically important since making P1 and P2 completely

insensitive to oxidation resulted in no ERK phosphorylation even with exogenous addition

of a large amount of H2O2 (Fig. 2d).
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Figure 3: Topological features influence the contribution of phosphatases. Simulations
were performed by setting different combinations of phosphatases as redox sensitive. (a)
ERKpp levels when only a single phosphatase is redox sensitive. The same oxidation and
reduction rates were assigned to each phosphatase for consistency. Oxidation of phos-
phatases with substrates further removed from ERK leads to greater amplification of the
response. (b) ERKpp response when pairs of phosphatases are redox sensitive. The out-
put for two phosphatases appears to be a qualitative sum of the outputs when individual
phosphatases are redox sensitive.

This observation suggested that the location of P1 and P2 in the signaling network

may have an important role in their ability to influence the signaling. To test this idea we

performed computational experiments with the optimized model. Different sets of phos-

phatases were defined to be oxidation sensitive and dually-phosphorylated ERK (ERKpp)

was monitored as the output. The results suggest that phosphatases with substrates fur-

ther upstream of ERK are progressively more potent in influencing the signaling dynamics

(Fig. 3a). Furthermore, when pairs of phosphatases are redox sensitive, their individual

effects add up qualitatively (Fig. 3b). These results suggest that topologically conserved

MAPK networks can produce a variety of outputs, perhaps even to the same input signal,

as the dynamics of phosphatase oxidation/reduction change in a context-dependent manner.

2.3 Oxidative control through compartmentalization

Differences in redox potential in the cellular environment are created not only by punctate

distribution of ROS sources, but also by organellar compartmentalization [62]. The redox

microenvironment faced by proteins in a signaling cascade can be quite different as they
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Figure 4: Compartmentalization of redox potential affects signaling. (a) The model opti-
mized to HLE B3 cell data (Fig. 2) was modified to include nuclear-cytoplasmic shuttling
of ERK and its phosphatase P3. Nuclear entry and exit were modeled as first order reac-
tions with equal rate constants and were assumed to be the same for all proteins concerned.
(b) The nucleus was assumed to be at an identical oxidative state as the cytosol. Cytosolic
and nuclear levels of ERK were predicted to be similar. (c) The nucleus was modeled as
a more reduced compartment with no protein oxidation occurring in the nucleus. Protein
reduction rates were assumed to be the same in both compartments. Both the nuclear and
cytosolic signals are attenuated compared to panel b.

move across compartments. In particular, the nucleus has a more reducing microenviron-

ment than the cytosol by approximately a 20 mV difference in thioredoxin potential [46].

Oxidative modification can be reduced or enhanced by the transport process; consequently,

the dynamic location of a protein can impact its oxidation state and hence catalytic activity.

We modeled the impact of translocation of a redox sensitive protein from cytosol to a

relatively more reducing nucleus. MAP kinases can translocate to the nucleus to perform

their functions as transcription factor regulators. Phosphatases of MAPKs present in the

nucleus are exposed to a more reduced environment as compared to the cytosolic phos-

phatases and are hence likely to be more active. As a consequence, the cytosolic activity of

MAPK may not correspond exactly with the nuclear activity of MAPK. To assess the effects
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of compartmentalization of redox state between the cytosol and nucleus we used the opti-

mized ERK signaling model shown in Fig. 2 and extended it to include nucleo-cytoplasmic

shuttling of ERK and its phosphatase P3 (Fig. 4a). When the nucleus is assumed to be

at the same redox state as the cytosol with protein oxidation and reduction occurring at

the same rate in both compartments, the cytosolic and nuclear fractions of active MAPK

follow each other very closely (Fig. 4b). However, when the nucleus is taken to be more

reduced than the cytosol and free of ROS, then the nuclear fraction of active MAPK is sig-

nificantly attenuated (Fig. 4c). Moreover, the overall signal strength is also reduced by the

nuclear compartmentalization. Observations of ERK oscillations between the nucleus and

cytosol have an unexplained mechanistic basis in signaling regulation [128, 129, 152]. The

ability to regulate the active form of the kinase by redox regulation of its corresponding

phosphatase may be an explanation for the shuttling process.

2.4 Oxidative control through kinases

Unlike the phosphatases, the reported examples of other signaling molecules are much

more varied in the nature and consequences of their thiol modifications, ranging from af-

fecting enzymatic activity, cellular location or binding in macromolecular complexes. Re-

dox sensitivity of kinases can also profoundly influence cell signaling. There is recent

evidence that the MAPK p38 can be reversibly oxidized [142]. It was found that under

prostaglandin-stimulated oxidative conditions as well as with exogenous H2O2 addition,

phosphorylation of p38 is maintained while its activity is reversibly inhibited by oxidation

at multiple cysteine sites. To study this scenario we modified the model shown in Fig. 2

to include ROS mediated reversible oxidation of a dually phosphorylated MAPK (Fig. 5a).

In the absence of kinase oxidation, most of the dually phosphorylated MAPK is available

as free (i.e., unbound to other proteins) active MAPK, assuming that the dually phospho-

rylated form is the enzymatically active form (Fig. 5b). When the kinase is sensitive to

oxidation, only a fraction of the phosphorylated MAPK is available in its active form, the
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Figure 5: Oxidative inhibition of MAPK. (a) Reversible oxidative inhibition of MAPK
was modeled by modifying the model in Fig. 2. The bis-phosphorylated form of MAPK
(MAPKpp) was assumed to be redox sensitive and the oxidation was reversible. (b) Taking
the MAPK cascade as corresponding to the p38 signaling pathway, simulations were per-
formed with dually phosphorylated p38 being sensitive to oxidation or not. Reduced dually
phosphorylated p38, unbound to other proteins was assumed to be the enzymatically active
form and the oxidized form was catalytically inactive. Inclusion of reversible oxidation
resulted in low p38 activity sustained over a longer period of time.

rest being in the oxidized state (Fig. 5b). These results agree qualitatively with the data

reported in [142]. In addition, the oxidation of phosphorylated MAPK serves as a seques-

tration mechanism for the active kinase. The oxidized form is reduced slowly back to the

active form allowing the active MAPK to be maintained at an almost steady, low level for

a longer period of time. This suggests that oxidation of the kinase may be a mechanism to

trap the rapidly generated active kinase and release it slowly over time.

2.5 Complexity in signaling networks

The relative contributions of different redox sensitive phosphatases can vary from those

seen in the linear kinase cascade in Figure 1, depending on the complexity of the system.

For example, heregulin (HRG) stimulation of ErbB receptor simultaneously activates the

Ras/Raf/MEK/ERK and PI3K/Akt pathways [52]. Apart from a common activating input,
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the two pathways are connected by two other links; i) cross-talk in the form of Raf inhibi-

tion by Akt ; and ii) a common serine/threonine phosphatase PP2A inhibiting the two path-

ways at Akt and MEK (Fig. 6a). As with PDGF, EGF receptor ligation has been reported

to induce reactive oxygen species as a necessary component of the signal transduction [27].

A computational model of this system was adopted from [52] and was modified to include

ROS mediated inactivation of phosphatases. This network presents the interesting feature

of ROS playing an activating, as well as inhibitory role in the ERK pathway at the same

time. ROS mediated inhibition of PP2A and MKP3 directly activates the ERK pathways.

However, inhibition of PP2A allows greater activity of Akt which inhibits ERK signaling

through Raf. Simulations show that with the same network structure, either of these effects

can dominate depending on parameters of the model. The presence of ROS could amplify

(Fig. 6b) or attenuate (Fig. 6c) ERK phosphorylation in a context dependent manner. This

suggests that increased complexity of the network makes it more difficult to predict the role

played by ROS in cell signaling. At the same time this shows that dynamic modification

of phosphatase activity affects the outcome of signaling in ways that are hard to predict in-

tuitively; therefore ignoring the dynamics of phosphatase modification in models of signal

transduction may not always be prudent.

2.6 Conclusion

These simple models are instructive in demonstrating that the degree of cellular oxida-

tion has the ability to modulate the amplitude and duration of signal transduction events

in biochemical signaling networks. Furthermore, compartmentalization of redox potential

in different cellular organelles can result in different interpretations of the same signaling

molecule due to subcellular location. Redox regulation is a powerful mechanism for tun-

ing the cellular response to a given input in a context-dependent manner; thus a cell may

skew towards a particular phenotype based upon the interpretation of a cue through altered

signaling dynamics. Importantly, hypo- and hyper-responsiveness to receptor ligation can
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Figure 6: Increased complexity leads to variable effects of ROS regulation. (a) The Akt-
ERK crosstalk model was adopted from [52] and modified to include oxidative inhibition
of phosphatases MKP3 and PP2A. ROS production was assumed to be a NOX dependent
process requiring the presence of active PI3K and RasGTP for Nox activation. ROS pro-
duction was therefore modeled as a process driven by active PI3K and RasGTP and the
decay was a first order process. (b) Redox sensitivity of phosphatases resulted in ampli-
fication of ERKpp compared to a condition where no protein was redox sensitive. (c) By
strengthening the inhibitory effect of Akt on Raf, at the same time weakening the control
of PP2A on MEK dephosphorylation (altering three parameters in all) the qualitative effect
of ROS on ERKpp was reversed as compared to panel b. With the altered parameters the
oxidation sensitive model resulted in signal attenuation compared to the redox insensitive
model.
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be achieved without changing the topology of a signaling network.

Computational modeling of protein oxidation networks is a promising avenue for in-

terpreting the complex effects of cellular oxidation on cellular information processing. For

the model presented in Fig. 2, the addition of transient phosphatase activity was all that was

necessary in order to explain a number of experimental conditions in which altering redox

state affects signaling. While there are numerous aspects of redox signaling ignored in

these simulations (spatial gradients, mitochondrial vs. NOX mediated ROS production, ad-

ditional feedback mechanisms etc.), we can still gain insights into principles of regulatory

control by testing network topologies and differential sensitivities to reversible oxidation.

As knowledge builds of redox control mechanisms within signaling networks, it is likely

that common regulatory motifs will emerge across the varied receptor families in which ox-

idative bursts occur. A key question that improved proteomic tools [108, 112, 126] will help

answer is whether redox-sensitive proteins are evenly distributed within receptor signaling

networks, or clustered at specific nodes for influencing the relaying of information.

2.7 Methods

The model in Fig. 2 was derived from [124] by retaining only the three step Raf/MEK/ERK

module. To mimic the shape of RasGTP profile in [124], a skewed Gaussian curve was used

as RasGTP input. All parameters of the original model were used unchanged except initial

value of P2 which was increased 10 fold to fit the experimental data. The experimental

data were obtained from [14] and represent band intensities of Western blot experiments as

quantified in the original publication. The intensities were normalized to loading controls

for individual gels. The normalized ERKpp values were scaled and shifted so that the

lowest signal has a value of 0 and the signal at 15 minute is 1. The same scaling factor was

used for all experimental data in Fig. 2a and b. The scaled data for individual proteins were

shifted so that the lowest value in each set reads 0. The model outputs were scaled by the

computed value of ERKpp at 15 minute in Fig. 2a and b. Same method was used in Fig. 2d,
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however, the scaling to unity was for the 10 minute time point for both experimental and

model data. We used a curve fitted to experimentally measured H2O2 as ROS input to

the models in Fig. 2 (see Fig. 2b inset) which should account for all cellular sources of

ROS following receptor activation. The same input function was retained for models in

figures 1-4. Since no reliable method was available to scale DCF fluorescence intensities

to true H2O2 concentrations, we used DCF fluorescence values from Chen et al. [14] as a

scaled representation of the concentration. The protein oxidation and reduction rates were

defined in this context and do not represent true rates. The fitted phosphatase oxidation

rates spanned a wide range with orders of magnitude from 10−6 to 10. All proteins were

assigned the same reduction rate in Fig. 2. The reducing enzymes were assumed to remain

constant for the sake of parsimony and were not explicitly modeled. This model was used

as the basis for all models in figures 1-4 with appropriate modifications. Details of all

models are provided in Appendix A.
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CHAPTER III

COMPUTATIONAL MODELING PREDICTS PHOSPHATASE

OXIDATION AS THE PRIMARY MECHANISM OF REDOX

REGULATION IN IL-4 SIGNALING

3.1 Introduction

From initially being perceived as accidental and harmful byproducts of aerobic respiration,

reactive oxygen species (ROS) have now emerged as important regulators of physiological

cell signaling [32]. In particular, due its relatively milder reactivity and longer half-life,

H2O2 is recognized as an important second messenger in signal transduction [115]. Acti-

vation of several types of cell surface receptors induces transient ROS production by acti-

vating NADPH oxidase (NOX) family enzymes, and the ROS so produced play a role in

modulating downstream signaling [137, 27, 83]. ROS such as H2O2 react with the thiol

functional group of susceptible cysteine residues in redox sensitive proteins converting the

cysteine to sulfenic acid form [33]. While further oxidation is irreversible, the sulfenic acid

form can be protected by formation of disulfides and sulfenyl amides which can be reduced

back to the thiol form by oxidoreductases like thioredoxin and glutaredoxin [147, 121, 15].

This reversible cysteine oxidation can result in transient changes in protein function, such

as gain or loss of catalytic activity, at several levels in a signal pathway resulting in systemic

changes in cell signaling dynamics [30].

The IL-4 signaling pathway, which has important immunological roles like TH2 differ-

entiation and immunoglobulin E class switching [157], has been shown to be redox regu-

lated [130] and is controlled by a number of proteins which are potentially redox sensitive.

The pathway is initiated by binding of IL-4 to the IL-4 receptor (IL-4R) α chain and subse-

quent recruitment of the common gamma chain (γC) to form the type I receptor complex.
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A type II receptor complex is also formed in some cell types where the γC is substituted

by the IL-13Rα subunit [157, 97]. Jurkat T lymphoma cells, the cell line we have used

in our study, does not signal through the type II receptor and the following discussion is

limited to type I receptor [110]. Janus kinase (JAK) 1 and JAK3 are bound constitutively

to IL-4Rα and γC, respectively [65]. Formation of the receptor complex activates the JAK

molecules by trans-phosphorylation, which in turn phosphorylate several tyrosine residues

on the cytosolic tails of the receptor chains. The phosphorylated receptor recruits cytosolic

signal transducer and activator of transcription 6 (STAT6) which is phosphorylated by the

active JAK molecules. Phosphorylated STAT6 (pSTAT6) forms a homodimer, which is the

active form of STAT6 and can initiate transcription of target genes [157, 97]. A number

of protein tyrosine phosphatases (PTPs) are involved in downregulation of IL-4 signaling.

CD45 has been shown to inhibit phosphorylation of both JAK1 and JAK3 in response to

IL-4 stimulation [57, 162]. SHP-1 is another negative regulator of IL-4 signaling and it

binds an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic tail of

IL-4Rα, possibly dephosphorylating the receptor or JAK molecules [65, 49, 50]. PTP1B

and TCPTP dephosphorylate STAT6 and are involved in IL-4 signaling [80, 81]. The more

abundant 45 kDa form of TCPTP can shuttle between the cytosolic and nuclear compart-

ments making it an important nuclear regulator of STAT6 phosphorylation [80].

Multiple components of the IL-4 pathway described above can act as redox sensors.

Members of the PTP family are particularly sensitive to oxidation due to a low pKa cys-

teine residue in their active sites [106, 141, 103]. ROS such as H2O2 reversibly oxidize

several PTPs including PTP1B, TCPTP, CD45 and SHP-1 following activation of a vari-

ety of cell surface receptors or when ROS are added exogenously [88, 83, 117, 153, 15].

Along these lines, increased oxidation and inactivation of PTP1B was observed in IL-4

treated A549 cells [130]. It is very likely that the other PTPs involved in IL-4 regulation

are also redox regulated in a manner similar to PTP1B. In addition to the PTPs, members

of the JAK family have also been shown to possess a redox switch. JAK2 has been shown
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to become inactive under conditions of exogenous as well physiological oxidative stress

[133]. Structural homology between JAK1 and JAK2 [133] as well as indirect experimen-

tal evidence [72] suggest that JAK1 could also be inactivated by oxidation. Additionally,

JAK3 has been shown to be catalytically most active when highly reduced, with increasing

loss of activity with oxidation, independent of its phosphorylation state [28]. In addition to

catalytic activities of the PTP and JAK proteins, the subcellular localization of TCPTP has

also been shown to be affected by redox state of the cell with more oxidizing conditions

favoring cytosolic accumulation of TCPTP [74]. All these lines of evidence suggest that

IL-4 signaling could potentially be controlled by multiple mechanisms of redox regulation.

Along with redox sensitive control mechanisms, other equally important control sys-

tems are in place to ensure tight regulation of JAK/STAT signaling. A prior computational

study of the JAK2/STAT5 signaling system found that phosphorylation-state dependent

nuclear-cytosolic cycling of STAT5 was an important determinant of signaling dynamics

[139]. In the case of the IL-4 pathway, the mechanism of nuclear cycling appears to be

cell-type dependent. While there is evidence to indicate that STAT6 phosphorylation is re-

quired for nuclear translocation [4], the contrary has also been shown where STAT6 freely

shuttles between nuclear and cytosolic compartments [16]. Along with phosphatases, pro-

teasome dependent degradation and suppressor of cytokine signaling (SOCS) mediated

downregulation are also common motifs in JAK/STAT signaling [107, 20, 131]. Role of

proteasomal complexes in downregulating IL-4 induced STAT6 phosphorylation has been

previously reported [150, 49]. SOCS1 and SOCS3 proteins have also been found to inhibit

IL-4 signaling [79].

Given that multiple redox dependent and independent control points exist in the IL-4

signaling network, how do the various putative mechanisms interact to regulate signaling

dynamics? This question is particularly challenging because the outcomes of some of the

potential redox regulatory mechanisms are qualitatively opposite in nature. For instance,

while PTP oxidation could increase signaling activity, JAK oxidation could suppress it.
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Direct experimental measurements of protein oxidation changes during cell signaling are

essential to answer these questions. Methods for detecting intracellular changes in pro-

tein sulfenic acids are developing but technical challenges remain to be addressed before

quantitative, systems level measurements are possible [43]. Even if such data were to

be available, inferring relative contributions and interactions between various regulatory

mechanisms would not be straightforward due to the complexity of the signaling pathway.

Computational modeling is a powerful tool that can harness available data to uncover un-

derlying interactions in biological networks [68]. To answer the question posed above we

have used computational modeling informed by quantitative experimental data, both di-

rectly and indirectly related to redox processes, to study redox regulation in IL-4 signaling.

We conclude that PTP oxidation is the dominant mechanisms of redox regulation in IL-4

signaling and its interaction with redox independent mechanisms is critical in explaining

IL-4 signaling dynamics. We have developed a systems model of the IL-4 pathway that

successfully predicts IL-4 signaling dynamics over a wide range of redox conditions.

3.2 Methods
3.2.1 Cell culture and reagents

Jurkat T cells were cultured in complete media (RPMI-1640 containing 10% FBS, 1%

HEPES, 1% MEM non-essential amino acids, 1% sodium pyruvate, 100 U/ml penicillin,

and 100 g/ml streptomycin). For all experiments Jurkat cells were first serum starved at

a concentration of 2×106 cells/ml in media containing 0.5% FBS for 4 hours. The length

of serum starvation of selected to maximize observed change in STAT6 phospohrylation

(Section B.3). Human recombinant IL-4 (R&D Systems, Minneapolis, MN) was used at

100 ng/ml to treat the cells. The inhibitors cycloheximide (CHX), diphenyleneiodonium

chloride (DPI) and MG132 (all EMD Millipore, Billerica, MA) were administered at 20

µg/ml, 20 µM and 10 µM, respectively. Rabbit anti-STAT6 phosphotyrosine 641 antibody

(Cell Signaling Technology, Danvers, MA) was used at 1:100 dilution. Rabbit anti-SOCS3
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antibody (Abcam, Cambridge, MA) was used at 1:500 dilution. R-PE conjugated anti-

rabbit IgG (Life Technologies, Carlsbad, CA) was used as secondary antibody for flow

cytometry at 1:500 dilution. R-PE conjugated anti-STAT6 (BD, Franklin Lakes, NJ) was

used per manufacturer’s recommendation. CM-H2DCFDA (Life Technologies, Carlsbad,

CA) was used at 5 µM to measure intracellular oxidation.

3.2.2 Treatment with inhibitors and flow cytometry

Serum starved cells were suspended in PBS at 4×106 cells/ml. This cell density was chosen

to get maximal change in STAT6 phosphorylation with IL-4 treatment (Section B.3). For

each time point in an experiment, the appropriate inhibitor was added one hour before IL-4

stimulation. Cells were fixed in 1.5% paraformaldehyde for 10 min at room temperature

and permeabilized in 90% methanol for 30 min at 4◦C. After staining with suitable anti-

bodies, the samples were analyzed on a BD LSR II flow cytometer (BD, Franklin Lakes,

NJ). Fluorescence data were analyzed using in-house code written in Matlab; mean fluo-

rescence intensity (MFI) was used to summarize the behavior of analyzed cell populations.

For pSTAT6 and SOCS3 analysis, cells non-specifically labeled only with secondary anti-

body were used to acquire the background signal. For STAT6, unstained cells (because the

primary Ab was fluorophore conjugated) were used as background. To enable comparison

between experimental conditions, background corrected MFIs were normalized by divid-

ing by the background corrected MFI of Jurkat cells not treated with inhibitors and IL-4 as

follows:

MFInorm =
MFIsample −MFIbk

MFIuntreat −MFIbk

where, MFInorm is the background corrected, normalized MFI, MFIsample is the experimen-

tally measured MFI of the sample, MFIbk denotes the background MFI and MFIuntreat is the

measured MFI of untreated Jurkat cells.

To detect intracellular redox state, CM-H2DCFDA was added 30 min prior to IL-4
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stimulation. After adding IL-4, samples were analyzed on BD LSR II Flow Cytometer to

measure CM-H2DCFDA MFI. MFI time course of CM-H2DCFDA stained cells not treated

with IL-4 was subtracted as background from all other CM-H2DCFDA time courses.

3.2.3 Computational modeling of the IL-4 pathway

All modeling, simulation and analysis was performed in Matlab. For Monte Carlo (MC)

simulations, all the networks to be analyzed were coded as ordinary differential equation

(ODE) systems assuming mass action kinetics and solved using numerical ODE solvers in

Matlab. The ODE system representing the largest model with all regulatory mechanisms

and the parameter bounds used for the MC simulations are shown in Appendix B.1. The

systems model of the IL-4 pathway was implemented using the Simbiology toolbox in

Matlab. Equations and parameters of the model are presented in Appendix B.2. Derivatives

of Hill curves fitted to experimentally measured CM-H2DCFDA fluorescence were taken

to represent instantaneous intracellular ROS trends. The time derivative of the fitted Hill

curve, f (x) was modified to a + b f (x), where a and b are model parameters representing

baseline ROS level and a scaling factor, respectively. The modified curve was supplied to

the model as an input. Simulated time course x(t) of species x was also similarly scaled to

y(t) = αx + βxx(t), where αx and βx are constants defined for species x and are independent

of experimental conditions. Different scaling is required for different species because the

antibody used to measure each protein has different characteristics and the measured MFI

scales differently to actual amount.

Initial estimates of parameters were obtained from [161] and [1]. Evolutionary strate-

gies with hyper mutation algorithm was then used (Chapter 4) to fit the model to experi-

mental data using these initial estimates. The following error function was minimized to

obtain the fit:

e =
∑

i

∑
j

∑
t

(
yi j(t) − ei j(t)
ei j(t)σi j(t)

)2
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where, yi j(t) is the scaled and shifted value (as described above) of the jth species un-

der the ith experimental condition at time t; ei j(t) represents the experimentally measured

value under the same circumstances and σi j(t) is the standard error associated with the

experimental measurement.

3.3 Results
3.3.1 ROS are necessary but not sufficient for STAT6 phosphorylation

Jurkat cells were stimulated with IL-4 and intracellular oxidation was monitored using flow

cytometry by staining the cells with CM-H2DCFDA. Fluorescence of the dye increased

quickly after addition of IL-4 and showed a tendency to saturate 1 hour after IL-4 addition

(Fig. 7a). Pretreating the cells with DPI, an inhibitor of phagocytic Nox and flavoprotein

inhibitor, lowered the baseline oxidation of the dye and significantly reduced oxidation

following stimulation with IL-4. Since the oxidation of CM-H2DCFDA is an irreversible

process, the fluorescence time courses shown in Fig. 7a represents cumulative oxidation of

the dye as a function of time. In order to infer instantaneous levels of ROS from the cu-

mulative dye oxidation time courses, Hill curves were fitted to the data points (Fig. 7a) and

derivatives of these curves were obtained (Fig. 7b). The derivatives indicate that following

IL-4 treatment of Jurkat cells, intracellular ROS concentration increased rapidly peaking at

approximately 20 min and gradually returned to baseline level. In DPI pretreated cells the

change in ROS level was observed to be much lower than that in untreated cells.

To study the effects of ROS on IL-4 signaling, time-dependent phosphorylation of to-

tal intracellular STAT6 (i.e, sum of nuclear and cytosolic pSTAT6, see Appendix B.4) was

quantified under a variety of oxidative conditions. Treatment of Jurkat cells with IL-4 sig-

nificantly increased STAT6 phosphorylation within 5 min and kept it elevated for 2 hours

(Fig. 7c). Cells pretreated with DPI showed significantly lower baseline phosphorylation

of STAT6 and responded very weakly to IL-4 stimulation. Addition of exogenous hydro-

gen peroxide (10 µM) in addition to IL-4 further increased STAT6 phosphorylation when
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Figure 7: IL-4 induced ROS is required for STAT6 signaling. (a) Jurkat cells were pre-
treated or not with 20 µM DPI for one hour and stimulated with 100 ng/ml IL-4. Cells were
incubated with 5 µM CM-H2DCFDA for 30 min before IL-4 addition. Fluorescence inten-
sity of oxidized dye was recorded for each time point using flow cytometry. The lines are
hill curves fitted to the means. (b) Derivatives of the Hill curves shown in a. (c) Jurkat cells
pretreated or not with 20 µM DPI for one hour were stimulated with 100 ng/ml IL-4 and
pSTAT6 was quantified using flow cytometry. (d) Jurkat cells were treated with H2O2 (10
µM), IL4 (100 ng/ml) or both and pSTAT6 was measured. Values on y-axis represent back-
ground subtracted and normalized mean fluorescence intensities. Graphs represent mean
± standard error of mean. n = 6 for pSTAT6 under IL4 stimulation for all but the 4th (15
min) and 6th (25 min) time points where n = 3; n = 3 for all other experiments; au, arbitrary
units.
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Figure 8: pSTAT6 shows oscillatory behavior. Tukey’s HSD test was used for pairwise
comparison of pSTAT6 from Fig. 7c across time points. Comparison of pSTAT6 at 0 min
(blue bar) with all other time points is shown. The bars represent comparison intervals
according to Tukey’s HSD and non-overlapping intervals indicate significant difference at
p = 0.05 level. Red bars, significantly different from pSTAT6 at 0 min; gray bars, not
significantly different. X-axis is not to scale.

compared to IL-4 treatment alone (Fig. 7d). However, addition of the same concentration

of H2O2 in the absence of IL-4 failed to alter STAT6 phosphorylation from its basal level.

3.3.2 Interplay of PTP oxidation with nuclear-cytosolic shuttling of proteins results
in characteristic phosphorylation dynamics

The pSTAT6 time course in response to IL-4 stimulation of Jurkat cells shows oscillatory

behavior attaining two local maxima over the two hour period (Fig. 7c). Statistical signifi-

cance of differences in STAT6 phosphorylation between time points was tested using a one

way ANOVA. STAT6 phosphorylation differed significantly across time points with F(8,

39) = 3.71, p = 0.0026. Tukey-post hoc comparison across the time points indicated that

at p = 0.05 level, pSTAT6 at 0 min was significantly lower than pSTAT6 at all other time

points except the 25 min and 120 minute time points (Fig. 8). This implies that the first

peak of pSTAT6 occurs between 0 and 25 min and the second one between 25 and 120

min.

We hypothesized that the dynamic information contained in the STAT6 phosphoryla-

tion time course, especially the characteristic shape of the oscillating curve, could be used
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to infer the regulatory mechanisms involved in IL-4 signaling. We sought to use this in-

formation to investigate the importance of 4 distinct regulatory mechanisms described in

Section 3.1: i) reversible inactivation of PTPs by oxidation; ii) ROS mediated cytosolic ac-

cumulation of PTPs; iii) reversible inactivation of JAK by oxidation; and iv) dependence of

nuclear-cytosolic shuttling of STAT6 on its phosphorylation state. While the first three are

directly influenced by redox state of the cell, the fourth is not. To investigate the systemic

effects of these mechanisms, we constructed a library of models of IL-4 signaling to rep-

resent various combinations of these four regulatory mechanisms. Next, we assessed these

models based on their ability to produce an oscillating curve with characteristics similar to

those seen in the experimental data. The details of this process are described below.

The IL-4 signaling network was divided into 5 regulatory modules and by taking differ-

ent combinations of these modules, a library of 16 different models was constructed (details

in Fig. 9). This library covers all possible combinations of the 4 mechanisms listed above.

Next, simplified ODE representation of all 16 models were obtained using a rationale based

approach to reduce model complexity. Specifically, linear chains of events such as sequen-

tial assembly of active receptor complex, or dimerization of phosphorylated STAT6 were

collapsed into a single reaction. JAKs, which are constitutively bound to the receptor, were

not modeled explicitly and were assumed to be implicit in the receptor. Different PTPs that

can act on STAT6 were abstracted as a single generic PTP. The various network topologies

obtained were coded into systems of ordinary differential equations assuming elementary

mass action kinetics for all reactions. Parameters of the models were manually adjusted so

that total pSTAT6 dynamics roughly matched the experimentally observed dynamics. For

each model, 50,000 sets of parameters were randomly sampled in a fixed space spanning

one order of magnitude around the estimated parameter vector, the model was simulated for

all sampled parameter vectors and the dynamics of total pSTAT6 (i.e., nuclear and cytosolic

pSTAT6) were recorded. The predicted pSTAT6 traces were qualitatively and quantitatively

compared with the experimental results as described next to judge the fitness of the models.
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Figure 9: Creating a library of models of IL-4 signaling. Four regulatory modules were
constructed around the core of IL-4 initiated STAT6 signaling. The core module (blue box)
comprises IL-4 induced receptor (R) activation and subsequent STAT activation. Activated
receptor upregulates ROS which can affect signaling through three different modules: re-
versible phosphatase (P) oxidation (red box), reversible JAK (assumed to be implicit in the
receptor) oxidation (green box), or by modulating nuclear-cytosolic shuttling of the phos-
phatase (purple box). The last module (yellow box) relates to nuclear-cytosolic transloca-
tion of STAT6. This module represents two possible variations: i) the dashed arrows are
absent and STAT6 trafficking is unidirectional and dependent on its phosphorylation state;
ii) the dashed arrow are present and STAT6 translocation is independent of its phospho-
rylation state. Keeping the blue module in place, the red, green and purple modules were
added or not and the dashed arrow in the yellow module were included or not. This results
in a total of 16 different models representing all possible combinations of the 4 regulatory
modules.
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The models were first tested qualitatively based on their ability to reproduce the oscil-

latory behavior observed in the experimental data. This was done by counting the number

of local maxima in each pSTAT6 trace produced by the models. All simulations produced

two or fewer peaks, and traces that could produce exactly two distinct local maxima were

taken to qualitatively match the oscillations observed in the experimental data. Among the

16 models, 7 failed to produce any oscillating traces for total pSTAT6. Of the remaining

9 models which generated one or more oscillating traces, 5 models produced fewer than

50 instances (0.1% of total number of MC simulations) of oscillating pSTAT6 (Fig. 10).

Using this threshold of 0.1%, 12 configurations were rejected as likely models on a purely

qualitative basis. Notably, all the 8 models in which STAT6 translocation was independent

of its phosphorylation state consistently produced none or extremely small numbers of os-

cillating pSTAT6 traces. This strongly suggests that cycling of STAT6 between nucleus and

cytosol is phosphorylation dependent. Only 4 models demonstrated the occurrence of two

distinct peaks for more than 0.1% of the 50,000 MC simulations (Fig. 10). All 4 of these

models included PTP oxidation as a redox regulatory mechanism. The model that had PTP

oxidation as the only ROS mediated mechanism (first bar in Fig. 10) generated the most

instances of oscillating pSTAT6 traces. The other two redox regulated mechanism, JAK

oxidation and ROS mediated nuclear translocation of PTP, could not cross the 0.1% thresh-

old when acting alone; however, combining one or both of these mechanisms with PTP

oxidation allowed oscillation to occur. Nevertheless, fewer instances of oscillating traces

were generated when either one of these mechanisms was combined with PTP oxidation,

and even fewer when both were added in together (Fig. 10).

Quantitative comparison of features of the oscillating curves generated from the simu-

lations with the experimental data provides further support to PTP oxidation as the prime

mechanism of redox regulation in IL-4 signaling. A smoothing spline was fitted to the

mean pSTAT6 data and features of the curve including heights of the two peaks, separation

between them and the value at the final time point were extracted (Fig. 11a). Simulations
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Figure 10: Models that reproduce oscillating pSTAT6 dynamics. For each model 50,000
MC simulations were run and dynamics of total phosphorylated STAT6 were analyzed.
Counts of simulations that produced oscillatory pSTAT6 dynamics are shown. The dot ma-
trix under the x-axis indicates the regulatory mechanisms included in each model. Dots
in the first three rows mark inclusion of the following redox regulatory mechanisms: row
1, PTP oxidation (red module in Fig. 9); row 2, ROS mediated PTP translocation (purple
module in Fig. 9); row 3, JAK oxidation (green module in Fig. 9). A dot in the fourth row
means STAT6 cycling between nucleus and cytosol was dependent on its phosphorylation
state (dashed arrows excluded from the yellow module in Fig. 9), whereas a blank means
that cycling was phosphorylation independent (dashed arrow included in the yellow mod-
ule). Bars below the dashed line correspond to models for which under 0.1% of all MC
simulations produced oscillatory behavior.
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that produced two distinct local maxima for the total pSTAT6 trace were identified for each

model. The features indicated in Fig. 11a, were extracted from the simulated curves. Ratio

of peak heights, separation between the peaks and ratio of final value to first peak were

computed and compared with the experimental results. Representative results are shown

for two models in Fig. 11(b, c, d and e). When only PTP oxidation was included as a

mechanism of redox regulation, not only did the model produce most instances of oscillat-

ing curves, but the shapes of these curves also conformed well with the measured dynamics

(Fig. 11b and d). However, when other ROS dependent mechanisms were added on to the

model, both the number of oscillating curves and their similarity with experimental data

worsened (Fig. 11c and e). Similar results were obtained when PTP oxidation model was

compared with any other model.

Taken together, these results provided very strong support to two of the four regulatory

mechanisms considered and we concluded that i) PTP oxidation is the most important mode

of redox regulation in IL-4 signaling; and ii) nuclear-cytosolic translocation of STAT6 is

phosphorylation dependent.

3.3.3 Inhibition of protein synthesis or protein degradation amplifies STAT6 phos-
phorylation

Jurkat cells pretreated with cycloheximide (CHX), an inhibitor of protein synthesis, were

stimulated with IL-4 and time course of STAT6 phosphorylation was acquired. Phospho-

rylated STAT6 increased significantly within five minutes of IL-4 stimulation and then

decreased steadily for 2 hours (Fig. 12a). Furthermore, the average phosphorylation of

STAT6 was higher in CHX pretreated cells as compared to untreated cells. Pretreating the

Jurkat cells with MG132, an inhibitor of 26S proteasome complex, prior to IL-4 stimulation

also increased mean STAT6 phosphorylation compared to cells not pretreated with MG132

(Fig. 12a).

SOCS1 and SOCS3 have been shown to be downregulate IL-4 signaling [79]. We

measured SOCS3 time course in response to IL-4 stimulation in order to elucidate the
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Figure 11: Inferring regulatory mechanisms using Monte Carlo simulations. (a) A
smoothing spline (continuous line) was fitted to mean pSTAT6 time course, shown by dots,
under IL-4 stimulation and distinguishing features of the curve were extracted. (b, c) Ratio
of final value to height of peak 1 (left axis and squares) and time separation between peaks
(right axis and stars) are plotted against the ratio of peak heights. Data points indicated by
red markers show points corresponding to the fitted spline in a. (d, e) Models correspond-
ing to simulation results in b and c, respectively. Simulation results overlap better with
experimental results in b than in c; this was confirmed by numerical calculation of average
distances between experiment and simulation generated data points.

40



0 50 100
0.4

0.6

0.8

1

1.2

1.4

Time (min)

T
ot
al
S
T
A
T
6
(a
u) IL4

Untreated

0 50 100
0.4

0.6

0.8

1

1.2

1.4

Time (min)

T
ot
al
S
T
A
T
6
(a
u)

MG132
MG132 + IL4

a) b)

0 50 100

1

1.5

2

2.5

3

Time (min)

pS
T
A
T
6
(a
u)

IL4

MG132 + IL4
CHX + IL4

0 50 100
0.8

1

1.2

1.4

1.6

Time (min)

S
O
C
S
3
(a
u)

IL4
CHX + IL4

c) d)

Figure 12: Mechanisms of downregulation in IL-4 signaling. (a) Jurkat cells were pre-
treated with 10 µM MG132, 20 µg/ml CHX or PBS (mock inhibitor) for 1 hour prior to
stimulation with 100 ng/ml IL-4. pSTAT6 was measured. (b) SOCS3 was quantified in
cells pretreated for 1 hour with cycloheximide (CHX) or PBS and stimulated with IL-4.
(c) Total STAT6 was measured in Jurkat cells left untreated or treated with IL-4. (d) Jurkat
cells were pretreated with MG132 and total STAT6 was measured with or without IL-4
stimulation. y-axis shows background subtracted normalized MFI values obtained using
flow cytometry; all plots show mean ± standard error based on n = 3; au, arbitrary units.

pSTAT6 amplifying effect of CHX. SOCS3 expression in IL-4 treated Jurkat cells decreased

from its baseline level over two hours (Fig. 12b). In cells pretreated with CHX, the basal

expression of SOCS3 was reduced and did not change significantly over two hours. This

suggests that inhibition of protein synthesis by CHX lowered the basal concentration of

SOCS3, and the reduced SOCS3 expression weakened the downregulating signal present

at time 0 to allow a larger response to IL-4 at a very early time point (Fig. 12a).

To assess the effect of MG132 on STAT6 levels in Jurkat cells, we quantified total

STAT6 in cells stimulated with IL-4 with or without MG132 pretreatment. In the ab-

sence of any treatment, total STAT6 expression decreased over time. Stimulation with IL-4

slowed down the decrease in STAT6 (Fig. 12c). Pretreatment with MG132 lowered the av-

erage expression of STAT6 slightly and stopped the decay of STAT6 over time. Addition

of IL-4 to MG132 pretreated cells resulted in further elevation of total STAT6 level over
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time (Fig. 12d). These results suggest that proteasome mediated degradation of STAT6

acts as a mechanism to downregulate IL-4 signaling. Furthermore, IL-4 treatment elevates

total STAT6 levels, whether or not the cells are exposed to MG132. This indicates that

phosphorylation following IL-4 stimulation may be protecting STAT6 from proteasomal

degradation.

3.3.4 A systems model of ROS mediated regulation of IL4 signaling

The experimental results presented above taken together with the results from the MC sim-

ulations suggest a complex picture of the IL-4 pathway with many regulatory mechanisms

operating in tandem. We constructed an ordinary differential equation model of the IL-4

signaling pathway using mass action kinetics that incorporates these important regulatory

mechanisms and explains the observed dynamics of various molecular species under a va-

riety of experimental conditions. A graphical representation of the model is shown in

Fig. 13. Mechanisms found to be most important from the MC analysis were built into the

model. Experimental results on downregulation mechanisms were used to include SOCS

and STAT6 degradation as important control mechanisms.

In the interest of parsimony several simplifying assumptions were made in the model.

The IL-4 receptor alpha chain and the common gamma chain were not modeled separately.

Instead, an abstraction of the receptor complex in the form of a single transmembrane

molecule that binds IL-4 and gets activated was used. The JAK1 and JAK3 molecules

that are constitutively bound to the receptor chains were also not modeled explicitly and

were assumed to be implicit in the receptor molecule. SOCS family proteins have been

shown to inhibit JAK/STAT signaling by binding directly to phosphorylated JAK molecules

inhibiting their function, or by binding to the receptors and indirectly inhibiting JAK [9].

Since JAK and receptor molecules were abstracted into a single species, SOCS binding

to activated receptor was taken to represent both possibilities. Dephosphorylation of the

receptor complex was assumed to result in dissociation with SOCS. SOCS1 and SOCS3
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are known to affect IL-4 signaling and were modeled together as a generic SOCS molecule.

Multiple phosphatases including PTP1B and TCPTP have been shown to act on STAT6

[80, 81]. Similarly, multiple phosphatases, such as CD45 and SHP-1, can dephosphorylate

the receptor and JAK molecules [57, 65]. We assumed that STAT6 and the receptor complex

were dephosphorylated by distinct individual PTPs. All reaction were modeled using the

law of mass action except active STAT6 mediated SOCS production ; the rate of production

of SOCS was assumed to increase monotonically with the concentration of active STAT6

in a saturating fashion to model saturation of transcription factor binding sites.

Activation of the IL-4 receptor in Jurkat cells induced transient production of ROS

(Fig. 7b). ROS dynamics estimated from experimental data were used as an input to the

model, thus eliminating the need to explicitly model the sources and mechanisms of ROS

production and elimination. Reduction of oxidized proteins was assumed to follow first

order kinetics; in other words, the reducing capacity of the cell was assumed to be con-

stant over time. The more reducing environment of the nucleus [67, 82] was modeled by

eliminating any protein oxidation from the nuclear compartment.

Evolutionary strategies with hyper-mutation algorithm (described in Chapter 4) was

used to estimate the parameters of the model. The objective function defined in the meth-

ods section was minimized to fit the model to experimentally measured time courses of

multiple species across 3 different experimental conditions (Fig. 14). The fitted model ex-

plains well the dynamics of i) pSTAT6 in Jurkat cells following IL-4 stimulation with or

without pretreatment by either MG132 or CHX (Fig. 14a, b); ii) total STAT6 following

IL-4 stimulation with or without MG132 (Fig. 14c); and iii) SOCS3 under the conditions

of IL-4 stimulation with or without inhibition by CHX(Fig. 14d).

3.3.5 Model successfully predicts behavior under extremes of intracellular redox
state

To validate the model we tested its ability to predict the dynamics of IL-4 signaling under

experimental conditions that were not used to train the model. DPI pretreatment followed
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Figure 13: The IL-4 signaling network. Regulatory mechanisms including ROS mediated
reversible phosphatase oxidation, proteasome mediated degradation of STAT6 and down-
regulation by SOCS are incorporated into the model. P1 and P2 represent PTPs acting
on STAT6 and the receptor complex, respectively; red edges, dephosphorylation reactions
catalyzed by indicated phosphatases; arrows pointing into other edges, enzyme catalyzed
reactions; Φ, infinite sources or sinks; purple edges and nodes, points affected by CHX
in the model; blue edges and nodes, points affected by MG132. Intermediate complexes
formed in enzyme catalyzed reactions are not explicitly shown.
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Figure 14: Model of IL-4 pathway fitted to experimental data. Parameters of the model
were estimated to fit multiple species across 3 different experimental conditions. (a) To-
tal phosphorylated STAT6 (cytosolic and nuclear) under IL-4 stimulation with or without
MG132 pretreatment. (b) Total pSTAT6 under IL-4 stimulation with or without CHX pre-
treatment. (c) Total STAT6 (phosphorylated and unphosphorylated, cytosolic and nuclear)
under IL-4 stimulation with or without MG132 pretreatment. (d) Generic SOCS molecule
of the model fitted to experimental measurements of SOCS3 under IL-4 stimulation with or
without CHX pretreatment. Simulation results were scaled as described in Section 3.2.3.
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Figure 15: Model predicts behavior under extremes of redox state. (a) DPI pretreatment
and addition of exogenous H2O2 with IL-4 stimulation were simulated using the fitted
model. The predictions of the model overlayed with quantitative experimental data. (b)
ROS profiles used to simulate DPI pretreatment and the effect of exogenous H2O2.

by IL-4 stimulation and addition of exogenous H2O2 along with IL-4 were simulated us-

ing the fitted model. The experimentally measured ROS profile under DPI pretreatment

(Fig. 15a) was used as input to simulate the effect of DPI in the model. To mimic the

effect of 10 µM exogenous H2O2 added along with IL-4, a large bolus of exponentially

decaying ROS was added to the experimentally measured ROS profile under IL-4 treat-

ment (Fig. 15a). The model predicted severely attenuated STAT6 phosphorylation under

DPI pretreatment, whereas addition of exogenous H2O2 with IL-4 was predicted to amplify

STAT6 phosphorylation in comparison to IL-4 treatment alone (Fig. 15b). Both these pre-

dictions matched quantitatively with experimental results, showing that the model is robust

enough to predict the dynamics of IL-4 signaling over a wide range of redox conditions.

We attempted to further validate the model using the J45.01 cell line, a derivative of

the Jurkat cell line. However, due to difficulty in characterizing the differential expression

of multiple proteins in the J45.01 cells, we decided not to use these cells to test the model

(details in Section B.5).

3.4 Discussion

With the recognition of reactive oxygen species as important regulators of cell signaling,

new targets of thiol-based oxidative regulation are being discovered with consistent reg-

ularity. Even though most of these redox sensors seem to rely on the same principle of
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cysteine thiol post-translational modification, their responses to oxidation can be very dif-

ferent [61]. For example, cysteine oxidation can result in loss of phosphatase activity in

PTPs, loss of kinase activity in JAKs or altered subcellular localization of TCPTP. Since

all of these processes are driven by the same underlying chemistry, it follows that given

equal access to ROS, all these processes could take place simultaneously. Since the effects

of multiple redox regulated changes in a given context may not always be consistent, in-

ferring the underlying mechanism based on experimental data becomes challenging. For

instance, in the context of IL-4 signaling, a heightened oxidative state can lead to PTP inac-

tivation resulting in signal amplification, but can also cause JAK inactivation which would

have the effect of attenuating the signal. While the individual outcomes of PTP or JAK

oxidation are relatively easier to predict in a qualitative manner, the joint outcome of these

changes is much harder to guess. Of course, ROS mediated regulation does not operate in a

vacuum and overlaying it with other modes of regulation that are independent of ROS fur-

ther complicates the picture. Recognizing this complexity, we have adopted a quantitative,

systems level approach in our work to infer the mechanisms of redox regulation in the IL-4

pathway and found strong evidence to support reversible oxidative inactivation of PTPs as

the dominant mode of ROS mediated regulation.

Jurkat cells were observed to quickly increase intracellular oxidation in response to

IL-4, and DPI was able to suppress this ROS production. DPI is a flavoprotein inhibitor

and known to inhibit the activity of NOX family enzymes. It has previously been shown

that IL-4 signaling activates NOX1 and NOX5L in A549 cells to induce ROS production

and DPI inhibits this [130]. Jurkat cells have been reported to express NOX1 [13] which

could be involved in IL-4 induced transient ROS production in these cells. Suppression

of ROS by DPI pretreatment significantly lowered baseline STAT6 phosphorylation and

severely attenuated pSTAT6 response to IL-4 treatment, indicating that the ROS produced

by activation of IL-4 receptor were playing an important role in the signaling pathway. The

oxidation of CM-H2DCFDA at the 0 min time point was also lower in the DPI pretreated
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cells (Fig. 7a). We interpret this as maintenance of a positive concentration of ROS in

the basal state keeping a fraction of STAT6 in the phosphorylated state. Failure of the DPI

treated cells to respond to IL-4 suggests that baseline ROS also have a role in sustaining the

system in a "primed" state so that it is ready to quickly respond to an activating stimulus.

Supplementing IL-4 induced ROS with exogenous H2O2 amplified the pSTAT6 response;

however, on its own, the same concentration of H2O2 did not elicit STAT6 phosphorylation.

These observations taken together suggest that ROS may be playing two roles; first, to keep

the system ready to respond to an input signal and second, to amplify the response once it

is initiated by IL-4 input.

Having confirmed that IL-4 signaling in Jurkat cells is redox regulated, we used com-

putational analysis relying on quantitative as well as qualitative information obtained ex-

perimentally to understand the control mechanisms by which ROS regulate IL-4 signaling.

Experimentally acquired time course of IL-4 induced STAT6 phosphorylation in Jurkat

cells had a distinctive shape presenting slowly oscillating dynamics over a two hour time

period. This feature combined with simplified models of the pathway proved a remarkably

useful tool for selecting models based simply on their ability to reproduce experiment-like

pSTAT6 oscillations. When possible combinations of likely mechanisms were systemat-

ically examined, PTP oxidation stood out as the most likely mechanism by which ROS

mediated regulation can take place. The other mechanisms considered, namely, JAK ox-

idation and ROS mediated PTP translocation, were not sufficient on their own to explain

the observed dynamics. They did reproduce the oscillatory behavior when assumed to

operate in tandem with PTP oxidation, but with a lower success rate and poorer quantita-

tive matching with experimental data. Therefore, even though model complexity increased

when additional redox regulatory mechanisms were added along with PTP oxidation, the

quality of prediction of the model only worsened when tested within the selected param-

eter bounds. This double failure of the more complex models is compelling evidence in

support of the PTP oxidation model which is not only parsimonious, but also matches the
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data better, both qualitatively and quantitatively.

Examination of the PTP oxidation model suggests a motif similar to a coherent feed

forward loop [84]. Addition of IL-4 results in rapid STAT6 phosphorylation resulting in

the first pSTAT6 peak, and the activated receptor simultaneously upregulates intracellular

ROS levels. As the effect of IL-4 starts to wane, the ROS oxidize enough PTPs to give a

second boost to pSTAT6 levels and contribute to sustaining the second peak. This requires

well tuned timings of the various events, which is why only a small number of the MC

simulations produce the oscillatory behavior. Inactivation of JAK by oxidation and ROS

mediated accumulation of PTP in the cytosol have a negative effect on STAT6 phosphory-

lation which is counter to the effect of PTP oxidation. These mechanisms, rather than help

sustain the second peak, act to abolish it and are probably not relevant in the IL-4 pathway.

The tendency of pSTAT to decrease non-monotonically after reaching its first maxi-

mum has been previously found in erythropoietin mediated JAK2/STAT5 signaling [139].

However, in that case only cytosolic STAT was experimentally observed. The behavior

was explained by phosphorylation dependent translocation of STAT5 into the nucleus and

delayed translocation of dephosphorylated STAT5 out of the nucleus. Another computa-

tional study reported slow, damped oscillations of nuclear pSTAT1 caused by a combination

of phosphorylation dependent nuclear-cytosolic movement of STAT1 and SOCS mediated

negative feedback [161]. In contrast to these studies, we have measured total pSTAT6

present in the nuclear and cytosolic compartments. While these existing models do not

attempt to explain the dynamics of total pSTAT and do not account for the role of ROS

in JAK/STAT signaling, they provide important clues regarding the possible mechanisms

that drive the observed oscillations. In agreement with these studies, we found in our anal-

ysis that phosphorylation dependent translocation of STAT6 was a very important control

mechanism. Independent studies have concluded that cycling of STAT6 between cytosol

and nucleus may or may not be be affected phosphorylation state depending on the cellular

system [4, 16]. Nonetheless, even when STAT6 trafficking was found to be independent of
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its phosphorylation state, greater residence time in the nucleus was reported for pSTAT6

due to DNA binding [16]. In agreement with these studies, our simulation results over-

whelmingly favored configurations that supported preferential nuclear localization of the

phosphorylated form. Future studies will be required to establish how nuclear shuttling of

STAT6 relates to its phosphorylation state in Jurkat cells.

While the kinase-phosphatase balance is an important determinant of signaling dynam-

ics, many other downregulation mechanisms are built into signaling networks to maintain

a tight control over the response. Proteasomal degradation of STAT is known to play a role

in downregulating cytokine signaling. Previous studies have found that inhibition of pro-

teasome stabilizes the phosphorylated form of some members of the STAT family but not

others [150]. In the case of STAT6, reported roles of proteasomal degradation have been

suggested to range from not being significant to being very important by affecting STAT6

phosphorylation either directly, or through intermediaries [4, 138, 49]. In Jurkat cells we

found that MG132 treatment increased IL-4 induced STAT6 phosphorylation and also sta-

bilized total STAT6 levels irrespective of IL-4 treatment. IL-4 treatment had the effect of

slightly increasing total STAT6 levels, whether or not the cells were treated with MG132.

This suggests that phosphorylation had the effect of protecting STAT6 from degradation.

Implementing a fixed rate of decay of unphosphorylated STAT6 and protecting pSTAT6

from degradation in the model helped explain the observed behavior under MG132 treat-

ment.

Feedback regulation through SOCS family proteins is another mechanism for regulating

JAK/STAT signaling. SOCS1 and SOCS3 expression has been variably reported to play a

role in IL-4 signaling, in some cases being found to be important suppressors while not

being significant in others [79, 49]. We measured SOCS3 protein in response to IL-4

and found that IL-4 treatment did not cause an increase in SOCS3 expression in 2 hours.

Cycloheximide treatment lowered the basal expression of SOCS3 which again could not be

increased by IL-4. In cycloheximide pretreated cells a much stronger response to IL-4 was

50



seen at very early time points. This can be attributed to the decrease in baseline level of

SOCS3, and possibly other SOCS proteins such as SOCS1 which could be affecting IL-4

signaling in Jurkat cells. Not ruling out the involvement of other members of the SOCS

family, we included a generic SOCS molecule in our model which could be upregulated

by activated STAT6. Lowering the baseline level of this SOCS protein following CHX

pretreatment was central in explaining the observed dynamics of SOCS3 and pSTAT6 in

the model.

Based on inferences from analysis of reduced models of redox regulation and knowl-

edge gained from the experimental data, we have developed the most comprehensive model

to date of the IL-4 signaling pathway. The model incorporates redox regulation through re-

versible oxidation of PTPs and mechanisms for downregulation of the IL-4 signal through

proteasomal degradation of STAT6 as well as feedback regulation through SOCS proteins.

Interactions between these regulatory mechanisms allowed the model to successfully repro-

duce the dynamics of several molecular species over a variety of experimental conditions.

We tested the model in highly oxidizing and reducing conditions and found that predictions

of the model matched well with experimental data. The ability of the model to capture the

dynamics of IL-4 signaling under normal as well as extreme redox conditions provides

strong validation to our model. It also suggests that as a mechanism of redox regulation,

PTP oxidation could be a relevant phenomenon over a wide range of cellular redox states.

Collectively, the computational analysis indicates that while ROS mediated regulation is a

very important arm of the control machinery in IL-4 signaling, systemic behavior of the

pathway emerges from interactions of redox and non-redox regulatory mechanisms. For

instance, none of the redox regulation mechanisms considered in our analysis were suf-

ficient to explain pSTAT6 dynamics when working alone (Fig. 10), but combining them

with other ROS-independent mechanisms changed the behavior of the system qualitatively.

In other words, without considering the role of ROS-independent mechanisms we would

have reached a faulty conclusion. This results is a strong argument in favor of adopting a
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quantitative, systems based approach in trying to understand redox regulation of complex

signaling networks.

An important concern regarding the ability of ROS to play a significant role in mod-

ulating cell signaling has to do with the relatively slow rates of H2O2 mediated cysteine

oxidation in proteins. Since intracellular ROS concentration was modeled using direct scal-

ing of fluorescence based measurements, it could not be assigned real units in the model.

This means that protein oxidation rates are also to be understood in terms of these arbi-

trary units. However, the scaling factor was chosen such that the absolute value of ROS

concentration was in the order of 102 units of ROS in simulations of IL-4 stimulated cell.

Since intracellular ROS concentration is thought to be in the sub-micromolar range [135],

a 1:1 scaling can be assumed between the model’s arbitrary ROS units and nanomolarity.

In other words, assuming 1 unit of ROS in the model corresponds to 1 nM ROS in the real

cell would scale the simulated ROS level to the order of 100 nM, which is a reasonable

estimate of intracellular H2O2 concentration. Assuming this scaling, the estimated rate of

PTP oxidation turns out to be 2 × 106 M−1s−1. In a previously published systems model

of H2O2 dispersion in Jurkat cells the second order rate of H2O2 mediated oxidation was

estimated to range between 10 × 107 M−1s−1for the fastest reactions involving catalase and

peroxiredoxin to 10 × 104 M−1s−1for the average intracellular protein [1]. The estimated

rate of PTP oxidation in our model lies within this range. That it lies on the higher side is

consistent with the fact that PTPs have a higher propensity towards oxidation than the aver-

age protein. These rates are still much higher than in vitro measurements of PTP oxidation

rates, but in vitro estimates themselves have been found to be much slower than observed

rates of PTP oxidation in insulin signaling [141]. Several hypotheses have been proposed

to explain this high apparent rate of oxidation, including localization of ROS to create high

concentration and transfer of oxidation state through relay proteins, and this continues to

be an area of active investigation.

While computational models of ROS production and consumption have previously been
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developed for cells [1, 5], the question of how competing ROS dependent mechanisms reg-

ulate cell signaling has not been addressed in computational studies. This is the first study

to our knowledge that comprehensively explores the question of redox regulatory mech-

anisms in cell signaling using computational modeling. Aside from suggesting the most

likely mode of redox regulation in the IL-4 pathway, our results also demonstrate the value

of the integrative view in understanding redox regulation of cell signaling. Finally, the

model suggests several interesting avenues for experimental and computational investiga-

tion in the future. For example, is nuclear-cytosolic cycling of STAT6 unidirectional or is it

independent of phosphorylation state and the model is only reflecting increased residence

time of pSTAT6 in the nucleus due to mechanisms like DNA binding? Considering that lo-

cally elevated concentrations of ROS may be important for their regulatory effects, and that

cell membrane bound NOX1 may be an important source of ROS in IL-4 signaling, regions

close to the cell membrane are likely to have the highest localized ROS concentrations in

the cytosol. How is it then that JAK, which is constitutively bound to the receptor and al-

ways close to the membrane, contributes so little to regulating IL-4 signaling? The model

was simplified by pooling multiple phosphatases into two groups and assuming that each

pool has distinct targets in the form of STAT6 or the receptor/JAK complex. Furthermore,

both these pools were assumed to have identical access to ROS and identical oxidation/re-

duction rates. However, in reality phosphatases may be shared between different targets,

may have different rates of reduction and oxidation or may be more or less readily ac-

cessible by ROS. How can these factors be accounted for in the model and how do they

influence signaling dynamics? The model presents these and other questions that require

careful quantitative examination before the puzzle of redox regulation in cell signaling can

be fully resolved.
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CHAPTER IV

EVOLUTIONARY STRATEGY WITH HYPER-MUTATION: A

RESTART STRATEGY TO IMPROVE OPTIMUM FINDING

4.1 Introduction

An essential step in the construction of biologically relevant models is estimation of pa-

rameters to fit model behavior to measured biological data. A variety of optimization

algorithms are at a modeler’s disposal to determine parameter sets of ODE systems that

minimize the distance between model prediction and measured data [87], but because the

objective function in ODE systems cannot be explicitly determined, often derivative-free

approaches (the so called black-box methods), e.g., direct search methods [55, 96], sim-

ulated annealing [69], evolutionary computation methods [163] etc., are preferred. Such

methods are computationally expensive as they require solving of the ODE system at all

test points. Furthermore, ODE models with even a moderate amount of complexity often

have highly multimodal objective functions, making it hard to find the true global optimum

among the many local optima [6]. As a consequence of these factors, algorithms that can

get close to the global optimum in multi-dimensional search spaces with relative efficiency

are preferred.

Evolutionanary strategy (ES) is a population-based, stochastic, black box optimiza-

tion algorithm inspired by the process of biological evolution [125]. A comparative study

of several commonly used global optimization algorithms found that algorithms based on

ES performed better than competing algorithms when tested on a specific systems biol-

ogy model [91]. Starting with a random initial population of candidate solutions to the

optimization problem, ES operates by repeated application of the operators of mutation,
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recombination and selection to produce successive generations until defined stopping cri-

teria are satisfied [125]. The mutation operator is important for introducing variation in

the population and the strengths of mutations of all individuals are controlled by a set of

internal parameters known as strategy parameters or step sizes. The step sizes need to be

controlled, as very strong mutations can delay convergence and prevent directed evolu-

tion, while weak mutations can slow convergence and trap the solution in a local minimum

[102]. Different types of strategy parameter control methods have been developed for use

with ES, e.g., self-adaptation using mutative strategy parameter control and derandomiza-

tion of self-adapdation using CMA [48]. Irrespective of their implementation details, all

variants of ES utilize gradual damping of the step size to ensure convergence. As a result,

in later stages of the evolution as the population begins to converge the step size becomes

increasingly small, until the evolution slows down and the population tends to get trapped

in a local minimum. Because of the stochastic nature of ES, each optimization run is likely

to yield a different solution. This stochasticity is exploited to improve optimum finding

by using restart strategies, i.e, repeated execution of the optimization algorithm, possibly

with different settings each time, and selecting the best among several possible solutions

[58]. The main drawback of restart strategies is the extra computational cost incurred by

repeated runs of the optimization algorithm.

In this chapter a variant of ES is presented that uses a partial restart strategy [58] to im-

prove the global optimum finding ability of the algorithm without dramatically increasing

the computational cost. We have developed and empirically tested a simple method that

dynamically monitors the evolution of the fitness score and when required, operates on the

strategy parameters to create a subpopulation of hyper-mutants, hence the name ES-HM,

to help the evolving population escape local minima at later stages of the algorithm and

enable convergence to a better optimum. We tested the algorithm on a set of benchmarking

functions under a variety of conditions and found that ES-HM performed better than other

methods for several test functions under most conditions. An example of application to a
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systems biology problem is also presented; ES-HM was used to estimate the parameters

of a model of IL-4 signaling to fit the model to an experimentally derived data set. ES-

HM was able to find better solutions even when the parameters of the model were poorly

constrained.

4.2 Methods

The ES-HM algorithm described in Section 4.3.1 was implemented in Matlab. Source

code of the Matlab implementation is provided in Listing 1. A suite of test functions was

selected from a collection of benchmarking functions [140, 47] to assess the performance

of the algorithm. The 1) sphere, 2) Schwefel’s problem 2.21, 3) Rastrigin, 4) Ackley, 5)

Rosenbrock, 6) Griewank, 7) Gallagher’s Gaussian 21 peak, 8) rotated Weierstrass and 9)

rotated Lunacek bi-Rastrigin functions were selected to represent a combination of sep-

arable, non-separable, unimodal and multimodal functions. The functions are defined in

Appendix C.1.

The ODE model of the IL-4 pathway was coded and solved in Matlab. The ES-HM

implementation was used to estimate the parameters and the objective function was defined

as the root mean squared error between the model and average of normalized experimental

data, summed over all time points and experimental conditions.

4.3 Results

To overcome the problem of stagnating search in ES due to very small step size in later

stages of the search, we have developed a modification of the ES algorithm that scales

up the step sizes of the evolving individuals along randomly selected dimensions if, i) the

stopping criteria are satisfied; or ii) the evolution of the best score starts to stagnate over

time. To prevent superfluous restarts, the evolution is stopped if three successive restarts

result in no improvement of score or if a pre-set maximum number of restarts is achieved.
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4.3.1 Evolutionary strategy with hyper-mutation

We present here the ES-HM algorithm in the context of a generic ES algorithm, but this

strategy could easily be applied to other variants of the algorithm. To minimize the ob-

jective function f : Rn → R the algorithm consists of the following steps, with Steps 5-8

representing the hyper-mutation modifications we have introduced.

1. Initialize a population of µ individuals, the parents, where each individual is com-

prised of a pair of real-valued n-vectors (xi,σi), ∀i ∈ {1, . . . , µ}, where xi and σi are

object parameters and step-sizes, respectively. Generation number, g = 1; number of

restarts, R = 0.

2. Recombine parents to generate λ new individuals, (x′i ,σ
′
i), i ∈ {1, . . . , λ}.

3. Mutation: For all i ∈ {1, . . . , λ}

(a) mutate strategy parameters, σ′i = σ′ξi;

(b) mutate object parameters, x′i = x′i + σ′izi;

where, ξi and zi are real vectors whose values are determined by the specific

flavor of ES algorithm.

4. Selection: Evaluate the fitness of (x′i ,σ
′
i), ∀i ∈ {1, . . . , λ}. Select the fittest µ individ-

uals to become the parents for the next generation. sg = score of the fittest individual.

5. Check for stopping criteria and score stagnation. If

(a) a stopping criterion is satisfied; or

(b) if at least Ns generations have passed since last restart and the relative differ-

ences between scores of the fittest individuals over the last Ns generations are

less than a threshold θ (i.e, for g > Ns, if

|si − si+1|

si < θ,∀i ∈ {g − Ns, . . . , g − 1})
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then go to step 6 to initiate hyper-mutation, otherwise, increment g by 1 and

return to step 2.

6. Increment restart count R by 1. bR = best score in generation g just before initiating

hyper-mutation.

7. Introduce hyper-mutants by randomly scaling up on an average a fraction φ of all the

step-sizes:

For the jth element σi j of the vector, σi, ∀i ∈ {1, . . . , µ}, and j ∈ {1, . . . , n} generate a

uniform random number r. If r < φ, σi j = σi j × ρ, ρ > 1. ρ determines the strength

of hyper-mutation.

8. If R > Rmax, stop.

9. If bR, the best score just before a new round of hyper-mutation is initiated, does not

improve for 3 successive value of R, stop.

ES-HM introduces 4 new internal parameters into the algorithm, namely, Ns and θ,

which determine the stagnation criteria and φ and ρ, which define hyper-mutant frequency

and hyper-mutation strength. For all subsequent analyses we have chosen, Ns = n, the prob-

lem dimension, and θ = 1%. We have implemented the (µ, λ) ES-HM algorithm in Matlab

(Listing 1) with mutative strategy parameter control and multi-parent-recombination as de-

scribed in Appendix C.2 [125]. Fig. 16 shows a comparison of the search characteristics of

(µ, λ)-ES compared with (µ, λ)-ES-HM for the Ackley function. Search trajectories of ES

and ES-HM are superimposed on the contour plot of the 2-dimensional Ackley function.

The search was initialized identically for both algorithms to enable comparison. While

ES quickly stopped in a local minimum (Fig. 16a), ES-HM was able to escape this mini-

mum and reached close to the global optimum (Fig. 16b). A similar comparison of the two

methods for the 30-dimensional Ackley function was performed (Fig. 16c). Starting under

identical settings, the two methods proceeded identically for some time until ES stopped.
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Figure 16: Comparison of search characteristics of ES-HM with ES. (µ, λ)-ES and
ES-HM were used to find the global optimum of the 2-dimensional Ackley function in
[−30, 30]2 (contour plots in a and b). The search was started far from the optimum (0, 0)
by forcing the initial population in [14.5, 15]2. The random number generator was seeded
identically for ES and ES-HM to enable comparison. Black lines, trajectory of best score;
black dots, coordinates of the best individual; green dot, starting position. (a) ES stopped
quickly in a local minimum. (b) ES-HM took a longer time but ended close to the global
optimum. (c) Similar comparison on 30-dimensional Ackley function by starting (µ, λ)-ES
and ES-HM with identically seeded random number generator. Best score for each gen-
eration is plotted. Search is identical in the beginning and scores coincide. ES stops in
less than 200 iterations; ES-HM introduces hyper-mutants several times (spikes) ultimately
improving the score by nearly 2 orders of magnitude.

ES-HM continued the search with increased step sizes and although the new step sizes of-

ten resulted in temporary worsening of the score (spikes in red line Fig. 16c), ultimately

a better score was found. In the example shown in Fig. 16c, the score was improved by

nearly two orders of magnitude by ES-HM.

4.4 ES-HM shows improved performance compared to other ES-based
restart algorithms

As is clear from the description of the algorithm and Fig. 16c, ES-HM is a type of restart

strategy. However, instead of forcing a complete restart, it only changes some randomly

selected strategy parameters and can therefore be thought of as a soft or partial restart

method [58]. To further assess the performance of the ES-HM algorithm, we implemented

a (µ, λ) version of ES-HM as described above and compared it with 3 variants of ES, two

of which are restart methods. First, (µ, λ)-ES-HM was compared with (µ, λ)-ES with muta-

tive strategy parameter control and multi-parent recombination (hereafter, pure ES). Next,

59



Figure 17: Two-dimensional representation of test function used.

we compared ES-HM with a naive restart algorithm, where the pure ES algorithm was

independently run 10 times and the best solution was accepted (hereafter, naive restart). Fi-

nally, we compared it with an algorithm similar to the ES-IPOP restart strategy [8], where

the population size is doubled with each restart and evolution stops when an upper limit on

number of restarts or objective function evaluations is reached.

Since the optimization algorithm needs to strike a balance between the goodness of fit

and the computational cost, we devised a performance score that takes into account both

the quality of score and the cost of computation to generate a comparative score S A2/A1 of

algorithm A2 against algorithm A1 as follows:

S A2/A1 = − loga

(
s̃A2

s̃A1

ẽA2

ẽA1

)
(1)

where, s̃A represents the median score obtained from independent runs of algorithm

A and ẽA is the median number of objective function evaluations required by the algo-

rithm. This metric implies that an x-fold improvement (or worsening) of the optimized

score is exactly offset by an x-fold worsening (or improvement) of the computational cost.

In other words, a score of 0 implies identical performance, whereas a positive (negative)

score means the performance of A2 is better (worse) than A1. A more generalized perfor-

mance score that assigns different weights to fitness of the solution and computational cost

could be obtained by using different log bases for the two ratios, but we have used a log
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Table 1: Frequency with which each (φ, ρ) pair produced the best performance score for
ES-HM against pure ES according to Eq. (1). A total of 54 conditions were run by varying
test functions (all 9 types), problem dimension (10, 30 and 50) and population size (bn/3c
and n) as described in Fig. 18.

ρ φ = 0.2 φ = 0.6 φ = 0.8
2 17 3 4
20 13 5 3
100 3 0 6

base of 2 for both terms in our analysis.

Performance of the algorithms was compared using 9 different test functions (2 dimen-

sional versions in Fig. 17, equations in Appendix C.1). The parameters φ and ρwere varied

to study their influence on performance. For each test function, 30 independent runs were

executed for each (φ, ρ) pair to calculate the performance scores as defined in Eq. (1). Prob-

lem dimensions (i.e., n) of 10, 30 and 50 were chosen and the number of parents, µ, was

chosen to be bn/3c or n. As recommended in [125], λ was fixed at 6µ. Fig. 18a shows the

performance of ES-HM against pure ES for all the test functions over different problem

dimensions and population sizes. For a given test function and (µ, λ) value (i.e., a given

cell in the heat maps in Fig. 18), 9 pairs of (φ, ρ) values were used in independent runs. The

(φ, ρ) pair for which the performance score of ES-HM was best was used for each cell in

the heat maps in Fig. 18. ES-HM performed better than ES for most test functions under

various conditions producing positive performance scores. However, the performance was

worse than ES under most conditions for the Rastrigin and Lunacek functions. ES-HM

was next compared against naive restart ES and the scores were found to favor ES-HM for

almost all test conditions (Fig. 18b). ES-HM also compared favorably against ES-IPOP

(Fig. 18c).

The frequency with which each hyper-mutation frequency and strength pair, (φ, ρ), pro-

duced the best performance score for ES-HM against ES when run over the 54 different

conditions in Fig. 18a (9 test functions times 6 (µ, λ) pairs), is shown in Table 1. The best

performance scores were most frequently obtained for the lowest values of φ and ρ.
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Table 2: Comparison of the fittest solutions found by ES-HM to those found by ES from
30 independent runs. The internal parameters of the algorithms were varied as described
in Fig. 18. For each cell in the table, the (φ, ρ) pair which produced the fittest solution
was chosen for ES-HM. FR (fitness ratio) is the ratio of fittest solution found by ES to that
found by ES-HM. CR (cost ratio) is the ratio of number of function evaluation required by
ES to find the fittest solution to that required by ES-HM. * indicates fitness scores found
by ES-HM were significantly lower than those found by ES at a significance of 0.05 in
one-sided 2-sample Kolmogorov-Smirnov test

n = 10 n = 30 n = 50
µ = n/3 µ = n µ = n/3 µ = n µ = n/3 µ = n

Fun FR CR FR CR FR CR FR CR FR CR FR CR
Sp 5.9* 0.7 3.6* 0.8 2.4* 0.9 2.4* 0.8 2.2* 0.9 1.8* 0.8
Sc 7.0* 0.3 2.0* 0.8 31.8* 0.4* 2.1* 0.8 9.5* 0.4 3.4* 0.7
Ra 3.4* 0.3 3.0 0.4 1.3 0.5 1.2 0.4 1.2 0.8 1.5 0.6
Ac 6.6 0.7 1.3* 0.8 2.8* 0.7 1.6* 0.8 1.7* 0.8 1.5* 0.8
Ro 72.7 1.0 0.1 2.3 21.5 1.0 0.1 1.9 5.6 0.8 0.7 1.8
Gr 3.7* 0.6 6.3* 0.9 2.1* 0.9 2.0* 0.8 1.7* 0.8 1.8* 0.8
Lu 10.7* 0.6 3.7* 0.9 3.7* 0.6 3.7* 0.8 2.7* 0.7 2.7* 0.7
We 2.6 5.7 2.1 29.2 2.0 15.1 1.0 5.0 1.6 9.5 1.0 4.1
GG 1.0 0.4 4.0 0.3 1.3* .7 1.8* 0.8 1.0* 0.3 2.1 0.2

As pure-ES performed closest to ES-HM (compare Fig. 18a against b and c), we com-

pared the fittest solutions found using ES and ES-HM and their relative computational costs

(Table 2). ES-HM usually found better fitness values than ES for lower problem dimen-

sions and for the smaller population size for a given problem dimension. The table also

shows that ES-HM usually found a better score than ES but at a greater computational cost,

which is to be expected since ES-HM uses restarts. The Weierstrass function was a notable

exception to this trend where the computational cost was much lower for ES-HM.

4.5 ES-HM improves data fitting in an ODE model of IL-4 signaling

As ES-HM showed better optimum finding ability than the other algorithms for several

test functions, we next tested it on a problem that is more representative of parameter

optimization in systems biology modeling. We developed a simplified ODE model of redox

regulation in IL-4 signaling and used the algorithm to optimize its parameters to fit the

model to experimentally measured time-course data.
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Figure 18: Performance of ES-HM compared with other ES-based algorithms. Perfor-
mance score Eq. (1), (a) S ES−HM/ES , of ES-HM against pure ES, (b) naive restart and (c)
ES-IPOP. Function names are abbreviated to first 2 letters. n denotes problem dimension;
µ, the number of parents was varied over {bn/3c, n} and λ was fixed at 6µ. φ and ρ were
varied over 0.2, 0.6, 0.8 and 2, 20, 100, respectively; for each of the 9 (φ, ρ) pairs ES-HM
was run 30 times; ES was run 30 times for each test function; naive restart was executed
3 times; IPOP was executed once. Fewer runs were performed for the restart methods be-
cause they inherently include multiple runs of ES algorithm. Of the 9 (φ, ρ) pairs for each
cell on the heat maps, the pair which produced the best performance score for ES-HM was
selected.

4.5.1 Experimental data and ODE model

Experimentally measured pSTAT6 time courses with and without DPI pretreatment (as

shown in Chapter 3) were used. A model of IL-4 signaling with phosphatase oxidation as a

mechanism of redox regulation was created (Fig. 19; this is a simplified model of the fully

detailed IL-4 model and was used only for testing the optimization algorithms). Equations

comprising the ODE system are described in Appendix C.3.

4.5.2 Parameter estimation and comparison of algorithms

We used ES-HM to optimize 18 parameters of the model, which include initial values and

rate constants of the ODE system (Appendix C.3), and compared its performance with

ES. When assigned very broad ranges (lower limit 10−6 and upper limit 106) to the values

of all parameters, both ES and ES-HM could not produce satisfactory fits after several

independent runs. Therefore, we adjusted the parameter values by hand to obtain a better

first guess that produced a reasonable fit as assessed by visual inspection (Appendix C.3).

The parameter optimization algorithms were then applied to search in parameter space
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Figure 19: Schematic of the IL-4 signaling pathway representing the components mod-
eled in the ODE system. Symbols used for the rate constants in the ODE model are shown
in italicized text. This simplified model was created only to test the optimization algorithms
and does not represent the actual model of IL-4 signaling developed in Chapter 3

bounded by values 1000 fold lower and 1000 fold higher than the first guess for each

parameter.

9 different (φ, ρ) pairs were used in the ES-HM algorithm and 10 independent runs were

executed for each pair resulting in 90 independent runs. Distributions of the parameters and

scores for all 9 conditions are shown in Appendix C.4. Results from all 90 runs combined

together are presented in Fig. 20b showing that the optimized values had a wide spread

over the search range for most parameters. To compare ES-HM with ES, we executed 90

independent runs of ES over the same search range; the resulting distribution of optimized

parameters is shown in Fig. 20a. Comparison of Fig. 20a against Fig. 20b shows that most

parameters have a smaller spread for ES as compared to ES-HM. The distributions of the

fitness scores obtained from the 90 independent runs of both methods are shown in Fig. 20c.

The median score found by ES-HM was only marginally better than that obtained by using

ES but the fittest solution found by ES-HM improved upon that found by ES by about

27%. Visual inspection of the fits generated by the best parameter vectors from both the

algorithms confirms that ES-HM produces the better fit (Fig. 21). The parameter vectors
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Figure 20: Box-whisker plots of parameter values and score distributions. Search space
was limited to 1000 fold on either side of the first guess for each parameter value for a, b
and c, and 5 fold for d, e and f. 90 independent optimizations were performed for ES. Dis-
tribution of optimized value for each parameter is shown as ratio of the initial guess (a, d).
For ES-HM φ and ρ were varied over 0.2, 0.6, 0.8 and 2, 100, 1000, respectively, resulting
in 9 (φ, ρ) pairs; for each pair 10 independent optimizations were executed. Results from
all 90 runs were combined to generate the distributions for ES-HM (b, e). Distribution of
scores corresponding to the distribution of parameter values for 1000 fold (c) and 5 fold (f)
search ranges. µ = n/3, λ = 6µ
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Figure 21: Fits generated by ES and ES-HM algorithms. Fitted pSTAT6 under IL-4
treatment (a) without and (b) with DPI pre-treatment. Fits corresponding to the best fitness
score generated by ES and ES-HM when the search range is 1000 fold around initial guess
(ES, wide and ES-HM, wide); fits corresponding to median fitness score generated when
the search range is 5 fold around initial guess (ES, narrow and ES-HM narrow).

corresponding to the median scores for both algorithms produced poor fits.

To further study the performance of ES-HM against ES, we constrained the size of

the search space assigning upper and lower bounds to 5 times higher or lower than the

first guess for each parameter and repeated our analysis. The parameter distributions are

shown in Fig. 20d and e. Comparison of the fitness distributions resulting from ES and ES-

HM shows that ES-HM found a lower median score and the best score found by ES-HM

was also lower than that determined using ES (Fig. 20f). Moreover, with the more tightly

constrained search range the distribution of scores found by ES-HM was narrower than that

for ES. With the narrowed down search range, the parameter vectors returned by both the

algorithms produced good fits. Fits corresponding to the median scores returned by both

the algorithms are shown in Fig. 21. It is clear from visual inspection that the parameter

vector corresponding to ES-HM produced the better fit, especially with respect to the DPI

treated condition.

4.6 Discussion

In this work we have presented a modification of the evolutionary strategy algorithm that

improves its performance by introducing hyper-mutants into the evolving population when

the evolution approaches stagnation. The hyper-mutants increase the step-size of the search
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which may enable a jump out of local minima or accelerate the rate at which the minimum

is approached. This method is essentially a partial restart strategy where instead of resetting

all the parameters with each restart, only the step sizes are perturbed. The introduction of

hyper-mutants to increase step sizes of the ES algorithm is conceptually very similar to the

idea or reheating in simulated annealing, where the temperature of the annealing system is

raised as the annealing converges [101, 3]. An advantage of the ES-HM algorithm is that

unlike a complete restart, successive rounds of hyper-mutation lead to quicker convergence,

therefore increasing the probability of improving the search without incurring as much

computational cost as a complete restart might. A second benefit of the ES-HM algorithm is

that it is independent of the other operators used in evolutionary strategy-based algorithms;

therefore, hyper-mutation can be easily combined with different types of ES algorithms.

The major limitation of the algorithm is that because the object parameters are not perturbed

during each restart, it is possible that despite the increased step-sizes, searches following

partial restarts will not be able to find better optima that are further away from the current

value of the object parameters.

We empirically tested the performance of a (µ, λ) implementation of ES-HM to opti-

mize real valued parameters of a suite of 9 test functions under a variety of conditions. To

compare the performance of algorithms we devised a new performance metric that takes

into account both the extent of improvement of the score as well as the cost of computation.

Unlike some performance metrics that ignore the actual value of the optimized score by dis-

cretizing each run as a success or failure [7], the performance measure we have proposed

can provide a better view of compromise that the algorithm has to make in terms of cost

and benefit. We found that ES-HM outperformed naive restart and ES-IPOP type restart

for a majority of the conditions tested. This can be largely attributed to the huge computa-

tional effort required by complete restart strategies. While the optimum finding abilities of

the complete restart methods may be similar to ES-HM, the much higher cost offsets their
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advantage. Because ES-HM is also a restart strategy, it typically runs over a greater num-

ber of generations than pure ES, implying that ES-HM is usually the more expensive of the

two methods. Despite this limitation, a comparison of ES and ES-HM using the perfor-

mance score in Eq. (1) showed that ES-HM performed better than ES for a large number of

test conditions and objective functions. Surprisingly, for the Weierstrass function ES-HM

not only improved the fitness score over ES for many test conditions, it managed to do so

in fewer iterations. This happens because the Weierstrass function has a large number of

very closely spaced minima; this leads to very quick stagnation of the search and ES-HM

forces a restart. Again, because of the construction of the function, restarted searches hit

stagnation quickly and after a quick succession of restarts, ES-HM reaches its threshold

on the total number of restarts and stops. ES on the other hand, typically gets stuck in a

local minimum and continues to refine its search in a confined parameter space without any

significant improvement to the fitness score. This shows that on some difficult objective

function surfaces ES-HM may also improve the cost of optimization despite being a restart

strategy.

Our empirical tests with the algorithm enabled us to find the internal parameters of ES-

HM that produced the best results for these test functions. We found that keeping hyper-

mutant frequency and hyper-mutation strength parameters low usually produced better out-

put in terms of the performance score of ES-HM compared to other algorithms. Introducing

large perturbations or perturbing too many strategy parameters can introduce randomness in

the search and even though it has the possibility of enabling the search to find far removed

optima, it can lead to undirected evolution resulting in poorer search results or much higher

computational costs.

To demonstrate a more practical application of the algorithm to a problem relevant for

modeling in systems biology, we used ES-HM to optimize the parameters of an ODE model

of IL-4 signaling. The structure of the model was based on knowledge from the literature
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and the parameters were optimized to fit the behavior of the model to experimentally ac-

quired data on redox regulation of IL-4 signaling. For this problem we focused on the

goodness of fit alone, but we note that the typical ratio of computational cost of ES-HM

against ES was similar to that seen for the test functions (Table 2). During the fitting ex-

ercise we found that most parameters of our model could vary over very large ranges of

values without affecting the fitness score too much. When searched over a loosely con-

strained parameter space, ES-HM showed a broader distribution of fitted parameter values

as well as scores as compared to ES (Fig. 20a, b and c). Thus the hyper-mutation strategy

enabled exploration of a larger portion of the search space and the best scores found by

ES-HM surpassed the best scores found by ES. However, the broader distribution of scores

also meant that worst scores found by ES-HM were poorer than the worst scores found by

ES. Restricting the search space to a narrower range gave a double advantage to ES-HM

so that scores found by ES-HM were better than those found by ES at both ends of the

spectrum, even though the parameter values were still broadly distributed over the search

space.

Our results show that hyper-mutation strategy can improve the search characteristics

of ES for a wide variety of objective functions including complex parameter optimization

problems encountered in ODE models commonly used in systems biology. Advantages

could be seen in terms of improved optimum finding as well as cost reduction, depending

on the objective function. Furthermore, when the computational cost was increased, the

gain in fitness was usually sufficient to offset the increased cost. Finally, better results can

be expected in situations with both poorly and well constrained parameter spaces when

applied to ODE models.
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CHAPTER V

FUNCTIONAL CONSEQUENCES OF

ROS-MEDIATED CROSSTALK 1

5.1 Introduction

In 1999, Hartwell et al. introduced the concept of modular biology, where a functional

module is created by interacting molecules collectively performing a discrete function.

The functional modules could in turn be connected in different patterns resulting in higher

level properties of the system. Such a modular construction is advantageous in terms of

making the system both robust and evolvable at the same time – the individual modules

could be robust to perturbations but connections between them could be changed to allow

for changes in phenotype [51]. Intuitively, the requirements of evolvability and robustness

seem contradictory, since a robust system should be insensitive to external perturbation

whereas an evolvable system must be sensitive to environmental change. Reconciling the

divergent requirements of evolvability and robustness requires knowledge of the connec-

tions between the functional units constituting the system and an appreciation of how each

module integrates information arriving from multiple inputs.

Signaling pathways fit the modular description quite well by virtue of enzyme-substrate

specificity in biochemical reactions; that is to say that activation of a particular receptor ac-

tivates specific enzymes that act on well-defined targets. Therefore, even though there may

not be spatial segregation between components of distinct signaling pathways, enzyme-

substrate specificity ensures isolation of active reactions [51]. Introducing a non-specific

actor in the context of modular signaling pathways allows for a mechanism to integrate

the modules. As introduced in Chapter 1, ROS can play this role because of their relative

1Modified from [78]
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promiscuity when compared to enzyme catalyzed reactions. In other words, the effects

of ROS, instead of being directed towards specific proteins, are directed towards specific

amino acid residues (Section 1.3). This could allow ROS produced by activation of one sig-

naling pathway to influence another redox sensitive pathway. Recognizing this possibility,

quantitative analysis of the potential of ROS to act as integrators of signaling modules was

carried out and the functional consequences of ROS mediated crosstalk were examined.

Mathematical tools are required to quantitatively study how function can be segregated

in signaling modules while still allowing for integration through agents like ROS. The con-

cept of degeneracy has previously been developed to study these properties in complex

biological systems. As first introduced in [144], structural complexity can be understood

in terms of the interplay between specialization of functions in individual modules (func-

tional segregation) and the ability of the modules to interact and perform functions coher-

ently (functional integration). A highly complex system maintains segregation of func-

tion in modules while still allowing for functional integration through connections between

modules [145]. Degeneracy is defined as a measure of how well functionally independent

modules can interact to produce the same output. Modules that are structural duplicates

form a completely redundant system and always produce the same output; degenerate sys-

tems arise from structurally distinct modules with different outputs interacting to produce

the same output under certain conditions [31]. In the context of interacting signaling path-

ways, existence of degeneracy can be interpreted to mean that while the interacting sig-

naling pathways perform separate functions, the possibility exists that the pathways could

cooperate with, or compensate for each other to produce the same output. This intuitive un-

derstanding of the concept of degeneracy can be applied more meaningfully to biological

networks if degeneracy is defined mathematically.

A mathematical definition of degeneracy was first introduced in the context of neural

networks [144]. However, since regulatory features of cell signaling networks are often
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described using differential systems, theory compatible with kinetic description of bio-

chemical reactions rather than neural network [145] or logic-based descriptions [118] is

required. Although some features like regulation and robustness of biochemical networks

have been studied quantitatively [70, 118], degeneracy and complexity were not formalized

mathematically in terms of ordinary differential equation until very recently [78].

In this chapter an explanation of the definition developed by Li et al. is first provided.

This definition is then used to study ROS mediated crosstalk between the IL-4 and erythro-

poietin (Epo) pathways. Finally, implications of ROS mediated crosstalk are discussed.

5.2 Results
5.2.1 Definition of degeneracy for a differential system

The strategy used in [78] to determine the degeneracy of a differential system is described

here. A stochastic perturbation is first injected into the differential system making the

modules of the network stochastic processes. Two modules with strong functional connec-

tivity are expected to have high statistical correlation; conversely, functionally independent

components must be statistically independent. The statistical connectivity between two

components I1 and I2 is measured using the mutual information, MI(I1; I2), of the compo-

nents. Network degeneracy is then quantified using a linear combination of the calculated

MI between components as shown by the following illustrative example.

Consider a simple network consisting of three modules A, B and C as shown in Fig. 22.

A and B serve as inputs while C is the output. If module A has a functional relationship

with the output module C, the mutual information between the two is high. Similarly,

if modules B and C share high mutual information, they are functionally related as well.

However, both modules A and B being functionally related to the output is not enough for

degeneracy. We also require A and B to be structurally different. This can be checked by

treating A and B as a single unit, measuring its mutual information with the output and
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A B

C

Figure 22: A simplified example of a modular biological network

comparing it with the mutual information A and B share individually with C. The value

D = MI(A; C) + MI(B; C) − MI({A, B}; C) (2)

thus measures the degeneracy, or how much more correlation the inputs A and B share with

the output C than expected. This definition enables exploration of degeneracy in signaling

networks in a quantitative manner.

5.2.2 ROS mediated crosstalk increases the degeneracy of IL-4 and Epo signaling
pathways

ROS mediated crosstalk between the IL-4 and Epo pathways was examined in terms of

the effects of crosstalk on degeneracy. Epo is a cytokine that plays an important role in

erythrocyte development and signals through the JAK2/STAT5 pathway [116]. A previous

study has shown that both IL-4 and Epo signaling can increase intracellular ROS produc-

tion, and ROS generated by Epo signaling could affect the IL-4 pathway by amplifying

IL-4 mediated JAK3/STAT6 signaling [130].

As illustrated in Chapter 2 and Chapter 3, phosphatase oxidation is a crucial mechanism

for redox regulation of signaling pathways. Based on this knowledge, we hypothesized

that a redox sensitive phosphatase could be the common link between the two pathways

that is affected by ROS, thus enabling crosstalk between the pathways. Previous studies

have shown that PTP1B is an important phosphatase in both IL-4 and Epo signaling path-

ways. In the IL-4 pathway it directly dephosphorylates STAT6 whereas the substrate of

73



PTP1B in the Epo pathway is JAK2 [81, 93]. PTP1B is also susceptible to physiologi-

cal ROS-mediated oxidative inactivation [130]. This information was compiled to create a

simplified, hypothetical model of IL-4/Epo crosstalk as shown in Fig. 23a. The details of

model implementation are provided in Appendix D.

The model in Fig. 23a was used to empirically study the degeneracy of the pathway

under different scenarios. The receptors IL-4R and EpoR were chosen as a pair of inputs

to the system and activated STAT molecules (STAT5* and STAT6* in Fig. 23a) as the

output. Using the “Lyapunov algorithm” described in [78], the model in Fig. 23a was

found to be degenerate with the calculated value of degeneracy equal to 0.4267. To check

if ROS mediated crosstalk contributed to this value of degeneracy, we abrogated all cross-

talk by switching off ROS production and regulation by the common phosphatase PTP1B to

get independent signaling systems shown in Fig. 23b. The calculated value of degeneracy

decreased by more than 99% for this system as compared to the pathway in Fig. 23a and

the value was calculated to be 0.0016. This demonstrates that ROS mediated cross-talk

between the signaling pathways is an important contributor to the degeneracy of the system.

Complexity in biological networks is thought to be related to degeneracy and systems

with greater complexity are likely to be more degenerate [31]. Fully redundant systems,

that is systems with exactly identical modules, can also have high structural complexity

by means of crosstalking connections between modules. However, a redundant system is

by definition not degenerate because the redundant modules can only perform identical

functions, irrespective of the conditions. To test how a redundant system compares with

a degenerate system, we modified the pathway in Fig. 23a to that shown in Fig. 23c by

inserting some hypothetical connections. This was done to ensure that the two modules

were structurally identical and affected the output (STAT5* and STAT6*) identically. The

rate parameters were also identical for the two modules resulting in a completely redun-

dant system where EpoR and IL-4R affect STAT5 and STAT6 identically. The redundant

system was found to still have positive degeneracy but the magnitude was reduced by more
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D = 0.4267
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Figure 23: Hypothetical model of crosstalk between IL-4 and Epo pathways. a) The core
JAK-STAT modules of IL-4R and EpoR pathways with crosstalk. Both modules are reg-
ulated by PTP1B, both generate ROS which oxidatively inactivates PTP1B. b) The links
connecting the two modules were abolished resulting in independent IL-4R and EpoR sig-
naling modules. The absence of crosstalk resulted in reduced degeneracy. c) The edges
in panel A were modified to construct a hypothetical signaling system with completely
redundant modules with crosstalk. Redundant networks were found to have reduced de-
generacy. * indicates phosphorylated protein; ox, oxidized; red, reduced; arrows pointing
at other edges, catalyzed reactions; dashed arrows entering into species, constant produc-
tion; dashed arrows exiting species, first order decay; species highlighted in black, inputs;
species highlighted in blue, outputs ; D, degeneracy.
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than 68% as compared to the value calculated for the system in Fig. 23a. Therefore, the

calculated value of degeneracy agreed with the notion that redundancy does not lead to

degeneracy even if the system is richly connected and complex.

5.3 Discussion

Theoretical considerations, i.e, the potential of ROS to non-specifically affect protein func-

tion, as well as experimental results [94, 130] suggest that ROS could be important medi-

ators of crosstalk between signaling pathways. Given the relatively non-specific nature of

ROS mediated regulation, is there any advantage in biological terms in using ROS as me-

diators of crosstalk between signaling pathways? The notion of degeneracy in biological

networks was applied in an attempt to answer this question. Degeneracy can be generally

understood as the ability of structurally distinct components of a system to behave similarly

under certain conditions, while the behavior may be different under other conditions. This

definition of degeneracy appears to focus on how structural modules are organized and how

they interact, but has greater significance because of profound connections of degeneracy

with complexity, robustness and evolvability [156]. Mathematical formalisms developed to

study degeneracy in neural networks as well as in differential systems indicate that degen-

eracy and complexity have strong positive correlation [145, 78]. Similarly, robustness and

high degeneracy have been suggested to increase together [78]. Finally, highly degenerate

systems are also likely to be more evolvable [155]. Because of these extremely important

implications of degeneracy, it is a very useful concept for studying functional consequences

of crosstalk between signaling pathways.

Mathematical theory to study degeneracy in differential systems has recently been de-

veloped [78]. Using those results we have studied the implications of ROS mediated

crosstalk between distinct signaling pathways. It was found that in the presence of ROS

mediated crosstalk between the IL-4 and Epo pathways, the system exhibited positive de-

generacy. Abolishing this crosstalk reduced degeneracy drastically. At the same time, a
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complex but redundant network was found to have lower degeneracy than a non-redundant

one. The most direct interpretation of these results is that ROS mediated crosstalk can in-

crease the degeneracy of a biological network by interfacing otherwise separate signaling

modules. If the implications of degeneracy highlighted above are also taken into considera-

tion, by association, ROS mediated crosstalk could be functionally important in conferring

very important properties like robustness and evolvability to the network. As suggested in

[51], the requirements of robustness and evolvability could be reconciled by having func-

tionally robust modules, but allowing easily adjustable interactions between the modules

to allow for evolvability. ROS mediated crosstalk can very effectively satisfy these crite-

ria — enzymatic regulation of distinct signaling pathways can keep them modular and the

promiscuous reactivity of ROS could be the flexible link connecting these pathways. In

their explanation of how ROS signaling could have evolved to become an important reg-

ulatory mechanism, Mittler et al. propose that ROS production mechanisms could have

evolved to act as a flexible link between functional modules, for example to facilitate com-

munication between cells (cells being the modules here) [90].

From a more practical standpoint, quantitative measures of degeneracy conferred on a

network by ROS mediated crosstalk could be important in the search for the right way to

utilize antioxidant therapy. By definition, degeneracy is a measure of how well distinct

modules can perform the same function, or in other words, compensate for each other.

Therapeutic strategies that target specific nodes in a network without effectively lowering

system degeneracy could fail because of the compensatory behavior of modules. There-

fore, degeneracy also gives a useful way to think about and optimize targeted therapeutic

approaches.

Results from simplified models of crosstalk between IL-4 and Epo signaling pathways

suggest that ROS could be an important vehicle for integrating these pathways. The notion

of degeneracy was used as a way to quantify ROS mediated functional integration between

the distinct signaling modules. Biologically meaningful implications of degeneracy suggest
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that ROS mediated crosstalk may have very important functional consequences for the

crosstalking pathways.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Modeling complements experimentation generating new insights into
redox regulation

An array of complex regulatory mechanisms is responsible for controlling the dynamics

of cell signaling in mammalian cells, and ROS-mediated regulation has emerged as an-

other layer of control in signaling pathways. Since ROS are thought to cause or aggravate

a number of pathologies, a mechanistic understanding of how redox signaling operates is

very important. Acknowledging the fact that redox regulatory mechanisms do not oper-

ate in isolation, but richly interact with redox independent mechanisms, it is crucial that a

systems perspective be employed to study these interactions. While ROS affect the dynam-

ics of phosphorylation and dephosphorylation in signaling pathways, their mode of action

is quite distinct from kinases and phosphatases, which are the primary determinants of

phosphorylation dynamics. In particular, unlike the kinase and phosphatase enzymes, the

targets of ROS are a lot less precisely defined. To further complicate matters, experimental

methods to detect redox modifications of proteins are still evolving and remain qualita-

tive in nature. Therefore the challenge of understanding redox regulation in cell signaling

is three-fold – i) the need for integrative analysis of redox regulation; ii) the difficulty of

confidently knowing a priori the targets of redox regulation in a given signaling pathway;

and iii) the inability to experimentally interrogate, with quantitative accuracy, oxidative

modifications of proteins.

In the face of these daunting challenges, this dissertation set out to enhance the un-

derstanding of redox regulation of cell signaling using the IL-4 pathway as a model sys-

tem. It was hypothesized that mathematical and computational tools could be leveraged to
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draw inferences about the hidden modes of redox regulation in IL-4 signaling using exper-

imental data that is not directly indicative of protein oxidation dynamics. Collectively, the

results provide strong support to this hypothesis as a detailed model of regulation in the

IL-4 pathway was developed using only total and phosphorylated protein time courses, and

predictions of the model under extreme redox conditions were experimentally validated.

6.2 Phosphatase oxidation is an important motif in redox regulation

Computational models trained using experimental data were used to study redox regula-

tion in two different signaling systems. While the primary focus of this work was the IL-4

pathway, redox regulation in the MAP kinase cascade was also briefly examined. When

modeling the MAP kinase cascade, attention was focused on assessing the importance of

differential rates of oxidative phosphatase inactivation across the three tiers of the MAP

kinase cascade. Analysis of this model indicated that different, but finely-tuned rates of

phosphatase oxidation at each level of the cascade could explain the experimental observa-

tions.

In the case of the IL-4 pathway, the possibilities of redox regulation were examined

more exhaustively. Three different mechanisms of redox regulation, namely, i) PTP oxi-

dation; ii) JAK oxidation; and iii) ROS dependent redistribution of phosphatase between

subcellular compartments, were examined. Reduced representations of the IL-4 signaling

system were used to extensively test 16 alternate model topologies. The characteristic, slow

oscillation of pSTAT6 observed in experiments proved to be a very powerful discrimina-

tor of candidate models. One of the simplest models, one that used PTP oxidation as the

only mode of redox regulation, outcompeted all alternative models in qualitative as well

as quantitative interpretation of results. Importantly, accounting for interactions between

ROS dependent and independent mechanisms was also found to be essential in correctly

inferring the effects of redox regulation. In contrast with the MAP kinase model, differen-

tial redox sensitivity across the phosphatases (there were two different phosphatases in the
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model) was not found to be essential.

Both models demonstrate the power of mathematical modeling for testing alternative

hypotheses and understanding the underlying architecture of biological networks, therein

providing support to the central hypothesis of this work. Results from the analysis of

the IL-4 pathway additionally highlight the value of modeling small sub-networks to gain

meaningful biological insights.

The two models are also similar in suggesting that phosphatase oxidation is an impor-

tant mechanism of redox regulation. This is an important result because the same regulatory

motif, i.e., reversible oxidative inactivation of phosphatases, was instrumental in explaining

and predicting the behavior of two signaling systems with very different topologies. Taken

together with the fact that both the signaling pathways studied are representatives of larger

“families” of signaling pathways, it is very likely that phosphatase oxidation is used as a

common design principle across a number of signaling pathways.

6.3 ROS as mediators of pathway crosstalk

As highlighted above, the action of ROS on proteins is distinct from that of enzymes be-

cause freely diffusing ROS can react relatively non-specifically with any accessible protein

susceptible enough to oxidation. Moreover, the components of separate signaling modules

may not always be spatially segregated in a cell, for example two phosphatases regulating

two separate pathways may both be distributed similarly in the cytosol. If these two phos-

phatases were to be equally sensitive to oxidation, it follows that ROS coming from any

source would equally affect both the phosphatases, and hence the signaling pathways they

regulate. The ability of ROS to mediate crosstalk was examined using the framework of

degeneracy — the ability of structurally distinct modules to perform identical function.

Using previously established mathematical definition of degeneracy for differential sys-

tems [78], it was found that ROS mediated crosstalk indeed resulted in increased degener-

acy in the crosstalking IL-4 and Epo pathways. Degeneracy has been argued to be related
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to other properties of biological systems like robustness and evolvability. The divergent re-

quirements of robustness and evolvability could be satisfied by having functionally robust

modules with easily evolvable links between them. In this way the modules are resistant to

perturbation but at a higher level, the system can evolve by changing connections between

modules. It is possible that non-specific ROS mediated cross talk acts as this flexible link

between robust signaling modules. Altering the mechanism of activation or subcellular lo-

calization of one ROS producing enzyme to alter the connections between ROS-sensitive

modules is easier than successfully re-tuning all components of complex signaling mod-

ules. Multiple NOX enzymes localized in different subcellular compartments and regulated

by different mechanisms could have evolved in this manner.

As argued in Chapter 5, degeneracy introduced by ROS could also lead to compensatory

behaviors between signaling pathways and this could have important implications for the

outcome of targeted therapeutic strategies.

6.4 Development of new computational tools

New computational tools have been developed to study the biological questions that were

the focus of this dissertation. A novel restart strategy for use with the evolutionary strat-

egy algorithm, named ES with hyper-mutation (Chapter 4), was developed to support the

need for parameter estimation in the models. An innovative model selection strategy based

on qualitative matching of simulation output with experimental data was successfully em-

ployed. Of course, the success of this method was contingent on the characteristic dy-

namics of STAT6 phosphorylation (Chapter 3). This result suggests that when distinctive

features are presented by experimental data, the qualitative ability of a model to reproduce

those features can be an effective discrimination tool. Finally, a detailed model of the IL-4

pathway was developed by building in known mechanisms of regulation in the pathway to-

gether with ROS dependent mechanisms. Two predictions of this model were successfully

validated by experimental results. Other falsifiable predictions can be generated and used
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to refine the model to build a more comprehensive understanding of the IL-4 pathway.

6.5 Future directions
6.5.1 Alternative patterns of distribution of redox control

Although the models of redox regulation developed in this work provide satisfactory ex-

planation of the data currently available, several simplifying assumptions have been made

whose validity needs to be checked. In the MAPK model as well as the IL-4 model, a one-

to-one correspondence was assumed between phosphatases and their substrates. Based on

experimental evidence, one substrate could have multiple phosphatases, and the total activ-

ity of one phosphatase could be distributed over multiple substrates. Moreover, subcellular

localizations of these phosphatases may be distinct and their reactivities to ROS may vary.

Different patterns of distribution of phosphatase activity between substrates and varying

reactivities to ROS are likely to affect the dynamics of signaling.

While these points are challenging to explore through experimental methods, hypothet-

ical models derived from the one already constructed could be a good starting point to

explore these alternatives. Interesting scenarios suggested by these simulations could be

specifically selected for experimental investigation.

In the context of the MAPK cascade, only phosphatase oxidation was explored as the

possible mechanism of redox regulation. Recently, oxidative activation of receptor tyrosine

kinase has been reported [104] and would be an interesting point to explore through model-

based simulations.

6.5.2 Mechanisms of protein oxidation and reduction

How sufficient ROS can be generated to substantially oxidize proteins is an open question.

Locally elevated ROS concentrations [158] and the use of relay proteins [44] to efficiently

transfer oxidative state have been suggested as possible mechanisms. These mechanisms

could be explored using the IL-4 model. While partial differential equation based descrip-

tions may be appropriate to explore the spatio-temporal effects of ROS distribution on cell
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signaling, simplified spatio-temporal representations can be generated using ODEs. For

example, the cytosol could be divided into two sub-compartments – one cell membrane-

proximal with higher ROS due to proximity with, say NOX1; the other membrane-distal

with lower ROS concentration. Signaling proteins, which could have different distribu-

tions between these compartments, would be differently affected by ROS. Implementing

oxidation state relays is a relatively simple process and could be explored more easily.

The model also assumes steady availability of enzymes to reduce the oxidized phos-

phatases. Because receptor activation causes transient change in intracellular redox state,

the buffering capacity of the cell can be expected to change dynamically. A more faithful

implementation of this phenomenon in the model may be desirable.

6.5.3 Role of nuclear-cytosolic shuttling of STAT6

The model predicts that phosphorylation dependent nuclear-cytosolic shuttling of STAT6 is

an important mechanism of redox regulation in the pathway. Pharmacological inhibitors of

nuclear import or export could be used to test this prediction of the model. However, phar-

macological inhibition will also simultaneously affect the nuclear-cytosolic distribution of

the phosphatases of STAT6. An alternative approach could be to separate out nuclear and

cytosolic fractions of pSTAT6 experimentally in order to falsify and improve the model.

6.5.4 Testing mechanisms of ROS mediated crosstalk

ROS mediated crosstalk was found to enhance system degeneracy, which could have many

important biological implications as discussed in Chapter 5. However, the question that

remains unanswered is that how is specificity of response maintained in the face of a non-

specific second messenger, like H2O2. The findings of this dissertation do not address this

question and concerted modeling and experimental efforts will be required in the future to

find a satisfactory answer.
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APPENDIX A

DETAILS OF THE MAP KINASE MODELS

Details of implementation of all models used in Chapter 2 are given here.

A.1 The base model

The equations and parameter values for the model used in Fig. 2b (referred to as the base

model) are presented below. The model was adopted from the Raf/MEK/ERK module of

the model in [124].

Table 3: Equations of the base MAPK model

Reaction Rate equation

Raf + RasGTP↔ [Raf:RasGTP] k1×Raf×RasGTP − k_1×[Raf:RasGTP]

[Raf:RasGTP]→ [Raf*] + RasGTP k2×[Raf:RasGTP]

MEK + [Raf*]↔ [MEK:Raf*] k3×MEK×[Raf*] − k_3×[MEK:Raf*]

[MEK:Raf*]→MEKp + [Raf*] k4×[MEK:Raf*]

MEKp + [Raf*]↔ [MEKp:Raf*] k5×MEKp×[Raf*] − k_5×[MEKp:Raf*]

[MEKp:Raf*]→ [MEK*] + [Raf*] k6×[MEKp:Raf*]

ERK + [MEK*]↔ [ERK:MEK*] k7×ERK×[MEK*] − k_7×[ERK:MEK*]

[ERK:MEK*]→ ERKp + [MEK*] k8×[ERK:MEK*]

ERKp + [MEK*]↔ [ERKp:MEK*] k9×ERKp×[MEK*] − k_9×[ERKp:MEK*]

[ERKp:MEK*]→ [ERK*] + [MEK*] k10×[ERKp:MEK*]

[Raf*] + P1↔ [Raf*:P1] k11×[Raf*]×P1 − k_11×[Raf*:P1]

[Raf*:P1]→ Raf + P1 k12×[Raf*:P1]

Continued on next page
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Table3 – continued from previous page

Reaction Rate equation

[MEK*] + P2↔ [MEK*:P2] k13×[MEK*]×P2 − k_13×[MEK*:P2]

[MEK*:P2]→MEKp + P2 k14×[MEK*:P2]

MEKp + P2↔ [MEKp:P2] k15×MEKp×P2 − k_15×[MEKp:P2]

[MEKp:P2]→MEK + P2 k16×[MEKp:P2]

[ERK*] + P3↔ [ERK*:P3] k17×[ERK*]×P3 − k_17×[ERK*:P3]

[ERK*:P3]→ ERKp + P3 k18×[ERK*:P3]

ERKp + P3↔ [ERKp:P3] k19×ERKp×P3 − k_19×[ERKp:P3]

[ERKp:P3]→ ERK + P3 k20×[ERKp:P3]

P1 + H2O2→ P1ox k21×P1×H2O2

P2 + H2O2→ P2ox k22×P2×H2O2

P3 + H2O2→ P3ox k23×P3×H2O2

P1ox → P1 k24×P1ox

P2ox → P2 k25×P2ox

P3ox → P3 k26×P3ox

A.1.1 Input functions

RasGTP = peakRas*exp
(
−(time−peakTime)2

stdDev2

)
*(1+erf(skewRas*time)) + basalRas

H2O2 = a*exp( − ( (time−b)/c )2 ) * (1 + erf(d*time))

A.1.2 Outputs

Total ERKpp = [ERK*] + [ERK*:P3]

Total phospho MEK = [MEK*] + [MEK*:P2] + [ERK:MEK*] + [ERKp:MEK*] + MEKp

+ [MEKp:P2] + [MEKp:Raf*]

A.1.3 Parameter values
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Table 4: Parameter values of the base model

Parameter Value Units

k1 6.00×101 1/(µM.min)

k_1 3.18×10−11 1/min

k2 6.00×101 1/min

k3 6.66×102 1/(µM.min)

k_3 1.08+000 1/min

k4 2.10×102 1/min

k5 6.66×102 1/(µM.min)

k_5 1.08 1/min

k6 1.74×102 1/min

k7 6.60 1/(µM.min)

k_7 1.80 1/min

k8 9.60×102 1/min

k9 6.60 1/(µM.min)

k_9 1.80 1/min

k10 3.42×102 1/min

k11 4.30×103 1/(µM.min)

k_11 1.20×101 1/min

k12 6.00×101 1/min

k13 8.58×102 1/(µM.min)

k_13 4.80×101 1/min

k14 3.48 1/min

k15 1.50×101 1/(µM.min)

k_15 3.00×101 1/min

Continued on next page
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Table4 – continued from previous page

Parameter Value Units

k16 3.48 1/min

k17 8.70×102 1/(µM.min)

k_17 3.60×101 1/min

k18 1.62×101 1/min

k19 3.00×102 1/(µM.min)

k_19 3.00×101 1/min

k20 1.80×101 1/min

k21 1.00×10−4 1/(µM.min)

k22 1.00×10−6 1/(µM.min)

k23 3.00×101 1/(µM.min)

k24 1.00×10−1 1/min

k25 1.00×10−1 1/min

k26 1.00×10−1 1/min

peakRas 1.70×10−2 µM

peakTime 9.00 min

stdDev 3.00 min

skewRas 6.60×10−2 1/min

basalRas 1.00×10−3 µM

a 1.06×102 undefined

b 1.20 undefined

c 8.20×101 undefined

d 5.00×10−1 undefined
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Table 5: Non-zero initial values in the base model

Name Initial concentration Units

ERK 35 µM

MEK 36.52 µM

P1 0.066 µM

P2 0.7 µM

P3 16.67 µM

Raf 0.066 µM

RasGTP 1.001 µM

A.2 Simulation of other experimental conditions in Fig. 2
A.2.1 Catalase pretreatment

This was simulated by setting a = 0 in the base model resulting in 0 H2O2 over time.

A.2.2 H2O2 bolus addition

The H2O2 input function was disabled in the base model and the following reaction was

added to the system.

H2O2 → null, rate = k27× H2O2

k27 = 0.09 min−1 and initial value of H2O2 was 4.5×104.

A.3 Nuclear shuttling model

The following reactions were added to the base model to obtain the nuclear shuttling model

in Fig. 4.
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Table 6: Equations of the nuclear shuttling model

Reaction Rate

ERK↔ ERKn kcyt2nuc×ERK − knuc2cyt×ERKn

ERKp↔ ERKpn kcyt2nuc×ERKp − knuc2cyt×ERKpn

[ERK*]↔ [ERK*n] kcyt2nuc×[ERK*] − knuc2cyt×[ERK*n]

P3↔ P3n kcyt2nuc×P3 − knuc2cyt×P3n

P3ox ↔ P3ox,n kcyt2nuc×P3ox − knuc2cyt×P3ox,n

P3ox,n → P3n k26×P3ox,n

[ERK*n] + P3n ↔ [ERK*n:P3n] k17×[ERK*n ] × P3n − k_17 × [ERK*n:P3n]

[ERK*n:P3n]→ ERKpn + P3n k18×[ERK*n:P3n]

ERKpn + P3n ↔ [ERKpn:P3n] k19×ERKpn×P3n − k_19×[ERKpn:P3n]

[ERKpn:P3n]→ ERKn + P3n k20×[ERKpn:P3n]

The subscript ‘n’ denotes nuclear concenration and the subscript ‘ox’ indicates oxidized

protein. The new parameters introduced were taken to be kcyt2nuc = knuc2cyt = 1/min.

A.4 Kinase oxidation model

The following additional reactions were added to the base model.

Table 7: Additional reaction of the kinase oxidation model

Reaction Rate

[ERK*] + H2O2→ [ERK*ox] k27×[ERK*]×H2O2

[ERK*ox]→ [ERK*] k28×[ERK*ox]

The subscript ‘ox’ denotes oxidized protein. The new parameters introduced are k27 =

5 × 10−3/(µM.min) and k28 = 5 × 10−2/min.
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A.5 Akt-ERK crosstalk model

Equations for the Akt-ERK crosstalk model are presented below. The model, along with

the symbols for molecules and complexes, was adopted from [52].

A.5.1 Reactions

Table 8: Equations of the Akt-ERK crosstalk model

Reaction Rate

R + HRG↔ [R:HRG] k1 × R × HRG − k_1 × [R:HRG]

2 [R:HRG]↔ [(R:HRG)2] k2 × [R:HRG]2 − k_2 × [(R:HRG)2]

[(R:HRG)2]↔ RP k3 × [(R:HRG)2] − k_3 × RP

RP→ [(R:HRG)2] V4×RP
K4+RP

RP + Shc↔ [R-Shc] k5 × RP × Shc − k_5 × [R-Shc]

[R-Shc]↔ [R-ShP] k6 × [R-Shc] − k_6 × [R-ShP]

[R-ShP] + GS↔ [R-ShGS] k7 × [R-ShP] × GS − k_7 × [R-ShGS]

[R-ShGS]↔ RP + ShGS k8 × [R-ShGS] − k_8 × RP × ShGS

ShGS↔ GS + ShP k9 × ShGS − k_9 × GS × ShP

ShP→ Shc V10×ShP
K10+ShP

RasGDP→ RasGTP k11×ShGS×RasGDP
K11+RasGDP

RasGTP→ RasGDP V12×RasGTP
K12+RasGTP

Raf→ [Raf*] k13×RasGTP×Raf
K13+Raf

[Raf*]→ Raf k14×E×[Raf*]
K14+[Raf*]

[Raf*]→ Raf k14b×[Akt:PIPP]×[Raf*]
K14b+[Raf*]

MEK→MEKp k15×[Raf*]×MEK
K15×(1+MEKp/K17)+MEK

MEKp→MEK k16×PP2A×MEKp
K16×(1+MEKpp/K18+[Akt:PIP]/K31+[Akt:PIPP]/K33)+MEKp

MEKp→MEKpp k17×[Raf*]×MEKp
K17×(1+MEK/K15)+MEKp

Continued on next page
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Table8 – continued from previous page

Reaction Rate

MEKpp→MEKp k18×PP2A×MEKpp
K18×(1+MEKp/K16+[Akt:PIP]/K31+[Akt:PIPP]/K33)+MEKpp

ERK→ ERKp k19×MEKpp×ERK
K19×(1+ERKp/K21)+ERK

ERKp→ ERK k20×MKP3×ERKp
K20×(1+ERKpp/K22)+ERKp

ERKp→ ERKpp k21×MEKpp×ERKp
K21×(1+ERK/K19)+ERKp

ERKpp→ ERKp k22×MKP3×ERKpp
K22×(1+ERKp/K20)+ERKpp

RP + PI3K↔ [R-PI3K] k23 × RP × PI3K − k_23 × [R-PI3K]

[R-PI3K]↔ [R-PI3K*] k24 × [R-PI3K] − k_24 × [R-PI3K*]

[R-PI3K*]↔ RP + [PI3K*] k25 × [R-PI3K*] − k_25 × RP × [PI3K*]

[PI3K*]→ PI3K V26×[PI3K*]
K26+[PI3K*]

PI→ PIP3 k27×[PI3K*]×PI
K27+PI

PIP3→ PI V28×PIP3
K28+PIP3

Akt + PIP3↔ [Akt:PIP3] k29 × Akt × PIP3 − k_29 × [Akt:PIP3]

[Akt:PIP3]→ [Akt:PIP] k30×PDK×[Akt:PIP3]
K30×(1+[Akt:PIP]/K32)+[Akt:PIP3]

[Akt:PIP]→ [Akt:PIP3] k31×PP2A×[Akt:PIP]
K31×(1+MEKp/K16+MEKpp/K18+[Akt:PIPP]/K33)+[Akt:PIP]

[Akt:PIP]→ [Akt:PIPP] k32×PDK×[Akt:PIP]
K32×(1+[Akt:PIP3]/K30)+[Akt:PIP]

[Akt:PIPP]→ [Akt:PIP] k33×PP2A×[Akt:PIPP]
K33×(1+MEKp/K16+MEKpp/K18+[Akt:PIP]/K31)+[Akt:PIPP]

RP→ null k34 × RP

PP2A + H2O2→ PP2Aox k35 × PP2A × H2O2

PP2Aox → PP2A k36 × PP2Aox

Raf→ [Raf*] k37×PP2A×Raf
K37+Raf

MKP3 + H2O2→MKP3ox k38 ×MKP3 × H2O2

MKP3ox →MKP3 k39 ×MKP3ox

The subscript ‘ox’ represents oxidized protein.
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A.5.2 Parameters

Table 9: Parameters of the Akt-ERK crosstalk model

Parameter Value Units

k_1 4.56×10−2 1/min

k1 7.20×10−2 1/(nM.min)

k2 6.00×10−1 1/(nM.min)

k_2 6.00 1/min

k3 6.00×101 1/min

k_3 6.00×10−1 1/min

V4 3.75×103 nM/min

K4 5.00×101 nM

k5 6.00 1/(nM.min)

k_5 6.00×101 1/min

k6 1.20×103 1/min

k_6 3.00×102 1/min

k7 3.60×103 1/(nM.min)

k_7 3.28×104 1/min

k_8 9.42×105 1/(nM.min)

k8 1.22×105 1/min

k9 1.17×101 nM

k_9 0.00 1/(nM.min)

V10 9.24×10−1 nM/min

K10 3.40×102 nM

k11 1.33×101 1/min

K11 1.81×10−1 nM

Continued on next page
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Parameter Value Units

V12 1.73×101 nM/min

K12 5.71×10−2 nM

k13 6.00 1/(nM.min)

K13 1.20×10+2 1/min

K14b 5.91×10+2 1/min

k14b 5.91 1/min

K14 2.75×10+3 1/min

k14 2.82 1/(nM.min)

k15 1.57×105 nM/min

K15 3.68×103 nM

k16 6.00×10−2 1/min

K16 2.10×102 1/min

k17 3.17×102 nM

K17 3.48 1/min

k18 2.20×103 nM

K18 1.74×102 1/min

k19 3.17×102 nM

K19 3.48 1/min

k20 4.35 nM

K20 1.20×101 nM

K21 6.00×101 nM

k21 1.46×105 nM

K22 5.70×102 1/min

k22 1.46×105 nM

Continued on next page
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Parameter Value Units

k23 1.80×101 1/min

k_23 1.60×102 nM

k24 6.00×101 nM

k_24 9.60×102 1/min

k25 1.62×101 1/min

k_25 1.01×103 1/min

V26 3.91×101 nM

K26 1.02×106 nM/min

k27 1.20×106 1/min

K27 8.00×104 nM

V28 8.00×104 nM

K28 6.42 1/min

k29 1.20×106 1/min

k_29 1.27×101 1/min

k30 2.45×103 1/min

K30 1.00×104 1/(nM.min)

k31 8.07 nM

K31 3.04×104 1/(nM.min)

k32 4.04×10−1 1/min

K32 2.00×10−1 1/min

k33 9.18×101 1/min

K33 1.40×104 1/min

k34 9.02 nM

k35 5.00×10−3 1/(nM.min)

Continued on next page
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Parameter Value Units

k36 1.00 1/min

k37 9.18×10−2 1/min

K37 1.17×10−1 nM

k38 5.00×10−3 1/(nM.min)

k39 1.00 1/min

synthH2O2 8.07 nM

decayH2O2 4.04×10−1 1/min

A.5.3 Initial values

Species with non-zero initial values are listed below.

Table 10: Non-zeros initial values of the Akt-ERK crosstalk

model

Name Initial concentration Units

Akt 10 nM

E 7 nM

ERK 1000 nM

GS 10 nM

HRG 330 nM

MEK 120 nM

MKP3 2.4 nM

PDK(constant) 1 nM

PI 800 nM

PI3K 10 nM

Continued on next page
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Name Initial concentration Units

PP2A 11.4 nM

R 80 nM

Raf 100 nM

RasGDP 120 nM

Shc 1000 nM

Fig. 6c was obtained by making the following modifications to the above model

K14b = 0.1, k14b = 4.038, K18 = 500.
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APPENDIX B

DETAILS OF ANALYSIS OF THE IL-4 PATHWAY

Implementation details of models used in Chapter 3 are provided in this Appendix.

B.1 Model used for Monte Carlo simulations

ODE system representing the reduced model used for MC Simulations is given below. The

quantities represented by the variables are shown in Table 11 and Table 13.

ẋ(1) = −k(1) × x(1) × x(3) + k(2) × x(2) − k(11) × x(1) × x(10) + k(12) × x(12)

ẋ(2) = +k(1) × x(1) × x(3) − k(2) × x(2)

ẋ(3) = −k(3) × x(3)

ẋ(4) = −k(4) × x(4) × x(2) + k(5) × x(5) × x(8) + k(7) × x(7) − k(6) × x(4)

ẋ(5) = +k(4) × x(4) × x(2) − k(5) × x(5) × x(8) − k(6) × x(5) + k(7) × x(6)

ẋ(6) = +k(6) × x(5) − k(5) × x(6) × x(9) − k(7) × x(6)

ẋ(7) = +k(5) × x(6) × x(9) − k(7) × x(7) + k(6) × x(4)

ẋ(8) = −k(6) × x(8) + k(8) × x(9) × x(10) − k(11) × x(8) × x(10) + k(12) × x(11)

ẋ(9) = +k(6) × x(8) − k(8) × x(9) × x(10)

ẋ(10) = +k(9) × x(2) − k(10) × x(10)

ẋ(11) = +k(11) × x(8) × x(10) − k(12) × x(11)

ẋ(12) = +k(11) × x(1) × x(10) − k(12) × x(12)

This ODE system represents the largest possible model with all regulatory mechanism

shown in Fig. 9 operating in parallel. To simulate the other models, terms were removed
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from this model accordingly. The meanings of the symbols are as follows.

B.1.1 Species

Table 11: List of species used in MC simulations with re-

duced models

Symbol Molecule

x(1) R

x(2) R*

x(3) IL4

x(4) SAT6

x(5) pSTAT6

x(6) pSTAT6n

x(7) STAT6n

x(8) P

x(9) Pn

x(10) ROS

x(11) Pox

x(12) Rox

The names of molecules in the right hand column correspond to the names used in Fig. 9

After setting up the ODE system, parameters were sampled uniformly in the log space

in the ranges given Table 12 and Table 13. The system was allowed to equilibrate before

IL-4 was added (0.05 unit). These ranges were estimated by roughly fitting the model to

experimental data.

99



B.1.2 Initial value

Initial values of the following species were non-zero at the beginning. The ranges in which

values were sampled are shown.

Table 12: Sampling ranges of initial values for MC simula-

tions

Molecule Lower Bound Upper Bound

P 1 20

R .1 1

STAT6 1 10

B.1.3 Rate constants

Rate constants were sampled from the ranges specified below.

Table 13: Sampling ranges of rate constants for MC simula-

tions

Symbol Lower bound Upper bound Description

k(1) 0.8 8 Receptor activation

k(2) 0.1 1 Receptor inactivatin

k(3) 0.08 0.8 IL-4 removal

k(4) 1 10 STAT activation

k(5) 0.01 0.1 STAT inactivation

k(6) 0.08 0.8 Nuclear translocation rate

k(7) 0.08 0.8 Cytosolic translocation rate

k(8) 0.3 3 ROS production rate

k(9) 0.01 0.1 ROS removal rate

Continued on next page
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Symbol Lower bound Upper bound Description

k(10) 0.8 8 Protein oxidation rate

k(11) 0.0001 0.001 Protein reduction rate

k(12) 5 50 ROS mediated PTP translocation

B.2 Systems level model of the IL-4 pathway

The biochemical reactions modeled in the network shown in Fig. 13 are presented here.

Descriptive names have been used for rate constants and molecular species to clarify their

meaning.

Table 14: Equations of the IL-4 system model

Reaction Rate

R + L↔ RL kRLBind×R×L − kRLUnbind×RL

RL→ Ract kRact×RL

Ract + Stat↔ StatRact kStatRBind×Ract×Stat − kStatRUnbind×StatRact

StatRact→ Statp + Ract kStatPhos×StatRact

2Statp↔ StatAct kStatDimerize×Statp×Statp − kStatDissoc×StatAct

StatAct→ StatActNuc kcyt2nuc×StatAct

StatActNuc + P1n ↔

P1nStatActNuc

kPTPBind×StatActNuc×P1n − kPTPUnbind×P1nStatActNuc

P1nStatActNuc→ P1n + StatpNuc +

StatNuc

kcatPTP×P1nStatActNuc

StatNuc→ Stat knuc2cyt×StatNuc

Ract + P2↔ RactP2 kPTPBind×Ract×P2 − kPTPUnbind×RactP2

RactP2→ RL + P2 kcatPTP×RactP2

P1 + StatAct↔ StatActP1 kPTPBind×P1×StatAct − kPTPUnbind×StatActP1

StatActP1→ Stat + Statp + P1 kcatPTP×StatActP1

P1 + Statp↔ StatpP1 kPTPBind×P1×Statp − kPTPUnbind×StatpP1

Continued on next page
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Reaction Rate

StatpP1→ Stat + P1 kcatPTP×StatpP1

StatActNuc→ StatActNuc + Socs vmTrans×StatActNuc
KmTrans+StatActNuc

Ract + Socs↔ RactSocs RSocsBind×Ract×Socs − RSocsUnbind×RactSocs

P2 + ROS→ P2ox koxPTP×P2×ROS

P2ox→ P2 kredPTP×P2ox

P1 + ROS→ P1ox koxPTP×P1×ROS

P1ox→ P1 kredPTP×P1ox

Ract→ null kintRAct×Ract

null↔ Stat ksynthStat − kdegStat×Stat

Socs→ null kdegSocs×Socs

RactSocs + P2↔ RactSocsP2 kPTPBind×RactSocs×P2 − kPTPUnbind×RactSocsP2

RactSocsP2→ RL + P2 + Socs kcatPTP×RactSocsP2

StatpNuc + P1n↔ P1nStatpNuc kPTPBind×StatpNuc×P1n − kPTPUnbind×P1nStatpNuc

P1nStatpNuc→ StatNuc + P1n kcatPTP×P1nStatpNuc

StatpNuc↔ StatActNuc kStatDimerize×StatpNuc×StatpNuc − kStatDissoc×StatActNuc

P1↔ P1n kcyt2nuc×P1 − knuc2cyt×P1n

P1ox↔ P1nox kcyt2nuc×P1ox − knuc2cyt×P1nox

P1nox→ P1n kredPTP×P1nox

B.2.1 Optimized Parameters

Concentrations and rate constants were estimated to fit the model to experimental data. Be-

cause MG132 and CHX are both pharmacological inhibitors that affect protein degradation

and synthesis in the cell, some initial values had to be recalibrated for MG132 and/or CHX

pretreatment. Recalibrated values are shown in columns 3 and 4 of the tables below. If

these columns are blank, no re-estimation of parameters was necessary. The values are in

units of nM.

102



Table 15: Optimized non-zero initial values of the model

Molecule IL4 MG132 + IL4 CHX + IL4

R 40.5

Total STAT6 1016 882.5

pSTAT6 304.8 364.0

SOCS 18.5 1.5 2.4

P2 84

P1 990.5

The estimated values of rate constants are shown in the table below. MG132 inhibited

the rate of protein degradation by a factor of “mgFac” and CHX slowed down the rate of

protein synthesis by a factor of “chxFac”. First order rate constants are in min−1 and second

order in nM−1s−1.

Table 16: Optimized parameter values of the IL-4 model

across different experimental conditions

Rate constant IL4 MG132 + IL4 CHX + IL4

mgFac 99

chxFac 15

kPTPBind 0.98

kPTPUnbind 6

kcatPTP 0.6

vmTrans 0.13 0.13/chxFac

KmTrans 4.2

RSocsBind 3.31

Continued on next page
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Rate constant IL4 MG132 + IL4 CHX + IL4

RSocsUnbind 4.76

koxPTP 0.002

kredPTP 0.0016

ksynthStat 0.9 0.9/chxFac

kdegSTAT 0.02 0.02/mgFac

kRLBind 1.17

kRLUnbind 2.65

kRact 1.27

kStatRBind 0.48

kStatRUnbind 1.11

kStatPhos 23.5

kStatDimerize 0.759

kStatDissoc 11.92

kcyt2nuc 0.024

knuc2cyt 0.06

kintRAct 0.001

kdegSocs 0.067 0.067/mgFactor

rosBaseline 82

rosScale 73.6667

B.2.2 Normalization of model output

Simulated total concentrations of STAT6, pSTAT6 and SOCS were calculated by summing

together the time courses of all molecular complexes containing these species. Stoichiom-

etry of dimeric form of pSTAT6 was accounted for as shown in the equations below. The

variable names on the RHS correspond to names used in the equations in Table 14.
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pSTATtotal = 2 × StatAct + 2 × StatActNuc + Statp + 2 × StatActPTP1B + StatpPTP1B

+ 2 × TCPTPStatActNuc + StatpNuc + TCPTPStatpNuc

STATtotal = Stat + Statp + 2 × StatAct + 2 × StatActNuc + StatNuc + 2 × StatActPTP1B

+ StatpPTP1B + 2 × TCPTPStatActNuc + StatRact + StatpNuc

+ TCPTPStatpNuc

SOCStotal = Socs + RactSocs + RactSocsCD45

To compare model output with experimentally measured protein fluorescence, all model

output was normalized using an equation of the form y(t) = a × x(t) + b, where x(t) is the

simulated time course and a and b are molecule specific, optimized constants. Values of a

and b for all three experimentally measured species are given in the table below.

Table 17: Normalization factors for simulation output

Molecule a b

Total STAT .001 .063

SOCS3 .0133 1.0372

pSTAT6 0.0033 0

B.2.3 ROS input to the model

Experimentally measured intracellular oxidation of Jurkat cells under IL-4 stimulation was

used as a direct input to the model. h(t), the time derivative of Hill equation fitted to CM-

H2DCFDA oxidation data (Fig. 7) is given by

h(t) =
1.25 × 106 × t1.5

(4725 + t2.5)2 (3)

To reflect the basal oxidation state of the cell and to scale the numerical value of curve

to a reasonable level, the, intracellular ROS were assumed to follow the equation
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ROS(t) = rosBaseline + rosScale × h(t)

These parameters rosBaseline and rosScale were optimized to values shown in Table 16.

The curve corresponding to the DPI pretreated cells is given by

hDPI(t) =
8.3 × 105 × t1.5

(8738 + t2.5)2

When validating the model with DPI data, rosBaseline was assumed to be 0 and rosS-

caleDPI was chosen to be a tenth of rosScale. These numbers were chosen to reflect the

highly reduced state of the cell under DPI treatment. Also, since the initial phosphorylation

of STAT6 was drastically reduced under the influence of DPI, to simulate DPI prereatment,

low initial phosphorylation of STAT6 (5% of total STAT6) was assumed.

To simulate exogenous addition of H2O2 together with IL-4 stimulation, an exponen-

tially decaying curve was added to Eq. (3). The rate of decay was adjusted so that ROS

were brought back to baseline level in approximately 20 min. The following equation was

used to simulate the combined effect of H2O2 and IL-4:

ROS(t) = rosBaseline + rosScale × (h(t) + 1000 × exp(−0.3 ∗ t))

B.3 Optimization of cell concentration and serum starvation period

The cell concentration and serum starvation period to be used in the experiments for mea-

suring STAT6 phosphorylation were optimized to maximize the pSTAT6 signal. The serum

starvation condition was first optimized by testing a range of values and 4 hours of serum

starvation was found to be nearly optimal for maximizing pSTAT6 (Fig. 24). Cell con-

centration of 16 × 106 cells/ml was used for the experiments performed to optimize the

starvation period. Next, the optimal cell concentration was determined by testing a number

of cell concentrations with 4 hours of serum starvation, and a concentration of 4 × 106 was

found to be nearly optimal (Fig. 25).
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Figure 24: Optimization of serum starvation period. Jurkat cells were serum starved by
culturing them at 16 × 106 cells/ml in Jurkat media with 0.5% FBS for a range of time
periods. The serum starved cells were stimulated with 100 ng/ml IL-4 for 20 min and
pSTAT6 was quantified using flow cytometry.
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Figure 25: Optimization of cell concentration. Jurkat cells at different concentrations
were serum starved for 4 hours. The serum starved cells were stimulated with 100 ng/ml
IL-4 for 20 min and pSTAT6 was quantified using flow cytometry.
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Figure 26: Histone staining in permeabilized Jurkat cells. Jurkat cells were permeabilized
or not and stained for the nuclear protein histone. Permeabilized and stained cells (blue
histogram) showed signal well above background (red) suggesting that the permeabilization
protocol made the intra-nuclear space accessible to the staining antibodies.

B.4 Experimentally measured pSTAT6 represents whole cell value

We have based much of our analysis of the IL-4 pathway on our ability to measure total

pSTAT6 levels in the cell. To verify that we were indeed measuring whole cell pSTAT6

through our flow cytometry protocol, we performed two separate experiments.

B.4.1 Histone staining to verify that the nuclear compartment is accessible

Jurkat cells were serum starved like in other experiments (see Methods in Chapter 3).

Serum starved cells were either fixed, and then permeabilized or not. Cells were then

stained for the nuclear protein, histone. Only cells that were permeabilized showed a posi-

tive signal above background. Representative data are shown in Fig. 26. This suggests that

the permeabilization protocol was sufficient to allow antibodies access to the nucleus.
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Figure 27: Confocal microscope images confirm whole cell distribution of pSTAT6. Ju-
rkat cells permeabilized and statined for pSTAT6 were counterstained with DAPI. pSTAT6
was found to be distributed throught the intracellular space.

B.4.2 Confocal microsocopy of pSTAT6 stained cells

Jurkat cells were permeabilized and stained for pSTAT6 following the protocol used in

other experiments (Methods in Chapter 3). The nucleus was costained with DAPI. Cells

were observed under a confocal microscope and it was found that DAPI stain localized to

the nucleus whereas pSTAT6 could be detected in both the nuclear and cytosolic compart-

ments Fig. 27

B.5 J45.01 cells to validate the IL-4 model

We attempted to validate the model using data from the J45.01 cell line, which is derived

from Jurkat cells by exposing them to gamma irradiation and selecting CD45 deficient

cells. Since CD45 is a phosphatase involved in regulation of IL-4 signaling, we hypoth-

esized that signaling characteristics of Jurkat and J45.01 should be different, and these

differences should be determined by the differential expression of CD45 between the two

cell lines. If this hypothesis is correct, the behavior of J45.01 cells could be simulated in the

systems model of IL-4 pathway by assuming reduced concentration of membrane bound

PTP, providing a way to further validate the model. We performed experiments using the

J45.01 cell line with a view to acquire data that could be used to validate the model.
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Figure 28: STAT6 phosphorylation following IL-4 stimulation of J45.01 cells. J45.01
cells were serum starved for 4 hours and stimulated with 100 ng/ml IL-4. pSTAT6 was
quantified using flow cytometry. Mean and standard errors are shown; n = 4.

B.5.1 J45.01 cells do not respond to IL-4 stimulation

We measured STAT6 phosphorylation in J45.01 cells following IL-4 stimulation and found

that basal level of pSTAT6 in this cell line was more than 5 fold higher than that observed

in Jurkat cells (compare Fig. 28 with Fig. 7). Furthermore, IL-4 stimulation did not alter

pSTAT6 level significantly compared to baseline (Fig. 28). When the J45.01 cells were

treated with DPI, STAT6 phosphorylation steadily decreased over time but even under this

condition, IL-4 did not elicit any increase in pSTAT6 as compared to cells untreated with

IL-4 (Fig. 29).

We hypothesized that the non-responsiveness of J45.01 cells to IL-4 could be linked to

altered dynamics of ROS production in these cells as compared to Jurkat cells. To test this

hypothesis we measured oxidation of CM-H2DCFDA in J45.01 following IL-4 stimulation.

In a manner similar to pSTAT6, the oxidation of CM-H2DCFDA did not change signifi-

cantly when J45.01 cells were stimulated with IL-4 (Fig. 30); however, unlike pSTAT6, the

basal oxidation CM-H2DCFDA observed in J45.01 cells was very similar to that found in

Jurkat cells. This suggests that high basal level of STAT6 phosphorylation in J45.01 cells

is probably not linked to cellular oxidation state.
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Figure 29: Effect of DPI on IL-4 signaling in J45.01 cells. J45.01 cells were serum
starved for 4 hours and treated with DPI for 1 hour before being stimulated with 100 ng/ml
IL-4. pSTAT6 was quantified using flow cytometry. Mean and standard errors are shown;
n = 4.
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Figure 30: Intracellular oxidation in J45.01 cells following IL-4 stimulation. J45.01 cells
were incubated with CM-H2DCFDA for 30 minutes prior to IL-4 stimulation and oxida-
tion of CM-H2DCFDA was measured using flow cytometry. Mean and standard errors are
shown; n = 3.
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Figure 31: Dose-response of Jurkat and J45.01 cells to IL-4. Jurkat and J45.01 cells were
serum starved for 4 hours separately and treated with different concentrations of IL-4 for
15 minutes. STAT6 phosphorylation was measured using flow cytometry.

One of the possible reasons for the lack of response to IL-4 could be that J45.01 cells

require stronger IL-4 stimulation than Jurkat cells. To rule out the possibility that the IL-4

concentration was too low for J45.01 cells, we measured the dose responsiveness of J45.01

and Jurkat cells. We found that while STAT6 phosphorylation in Jurkats increased with

increasing IL-4, the dose-response curve for J45.01 cells was flat, indicating that J45.01

cells failed to respond to IL-4 over a wide range of doses (Fig. 31).

The lack of responsiveness of J45.01 cells over a wide range of IL-4 doses is indicative

of missing components of the IL-4 signaling pathway. We tested J45.01 cells for the pres-

ence of IL-4 receptor alpha and found that the expression was comparable between Jurkat

and J45.01 cells (Fig. 32).

B.5.2 Expression of multiple proteins could be perturbed in J45.01 cells

We next hypothesized that the difference in pSTAT6 levels between Jurkat and J45.01 cells

could be linked to different total STAT6 levels in the two cell lines. We quantified total

STAT6 in both cell lines and observed that the basal expression of total STAT6 was nearly

1.6 times greater in J45.01 cells (Fig. 33). The greater levels of pSTAT6 in J45.01 cells

could, therefore, be partially explained by increased level of total STAT6 in these cells.
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Figure 32: Expression of IL-4 receptor alpha in Jurkat and J45.01 cells. Cells were
serum starved for 4 hours and expression of cell surface IL-4R4α was measured using flow
cytometry.
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Figure 33: J45.01 cells express more STAT6 than Jurkat cells. J45.01 and Jurkat cells
were separately serum starved for 4 hours and the basal expression of total STAT6 was
measured using flow cytometry. Data were normalized to get the MFI in Jurkat cells equal
to 1. Mean and standard errors are shown; n = 3.
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However, as compared to Jurkat cells, the basal STAT6 phosphorylation was more than 5

times greater in J45.01 cells, which is not proportional to the increase observed in total

STAT6 levels. The higher level of total STAT6 in J45.01 cells also indicates that CD45 is

not the only protein to be expressed differentially between the two cell lines. It is possible

that several other proteins have altered expression levels in J45.01 cells, which could affect

the dynamics of IL-4 signaling in unpredictable ways. Quantifying all such differences and

simulating them in our model of IL-4 signaling is a very difficult proposition. We therefore

decided not to use J45.01 cells to validate our model.
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APPENDIX C

ES-HM IMPLEMENTATION AND TESTING DETAILS

C.1 Test functions

The test functions used to evaluate the performance of the algorithms are described below.

The functions were selected from the test suites of CEC 2008 [140] and BBOB 2009 [47].

C.1.1 Sphere function

f1(x) =

n∑
i=1

x2
i (4)

• Unimodal, separable

• x ∈ [−100, 100]n

C.1.2 Schwefel’s problem 2.21

f2(x) = max{|xi|, 1 ≤ i ≤ n} (5)

• Unimodal, non-separable

• x ∈ [−100, 100]n

C.1.3 Rastrigin function

f3(x) =

n∑
i=1

(
x2

i − 10 cos(2πxi) + 10
)

(6)

• Multimodal, separable

• x ∈ [−5, 5]n
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C.1.4 Ackley function

f4(x) = −20 exp

−0.2

√√
1
n

n∑
i=1

x2
i

 − exp

1
n

n∑
i=1

cos(2πxi)

 + 20 + e (7)

• Multimodal, separable

• x ∈ [−32, 32]n

C.1.5 Rosenbrock function

f5(x) =

n∑
i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

(8)

• Multimodal, non-separable

• x ∈ [−100, 100]n

C.1.6 Griewank function

f6(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi
√

i

)
+ 1 (9)

• Multimodal, non-separable

• x ∈ [−600, 600]n

C.1.7 Gallgher’s Gaussian 21-peak function

f7(x) =

(
10 −

n
max

i=1
wi exp

(
−1
2n

(x − yi)T RT CiR(x − yi)
))2

(10)

• wi =


1.1 + 8 ×

i − 2
19

, i = 2, . . . 21

10 , i = 1

• Ci = Λαi/α1/4
i , where Λαi is a diagonal matrix with elements first defined as λii =

α
i−1

2(n−1)
i and then randomly permuted. αis are in turn drawn with uniform random

chance from the set {10002 j/19 | j = 0, . . . , 19} without replacement for i = 1, . . . , 21,

and α1 = 10002.
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• R is an orthonormal (rotation) matrix. It was generated from a matrix with standard

normally distributed entries by QR decomposition using the Matlab function qr.

• For each run of f7, a new set of Ci and R was generated.

• yi are local optima chosen by uniform random sampling from [−4.9, 4.9]n for i =

2, . . . , 21. The global optimum y1 was uniformly randomly sampled in [−4, 4]n.

• f7 is multimodal with 21 optima with random sizes and positions.

• x ∈ [−5, 5]n

C.1.8 Rotated Weierstrass function

f8(x) = 10

1
n

n∑
i=1

11∑
k=0

1
2k cos

(
2π3kzi

)
− fo

3

(11)

• z = Rx, where R is a rotation matrix as defined in C.1.7

• f0 =
∑11

k=0
1
2k cos(π3k)

• Multimodal, non-separable

• Rugged landscape with non-unique global optimum

• x ∈ [−5, 5]n

C.1.9 Rotated Lunacek bi-Rastrigin function

f9(x) = min

 n∑
i=1

(xi − µ0)2, dD + s
n∑

i=1

(xi − µ1)2

 + 10

D −
n∑

i=1

cos(2πzi)

 (12)

• z = Rx, where R is a rotation matrix as defined in C.1.7

• µ0 = 2.5, µ1 = −

√
µ2

0 − d
s

, s = 1 −
1

2
√

n + 20 − 8.2
, d = 1.

• Multimodal, non-separable

• Very rugged landscape superimposed on two larger valleys around µ0 and µ1. The

global optimum is at µ0.
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• x ∈ [−5, 5]n

C.2 Settings used in the ES algorithms

This section describes the details of the internal settings used in the implementation of the

evolutionary strategy algorithms. All the variants of ES used in the present work (ES, ES

with naive restart, ES-IPOP, ES-HM) were implemented by adding metaheuristics on top

of the same implementation of ES; therefore, the settings described here were common to

all algorithms. The symbols used are µ, the number of parents; λ, the number of offspring;

xi, object parameter vectors; and σi are the strategy parameters.

Initial population: Initial population was generated by uniform random sampling on

linear scale in the search range for all the test functions. For the ODE model, since the

parameter ranges spanned several order of magnitude, the initial population was sampled

uniformly on a log scale.

Initial step size: Initial step size for each parameter was set at 0.1 times the width of the

search range for the parameter.

Recombination: Global uniform recombination was used [125] to recombine the object

parameters as well as strategy parameters. For example, in a population of µ parents, there

are µ values of xi, the ith component of the object parameter vector , i = 1, . . . , n. To

generate a child using global uniform recombination, one of these µ different values of xi is

picked randomly for each i. This process is repeated λ times to get the offspring population.

The same process is applied to the strategy parameters.

Mutation: Mutation was applied to both object and strategy parameters using the fol-

lowing equations for i = 1, . . . , λ and j = 1, . . . , n [163].

σ′i j = σi j exp
(
τ′N(0, 1) + τN j(0, 1)

)
(13)

x′i j = xi j + σ′i jN j(0, 1) (14)

where, xi j and σi j are jth components of of the vectors xi and σi, respectively. The primed

symbols indicate the mutated values. The mutated step size is used to mutate the object
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parameters. N(0, 1) represents a normally distributed scalar with mean 0 and standard

deviation 1. N j(0, 1) implies that a new number is generated for each j. τ and τ′ were set

to
(√

2
√

n
)−1

and
(√

2n
)−1

.

Stopping criteria: A stopping criterion was deemed to be satisfied if any of the follow-

ing became true. b denotes fitness score of the fittest individual in the current generation

and w, the worst fitness score.

- |w − b| < absTolFitness

|w− b| < relTolFitness× fîtness, where fîtness is the average fitness of the population

-- σi j < absTolStepSize for all i, j

- σi j < relTolStepSize × xi j for all i, j

The default values used for the tolerances were absTolFitness = 10−3, relTolFitness =

10−6, absTolStepSize = 10−3, and relTolStepSize = 10−6.

C.3 A model of the IL-4 pathway
C.3.1 Major assumptions of the model

This model is not the same as the systems model of IL-4 signaling proposed in Chapter 3.

This is instead a simplified model of the IL-4 pathway that was used only to test the per-

formance of the optimization algorithm.

The IL-4 receptor uses the kinase activity of JAK1 and JAK3 proteins for downstream

phosphorylation. As JAK1 and JAK3 have been shown to be constitutively associated with

the cytoplasmic chains of the IL-4 receptor [45], we did not explicitly model the JAK

proteins and treated the IL-4 receptor/JAK complex as a single molecule. Furthermore,

we ignored the multimeric nature of the IL-4 receptor and assumed that IL-4 activates the

receptor in a single step [77].

STAT6 is thought to homodimerize after it is phosphorylated [113]. We ignored the

dimerization in our model and assumed that monomeric pSTAT6 represents the entire
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pSTAT6 pool. We further assumed that the IL-4 receptor and STAT6 have distinct phos-

phatases. However, a single phosphatase can possibly act on multiple substrates and the

assumption of one substrate-one phosphatase is a simplification [120].

We assumed that total concentration of all the modeled molecules, except IL-4 and

ROS, remains constant over time. We assigned a first order removal term to IL-4 to simulate

receptor mediated internalization and degradation. ROS time course was simulated using

explicit functions of time and provided as input to the model (Fig. 34).

C.3.2 ODE system and simulation settings

The ODE system shown below was used to model the IL-4 pathway assuming mass action

kinetics. Meanings of the symbols and values of the parameters are given in Tables 18

and 19. We ran the model from time t = −1500 min to t = 0 min to allow the system

to reach a steady state (equilibration process). During this equilibration, ROS levels were

fixed to a constant baseline value shown in the table. DPI pre-treatment was simulated by

setting the ROS baseline value to 1 to reflect depleted intracellular ROS. Our experimental

data showed noticeable phosphorylation of STAT6 even without any IL-4 stimulation. In

order to capture this effect in the model, we assumed the presence of a constant weak

activating signal throughoutt the equilibration process. This was simulated by fixing IL-4

concentration to 0.005 nM from time t = −1500 min to t = 0 min (value fitted by hand).

At time t = 0 min, IL-4 concentration was increased to 5.8 nM (corresponding to 100

ng/mL IL-4 used in the experiments) and first order decay of IL-4 was allowed (as shown

in Fig. 19). ROS time course was simulated using the profiles shown in Fig. 34.

The experimental data used to optimize the model represent normalized fluorescence

intensities corresponding to total phosphorylated STAT6 in Jurkat cells. To compare the

simulated time courses with the experimental data, the simulated values of cytosolic and

nuclear pSTAT6 were summed and then transformed using the equation y = ax + b, where

y is the transformed value, x is the total pSTAT6 concentration returned by the model and a
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and b are constants. The values of a and b were determined by mapping the lowest value of

x to the lowest experimental data point and the highest value of x to the largest data point,

when both the simulation and the experimental data were taken from the IL-4 stimulation

condition (i.e., with no DPI pre-treatment). The same transformation was also applied to

scale the simulation results for DPI + IL-4 treatment. It should be noted that the values of

a and b change depending on the parameters of the ODE system.

dx1

dt
= −k1x1x3 + k2x2x8

dx2

dt
= +k1x1x3 − k2x2x8

dx3

dt
= −k3x3

dx4

dt
= −k4x4x2 + k5x5x10 + k7x7

dx5

dt
= +k4x4x2 − k5x5x10 − k6x5

dx6

dt
= +k6x5 − k5x6x12

dx7

dt
= +k5x6x12 − k7x7

dx8

dt
= −k8x8ros + k9x9

dx9

dt
= +k8x8ros − k9x9

dx10

dt
= −k10x10x14 + k11x11

dx11

dt
= +k10x10x14 − k11x11

dx12

dt
= −k10x12x15 + k12x13

dx13

dt
= +k10x12x15 − k12x13
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C.3.3 Parameter values

Even though different members of the JAK-STAT family are activated by different inter-

leukins, the core structure of JAK-STAT pathway is very similar across many types of

cytokines, such as IL-1 and IL-4. Because of this similarity, we used the parameter set

of a previously published model of IL-1 signaling as the basis for parameter estimation of

JAK-STAT core of the IL-4 pathway [161]. Starting from these values, we adjusted them

by hand to obtain reasonable fits to the data as determined by visual inspection (column Ini-

tial estimate in Tables 18 and 19). The optimization algorithms were executed to estimate

parameters within fixed bounds around these initial estimates. The optimized parameter

values corresponding to the median fitness scores found by ES and ES-HM are presented

in Tables 18 and 19.

C.4 Tables and Figures

Table 18: Initial values. Symbols used in the equations and

the molecular species they represent according to Fig. 19.

Hand-fitted values used as first guess for optimization are

shown in the column Initial estimate. Parameter estimates

corresponding to the median scores found by ES-HM and

ES when the search range was fixed 5-fold above and below

the first estimate values are shown under the columns ES-

HM and ES, respectively. All concentrations are in units of

nM.

Symbol Molecular species Initial estimate Optimized value

ES-HM ES

x1 IL4R 4.51 10.9 1.23

Continued on next page
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Table18 – continued from previous page

Symbol Molecular species Initial estimate Optimized value

ES-HM ES

x2 IL4R* 0 0 0

x3 IL4 0.005a - -

x4 STAT6 168 209 243

x5 pSTAT6 0 0 0

x6 pSTAT6n 0 0 0

x7 STAT6n 0 0 0

x8 P1red 41.1 24 25.1

x9 P1ox 0 0 0

x10 P2red 117 572 162

x11 P2ox 0 0 0

x12 P2nred 0.094 0.45 0.195

x13 P2nox 0 0 0

x14 ROS (basal) 1.9e3b 792 633

x15 ROSn (basal) 1.9e2c 79.2 63.3

a IL-4 was set to a low initial value to simulate a small activating signal during equilibration (see subsection

C.3.2). The same value was used in all simulations. To simulate addition of 100 ng/mL IL-4 (the experimental

concentration used), IL-4 was changed to 5.8 nM.

b ROS level was fixed to this value during equilibration. Afterwards, curves shown in Fig. 34 were used. To

simulate DPI pre-treatment, the baseline ROS level was set to 1.

c Nuclear ROS was assumed to be one-tenth of cytosolic ROS throughout all conditions and time points in

order to reflect the relatively more reduced environment of the nucleus.
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Table 19: Rate constants. Symbols used in the equations

and the rate constants they represent according to Fig. 19 in

the main text are indicated. The hand-fitted values used as

the first guess for optimization are shown in the column Ini-

tial estimate. Parameter values corresponding to the median

scores found by ES-HM and ES when the search range was

fixed 5-fold above and below the first estimate values are

shown under the columns ES-HM and ES, respectively. First

order rate constants are in units of min-1 and second order

rate constants in nM-1min-1.

Symbol Rate constant Initial estimate Optimized value

ES-HM ES

k1 kract 0.0254 0.113 0.0903

k2 krinact 0.0048 0.0087 0.0019

k3 kintil4 0.0795 0.162 0.303

k4 konstat 12 31.2 4.81

k5 koffstat 3.5 11.3 5.63

k6 kc2n 0.266 0.598 0.865

k7 kn2c 0.334 0.87 0.622

k8 k1ox 0.00361 0.00774 0.0102

k9 k1red 0.178 0.281 0.489

k10 k2ox 0.00633 0.0268 0.027

k11 k2red 0.0886 0.114 0.0303

k12 k2redn 7.22 36 35.6
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Figure 34: ROS profiles. Oxidation of CM-H2DCFDA was measured for 60 min fol-
lowing stimulation with IL-4 without (a) or with (b) DPI pre-treatment for 1 hour (data
points show mean ± standard error of the mean from 3 independent runs after background
subtraction). Hill curves were fitted (lines in a and b) to the means and extrapolated to 120
min. Since the oxidation of CM-H2DCFDA is irreversible, the oxidation time courses show
cumulative oxidation of the dye over time. To estimate instantaneous ROS levels, deriva-
tives of the Hill curves were calculated, scaled by a constant and shifted on the y-axis to
represent baseline ROS concentration. In the IL-4 treatement condition, the scaling factor
was estimated to be 1000 and the baseline value was estimated at 1900 by manual fitting
(c). For the DPI-pretreated condition, the values were 10 and 1 respectively (d).
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Figure 35: STAT6 phosphorylation time course. Jurkat cells pre-treated or not with DPI
were treated with 100 ng/mL IL-4 and STAT6 phosphorylation time courses were measured
over a 2 hour time period. Background signal was subtracted from the mean fluorescence
intensity values obtained using flow cytometry; the background subtracted values were
divided by the fluorescence intensity of cells stained for pSTAT6 without DPI and IL-4
treatment to obtain normalized MFI values. Data points show mean ± standard error of the
mean from 3 independent experiments.
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Figure 36: Parameter and score distribution. ES-HM algorithm was run using 9 pairs of
(φ, ρ) values to optimize the parameters of the IL-4 model. Parameter bounds were set at
1000-fold above and below the first estimate and 10 runs were executed for each (φ, ρ) pair.
Box plots showing distributions of all the parameters (a) and scores (b) corresponding to
all the pairs are shown. The parameter values have been scaled by dividing them by the
corresponding first estimate values.
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APPENDIX D

DETAILS OF IL-4–EPO CROSSTALK MODEL

Details of models used in Chapter 5 to study ROS mediated crosstalk between IL-4 and

Epo pathways are provided here.

The network shown in Fig. 37 was coded into an ODE system assuming mass action

kinetics(Eq. (15)). The parameters of the model were optimized to get a reasonable fit to

data available from the literature (Fig. 38). The model without crosstalk (Fig. 23b) was ob-

tained by setting the rate constants k8, k11, k13 and k14 to 0. The hypothetical redundant

model (Fig. 23c) was obtained by making the following modifications to the model shown

in Fig. 37: i) JAK3* catalyzed phosphorylation of STAT5 was added (k = 0.8); ii) JAK2*

catalyzed phosphorylation of STAT6 was added (k = 0.8); iii) PTP1B catalyzed dephos-

phorylation of STAT6 was turned off; iv) PTP1B catalyzed dephosphorylation of JAK3*

was added (k = 1.2).
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ODE system used to model the network in Fig. 37:

ẋ1 = k18 − k1 × x1 + k3 × x2

ẋ2 = k1 × x1 − k19 × x2 − k3 × x2

ẋ3 = k18 − k2 × x3 + k4 × x4

ẋ4 = k2 × x3 − k20 × x4 − k4 × x4

ẋ5 = −k5 × x5 × x2 + k7 × x6

ẋ6 = k5 × x5 × x2 − k7 × x6

ẋ7 = −k6 × x7 × x4 + k8 × x8 × x9

ẋ8 = k6 × x7 × x4 − k8 × x8 × x9

ẋ9 = −k16 × x9 × x15 + k17 × x10

ẋ10 = k16 × x9 × x15 − k17 × x10

ẋ11 = −k9 × x11 × x6 + k11 × x12 × x9 + k18

ẋ12 = k9 × x11 × x6 − k11 × x12 × x9 − k21 × x12

ẋ13 = k18 + k12 × x14 − k10 × x13 × x8

ẋ14 = −k22 × x14 − k12 × x14 + k10 × x13 × x8

ẋ15 = k13 × x2 + k14 × x4 − k15 × x15 − k16 × x9 × x15

(15)

Table 20: List of species in the model and their initial values.

Species Symbol Initial value

IL4R x1 12

IL4R* x2 0

EpoR x3 12

EpoR* x4 0

JAK3 x5 12

Continued on next page
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Table20 – continued from previous page

Species Symbol Initial value

JAK3* x6 0

JAK2 x7 12

JAK2* x8 0

PTP1Bred x9 50

PTP1Box x10 0

STAT6 x11 1000

STAT6* x12 0

STAT5 x13 1000

STAT5* x14 0

ROS x15 0

Table 21: Optimized values of rate constants. Edges associ-

ated with the constants are indicated in Fig. 37. First order

rate constants are in min−1 and second order rate constants in

nM−1min−1.

Parameter Value

k1 0.4

k2 0.4

k3 1

k4 1

k5 0.1

k6 0.5

k7 1

Continued on next page
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Table21 – continued from previous page

Parameter Value

k8 1.2

k9 0.8

k10 0.8

k11 0.01

k12 0.05

k13 10

k14 10

k15 0.06

k16 0.5

k17 0.02

k18 0.005

k19 1

k20 1

k22 0.0005

k23 0.0005
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Figure 37: Model of the IL4R and EpoR signaling cross-talk. The signaling system was
modeled by ODEs shown in Eq. (15). The parameters in Table 21 correspond to edges
indicated in the figure.
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Figure 38: Approximate fitting of the model to experimental data. The parameters in
Table 21 were optimized to generate reasonable fits to STAT5 and JAK2 phosphorylation
data obtained from [139].

132



APPENDIX E

LISTING OF MATLAB IMPLEMENTATION OF ES-HM

E.1 ES-HM in Matlab

A Matlab implementation of the ES-HM algorithm is presented here.

1 % Author: Gaurav Dwivedi (g.dwivedi@gatech.edu)

% Date: October 22, 2013

function [optimParam , funEvalCount , bestScores , ↓
→ worstScores] = es(fitnessFn , nvar, lb, ub, ↓
→ userOptions)

%ES uses evolutionary strategies to find the minimum of a given function.

6 %Hypermutation can be optionally turned on to use the ES-HM algorithm. If

%a worker pool has been started using matlabpool , ES uses parfor to

%parallelize objective function evaluation.

%

%The ES algorithm was implemented as described by ’Evolution and Optimum

11 %Seeking’ by Hans-Paul Schwefel (1995) and ’Evolutionary Computation ’ by

%Xin Yao, Ch. 2 in Evolutionary Optimization , editors, Ruhul Sarker, Masoud

%Mohammadian & Xin Yao (2002).

%

%The hyper-mutation (HM) algorithm was developed by Gaurav Dwivedi and

16 %Melissa L. Kemp.

%

% [OPTIMPARAM , FUNEVALCOUNT , BESTSCORES , WORSTSCORES] = ES(FITNESSFN , NVAR, LB, ↓

→ UB,

% USEROPTIONS)

%

21 % Output:

% -------

% OPTIMPARAM = Optimized parameter values. This is the parameter vector

%−−−−−−−−−−−−−−→corresponding to the fittest individual in the last generation.

% FUNEVALCOUNT = Number of function evaluations.

26 % BESTSCORES = Vector containing best fitness score for each generation.

% WORSTSCORES = Vector containing worst fitness score for each generation.

%

% Required input parameters:
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% --------------------------

31 % FITNESSFN = Handle to fitness scoring function. Should return a scalar

% (fitness score) when a vector of length NVAR is passed. If parallel is

% set to 1 in USEROPTIONS , it should accept an MxNVAR matrix, where each

% row is a parameter vector and return a vector of scores of length M, with

% each element being the fitness score corresponding to a row of the input ↓

→ matrix.

36 % NVAR = Problem dimension (i.e., number of object parameters to be

% optimized).

%

% Optional input parameters:

% --------------------------

41 % LB = Lower bound of parameters. If scalar, same lower bound is used for all

%−−−−−−−−−−−−−−→dimensions. A vector of length NVAR can be used to specifiy different

%−−−−−−−−−−−−−−→lower bounds for each dimension. {Default = -Inf}

% UB = Upper bound of parameters. If scalar, same upper bound is used for all

%−−−−−−−−−−−−−−→dimensions. A vector of length NVAR can be used to specifiy different

46 %−−−−−−−−−−−−−−→upper bounds for each dimension. {Default = +Inf}

% USEROPTIONS = Structure containing fields to specify settings of the ES

%−−−−−−−−−−−−−−→algorithm. The following fields can be optionally specified. Values in

%−−−−−−−−−−−−−−→curly braces indicate defalut values used.

% MU = Number of parents {7}

51 % LAMBDA = Number of children {50}

% MAXITER = Maximum number of iterations or generations. {50}

% INITSTEP = Determines step size of the first generation using the

% −−−−−−−→ equation STEPSIZE = INITSTEP*(UB-LB)

% LOGSPACE = Solve the problem in log space instead of linear? {false}

56 % ABSTOLSCORE = Absolute tolerance for score: stop if |best -worst| <

% ABSTOLSCORE {1e-3}

% RELTOLSCORE = Relative tolerance for score: stop if |best - worst| <

% RELTOLSCORE*mean(score) {1e-6}

% ABSTOLSTEPSIZE = Absolute tolerance for step size: stop if each step size↓

→ <

61 % ABSTOLSTEPSIZE {1e-3}

% RELTOLSTEPSIZE = Relative tolerance for step size: stop if (step

% size)/(parameter value) < RELTOLSTEPSIZE for each step size {1e-6}

% MAXMUTATIONATTEMPT = Maximum number of attempts to mutate object ↓

→ parameter.

% See function mutate for detailed description. {30}

66 % PARALLEL = Can FITNESSFN evaluate candidates in parallel? Use if ↓

→ FITNESSFN

% is parallelized or a speed up is expected {false}

% FUNEVALLIM = Maximum number of objective function evaluations allowed

% {NVAR*1e4}

% DISPLAY = Show progress in command window {false}
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71 % USEHM = Use the hyper-mutation partial restart strategy? {false}

% ** The following options are meaningful only if USEHM is true **

% HMFREQUENCY = Frequency of occurrence of hypermutants (parameter phi in ↓

→ the

% manuscript). HMFREQUENCY fraction of step-sizes (randomly selected)↓

→ are

% increased by factor HMSTRENGTH {0.4}

76 % HMSTRENGH = Strength of hyper mutation (parameter rho in the manuscript).

% Step-sizes of randomly selected parameters are multiplied by ↓

→ HMSTRENGTH.

% −−−−−−−→ HMSTRENGTH should be greater than 1. {10}

% STAGNATIONGENHISTORY = Number of generations to monitor to determine if

% evolution has stagnated. If the relative percent change in the best↓

→ score is

81 % less than STAGNATIONTHRESHOLD over the last STAGNATIONGENHISTORY

% generations , evolution is assumed to have stagnated. {NVAR}

% STAGNATIONTHRESHOLD = If relative percent difference between scores of

% successive generations is less than STAGNATIONTHRESHOLD for

% −−−−−−−→ STAGNATIONGENHISTORY generations , evolution is assumed to have

86 % stagnated. {1}

% RESTARTLIM = Maximum number of hypermutation rounds allowed. {10}

% RESTARTNOIMPROVELIM = Maximum number of successive restarts withour

% improving the score. If the score does not improve in ↓

→ RESTARTNOIMPROVELIM

% successive restarts, the algorithm stops. {3}

91

%% Check validity of the input arguments and update optimization settings

if nargin < 2
error(’Too few arguments: fitnessFn and nvar are ↓

→ required’);
end

96

if ~isa(fitnessFn , ’function_handle’)
error(’Argument 1 (fitnessFn) should be a function ↓

→ handle’);
end

101 if ~isscalar(nvar)
error(’Argument 2 (nvar) should be a scalar’);

end

options = defaultOptions(nvar); %get default options

106

% Check if options specified by user match the allowed names.
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if nargin > 4 %one or more fields of options struct are specified by the ↓

→ user

if ~isstruct(userOptions)
111 error(’Incorrect data type: userOptions should ↓
→ be a structure\n’);

end
names = fieldnames(userOptions);
for i = 1:length(names)

if ~isfield(options, names{i})
116 error(’%s is not a valid option. Check ↓
→ userOptions structure’, names{i});

else
options.(names{i}) = userOptions.(names{i});

end
end

121 end

if options.logSpace
options.logInit = true; % if search is in log space, initialize ↓

→ generation 0 in log space

end
126

if options.hmStrength < 1
warning(’Hyper-mutation strength is less than 1. ↓

→ Values greater than 1 are recommended’);
end

131 % Check the bounds

if nargin > 3 % ub has been passed

if ~isnumeric(ub)
error(’Incorrect data type: ub should be numeric↓

→ ’);
end

136 if isempty(ub) % no limit specified

ub = ones(1, nvar)*Inf; % set to +inf

elseif length(ub) == 1 % one number specied. Use this ub for all ↓

→ params

ub = ub*ones(1, nvar);
elseif length(ub) ~= nvar

141 error(’Vector size mismatch: ub should be a ↓
→ scalar or a vector of length nvar’);

end
else %ub not specified

ub = ones(1, nvar)*Inf; % set to +inf

end
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146

if nargin > 2 %lb has been passed

if ~isnumeric(lb)
error(’Incorrect data type: lb should be numeric↓

→ ’);
end

151 if isempty(lb) % no limit specified

lb = -ones(1, nvar)*Inf; % set to -inf

elseif length(lb) == 1 % one number specied. Use this lb for all ↓

→ params

lb = lb*ones(1, nvar);
elseif length(lb) ~= nvar

156 error(’Vector size mismatch: lb should be a ↓
→ scalar or a vector of length nvar’);

end
else %lb not passed

lb = -ones(1, nvar)*Inf; % set to -inf

end
161

if any(ub <= lb)
error(’Error: ub should be greater than lb’);

end

166 % Start ES

%% Initialize data to be used for optimization

[params, stdDev] = ...
gen0(nvar, lb, ub, options.mu, options.logInit, ↓

→ options.logSpace , options.initStep);
[scoreParents , funEvalCount] = scoreVectors(params, ↓

→ fitnessFn , options.parallel, options.logSpace, 1);
171

%% Let the system evolve until stopping criteria are met

iter = 1; % iteration or generation number

numRescales = 0; % number of times strategy parameter hypermutation has↓

→ been used

lastRestartTime = -Inf; % iteration number at which the last restart was↓

→ applied.

176 % At the beginning of the run, this time was inf↓

→ generations ago (i.e., no restart yet)

bestScoreBeforeHM = zeros(options.restartLim , 1); % ↓

→ vector of best scores just before the HMs are applied
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% Used↓

→ ↓

→ to↓

→ ↓

→ monitor↓

→ ↓

→ if↓

→ ↓

→ HM↓

→ ↓

→ is↓

→ ↓

→ improving↓

→ ↓

→ score↓

→ .

bestScores = zeros(options.maxIter, 1); bestScores(1) = ↓
→ min(scoreParents);

worstScores = zeros(options.maxIter, 1); worstScores(1) ↓
→ = max(scoreParents);
181

while 1

if options.display && mod(iter, 1) == 0
fprintf(1, ’Iteration %d, best score = %g, worst↓

→  score = %g\n’, ...
186 iter, min(scoreParents), max(scoreParents));

end

%%% Store the best and worst stores

bestScores(iter) = min(scoreParents);
191 worstScores(iter) = max(scoreParents);

%%% Check if max iteration is reached

if iter > options.maxIter
if options.display

196 fprintf(’Maximum number of iterations ↓
→ exceeded\n’);

end
break;

end

201 if funEvalCount > options.funEvalLim
if options.display
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fprintf(’Maximum number of objective ↓
→ function evaluations exceeded\n’);

end
break;

206 end

%%% If hypermutation is not requested and stopping criteria are met,

%%% exit evolution loop.

stopCriteria = stop(scoreParents , params, stdDev, ↓
→ options.absTolScore , options.relTolScore , options↓
→ .absTolStepSize , options.relTolStepSize , options.↓
→ display);

211 if ~options.useHM && stopCriteria
break;

end

%%% If hypermutation is requested , then rescale the standard deviations

216 %%% if scores are stagnating or stopping criteria are met. Stop if

%%% score is not improving despite several restarts.

if options.useHM && ...
( stopCriteria || (iter - lastRestartTime >=↓

→ options.stagnationGenHistory && ↓
→ scoresStagnant(options, bestScores , iter)↓
→ ) )

% (line above) check for stagnation ↓

→ only if sufficient time has passed ↓

→ since last restart,

221 % otherwise restarts can possibly occur↓

→ too close to each other

% If scores have not improved after several restarts, then stop.

if numRescales > options.restartNoImproveLim
indicesOfLastFew = (numRescales - options.↓

→ restartNoImproveLim):numRescales;
226 if all(diff(bestScoreBeforeHM(↓
→ indicesOfLastFew)) >= 0)

if options.display, fprintf(1, ’Stopping↓
→ : Too many restarts without improving↓
→ \n’); end

break;
end

end
231

% Introduce HMs or stop if maximum no. of restarts exceeded
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if numRescales >= options.restartLim %maximum ↓

→ rounds of hypermutation are done

if options.display, fprintf(1, ’Maximum ↓
→ number of restarts reached\n’); end

break;
236 else %not at max rounds of hypermutation

% Rescale

if options.display, fprintf(1, ’Rescaling at↓
→  iteration %d\n’, iter); end

stdDev = hyperMutation(stdDev, options.↓
→ hmFrequency , options.hmStrength);

numRescales = numRescales + 1;
241 lastRestartTime = iter; % update time of latest ↓

→ restart

bestScoreBeforeHM(numRescales) = bestScores(↓
→ iter); % the best score just before the hypermutants take↓

→ effect

end
end

246

%%% Recombine to produce children

[paramsChild , stdDevChild] = recombine(params, ↓
→ stdDev, options.lambda);

251 %%% Mutation of individuals

[paramsChild , stdDevChild] = ...
mutate(paramsChild , stdDevChild , lb, ub, options↓

→ .maxMutationAttempt);

%%% Scoring the individuals

256 [scoreChildren , funEvalCount] = scoreVectors(↓
→ paramsChild , fitnessFn , options.parallel, options↓
→ .logSpace);

%%% Select the next generation of parents

[params, stdDev, scoreParents] = ...
select(paramsChild , stdDevChild , scoreChildren , ↓

→ options.mu);
261

iter = iter + 1;

end
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266 %%% Trim the storage vectors if required

if iter < options.maxIter
bestScores = bestScores(1:iter);
worstScores = worstScores(1:iter);

end
271

optimParamIdx = find(scoreParents == bestScores(end), 1,↓
→ ’first’); %index of the best solution

optimParam = params(optimParamIdx , :); %the best parameter set in↓

→ the last generation

if options.logSpace %params were tranformed to log10. Change them ↓

→ back

optimParam = 10.^optimParam;
276 end

%---

function stopFlag = ...
stop(score, param, stdDev, absTolScore , relTolScore ,↓

→ absTolStepSize , relTolStepSize , out)
281 % Check if the evolving system meets any of the following stopping criteria

% absTolScore = absolute tolerance for score: |best -worst| < absTolScore

% relTolScore = relative tol for score: |b - w| < relTolScore*mean(score)

% absTolStepSize = abs tol for step size: Each step size < absTolStepSize

% relTolStepSize = rel tol for step size: step size/paramValue <

286 % relTolStepSize for each step size

% Display stopping decision if out is true.

stopFlag = false;
best = min(score);

291 worst = max(score);

if abs(worst - best) < absTolScore
stopFlag = true;
if out

296 fprintf(’Absolute tolerance satisfied. Best ↓
→ score = %g, worst score = %g\n’, best, worst)↓
→ ;

end
return;

end

301 if abs(worst - best) < mean(score)*relTolScore
stopFlag = true;
if out
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fprintf(’Relative tolerance satisfied. Best ↓
→ score = %g, worst score = %g\n’, best, worst)↓
→ ;

end
306 return;
end

if all(all(stdDev < absTolStepSize))
stopFlag = true;

311 if out
fprintf(’Step size absolute tolerance satisfied.↓

→  Best score = %g, worst score = %g\n’, best, ↓
→ worst);

end
return;

end
316

if all(all(stdDev./param < relTolStepSize))
stopFlag = true;
if out

fprintf(’Step size relative tolerance satisfied.↓
→  Best score = %g, worst score = %g\n’, best, ↓
→ worst);
321 end

return;
end
%---

326

function [paramsParent , stdDevParent , scoreParent] = ...
select(paramsChild , stdDevChild , scoreChildren , ↓

→ numParents)
% Select the best scoring children and assign them as parents for the next

% generation. Return the scores of the individuals retained

331

[~, idx] = sort(scoreChildren); %get the indices of sorted ↓

→ individuals

paramsParent = paramsChild(idx(1:numParents), :);
stdDevParent = stdDevChild(idx(1:numParents), :);

336 scoreParent = scoreChildren(idx(1:numParents));
%---
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function [params, stdDev] = mutate(params, stdDev, lb, ↓
→ ub, maxMutationAttempt)
341 % Mutate the strategy parameters (s) and then mutate the object params (x) using

% the following equations:

% s’(k, i) = s(k, i)*exp(tao’*N(0, 1) + tao*Ni(0, 1))

% x’(k, i) = x(k, i) + s’(k, i)*Ni(0, 1)

% k = individual #; i = ith component of the vector

346 % N(0, 1) = for the whole vector; Ni(0, 1) = for each ith component

%

% tao = 1/sqrt(2*sqrt(n))

% tao’ = 1/sqrt(2*n)

%

351 % Ref: Xin Yao, Evolutionary computation (2002). Ch 2 in Evolutionary

% Optimization , R. Sarker, M. Mohammadian , X. Yao (Eds.).

[popSize, numParam] = size(params); %number of individuals and ↓

→ number of parameters per individual

356 %% update the strategy parameters using the expression in function comments

taoIndivid = 1/sqrt(2*sqrt(popSize));
taoCommon = 1/sqrt(2*popSize);
nCommon = randn(popSize, 1); %one common N(0,1) for each ↓

→ individual

nIndivid = randn(popSize, numParam); %individual and ↓

→ parameter specific variate

361 stdDev = stdDev.*exp(bsxfun(@plus, taoCommon*nCommon, ↓
→ taoIndivid*nIndivid));

%% update the optimization parameters

% Element-wise operation is used to mutate each object parameter and check

% if it is within upper and lower bounds. If not, a new mutation is

366 % attempted. This is until a valid number is found. If no value is

% determined in maxMutationAttemp attempts, the previous value is kept.

for j = 1:numParam %traverse along columns

for i = 1:popSize
failCount = 0;

371 while 1
temp = params(i, j) + stdDev(i, j).*randn;
if temp > lb(j) && temp < ub(j) %loop till a ↓

→ number within limits is found

params(i, j) = temp;
break

376 else
failCount = failCount + 1;
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if failCount > maxMutationAttempt %if an ↓

→ acceptable number cannot be found, keep the previous ↓

→ number

break;
end

381 end
end

end
end

386 %---

function [paramsChild , stdDevChild] = recombine(params, ↓
→ stdDev, numChild)

% Recombine the parents to create the next generation of children.

391

[numParent , numParam] = size(params);

paramsChild = zeros(numChild , numParam);
stdDevChild = zeros(numChild , numParam);

396

% Recombine using global uniform recombination

parentIndex = floor(rand(numChild , numParam)*numParent) ↓
→ + 1; %random indices of parents

for i = 1:numParam
paramsChild(:, i) = params(parentIndex(:, i), i);

401 stdDevChild(:, i) = stdDev(parentIndex(:, i), i);
end
%---

function stagnate = scoresStagnant(opt, scoreHistory , ↓
→ iteration)
406 % Return true if the scores have changed by < thredshold% over successive

% genHistory generations.

threshold = opt.stagnationThreshold;
genHistory = opt.stagnationGenHistory;

411

stagnate = 0;

if iteration > genHistory
temp = scoreHistory(iteration -genHistory:iteration);↓

→ % last genHistory+1 scores

416
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if all(abs(diff(temp))./temp(1:end-1)*100 < ↓
→ threshold) % if all changes are less than threshold %

stagnate = 1; % scores are stagnant

end
end

421 %---

function stdDev = hyperMutation(stdDev, hmFrequency , ↓
→ hmStrength)

% A fraction of strategy parameters are randomly chosen based on user

426 % speciied options and are increased in value to produce hypermutants

r = rand(size(stdDev));
r = r < hmFrequency;
stdDev = stdDev.* (hmStrength*r);

431

return;
%---

436 function [score, funEval] = scoreVectors(params, ↓
→ fitnessFn , parallel, logSpace, reset)

% Calculate the scores of all the individuals in the population using

% fitnessFn. Each row in params represents one individual.

% If fitnessFn is parallelized (parallel = 1), pass the params

% matrix as such, otherwise , evaluate one parameter vector at a time using

441 % parfor.

% Transform back to linear space if the searching in logSpace.

% The reset argument is used to reset the funEvalCount variable. this

% variable keeps track of how many times the objective function has been

% evaluated.

446

if nargin < 5 %if reset is not passed, do not reset funEvalCount

reset = 0;
end

451 persistent funEvalCount; %number of times the scoring function is ↓

→ called

if reset || isempty(funEvalCount)
funEvalCount = 0;

end
456

if logSpace %searchin in log space
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params = 10.^params; % transform objective parameters back to ↓

→ linear space before passing to scoring fn

end

461 score = zeros(1, size(params, 1));
if parallel

score = fitnessFn(params);
else

parfor i = 1:length(score)
466 score(i) = fitnessFn(params(i, :));

end
end

% increment funEvalCount

471 funEvalCount = funEvalCount + size(params, 1); % the ↓

→ scoring function has been called this many times

% Warn if the score vector has NaN or Inf

if any(isnan(score)) || any(isinf(score))
fprintf(1, ’Warning: The score vector contains Inf ↓

→ or NaN\n’);
476 end

funEval = funEvalCount; %copy persistent variable to return value

%---

481 function [params, stdDev] = gen0(nvar, lb, ub, mu, ↓
→ logInit, logSpace, initStep)

% Create an intial population of parents with lower (lb) and upper (ub)

% bounds. The individuals are generated by uniform random sampling in

% linear (if logInit == false) or log (if logInit == true) space.

% See defaultOption fn for meaning of initStep.

486

% replace +/- Inf with real small/large numbers. These bounds are only used

% here and do not apply to rest of the search. Changing Inf to real numbers

% is required because the sampling method used requires calculation of the

% difference between upper and lower bounds, which should be real.

491 index = (lb == Inf); lb(index) = 1e12;
index = (lb == -Inf); lb(index) = -1e12;

index = (ub == Inf); ub(index) = 1e12;
index = (ub == -Inf); ub(index) = -1e12;

496

% transform lb and ub to log10 space and use the limits to sample

if logInit
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if any(lb <= 0) || any(ub <= 0)
error(’Cannot use log space with non-positive ↓

→ upper or lower bounds’);
501 else

lb = log10(lb); ub = log10(ub);
end

end

506 % Generate initial population

% r = a + rand*(b-a) => sampling b/w a and b

a = zeros(1, nvar); b = zeros(1, nvar);
a(:) = lb(:); b(:) = ub(:); %this preserves the shape of a. We want a,↓

→ b as row vectors

a = repmat(a, mu, 1);
511 b = repmat(b, mu, 1);

params = a + rand(mu, nvar).*(b-a); %each row is one individual↓

→ ; in (0, 1)

% Generate variances of the individuals

stdDev = initStep.*(b-a);
516

if logInit && ~logSpace %change back to linear-space if log initialize ↓

→ was used but search is in linear space

params = 10.^params;
stdDev = 10.^stdDev;

end
521 %---

function options = defaultOptions(nvar)
% Populate the options structure of the optimization algo with the

526 % following defaults

% MU = Number of parents {7}

% LAMBDA = Number of children {50}

% MAXITER = Maximum number of iterations or generations. {50}

% INITSTEP = Determines step size of the first generation using the

531 %−−−−−−−−−−−−−−→ equation STEPSIZE = INITSTEP*(UB-LB)

% LOGINIT = Sample in the log space (instead of linear) to initialize

% first generation of objective parameters and step sizes. {false}

% LOGSPACE = Solve the problem in log space instead of linear? If LOGSPACE

% is true, LOGINIT is also switched to true. {false}

536 % ABSTOLSCORE = Absolute tolerance for score: stop if |best -worst| <

% ABSTOLSCORE {1e-3}

% RELTOLSCORE = Relative tolerance for score: stop if |best - worst| <

% RELTOLSCORE*mean(score) {1e-6}
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% ABSTOLSTEPSIZE = Absolute tolerance for step size: stop if each step size <

541 % ABSTOLSTEPSIZE {1e-3}

% RELTOLSTEPSIZE = Relative tolerance for step size: stop if (step

% size)/(parameter value) < RELTOLSTEPSIZE for each step size {1e-6}

% MAXMUTATIONATTEMPT = Maximum number of attempts to mutate object parameter.

% See function mutate for detailed description. {30}

546 % PARALLEL = Can FITNESSFN evaluate candidates in parallel? Use if FITNESSFN

% is parallelized or a speed up is expected {false}

% FUNEVALLIM = Maximum number of objective function evaluations allowed

% {nvar*1e4}

% DISPLAY = Show progress in command window {false}

551 % USEHM = Use the hyper-mutation partial restart strategy? {false}

% ** The following options are meaningful only if USEHM is true **

% HMFREQUENCY = Frequency of occurrence of hypermutants (parameter phi in the

% manuscript). HMFREQUENCY fraction of step-sizes (randomly selected) are

% increased by factor HMSTRENGTH {0.4}

556 % HMSTRENGH = Strength of hyper mutation (parameter rho in the manuscript).

% Step-sizes of randomly selected parameters are multiplied by HMSTRENGTH.

% HMSTRENGTH should be greater than 1. {10}

% STAGNATIONGENHISTORY = Number of generations to monitor to determine if

% evolution has stagnated. If the relative percent change in the best score ↓

→ is

561 % less than STAGNATIONTHRESHOLD over the last STAGNATIONGENHISTORY

% generations , evolution is assumed to have stagnated. {nvar}

% STAGNATIONTHRESHOLD = If relative percent difference between scores of

% successive generations is less than STAGNATIONTHRESHOLD for

%−−−−−−−−−−−−−−→STAGNATIONGENHISTORY generations , evolution is assumed to have

566 % stagnated. {1}

% RESTARTLIM = Maximum number of hypermutation rounds allowed. {10}

% RESTARTNOIMPROVELIM = Maximum number of successive restarts withour

% improving the score. If the score does not improve in RESTARTNOIMPROVELIM

% successive restarts, the algorithm stops. {3}

571

options.mu = 7;
options.lambda = 50;
options.maxIter = 50;
options.initStep = 0.10;

576 options.logInit = false;
options.logSpace = false;
options.absTolScore = 1e-3;
options.relTolScore = 1e-6;
options.absTolStepSize = 1e-3;

581 options.relTolStepSize = 1e-6;
options.maxMutationAttempt = 30;
options.parallel = false;
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options.useHM = false;
options.hmStrength = 10;

586 options.hmFrequency = 0.4;
options.stagnationThreshold = 1;
options.stagnationGenHistory = nvar;
options.restartLim = 10;
options.restartNoImproveLim = 3;

591 options.funEvalLim = nvar*1e4;
options.display = 0;
%---

Listing 1: (ES-HM.m) The ES-Hm algorithm in Matlab
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[37] Gey, K. F., Moser, U., Jordan, P., Stähelin, H., Eichholzer, M., and Lüdin, E.,
“Increased risk of cardiovascular disease at suboptimal plasma concentrations of
essential antioxidants: an epidemiological update with special attention to carotene
and vitamin c,” The American Journal of Clinical Nutrition, vol. 57, no. 5, pp. 787S–
797S, 1993. 1.2

[38] Goel, G., Chou, I.-C., and Voit, E. O., “Biological systems modeling and analy-
sis: a biomolecular technique of the twenty-first century,” Journal of Biomolecular
Techniques: JBT, vol. 17, no. 4, p. 252, 2006. 1.2

[39] Gough, D. and Cotter, T., “Hydrogen peroxide: a Jekyll and Hyde signalling
molecule,” Cell Death & Disease, vol. 2, no. 10, p. e213, 2011. 1.2

[40] Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W., “An-
giotensin ii stimulates nadh and nadph oxidase activity in cultured vascular smooth
muscle cells,” Circulation Research, vol. 74, no. 6, pp. 1141–1148, 1994. 1.3

[41] Groen, A., Lemeer, S., van der Wijk, T., Overvoorde, J., Heck, A. J., Ost-
man, A., Barford, D., Slijper, M., and den Hertog, J., “Differential oxidation of
protein-tyrosine phosphatases,” Journal of Biological Chemistry, vol. 280, no. 11,
pp. 10298–10304, 2005. 2.2

[42] Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D., and Paull, T. T., “Atm activation
by oxidative stress,” Science, vol. 330, no. 6003, pp. 517–521, 2010. 1.3

[43] Gupta, V. and Carroll, K., “Sulfenic acid chemistry, detection and cellular lifetime,”
Biochimica et Biophysica Acta, vol. 1840, no. 2, p. 847, 2014. 1, 1.2, 3.1

[44] Gutscher, M., Sobotta, M. C., Wabnitz, G. H., Ballikaya, S., Meyer, A. J.,
Samstag, Y., and Dick, T. P., “Proximity-based protein thiol oxidation by H2O2-
scavenging peroxidases,” Journal of Biological Chemistry, vol. 284, no. 46,
pp. 31532–31540, 2009. 6.5.2

[45] Haan, C., Kreis, S., Margue, C., and Behrmann, I., “Jaks and cytokine re-
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tyrosine phosphatases by reversible oxidation,” Journal of Biochemistry, vol. 150,
no. 4, pp. 345–356, 2011. 1.5, 3.1

[104] Paulsen, C. E., Truong, T. H., Garcia, F. J., Homann, A., Gupta, V., Leonard, S. E.,
and Carroll, K. S., “Peroxide-dependent sulfenylation of the EGFR catalytic site
enhances kinase activity,” Nature Chemical Biology, vol. 8, no. 1, pp. 57–64, 2012.
1, 1.3, 6.5.1

[105] Persson, C., Kappert, K., Engström, U., Östman, A., and Sjöblom, T., “An antibody-
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