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Abstract. Water managers are tasked with resolving con-
flicts between freshwater resource uses, which range from 
municipal water supply, to recreation, and to sustaining 
aquatic ecosystem integrity. Further complicating man-
agement, hydrologic processes experience numerous 
sources of periodic, quasi-periodic, and episodic variation. 
Water allocation trade offs are often most complex and 
contentious when availability is low. Drought is a “recur-
ring extreme climatic event over land characterized by be-
low-normal precipitation over a period of months to 
years” (Dai 2011).  

Water managers often apply indicators of climatologic 
and hydrologic conditions to identify when drought condi-
tions are reached (e.g., Palmer Drought Severity Index, 
streamflow, respectively). These indicators inform 
drought declarations, with associated drought responses 
such as watering restrictions.  

Herein, we suggest techniques for predicting and de-
claring oncoming drought to improve the accuracy of 
drought declarations. We hypothesize that drought indica-
tors in preceding months are predictive of future drought 
levels. Specifically, we develop predictive models using 
the Palmer Hydrologic Drought Index, a common drought 
indicator. We then demonstrate the utility of our model for 
drought declarations for the Middle Oconee River near 
Athens.  

INTRODUCTION 

Hydrology in the Southeastern United States under-
goes numerous sources of variation, such as daily river 
fluctuations, seasonal climate dynamics, and extreme 
events. Drought is a common and normal component of 
this naturally fluctuating regime (Stooksbury 2003). Alt-
hough the societal costs of recent droughts have been sig-
nificant, more severe droughts have been observed in both 
instrumented and modeled history (Campana et al. 2012, 
Pederson et al. 2012). 

Over twenty indicators of drought are commonly ap-
plied to measure and evaluate ambient and historical mois-
ture conditions (Heim 2002, Dai 2011). These indicators 
help water managers identify, declare, and respond to 
drought conditions (Campana et al. 2012).  

We address techniques for identifying oncoming 
drought conditions in order to declare drought and 
preemptively adjust water use and management schemes. 

Specifically, we develop an approach which relies on var-
ied applications of the Palmer Hydrologic Drought Index 
for comparing alternative drought prediction techniques.  

STUDY SITE 

The Middle Oconee River watershed is a 398-mi2 ba-
sin in the rapidly developing Georgia Piedmont. In 1997, 
Barrow, Clarke, Jackson, and Oconee counties jointly 
constructed Bear Creek Reservoir under the auspices of 
the Upper Oconee Basin Water Authority (UOBWA 
1997). This 500-acre off-channel reservoir is filled using 
water pumped from the Middle Oconee River and is a 
primary water source for these counties.  

The four-county water authority (herein referred to as 
UOBWA) maintains a contingency plan to respond to — 
and mitigate the effects of — drought (UOWBA 2003). 
This plan specifies three primary drought indicators that 
are used to declare five levels of drought:  
• Palmer Hydrologic Drought Index (PHDI), 
• Middle Oconee River streamflow at Arcade GA, and 
• Bear Creek reservoir levels.  

For the purpose of this paper, we focus only on PHDI 
to evaluate our proposed method; however, similar anal-
yses could be undertaken for drought declaration using 
other indicators. The PHDI assesses long-term hydrologic 
conditions for the region on a non-dimensional scale from 
6 (extremely wet) to -6 (extremely dry). The UOBWA 
plan identifies five drought levels based on PHDI values 
(Table 1), with each level having specific water conserva-
tion targets.  
 
Table 1: Palmer Hydrologic Drought Index (PHDI) for 

determining UOBWA drought levels. 
 
Drought 

Level 
Palmer Hydrologic 

Drought Index (PHDI) 
Water Use Re-

duction Goal (%) 
0 -0.5 < PHDI  0 
1 -1 < PHDI ≤ -0.5 2.5 
2 -2 < PHDI ≤ -1 5 
3 -3 < PHDI ≤ -2 10 
4  PHDI ≤ -3 20 



 METHODS 

Real-time drought indicators are rarely available due to 
data and computational burdens. Thus, water management 
decisions typically rely on data from a previous time peri-
od. For instance, August decisions may use July’s PHDI 
data, or this week’s decisions may use last week’s stream-
flow.  

Here, we demonstrate the application of simple time 
series models for predicting current PHDI values and as-
sociated drought levels. PHDI values are computed 
monthly by the National Climatic Data Center for the 
north-central region of Georgia (NOAA 2012; state code 
= 09, region code = 02).  

Application of prior conditions to predict current (or 
future) conditions is generally referred to as time series 
analysis. We used standard time-series methods to analyze 
data from 1895-2011 (n=1404) for the purpose of demon-
strating the prediction accuracy of three alternative PHDI 
models. For each model, PHDI was predicted at time t 
based on the following equations: 
• Current method (UOBWA) 

– PHDIt = PHDIt-1 
• Differenced auto-regressive model (Model 1) 

– PHDIt = PHDIt-1 + (PHDIt-1 – PHDIt-2) 
• Auto-regressive model (Model 2) 

– PHDIt = (PHDIt-1 + PHDIt-2) / 2 
Drought levels were computed for each PHDI predic-

tion as well as observed PHDI data at each time step. Be-
cause drought levels have associated management actions, 
models were evaluated based on their capacity to predict 
drought level, rather than PHDI.  

The primary evaluation metric is the number of 
drought levels different from the observed drought level. 
For instance, if observed drought level at time t is 2, but a 
model predicted drought level is 3, then the departure is 1.  

We summed the number of data points at each level of 
departure (εd) and normalized this by the total number of 
data points (εp = εd / n). The range of predictive error is 
bounded between -4 ≤ εp ≤ 4, because a prediction error 
cannot exceed four drought levels. Importantly, positive 
values indicate a Type-I error (false prediction of drought) 
and negative values indicate a Type-II error (drought oc-
curred undetected).  

To compare our three competing models, an overall 
score (S) was computed as a weighted average of the 
magnitude and probability of errors. A low value of this 
metric indicates high predictive capability, whereas high 
values indicate low predictive capability (perfect predic-
tion occurs when the score is S = 0). This formulation pe-
nalizes larger over smaller errors.  

RESULTS 

While all three models track PHDI values with reason-
able certainty (Figure 1A), large discrepancies between 
observed and predicted values may occur (Figure 1B). In 
general, these PHDI predictions provide relatively accu-
rate drought declarations, with all three models predicting 
over 66% of drought levels correctly and over 88% of val-
ues within one drought level (Figure 2). However, dra-
matic 2-, 3-, and 4-drought level errors occasionally occur. 
Interestingly, the models do not demonstrate a bias toward 
Type-I (false positive) or Type-II (false negative) errors. 

Although all models demonstrate similar efficacy, the 
scores favor the UOBWA method over models 1 and 2 
with scores of 0.338, 0.489, and 0.409, respectively. This 
is attributable to the UOBWA method’s low prevalence of 
drought-level differences of more than one level (5.6%). 

DISCUSSION  

Early detection of dry conditions and accompanying 
drought declaration is critical to water management. This 
analysis demonstrates a simple method for comparing al-
ternative detection methods using three simple time series 
models, and compared their utility in declaration deci-
sions. In this analysis, the existing UOBWA model proved 
superior to the other two formulations. However, addi-
tional research is needed to reduce the number of declara-
tion errors, including: 

Time series models. Time series analysis has a wealth 
of applications, from tracking markets to weather forecast-
ing. We present three simple models, but additional anal-
yses may reveal that more complex models would better 
detect drought. For instance, Rugel et al. (2012) demon-
strate predictability of river discharge in Georgia on time 
scales as long as six months. 

Drought indicators. Drought detection is a complex 
multi-metric process, and we have only considered a sin-
gle variable, the PHDI. The UOBWA also relies on river 
discharge at weekly and monthly time scales to make 
withdrawal decisions (UOBWA 2003). Furthermore, other 
indicators such as the Standard Precipitation Index (SPI) 
are also quite useful in drought decision-making (Campa-
na et al. 2012). 

The UOWBA declares drought levels based on an av-
erage of indicators from PHDI, discharge, and reservoir 
levels. The first two indicators are not influenced by local 
managers, and thus respond to ambient conditions. Reser-
voir levels, however, may be manipulated out-of-sync 
with ambient moisture levels, and are likely to be poor 
drought indicators.  



 
Figure 1: Model evaluation: (A) model predictions over a 

sample time period in 2011, and (B) observed vs. 
predicted PHDI. 

 
Figure 2: Departures from observed drought levels. 

Reservoir levels are response variables to management 
actions, and we recommend a more nuanced approach for 
their incorporation into drought declaration decisions. For 
instance, if drought levels based on PHDI, discharge, and 
reservoir levels were 4, 3, and 0, the overall drought level 
would be only 2, which is a clear understatement of the 
existing conditions.  

What is needed is a metric that relates the reservoir 
volume to the predicted total demand for water for the re-
mainder of the season. Thus, low water levels late in the 
season should be managed differently than low levels ear-
ly in the season. The difference between the total reservoir 
volume (plus projected river withdrawals) and the predict-
ed demand for the rest of the season would provide such a 
metric. In fact, the drought response could be managed so 
that conservation reduces the gap between available and 
needed supplies. 

Methods such as those presented here help water man-
agers preemptively respond to drought by making in-
formed drought declaration decisions. Methods for accu-
rate, reliable, and repeatable drought detection and decla-
ration are challenging to develop. However, this topic is 
likely to become more important in light of increased de-
mand for freshwater in the Georgia Piedmont and the rela-
tive wetness of the late-20th century (Pederson et al. 2012).  

We have presented a simple method for analyzing al-
ternative drought declaration schemes, and although we 
have focused on simple models, we believe this general 
framework is transferrable to other basins, drought indica-
tors, and more complex models. 
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NOTATION 

εd Number of incorrect drought-declaration predictions 
εp  Probability of incorrect drought-declaration predic-

tions 
n  Number of PHDI observations 
S  Weighted-averaged of model accuracy and probabil-

ity of error 
PHDI Palmer Hydrologic Drought Index 
UOBWA Upper Oconee Basin Water Authority 
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