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Abstract

We present a new method of surface reconstruction that generates smooth and seamless models from sparse,

noisy, and non-uniform range data. Data acquisition techniques from computer vision, such as stereo range

images and space carving, produce three dimensional point sets that are imprecise and non-uniform when

compared to laser or optical range scanners. Traditional reconstruction algorithms designed for dense and

precise data cannot be used on stereo range images and space carved volumes. Our method constructs a three

dimensional implicit surface, formulated as a summation of weighted radial basis functions. We achieve three

primary advantages over existing algorithms: (1) the implicit functions we construct estimate the surface well in

regions where there is little data; (2) the reconstructed surface is insensitive to noise in data acquisition because

we can allow the surface to approximate, rather than exactly interpolate, the data; and (3) the reconstructed

surface is locally detailed, yet globally smooth, because we use radial basis functions that achieve multiple

orders of smoothness.

1 Introduction

The computer vision community has developed numerous methods of acquiring three dimensional data

from images. Some of these techniques include shape from shading, depth approximation from a pair of

stereo images, and volumetric reconstruction from images at multiple viewpoints. The advantage of these

techniques is that they use cameras, which are inexpensive resources when compared to laser and optical

scanners. Because of the a�ordability of cameras, these vision-based techniques have the potential to enable

the creation of digital models by home computer users who may not have professional CAD training. The

data that is obtained is, however, comparatively more noisy, more non-uniform, and more sparse than data

from laser and optical scanners. Most reconstruction methods that work with such data create a polygonal

model from the three dimensional data. Techniques that are used to perform the reconstruction include Alpha

Shapes [11], Crusts [1], and region growing algorithms. Noise from data acquisition becomes quite apparent

in the resulting model because these methods assume dense and precise data. In the case of volumes carved

from multiple viewpoints, the reconstructed models remain in the volumetric domain, and thus have artifacts

due to the voxel discretization.

Currently, models in popular use in the entertainment industry (animation and gaming applications), video

and image editing, and computer graphics research come from dense laser scans or medical scans, not from

vision-based techniques. We believe that this is not because vision-based techniques generate poor three

dimensional data, but rather, that the reconstruction of vision-based data has not generated detailed or

practical representations. Most rendering, modeling, and animation algorithms as well as hardware speed ups

apply only to polygonal models. In order for vision-based models to be more widely used, a representation

that is free of noise and easily convertible to a polygonal description must be obtained. We have developed

such a representation to address the problem of constructing detailed, smooth, and polygonizable models from

vision-based data sets.

Some of the most popular surface reconstruction approaches are based on image processing, computational

geometry, and algebraic data �tting. Methods based on computational geometry assume precise and dense

data in that they generate polygonal models whose vertices consist of the original data points. Similarly, image

processing techniques, such as region growing, rely on dense data to de�ne 3D structure. Approaches based
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on algebraic data �tting are limited in their ability to reconstruct complex models. Our approach addresses

limitations in these categories of surface reconstruction by generating approximating surfaces and by using

radial basis functions centered at data points to overcome the complexity limitation.

The new approach presented in this paper constructs a three dimensional implicit function from range data.

We use an implicit function representation because implicit functions can smoothly interpolate the surface

where there is little or no data, the surfaces are inherently manifold, compact, smooth and seamless, and

they can either approximate or interpolate the data. In addition, implicit surfaces can accurately model soft

and organic objects and can easily be converted to a polygonal model by isosurface extraction. They are

well-suited for operations such as collision detection, morphing, blending, and modeling with constructive

solid geometry because they use a single analytical function, as opposed to a piecewise formulation such as

a polygonal model. In e�ect, our approach retains the 
exibility of an analytical representation but can also

produce the widely used polygonal representation.

We construct an implicit surface from the data set using three dimensional regularization. This approach

is based on the variational implicit surfaces of Turk and O'Brien [27]. Our implicit function consists of a

summation of weighted radial basis functions that are placed at surface, interior, and exterior constraint

points de�ned by the data set. The weights of the basis functions are determined by solving a linear system of

equations. If so desired, we can approximate the data set by relaxing the linear system. The ability to choose

whether to approximate or interpolate the data is especially advantageous in the presence of noise. Surface

detail and smoothness is obtained by using radial basis functions that achieve multiple orders of smoothness.

Our main contributions are: (1) introducing the use of variational implicit surfaces for surface reconstruc-

tion from range data, (2) the application of a new radial basis function which achieves multiple orders of

smoothness, (3) enhancement of �ne detail and sharp features that are often smoothed-over by the variational

implicit surfaces, (4) construction of approximating, rather than interpolating surfaces to overcome noisy data,

and (5) development of validation techniques to guide the selection of parameters that control the smoothness

of the surface versus the �tness to the data.

The remainder of the paper is organized as follows: in Section 2, we review related work in surface reconstruc-

tion. In Section 3, we show how a priori knowledge about the vision-based data set is used in reconstructing

the surface. We describe the variational implicit surface representation in Section 4. In Section 5, we describe

our approach to constructing approximating surfaces. In Section 6, we introduce a radial basis function that

achieves multiple orders of smoothness. Results from synthetic range images and from real space carved data

sets are shown in Section 7.

2 Related Work

The large number of published methods for performing surface reconstruction makes it nearly impossible

to perform a comprehensive survey. Instead, we describe some of the more popular aproaches, with a bias

towards those more closely related to our own approach. The methods we describe include region growing

techniques, algorithms based on computational geometry, algebraic �tting methods, and surface regularization.

Techniques based on computational geometry and region growing methods require precise and dense data.

Consequently, these methods may fail when applied to non-uniform and noisy data. Methods based on

algebraic �tting are limited by the computational complexity required to reconstruct complex models because

simple, low order polynomials are insu�cient for representing complex objects.

Examples of region growing techniques include Hoppe's work on surface reconstruction [14] and Lee, Tang

and Medioni's work on tensor voting [19, 23]. In Hoppe's approach, a plane is �t to a neighborhood around

each data point, and these planes provide an estimate of the surface normal for each point. A graph is then

constructed in which each data point is a node, and the nodes are connected by arcs if the respective points

are in each other's neighborhood. Hoppe assigns a cost to each arc corresponding to the di�erence in the

estimated surface normals of the respective data points, and then surface normals are propagated by traversing

the graph as a minimal spanning tree, starting at a seed point. Lee and Medioni's tensor voting method is a

similar approach in that neighboring points are used to estimate the orientations of data points. The tensor

is the covariance matrix of the normal vectors of a neighborhood of points. Lee and Medioni decompose the

tensor into three basis that correspond to three features: planar surfaces, edges where two surfaces meet, and
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points where three or more surfaces intersect. Each data point votes for the orientation of other points in its

neighborhood using its tensor �eld. In [23], the surface is reconstructed by growing planar, edge, and point

features until they encounter a neighboring feature. Both methods described above are sensitive to noise in

the data points because they rely on good estimates for the normal vector at each data point.

Several algorithms based on computational geometry construct a collection of simplexes that form the shape

or surface from a set of unorganized points. These methods exactly interpolate the data | the vertices of the

simplexes consist of the given data points. A consequence of this is that noise and aliasing in the data become

embedded in the reconstructed surface. Of such methods, three of the most successful are Alpha Shapes [11],

the Crust algorithm [1], and the Ball-Pivoting algorithm [5].

The Alpha Shapes technique consists of three steps: (1) triangulation of the point set using Delaunay

triangulation, (2) selection of an alpha radius, and (3) identi�cation of the simplicial complexes that are to be

included in the reconstructed shape. The shape is carved out by removing edges, triangles, and tetrahedrons

whose circumscribing sphere is larger than the alpha ball. The output of the Alpha Shapes technique is not

a manifold surface, but a collection of simplicial complexes which approximate the 3D shape. The interior of

the shape consists of tetrahedrons. The shape boundary may be considered the surface. Selection of bounding

complexes to obtain a manifold surface is a non-trivial task.

The Crust algorithm, also called Voronoi �ltering, consists of four steps: (1) Delaunay triangulation of the

point set, (2) addition of Voronoi vertices, (3) retriangulation, and (4) identi�cation of the simplicial complexes

to be included in the reconstructed surface. Voronoi vertices that approximate the medial axis of the shape

are retriangulated along with the original set of points. The resulting triangulation distinguishes triangles

that are part of the object surface from those that are on the interior because interior triangles have a Voronoi

vertex as one of their vertices. Both the Alpha Shapes and Crust algorithms need no other information than

the locations of the data points and perform well on dense and precise data sets. The object model that

these approaches generate, however, consists of simplexes which occur close to the surface. The collection of

simplexes is not a manifold surface, and extraction of such a surface is a non-trivial post-processing task.

The Ball-Pivoting algorithm is a related method that avoids the creation of overlapping triangles and non-

manifold junctions by growing a mesh from an initial seed triangle that is correctly oriented. Starting with

the seed triangle, a ball of speci�ed radius is pivoted across edges of each triangle bounding the growing mesh.

If the pivoted ball hits vertices that are not yet part of the mesh, a new triangle is instantiated and added

to the growing mesh. Triangles whose edges are all adjacent to other triangles of the mesh are no longer

bounding triangles.

All three algorithms described above depend on dense and precise data, and as a result, any noise inherent

in the data becomes embedded in the reconstructed surface. In Figure 1, the Crust algorithm is applied to

real range data obtained from the generalized voxel coloring method of [8]. Although, the general shape of

the toy dinosaur is recognizable, the surface is rough due to the noisy nature of the real range data.

Algebraic methods avoid creating noisy surfaces by �tting a smooth function to the data points, and by

not requiring that the function pass through all data points. The reconstructed surface may consist of a

single global function or many functions that are pieced together. Two examples of reconstruction by global

algebraic �tting are the works of Taubin [24, 25], and Gotsman and Keren [15, 16]. Taubin �ts a polynomial

implicit function to a point sets by attempting to minimize the distance between the given point set and the

implicit surface. He points out that calculating Euclidean distances for implicit functions requires an iterative

process because implicit functions are not often Euclidean distance functions. Consequently, it is necessary to

formulate an approximation to the Euclidean distance. In [24], Taubin develops a �rst order approximation of

the Euclidean distance and improves the approximation in [25]. Gotsman and Keren's approach is to create

parameterized families of polynomials that satisfy certain desirable properties, such as �tness to the data or

continuity preservation. The aim of their work is to �nd an analytical parameterization of a sub-family of

polynomials that already satisfy desirable properties. This family must be as large as possible so that it can

include as many functions as possible. This technique leads to an over-representation of the subset, in that

the resulting polynomial will often have more coe�cients for which to solve than the simpler polynomials

included in the subset, thus requiring additional computation. Their examples include simple 2D and 3D

shapes such as stars, pentagons, and cubes �tted to polynomials of four, �ve, and six degrees. Their most
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Fig. 1. The data set is a space carved volume of a toy dinosaur. The reconstruction was obtained from the Crust

algorithm.

impressive result is �tting an eight degree polynomial to the silhouette of a violin. The primary limitation

of global algebraic methods is their inability to reconstruct complex models. These methods become too

computationally intensive for the high degree polynomials that are necessary to represent complex objects.

In [4], Bajaj overcomes the complexity limitation by constructing piecewise polynomial patches (called

A-patches) that combine to form one surface. There are two primary steps in the algorithm: (1) dividing the

data set into tetrahedrons, and (2) obtaining the coe�cients of the Bernstein polynomial that is �tted to the

data points within each tetrahedron. Delaunay triangulation divides the data points into groups delineated by

tetrahedrons. Vertices and interior points of a tetrahedron form the control points of the patch, and then an

A-patch is formed by �tting a Bernstein polynomial to the data points within each tetrahedron. If the error

between the data points and the A-patch is too large, the tetrahedron is divided into a series of smaller interior

tetrahedra and patches are created to each new tetrahedra. C1 continuity is preserved between patches by

forcing several coe�cients of each polynomial to be equivalent between neighboring patches. By constructing a

piecewise surface, Bajaj's approach loses the compact characteristic of a global representation, and operations

such as collision detection, morphing, blending, and modeling with constructive solid geometry become more

di�cult to perform since the representation is no longer a single analytical function.

Our approach is similar to global algebraic �tting in that we construct one global implicit function. Our

method cannot be categorized as algebraic �tting, however, because the implicit function we construct is not

a polynomial. Instead, it is a summation of non-polynomial basis functions whose domain is a scalar value

obtained from the distance between sample points. Previous work that is most closely related to the work

we present in this paper are methods based on regularization. Surface reconstruction from a point set is an

ill-posed inverse problem because there are in�nitely many surfaces which may pass through a given set of

points. Surface regularization restricts the class of permissible surfaces to those which minimize a selected

energy functional. The work of [6] and [26] are examples of regularization applied to height-�eld surfaces, and

[12] is an example of regularization applied to parametric curves. Terzopoulos pioneered �nite-di�erencing

techniques to compute approximate derivatives used in minimizing the thin-plate energy functional of a

height-�eld. He developed computational molecules, or masks, from the discrete formulations of the partial

derivatives. Regularization is performed by iterating between coarse and �ne levels in a multi-resolution

hierarchy. Boult and Kender compare classes of permissible functions and discuss the use of basis functions

to minimize the energy functional associated with each class. Using synthetic data, they show examples

of overshooting surfaces that are often encountered in surface regularization. As exempli�ed by these two

methods, many approaches based on surface regularization are restricted to height �elds because surface

derivatives are required in the process of regularization. Derivatives with respect to the major axis are

naturally de�ned for height �elds.
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In [12], Fang and Gossard reconstruct piecewise continuous parametric curves. The advantage of parametric

curves and surfaces over height-�elds is the ability to represent closed curves and surfaces. Each curve in

their piecewise reconstruction minimizes a combination of �rst, second, and third order energies. Unlike

the examples above, the derivative of the curve in this method is evaluated with respect to the parametric

variable. Each curve is formulated as a summation of weighted basis functions. Fang and Gossard show

examples using Hermite basis. Their examples are synthetic 2D curves, although their method can be applied

to higher dimensions. The approach we present in this paper has similar elements. We also use basis functions

to reconstruct a closed surface which minimizes a combination of �rst, second, and third order energies.

We di�er from the previous work in that we reconstruct complex 3D objects using a single implicit function;

we perform volumetric rather than surface regularization; and we use energy-minimizing basis functions as

primitives.

3 Constraint Specification

In this section, we introduce the a priori knowledge we have of vision-based data sets and how this informa-

tion can be used to reconstruct a surface. Later we will formalize our surface reconstruction algorithm and

discuss its relationship to volumetric regularization.

The computer vision community has developed many methods to acquire 3D positional information from

photographic images taken by cameras. These techniques include depth from a pair of stereo images, shape

from shading, space carving, and structure from motion. The goal of all these methods is to determine a

collection of 3D points that lie on a given object's surface. When such a collection of points is acquired

using cameras, the camera position and direction provides additional information that can be used for surface

reconstruction. In particular, if a point that can be seen from a particular camera is found to be on the surface

of an object, there are no surfaces between the camera and the point. This is shown in Figure 2. We call

the region between the camera and the surface point free space. Some space carving approaches to surface

reconstruction make use of this information [9]. We can use this a priori knowledge about the object surface

locations and the free space to de�ne constraints that lie on or outside of the object. This is shown in the

lower panel in Figure 2, in which points on the surface are shown as asterisks and points outside the surface

are marked with dashes. The exterior constraints are those locations where we want our implicit function to

be negative, and the surface constraints are where the implicit function should evaluate to zero. Later, we

will give more details on how these constraints are used in our surface reconstruction algorithm. Note that we

do not have any knowledge about the space behind the surface locations with respect to one camera position

and direction. However, if we have images and surface locations from viewpoints surrounding the object, we

can completely de�ne the existence space - surface, exterior, and interior - of the object. Suppose we have

range images and camera positions from viewpoints on a sphere around the object. The interior of the object

is known by virtue of surface enclosure.

In this paper we demonstrate our reconstruction technique with models both from synthetic range images

and actual data created using voxel coloring [21] [8]. We use this data to de�ne exterior and surface constraints

as described above in order to guide the construction of an implicit function. In the case of voxel coloring, the

initial data sets are dense. For example, the toy dinosaur used in the Crust reconstruction shown in Figure

1 consists of 19,641 surface voxels. Notice that the data set is also highly discretized as shown by the Crust

reconstruction. As we will explain in the following sections, the computational complexity of our approach

prohibits the use of the entire range data set. Instead, we uniformly sample the data set to reduce it to less

than one-third of the original size. We show in our results that this reduced data set is su�cient to generate

detailed surfaces using our reconstruction algorithm. Using the entire data set is not only computationally

expensive, but may also result in over�tting (or overshoots), which commonly occurs in algebraic �tting when

a function is forced to interpolate all data points. In Section 7.4.2, we describe in more detail the real range

data sets and how the above method for constraint speci�cation is applied to it.

In the next section we introduce variational implicit surfaces. These surfaces are created by regularizing

the volume in which the surface, exterior, and interior constraints are de�ned.
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Fig. 2. The upper panel shows the free space carved out by rays projecting from the camera to the object surface. The

lower panel shows surface (*) and exterior (-) constraints de�ned by the free space.

4 Variational Implicit Surfaces

The surface reconstruction technique that we present in this paper is an extension of the variational implicit

surfaces of [27]. This approach is based on the calculus of variation and is similar to surface regularization

in that it de�nes an energy functional to be minimized. Unlike surface regularization, however, the energy

functional is de�ned in R3 rather than R2. Hence, the functional does not act on the space of surfaces, but

rather, on the space of 3D functions. In [27], the functional that was minimized is the thin-plate energy in

3D. The total thin-plate energy for this function is calculated by integrating the square of the second partial

derivative of the function over the region of interest, 
, where 
 is in R3:

E =

Z



kf 00k2ds (1)

Turk and O'Brien used the following radially symmetric basis function which inherently minimizes the above

energy in 3D:

�(r) = jrj3 (2)

r is the distance to the center of the basis function. In this paper we will make use of other basis functions,

but the basic formulation of our implicit functions is the same. We will return later to the question of which

basis function to use. Regardless of which is used, each basis function is centered at each constraint point,

and the resulting implicit formulation is the summation of weighted radial basis functions and a polynomial:

f(~x) =
nX
i=1

wi�(~x� ~ci) + P (~x) (3)

In the above equation, n is the number of constraint points; ~ci are the locations of the constraint points

corresponding to the centers of the radial basis; and wi are the weights for the basis functions. The constraints

may be surface, interior, or exterior points as de�ned in the previous section. The polynomial term spans the
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null space of the basis function. In the case of the thin-plate energy, the polynomial term consists of linear

and constant terms because the thin-plate energy consists of second order derivatives (P (~x) = p0+ ~pd �~x where
d is the dimension of ~x). The unique implicit function is found by solving for the weights of the radial basis

functions and the coe�cients of the null space.

The unknowns, wi and the coe�cients of P (~x), are solved by constructing a linear system. Each constraint,

~ci can be applied to Equation 3 to form one equation of the system. The function value, f(~ci), at each

constraint point is known since we have de�ned the constraint points to be on the surface, or internal or

external to the object. In the case of an implicit function that evaluates to zero on the surface, the known

function value for each surface constraint is zero. All exterior constraints are placed at the same distance

away from the surface constraints towards the camera viewpoints and are assigned a function value of -1.0.

All interior constraints are assigned a function value of 1.0. The basis function, �(r), can be evaluated for

r = j~ci � ~cj j.
The result is a system of equations that is linear with respect to the unknowns. The linear system can be

formulated as a matrix equation, Mw = v, where v is an array of the function values at each constraint point

(v = 0 for surface points), w is an array of the unknown weights, and M is a matrix which consists of the

evaluation of the basis function at the Euclidean distance between each pair of constraints.

Mw = v (4)

2
6666664

�(j~c1 � ~c1j) � � � �(j~c1� ~cnj) 1 ~c1
...

... 1
...

�(j ~cn � ~c1j) � � � �(j ~cn � ~cnj) 1 ~cn
1 1 1 0 0

~c1 � � � ~cn 0 0

3
7777775

2
6666664

w1

...

wn

p0
~pd

3
7777775
=

2
6666664

f(~c1)
...

f( ~cn)

0

0

3
7777775

(5)

For surfaces, constraints are speci�ed by 3D coordinates, ~c = (cx; cy; cz), and the polynomial that spans the

null space for the thin-plate basis function consists of constant and linear terms, P (~c) = p0+p1cx+p2cy+p3cz .

The basis function �(r) = jrj3 tends toward zero as the distance between constraints approaches zero, and it

tends toward in�nite as the distance approaches in�nite. The above matrix is symmetric, and all elements of

the diagonal are zero because the distance between a constraint point and itself is exactly zero. The system

matrix is dense, and hence, sparse matrix techniques, such as biconjugate gradient descent, do not reduce the

time to obtain a solution. Instead, the system can be solved using LU decomposition. Once the solution to

the unknown weights are found, the 3D implicit function is completely de�ned by Equation 3. The implicit

surface is a level-set of the 3D implicit function where it evaluates to zero. A polygonal representation of the

implicit surface may be obtained by iso-surface extraction using Marching Cubes [20].

In the unorganized points problem, the interior and exterior of a point set is not de�ned, and the orientation

of the surface reconstructed from such a point set is not known a priori. Turk and O'Brien restrict the surface

orientation by pairing each surface constraint with a normal constraint that is interior to the surface and

such constraint points are given a function value of one. For implicit surfaces constructed from a polygonal

representation of the object, the constraints are de�ned by the vertices of the polygons, and normal constraints

are de�ned by vertex normals. Radial basis functions are centered at each surface and normal constraint

locations. In the case of vision-based data sets such as those considered in this paper, there are no surface

vertices or normals to be used as constraints. Instead, we specify surface, exterior, and interior constraints in

the manner described in Section 3, thus de�ning the orientation of the surface.

Figure 3 is an example of a surface reconstructed from a vision-based data set using the variational technique

of Turk and O'Brien using the basis function �(r) = jrj3. The �gure shows a front view 
anked by two side

views of the reconstruction of the toy dinosaur. The constraints for this reconstruction are from range images

using the ray-casting method described in Section 3. There were 3000 surface constraint points, 264 exterior

constraints, and 100 interior constraints speci�ed. The resulting surface exactly interpolates the constraint

points, but overshoots are apparent between the arms and face which are fused, as well as between the feet.

These overshoots are the cause of exact interpolation which forces the surface to pass through constraint
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Fig. 3. The data set consists of 3000 surface, 100 interior, and 264 exterior constraints, sampled from a space carved

volume of a toy dinosaur. The reconstruction is a variational implicit surface generated using the basis, �(r) = jrj3.
The reconstruction exactly interpolates the constraint points.

points. In addition, there are cavities which penetrate the tail and form small pockets within the surface.

This reconstruction is evidence that exact interpolation algorithms are sensitive to noise in the data which is

especially prevalent in vision-based data sets. In this paper we will improve upon these results in several ways.

In the next section, we show that better results may be obtained by introducing a regularizing parameter that

allows the surface to pass close to, rather than exactly through, the constraint points. A later section will

demonstrate that using di�erent basis functions also improves upon the surfaces that are created.

5 Approximation vs. Interpolation

Scattered data interpolation is the process of estimating previously unknown data values using neighboring

data values that are known. In the case of surface reconstruction, the surface passes exactly through the

known data points and is interpolated between the data points. Data interpolation is appropriate when the

data values are precise. In the case of vision-based data, however, there is some uncertainty in the validity of

the data points. Using data interpolation to construct the surface is no longer ideal because the surface may

not actually pass exactly through the given data points. This is precisely the problem with algorithms from

computational geometry that generate polygonal meshes using data points as the vertices of the mesh. If the

uncertainty of the data points is known, a surface that better represents the data would pass close to the

data points rather than through them. Constructing such a surface is known as data approximation. Many

vision-based techniques for capturing 3D surface points have an associated error distribution or con�dence

range for the data points. In this section we discuss how data approximation is achieved in our framework.

We can allow the surface to pass close to, but not necessarily through, the known data points by relaxing

the constraints of the linear system. We use the formulation discussed in [13]. A simple derivation is presented

therein which shows that a summation of weighted radial basis functions as given in Equation 3 is the solution

to minimizing a cost functional, H of the following form:

H [f ] =
1

�

nX
j=1

(yi � f(~xi))
2 + �[f ] (6)

In the above equation, f is the unknown surface function, n is the number of constraint points, or observed

data points; yi are the observed values of the data points at locations ~xi; �[f ] is the smoothness functional,

such as thin-plate; and � is a parameter to weigh between �tness to the data points and smoothness of the
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surface. � is often called the regularization parameter. We use � to specify how closely we want to approximate

the data set. In our approach, constraint points are interpolated when � = 0 and are approximated when

� > 0. In the above equation, � is de�ned as a global parameter. However, � need not be global, since it is

simply a parameter which controls the trade-o� between �tness to the data versus strength of the smoothness

assumption. We can assign such a parameter to individual constraints, so that the trade-o� is between the

�tness to one particular constraint versus the �tness to all other constraints plus the strength of the smoothness

assumption. We can modify Equation 6 by repositioning � as follows, and de�ning it for each constraint:

H [f ] =
nX

j=1

1

�i
(yi � f(~xi))

2 + �[f ] (7)

� is a known value that can be assigned according to the noise distribution of the data acquisition technique.

It is included in the system matrix of Equation 5 in the following manner:

2
6666664

�(j~c1 � ~c1j) + �1 � � � �(j~c1� ~cnj) 1 ~c1
...

... 1
...

�(j ~cn � ~c1j) � � � �(j ~cn � ~cnj) + �n 1 ~cn
1 1 1 0 0

~c1 � � � ~cn 0 0

3
7777775

2
6666664

w1

...

wn

p0
~pd

3
7777775
=

2
6666664

f(~c1)
...

f( ~cn)

0

0

3
7777775

(8)

The ability to assign distinct � values to individual constraints is especially important when we use exterior

and interior constraints because they are added only to provide orientation to the surface but do not represent

real data. A large � value such as 2.0 is often used for exterior and interior constraints, while small values such

as 0.001 is often used for surface constraints. We can also use � as a local �tting parameter by assigning the

� value for each surface constraint based on the con�dence measurement of the data point. This may not be

possible, however, if individual con�dence measurements are not available, or if the con�dence measurements

themselves are imprecise. In practice, we have found that � works well as a semi-global �tting parameter,

where one � value is used for all surface constraints, and another for all interior and exterior constraints.

Figure 4 shows the result of applying di�erent � values on the same data set. As � approaches zero, the

surface becomes rougher because it is constrained to pass closer to the data points. At � = 0, the surface

interpolates the data, and overshoots are much more evident. At larger values of �, the reconstructed model is

smoother and approaches an amorphous bubble. We have found that a � value of 0.001 for surface constraints

generates visually pleasing reconstructions. In Section 7 we validate this choice of � using measures of �tness

and curvature.

Fig. 4. The data set is from a synthetic range image of a corner of a cube. � is varied from 0 at the left to 2.0 at the

right. � = 0:001 for the second reconstruction from the left.

Figure 5 shows the reconstruction of the toy dinosaur using the same 3000 surface, 200 exterior, and 100

interior constraint as that of Figure 3 but with � set to 0.001. The surface is much smoother, the overshoots

are less apparent, and there are fewer protruding bumps and fewer small pockets embedded in the surface.

Unfortunately, the toy dinosaur's features are blobby and amorphous, especially at the feet and hands. Distinct

limbs, such as the feet and tail, are fused together. It is apparent from this result that the radial basis function
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Fig. 5. The reconstruction is a variational implicit surface generated using the basis, �(r) = jrj3 and � = 0:001 for

surface constraints. The data set is the same as that of Figure 3.

used by Turk and O'Brien generates models which are too blobby. In addition, the dense matrix produced

by the thin-plate radial basis function is computationally intensive to solve. Computational time increases

signi�cantly as more constraints are speci�ed because the complexity of LU decomposition is O(n3), where n

is the number of constraints. The coe�cients of the implicit function for the model in Figure 5 were solved

in 36.7 minutes on an SGI Origin with 195 MHz MIPS R10000 processor. In the next section, we explore the

use of a radial basis function that minimizes multiple orders of smoothness, not just thin-plate energy. This

basis function turns out to be amenable to sparse matrix solutions (enabling the speci�cation of many more

constraints) and is signi�cantly less blobby in nature.

6 A Radial Basis Function for Multiple Orders of Smoothness

The results of Figures 1 and 5 show that a balance is needed between a tightly �tting, or shrink-wrapped,

surface, and a smooth surface. A tightly �tting surface separates the features of the model but is prone to

jagged artifacts. For example, the Crust reconstruction, shown in Figure 1, is an exact �t to the data with no

smoothness constraint. On the other hand, a smooth surface may become too blobby as in Figure 5, which

shows that minimizing the thin-plate energy alone is not su�cient to produce a surface that separates features

well and is locally detailed.

In [7], Chen and Suter derive the radial basis functions for the family of Laplacian splines, of which the �rst,

second, and third order energy-minimizing splines are members. Thin-plate energy is equivalent to second

order energy, and membrane to �rst order energy. For the �rst three dimensions, the basis are comprised

of rk, rklogjrj, exponential, and Bessel function terms. r is the distance from the center of the radially

symmetric basis. The value of k depends on the dimension and order of smoothness. Turk and O'Brien use

�(r) = jrj2logjrj for two dimensional thin-plate interpolation, and �(r) = jrj3 for three dimensional thin-plate

interpolation. One dimensional plots of these radial basis functions are shown in Figure 6.

The plots show that the functions exhibit global in
uence because the value of the function tends toward

in�nite as the distance from its center increases. The system matrix, which consists of the evaluation of the

basis function at distances between pairs of constraints, is dense because constraint points are sparse and

uniformly spread across the region of interest.

Surprisingly, a more complex radial basis function has compact support, yielding a better conditioned system

matrix. In [22], Suter and Chen used basis functions that minimize multiple orders of smoothness (beyond the

�rst and second order) to reconstruct human cardiac motion. They found that a model minimizing third and
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Fig. 6. Cross section of radially symmetric basis functions for thin-plate spline in two and three dimensions.

fourth order energy resulted in the smallest RMS error. They concluded that basis which minimize more than

just the �rst and/or second order energy generate more accurate reconstructions. In particular, as the space

dimension increases, the order of continuity of the thin-plate spline at data points decrease. For example, Suter

and Chen show that in three dimensions, the thin-plate spline basis has discontinous �rst order derivative

at the data points. We chose to use a basis that achieves �rst, second, and third order smoothness because,

unlike motion, object surfaces may contain sharp features which are C1 discontinuous. The additional third

order, however, enhances smoothness since it's order of continuity does not break down in three dimensions.

Chen and Suter present a derivation for such a basis in [7] by calculating the inverse Fourier transform of

the Laplacian operator associated with the partial di�erential equation for minimizing a combination of �rst,

second, and third order energy. The basis function as given in [7] for obtaining a combination of �rst, second,

and third order smoothness in three dimensions is as follows:

�(r) =
1

4��2r
(1 + C1e

�
p
vr � C2e

�
p
wr) (9)

v =
1 +

p
1� 4�2�2

2�2
(10)

w =
1�

p
1� 4�2�2

2�2
(11)

C1 =
w

v � w
(12)

C2 =
v

v � w
(13)

r is the distance from the center of the radial basis function. � controls the amount of �rst order smoothness,

and � controls the amount of third order smoothness. The amount of second order smoothness is inherently

controled by the balance of � and � . � and � are the only free parameters in de�ning the basis function.

Figures 7 and 9 are one dimensional plots of the above function. Unlike the plot for �(r) = jrj3, these plots
show that the value of the basis function tends toward zero as the distance from its center increases.

In Figure 7, � is increased from a value of 10 to 40 while � is kept at 0.01. Note how the radius of in
uence

decreases as � increases. In other words, the basis tends to zero faster for larger values of �. As the radius of

in
uence shrinks, the basis contributes less and less global in
uence. In the limit, the basis are simply spikes,

and the resulting 3D implicit function would contain steep gradients between spiky points. A zero-valued

level-set of such a function would also exhibit sharp features because the spikes are centered at constraint

points, including surface constraint points where the implicit function evaluates to zero.
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The reconstructions of the toy dinosaur in Figure 8 correspond to the di�erent values of � in the plots

of Figure 7. The models were reconstructed using 3000 surface constraints, 100 interior, and 264 exterior

constraints. The surface becomes increasingly pinched at the constraint points as � is increased. Visually,

the pinching appears as surface detail that is often missing in overly smooth surfaces. Despite the pinching,

the surface remains globally smooth. This reconstructions are substantial improvements over those shown in

Figures 3 and 5.
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Fig. 7. Cross section of radially symmetric basis functions for a combination of �rst, second, and third order smoothness.

� varies from 10 to 40, � = 0:01.

In Figure 9, � is increased from 0.01 to 0.75 while � is maintained at 0.25. The radius of in
uence also

shrinks. In this case, however, the value of the function near the center 
attens out, instead of becoming spiky.

In the limit, the basis becomes parabolic and enforces homogeneous curvature around constraint points. The

resulting 3D implicit function and its iso-surface becomes increasingly smooth as � is increased. Figure 10

shows the reconstruction of the toy dinosaur corresponding to the increasing values of � for the same data

set as that of Figure 8. In the limit, the reconstructed surface becomes amorphous, similar to those obtained

from large values of �.

The system matrix formed by Equations 9 through 13 is diagonally dominant and is especially amenable

the biconjugate gradient method of solving linear equations. Timing results show that the system matrix of

Equation 5 was solved in 1.7 minutes using the multi-order basis function with � = 0:01 and � = 10, while

the system matrix generated for the same set of 3300 constraints using the thin-plate radial basis function

required 36.7 minutes. Not only are these new results superior in terms of quality, but they also require

considerably less time to create than the original formulation of Turk and O'Brien.

The range of weights used in Figures 8 and 10 for � and � were chosen to span the search space of possible

values. Selection of the weights is constrained by Equations 10 and 11, in which both � and � appear under

the square root. Values for � and � were chosen to avoid imaginary values for v and w. Figure 13 is a plot of

the range of allowable values for � and � .

Determining the values of � and � that correspond to the best reconstruction of a surface is an important

issue. By visual inspection, we can see that the reconstructions in Figure 8 are the more pleasing in terms

of trade-o� between surface detail and smoothness than those of Figure 10. The arms, legs, and tail of the

dinosaur in these reconstructions are better separated, and the back more detailed than that of Figure 5

which was produced by the thin-plate radial basis function. Judging between the four reconstructions of

Figure 8 is, however, more di�cult. Deciding that one is better than another amongst these four is quite
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Fig. 8. From left to right, � is 10, 20, 30, and 40, while � is kept at 0.01. The lower panels are closeups of the dinosaur

tail which show an example of the di�erences between the reconstructions. The data set is the same as that of Figure 3.
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Fig. 9. Cross section of radially symmetric basis functions for a combination of �rst, second, and third order smoothness.

� = 0:25, � varies from 0.01 to 0.75.
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Fig. 10. From left to right, � is 0.01, 0.1, 0.5, and 0.75, while � is kept at 0.25. The data set is the same as that of

Figure 3.

arbitrary and objective. In the next section, we discuss two methods we have used for validation and as a tool

for comparison between the reconstructed models. These methods include a measure of �tness error and a

measure of aggregate curvature. They are exactly the attributes that the basis functions and the parameters,

�, � and � , regulate.

7 Results

Figure 11 is a visual comparison of di�erent reconstructions of the toy dinosaur. This �gure shows the

original data (far left), the Crust reconstruction (middle left), the implicit surface using the thin-plate basis

function (middle right). At the far right of the �gure is the new reconstruction using the techniques of this

paper. Note that the round protrusion beneath the arm is the turn key of the actual toy dinosaur (see Figure

20 for the original images of the toy dinosaur). We show further evidence in this section, using new data sets

as well as synthetic data sets, that reconstruction by volumetric regularization generates globally smooth, yet

detailed, surfaces. Finally, we discuss the addition of color to the models.

Fig. 11. From left to right: original voxel data set from space carving, Crust reconstruction from entire data set, implicit

surface reconstruction using the thin-plate radial basis function, and our new implicit surface reconstruction using the

multi-order radial basis function. The last two reconstructions were generated using 3000 surface, 100 interior, and 264

exterior constraints sampled from the space carved data set.

We have introduced three parameters, �, � and � , in our reconstruction algorithm. We now show that for
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the purpose of surface reconstruction from sparse point sets, there are a limited number of possible values for

these parameters that will produce desirable results. We validate and compare the reconstructions based on

visual inspection, a measure of �tness, and a measure of curvature. By delimiting the space of values for these

parameters, we show that reconstruction by volumetric regularization requires minimal parameter tuning.

7.1 Selecting �

Recall from Section 5 that � controls the trade-o� between �tness to the data points and the smoothness

assumption. The following measures of �tness and curvature corroborate this fact, as well as help guide the

selection of appropriate values for �.

7.1.1 Fitness Error

We de�ne �tness error to be the aggregate distance between the original data points and the reconstructed

surface. We measure this distance by �rst constructing a polygonal model from the implicit function using

Marching Cubes [20], and then �nding the closest vertex of the polygonal model to a given data point. This

vertex is an intial starting point on the surface from which we can then search for even closer surface locations

to the given data point. We �nd closer surface points crawling along the surface in small increments until

a small increment in any four directions along the surface does not yield a location that is closer to the

constraint. When this stopping location is found, the Euclidean distance is calculated and accumulated.

Figure 12 shows a plot of the total �tness error for the dinosaur reconstructions using thin-plate and

multi-order basis functions at varying values of �. As expected, small values of � correspond to less error in

data �tness. Note that the error is an accumulation of the Euclidean distance measured at all the original

data points, not just the constraint points used in the reconstruction. Consequently, the error is not zero

even when � = 0, corresponding to exact interpolation. Error in �tness rises more sharply for the multi-order

radial basis function as � is increased than for the thin-plate basis function. At lower values of � (0.003 or

less), the aggregate error for both basis are comparable. The sharp rise in �tness error for the multi-order

basis provides a practical upper bound of 0.003 for � (dotted line in the plots of Figure 12 mark the location

of � = 0:003).
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Fig. 12. The plot on the left compares the total error in �tness to the data for the dinosaur reconstructions using the

thin-plate (o) and multi- order (*) radial basis functions, for � =0.0003, 0.001, 0.003, 0.01, 0.03, and 0.1. The center

plot compares the total curvature for both basis functions at the same values of �. The plot on the right compares the

total surface area for both basis functions at the same values of �. The vertical dotted line in all three plots mark the

location of � = 0:003.
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7.1.2 Measure of Curvature

The next quality measure we describe is the aggregate curvature of the surface. We measure the curvature

of the surfaces using polygonal models that are extracted from the implicit function using Marching Cubes

[20]. We measure curvature at each vertex of these polygonal models using a curvature approximation that

was developed for the smoothing operator in [10]. This measure is based on the normal directions of triangles

adjacent to each vertex and normalized by the total area of the triangles. High curvature is associated with

sharp features in the surface, while low curvature is associated with overshoots and blobby surfaces.

The center plot in Figure 12 shows the total curvature for the thin-plate and multi-order radial basis

functions at varying values of �. As expected, the curvature drops at large � values since the constraints

are no longer interpolated and the in
uence of the smoothness model is stronger. The plot reveals that the

curvature of the surface generated by the multi-order basis is higher than that generated by the thin-plate

basis at values of � less than or equal to 0.003. The thin-plate surface exhibits less curvature at � values of

0.003 or less, corresponding to the blobbiness seen in Figure 5. When � is greater than 0.003, however, the

surface generated by the multi-order basis exhibits lower curvature than that of the thin-plate basis. This is

further evidence that � should be kept at 0.003 or less.

A measure of the surface area shown in the plot on the right in Figure 12 reveals that the thin-plate basis

tends to produce larger surfaces (an indication of overshooting surfaces) across all values of �. The multi-order

basis function achieves a good balance between a tight �t and a smooth surface because they generate surfaces

with high curvature and equivalent �tness error in comparison to the thin-plate basis. We have found that �

values between 0.001 and 0.003 work well in practice, and this is consistent with the data of Figure 12. All

examples of our reconstruction, save for Figure 3, was created using a value of 0.001 for �.

7.2 Selecting � and �

Recall from Section 6 that � controls the amount of �rst order smoothness, while � controls the amount

of third order smoothness. Figures 8 and 10 show reconstructions of the toy dinosaur data set using various

values of � and � . In selecting appropriate values for these parameters, we began with the values used in

Figure 8 rather than those used in Figure 10 because the reconstructions of Figure 8 are, by visual inspection,

a better reproduction of the original data set from space carving. Figure 10 shows that a � value of 0.25 and

� values of 0.01 and higher produce reconstructions which are far too smooth and blobby. Consequently, we

constrained our search space to be more along the � axis than along the � axis. Figure 13 shows the valid

range of values for � and � that avoid imaginary values in Equations 10 and 11. The blue line in the graph

indicates the limiting values, and the red stars are the parameter values that we tested. Within our selected

search space, � becomes a coarse adjuster, while � is a �ne adjuster for �tness and curvature. We show in the

following sections that selection of the � and � values is not an extra burden on the user because there is a

limited space of values which produce locally detailed and globally smooth surfaces with low �tness error.

7.2.1 Fitness Error

Figure 14 is a plot of the average �tness error for the toy dinosaur reconstructions using various values of

� and � . Fitness error was measured for � values of 1.0, 5.0, 10.0, 15.0, 20.0, 30.0, and 40.0, and � values of

0.0005, 0.001, 0.005, 0.01, and 0.05 (di�erent values were used for this last � value due to the imaginary value

limitation as shown in Figure 13). � is 40.0 at the near corner of the graph and 1.0 at the leftmost corner

along the � axis. � is 0.0005 at the near corner and 0.05 at the rightmost corner along the � axis. The plot

shows that � has a greater in
uence on �tness to the data since changes in � cause greater changes in �tness

error than changes in � . � can be regarded as a course level adjuster, while � is a �ne level adjuster within this

search space. In general, larger � values produce a tighter �t, corroborating the fact that � controls �rst order

smoothness. Note, however, that at the largest value of � in the plot (� = 40:0), changes in � cause jumps in

the �tness error. A � value of 50.0 was found to result in even greater �tness error. This indicates that 40.0 is

the upper bound for appropriate � values for this data set. We have found by visual inspection that values of

30.0 and 40.0 for � produced the most detailed, yet smooth surfaces. At such values, the average �tness error

is below 0.5 in Euclidean distance. This corresponds exactly with the data set in that the range resolution is
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0.5, which means that the surface may exist anywhere within a radius of 0.25 from the data points.
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Fig. 14. Average �tness error for varying values of � and � . From far to near along the � axis, � = 1.0, 5.0, 10.0, 15.0,

20.0, 30.0, and 40.0. From near to far along the � axis, � = 0.0005, 0.001, 0.005, 0.01, and 0.05

A value of 0.01 or 0.005 for � was found to consistently produce the smallest �tness error across all values

of �. These values correspond to the third and fourth gridlines along the � axis.

7.2.2 Measure of Curvature

Figure 15 is a plot of the average curvature of the reconstructions using the same values of � and � as that

of the plot in Figure 14. Although a pattern is not as apparent here as in the �tness plot, the plot supports

the fact that � controls �rst order smoothness, while � controls third order smoothness. High curvature is

maintained at large values of � and small values of � , while low curvature is prevalent at large values of �

(values at the far right side of the graph). Low curvature is associated with overshooting surfaces that tend
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to be blobby. � values of 30.0 or 40.0 (second and �rst grid lines along the � axis) and � values of 0.005 or

0.01 (third and fourth grid lines along the � axis) generate surfaces which exhibit relatively high curvature

compared to the other values.
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Fig. 15. Average curvature for varying values of � and � . From far to near along the � axis, � = 1.0, 5.0, 10.0, 15.0,

20.0, 30.0, and 40.0. From near to far along the � axis, � = 0.0005, 0.001, 0.005, 0.01, and 0.05

7.3 Generalizing the Parameter Values

We applied the measures of �tness and curvature to the toy dinosaur data set in order to guide selection

of appropriate values for �, �, and � . We have found in practice that these same values may be used with

other data sets to produce desirable reconstructions. Examples of our reconstructions of other data sets are

shown in Figures 17 and 19. Note that although values of 30.0 and 40.0 for � were found to produce the most

visually detailed surfaces for the toy dinosaur data set, values of 10.0 and 20.0 produced surfaces which were

only slightly more blobby (see the closeup of Figure 8). By delimiting the space of useful values for �, �, and

� , we have shown that the use of three control parameters does not create additional burden on the user.

Values of � between 0.001 to 0.003, � values between 10.0 to 40.0 and � values between 0.005 to 0.01 can be

used to produce locally detailed, yet globally smooth, reconstructions on a variety of data sets.

7.4 Ground Truth Comparison

The challenge in validating and judging between di�erent surface reconstructions of a data set is due to

the fact that no ground truth surface exists. We do not know precisely how the surface behaves between data

points, and, in the case of vision-based data sets, we cannot be positive that the surface even passes through

the observed data points. One way of validating a surface reconstruction algorithm is to compare the results

of reconstructing a synthetic data set to the original model from which the data set was obtained. In the next

sections, we show results from synthetic data as well as discuss the real range data that was used in previous

sections.

7.4.1 Synthetic Range Data

We use a modi�ed ray-tracer [17] to generate synthetic range images as one test of our reconstruction

method. We used the Stanford Bunny as our test model, and created three synthetic range images from

positions separated by 120 degrees around a circle surrounding the model. We used these three synthetic

range images as input data to our reconstruction algorithm. For each range image, surface constraints are

created by uniformly downsampling the range image to reduce the size of the data set. For each surface

constraint, one exterior negative constraint is created within the free space described in Section 3. Additional
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exterior constraints are de�ned on a sphere surrounding the bounding box of the object at a distance farther

away from the object. No additional interior constraints are used because the exterior constraints are su�cient

to de�ne the orientation of the surface. The left panel of Figure 16 shows the original Stanford Bunny model

consisting of 69,451 triangles, and the remaining panels show the distribution of constraints de�ned for the

Bunny. Surface constraints are drawn as blue squares imbedded in the surface, and negative constraints are

drawn as green squares. The model shown in Figure 17 was reconstructed from 2168 surface and 193 exterior

constraints. Values of � = 0:001, � = 10, and � = 0:01 were used to reconstruct the surface. The di�erent

views of the reconstructed bunny in Figure 17 show that our model is quite similar to the ground truth. Our

reconstruction method produces plausible surfaces even in locations where the data is quite sparse. Note how

the model is closed on the top and bottom of the Bunny even though few constraint points were placed in

those locations as shown in the third and fourth panels of Figure 16. The model is closed at these places

due to the inherently manifold nature of implicit surfaces, and it is smooth at these locations by virtue of

minimizing the cost functional.

Fig. 16. The original Stanford bunny consisting of 69,451 triangles is shown on the left. On the right, the constraint

points are shown embedded in the reconstructed surface. Blue squares are surface constraints. Green squares are

negative exterior constraints.

Fig. 17. Reconstruction of the Stanford bunny from synthetic range images using a radial basis function that achieves

�rst, second, and third order smoothness.

7.4.2 Real Volume-Carved Data

Synthetic data does not, of course, have the noisy characteristic of real data. We now describe the real

space carved data that we use and how we de�ne the surface, interior, and exterior constraints. We used two

datasets from vision data of real objects, a toy dinosaur (from Steve Seitz [21]) and a broccoli stalk (courtesy of

Greg Slabaugh). Both sets of data were obtained by taking about 20 images approximately on a circle around
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each object. Volumetric surfaces were then constructed using the generalized voxel coloring algorithm [8].

The space is carved by splatting each voxel towards each calibrated camera and determining the consistency

of the voxel color across the images. If the variance in color intensity is below a speci�ed threshold, the voxel

is kept as part of the object surface. Otherwise, it is cast out and assigned a zero opacity value. The data

consists of red, green, and blue channels for each voxel. Non-empty voxels represent the presence of a surface,

as deduced by the voxel coloring algorithm.

In de�ning surface constraints, we use the volume as a binary representation in which non-empty voxels are

surface locations. We apply the technique described in Section 3 to de�ne the surface, exterior, and interior

constraints to reconstruct the object. We do not use the entire set of surface voxels because the system matrix

would become too large (19,641 surface voxels for the dinosaur data set), and the reconstructed surface

would over �t the data, resulting in overshoots. To obtain a subset of these surface voxels we sample the

volume by randomly selecting voxels. Each time a voxel is selected, the neighboring voxels within a radius of

in
uence are eliminated from possible selection in the next round. The elimination process prevents clusters of

closely placed constraint points, and resembles a 3D version of Poisson disc sampling. Interior constraints are

obtained by traversing the binary volume along the three principal axis. All points occurring between pairs of

non-empty voxels are marked as interior. Only voxels which are marked as interior by all three traversals are

kept as interior constraints. Again, only a subset of these are selected by the Poisson disc sampling technique

described above. Exterior constraints are found by projecting each surface voxel in the volume to the image

plane of each camera. If the ray from the surface voxel to a camera intersects other surface voxels, then the

view of the voxel is blocked. Otherwise, the camera has an unobscured view, and an exterior constraint can

be placed at a small distance away from the surface voxel along the ray towards the camera, as depicted in

Figure 2. Once a speci�ed number of constraints have been collected, they are given to the reconstruction

algorithm. In this paper, we have used from 800 to 4500 surface constraints. In practice, we have found that

100 or 200 interior and exterior constraints su�ce to de�ne the orientation of the surface.

Figure 18 shows the original space carved data set of the toy dinosaur on the left, the implicit surface

reconstruction in the middle, and a textured version of the implicit surface on the right. Reconstruction of a

broccoli stalk is shown in Figure 19.

Fig. 18. From left to right: volumetric data set of the toy dinosaur from space carving, reconstructed implicit surface

generated using the multi-order basis, reconstructed implicit surface textured using the original images.

7.5 Model Coloring

In order to create a color version of the surface, we begin with a polygonal model that was obtained through

iso-surface extraction using Marching Cubes [20]. We assign a color to each triangle of the polygonal model
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Fig. 19. From left to right: volumetric data set of a broccoli stalk from space carving, reconstructed implicit surface

generated using the multi-order basis, reconstructed implicit surface textured using the original images.

by reprojecting the triangles back to the original input images. Each triangle in the polygonal model is

subdivided until its projected footprint in the images is subpixel in size, so that it can simply take on the

color of the pixel to which it projects. In most cases, a triangle is visible in several of the original images. We

combine the colors from the di�erent images using a weighted average. The weight of each color contribution

is calculated by taking the dot product between the triangle normal and the view direction of the camera that

captured the particular image. Cameras with viewing directions that are nearly perpendicular to the triangle

normal contribute less than those with viewing directions that are nearly parallel to the triangle normal. We

use z-bu�ering to ensure that only cameras with an unobscured view of the triangle can contribute to the

triangle color. Figures 18 and 19 shows the �nal models of the toy dinosaur and broccoli once color has

been applied. Figure 20 is a comparison of four of the original input images with rendered images of the

reconstructed implicit surface from the same camera viewpoints.

8 Conclusion and Future Work

The reconstruction algorithm we have presented in this paper generates models that are smooth, seamless,

and manifold. Our method is able to address challenges found in real data sets, including noise, non-uniformity,

and holes in the data set. We have compared our technique to an exact interpolation algorithm (Crust), to

thin-plate variational implicits, and to the original volumetric reconstruction using the toy dinosaur as a

running example. Obvious advantages to the models generated by volumetric regularization are that there

are no discretization artifacts as are found in volumetric models, and the surface is not jagged as in the

Crust reconstruction. Volumetric regularization is most closely related to the thin-plate variational implicit

approach. It compares favorably to the thin-plate variational implicits in computational time as well as in the

surfaces that are generated. Using the multi-order radial basis function, volumetric regularization generates

locally detailed, yet globally smooth surfaces that properly separate the features of the model.

Through regularization, our method can generate approximating, rather than interpolating, surfaces. This

capability is especially advantageous in the presence of noise found in real data. In contrast, popular exact

interpolation algorithms such as Crust and Alpha Shapes directly transfer the noise to the reconstructed

surface.

We have adapted the variational implicits approach to real range data by developing methods to de�ne

surface, interior, and exterior constraints. Although surface points are directly supplied by the range data,

we have introduced new methods for creating interior and exterior constraints using information about the

camera positions used for capturing the data. We have applied this technique to space carved volumetric data

and synthetic range images.

Finally, we have developed and applied measures of �tness error and curvature to the reconstructed surfaces.

These measures were used to guide selection of the regularization and smoothness parameters. The measures

attest to the bene�ts of the multi-order radial basis function over the thin-plate radial basis function.
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Fig. 20. The top row of images are four of the original input images used to generate the space carved data set of

the toy dinosaur. The bottom row are images of the reconstructed implicit model rendered from the original camera

viewpoints.

We plan to look at several potential improvements to our approach, including use of con�dence measures,

adaptive sampling, and adaptively modifying the basis functions locally. The generalized voxel coloring

algorithm that generates the input range data also generates con�dence measure for each surface point. This

con�dence measure is based upon the variance of the colors to which each surface voxel projects in the input

images. Recall that the � parameter may serve as a local �tting parameter since a unique value may be

assigned for each constraint point. The con�dence measure for each surface point could be used to set unique

� values for each surface constraint. Another possible improvement would be to create more constraint points

in areas of the model that contain sharp or small features. These areas could be identi�ed by the curvature

measure applied to the implicit surface. This would be an adaptive sampling approach in which uniform

sampling is used to generate an intial surface, and then, additional sampling would be performed in areas of

high curvature. Another alternative is to assign di�erent � and � values in di�erent locations for the radial

basis used in reconstructing the surface. The curvature measure is an indicator of where the surface may

contain sharp features. Consequently, the � and � parameters could be de�ned for each constraint according

to the curvature measure at that constraint point. These future directions hold promise of further re�ning

the sharp features of reconstructed surfaces of real world objects.
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