
APPLICATIONS OF VARIATIONAL PDE ACCELERATION TO
COMPUTER VISION PROBLEMS

A Dissertation
Presented to

The Academic Faculty

By

Minas Benyamin

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Engineering

Department of Electrical and Computer Engineering

Georgia Institute of Technology

May 2022

© Minas Benyamin 2022



APPLICATIONS OF VARIATIONAL PDE ACCELERATION TO
COMPUTER VISION PROBLEMS

Thesis committee:

Dr. Anthony Yezzi
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Patricio Vela
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Justin Romberg
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Kang Sung Ha
Department of Mathematics
Georgia Institute of Technology

Dr. Aaron Lanterman
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Date approved: April 06, 2022



I have no special talents, I am just passionately curious.

Albert Einstein



In dedication to my Parents, Iman-Sami Zakhari and Michel Nakhla and my loving

fiancee, Maryam Botrus



ACKNOWLEDGMENTS

I would like to thank the members of my thesis reading committee Professors

Patricio Vela and Justin Romberg for their help in preparation of this work. I would

like to especially thank Professor Yezzi, my advisor who aided me immensely through-

out the entire PhD process. Without his agreement to be my advisor and subsequent

mentoring I likely would have never started a PhD at the Georgia Institute of Tech-

nology. I would also like to thank and acknowledge the additional members of my

PhD committee Professors Sung Kang Ha and Aaron Lanterman.

I would like to thank and acknowledge Dr. Ganesh Sundaramoorthi. He has been

an excellent resource during the time of my PhD program. I would like to thank

him for his insights, theoretical discussions and advising. I would also like to thank

and acknowledge Dr. Samuel Bignardi for his suggestions and comments. I would

like to thank Mr. Geoffrey Goldman and Dr. Tran Luu for their helpful mentoring

throughout my years as an undergraduate and their continued career advising in

graduate school.

I would like to thank my loving parents who graciously paid many of my bills and

gave me their blessing to start a PhD. Without their help I would have been more

more financially and emotionally stressed at the prospect of attending a graduate

program.

I would like to thank and acknowledge the Smart Scholarship Program for both

paying my tuition and supplying my stipend during my years at the Georgia Institute

of Technology. Without their financial support doing research at this University would

have been far more difficult and financially adverse.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2:Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Variational PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Acceleration in Optimization . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Variational Methods in Image Processing . . . . . . . . . . . . . . . . 10

2.3.1 Variational Image Denoising and Deconvolution . . . . . . . . 11

2.3.2 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Variational Optical Flow . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Diffeomorphic Image Registration . . . . . . . . . . . . . . . . 18

vi



2.3.5 Connections to Sobolev Optimization . . . . . . . . . . . . . . 19

2.3.6 Variational Active Contours . . . . . . . . . . . . . . . . . . . 20

2.3.7 Sobolev gradients for Active Contours . . . . . . . . . . . . . 22

2.3.8 Variational Stereo Reconstruction . . . . . . . . . . . . . . . . 24

2.3.9 Variational Optimization Methods . . . . . . . . . . . . . . . . 25

Chapter 3:PDE Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introducing the PDE Acceleration Framework . . . . . . . . . . . . . 27

3.2 Discretization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Explicit Gradient Descent Scheme . . . . . . . . . . . . . . . . 34

3.2.2 First Order Accelerated Scheme . . . . . . . . . . . . . . . . . 36

3.2.3 Second Order Accelerated Scheme . . . . . . . . . . . . . . . . 39

3.2.4 Backward Difference . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Semi-Implicit Schemes . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Regularized Inversion Problems . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 General Case (nonlinear wave equation) . . . . . . . . . . . . 44

3.3.2 Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Image Deconvolution . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Applications for Compressed Sensing . . . . . . . . . . . . . . 61

3.3.5 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 General Implementation . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Acceleration vs Gradient Descent . . . . . . . . . . . . . . . . 70

vii



3.4.3 Acceleration vs Conjugate Gradient . . . . . . . . . . . . . . . 71

3.5 Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 PDE Acceleration vs Gradient Descent . . . . . . . . . . . . . 79

3.5.3 PDE Acceleration vs Primal Dual . . . . . . . . . . . . . . . . 82

3.5.4 Accelerated Active Surfaces . . . . . . . . . . . . . . . . . . . 84

3.6 Stereo Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6.2 Simulated Results Gradient Descent vs PDE Acceleration . . . 89

3.6.3 Physical Calibration Array and Real Data . . . . . . . . . . . 92

Chapter 4:Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.0.1 Discretization Schemes . . . . . . . . . . . . . . . . . . . . . . 95

4.0.2 Inversion Problems . . . . . . . . . . . . . . . . . . . . . . . . 95

4.0.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.0.4 Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.0.5 Stereo Reconstruction . . . . . . . . . . . . . . . . . . . . . . 97

4.0.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix A:Facility Acknowledgement . . . . . . . . . . . . . . . . . . . . 100

Appendix B: Experimental Equipment . . . . . . . . . . . . . . . . . . . . 101

Appendix C: Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix D:Published Codes . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



Appendix E: Alternative Discretization Schemes for Beltrami Regularizers . 105

Appendix F: Discretization Schemes for Total Variation Regularization . . 107

Appendix G:Energy Gradient for Optical Flow . . . . . . . . . . . . . . . 109

Appendix H:Derivations for Active Contours . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



LIST OF TABLES

3.1 PDE accelerated Beltrami regularization runtimes on the 512 × 512
baboon image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Coefficients and converge times of damping experiments for a 512 x
512 noisy Lena image. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Performance of Second-Order PDE Acceleration scheme for recover-
ing undersampled Computed Tomography (CT) images. PSNR was
computed by comparing to the original clean image. . . . . . . . . . . 63

3.4 Performance of first order Primal Dual scheme for recovering under-
sampled CT images. PSNR was computed by comparing to the original
clean image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Performance of Second-Order PDE Acceleration scheme for solving
Poisson equation. Our method is compared against standard solvers
of which the Jacobi Method is the most comparable to gradient descent. 67

3.6 Performance of Second-Order PDE Acceleration scheme for solving
Poisson equation. Notice that the Partial Differential Equation (PDE)
method out competes state of the art optimizers even without the ben-
efit of GPU parallelization. . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Performance comparison of Linearized Optical Flow against Acceler-
ated Optical Flow for each level of the pyramid. The performance
improvement of accelerated optical flow is close to an order of magni-
tude. Both methods arrive at nearly the same local minima. AAE and
AEE are average angular error and end point error respectively. Note
the quantities above represent average values over all pairs of images
in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



3.8 [Left]: PDE Acceleration (AC) offers a comparable level of robustness
to initialization as global convex Chambolle/Pock (CP) in lower com-
putational time. [Right]: Visual comparison for the results with great-
est energy difference in CP & AC shows that the energy differences are
nearly in-perceptible. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.9 Performance numbers for Threshold Segmentation Chambolle-Pock vs
Accelerated Active Contours for Figure 3.18. . . . . . . . . . . . . . 84

3.10 Performance benchmark of gradient vs accelerated method, computa-
tions were done on an intel 6 Core i7-5930K. . . . . . . . . . . . . . . 92

3.11 Performance numbers for Gradient Descent vs PDE Acceleration of
variational 3D reconstruction. Note that increase in energy is due to
the methods not capturing the entire horse volume. . . . . . . . . . 93

xi



LIST OF FIGURES

1.1 Accelerated Descent No Regularization [a] vs Regularization [b] . . . . . 4

2.1 Optical Flow pyramid used for up-sampling flow . . . . . . . . . . . . 17

3.1 Illustration of Gradient descent PDE vs Accelerated Gradient PDE:
Gradient descent PDEs and the corresponding accelerated gradient
PDEs generally follow different paths. Further, accelerated PDEs lead
to discretization schemes with less restrictive CFL conditions corre-
sponding to larger discrete steps than gradient descent PDE’s, leading
to faster convergence in the convex case. Note in the case of strictly
convex problems B = C. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of PDE acceleration, Primal Dual, and Split Bregman for
TV restoration of a noisy Lenna image with λ = 1000. Each algorithm
was run for 150 iterations, which took 2.7 seconds for PDE acceleration,
3.3 seconds for Primal Dual, and 28 seconds for Split Bregman. . . . 51

3.3 Comparison of PDE acceleration, Primal Dual, and Split Bregman for
TV restoration of a noisy Lenna image with λ = 7000. Each algorithm
was run for 50 iterations, which took 0.85 seconds for PDE acceleration,
1.12 seconds for Primal Dual, and 10.4 seconds for Split Bregman. . . 51

3.4 Results of Beltrami regularization applied to a noisy baboon image
with varying values of λ and β. The units of λ are thousands. . . . . 53

3.5 Convergence experiment with variable damping for a Beltrami regular-
izer. Initial condition and converged result are given in Fig Figure 3.6. 54

3.6 Initial (a) and Final (b) condition of denoising experiment with variable
damping. The final result does not change between fixed damping and
Nesterov only the number of iterations required. . . . . . . . . . . . 55

xii



3.7 Deblurring of a butteryfly image using the explicit accelerated PDE
scheme. Performance is compared to two state of the art methods
(final signal-to-noise ratios are shown for restoration.) . . . . . . . . . 61

3.8 Reconstruction of a CT image using varying numbers of projections
for the Fourier back projection algorithm. Number of projections used
from left to right: 10, 20 with the original image given on the right
hand side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Recovered CT images (using PDE acceleration) from Figure 3.8. The
original image is given on the right hand side for comparison. The
parameters for this experiment were λ = 106, β = 100 and the number
of iterations were T = 2500. . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Recovered CT images (using first-order primal-dual) from Figure 3.8.
The original image is given on the right hand side for comparison. The
parameters for this experiment were λ = 103, β = 100 and the number
of iterations were T = 2500. . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Illustrative experiment: The experiment (whose results are in Fig-
ure 3.13 and Figure 3.12) computes the optical flow (registration) be-
tween I0 and I1 using a common optical flow loss function. The initial
residual (|I1− I0|) is shown. The fourth image from left is a color code
for the velocity (the direction of the velocity is indicated by the color).
The fifth image is a color code for the mass density graphs used in
Figure 3.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 Comparison of evolutions of gradient descent and accelerated gradient
descent. I1(φ) and the residual are shown throughout the evolution.
As can be seen, acceleration converges in far fewer iterations (gradient
descent eventually converges, but much later in time). . . . . . . . . . 73

3.13 Comparison of evolutions of accelerated optimization with and without
friction. The four rows are the density ρt#φt, velocity v ◦ φt, image
warp I1 ◦ φ and residual |I0 − I1(φ)| for the undamped and damped
accelerated descents over various iterations. Notice that the undamped
descent overshoots the target and switches directions as evidenced by
the shift in the velocity from orange to blue. The addition of a friction
term kills the oscillations, allows convergence and for the minimization
of the residual. Notice that in both cases, the mass moves within
and around the square in non-trivial ways. Each are initialized with a
constant density and at convergence, the density is also constant. . . 74

xiii



3.14 Converged results for Linear Optical Flow and Accelerated Optical
Flow run on the Middlebury data set. Both methods converge to the
same local minimum, with the advantage of accelerated being speed.
Note the black areas indicate occlusion, which are excluded from error
computation according to the benchmark. Seven image pairs were used
for the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 Different initial contours flowing into local energy minimizers . . . . . 80

3.16 Accelerated active contours flowing past local minima . . . . . . . . . 81

3.17 Non-accelerated (middle) vs. accelerated (right) active contour results
for same four initializations (left) on a seismograph image. Cost func-
tional values underneath. . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.18 [Left]: Initial threshold initialization of noisy square [Middle]: Con-
verged segmentation for Chambolle-Pock. [Right]: Converged segmen-
tation for Accelerated Active Contours. . . . . . . . . . . . . . . . . . 84

3.19 Projected silhouettes (in yellow) from starting surface which does not
intersect tori holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.20 Converged 3D Silhouettes of Gradient Descent . . . . . . . . . . . . . 89

3.21 Three double tori reconstructions using gradient-descent stereoscopic
segmentation. [Left] torus used 16 images and 0 area penalty. [Middle]
torus used 18 images and a moderate area penalty of 150. [Right] torus
used 18 images and a high area penalty of 500. Notice the modest
feature loss in the final image. . . . . . . . . . . . . . . . . . . . . . 90

3.22 Comparison of Stereoscopic Segmentation on synthetic data for Gra-
dient PDE method vs Accelerated PDE method at different iteration
steps 0, 500, 1000, 2000 and 4000 iterations respectively. The gradient
method gets trapped by local minimizers in this case the bounds of
the torus and is unable to form the holes without heavy regularization.
Note that the initial start for the both methods is the ellipsoid. The
area penalty was fixed at 0 and the experiment used 16 image views of
the tori for the reconstruction. . . . . . . . . . . . . . . . . . . . . . . 91

3.23 [Top]: Gradient descent driven variational 3D reconstruction gets
trapped in local minima when strongly regularized [Bottom]: PDE ac-
celeration is able to successfully shoot past local minimizers under a
higher area penalty. Note average convergence time for PDE accelera-
tion is almost three times faster than Gradient descent. Iterations are
given at the bottom with performance results found in table Table 3.11. 92

xiv



3.24 Stereo Reconstruction Camera Array . . . . . . . . . . . . . . . . . . 94

xv



LIST OF ACRONYMS

ACC Accelerated

ADMM Alternating Direction Method of Multipliers

AWGN additive white Gaussian noise

CFL Courant Friedrichs Lewy

CT Computed Tomography

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

GD Gauss-Seidel

JMIV Journal of Mathematical Imaging and Vision

MS Mumford-Shah

ODE Ordinary Differential Equation

PD Primal-Dual

PDE Partial Differential Equation

ROF Rudin-Osher-Fatemi

SLAM simultaneous localization and mapping

SOR Successive over-relaxation

SP Split-Bregman

TV Total Variation

xvi



SUMMARY

This dissertation addresses general optimization in the field of computer vision. In

this manuscript we derive a new mathematical framework, Partial Differential Equa-

tion (PDE) acceleration, for addressing problems in optimization and image process-

ing. We demonstrate the strength of our framework by applying it to problems in

image restoration, object tracking, segmentation, and 3D reconstruction. We address

these image processing problems using a class of optimization methods known as vari-

ational PDEs. First employed in computer vision in the late 1980s, variational PDE

methods are an iterative model-based approach that do not rely on extensive training

data or model tuning. We also demonstrate for this class of optimization problems

how PDE acceleration offers robust performance against classical optimization meth-

ods. Beginning with the most straightforward application, image restoration, we then

show how to extend PDE acceleration to object tracking, segmentation and a highly

non-convex formulation for 3D reconstruction. We also compare across a wide class

of optimization methods for functions, curves, and surfaces and demonstrate that not

only is PDE acceleration easy to implement, but that it remains competitive in a

variety of both convex and non-convex computer vision applications.

xvii



CHAPTER 1

INTRODUCTION

The field of computer vision emerged in the late 1970s with the advent of digital

imaging and high performance computing. While initial research focused on the task

of image enhancement such as the application of simple filters or correcting pixel

errors, [1] the field quickly progressed into a variety of practical applications. Tasks

such as object segmentation, tracking and image noise minimization quickly rose to

prominence. Later advancements in the field addressed problems such as deblurring,

curve driven segmentation, and 3D reconstruction [2]. Many of the early algorithms

for image processing are termed as single pass methods. Researchers applied tech-

niques like median or Wiener filters for image correction and kernel methods like

match filters for segmentation and object detection. As computer processing power

improved, researchers began looking for more powerful approaches for addressing

these problems.

In the late 1980s, a major line of work in the field emerged, namely, the appli-

cation of variational PDE methods for computer vision problems [3]. In variational

PDE methods for computer vision, the general approach is to engineer a variational

model that allows you to iteratively solve specific image processing problems. These

energy-based models take the form of cost functionals which are integrals where the

independent variable is itself a function [4]. A classic example of a function often

used in computer vision cost functionals would be an image which is not a single

variable but has a value at every point (x, y). By careful engineering of the cost

functionals, researchers can design them so that the energy, the value of the integral,

will be minimized when the desired image processing result is achieved. To minimize

these functionals, researchers derive gradient descent PDEs which allow for iterative
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solutions to these complex image processing problems.

Two of the first applications of variational PDEs in image processing were Perona

and Malik’s anisotropic diffusion [1], for image denoising, and Mumford-Shah [5], for

image segmentation. In their seminal work, Perona and Malik applied the diffusion

model to image processing. If we consider diffusion as a physical process, we are

modeling the movement of particles from regions of high to low concentration. By

allowing diffusion of information in an image we are in effect able to reduce the peaks

and troughs in the spatially varying pixel intensity and thus smooth out the noisy

pixels. Too much diffusion, however can lead to an over smoothing and a loss of

image features. To combat this problem, Perona and Malik proposed a spatially

varying diffusion coefficient that encouraged smoothing in regions of the image where

pixel values are similar (intraregion) and minimized smoothing in regions where the

image has sharp boundaries (interregion).

In the segmentation domain, Mumford and Shah proposed the Mumford-Shah

functional which measured the degree of match between an image and its segmenta-

tion. The functional is composed of three components: 1) A squared penalty that

measures the difference between the segmented image and the original image 2) An

L2 penalty on the variation of the segmented regions 3) An arclength penalty that

ensures that the curves that segment the image are as short as possible. One of the

strengths of their segmentation model is that the segmenting curves do not have to

be connected, only piecewise smooth. This in effect allows for the segmentation of

disconnected regions in the image and allows the method to simultaneously segment

multiple regions while still minimizing the energy. Another strength of this method

is that by increasing the penalty on the arclength, it can reduce the capture of noise

or spurious details in the image.

The class of variational PDE methods continued to increase in popularity [6] and

were among the state of the art approaches until the feasibility of training data driven

2



models such as those used in machine learning and neural networks. However, in

absence of labeled training sets and robust approaches for transfer learning, they

remain among the most successful methods in image processing.

One of the drawbacks of the initial class of variational methods, however, was the

large number of iterations required for gradient descent. As a result of this perfor-

mance limitation, researchers increasingly looked to formulate convex cost functionals

with a single global minimum. This guarantees that gradient descent will converge

towards the minimum energy and permits the use of an entire class of fast optimiza-

tion methods. Techniques such as Primal Dual, Split-Bregman (SP) and Alternating

Direction Method of Multipliers (ADMM) can quickly and efficiently solve convex

optimization problems without the need for model training or excessive iterations

[7, 8, 9]. And while these methods are incredibly successful they are not without

drawbacks as they often require a very careful formulation of the cost functional as

to ensure that the subsequent minimization is convex. More complex problems such

as variational 3D reconstruction, and radar and acoustic-based shape reconstruction

are often non-convex and can have local minima in the energy function. In addition,

because there is not necessarily a single minimum energy, global minimization meth-

ods such as ADMM, Primal-Dual (PD), and SP are not as readily applicable. And

although gradient descent can be applied to these problems the descent is often slow

and prone to getting trapped in local minimizers.

To address these problems, we have developed an accelerated geometric gradient

descent method, PDE acceleration. This framework, first proposed by Anthony Yezzi

and Ganesh Sundaramoorthi [10], works by incorporating the momentum of the pre-

vious step into the current descent update. The concept is similar to a ball rolling

down a hill; see Figure 1.1a. In typical gradient descent, the ball is stopped, the gradi-

ent of the hill is checked and the ball moves in the direction of the gradient. This stop

and start behavior however can trap the ball inside a local minimum. While impos-

3



Figure 1.1: Accelerated Descent No Regularization [a] vs Regularization [b]

ing regulation on the energy function can improve the descent, it does not necessarily

guarantee the removal of sufficiently large local minimizers; see Figure 1.1b.

To show the application and usefulness of this framework, we have applied PDE

acceleration to a broad class of computer vision problems that have been formulated

within a variational PDE framework. These image processing problems include in-

version problems such as denoising and deconvolution, active contours, optical flow,

3D stereo-reconstruction as well as computational problems such as Poisson solvers.

The early sections of this manuscript describe the background for these image

processing problems and also establish the mathematical basis for the framework of

PDE acceleration. In this, we detail how the framework is extended from the case

of Ordinary Differential Equation (ODE)s to the much more general PDE domain.

The applications in which we applied the framework are presented in an order of

increasing sophistication and complexity. We begin with an extensive discussion of

discretization schemes, stability analysis, and regularizers. From this foundation, we

first address the most simple of flat space cases the Rudin-Osher-Fatemi (ROF) [11]

denoising functional. Next, PDE acceleration is extended to several suitable candi-
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dates for inversion problems including: deconvolution, compressed sensing and as a

general Poisson solver. With the most straightforward application of the framework

addressed, we move to the case of image registration and diffeomorphisms. For the

optical-flow problem, we demonstrate the versatility of PDE acceleration for the Mid-

dlebury data set [12] and compare the results against the gold standard conjugate

gradient. Then we extend PDE acceleration to the non-convex application of ac-

tive contour segmentation and active surfaces, often used in 3D reconstruction [13].

Through these applications we demonstrate the most powerful use of PDE accelera-

tion in successfully attacking non-convex optimization problems.

1.1 Organization

This dissertation is split into five separate sections: the introduction, the literature

review, applications of PDE acceleration, the conclusion, and the appendices. The

first chapter of this manuscript introduces the research area at hand and directs

the reader to the focus of this dissertation. We also detail, in the introduction,

the principal contributions of this research. Next, the literature review discusses an

overview of the relevant image processing problems, within a variational context, and

gives examples of how acceleration is used in current optimization. In the applications

of PDE acceleration we derive the PDE acceleration framework and present several

applications of the framework to different classes of image processing problems. This

research includes experiments from four of our accepted publications [14, 15, 16, 17].

1.2 Contributions

The contributions of this research are specifically: 1) The presentation of a novel

framework for accelerating variational PDEs. 2) The application of this framework

for the flat-space case of regularized inversion problems. 3) The application of this

framework to the case of diffeomorphisms and optical flow. 4) The extension of this

5



framework for the active contour case. 5) A non-convex application of the framework

to the problem of active surfaces, used in 3D reconstruction.
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CHAPTER 2

LITERATURE SURVEY

2.1 Variational PDEs

Variational partial differential equations have played an important role in image anal-

ysis and computer vision for several decades. First employed in image processing in

the 1980s they are computationally more expensive than single-pass methods but are

highly adaptable and have the potential to offer far better results. They represent the

continuum limit of a class of model-based iterative methods that seek to minimize

cost functions through a descent process.

The first step in these problems is to design an energy functional that captures the

properties desired in the solution of the image processing problem. These functionals

take as input an entire function and typically have the form of an integral over the

domain of the input function. The idea is to find an input function that minimizes the

functional so that it will provide a good solution for the image processing problem.

In order to minimize a cost functional we calculate its first variation [18] to obtain

the descent direction, or the optimal perturbation the input function that maximally

decreases the functional. We refer to this as the (negative) gradient of our energy

with respect to the evolving function. Once the optimal perturbation is known we

can deform the function in this direction using a descent evolution in the form of a

system of PDEs [6]. We refer to this as continuum gradient descent.

The next step is to take our continuum gradient descent equations and implement

them on a finite dimensional grid. To implement these PDEs in software we use

the Euler discretization schemes to write discrete update equations that allow us

to update our function in finite time increments of ∆t. After deriving our update
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equations we must also consider the stability of the discrete PDEs. To determine an

upper bound for our time step, ∆t, we derive the Courant Friedrichs Lewy (CFL)

stability conditions.

One drawback of this minimization technique however is that PDE methods for

non-convex problems are prone to getting trapped in local minimizers. This problem

is especially apparent in highly non-convex formulations such as some active-surface

models where even large degrees of regularization can fail to remove the local minima.

To address this problem we propose the PDE acceleration framework, which we will

use to both accelerate the minimization of cost functionals and to improve on the

robustness of their minimizations, specifically that we can now bypass many of the

local minimizers in the energy space. We will then examine the benefits of PDE

acceleration for cost functionals used in image denoising, deconvolution, optical flow

calculation, active contour driven segmentation, and stereo reconstruction.

2.2 Acceleration in Optimization

Numerous versions of accelerated descent and momentum-based schemes have been

proposed in the literature for finite dimensional problems and are widely used both

within the optimization [19, 20, 21, 22] and machine learning communities [23, 24].

A key property for accelerated descent schemes is an incorporation of the previous

search direction together with the current gradient into the calculation of the next

search direction. As such this inserts memory into the dynamical process.

One of the earliest such techniques is Polyak’s heavy ball method [25] which aver-

ages the local descent with the previous direction. His work was extended and studied

in the continuum case by [26, 27] and is known as the heavy ball with friction. One

of the most famous advances in momentum that followed Polyak’s work is Nesterov’s

accelerated gradient descent [28]. In this seminal work Nesterov proves an optimal

convergence of O(1/k2) for smooth convex problems with k iterations. This in turn
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has led to numerous applications of accelerated descent within the study of convex

optimization [7, 29]. In particular, Su, Boyd and Candes [30] recently showed that

Nesterov acceleration is simply a discretization of the second order ODE

ẍ+ 3
t
ẋ = −∇f(x). (2.1)

Other works have since termed this ODE as continuous time Nesterov [31]. We note

the friction coefficient 3/t vanishes as t→∞, which explains why many implementa-

tions of Nesterov acceleration involve restarting, or resetting the time to t = 0 when

the system is underdamped [31].

In what was perhaps the most expansive extension of Nesterov’s work, Wibinsono,

Wilson and Jordan [32] showed that his accelerated descent methods are discretiza-

tions of the ODE equations of motion for a particular Lagrangian action functional.

This in effect is a variational generalization of Nesterov’s acceleration and allows for

its extension into the PDE setting [14, 16, 17, 33, 34, 15]. Wibinsono, Wilson and

Jordan’s work is summarized as follows. They start with the Bregman divergence of

a convex distance generating function h:

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉 (2.2)

and utilize careful discretizations of the Euler-Lagrange equation for the time integral

(evolution time) of the following Bregman Lagrangian

L(X, V, t) = ea(t)+γ(t)
[
Dh(X + e−a(t)V,X)− eb(t)U(X)

]

where the potential energy U represents the cost to be minimized1. In the Euclidean
1The functions a, b, γ are arbitrary smooth continuously differentiable functions that determine

the weighting of the velocity, potential and damping of the Lagrangian.
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case, where Dh(y, x) = 1
2‖y − x‖

2, this simplifies to

L = eγ(t)

e−a(t) 1
2‖V ‖

2︸ ︷︷ ︸
T

−ea(t)+b(t)U(X)



where T models the kinetic energy of a unit mass particle in Rn. Nesterov’s methods

[28, 22, 35, 36, 37, 38] belong to a subfamily of Bregman Lagrangians with the

following choice of parameters (indexed by k > 0)

a = log k − log t, b = k log t+ log λ, γ = k log t

which, in the Euclidean case, yields a time-explicit generalized action (compared to

the time-implicit standard action T−U from classical mechanics [39]) as follows.

L = tk+1

k

(
T− λk2tk−2U

)
(2.3)

In the case of k = 2, for example, the Euler-Lagrange equations for the integral of

this time-explicit action yield the continuum limit of Nesterov’s accelerated mirror

descent [38] derived in both [40] and [20].

2.3 Variational Methods in Image Processing

Variational PDE methods have been applied in image analysis and computer vision

for several decades [2, 41, 3]. They are an excellent tool for formulating model-based

approaches and have wide utility. In the following sections we provide background for

variational approaches to image denoising, deconvolution, optical flow, active contour

driven segmentation, and stereoscopic segmentation for 3D reconstruction.
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2.3.1 Variational Image Denoising and Deconvolution

In image denoising the objective is to correct the erroneous or corrupted pixels in

an image and improve the quality of the picture. In a typical digital camera the

picture is created from the light measured at the photodiodes. The signal strength

or signal to noise ratio of the image can be described as a function of the number

of photons received. As the level of light per diode decreases, such as in low light

imaging, the pixel values corresponding to those diodes are increasingly subject to

random processes in the imaging sequence. Other sources of image noise can also

be introduced at the level of the detector, for example broken photodiodes, or in

the analog to digital conversation often in the form of electronic noise. We can

approximate this problem through the following signal model:

g = h+ n (2.4)

where g is the received signal, h is the true image we wish to recover, and n is

some noise function of unknown distribution. One of the most common and older

approaches for addressing this problem is the median filter which uses neighboring

pixels to fill in corrupted pixels. The median filter operates with the assumption

that the corrupted pixels do not significantly change the median over short distances

say 3-5 pixel windows. In practice this works quite well for images with minimal

degradation and sufficiently high resolution. To improve upon median filters, one of

the first applications of variational PDEs to computer vision was the advent of total

variational denoising [11]. The premise behind Total Variation (TV) was that clean

images had less total variation than a noisy version of the same image. The ROF

model formulated by Rudin, Osher and Fatemi included an L1 TV norm which they

used to minimize spurious signals in the image. The cost functional, when image u
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is differentiable, is given here:

E(u) = λ

2

∫
Ω

(g − u)2dx+
∫

Ω
|∇u|dx (2.5)

where λ is a tuning parameter used to adjust the amount of regularization and |∇u|

is the norm of the gradient of the evolving image. This initial model has seen wide

adaptation and while initially proposed for additive white Gaussian noise (AWGN)

the ROF model has been widely extended to other noise sources as well [42, 43, 44,

45]. Typically, the most obvious approach to minimizing this cost function is using

the gradient descent update derived from the first variation [11]. One benefit of this

functional is that it lends itself well to convex minimizations [46]. Several prominent

approaches for convex optimizations such as Primal Dual [7], Split Bregman [8, 46]

and ADMM [47, 9] have arisen in recent years and are generally considered to be

the state of the art for denoising problems outside of deep learning based approaches

such as [48]. One idea for potentially improving TV denoising is the modification of

the regularizing term. For example in older schemes, researchers would often use an

L2 penalty or Tikhonov regularization [49]:

E(u) =
∫

Ω

λ

2 (u− g)2 + ||∇u||2 dx (2.6)

This approach preceded the work of Rudin, Osher and Fatemi, and often yielded

visually worse reconstructions. However, it does avoid some of the unintended be-

havior of the ROF model such as staircasing. Another idea is to create an interplay

between an L1 and L2 norm by introducing a Beltrami norm:

E(u) =
∫

Ω

λ

2 (u− g)2 + 1
β

√
1 + ||β∇u||2 dx (2.7)

Here the intent is that for a sufficiently large β the norm would behave as an L1
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norm but that it could be adjusted so as to avoid some of the associated staircasing2

[50].

2.3.2 Deconvolution

In the deconvolution problem, we are typically trying to reverse the effect of a distor-

tion on our received signal. Physically this problem often occurs because signals must

propagate through space from the source to the receiver. Physical phenomena such

as the effect of the atmosphere, water vapor and spherical spreading alter the signal

as it propagates from the source to the receiver. In image processing severe signal

degradation can also result from issues in the imaging system. For example, cameras

that have slow shutter speeds are often prone to motion blur because objects in the

scene can undergo significant movement during the time when the shutter is open.

Mathematically we can describe the effects of the physical world on our received

signals using a linear convolution. Consider the standard model [3] in a degraded

image:

g = K ∗ h+ n (2.8)

where g is again the received signal, K is the convolution operator that encom-

passes the channel effect and n is some unknown noise distribution. This inversion

problem, trying to undo the effect of the channel, is immediately much more difficult

than the case of denoising. Even if a very good estimate for the convolution operator

K is obtained attempting to simply deconvolve the image will leave the result with

large errors centered at each of the corrupted pixels3. One way to address this prob-

lem is a two step approach where the image is first denoised and then deconvolved.

An alternative approach is to attempt the deconvolution with a strong regularizer
2We use both Equation 3.82 and Equation 2.5 for our later experiments.
3Additionally the problem becomes even more difficult when K is not known or easily estimated.
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that can help minimize the effect of the noise on the final result. For our work we

will be considering the case where K is well known or the non-blind problem4. Let us

first consider the same TV approach as was used for denoising. In this deconvolution

problem, we are generally seeking to minimize some norm of the form ||(K ∗ u− g)||.

In the case of TV, with a smooth image u, this gives rise to the following functional

[52]: ∫
Ω

(g −K ∗ u)2dx+ β
∫

Ω
|∇u|dx (2.9)

where the regularizer5 with coefficient β constrains the smoothness of the decon-

volved image. As in the case of Equation 2.5, several popular convex minimizations of

Equation 2.9 have risen to prominence in the literature and include ADMM, Primal

Dual, and Split Bregman [53, 7, 54] among others. Another recent approach [55,

51, 3] has been to replace the TV norm with the edge preserving regularizers used

in the Mumford-Shah (MS) functional6. These penalty terms provide an improved

restoration of edges over TV but often leads to the presence of artificial ridges and

peaks in the restored images. One alternative to both the TV and MS regularizers

is to use a Beltrami norm [50]. For Equation 2.9 and Equation 2.5 this would entail

a simple replacement of the regularizer by 1
β

√
1 + ||β∇u||2. One of the benefits of

this regularizer is that the gradient descent update is generally better behaved and

is known to work well [50]. In the formulation of the second order update equation

Equation 3.82 and in [14] we choose this as a candidate for PDE acceleration because

of the success this norm had already seen with first order schemes.
4While we do not consider it in depth here, the case of blind or rather semi-blind restoration is

of significant interest in the community; these problems are often approached by constraining the
characteristics of the linear convolution operator [51]. This is typically done by modeling the physics
and optics of the imaging device [3].

5An earlier approach was to use an L2 regularizer ; this however led to significant over smoothing
of the image [49, 3].

6In their seminal 1989 paper [5, 56] Mumford and Shah proposed an energy functional that
allowed for the computation of piece-wise smooth iterations u from a given initial state g. The
initial applications were for image segmentation.
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2.3.3 Variational Optical Flow

A popular problem in image processing is to track an object from one frame to

the next. One approach to this is to examine how the brightness pattern in the

scene changes from image to image. By resolving how the brightness in a scene is

changing we can use this to characterize the movement of the objects we wish to track.

This problem, commonly referred to as optical flow, lends itself well to variational

formulations [57, 58, 59, 60, 61, 62, 63, 64] where the objective is to calculate the flow

or displacement of brightness patterns from one image to the next. Many researchers

in the field of computer vision will often refer to both of these calculations as optical

flow. In practice the shifts and changes in the brightness correspond to a physical

displacement of objects in the scene or a movement in the camera [65]. One of

the earliest and most well-known variational approaches was proposed by Horn and

Schunk [57]. In their seminal paper the authors derive a model that relates the

change in image brightness at a point to the motion of the brightness pattern. This

gives rise to the following constraint Ixu + Iyv + It = 0 where Ix, Iy, and It are the

spatial and time derivatives of the image and u and v constitute the horizontal and

vertical components of the optical flow. Horn and Schunk also propose a smoothness

constraint where they minimize the sum of the L2 norms of the flow vector7. Their

cost functional is provided in Equation 2.10.

E =
∫ ∫ (

(Ixu+ Iyv + It)2 + α2(||∇u||2 + ||∇v||2)
)
dxdy (2.10)

Here α controls the degree of smoothness in the optical flow.

Another popular approach is to penalize the brightness pattern displacement be-

tween the first and second image. This second approach was first proposed by Lukas

and Kanade and requires computing the forward displacement φ(x). The general idea
7Recall that u and v occupy the same dimensionality as the image.
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in the Lukas and Kanade approach is given as follows penalize
∑
i,j

[I1(i+ui,j, j+vi,j)−

I0(i, j)] where i, j are the indices of each pixel and I1 and I0 are the images in which

we desire to compute the brightness pattern displacement [66, 67]. One advantage

of this approach is that it allows for the calculation of larger brightness shifts than

Horn and Schunk. For our experiments in optical flow we used the standard sum of

squared differences for this penalty as given in [68] and the second order smoothness

constraint imposed by [69, 70]. Writing the forward displacement as φ(x) = [u, v]

allows us to write the form of Equation 2.118.

U(φ) = 1
2

∫
Rn
|I1(φ(x))− I0(x)|2 dx+ 1

2α
∫
Rn
|∇(φ(x)− x)|2 dx (2.11)

One of the limitations of most variational optical flow methods is that calculating

larger shifts in the brightness are often expensive and slow to converge. In order

to have a more fair comparison between PDE acceleration and other methods, we

implemented several best-practices to speed up the convergence of the discrete im-

plementations. These best-practices were not necessary for PDE acceleration but

provided better comparisons of real-world performance.

One of the most popular best-practices9 that has emerged is to use an iterative

pyramid scheme [67]. In this scheme the idea is to compute the optical flow at lower

sub-sampled resolutions of the image (see Figure 2.1) and to then interpolate the

flow to the next level of the pyramid. The interpolated flow can then be used to

initialize the starting value in the descent scheme at that higher resolution. This

saves extensive time in the highest resolutions where the recovery problem is the

most challenging due to having the largest brightness pattern displacements. This

basic strategy of linearization10, iterative warping and image pyramids have been
8Far more expansive discussions of this narrative and the development of optical flow methods

can be found in [67, 71, 64, 65] which we will use in our later experiments.
9A more comprehensive list of competing approaches and modern best practices can be found in

[67].
10In [60, 61] the authors linearize the image intensities. In [59] linearization is avoided but the
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Figure 2.1: Optical Flow pyramid used for up-sampling flow

the dominant approach to many variational optical flow models (e.g., [57, 58, 59,

60, 61]), regardless of the regularization that is used (e.g., use of robust norms, total

variation, non-local norms, etc). And despite some progress, most modern optical flow

algorithms involve simplification of the minimization into a linear problem and employ

computational-optimizations [67] such as up-sampling and intermediate filters.

In our research, however, we constructed accelerated gradient descent algorithms

that are applicable to any variational optical flow algorithm and we avoid the lin-

earization step and aim to obtain a better optimizer. Here, we consider the case of

optical flow modeled as a global diffeomorphism, but in principle this can be gener-

alized to piecewise diffeomorphisms as in [63]. To evaluate optical flow algorithms it

is also necessary to compare11 on one of the several available data sets used for com-

paring recovered flow maps [73, 12, 74]. For the experiments presented in section 3.4

authors still employ a similar coarse to fine strategy.
11One of the most common methods for computing optical flow and the one we compared against

was conjugate gradient [72].
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we choose to do our evaluation on the Middlebury12 data set [12] which is widely

used throughout the published literature. We show empirically that our accelerated

method can out-perform the standard linearized approach, conjugate gradient, for op-

tical flow in terms of computational speed. We likewise employ the pyramid scheme to

better illustrate the performance advantages of PDE acceleration even when utilizing

modern optimizations and best practices.

2.3.4 Diffeomorphic Image Registration

This work relates to the literature on diffeomorphic image registration [76, 77, 78, 79],

where the goal, similar to ours, is to compute a registration between two images as

a diffeomorphism. There a diffeomorphism is generated by a path of smooth velocity

fields integrated over time. Rather than formulating an optimization problem directly

on the diffeomorphism, the optimization problem is formed on a path of velocity fields.

The optimization problem is to minimize
∫ 1

0 ‖v‖2 dt where v is a time varying vector

field, ‖·‖ is a norm on velocity fields, and the optimization is subject to the constraint

that the mapping φ maps one image to the other, i.e., I1 = I0◦φ−1. The minimization

can be considered as the minimization of an action integral where the action contains

only a kinetic energy. The norm is chosen to be a Sobolev norm to ensure that the

generated diffeomorphism (by integrating the velocity fields over time) is smooth. The

optimization problem is solved in [76] by a Sobolev gradient descent on the space of

paths. The resulting path is a geodesic with Riemannian metric given by the Sobolev

metric ‖v‖. In [77], it is shown these geodesics can be computed by integrating a

forward evolution equation, determined from the conservation of momentum, with an

initial velocity.

Our framework instead uses accelerated gradient descent. Like the work of [76,

77], it is derived from an action integral, but the action has both a kinetic energy
12In our comparison the two recovery benchmarks are average angular error and end point error.

These reported errors are two of the most common to encounter in the field of optical flow [75].
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and a potential energy, which is the objective functional that is to be optimized.

In this current work, our kinetic energy arises naturally from physics rather than a

Sobolev norm. One of our motivations in this work is to get regularizing effects of

Sobolev norms without using Sobolev norms, since that requires inverting differential

operators in the optimization, which is computationally expensive. Our kinetic energy

is an L2 metric weighted by mass. Our method has acceleration, rather than zero

acceleration in [76, 77], and this is obtained by endowing a diffeomorphism with mass,

which is a mass density in Rn. This mass allows for the kinetic energy to endow

the optimization with dynamics. Our optimization is obtained as the stationary

conditions of the action with respect to both velocity and mass density. The latter

links our approach to optimal mass transport, described earlier.

2.3.5 Connections to Sobolev Optimization

Our work is in part motivated by Sobolev gradient descent approaches [80, 76, 81,

82, 83, 84, 85, 86, 87, 88] for optimization problems on manifolds, which have been

used for segmentation and optical flow problems. These approaches are general in

that they apply to non-convex problems, and they are derived by computing the

gradient of a cost functional with respect to a Sobolev metric rather than an L2 metric

typically assumed in variational optimization problems. The resulting gradient flows

have been demonstrated to yield coarse-to-fine evolutions, where the optimization

automatically transitions from coarse to successively finer scale deformations. This

makes the optimization robust to local minimizers that plague L2 gradient descents.

We should point out that the Sobolev metric is used outside of optimization problems

and have been used extensively in shape analysis (e.g., [89, 90, 91, 92]). While such

gradient descents are robust to local minimizers, computing them typically involves

an expensive computation of an inverse differential operator at each iteration of the

gradient descent. In the case of optimization problems on curves and a very particular
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form of a Sobolev metric this can be made computationally fast [82], but the idea does

not generalize beyond curves. In this work, we aim to obtain robustness properties of

Sobolev gradient flows, but without the expensive computation of inverse operators.

Our accelerated approach involves averaging the gradient across time in the descent

process, rather than an averaging across space in the Sobolev case. Despite our goal

of avoiding Sobolev gradients for computational speed, we should mention that our

framework is general to allow one to consider accelerated Sobolev gradient descents

(although we do not demonstrate it here), where there is averaging in both space and

time. This can be accomplished by changing the definition of kinetic energy in our

approach. This could be useful in applications where added robustness is needed but

speed is not a critical factor.

2.3.6 Variational Active Contours

Geometric partial differential equations have played an important role in image analy-

sis and computer vision for several decades. Applications have ranged from low-level

processing operations such using active contours and active surfaces, image regis-

tration, and motion estimation via optical flow; to higher level processing such as

multiview stereo reconstruction, visual tracking, simultaneous localization and map-

ping (SLAM), and shape analysis. See, for example, [93, 94, 95] for introductions

to PDE methods already established within computer vision within the 1990’s, in-

cluding level set methods [96] already developed in the 1980’s for shape propagation.

Several such PDE methods have been formulated, using the calculus of variations [18]

as gradient descent based optimization problems in functional spaces, including geo-

metric spaces of curves and surfaces. For example, several active contour models are

formulated as gradient descent PDE flows of application-specific energy functionals

E which relate the unknown contour C to given data measurements. Such energy

functionals are chosen to depend only upon the geometric shape of the contour C,
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not its parameterization. Under these assumptions the first variation of E will have

the following form

δE = −
∫
C
f (δC ·N) ds (2.12)

where fN represents a perturbation field along the unit normal N at each contour

point and ds denotes the arclength measure. Note that the first variation depends

only upon the normal component of a permissible contour perturbation δC. The form

of f will depend upon the particular choice of the energy. For example, in the popular

Chan-Vese active contour model [97] for image segmentation, f would be expressed

by (I − c1)2 − (I − c2)2 + ακ where I denotes the image value at a given contour

point, α an arclength penalty weight, κ the curvature at a given contour point, and

c1 and c2 the means of the image inside and outside the contour respectively. As an

alternative example, the geodesic active contour model [98, 99] would correspond to

f = φκN − (∇φ · N)N where φ > 0 represents a point measurement designed to

be small near a boundary of interest and large otherwise. In all cases, though, the

gradient descent PDE will the following explicit form.

∂C

∂t
= fN [explicit gradient flow] (2.13)

This class of contour flows, evolving purely in the normal direction, may be imple-

mented implicitly in the level set framework [96] by evolving a function ψ whose zero

level set represents the curve C as follows

∂ψ

∂t
= −f̂‖∇ψ‖ [implicit level set flow]

where f̂(x, t) denotes a spatial extension of f(s, t) to points away from the curve.
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2.3.7 Sobolev gradients for Active Contours

The most notorious problem with most active contour and active surface models is

that the normal speed function f depends pointwise upon noisy or irregular data

measurements, causing immediate fine scale perturbations in the evolving contour

which cause it to become very easily attracted to (and trapped within) spurious local

minimizers. This often makes the active contour model strongly dependent upon

initialization, except for a limited class of convex or poly-convex energy functionals

for which numerical schemes can be devised to reach global minimzers reliably. The

traditional way to combat this sensitivity is to add strong regularizing terms to the

energy functional which penalize fine scale irregularities in the contour shape. Similar

problems and regularization strategies are applied in other PDE based optimization

applications outside the example of the illustrative active contour being considered

here (for example, in Horn and Schunck style optical flow computation [100]).

This energy regularization strategy has two drawbacks. First, most regularizers

lead to second order (or higher) diffusion terms in the gradient contour flow, which

impose much smaller time step limitations on the numerical discretization of the

evolution PDE. Thus, significantly more evolution steps are required, which incurs

a heavy computational cost in the minimization process. Second, regularizers, while

endowing a level of resistance to noise and spurious structure, impose regularity on the

final converged contour as well, making it difficult or impossible to capture features

such as sharp corners, or narrow protrusions/inlets in the detected shape. This can

lead to unpleasant trade-offs in several applications.

For the illustrative case of active contours, significantly improved robustness in

the gradient flow, without additional energy regularization, can be attained by using

geometric Sobolev gradients [101, 102, 80, 103] in place of the standard L2-style

gradient used in traditional active contours. We refer to this class of active contours as

Sobolev active contours, whose evolution may be described by the following integral-
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partial-differential equation

∂C

∂t
= (fN) ∗K [Sobolev gradient flow] (2.14)

Here ∗ denotes convolution in the arclength measure with a smoothing kernel K

to invert the linear Sobolev gradient operator. The numerical implementation is not

carried out this way, but the expression gives helpful insight into how the Sobolev gra-

dient flow (Equation 2.14) relates to the usual gradient flow (Equation 2.13). Namely,

the optimization process (rather than the energy functional itself) is regularized by

averaging point-wise gradient forces fN through the kernel K to yield a smoother

contour evolution. This does not change the local minimizers of the energy functional,

nor does it impose extra regularity at convergence, but it induces a coarse-to-fine evo-

lution behavior [104, 84, 105] in the contour evolution, making it much more resistant

to spurious local minima due to noise or other fluctuations in f .

However, while the Sobolev gradient descent method is extremely successful in

making an active contour or surface (or other evolving classes of functions) resistant

to a large class of unwanted local minimizers, it comes at heavy computation cost. The

spatial integration of gradient forces along the evolving front must occur during every

time step, and while there are tricks to do this quickly for closed 2D curves [106, 107,

108, 109] there are no convenient alternatives for 3D surfaces, nor for regions (even in

2D) when applying Sobolev gradient flows to other functional objects (images, optical

flow, etc.). The linear operator inversion imposes a notable per-iteration cost, which

we will instead distribute across iterations in the upcoming accelerated coupled PDE

evolution schemes.
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2.3.8 Variational Stereo Reconstruction

The problem of multi-view stereo vision is the reconstruction of a 3D object from a

collection of calibrated 2D images. The goal of most stereo algorithms is to produce a

constrained 3D geometry that accurately corresponds to a set of 2D images [110]. This

task can be addressed through a variety of approaches such as point correspondence

using feature mapping, dense correspondence, 3D shape methods and deep neural

networks [41]. For our research and experiments we focused on shape from silhouette

methods, which are a subset of the larger class of 3D shape methods13 [41].

Silhouette based methods date back to the 1970s and infer the geometry of the

underlying structure [111]. In silhouette driven reconstruction the central idea is

to estimate the visual hull of the object we wish to reconstruct and to constrain

it so that the silhouettes of the reconstructed object correspond to the silhouettes

from the calibrated 2D images [112]. One approach for framing the problem is to

construct an energy minimization that seeks to directly impose a 3D shape. One of

the first endeavours to pose the problem in a variational framework was undertaken by

Faugeras and Keriven [113] who proposed minimizing a local matching score. Their

work was extended by Yezzi and Soatto [13] who proposed a region based penalty

that sought to minimize the re-projection errors of the generated 3D surface. One

of the advantages of the latter approach was the ability to impose regularity and

smoothness on the reconstructed surface. Their algorithm stereoscopic-segmentation

was also bidirectional [13] and unlike some of the volumetric methods that preceded

them such as space carving [114] could recover portions of the 3D model that were

not included in the initial enveloping region. However, one of the limitations of

the energy minimization proposed in [13] was that the functional was non-convex

and relied on a first-order gradient descent scheme that could become trapped within
13The class of 3D shape methods includes a wide variety of approaches such as shape from shading,

shape from texture, shape from silhouette and others.
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local minimizers. In response to this limitation several convex variational formulations

were put forward in the ensuing years [115, 116, 117]. Although these convex cost

functionals are less faithful approximations of the reconstruction problem they are

in many cases able to outperform the non-convex formulations that preceded them

[116]. In recent years there has been renewed interest in non-convex variational stereo

reconstruction [118, 119, 16]. In particular our application of PDE acceleration [16]

given in subsection 3.6.2 was able to remedy the problem of local minima trapping in

stereoscopic-segmentation without the need of excessive regularization.

2.3.9 Variational Optimization Methods

Over the past few decades, many advancements have been made in optimizing the

minimization of variational computer vision problems. In this section we very broadly

mention some of the prevailing optimization methods. Readers of this dissertation

should be aware that there are a variety of methods for solving both convex and non-

convex variational computer vision problems. Convex optimization generally refers

to problems in which both the function and search area are convex [120]. This has

several benefits in that there is a single global minimum and that descent schemes

do not get trapped in local minimizers. Over the past few decades there has been

a steady progression in convex optimization methods for tackling image processing

problems. These include prominent techniques such as Primal Dual, Split Bregman

and ADMM [7, 121, 9].

One of the caveats of limiting optimization to convex problems however is that

the problems must be engineered with approximations that lend to the usage of a

convex energy function. This is straightforward in flat space cases such as denoising

or deconvolution but is significantly harder in problems such as active contours or

stereo-reconstruction [115]. And while these formulations can be globally minizable

in regards to the cost function, they can also sacrifice problem accuracy that would
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otherwise be maintained by a non-convex framing of the problem. These methods

can also be non-trivial to implement and can require significant background in lin-

earization and model formulation.

And while there are several methods such as gradient descent, conjugate gradi-

ent, Sobolev gradients and others for attacking non-convex minimizations they are

typically slow and can also get trapped in local minimizers in the energy space [101,

102, 80, 103]. And although increasing the amount of regularity can improve perfor-

mance it does not always suffice. However, using PDE acceleration we demonstrate

that not only do we achieve comparable performance to methods such as ADMM and

Primal Dual in convex variational problems, but that our framework is also highly

applicable to non-convex optimization. We also demonstrate that PDE acceleration

is straightforward to implement and show that any variational problem that has been

formulated with gradient descent can now be modified to use PDE acceleration.
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CHAPTER 3

PDE ACCELERATION

3.1 Introducing the PDE Acceleration Framework

We now develop a general strategy, based on a generalization of the Euclidean case

of Wibisono, Wilson, and Jordan’s formulation [32] for extending accelerated opti-

mization into the PDE framework. While our approach will be motivated by the

variational ODE framework formulated around the Bregman divergence in [32], we

will have to address several mathematical, numerical, and computational considera-

tions which do not need to be addressed in finite dimensions.

For example, the evolving parameter vector in finite dimensional optimization

can naturally be interpreted as a single moving particle in Rn with a constant mass

which, in accelerated optimization schemes, gains momentum during its evolution.

Since the mass is constant and fixed to a single particle, there is no need to explicitly

model it. When evolving a continuous curve, surface, region, or function, however,

the notion of accumulated momentum during the acceleration process is much more

flexible, as the corresponding conceptual mass can be distributed across the entire

domain. The outcome of this formulation will be a coupled system of first-order

PDE’s, which govern the simultaneous evolution of the continuous unknown (curves

in the case considered here) and its velocity.

In addition, as pointed out from the onset, the numerical discretization of accel-

erated PDE models will also differ greatly from existing momentum based gradient

descent schemes in finite dimensions. Spatial and temporal steps sizes will be deter-

mined based on CFL stability conditions for finite difference approximations of the

PDE’s and viscosity solution schemes will be required in most cases to propagate
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through shocks and rarefactions that may occur during the evolution of a continuous

front. This is part of the reason we replace the more general Bregman-Lagrangian in

[32] with the simpler time-explicit generalized action (Equation 2.3), together with

the additional benefit that such a choice allows us to work directly with the contin-

uum velocity of the evolving entity (or other generalizations that are easily defined

within the tangent space of its relevant manifold) rather than finite displacements

utilized by the Bregman divergence (Equation 2.2).

Just as in [32], the energy functional E to be optimized over the continuous infinite

dimensional unknown (whether it be a function, a curve, a surface, or a diffeomorphic

mapping) will represent the potential energy term U in the time-explicit generalized

action (Equation 2.3). Next, a customized kinetic energy term T will be formulated

to incorporate the dynamics of the evolving estimate during the minimization process.

Note that just as the evolution time t would represent an artificial time parameter for

a continuous gradient descent process, the kinetic energy term will be linked to arti-

ficial dynamics incorporated into the accelerated optimization process. As such, the

accelerated optimization dynamics can be designed completely independently of any

potential physical dynamics in cases where the unknown might be connected with the

motion of real objects. Several different strategies can be explored, depending upon

the geometry of the specific optimization problem, for defining kinetic energy terms,

including various approaches for attributing artificial mass (both its distribution and

its flow) to the actual unknown of interest in order to boost the robustness and speed

of the optimization process.

Once the kinetic energy term has been formulated, the accelerated evolution will

obtained (prior to discretization) using the Calculus of Variations [18] as the Euler-

Lagrange equation of the following time-explicit generalized action integral

∫ tk+1

k

(
T− λk2tk−2U

)
dt (3.1)
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In the simple k = 2 case, the main difference between the resulting evolution equations

versus the classical Principle of Least Action equations of motion (without the time

explicit terms in the Lagrangian) is an additional friction-style term whose coefficient

of friction decreases inversely proportional to time. This additional term, however, is

crucial to the accelerated minimization scheme. Without such a frictional term, the

Hamiltonian of the system (the total energy T + U), would be conserved, and the

associated dynamical evolution would never converge to a stationary point. Friction

guarantees a monotonic dissipation of energy, allowing the evolution to converge to

a state of zero kinetic energy and locally minimal potential energy (the optimization

objective).

This yields a natural physical interpretation of accelerated gradient optimization

in terms of a mass rolling down a potentially complicated terrain by the pull of

gravity (Figure 3.1). In gradient descent, its mass is irrelevant, and the ball always

rolls downward by gravity (the gradient). As such the gradient directly regulates its

velocity. In the accelerated case, gravity regulates its acceleration. Friction can be

used to interpolate these behaviors, with gradient descent representing the infinite

frictional limit as pointed out in [32].

Acceleration comes with two advantages. First, whenever the gradient is very

shallow (the energy functional is nearly flat), acceleration allows the ball to accumu-

late velocity as it moves so long as the gradient direction is self reinforcing. As such,

the ball approaches a minimum more quickly. Second, the velocity cannot abruptly

change near a shallow minimum as in gradient descent. Its mass gives it momentum,

and even if the acceleration direction switches in the vicinity of a shallow minimum,

the accumulated momentum still moves it forward for a certain amount of time,

allowing the optimization process to look ahead for a potentially deeper minimizer.

A brief recounting of the flat linear function case1 that is addressed in [14] and ap-
1A far more rigorous analysis and derivation of the flat space case can be found in [14, 122]. We

would refer the reader to [34] for an analysis of the optimal damping coefficient.
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plied in subsection 3.3.3 is provided here. Consider the calculus of variations problem

min
u

E(u) =
∫

Ω
Φ(x,∇u) + ψ(x, u) dx (3.2)

where the minimization of the Euler-Lagrange equation is satisfied by

∇E(u) = ψ(x, u)− div(∇Φ(x,∇u)) = 0. (3.3)

Where Φ = Φ(x, p), ∇Φ = ∇pΦ and ψ = ψ(x, u). Note that the gradient ∇E(u)

satisfies d
dε

∣∣∣∣
ε=0
E(u + εv) =

∫
Ω(∇E[u] v) dx ∀ v smooth. This is denoted as the L2

gradient. We define the action integral as follows:

J [u] =
∫ t1

t0
k(t)

(1
2

∫
Ω
ρu2

t dx− b(t)E(u)
)
dt. (3.4)

where k(t) and b(t) are time-dependent weights. Here p(x) represents the mass

density and 1
2
∫
ρu2

tdx and E(u) are the kinetic and potential components of the energy

respectively. Recall that the PDE accelerated descent equations are the equations of

motion in a Lagrangian framing corresponding to the action integral J. To derive the

equations of motion we take the variation on J:

0 = d

dε

∣∣∣∣
ε=0
J [u+ εv] =

∫ t1

t0

∫
Ω
k(t)ρut − k(t)b(t)∇E[u] v dx (3.5)

Assuming smooth v and compact support for Ω × (to, t1) and integrating by parts

about t yields:

0 =
∫ t1

t0

∫
Ω

[
− ∂

∂t
k(t)ρut − k(t)b(t)∇E[u]

]
v dx (3.6)

From a simple rearrangement of the terms to the left-hand side we obtain the
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PDE accelerated descent equations:

∂

∂t
(k(t)ρut) = −k(t)b(t)∇E[u] (3.7)

Defining a = k′(t)/k(t) allows us to rewrite the descent equations as:

utt + aut = −b(t)ρ(t)∇E(u) (3.8)

Although we have derived the general form of the accelerated descent equation the

benefits of this work are not immediately evident. What we will find in the derivations

of the CFL conditions from the discrete equations of our PDE is that we are able to

realize improved time steps when compared to gradient descent. The gradient descent

PDE ut = −∇E[u] is a diffusion equation which requires a time step of ∆t ∼ ∆x2 for

stability. PDE acceleration on the other hand is a wave equation which allows much

larger time steps on the order of ∆t ∼ ∆x [121]. Thus our application of acceleration

can also be viewed as a realization of a relaxed CFL condition. Furthermore the

fundamental work of [34] proves both energy monotonicity and a linear convergence

rate for the accelerated descent in Equation 3.8. This is stated from [34, 14] as

follows:

Lemma 1 (Energy monotonicity [34]) Assume a(t), b(t) ≥ 0 and let u satisfy Equa-

tion 3.8. Suppose either u(x, t) = g(x) or ∇Φ(x,∇u) · n = 0 on δΩ Then

∂

∂t
(K[u] + b(t)E[u]) = −2a(t)K[u] + b′(t)E[u] (3.9)

where K[u] =
∫

Ω ρu
2
tdx. In particular, total energy is always decreasing provided

b′(t) ≤ 0 and E[u] ≥ 0.

Theorem 1 (Convergence rate [34]) Let u satisfy Equation 3.8 and let u∗ be a solu-

tion of ∇E[u∗] = 0 in Ω. Assume Φ is uniformly convex in ∇u, Ψ is convex and Ψzz
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is bounded above, u = u∗ on ∂Ω, a(t) = a > 0 is constant, and b(t) ≡ 1 and p ≡ 1.

Then there exists C, β > 0 such that

||u− u∗||2H1(Ω) ≤ Cexp(−βt) (3.10)

The same convergence rate analysis holds for gradient descent ut = −∇E[u] if the

conditions on E are satisfied. Another necessary step in the development of this

work is the selection of an optimal damping coefficient a > 0. Consider the linear

PDE acceleration equation from [34, 14]:

utt + aut + Lu+ λu = f in Ω× (0,∞) (3.11)

where L is a linear second-order elliptic operator. The Fourier analysis from [34]

gives the optimal choice of the damping parameter as:

a = 2
√
λ1 + λ (3.12)

where λ1 is the first non-trivial eigenvalue2 of L for either the Dirichlet or Neumann

boundary conditions. Here the optimal convergence rate is given as:

|u(x, t)− u∗(x)| ≤ Cexp(−at). (3.13)

Note that the case of λ > 0 corresponds to the presence of a fidelity term in the

image processing problem. The fidelity term drives and accelerates the PDE mean-

while the damping coefficient slows the descent and allows for an optimal convergence

rate. This algorithm is quite successful for problems such as TV restoration where

the problem is not strongly convex but has a fidelity term [14].
2In the case where L is degenerate elliptic, λ1 = 0. This roughly corresponds to a non-strongly

convex optimization problem.
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For the later sections (chapter 3) we consider the case of unit density ρ and

unit energy scaled b for Equation 3.8 to give the form of the equation used in our

experiments:

utt = −aut −∇E(u) (3.14)

In the following sections we provide an extensive discussion of discretization strate-

gies and PDE stability analysis. After this we apply the PDE acceleration framework

to image denoising, deconvolution, compressed sensing, as a general optimizer for the

Poisson equation, optical flow, active contours, and active surfaces.

3.2 Discretization Schemes

In the course of this research we have done a number of experiments and applications

of the accelerated PDE framework derived in [14, 34, 16] to build towards the goal

of accelerating variational image processing models using PDE acceleration. The

accelerated gradient PDE typically has the form of a damped wave equation:

utt = −aut −∇E(u) (3.15)

where ut and utt are the first and second order derivatives of the evolving entity

in time respectively and ∇E(u) is the gradient of the energy for the evolving entity.

Here our primary intended usage of the term “acceleration” refers to the physical

interpretation of acceleration as the second time derivative of the evolving entity.

Here the aut term with damping coefficient a acts to dissipate the kinetic energy [14].

Our secondary usage of the term acceleration applies to a special class of variational

problems where a less restrictive CFL condition allows coarser time sampling of the

discretized PDE’s. Here an improvement in the CFL conditions for these PDE’s is

realized numerically by much larger step sizes for both their explicit and semi-implicit
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discretizations. Thereby this allows another interpretation of the term “acceleration”

as a raw computational speed-up, as shown conceptually in Figure 3.1.

Figure 3.1: Illustration of Gradient descent PDE vs Accelerated Gradient PDE: Gra-
dient descent PDEs and the corresponding accelerated gradient PDEs generally follow
different paths. Further, accelerated PDEs lead to discretization schemes with less
restrictive CFL conditions corresponding to larger discrete steps than gradient de-
scent PDE’s, leading to faster convergence in the convex case. Note in the case of
strictly convex problems B = C.

However, these advantages in improved CFL conditions are not immediately ob-

vious. From the continuous form of the accelerated gradient PDE arises the question

of how to best discretize the PDE. To answer this we derive several discretization

schemes along with their accompanying CFL conditions.

3.2.1 Explicit Gradient Descent Scheme

To introduce the required mathematical machinery we first begin with an explicit

forward Euler discretiziation of the continuous gradient descent PDE. To begin we

first write the general form of the first order elliptic equation:

ut = −∇E[u] (3.16)
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Starting with the forward difference in time we expand the left-hand side to obtain:

u(x, t+ ∆t)− u(x, t)
∆t = −∇E (3.17)

From this we can write our update equations:

∆un(x) = −∆t∇En

un+1(x) = un(x) + ∆un(x)
(3.18)

In this case un(x) denotes the nth update of u(x, t) and ∆un is u(x, n∆t+ ∆t)−

u(x, n∆t) for a particular n and un+1(x)=̇u(x, (n + 1)∆t). Here the nth iterate of

the gradient ∇En(x) corresponds to ∇E(x, n∆t) which is the discrete approximation

computed at iteration n. To perform a stability analysis we now consider the

required upper bound on the time step ∆t. This can be found using a routine CFL

analysis for our particular discretization. The typical approach is to perform a Von

Neumann analysis and linearization of ∇En [11]. We begin by taking a discrete

Fourier transform of Equation 3.18.

Un+1(ω)− Un(ω) ≈ −∆t[z(ω)Un(ω)] (3.19)

To reach the structure of Equation 3.19 we rely on an explicit computation of

∇En using only values of un. In this case the linearization of ∇En consists only of a

combination of un values with Discrete Fourier Transform (DFT) of form z(ω)Un(ω).

Here Un(ω) denotes the DFT of un. And z(ω) is referred to as the gradient amplifier,

which is defined as:

z(ω) = DFT (Ln)
DFT (un) (3.20)

where Ln is the linearized homogeneous component of ∇En. From Equation 3.19
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we can then write the following update equation:

Un+1(ω) ≈ (1−∆tz(ω))︸ ︷︷ ︸
ξ(ω)

Un(ω) (3.21)

Here we have an guarantee of stability as long as the update amplification factor

ξ(ω) does not have a complex magnitude that exceeds 1. This condition can be easily

expressed as:

ξ(ω)ξ∗(ω) = (1−∆tz(ω))(1−∆tz∗(ω)) ≤ 1 (3.22)

which then allows us to write our time step restriction.

∆t ≤ z(ω) + z∗(ω)
z(ω)z∗(ω) = 1

z(ω) + 1
z∗(ω) = 2R

(
1

z(ω)

)
(3.23)

In the special-case of elliptic operators which are common to regularized optimiza-

tion in the domain of image processing the gradient amplifier term is both real and

non-negative: z(ω) ≥ 0. This allows us to simplify the stability constraint as follows:

∆t ≤ 2
zmax

(3.24)

Here zmax is the maxω z(ω).

3.2.2 First Order Accelerated Scheme

We now present the explicit discretizations of the accelerated PDE (Equation 3.15).

However to undertake the required analysis we will require an additional tool, the

Root Amplitude Lemma [14]. The lemma is restated here for the benefit of the

reader.

Lemma 2 Root Amplitude Lemma Given a quadratic equation Aξ2 +Bξ+C = 0

with real coefficients (A 6= 0), its roots will satisfy |ξ| ≤ 1 if and only if |B||A|−1 ≤ C
A
≤ 1
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(or equivalently A > C and A+ C > |B| for positive A 3).

To write the forward difference scheme for Equation 3.15 we begin by using a

second order central difference for utt and a forward difference for ut from equation

Equation 3.15.

u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)
∆t2 + a

u(x, t+ ∆t)− u(x, t)
∆t = −∇E(x, t) (3.25)

Using the same notation as in the gradient descent case we rewrite this as:

un+1 − 2un + un−1

∆t2 + a
un+1 − un

∆t = −∇E (3.26)

With some minor algebraic manipulation we are able to obtain the corresponding

update equation:

un+1(x) = (2 + a∆t)un − un−1 −∆t2∇En

1 + a∆t (3.27)

We then perform a DFT to find the frequency domain form of the update equation:

Un+1(ω) = (2 + a∆t−∆t2z(ω))Un − Un−1

1 + a∆t (3.28)

where z(ω) again denotes the gradient amplifier [123]. We can then substitute

Un±m = ξ±mUn, where ξ(ω) is again given as the overall update amplification factor.

The remaining math is given as follows: first multiply the left hand side by the

denominator, move all terms to the left and substitute the remaining terms. This

gives the equation:

(1 + a∆t)ξ2 + (∆t2z(ω)− 2− a∆t)ξ + 1 = 0 (3.29)
3A proof of this lemma can be found in [14].
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where Un+1 7→ ξ2, Un 7→ ξ and ∇En 7→ z(ω)Un 7→ z(ω)ξ. From this we assign

coefficients for a quadratic equation:

(1 + a∆t)︸ ︷︷ ︸
A

ξ2 + (∆t2z(ω)− 2− a∆t)︸ ︷︷ ︸
B

ξ + 1︸︷︷︸
C

= 0 (3.30)

where ξ = ξ(ω) and move to apply the Root Amplitude Lemma. Since 1 +

a∆t > 1 ∀ a,∆t > 0 we satisfy the first condition of the root amplitude lemma for

A ≥ C ∀ A > 0. From this we address the second condition: A + C ≥ |B|, with

the assumption that z(ω) is real. To satisfy the CFL condition we must ensure that

|ξ(ω)| ≤ 1. This translates to the condition that (1+a∆t)+1 ≥ |∆t2z(ω)−(2+a∆t)|

which equates to 0 ≤ ∆t2z(ω) ≤ 2(2 + a∆t). In the case of z(ω) ≥ 0 we satisfy the

left-hand inequality for all ω which leaves z(ω)∆t2−2a∆t−4 ≤ 0. Using the quadratic

equation and substituting zmax as the worst possible case of z(ω) yields:

∆t ≤

√√√√ 4
zmax

+
(

a

zmax

)2

+ a

zmax
(3.31)

This scheme allows for larger time steps than gradient descent. However it comes

with a drawback as increasing the time step requires a larger damping coefficient.

While this can allow for bigger jumps increasing the damping beyond the optimal

choice will actually result in a decreased convergence rate4. In [14] we derive an

optimal damping coefficient for TV denoising and show that the method is slower

when it is either under or over damped. We also go on to show that by raising the

damping even further the descent algorithm reverts to a sub-gradient method that is

decidedly slower than gradient descent.
4The first order scheme, although it has a larger time step actually results in a smaller increment

in the update equation. The nuisances of this are more fully discussed in [14] and are left as an
exercise to the reader.
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3.2.3 Second Order Accelerated Scheme

The second order accelerated scheme from [14] can be derived as follows. We start

by writing Equation 3.15 in the form of a sum of two central differences one for the

velocity term and another for the acceleration.

u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)
∆t2 + a

u(x, t+ ∆t)− u(x, t−∆t)
2∆t = −∇E(x, t)

(3.32)

with some minor manipulation we can write the update equation. Treating u(x, t+

∆t) as un+1, u(x, t) as un and u(x, t−∆t) as un−1 yields the update of u:

un+1(x) =
2un − (1− a∆t

2 )un−1 −∆t2∇En

1 + a∆t
2

(3.33)

To obtain the stability condition we apply the DFT to the linearized homogeneous

portion of the update scheme obtaining:

Un+1(ω) =
(2−∆t2z(ω))Un − (1− a∆t

2 )Un−1

1 + a∆t
2

(3.34)

Using the same manner of substitution as in the first order case we obtain another

quadratic equation:

(
1 + a∆t

2

)
︸ ︷︷ ︸

A

ξ2 +
(

∆t2z(ω)− 2
)

︸ ︷︷ ︸
B

ξ +
(

1− a∆t
2

)
︸ ︷︷ ︸

C

= 0 (3.35)

with coefficients A,B and C. From this we apply the Root Amplitude Lemma to

check the stability condition |ξ(ω)| ≤ 1. The first condition A ≥ C for positive A is

satisfied as 1 + a∆t
2 ≥ 1− a∆t

2 for all positive a and ∆t. Next we consider the second

condition: A + C ≥ |B| which yields the stability condition 2 ≥ |2−∆t2z(ω)|. This

can be rewritten as 0 ≤ ∆t2z(ω) ≤ 4; in the case of z(ω) ≥ 0 we automatically satisfy
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the left hand side leaving us with:

∆t ≤ 2
√
zmax

(3.36)

We summarize the explicit schemes5 and their stability conditions below:

Gradient Descent: ∆un = −∆t∇En, ∆t ≤ 2
zmax

(3.37)

1-Order: ∆un = 1
1 + a∆t ·∆u

n−1 − ∆t2

1 + a∆t · ∇E
n, ∆t ≤

√
4

zmax
+
(

a

zmax

)2
+ a

zmax
(3.38)

2-Order: ∆un = 2− a∆t
2 + a∆t ·∆u

n−1 − 2∆t2

2 + a∆t · ∇E
n, ∆t ≤ 2

√
zmax

(3.39)

These single increment descent schemes are obtained through algebraic manip-

ulation of the preceding update formulations: Equation 3.18, Equation 3.27, and

Equation 3.33. The new accelerated gradient PDEs provide two principal advantages

over standard gradient descent. The first is that for special classes of variational prob-

lems we are able to write far less restrictive CFL conditions. This allows for much

larger time steps and coarser sampling of the discretized PDE. The second advantage

is that by incorporating a momentum term we are able to bypass many of the local

minimizers in our problem space and converge to much better optima; see Figure 3.1

for a more complete conceptualization of this.

3.2.4 Backward Difference

An interesting exercise is to use backward differences in time for Equation 3.15. To

do this we begin with the same second order central difference on utt but then take a
5As an aside, a number of discretization strategies and schemes were derived and evaluated in

[14]. We focus on the second order scheme here as it was what we used for our experiments against
convex optimizers.
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backwards difference on ut:

u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)
∆t2 + a

u(x, t)− u(x, t−∆t)
∆t = −∇E(x, t) (3.40)

From this we write the corresponding update equation:

un+1(x) = (2− a∆t)un − (1− a∆t)un−1 −∆t2∇En (3.41)

A similar analysis yields the quadratic equation:

ξ2(ω)−
(

2− a∆t−∆t2z(ω)
)
ξ(ω) + (1− a∆t) = 0 (3.42)

for the amplification factor ξ(ω). Applying the Root Amplitude Lemma we see

that the first condition A ≥ C of the lemma is satisfied as (1 ≥ 1 − a∆t) for all

positive values of a, ∆t. The second condition is to satisfy A + C ≥ |B|, with the

assumption real z(ω) ≥ 0. With a simple rearrangement of the quadratic coefficients

we find the desired inequality: ∆t2z(ω) + 2a∆t − 4 ≤ 0. Solving for the roots with

the max value zmax substituted for z(ω) yields:

∆t ≤
√

4
zmax

+ ( a

zmax
)2 − a

zmax
(3.43)

Notice that the CFL conditions from the prior forward and central difference

schemes, Equation 3.27 and Equation 3.33 respectively are necessary but not suffi-

cient. Furthermore we observe that the constraint on the time step becomes increas-

ingly restrictive as the damping coefficient a increases. This is in direct opposition

to the forward scheme and makes it impossible to consider a damping-independent

stability constraint.
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3.2.5 Semi-Implicit Schemes

It is feasible to employ semi-implicit Euler style discretizations of Equation 3.15 to

obtain systems which more closely resemble classical two-part Nesterov recursion [40].

This can be done with any of the fully explicit schemes Equation 3.18, Equation 3.27,

or Equation 3.33 by replacing the explicit discretization of ∇En of the gradient with

a ”predicted estimate” ˆ∇En+1 of its implicit discretization ∇En+1 ≈ ∇E(vn). The

partial update vn is obtained before-hand via the fully explicit update without the

gradient term (i.e., by treating ∇En as if it were zero). Using this strategy with the

second order in time scheme Equation 3.33 yields the two-step update:

vn = un + 2− a∆t
2 + a∆t∆u

n−1 (3.44)

un+1 = vn − 2∆t2
2 + a∆t∇E(vn) (3.45)

Notice that the first and second steps, separately both have a fully explicit struc-

ture. Now we employ Von Neumann analysis to analyze the stability of this scheme

according to the following update relationships between the DFT sequences Un, V n

and Un+1 (frequency transforms of un,vn, and un+1, respectively). Again we treat

z(ω) as the gradient amplifier associated with the linearization of ∇En (and there-

fore we can also extend this to the linearization of ˆ∇En+1). From the the DFT we

obtain the following:

V n = 4
2 + a∆tU

n − 2− a∆t
2 + a∆tU

n−1 (3.46)

Un+1 =
(

1− 2∆t2
2 + a∆tz(ω)

)
V n (3.47)

Now we substitute the first equation into the second and follow this by the familiar
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substitutions Un±m = ξ±mUn to obtain our quadratic equation:

(2+α∆t)2ξ2−4
(

2+α∆t−2∆t2z(ω)
)
ξ+(2−a∆t)

(
2+a∆t−2∆t2z(ω)

)
= 0 (3.48)

for the overall combined update amplification factor ξ(ω). Now we apply the Root

Amplitude Lemma to check the stability criteria for |ξ(ω)| ≤ 1.

First we test A ≥ C for positive A. From the coefficients in our quadratic equation

this is expressed as az∆t2 − (a2 + 2z)∆t − 2a ≤ 0. This condition will be satisfied

between its positive and negative roots. Restricting our interest to only positive

values of ∆t therefore yields the constraint

∆t ≤
a2 + 2z +

√
(a2 + 2z)2 + 8a2z

2az︸ ︷︷ ︸
g(a,z)>0

(3.49)

where

∂g

∂a
= (a2 − 2z)︸ ︷︷ ︸

toggles

a2 + 2z +
√

(a2 + 2z)2 + 8a2z

2a2z
√

(a2 + 2z)2 + 8a2z︸ ︷︷ ︸
alwayspositive

(3.50)

To satisfy this independently of a, we examine the partial derivative of the upper

bound g(a,z) with respect to a see that it starts out negative for a2 < 2z and then

turns positive for a2 > 2z. The minimum upper bound is therefore attained when

z(ω) = zmax and a2 = 2zmax yielding

∆t ≤ 2 +
√

2
√
zmax

(3.51)

While this upper bound is more generous than the second order explicit scheme,

it only satisfies the first of the two stability conditions in the bounded root lemma.

We now proceed to the second condition which will be more restrictive.
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The second conditions for the Root Amplitude Lemma: A + C ≥ |B| can be

expressed as follows:

2 + a∆t−∆t2z(ω) + 1
2a∆t3z(ω) ≥ |2 + a∆t− 2∆t2z(ω)| (3.52)

For small enough time steps, 2 + a∆t− 2∆t2z is positive and we can remove the

absolute values from the inequality. For larger time steps, 2 + a∆t− 2∆t2z becomes

negative and the inequality can be rearranged into the following cubic form:

az(ω)∆t3 − 6z(ω)∆t2 + 4a∆t+ 8 ≥ 0. (3.53)

Minimizing on on the left with the case a = 0 and z(ω) = zmax yields a stricter

and therefore sufficient, stand-alone stability conditions

∆t ≤ 2√
3zmax

. (3.54)

Note that this upper bound is smaller, by a factor of
√

3, than the maximum

stable time step for the for the fully explicit second order scheme.

3.3 Regularized Inversion Problems

3.3.1 General Case (nonlinear wave equation)

To address the regularized inversion problems presented in this dissertation we first

consider a very general class of variational regularized inversion problems in the ac-

celerated PDE framework. In particular, we assume energy functions with the form

E(u) =
∫

Ω
f (|Ku− g|)︸ ︷︷ ︸

fidelity
+ r(‖∇u‖)︸ ︷︷ ︸

regularity
dx
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with ḟ , ṙ, r̈ > 0. The function f is a monotonically increasing penalty on the residual

error between data measurements g and a forward in the form of linear operator K

applied to the reconstructed signal u, while r is a monotonically increasing penalty

on the gradient of the reconstruction.

The continuum gradient of E has the form

∇E(u) = ḟ (|Ku− g|)
|Ku− g|︸ ︷︷ ︸
λ(u,x)>0

K∗ (Ku− g)

− ṙ(‖∇u‖)
‖∇u‖︸ ︷︷ ︸
c(∇u)>0

(∇ · ∇u− uηη)

− r̈(‖∇u‖)︸ ︷︷ ︸
d(∇u)>0

uηη,

where K∗ denotes the adjoint of the forward operator K, and where η .= ∇u
‖∇u‖ denotes

the unit vector along the gradient direction of u. This gives rise to the following class

of accelerated flows which take the form of a nonlinear wave equation.

utt − c(∇u) (∇ · ∇u− uηη) − d(∇u) uηη + aut

= λ(u, x) K∗ (g −Ku)

If, purely for the sake of understanding stability, we model the short time behavior

of any of the presented discrete update schemes in the neighborhood of a particular

spatial point x, by treating λ, c, and d as locally constant, and by representing the

forward model linear operator K as a real convolution kernel K with adjoint KT , then

∇E can be approximated near x by the following linear expression

∇E ≈ λ[x] K
T
[x] ∗ (K[x] ∗ un − g)

− c[x] (∇ · ∇un − uηη) + d[x] uηη

(3.55)
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where the subscript [x] denotes the local point of spatially constant approximation

(rather than a function argument). Assuming a uniform Cartesian grid oriented such

that its first basis vector ~e1 = (1, 0, 0, . . .) aligns with∇u at our local point x, and that

our spatial derivative discretizations become equivalent to central difference (second

derivative) approximations with space step ∆x in each direction, then we obtain the

following local approximation of the gradient amplifier of (Equation 3.55)

z(x, ω1,ω2, . . . , ωN)

≈ λ[x] DFT(KT
[x]) DFT(K[x])

+ 2
∆x2

(
d[x] (1− cosω1∆x)

+ c[x]

N∑
k=2

(1− cosωk∆x)
)

(3.56)

Noting that the Fourier transform of the adjoint KT of a real convolution kernel is

always the complex conjugate of the Fourier transform of the kernel K itself, we see

that the gradient amplifier is real and positive and we can write the following upper

bound as a function frequency ω

max
ω

z ≤ λ[x] max
ω
|DFT(K[x])|2 + 4 c[x] (N − 1) + d[x]

∆x2 (3.57)

with equality in cases where the complex amplitude of DFT(K) is maximal at ω =

(π, . . . , π). However, since this upper bound depends on the local point of approxi-

mation x, we need to maximize over x as well in order to exploit the CFL formulas

presented earlier in terms of zmax. Doing so yields the following upper bound for the

local gradient amplifier.

zmax ≤ Kmaxλmax + 4 (N − 1)cmax + dmax

∆x2
. (3.58)

where λmax
.= maxx λ, cmax

.= maxx c, dmax
.= maxx d, andKmax

.= maxx,ω (|DFT(K)|2).
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If we now plug (Equation 3.58) into the time step restriction Equation 3.36 for the

fully explicit second order accelerated scheme Equation 3.39, we obtain the following

sufficient condition for stability

∆t ≤ 2∆x√
Kmaxλmax∆x2 + 4(N − 1)cmax + 4dmax

(3.59)

The corresponding condition for gradient descent is obtained by squaring ∆x in the

numerator and removing the radical (squaring) the denominator. As such we note

three favorable step size trends for PDE acceleration compared to PDE gradient

descent. Most notably, when the regularizing coefficients cmax and dmax dominate,

stable time step sizes are now directly proportional to spatial step sizes rather than

to their squares, making the upper bound linear rather than quadratic in ∆x. We

see similar gains as well when the kernel K exhibits large amplification at one or

more frequencies. In such cases, stable step sizes are inversely proportional to the

maximum kernel amplification rather than to its square.

3.3.2 Image Denoising

One of the most straightforward cases to apply PDE acceleration to is the case of a

quadratic fidelity without any type of forward model, K. We first consider the ROF

cost functional with an L2 norm [11]:

E(u) =
∫

Ω

λ

2 (u− g)2 + c

2 ||∇u||
2dx (3.60)

for denoising. Here the unique minimizer of E(u) is given as the solution to the

elliptic problem [3]. To see this we take the first variation on the cost functional to

compute the gradient of the energy. We begin with

lim
ε→0

E(u+ εv)− E(u)
ε

(3.61)
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which expands as

E(u+ εv)− E(u)
ε

=
∫

Ω
λ
2 (u+ εv − g)2 + c

2 ||∇(u+ εv)||2dx−
∫

Ω
λ
2 (u− g)2 + c

2 ||∇(u)||2dx
ε

(3.62)

To improve readability let us first consider the diffusion term:

∫
Ω
c
2 ||∇(u+ εv)||2dx−

∫
Ω
c
2 ||∇(u)||2dx

ε
(3.63)

we rewrite this as:

c
2
∫

Ω(||∇u||2 + ε2||∇v||2 + 2ε∇u∇v − ||∇u||2)dx
ε

(3.64)

simplifying terms and taking the limε→0 yields:

c
∫

Ω
(∇u∇v)dx (3.65)

If we assume that our boundary is insulated and that the evolving entity u does not

permeate across the boundary we can write the following:

n · ∇u = 0, on ∂Ω (3.66)

where n denotes the unit exterior normal of Ω. Using integration by parts and Equa-

tion 3.66 we are able to write this as:

c
∫

Ω
(−∇2uv)dx (3.67)

Although v is not free, we can use any constant term to write:

c
∫

Ω
(−∇2u[v +m])dx (3.68)
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since we know that
∫
Ω(−∇2u[m])dx = 0. We can write the gradient of the energy of

the diffusion term as:

−c · ∇∇u (3.69)

We now consider the remaining term of the energy gradient:

∫
Ω
λ
2 (u+ εv − g)2dx+

∫
Ω
λ
2 (u− g)2dx

ε
(3.70)

we expand the expression:

λ

2

∫
Ω[(u2 + ε2v2 + 2εvu− 2εvg − 2ug − g2)− (u2 − 2ug − g2)]dx

ε
(3.71)

simplifying and taking the limε→0 yields:

λ
∫

Ω
(u− g)vdx (3.72)

through a similar manipulation as was done for the diffusion term we can write the

gradient of the energy for the quadratic fidelity as:

λ(u− g) (3.73)

and finally we are able to write the gradient of our energy ∇E as:

∇E = λ(u− g)− c∇ · ∇u. (3.74)
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Combing the gradient of the energy with Equation 3.15 allows us to write the accel-

erated descent PDE in the form of a damped inhomogeneous linear wave equation.

utt − c∇ · ∇u+ aut = λ(g − u). (3.75)

From this we can easily compute the gradient amplifier z(ω). Using central differ-

ences on a uniform N-dimensional Cartesian grid with space step ∆x in each direction

are used to approximate the spatial derivatives of the Laplacian ∇ · ∇, then

z(ω) = λ+ 2c
∆x2

N∑
k=1

(1− cos[ωk∆x]) (3.76)

where ω = (ω1, ..., ωN). This allows us to write an upper bound for zmax:

zmax = λ+ 4Nc

∆x2 (3.77)

With the upper bound on the time step in hand, we have the necessary tools to

consider the accelerated second order update equation for the denoising problem:

∆un = 2− a∆t
2 + a∆t ·∆u

n−1 − 2∆t2
2 + a∆t

(
λ(un − g)− c∇∇un

)
(3.78)

We now compare PDE acceleration to two popular competing approaches Primal

Dual and Split Bregman. In Figure 3.2 we observe an over-diffused restoration of

a noisy image. One of the key advantages of the PDE acceleration for this convex

problem is the speed of convergence. Although the results for PDE acceleration and

Split-Bregman are nearly identical visually PDE acceleration is almost an order of

magnitude faster. It is likewise competitive with fast convex optimization methods

such as Primal-Dual.

In Figure 3.3 we observe an appropriately diffused restoration of the same noisy

image as in Figure 3.2. Again we observe that PDE acceleration is roughly an order
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Original Noisy PDE acceleration Primal Dual Split Bregman

Figure 3.2: Comparison of PDE acceleration, Primal Dual, and Split Bregman for
TV restoration of a noisy Lenna image with λ = 1000. Each algorithm was run for
150 iterations, which took 2.7 seconds for PDE acceleration, 3.3 seconds for Primal
Dual, and 28 seconds for Split Bregman.

Original Noisy PDE acceleration Primal Dual Split Bregman

Figure 3.3: Comparison of PDE acceleration, Primal Dual, and Split Bregman for
TV restoration of a noisy Lenna image with λ = 7000. Each algorithm was run for
50 iterations, which took 0.85 seconds for PDE acceleration, 1.12 seconds for Primal
Dual, and 10.4 seconds for Split Bregman.
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of magnitude faster than the Split Bregman method while still remaining competitive

and even outperforming Primal-Dual. Another application of variational denoising is

to consider the problem of Beltrami regularization. For this we begin by writing a

modified version of the ROF functional with a Beltrami regularizer.

E(u) =
∫

Ω

λ

2 (u− g)2 + 1
β

√
1 + ||β∇u||2 dx (3.79)

The Beltrami regularization term interpolates between the TV norm
∫
|∇u| and

the L2 norm
∫
|∇u|2—near edges where ∇u is large, it behaves like the TV norm to

preserve edges, and where ∇u is small it behaves like the L2 norm in order to reduce

staircasing. From here we write the expression for the energy gradient:

∇E = λ(u− g)−∇( β∇u√
1 + ||β∇u||2

) (3.80)

Plugging the gradient of the energy into Equation 3.39 yields our new update

equation:

∆un = 2− a∆t
2 + a∆t ·∆u

n−1 − 2∆t2
2 + a∆t

(
λ(un − g)−∇( β∇un√

1 + ||β∇un||2
)
)

(3.81)

Recently, Zosso and Bustin [124] proposed an efficient primal dual projected gra-

dient method for solving Beltrami regularized problems. Figure 3.4 shows the results

of applying the PDE accelerated Beltrami regularization to a noisy baboon test image

with varying values of λ and β with single-threaded C++ code on a 3.2 GHz Intel

processor running Linux.

The corresponding runtimes are given in Table 3.1 and are favorably competitive

with the runtimes reported in [124]. Notice the algorithm does slow down somewhat

when λ is small and the denoising is heavily regularized, but the difference is far less
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Original Noisy β2 = 1, λ = 1 β2 = 1, λ = 5 β2 = 1, λ = 7

β2 = 5, λ = 0.5 β2 = 5, λ = 2 β2 = 5, λ = 7 β2 = 1/5, λ = 2 β2 = 1/5, λ = 10

Figure 3.4: Results of Beltrami regularization applied to a noisy baboon image with
varying values of λ and β. The units of λ are thousands.

Table 3.1: PDE accelerated Beltrami regularization runtimes on the 512×512 baboon
image.

λ = 1000 λ = 5000 λ = 7000
Time Iterations Time Iterations Time Iterations

β2 = 1/5 0.55s 124 0.27s 60 0.23s 50
β2 = 1 0.81s 183 0.38s 85 0.32s 71
β2 = 5 1.20s 273 0.54s 122 0.45s 101
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Figure 3.5: Convergence experiment with variable damping for a Beltrami regularizer.
Initial condition and converged result are given in Fig Figure 3.6.

Table 3.2: Coefficients and converge times of damping experiments for a 512 x 512
noisy Lena image.

Damping Below Optimal Optimal Above Optimal Nesterov Critical
a Iterations a Iterations a Iterations a Iterations a Iterations

λ = 1000, β2 = 1 6.36 1000 63.6 100 636 400 3/t 250 1446 1000

pronounced compared to other explicit methods such as gradient descent.

We now give further considerations to variable damping. In Figure 3.6 we show

the initial condition and final converged result for five separate damping experiments.

Note that the final result remains the same regardless of the damping coefficient that is

chosen for a. From the linear analysis in [34], and our choice of λ = 1000 and β = 1 for

the two tuning parameters we have a =
√
λ+ βπ2 giving an optimal damping of 63.6.

In Figure 3.5 we compare an optimally damped system to a below optimal, above

optimal, Nesterov, and critically damped system. The damping coefficients, and

convergence times in iterations are given in Table 3.2. The below optimal and above

optimal are each one order of magnitude away from the optimal damping, respectively,

and the critical damping is the point at which the 2nd order accelerated scheme is

equivalent to gradient descent, i.e the point at which the damping completely cancels
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Initial Lena (a) Converged Result (b)

Figure 3.6: Initial (a) and Final (b) condition of denoising experiment with variable
damping. The final result does not change between fixed damping and Nesterov only
the number of iterations required.

out the momentum leaving only a first order descent for the PDE. While the optimal

damping will always give the fastest convergence for the PDE, if one is uncertain of the

optimal damping then using a greater than optimally damped but less than critically

damped system will yield reasonable performance. While the Nesterov damping does

converge faster than the above optimally damped example in Figure 3.5, the increasing

damping as a function of time will yield degraded performance and would likely

necessitate an additional stopping criteria. Although the below optimally damped

system is initially faster than the optimally damped system, it is subject to large

oscillations in energy, which while they do converge greatly slows down the final

convergence time.
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3.3.3 Image Deconvolution

One of the next experiments that we undertook with this new framework was the

application of PDE acceleration to regularized deconvolution. Starting from the stan-

dard Beltrami-norm energy functional used for non-blind kernel restoration we write:

E(u) =
∫

Ω

λ

2 (K ∗ u− g)2 + 1
β

√
1 + ||β∇u||2 dx (3.82)

where u is the current iteration of the image, K is the linear operator, in this case

the known blurring function, g is the initial blurry image, β is the Beltrami regularizer

and λ is the fidelity term. From this we can write the energy gradient as:

∇E = λKT ∗ (K ∗ u− g)−∇( β∇u√
1 + ||β∇u||2

) (3.83)

In this case the nonlinear variational gradient decomposes as in (Equation 3.55)

to the form6

∇E = λKT ∗ (K ∗ u− g)− β√
1 + ‖β∇u‖2︸ ︷︷ ︸

c

(∇ · ∇u− uηη)

− β(√
1 + ‖β∇u‖2

)3

︸ ︷︷ ︸
d

uηη

The accelerated PDE (technically an integral partial differential equation with the

convolution) takes the quasilinear form

utt −∇ ·

 β∇u√
1 + ‖β∇u‖2

+ aut = λKT ∗ (g −K ∗ u) (3.84)

Note that both coefficients c and d are bounded by β (an upper bound which is
6Recall η .= ∇u

‖∇u‖ denotes the unit vector along the gradient direction of u.
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actually reached in both cases at any point and time where ∇u(x, t) = 0), and that

max |DFT(K)| = 1 by our assumption that K attenuates while preserving the mean.

Plugging this into (Equation 3.58) yields

zmax ≤ λ+ 4Nβ
∆x2 (3.85)

The discretization of the Laplacian ∇( β∇un√
1+||β∇un||2

) is given as follows, consider

a consistent discretization which converges as ∇u −→ 0 to the central differences

approximation of the β − scaled Laplacian β∇ · ∇u ≈ β
∑N
k=1

unα+ek
−2unα+unα−ek

∆x2 with

spatial step size ∆x in each direction. The multi-index subscript notation is given as

follows:

α = ZNek = (δ1k, δ2k, ..., δNk) (3.86)

where ZN indicate each of the grid locations and where ek is the additive multi-

index. Here δjk is used as the standard Kronecker delta function. We let D2
β,∆xu

n

denote the discretization of ∇ ·
(

β∇u√
1+‖β∇u‖2

)
. Substituting into Equation 3.39 yields

the 2nd-order explicit update:

∆un = 2− a∆t
2 + a∆t ·∆u

n−1− 2∆t2
2 + a∆t

(
λKT ∗(K ∗un−g)−∇( β∇un√

1 + ||β∇un||2
)
)

(3.87)

Similar update schemes can be written for any of the desired discretization methods

see Appendix E, Equation E.1, Equation E.2, Equation E.3, and Equation E.4. An

interesting aside is that if we consider the limit as β →∞, the Beltrami regularization

penalty converges to the total variation penalty.

E(u) =
∫

Ω

λ

2 (K ∗ u− g)2 + ‖∇u‖ dx (3.88)
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with a non-linear variational gradient (Equation 3.55) that decomposes as

∇E = λKT ∗ (K ∗ u− g)−∇ ·
(
∇u
‖∇u‖

)

= λKT ∗ (K ∗ u− g)− 1
‖∇u‖︸ ︷︷ ︸

c

(∇ · ∇u− uηη) .

The accelerated PDE now takes the form of the nonlinear wave equation

utt −∇ ·
(
∇u
‖∇u‖

)
+ aut = λKT ∗ (g −K ∗ u). (3.89)

In this case, the coefficient d vanishes, but the coefficient c no longer has a finite

upper bound. Plugging this into (Equation 3.58) yields an infinite upper bound for

the maximum gradient amplifier if at any point and time ∇u(x, t) = 0. Otherwise,

by our earlier assumption on K (see subsection 3.3.1) we obtain

λ ≤ zmax ≤ λ+ 4(N − 1)
∆x2 min ‖∇u‖ . (3.90)

For the explicit second order accelerated scheme, this ensures the sufficient con-

dition ∆t ≤ 2√
λ+ 4(N−1)

∆x2 min ‖∇u‖

for a stable step. If we fix ∆t, we may rearrange this

inequality to obtain an equivalent sufficient condition

min ‖∇u‖ ≥ N − 1
∆x2

4∆t2
4− λ∆t2

which takes the form of a lower bound on the spatial gradient. Here an interesting

nonlinear dynamic occurs to keep the implementation stable by preventing initiated

instabilities from growing unbounded. If the spatial gradient falls below this lower

bound and instabilities begins to propagate at one or more frequencies, they will

eventually cause the spatial gradient to rise above the guaranteed stable lower bound

at which point the instabilities will cease growing. In the absence of a kernel K,
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the fastest growing instability will occur at the highest digital frequency in each

grid direction ω = (π, . . . , π) which corresponds to oscillations between immediately

adjacent grid-points, this in turn will most rapidly increase the discrete difference

approximations of ‖∇u‖. In the presence of a strongly smoothing kernel, the fastest

growing instability may occur at lower digital frequencies, thereby causing a low-grade

ringing effect, with several grid-points per period, until the amplitude of the oscillation

is large enough to drive adjacent pixel differences back over the lower bound for ‖∇u‖.

A similar phenomenon occurs with both the first-order and semi-implicit schemes

(and even with gradient descent), making all these schemes stable independently

of the regularizer coefficient c. As such, purely for stability considerations alone,

the necessary step size constraint will be connected to the lower bound λ of the

gradient amplifier zmax rather than its upper bound in (Equation 3.90). This yields

the following necessary conditions for stability.

Gradient Descent: ∆t ≤ 2
λ

(3.91)

1-Order Accelerated: ∆t ≤

√
4
λ

+
(
a

λ

)2
+ a

λ
(3.92)

2-Order Accelerated: ∆t ≤ 2√
λ

(3.93)

Semi-Implicit: ∆t ≤ 2√
3λ

(3.94)

However, the schemes may only converge under these constraints in an oscillatory

sense with a fluctuating level of “background noise” whose amplitude will depend

upon the value of ∆t.

We may exploit the behavior of this non-linear stabilizing effect to obtain a more

useful time step constraint by plugging in a minimal acceptable value of ‖∇u‖ for the

final reconstruction into the stability condition for ∆t. A natural way to approach this

is by exploiting a quantization interval Q for the digital representation of u together
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with the following discrete approximation bounds for ||∇u‖.

min ‖∇u‖ = min
α

√√√√ N∑
k=1

(
uα+ek − uα

∆x

)2

≥
√
N min

α,k

(
uα+ek − uα

∆x

)2

=
√
N

∆x min
α,k
|uα+ek − uα|

If we now determine that instability related distortions confined to a single quantiza-

tion interval Q between neighboring pixels are acceptable, we substitute

min ‖∇u‖ →
√
N

∆x Q

into the upper bound for (Equation 3.90) to obtain

zmax ≤ λ+ 4(N − 1)
Q∆x

√
N
< λ+ 4

√
N

Q∆x (3.95)

within the desired stable regime for ‖∇u‖. This in turn gives rise to the schemes in

Appendix F (Equation F.1)–(Equation F.4), where D2
∆xu

n denotes the discretization

of ∇ ·
(
∇u
‖∇u‖

)
. Now we present experimental results where in order to evaluate our

accelerated second-order descent scheme we compared against two other state of the

art deconvolution algorithms Chambolle-Pock Primal Dual and and L1 ADMM [7,

9]; see Figure 3.7. These results are improved from what was reported in [14] due

to a change that made the input image fully symmetric and reduced ringing from

the Fast Fourier Transform (FFT). In this experiment, see Figure 3.7, we are quite

competitive in the quality of the restored image out performing both Primal Dual

and L1 ADMM.
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Figure 3.7: Deblurring of a butteryfly image using the explicit accelerated PDE
scheme. Performance is compared to two state of the art methods (final signal-
to-noise ratios are shown for restoration.)

3.3.4 Applications for Compressed Sensing

Another application of PDE acceleration is in the field of compressed sensing. A

common problem in the medical domain is the reduction of radiation dosage for CT

scanners. One of the approaches, for using less radiation, is to reduce the number of x-

ray projections that are acquired through the scanner’s sensors [125]. This insufficient

data collection results in a highly under sampled image with visible streaking. To

recover the undersampled image, researchers often employ one of two edge-preserving

TV based reconstruction algorithms. Typical approaches to the minimization of this

TV problem are often conjugate gradient or gradient descent [126, 72].

If we treat the Fourier back-projection as a replacement for our linear convolution

operator then the cost functional for this problem can be formulated almost identically

to the case of the regularized deconvolution problem. For our work we again consider

equation Equation 3.82, restated here for convenience.

E(u) =
∫

Ω

λ

2 (K ∗ u− g)2 + 1
β

√
1 + ||β∇u||2 dx

This problem however is slightly harder than the problem of deconvolving an

image with a known blurring kernel. In the case of a general Gaussian kernel we have
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the benefit that K ∗ u 6= g for u = g. However in the case of Fourier back-projection

this is not true. Treating the linear operator K as our Fourier back-projection will

lead to K ∗u = g for u = g. Although our case is not hopeless as we are convolving on

the evolving entity un; this problem is not nearly as well suited for gradient descent.

Principally without the presence of a strong regularizer the gradient of the energy

will be small and little to no improvement in the resulting image quality will be

made. Thus we will have to employ a strong regularizing term to drive the evolution

of the PDE. Example images to demonstrate the reconstruction problem for Fourier

back-projection are provided in Figure 3.8. Note that the images are progressively

degraded with a drop in the number of projections.

Figure 3.8: Reconstruction of a CT image using varying numbers of projections for
the Fourier back projection algorithm. Number of projections used from left to right:
10, 20 with the original image given on the right hand side.

With the caveat of the descent scheme in mind, we write an almost identical

update equation to Equation 3.87

∆un = 2− a∆t
2 + a∆t ·∆u

n−1 − 2∆t2
2 + a∆t

(
λKT ∗ (K ∗ un − g)−∇( β∇un√

1 + ||β∇un||2
)
)

with the primary difference being that K and KT correspond to the Fourier back-

projection algorithm. From here we show the attempted recovery of the CT slice on

62



the preceding example see Figure 3.8.

Figure 3.9: Recovered CT images (using PDE acceleration) from Figure 3.8. The
original image is given on the right hand side for comparison. The parameters for
this experiment were λ = 106, β = 100 and the number of iterations were T = 2500.

Note that the recovery is excellent and significantly more successful in the case

of increasing numbers of projections. Additionally the strong regularizing penalty

β = 100 is necessary to drive the PDEs. We also note for large values of β the

Beltrami regularizer approximates an L1 TV norm. The image improvements for the

experiment in Figure 3.9 are given in Table 3.3.

Table 3.3: Performance of Second-Order PDE Acceleration scheme for recovering
undersampled CT images. PSNR was computed by comparing to the original clean
image.

Projections Initial PSNR (dB) Final PSNR (dB)
10 16.00 18.04
20 17.51 32.15

We compared the experiment with PDE acceleration to the same reconstruction

using the first-order primal dual method. The two methods are quite close in perfor-

mance with primal dual slightly out-performing PDE acceleration. One minor benefit

of PDE acceleration was that we could significantly increase the penalty on the data

term while maintaining a reasonable step size. In the first order primal-dual method

the step size is proportional to 1
λ

which limits the fidelity coefficient.
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Figure 3.10: Recovered CT images (using first-order primal-dual) from Figure 3.8.
The original image is given on the right hand side for comparison. The parameters for
this experiment were λ = 103, β = 100 and the number of iterations were T = 2500.

Table 3.4: Performance of first order Primal Dual scheme for recovering undersampled
CT images. PSNR was computed by comparing to the original clean image.

Projections Initial PSNR (dB) Final PSNR (dB)
10 16.00 17.78
20 17.51 31.40

Although this work is limited, we argue that it provides a compelling case for ad-

ditional experimentation with PDE acceleration for compressed sensing applications.

3.3.5 Poisson’s Equation

Another application for PDE acceleration is as an accelerated solver for the Poisson

equation. Here we denote the Laplace operator as ∇2 and write the functional for

the Poisson equation as:

∫
Ω

(1
2(|∇(u)|2) + λ

2 (u(x)− f(x))2)dx (3.96)

One option for this solving problem is to just consider the Laplacian and the

non-homogenous term:

∇2u = f (3.97)
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This is slightly different from what would be obtained by taking the first variation. In

the two dimensional case we can write the finite difference approximation for Poisson’s

equation (Equation 3.97) as:

uj+1,k + uj−1,k + uj,k−1 + uj,k−1 − 4uj,k
(∆x)2 = ρj,k (3.98)

This can be written as the solution to a matrix inversion problem:

A ·



u1,1

u2,1

...

uN,1

u1,2

...

uN,2
...

uN,N



= ∆x2



ρ1,1

ρ2,1

...

ρN,1

ρ1,2

...

ρN,2
...

ρN,N



(3.99)

where

A =



. . . . . . . . . . . . . . .

0 1 0 . . . 0 1 −4 1 0 . . . 0 1 0 . . .

. . . 0 1 0 . . . 0 1 −4 1 0 . . . 0 1 0 . . .

. . . 0 1 0 . . . 0 1 −4 1 0 . . . 0 1 0
. . . . . . . . . . . . . . .


(3.100)

This calculation can be expressed as an Ax = b problem where A and b are known. In

this problem A is singular and so x is typically solved for using some type of descent

scheme such as the Jacobi method or a relaxation algorithm such as Successive over-
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relaxation (SOR) or Gauss-Seidel (GD). To write the second order accelerated descent

scheme we employ the same methodology as was used in the preceding sections. First

we consider the gradient of the energy:

∆E = λ(f − u)−∇2u (3.101)

and then we plug the energy of the gradient into Equation 3.39. This yields our

second order update equation:

∆un = 2− a∆t
2 + a∆t ·∆u

n−1 − 2∆t2
2 + a∆t

(
λ(f − u)−∇2u

)
(3.102)

We now apply this to an example Poisson equation and compare against several

commonly used solvers. Consider the two-dimensional Poisson problem:

∂2

∂x2 + ∂2

∂y2 = 1.25 · exp(x+ y

2) (3.103)

where x, y ∈ [0, 1]. For the grid points we consider m = 20 linearly spaced points

along each dimension. We write the matrix fi,j = 1.25 · exp(xi,j + yi,j
2 ) where i, j are

the respective indices in each dimension. We seek to solve the problem:

Au = f (3.104)

where A ∈ R(m2×m2) is the singular sparse matrix corresponding to the 5-point

discretization of the Laplacian.

The performance results of our optimization methods are given in Table 3.5 and

Table 3.6. In the first experiment we considered sparse matrices of size 400 x 400

elements. In Table 3.5 we can clearly observe that PDE acceleration outperformed

both the Jacobi method and GD. Although the SOR method did use less iterations

it required a more complex calculation and as such had nearly double the run time
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Table 3.5: Performance of Second-Order PDE Acceleration scheme for solving Poisson
equation. Our method is compared against standard solvers of which the Jacobi
Method is the most comparable to gradient descent.

Method Iterations Run Time (ms)
PDE Acceleration 92 0.51
Jacobi Method 998 5.0
SOR 58 1.1
Gauss-Seidel 490 6.5

of the PDE accelerated method. We now consider the case of a large sparse matrix

m = 100, which yields a 10000 x 10000 element sparse matrix.

Table 3.6: Performance of Second-Order PDE Acceleration scheme for solving Poisson
equation. Notice that the PDE method out competes state of the art optimizers even
without the benefit of GPU parallelization.

Method Iterations Run Time (sec)
PDE Acceleration 577 0.042
Jacobi Method 26398 2.765
SOR 366 0.125
Gauss-Seidel 12947 4.093

In Table 3.6 we can again clearly see that the performance results from the ear-

lier experiment holds. PDE acceleration in fact is nearly three times faster than the

SOR method. Also note that traditional SOR cannot be parallelized without alter-

nating the grid update. This restriction is not true of PDE acceleration and offers

another potential avenue of speed up in highly parallelized applications such as GPU

processing.

3.4 Optical Flow

3.4.1 General Implementation

The next application of the PDE acceleration framework is to the problem of optical

flow. In the optical flow problem the general idea is that we want to determine how

pixels moved from one image to the next. We write the energy function motivated
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from Lucas and Kanade’s approach [66] as

U(φ) = 1
2

∫
Rn
|I1(φ(x))− I0(x)|2 dx+ 1

2α
∫
Rn
|∇(φ(x)− x)|2 dx (3.105)

where φ is the forward map from image I1 to I0 and α is the regularizing term.

The first term is the data fidelity which measures how close φ deforms I1 back to

I0 through the squared norm, and the second term penalizes non-smoothness of the

displacement field, given by φ(x) − x at the point x. Notice that the potential is a

function of only the mapping, φ and not the velocity.

We now compute the functional gradient of U with respect to the mapping φ,

denoted by the expression ∇U(φ). This gradient is defined by the relation (see Ap-

pendix G) δU · δφ =
∫
φ(Rn)∇U(φ) · δφ dx, i.e., the functional gradient satisfies the

relation that the L2 inner product of it with any perturbation δφ of φ is equal to the

variation of the potential U with respect to the perturbation δφ. With this definition,

one can show that (see Appendix G):

∇U(φ) = [(I1 − I0 ◦ ψ)∇I1 − α(∆φ) ◦ ψ] det∇ψ, (3.106)

where det denotes the determinant. We can also see that the gradient defined on the

un-warped domain is

∇̃U(φ) = (I1 ◦ φ− I0)∇I1 ◦ φ− α∆φ, (3.107)

We write the equivalent but mathematically more convenient energy of the gradi-

ent as:

−∇U = −∇I ◦ φ · (I1(φ)− I0(x)) + α∇2φ(x) (3.108)
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where ∇I ◦ φ =
[ δI(φ)

δx
δI(φ)
δy

]
denotes the spatial gradient of the projected image I1(φ).

By substituting into Equation 3.39 and changing u to φ this allows us to write the

new descent equation for computing the optical flow:

∆φn = 2− a∆t
2 + a∆t ·∆φ

n−1+ 2∆t2
2 + a∆t ·

(
−∇Ix(φ(x))·(I1(φ)−I0(x))+α∇2φ(x)

)
(3.109)

The maximum stable time step ∆t for the scheme Equation 3.109 can be derived

using Von Neumann analysis. From [14], ∆t should be chosen as ∆t < 2√
Zmax

, where

Zmax is the maximum value over all frequencies of the Fourier transform of the lin-

earization of the homogeneous part of the gradient, ∇U . In the case of the Horn &

Schunck energy, this corresponds to

∆t < 2√
1 + 8α

, (3.110)

where the above is an approximation and we assume that the image is normalized to

1.

Next we compute the optimal damping coefficient, a. To do this, we use results

from [34], which computes the convergence rate of accelerated PDE as a function of

the damping in the case that the energy is convex. The Horn & Schunck energy is not

convex, however, the linearization of the gradient in the accelerated PDE corresponds

to a convex energy that was analyzed in [34].

The original accelerated PDE is:

∂ttφ+ a∂tφ− α∆φ+ (I1 ◦ φ− I0)∇I1 ◦ φ = 0. (3.111)

We can linearize the non-linear term and compute the optimal damping. For sim-

plicity (as we did not find much difference in the speed of overall convergence in our
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experiments), we simply treat the non-linear term as zero (which is true if φ is near

the solution as I1 ◦φ− I0 is close to zero; in practice we use a pyramid method where

the solution is close to the optimal since it is initialized with the solution from the

previous scale). In this case, the PDE reduces to

∂ttφ+ a∂tφ− α∆φ = 0, (3.112)

which is a vector-valued version of an equation analyzed in [34]. The optimal damping

is given as

a = 2√αµ1 (3.113)

where µ1 is the first Neumann eigenvalue of the Laplacian. The eigenvalue can be

approximated as µ1 ≈ π2

A
where A is the area of the image domain (width times height

of the image). This gives the damping condition that we used for our experiments

as:

a = 2√αµ1 ≈ 2
√
π2α

A
. (3.114)

For our illustrated experiments we compare gradient descent against acceleration,

damped and non-damped acceleration and conjugate gradient, one of the most pop-

ular optical flow methods [67] on the frequently evaluated middlebury data set [12].

In our results we find that we arrive at a similar local minimum but with signifi-

cantly less computational time. Our method is nearly an order of magnitude faster

than conjugate gradient. Both methods used the pyramid scheme with a resolution

increase of a factor of 2 at each step in the pyramid.

3.4.2 Acceleration vs Gradient Descent

In our first set of optical flow experiments, we compare the discrete implementation of

the Eulerian approach to accelerated optimization on the manifold of diffeomorphisms

to standard (Riemannian L2) gradient descent. This illustrates the potential perfor-
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mance improvements one can achieve by incorporating acceleration. When compared

to gradient descent, acceleration requires only to update the velocity by the velocity

and density evolution. These evolutions only require local updates.

Figure 3.11: Illustrative experiment: The experiment (whose results are in Figure 3.13
and Figure 3.12) computes the optical flow (registration) between I0 and I1 using a
common optical flow loss function. The initial residual (|I1 − I0|) is shown. The
fourth image from left is a color code for the velocity (the direction of the velocity is
indicated by the color). The fifth image is a color code for the mass density graphs
used in Figure 3.13.

Consider the optimization problem presented in Figure 3.11. We show the evo-

lution, which aims to register a square to a translated square (see Figure 3.12). We

compare the evolutions for acceleration with and without damping, both which in-

troduce oscillations, but the former dies down. The evolutions eventually determine

a translation, even though the velocity can vary with pixel location. Notice the mass

density evolves through non-uniform densities at times, indicating a non-trivial mass

evolution impacting the dynamics. A comparison to gradient descent is shown in Fig-

ure 3.12, in particular showing that acceleration drastically speeds up convergence.

3.4.3 Acceleration vs Conjugate Gradient

A visual comparison illustrating the converged results for the two methods is provided

in Figure 3.14 with a performance benchmark table provided in Table 3.7. Initially

the performance gap between conjugate gradient and the accelerated gradient is small

but widens significantly as the image resolution increases. By the final level of the

pyramid PDE acceleration is almost an order of magnitude faster.
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Table 3.7: Performance comparison of Linearized Optical Flow against Accelerated
Optical Flow for each level of the pyramid. The performance improvement of accel-
erated optical flow is close to an order of magnitude. Both methods arrive at nearly
the same local minima. AAE and AEE are average angular error and end point er-
ror respectively. Note the quantities above represent average values over all pairs of
images in the dataset.

Middlebury Benchmark Results
Pyramid Level-1 (Res: 1/32) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 0.299 0.290 2.779
Accelerated Optical Flow 0.209 0.290 2.774 1.430
Pyramid Level-2 (Res: 1/16) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 0.476 0.150 1.679
Accelerated Optical Flow 0.296 0.150 1.685 1.608
Pyramid Level-3 (Res: 1/8) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 2.085 0.114 1.242
Accelerated Optical Flow 0.952 0.115 1.249 2.191
Pyramid Level-4 (Res: 1/4) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 7.862 0.102 1.045
Accelerated Optical Flow 2.279 0.102 1.046 3.450
Pyramid Level-5 (Res: 1/2) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 90.507 0.094 0.845
Accelerated Optical Flow 10.763 0.094 0.851 8.409
Pyramid Level-6 (Res: 1) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 1131.373 0.090 0.701
Accelerated Optical Flow 114.307 0.090 0.700 9.898
Cumulative (All Levels) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 1232.602 0.090 0.701
Accelerated Optical Flow 128.806 0.090 0.700 9.569
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Figure 3.12: Comparison of evolutions of gradient descent and accelerated gradient
descent. I1(φ) and the residual are shown throughout the evolution. As can be seen,
acceleration converges in far fewer iterations (gradient descent eventually converges,
but much later in time).

The optical flow data set [12] that was used in these experiments is the Middlebury

dataset, a standard benchmark for optical flow, and can be found on https://vision.

middlebury.edu/flow/data/. Images ranged in resolution from 420 x 380 to 640 x

480, and consist of 7 real scenes with camera motion as well as object motion and

deformation. The ground truth dense optical flow is also provided in this data set.

The accuracy of the optical flow on this data set is measured with the average angular

error (AAE), which measures the average angular difference between the result and

ground truth displacement vectors, and the average end point error (AEE), which

measures the average difference between end points of the displacement vectors of

the result and ground truth. The regularization was kept constant throughout the

entire experiment for every image. We fix the coefficient on the regularizer α at 0.04

for both accelerated and linearized optical flow, which leads to the optimal accuracy

for both methods.
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Figure 3.13: Comparison of evolutions of accelerated optimization with and without
friction. The four rows are the density ρt#φt, velocity v ◦ φt, image warp I1 ◦ φ and
residual |I0− I1(φ)| for the undamped and damped accelerated descents over various
iterations. Notice that the undamped descent overshoots the target and switches
directions as evidenced by the shift in the velocity from orange to blue. The addition
of a friction term kills the oscillations, allows convergence and for the minimization of
the residual. Notice that in both cases, the mass moves within and around the square
in non-trivial ways. Each are initialized with a constant density and at convergence,
the density is also constant.
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Figure 3.14: Converged results for Linear Optical Flow and Accelerated Optical Flow
run on the Middlebury data set. Both methods converge to the same local minimum,
with the advantage of accelerated being speed. Note the black areas indicate occlu-
sion, which are excluded from error computation according to the benchmark. Seven
image pairs were used for the experiment.
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3.5 Active Contours

3.5.1 Formulation

We now illustrate the steps in the process for developing PDE based accelerated

optimization schemes for the specific case of geometric active contours. The resulting

coupled PDE evolutions will retain the parameterization independent property of

gradient descent based active contours models and will therefore remain amenable to

implicit implementation using Level Set Methods [127].

We begin, however, by reviewing some basic differential contour evolution prop-

erties that will be useful in deriving accelerated active contour formulations. In

particular, it is useful to understand any contour evolution behavior in terms of its

local geometric frame, consisting of the unit tangent and normal vectors.

Let C(p, t) denote an evolving curve where t represents the evolution parameter

and p ∈ [0, 1] denotes an independent parameter along each fixed curve. The unit

tangent, unit normal, and curvature will be denoted by T = ∂C
∂s

, N , and κ respec-

tively, with the sign convention for κ and the direction convention for N chosen to

respect the planar Frenet equations ∂T
∂s

= κN and ∂N
∂s

= −κT , where s denotes the

time-dependent arclength parameter whose derivative with respect to p yields the

parameterization speed ∂s
∂p

=
∥∥∥∂C
∂p

∥∥∥.
Letting α and β denote the tangential and normal speeds of the evolving curve7,

∂C

∂t
= αT + βN (3.115)

7Note that the instantaneous geometric deformation of the curve is determined exclusively by the
normal speed β, and that gradient flows for geometric active contours can all be formulated such
that the tangential speed α vanishes. We will see later that the same is possible for accelerated flow
models as well.
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the frame itself can be shown to evolve as follows.

∂T

∂t
=
(
∂β

∂s
+ ακ

)
N,

∂N

∂t
= −

(
∂β

∂s
+ ακ

)
T (3.116)

Differentiating the velocity decomposition (Equation 3.115) with respect to t, followed

by the frame evolution (Equation 3.116) substitution, yields the acceleration

∂2C

∂t2
=
(
∂α

∂t
− β

(
∂β

∂s
+ ακ

))
T +

(
∂β

∂t
+ α

(
∂β

∂s
+ ακ

))
N (3.117)

which may be rewritten as the following two scalar evolution equations for the tan-

gential and normal speeds, in terms of the tangential and normal components of the

contour acceleration, respectively.

∂α

∂t
= ∂2C

∂t2
· T + β

(
∂β

∂s
+ ακ

)
,

∂β

∂t
= ∂2C

∂t2
·N − α

(
∂β

∂s
+ ακ

)
(3.118)

.

For geometric active contours, we start by defining the potential energy U to be

an originally provided energy functional E which depends only upon the geometric

shape of the contour C (not its parameterization). Under these assumptions the

first variation of the potential energy will have the following form, just as in (Equa-

tion 2.12) presented earlier in Equation 2.12, where fN denotes the backward local

gradient force at each contour point.

δU = −
∫
C
f (δC ·N) ds
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Constant density model

To formulate an accelerated evolution model, we define a kinetic energy, which re-

quires a notion of mass coupled with velocity. The simplest starting model would be

one of constant mass density ρ (per unit arclength along the contour) and an integral

of the squared norm of the point-wise contour evolution velocity8.

T = 1
2ρ
∫
C

(
∂C

∂t
· ∂C
∂t

)
ds (3.119)

Plugging this into the generalized action integral (Equation 3.1) and computing the

Euler-Lagrange equation leads to our first, and simplest, accelerated model.

∂2C

∂t2︸ ︷︷ ︸
acceleration

= λk2tk−2

ρ
fN︸︷︷︸

−gradient
−
(
∂2C

∂s∂t
· ∂C
∂s

)
∂C

∂t
− ∂

∂s

1
2

∥∥∥∥∥∂C∂t
∥∥∥∥∥

2
∂C

∂s


︸ ︷︷ ︸

wave propagation terms

− k + 1
t

∂C

∂t︸ ︷︷ ︸
friction

(3.120)

If we start with zero initial velocity we can decompose this nonlinear second-order

PDE into the following coupled system of nonlinear first order PDE’s

∂C

∂t
= βN,

∂β

∂t
= λk2tk−2

ρ
f + 1

2β
2κ− k + 1

t
β (3.121)

Since the contour evolution remains purely geometric (only in the normal direction

N) we may also write down an implicit level set version of the coupled PDE system

as follows

∂ψ

∂t
= β̂‖∇ψ‖, ∂β̂

∂t
= λk2t(k−2)

ρ
f̂ +∇ ·

(
1
2 β̂

2 ∇ψ
‖∇ψ‖

)
− k + 1

t
β̂ (3.122)

where f̂(x, t) and β̂(x, t) denote spatial extensions of f and β respectively.
8A similar kinetic energy model in the context of the classical action T −U, for example, was

used to develop dynamic geodesic snake models for visual tracking in [128]
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3.5.2 PDE Acceleration vs Gradient Descent

In this section we illustrate the performance improvements of reformulating an exist-

ing active contour model into the accelerated framework and demonstrate favorable

performance improvements even when comparing against recent alternative global

strategies such as Chambolle-Pock. As the scope of this paper is not to propose or

invent a particular active contour model, but rather an accelerated framework that

can apply to variational models, we keep the 2D test images simple, such that popular

binary region based active contour models (such as Chan-Vese) are well suited to the

segmentation tasks. We demonstrate that these models, however, when lacking suffi-

cient regularity (in this case the arc length penalty), become prone to getting trapped

within unwanted local minimizers when implemented as standard gradient descent ac-

tive contours. We show that even strategies such as Chambolle-Pock, which seek to

minimize the global energy, still become numerically trapped within local minimizers

when used with matching regularity. And while these alternative global minimiz-

ers can perform admirably on special classes of binary region based active contours

they are not extendable with the same generality as the PDE acceleration framework

presented here. We will see in these illustrative examples that simply applying the

contour acceleration is sufficient to fix the sensitivity to local minimizers, drastically

speed up the convergence of the region based active contours and without the need

to abandon the active contour framework in favor of less generalizable global convex

optimization methods. We also provide example extensions of the acceleration frame-

work for non-convex problems, particularly the case of variational 3D reconstruction,

where we show not only a dramatic speed-up in terms of run-time but also a better

converged result for both toy and real data.

In Figure 3.15 we see three different initial contour placements (top, middle, bot-

tom) evolving from left-to-right via the gradient flow PDE (Equation 2.13). Each

gets trapped within a different local minimizer due to noise, all of which lie very
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Figure 3.15: Different initial contours flowing into local energy minimizers

far away from the desired much deeper minimizer along the rectangular boundary.

Of course, stronger regularizing terms could be added to the active contour energy

functional to impose smoothness on the contour, thereby making it resistant to noise.

However, the point of this experiment was to create an energy landscape littered with

literally tens of thousands (perhaps even hundreds of thousands) of local minimizers

in order to demonstrate the effects of acceleration. Furthermore, stronger regular-

ization would sacrifice the ability to capture the sharp corners of the rectangle and

increase the computational cost due to smaller resulting step size constraints in the

PDE discretization.

We avoid both of these sacrifices by using the exact same active contour force

f within the accelerated PDE system (Equation 3.121) instead. In Figure 3.16, we

see the effect of applying accelerated contour evolution scheme with the same initial

contour placements and same energy functional (no additional regularizing terms).

In all three cases, the accelerated PDE system pushes the contour past the noise,

driving it toward a more robust minimum along the rectangle edge.

In Figure 3.17 we see this same dramatic difference on a real seismographic image
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Figure 3.16: Accelerated active contours flowing past local minima

where we attempt to use an active contour to pull out the rather noisy ”core” of the

recorded seismograph line. Along the left column we see four different initial contour

placements, where the first three elliptical initializations, which are far from the

desired segmented result, pose a considerable challenge to a classical gradient descent

active contour. Minimal regularization is allowed here given the spikey nature of the

signal, at least in cases where we wish to capture this fine scale level of detail.

In the middle column, we see the converged active contour results based on the

standard gradient flow version of the evolution given by (Equation 2.13). Only in the

last (bottom) case, is the segmented result reasonable.

In the last column, we see the converged result of the same active contour energy E

and force f evolved using the accelerated PDE system (Equation 3.121). While there

are very subtle differences in the final results (as can be see by the slight differences

in the converged energy value), all four are nonetheless reasonable now even from the

first three challenging initial contour placements.
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Figure 3.17: Non-accelerated (middle) vs. accelerated (right) active contour results
for same four initializations (left) on a seismograph image. Cost functional values
underneath.

3.5.3 PDE Acceleration vs Primal Dual

In Table 3.8, we compare our method an accelerated version of active contours (AC)

to a global convex energy minimization method Chambolle/Pock (CP) [7], and find

comparable robustness to global methods but with a significant computational sav-

ings. We choose the regularity such that standard active contours converges to a

local minima (not the global) over multiple different initializations, so that a better

method is required to optimize the energy. The regularity is also chosen with the

performance of CP in mind for the comparison, as CP also requires a sufficiently high

regularity, although lower than standard active contours, to segment the region.
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Table 3.8: [Left]: PDE Acceleration (AC) offers a comparable level of robustness to
initialization as global convex Chambolle/Pock (CP) in lower computational time.
[Right]: Visual comparison for the results with greatest energy difference in CP &
AC shows that the energy differences are nearly in-perceptible.

Near Square Time CP (sec) Time AC (sec) Energy AC Energy CP

Res: 280 x 280 0.176 0.042 5.196E+08 5.186E+08

Res: 560 x 560 2.34 0.11 5.212E+08 5.099E+08

Res: 1120 x 1220 20.009 1.167 5.212E+08 5.073E+08

Res: 2240 x 2240 159.76 14.43 5.202E+08 5.056E+08

Threshold Mask

Res: 280 x 280 0.174 0.064 5.168E+08 5.225E+08

Res: 560 x 560 2.24 0.204 5.168E+08 5.092E+08

Res: 1120 x 1120 20.438 1.055 5.157E+08 5.071E+08

Res: 2240 x 2240 159.178 14.606 5.201E+08 5.051E+08

Far Square

Res: 280 x 280 0.771 0.278 5.198E+08 5.186E+08

Res: 560 x 560 8.726 1.43 5.198E+08 5.090E+08

Res: 1120 x 1120 91.197 14.65 5.206E+08 5.069E+08

Res: 2240 x 2240 772.342 69.48 5.201E+08 5.060E+08

We run all AC and CP experiments to convergence and measure the computational

time and final energy for 3 different initial segments at 4 different resolutions. The

experiments were: a square close to the desired segmentation - “Near square”, a square

far from the desired segmentation - “Far square”, and a binary threshold of the image

- “Threshold Mask”. In Table 3.8 we present a scaled down noisy binary image of

resolution 1120 x 1120 with the final segmentations for both methods. Performance

results are provided in Table 3.8. This comparison shows that our method consistently

obtains comparable local optima over different initialization, similar to CP, but with

less computational time. Furthermore, our method applies more generally to non-

convex problems, where we would expect similar robustness in our method, and where

CP is not as applicable; see 3D stereoscopic segmentation experiments in Section 4.3.
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Figure 3.18: [Left]: Initial threshold initialization of noisy square [Middle]: Con-
verged segmentation for Chambolle-Pock. [Right]: Converged segmentation for Ac-
celerated Active Contours.

In Figure Figure 3.18 we present the case of a segmentation based on an initial

threshold of the image, this is a similar experiment to the threshold mask discussed

earlier, but with a significantly lower arc length penalty than those used in the pro-

ceeding table Table 3.8. Here we show another advantage of the Accelerated Active

Contours method in needing less regularization for segmentation. In Figure Fig-

ure 3.18 the numerical implementation of Chambolle-Pock becomes trapped whereas

the accelerated version of active contours is able to push past the local minimizers in

the image.

Table 3.9: Performance numbers for Threshold Segmentation Chambolle-Pock vs
Accelerated Active Contours for Figure 3.18.

Image Resolution Arc Penalty Iterations CP Energy AC Energy

1120 x 1120 1.00E+4 600 8.14E+9 8.07E+9

3.5.4 Accelerated Active Surfaces

The accelerated active contour models developed in section 3.5 offer a more robust

evolution framework for generic contour based optimization problems, just as the

class of Sobolev active contour models introduced earlier. Both methodologies reg-

ularize the optimization process, without imposing regularity on the final optimized
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result, greatly boosting the evolving contour’s resistance to spurious or shallow local

minimizers. In both cases, this desirable property is achieved by effectively averaging

contributions from several local gradient forces in order to determine the instanta-

neous evolution of any given point on the curve.

In the case of Sobolev active contours, this averaging is done spatially at each

fixed time instant by an effective convolution along the curve. Unfortunately, while

special tricks exist to do this quickly for closed curves, they do not apply to surfaces

or higher dimensional manifolds, where Laplace-Beltrami style PDE’s must instead

be solved along the surface at every time instant in order to calculate the Sobolev

gradeint.

Accelerated active contour models, on the other hand, perform a temporal rather

than spatial averaging. As a particle along the curve accelerates, its instantaneous

velocity represents the accumulation of local gradient information over its recently

traveled trajectory, rather than the accumulation of local gradient information from

its neighboring contour points at the same instant in time. An important advantage of

the time-based averaging, in contrast with the instantaneous spatially-based averaging

in Sobolev style active contours, is that the same computational speed up in 2D will

apply equally in 3D and higher.

In the case of geometric active surfaces, we start with a potential energy which

depends only upon the geometric shape of the contour S (again, as in the contour

case, not its parameterization). Under these assumptions the first variation of the

potential energy will have the following form

δU = −
∫
S
f (δC ·N) dA

where fN represents a force along the unit normal N at each point on the surface S

and where dA denotes the surface area measure. The implicit level set framework is
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particularly convenient for active surfaces given the complexities of dealing with 3D

meshes. In the level set framework, the (non-accelerated) gradient descent surface

evolution PDE has the same form as in 2D, but is applied to a 3D grid instead.

Namely
∂ψ

∂t
= −f̂‖∇ψ‖

where f̂(x, t) denotes a spatial extension of f to points away from the surface. Nar-

row band methods are especially important in 3D to keep the computational cost of

updating the level set function ψ to a minimum (as well as limiting the neighborhood

where extension functions such as f̂ need to be computed and evolved).

In the simplest constant density model case, applied to surfaces. the kinetic

energy term for the accelerated model will have a similar form but with the density

ρ interpreted per unit surface area.

T = 1
2ρ
∫
S

(
∂S

∂t
· ∂S
∂t

)
dA

Computing the Euler-Lagrange equation of the generalized action integral (Equa-

tion 3.1) and writing it in the level set framework yields the same system of first

order PDE’s as in the contour case, except now in 3D dimensions,

∂ψ

∂t
= −β̂‖∇ψ‖, ∂β̂

∂t
= λk2t(k−2)

ρ
f̂ +∇ ·

(
1
2 β̂

2 ∇ψ
‖∇ψ‖

)
− k + 1

t
β̂

where f̂(x, t) and β̂(x, t) denote 3D spatial extensions of f and β respectively.

3.6 Stereo Reconstruction

3.6.1 Introduction

The next application of PDE acceleration that we pursued was an extension of stereo-

scopic segmentation from [13] in which we used a second order accelerated scheme
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as opposed to their gradient descent update. Consider the smooth surface model

from [13]. The authors formulate the energy of their surface as depending on three

terms the surface S, the radiance of the surface f and the radiance of the background

g. Their cost functional is composed of three integrals: First, they consider a data

fidelity term Edata(f, g, S) which measures the discrepancy between the measured im-

ages and the images predicted by the model. Second, they consider a smoothness

term Esmooth(f, g, S) which assumes a smooth surface radiance for the surface and

background. Third, they consider a geometric prior Egeom(S). The combined cost

functional is thus constructed as follows:

E(f, g, S) = Edata(f, g, S) + Esmooth(f, g, S) + Egeom(S) (3.123)

The geometric prior and and smoothness term are given as follows:

Egeom =
∫
S
dA (3.124)

Esmooth =
∫
S
||∇Sf ||2dA+

∫
B
||∇g||2dΘ (3.125)

which favor a minimal surface area S and a minimization of the quadratic TV

norms on the radiance functions f and g. Here ∇S denotes the intrinsic gradient on

the surface S and B is treated as the background with angular coordinates Θ = (θ, φ)

which can be mapped one to one with the coordinates x̂i of each image domain Ωi

through Θ = Θi(x̂i). The data penalty term is given as:

Edata(f, g, s) =
n∑
i=1

(∫
Ωi
f((πi−1(x̂i))− Ii(x̂i))2dΩi)

)
(3.126)

Here we define x = (x, y, z) as representing a generic point of a scene in R3

which is expressed in global coordinates, based on a fixed inertial reference frame.
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xi = (xi, yi, zi) represents the same point in camera coordinates relative to each image

Ii. The stereoscopic segmentation is constrained by a sequence of images I1 to In

which is taken from the scene. The authors assume that the domain Ωi of each image

Ii belongs to a 2D plane in which zi = 1 and (xi, yi) constitute Cartesian coordinates

in this image plane. Furthermore the authors use πi : R3 → Ωi;x 7→ x̂i = (x̃i, ỹi)

to denote an ideal perspective projection onto the image plane, where x̃i = xi
zi

and

ỹi = yi
zi

. The authors denote πi−1 as a back-projection onto the surface S by πi
−1 :

Ωi → S.

The complete gradient flow for this functional [13] is given as follows:

dS

dt
=

n∑
i=1

f − g
zi3

[Ii − f + Ii − g](∇iχi · xi)N+

n∑
i=1

2χi
zi3

(Ii − f)(∇if · xi)N −HN+

K〈∇Sf, A
−1∇Sf〉N − ||∇Sf ||HN

(3.127)

where H denotes mean curvature, N the outward unit normal, K the Gaussian

curvature of S, and A denotes the second fundamental form of S with respect to the

isothermal coordinates. The authors denote χi as a special characteristic function

where χi(x) ∈ {0, 1} and χi(x) = 1 for x ∈ πi−1(Ωi) and χi(x) = 0 for x /∈ πi−1(Ωi).

This is performed so as to exclude points that are occluded by other points on the

surface S 9.

Although there are simpler models for shape reconstruction [116, 88] we choose this

model [13] because of its extreme non-convexity. The reason for this non-convexity

is that the projections in stereoscopic segmentation must be applied to both the

occlusion boundaries and the evolving structure. The gradient descent optimization

used in this stereoscopic segmentation model is also prone to getting trapped in local
9We would refer the reader to [13, 129] for the details of deriving the gradient descent equations.
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minima and demonstrates the potential benefits of PDE acceleration.

3.6.2 Simulated Results Gradient Descent vs PDE Acceleration

One of the drawbacks of the stereoscopic segmentation presented in [13] is that it

is unable to resolve sufficiently large local minimizers [116]. To visualize this we

illustrate the following experiment:

Figure 3.19: Projected silhouettes (in yellow) from starting surface which does not
intersect tori holes.

Consider a pair of double tori in which the interior holes are completely enveloped

by the initial ellipsoid see Figure 3.19. Using stereoscopic segmentation we run the

process until convergence at which point we are trapped see Figure 3.20 and unable

to carve out the interior regions of the tori.

Figure 3.20: Converged 3D Silhouettes of Gradient Descent

With the older technique there are some limited improvements we can make such

as by using more views, and a much stronger area penalty. In Figure 3.21 we show
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the initial result with 16 images and no area penalty [Left]. Here the gradient-

descent clearly gets trapped in a local minima and is unable to push through the

interiors. While adding additional camera views and some regularity does improve the

results, [Middle] image, the large local minimizers still remain. Adding a much harsher

area penalty can remove the local minimizers, however, it does so at the expense of

image features. With delicately and deliberately chosen over-regularization, gradient

descent can thus penetrate the tori holes but at the expense of breaking the tori rings

themselves (see right image of Figure 3.21).

Figure 3.21: Three double tori reconstructions using gradient-descent stereoscopic
segmentation. [Left] torus used 16 images and 0 area penalty. [Middle] torus used 18
images and a moderate area penalty of 150. [Right] torus used 18 images and a high
area penalty of 500. Notice the modest feature loss in the final image.

A similar experiment by Kolev, Brox, and Cremers [116] compares a double torus

reconstruction using stereoscopic segmentation against a convex probabilistic fusion

scheme that combines probable 3D shapes and observed color information. In [116]

the authors astutely note that while the approximation in [129, 13] is more faithful it

is not globally optimizable. However, by extending the non-convex the approach in

[13] using PDE acceleration we are able to push through the local minimizers without

the use of additional constraints on the geometry or even additional regularization.
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Our objective was that by using PDE acceleration here we would be able to circum-

vent that limitation. To this end we recreated a synthetic torus experiment that

mimicked the conditions of the experiment in [116]. The initial enclosing ellipsoid

(see Figure 3.19) completely covered both tori centers. When the gradient descent

stereoscopic segmentation executed it was only able to partially resolve the shape of

the tori; see Figure 3.20 and Figure 3.22. While the accelerated method was able to

converge faster, the primary benefit of acceleration in this experiment is that it can

reach a better local minimum in the reconstruction when compared with gradient

descent. For acceleration the momentum allowed it to push into the interiors of the

tori.

Figure 3.22: Comparison of Stereoscopic Segmentation on synthetic data for Gradient
PDE method vs Accelerated PDE method at different iteration steps 0, 500, 1000,
2000 and 4000 iterations respectively. The gradient method gets trapped by local
minimizers in this case the bounds of the torus and is unable to form the holes
without heavy regularization. Note that the initial start for the both methods is the
ellipsoid. The area penalty was fixed at 0 and the experiment used 16 image views of
the tori for the reconstruction.

A numeric performance comparison between the two methods is provided in Ta-

ble 3.10.
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Table 3.10: Performance benchmark of gradient vs accelerated method, computations
were done on an intel 6 Core i7-5930K.

Iterations to Converge: Run Time (sec): Final Energy
Gradient Descent 3653 196.44 2.09E+10
PDE Acceleration 1630 66.16 2.90E+09

3.6.3 Physical Calibration Array and Real Data

The second reconstruction we present is of a wooden horse using 32 different 640

x 480 resolution images; see Figure Figure 3.23. Comparing the Gradient Descent

[Bottom] and Accelerated PDE [Top] schemes, we demonstrate faster convergence for

the Accelerated PDE scheme as well as better robustness to local minimizers. Unlike

in the Gradient PDE method we are able to capture the entire horse volume and do

not lose smaller features such as the horse’s thin legs.

Figure 3.23: [Top]: Gradient descent driven variational 3D reconstruction gets
trapped in local minima when strongly regularized [Bottom]: PDE acceleration is
able to successfully shoot past local minimizers under a higher area penalty. Note
average convergence time for PDE acceleration is almost three times faster than
Gradient descent. Iterations are given at the bottom with performance results found
in table Table 3.11.

92



Imposing a high area penalty on the horse reconstruction creates local minimiz-

ers within the horse’s narrow legs. Gradient descent stereoscopic segmentation then

struggles to push down the legs and reconstruct the entire horse volume. The accel-

erated version progresses far faster and does not suffer a penalty even under the same

heavy regularization.

Table 3.11: Performance numbers for Gradient Descent vs PDE Acceleration of
variational 3D reconstruction. Note that increase in energy is due to the methods not
capturing the entire horse volume.

Gradient Descent Acceleration

Area Penalty Iterations Run Time (sec) Final Energy Iterations Run Time (sec) Final Energy

300 751 27.00 1.099E+10 205 8.307 9.381E+09

After we obtained promising results in our reconstructed simulations we then

moved to the next phase of the research where I along with another PhD student,

Huizong Yang, prototyped and built a 3D scanning array for doing 3D reconstruction.

Since the accelerated method is more robust and needs fewer camera angles to work

we could reduce the number of cameras in the initial array.

Currently, we have finished the calibration of the array and have begun performing

new experiments. The next extension that we hope to add, although this would be

primarily Huizong’s focus would be the addition of depth sense cameras to the array.

This would allow us to incorporate depth information into the energy functional and

to potentially resolve much finer surface features.
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Figure 3.24: Stereo Reconstruction Camera Array
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CHAPTER 4

CONCLUSION

In this dissertation we derived the PDE acceleration framework and demonstrated

its utility for a wide ranging class of computer vision problems and as a general

method for solving variational PDEs. PDE acceleration showed extensive benefits

for regularized inversion problems, optical flow, active contour driven segmentation

and even highly non-convex formulations such as stereoscopic-segmentation which we

used in 3D reconstruction.

4.0.1 Discretization Schemes

In our research on PDE acceleration we first showed how the accelerated gradient is

generalized from the Bregman Lagrangian in the ODE domain to the much more gen-

eral PDE setting. Our research then examined how to best implement discretizations

of the accelerated gradient method. We reviewed several discretization schemes along

with their accompanying stability conditions (see section 3.2). We further demon-

strated how the framework can be easily and quickly adopted for existing variational

formulations.

4.0.2 Inversion Problems

In our experiments with regularized inversion problems we began with the case of

simple denoising. We showed how PDE acceleration had comparable or better per-

formance than methods such as Split Bregman and Primal Dual. We also demon-

strated how to choose the optimal damping coefficient and illustrated the performance

differences of varying damping schemes. In our later experiments with image decon-

volution we demonstrated how the accelerated descent method could outperform both
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Chambolle-Pock Primal Dual and ADMM.

Compressed Sensing

Another successful application of the PDE acceleration framework was for compressed

sensing in particular edge-preserving TV. As in the earlier experiments with deconvo-

lution we expected and saw a large performance uplift over the current methods (see

Figure 3.9) with the additional advantage that we would not have to convexify the

energy functional, which is necessary for the current dual formulation of the problem.

Poisson Solver

An incredibly useful application of PDE acceleration is as a more general optimiza-

tion method for solving PDEs. In this text we showed how to undertake this for

Poisson’s equation, which is broadly utilized in physics. Traditional methods for

solving Poisson’s equation have focused on either relaxation schemes such as Gauss-

Seidel, the Jacobi method, and SOR or matrix methods like conjugate gradient [130].

The accelerated descent scheme was shown to be quite competitive against the stan-

dard optimizers (see Table 3.5) and was orders of magnitude better than the Jacobi

method. In problems with large matrices (see Table 3.6) this benefit became even

more pronounced as PDE acceleration was nearly three times faster than SOR.

4.0.3 Optical Flow

The initial optical flow experiments demonstrated an order of magnitude improvement

in speed over the conjugate gradient method (see Table 3.7). Both methods converged

to the same local minimum (see Figure 3.14) but the accelerated optical flow was more

robust to lack of initialization and converged in far less time. The initial exploration

into optical flow was done with the aim of testing the effectiveness of the accelerated

scheme against one of the most common methods conjugate gradient.
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4.0.4 Active Contours

One of the other contributions of this research was to extend PDE acceleration into

the active contour domain. In active contour driven segmentation previous methods

would often get trapped in local minimizers due to noise (see Figure 3.15). However,

by reformulating the problem as a convex optimization, researchers could leverage

global optimization methods such as primal dual as was done in our experiments (see

Table 3.8). We show that with PDE acceleration we can achieve better results by

not relying on the convexification of the problem and instead using a more faithful

representation of the cost functional. In addition we showed a numerical benefit of

reduced reliance on regularity and were able to better capture the segmented squares

more accurately (see Table 3.8).

4.0.5 Stereo Reconstruction

In the original stereoscopic segmentation paper [13], one of the primary drawbacks

of the 3D reconstruction method was an inability to handle local minimizers in the

silhouette geometry1. In response to work such as [116] where the authors rightly

point out the limitations of gradient-descent driven stereoscopic segmentation we

have extended the PDE acceleration framework to the formulation in [13]. In sub-

section 3.6.2, we present an experiment featuring a synthetic data set that closely

mirrors the synthetic stereo data2 from [116]. In this experiment we demonstrate

one of the principle advantages of pde acceleration in that we are not only able to

improve convergence times as was shown in the example of optical flow but that we

are often able to resolve to far better local minimizers than what might be obtained

using gradient descent. We further demonstrate on real data (see Figure 3.23), how

PDE acceleration has both a higher robustness to over regularization and a much
1See subsection 3.6.2 and [16]
2The data set and code from [116] was not available and thus had to be re-implemented.
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faster convergence rate in highly non-convex applications.

4.0.6 Future Work

A quite natural extension of this initial work in PDE acceleration would be to derive

more of the theory required to optimally predict the tuning parameters that are used

particularly the damping. In a recent paper by Calder and Yezzi [34] the authors were

able to derive an optimal formula for the damping coefficient for a subset of PDE

accelerated functionals using an analysis of the boundary value conditions. What

we have found in the course of my research is that the approach in [34] does not

necessarily generalize well to other functionals such as those used in deconvolution

and stereoscopic-segmentation. Therefore we are of the opinion that further theory

is needed to develop this portion of the framework.
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APPENDIX A

FACILITY ACKNOWLEDGEMENT

The majority of the work for my PhD research was performed on my two personal

computers as well as on the lab machine at Tech Square Research Building (TSRB).

I have also made use of the TSRB work space to build and design a 3D scanning

array which was built in partnership with fellow PhD student Huizong Yang. For this

array we used the 3D printing facilities located in Van Leer and Georgia Tech’s Hive

lab to print the structure and requisite calibration pattern.
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APPENDIX B

EXPERIMENTAL EQUIPMENT

The experimental equipment used in the fulfillment of this research were the lab

computers provided by Professor Yezzi as well as my own personal machines. I also

in conjunction with fellow PhD student Huizong Yang designed and built a stereo rig

for stereo reconstruction. This rig makes use of 8 different cameras.
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APPENDIX C

DATA PROCESSING

The deconvolution of the blurred butterfly was initially processed as a symmetric

image. One of the issues that our research group observed but was unable to amend

in time for the initial Journal of Mathematical Imaging and Vision (JMIV) paper

[122] was the issue of severe ringing caused by repeated 2D FFTs on non-symmetric

images. This ringing was amplified by the 2nd order scheme that we used in the

deconvolution of these images. Thus all of the routines were fed a symmetric image

that was 4 times the initial resolution of the blurred butterfly. The routines for this

experiment were written in MATLAB.

The experiments with the Poisson equation and compressed sensing were not yet

published at the time this dissertation was written. Thus these experiments might

change in future publications of this work.

The second experiment for optical flow used images from the middlebury optical

flow data set. In the traditional optical flow benchmarks the ground truth is unknown

and the algorithms are tested on an untrained/untuned data set. Since the intent of

the experiment was not to achieve stellar results in optical flow but merely to show a

significant run time improvement a better optical flow model could have been used.

Both the conjugate gradient method and the 2nd order accelerated descent scheme

arrived at the same local minimum but took vastly different paths to get there.

The conjugate gradient method is also somewhat finicky and the images must be

carefully down sampled when initiating the pyramid scheme. A poor initialization of

the conjugate gradient method strongly hampers performance when compared to the

accelerated scheme. The routines for this set of experiments were written in Python.

The third experiment on Stereo Reconstruction was based on a 2011 paper by
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Daniel Cremers. In his paper Cremers implemented a synthetic experiment where

he compared the stereoscopic segmentation from [13] against his convex formulation.

The experiment in subsection 3.6.2 is an extension of the initial work done by Yezzi

where a second order scheme is used in place of gradient descent. The experiment

used Opengl to create an adjustable pair of tori. The artificial camera calibrations

were then saved and used to reconstruct the pair of double tori. The experiment was

slightly different from Cremers but achieved a visually similar local minimum for the

gradient descent case. The routines for this set of experiments were written in C++

and Opengl.
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APPENDIX D

PUBLISHED CODES

To encourage reproducibility and citation of this and other manuscripts, the soft-

ware implementations for a number of these experiments are provided as GitHub

repositories. The associated links for the experiments and provided code are given as

follows:

• Accelerated (ACC) Denoising: https://github.com/minasbenyamin/Denoising-

• ACC Deconvolution: https://github.com/minasbenyamin/Deconvolution

• Optical Flow: https://github.com/minasbenyamin/Middlebury

• Optical Flow Translation: https://github.com/minasbenyamin/opt flow translation

• Active Contours: https://github.com/minasbenyamin/Active-Contours-

• Other Published Codes: https://github.com/minasbenyamin/DissertationCodes

The remaining codes are still undergoing code revision and or peer review. Links

to these repositories will eventually be posted to the Readme file of the Other Pub-

lished Codes repository. The programming languages used in the preparation of this

dissertation are MATLAB, Python and C++. Performance results may vary based

on software library versions and computing hardware. Please pay close attention

to the Readme documentation as it will detail necessary publications to cite when

reproducing/comparing this work.

104

https://github.com/minasbenyamin/Denoising-
https://github.com/minasbenyamin/Deconvolution
https://github.com/minasbenyamin/Middlebury
https://github.com/minasbenyamin/opt_flow_translation
https://github.com/minasbenyamin/Active-Contours-
https://github.com/minasbenyamin/DissertationCodes


APPENDIX E

ALTERNATIVE DISCRETIZATION SCHEMES FOR BELTRAMI

REGULARIZERS

In this section of the appendix we summarize the iterative schemes for the deconvo-

lution problem with a Beltrami norm. Note that all of our experiments with decon-

volution used the 2-order Accelerated scheme and that D2
β,∆xu

n denotes a particular

discretization (see subsection 3.3.3) of the Beltrami term.

Gradient Descent

∆un = −∆t
(
λKT ∗ (K ∗ un − g)−D2

β,∆xu
n
)

∆t≤∆x2
(

2
4Nβ+λ∆x2

) (E.1)

Beginning with the gradient descent update, we define the terms of this equation as

follows: n is the current iteration, ∆un refers to the update to the evolving entity un,

∆t is the time step, λ is the fidelity coefficient on the data term, K is the convolution

operator, and g is the initial value of evolving entity in the problem. For the time

constraint: β is the coefficient in the Beltrami norm and ∆x refers to the step size

of the N -dimensional Cartesian grid used to approximate the spatial derivatives of

the Laplacian term D2
β,∆xu

n. Moving to the accelerated schemes (Equation E.2 and

1-order Accelerated

∆un = 1
1 + a∆t∆u

n−1 − ∆t2
1 + a∆t

(
λKT ∗ (K ∗ un − g)−D2

β,∆xu
n
)

∆t≤∆x

(√
4

4Nβ+λ∆x2 +
(

a∆x
4Nβ+λ∆x2

)2
+ a∆x

4Nβ+λ∆x2

) (E.2)

Equation E.3) we define a as the damping coefficient used in the PDE acceleration
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and ∆un−1 as the previous update to the evolving entity.

2-order Accelerated

∆un = 2− a∆t
2 + a∆t∆u

n−1 − 2∆t2
2 + a∆t

(
λKT ∗ (K ∗ un − g)−D2

β,∆xu
n
)

∆t≤∆x
(

2√
4Nβ+λ∆x2

) (E.3)

For the remaining implicit scheme vn and un are updated sequentially and vn is

used as an intermediate variable for computing un+1.

Semi-Implicit

vn = un + 2− a∆t
2 + a∆t∆u

n−1

un+1 = vn − 2∆t2
2 + a∆t

(
λKT ∗ (K ∗ vn − g)−D2

β,∆xv
n
)

∆t≤∆x
(

2√
3(4Nβ+λ∆x2)

) (E.4)

Of these initial schemes we observed that the 2-order Accelerated update had the

most straightforward stability condition and that the 1-order and 2-order schemes

were both faster than the Semi-Implicit method.
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APPENDIX F

DISCRETIZATION SCHEMES FOR TOTAL VARIATION

REGULARIZATION

In this section of the appendix we summarize the iterative schemes for the decon-

volution problem with a TV norm. Like in the proceeding section our experiments

were carried out using the 2-order Accelerated scheme and D2
∆xu

n denotes a particular

discretization (see subsection 3.3.3) of the TV term.

Gradient Descent
∆un = −∆t

(
λKT ∗ (K ∗ un − g)−D2

∆xu
n
)

∆t≤Q∆x
(

2
4
√
N+λQ∆x

) (F.1)

Beginning with the gradient descent update, the terms are defined almost exactly

as in Appendix E. The main difference is that there is no β term for the TV norm

and that Q is the quantization interval between neighboring pixels. Moving to

1-order Accelerated

∆un = 1
1 + a∆t∆u

n−1 − ∆t2
1 + a∆t

(
λKT ∗ (K ∗ un − g)−D2

∆xu
n
)

∆t≤
√
Q∆x

(√
4

4
√
N+λQ∆x

+
(

a
√
Q∆x

4
√
N+λQ∆x

)2
+ a

√
Q∆x

4
√
N+λQ∆x

) (F.2)

the accelerated schemes (Equation F.2 and Equation F.3) we again define a as the

damping coefficient used in the PDE acceleration and ∆un−1 as the previous update

to the evolving entity.

For the remaining implicit scheme (Equation F.4) vn and un are again updated

sequentially and vn is used as an intermediate variable for computing un+1.
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2-order Accelerated

∆un = 2− a∆t
2 + a∆t∆u

n−1 − 2∆t2
2 + a∆t

(
λKT ∗ (K ∗ un − g)−D2

∆xu
n
)

∆t≤
√
Q∆x

(√
4

4
√
N+λQ∆x

) (F.3)

Semi-Implicit

vn = un + 2− a∆t
2 + a∆t∆u

n−1

un+1 = vn − 2∆t2
2 + a∆t

(
λKT ∗ (K ∗ vn − g)−D2

∆xv
n
)

∆t≤
√
Q∆x

(√
4

3(4
√
N+λQ∆x)

) (F.4)

As was the case with the Beltrami norm we observed that the 1-order and 2-order

schemes were also both faster than the Semi-Implicit method.
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APPENDIX G

ENERGY GRADIENT FOR OPTICAL FLOW

In this section of the appendix we derive the gradient of the energy for optical flow.

We begin by stating the relationship between the functional U , which is the energy

of our cost functional, with respect to a mapping of the brightness displacement φ.

Definition 1 (Functional Gradients) Let U : Diff(Rn) → R. The gradient (or

functional derivative) of U with respect to φ ∈ Diff(Rn), denoted ∇U(φ), is defined

as the ∇U(φ) ∈ TφDiff(Rn) that satisfies

δU(φ) · v =
∫
φ(Rn)

∇U(φ)(x) · v(x) dx (G.1)

for all v ∈ TφDiff(Rn). The left hand side is the directional derivative and is defined

as

δU(φ) · v := d
dεU(φ+ εv)

∣∣∣∣∣
ε=0

. (G.2)

Note that (φ+ εv)(x) = φ(x) + εv(φ(x)) for x ∈ Rn.

We now show the computation of the gradient for the illustrative potential (Equation 3.106)

used in this paper. First, let us consider the data term U1(φ) =
∫
Rn |I1(φ(x)) −

I0(x)|2 dx then

δU1(φ) · δφ =
∫
Rn

2(I1(φ(x))− I0(x))DI1(φ(x))δ̂φ(x) dx =∫
φ(Rn)

2(I1(x)− I0(ψ(x)))DI1(x)δφ(x) det∇ψ(x) dx,

where δ̂φ = δφ ◦ φ, ψ = φ−1 and we have performed a change of variables.

109



Thus, ∇U1 = 2∇I1(I1 − I0 ◦ ψ) det∇ψ. Now consider the regularity term U2(φ) =∫
Rn |∇(φ(x)− x)|2 dx, then

δU(φ) = 2
∫
Rn

tr
(
∇(φ(x)− id)T∇δ̂φ(x)

)
dx =

−
∫
Rn

∆φ(x)T δφ(x) dx =
∫

Ω
(∆φ)(ψ(x))T δφ(x) det∇ψ(x) dx.

Note that in integration by parts, the boundary term vanishes since we assume

that φ(x) = x as |x| → ∞. Thus, ∇U2 = (∆φ) ◦ ψ det∇ψ.
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APPENDIX H

DERIVATIONS FOR ACTIVE CONTOURS

In this section of the appendix we derive the PDE acceleration equations for the

active contour case. Here we consider the case of constant density and provide the

derivations for Equation 3.116, Equation 3.120 and Equation 3.121.

calculation of Equation 3.116

We begin by restating Equation 3.115:

∂C

∂t
= αT + β

where α and β denote the tangential and normal speeds of the evolving curve C(p, t), t

represents the evolution parameter, and p ∈ [0, 1] denotes an independent parameter

along each fixed curve. The unit tangent, unit normal, and curvature are again

denoted by T = ∂C
∂s

, N and κ respectively. Differentiating (Equation 3.115) with

respect to the arclength parameter s yields:

∂2C

∂s∂t
= ∂α

∂s
T + α

∂T

∂s︸︷︷︸
κN

+∂β
∂s
N + β

∂N

∂s︸︷︷︸
−κT

=
(
∂α

∂s
− βκ

)
T +

(
∂β

∂s
+ ακ

)
N

and differentiating T = ∂C
∂s

yields:

∂T

∂t
= ∂

∂t

∂C

∂s
= ∂

∂t

 ∂C
∂p∥∥∥∂C
∂p

∥∥∥
 =

∂2C
∂t∂p∥∥∥∂C
∂p

∥∥∥ −
∂C
∂p∥∥∥∂C
∂p

∥∥∥2
∂

∂t

∥∥∥∥∥∂C∂p
∥∥∥∥∥ =

∂2C
∂p∂t∥∥∥∂C
∂p

∥∥∥ −
∂C
∂p∥∥∥∂C
∂p

∥∥∥2

∂2C
∂p∂t
· ∂C
∂p∥∥∥∂C

∂p

∥∥∥

= ∂2C

∂s∂t
− T

(
∂2C

∂s∂t
· T
)

=
(
∂2C

∂s∂t
·N

)
N =

(
∂β

∂s
+ ακ

)
N
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which gives the first part of Equation 3.116 with the second part due to the

rotation relationship between T and N .

calculation of Equation 3.120

Recall the form of the time-explicit generalized action integral:

∫ tk+1

k

(
T− λk2tk−2U

)
dt (H.1)

Let C(p, t) denote a parameterization of the evolving curve C with a time-independent

spatial parameter p and with s denoting the time-dependent arclength parameter that

we compute. Ignoring the temporary boundary terms, apply integration by parts and

assume a closed curve so that the spatial boundary terms cancel:
text

δ

∫ 1

0

tk+1

k

(
T− λk2

t
k−2U

)
dt = δ

∫ 1

0

(∫ 1

0

1
2
tk+1

k
ρ
∂C

∂t
·
∂C

∂t
ds− λkt2k−1U

)
dt =

∫ 1

0

δ

(∫ 1

0

1
2
tk+1

k
ρ
∂C

∂t
·
∂C

∂t

∥∥∥ ∂C
∂p

∥∥∥ dp− λkt2k−1U

)
dt

=

∫ 1

0

ρ

k

(∫ 1

0

t
k+1
(
∂C

∂t
· δ
∂C

∂t

∥∥∥ ∂C
∂p

∥∥∥ +
1
2

∥∥∥ ∂C
∂t

∥∥∥2
δ

∥∥∥ ∂C
∂p

∥∥∥) dp− λk2t2k−1

ρ
δU

)
dt

=

∫ 1

0

ρ

k

(∫ 1

0

−
∂

∂t

(
t

k+1 ∂C

∂t

∥∥∥ ∂C
∂p

∥∥∥) · δC +
1
2
t

k+1
∥∥∥ ∂C
∂t

∥∥∥2
δ
∂C

∂p
·
∂C

∂s
dp +

λk2t2k−1

ρ

∫
C

f (δC ·N) ds

)
dt

=

∫ 1

0

ρ

k

(∫ 1

0

(
− tk+1 ∂

2C

∂t2

∥∥∥ ∂C
∂p

∥∥∥− (k + 1)tk
∂C

∂t

∥∥∥ ∂C
∂p

∥∥∥− tk+1 ∂C

∂t

∂

∂t

∥∥∥ ∂C
∂p

∥∥∥− 1
2
t

k+1 ∂

∂p

(∥∥∥ ∂C
∂t

∥∥∥2
∂C

∂s

))
· δC dp +

λk2t2k−1

ρ

∫
C

fN · δC ds

)
dt

=

∫ 1

0

tk+1

k
ρ

(∫ 1

0

(
−
∂2C

∂t2

∥∥∥ ∂C
∂p

∥∥∥− k + 1
t

∂C

∂t

∥∥∥ ∂C
∂p

∥∥∥− ∂C

∂t

(
∂2C

∂p∂t
·
∂C

∂s

)
−

1
2
∂

∂p

(∥∥∥ ∂C
∂t

∥∥∥2
∂C

∂s

))
· δC dp +

λk2tk−2

ρ

∫
C

fN · δC ds

)
dt

=

∫ 1

0

tk+1

k
ρ

∫
C

(
−
∂2C

∂t2
−
k + 1
t

∂C

∂t
−
(
∂2C

∂s∂t
·
∂C

∂s

)
∂C

∂t
−

∂

∂s

(
1
2

∥∥∥ ∂C
∂t

∥∥∥2
∂C

∂s

)
+
λk2tk−2

ρ
fN

)
︸ ︷︷ ︸

Set to zero for Euler-Lagrange equation

·δC ds dt

calculation of Equation 3.121
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Decomposing the acceleration Ctt into tangential and normal components yields:

∂2C

∂t2
= −k + 1

t

∂C

∂t
−
(
∂2C

∂s∂t
· ∂C
∂s

)
∂C

∂t
−
(
∂2C

∂s∂t
· ∂C
∂t

)
∂C

∂s
− 1

2

∥∥∥∥∥∂C∂t
∥∥∥∥∥

2
∂2C

∂s2 + λk2tk−2f

ρ
N

= −k + 1
t

∂C

∂t
−
(
∂α

∂s
− βκ

)
∂C

∂t
−
(
α
∂α

∂s
+ β

∂β

∂s

)
T − α2 + β2

2 κN + λk2tk−2f

ρ
N

∂2C

∂t2
· T = −

(
k + 1
t

+ ∂α

∂s
− βκ

)
α−

(
α
∂α

∂s
+ β

∂β

∂s

)
= −

(
k + 1
t

+ 2∂α
∂s
− βκ

)
α− β∂β

∂s

∂2C

∂t2
·N = −

(
k + 1
t

+ ∂α

∂s
− βκ

)
β − α2 + β2

2 κ+ λk2tk−2f

ρ

Now inserting these acceleration components into (Equation 3.118) yields:

∂α

∂t
= −
(
k + 1
t

+ 2
∂α

∂s
− βκ

)
α− β

∂β

∂s︸ ︷︷ ︸
∂2C
∂t2 ·T

+β
(
∂β

∂s
+ ακ

)
=
(
−
k + 1
t
− 2

∂α

∂s
+ 2βκ

)
α

∂β

∂t
= −
(
k + 1
t

+
∂α

∂s
− βκ

)
β −

α2 + β2

2
κ +

λk2tk−2f

ρ︸ ︷︷ ︸
∂2C
∂t2 ·N

−α
(
∂β

∂s
+ ακ

)
= −

k + 1
t

β −
∂

∂s
(αβ) +

(
1
2
β

2 −
3
2
α

2
)
κ +

λk2tk−2f

ρ

Given zero initial velocity (α=0 and β=0), simple inspection shows that α remains

zero, leading to the simplified evolution of Equation 3.121.

calculation of equation Equation 3.122

Assuming we represent the evolving curve C(p, t) as the zero level set of an evolving

function ψ(x, t) and letting β̂(x, t) denote an evolving spatial extension of the evolving

normal speed function β(p, t) along curve, then we have

ψ (C(p, t), t) = 0 and β̂ (C(p, t), t) = β(p, t)

Differentiating with respect to t yields:
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∂ψ

∂t
+∇ψ · ∂C

∂t
= 0 and ∂β̂

∂t
+∇β̂ · ∂C

∂t
= ∂β

∂t

Extending the contour evolution ∂C
∂t

= βN to other level sets as β̂N̂ , where N̂ =

− ∇ψ
‖∇ψ‖ (noting that this convention for the extension of the inward unit normal re-

quires that the level set function be negative inside the contour and positive outside),

yields:
∂ψ

∂t
= β̂‖∇ψ‖ and ∂β̂

∂t
= ∂β

∂t
+∇β̂ · β̂∇ψ

‖∇ψ‖

which, after substitution of ∂β
∂t

using Equation 3.121 results in the level set version of

the system in Equation 3.122.
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[76] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large defor-
mation metric mappings via geodesic flows of diffeomorphisms”, International
journal of computer vision, vol. 61, no. 2, pp. 139–157, 2005.
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